This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Decidability of fully quantum nonlocal games with noisy maximally entangled states

Minglong Qin State Key Laboratory for Novel Software Technology, Nanjing University([email protected] )    Penghui Yao State Key Laboratory for Novel Software Technology, Nanjing University([email protected])Hefei National Laboratory, Hefei 230088, China
Abstract

This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled states. Fully quantum nonlocal games are a generalization of nonlocal games, where both questions and answers are quantum and the referee performs a binary POVM measurement to decide whether they win the game after receiving the quantum answers from the players. The quantum value of a fully quantum nonlocal game is the supremum of the probability that they win the game, where the supremum is taken over all the possible entangled states shared between the players and all the valid quantum operations performed by the players. The seminal work MIP=RE\mathrm{MIP}^{*}=\mathrm{RE} [23, 24] implies that it is undecidable to approximate the quantum value of a fully nonlocal game. This still holds even if the players are only allowed to share (arbitrarily many copies of) maximally entangled states. This paper investigates the case that the shared maximally entangled states are noisy. We prove that there is a computable upper bound on the copies of noisy maximally entangled states for the players to win a fully quantum nonlocal game with a probability arbitrarily close to the quantum value. This implies that it is decidable to approximate the quantum values of these games. Hence, the hardness of approximating the quantum value of a fully quantum nonlocal game is not robust against the noise in the shared states.

This paper is built on the framework for the decidability of non-interactive simulations of joint distributions [17, 12, 16] and generalizes the analogous result for nonlocal games in [36]. We extend the theory of Fourier analysis to the space of super-operators and prove several key results including an invariance principle and a dimension reduction for super-operators. These results are interesting in their own right and are believed to have further applications.

1 Introduction

Nonlocal games are a core model in the theory of quantum computing, which has found wide applications in quantum complexity theory, quantum cryptography, and the foundation of quantum mechanics. A nonlocal game is executed by three parties, a referee and two non-communicating players, which are usually named Alice and Bob. Before the game starts, the players may share an arbitrary bipartite quantum state. The referee samples a pair of questions and sends each of them to the players, separately. Each player is supposed to reply with a classical answer to the referee. They win the game if the questions and the answers satisfy a given predicate. The distribution of the questions and the predicate is known to the players. The quantum value is the supremum of the probability that the players win the game. It is a central topic in quantum computing to understand the computational complexity of computing the quantum value of a nonlocal game. After decades of efforts [11, 28, 27, 21, 22, 33, 14], it has been finally settled by the seminal work MIP=RE\mathrm{MIP}^{*}=\mathrm{RE} [23, 24], where Ji, Natarajan, Vidick, Wright and Yuen proved that it is undecidable to approximately compute the quantum value of a nonlocal game with constant precision. This result implies that there is no computable upper bound on the preshared entanglement for the players to win the game with a probability close to the quantum value. Otherwise, the probability of success can be obtained by ε\varepsilon-netting all possible quantum strategies and brute-force searching for the optimal value. Ji et al. essentially proved that it is still uncomputable even if the players are only allowed to share (arbitrarily many) EPR states.

In [36], the authors investigated the robustness of the hardness of the nonlocal games under noise. More specifically, they considered a variant of nonlocal games, where the preshared quantum states are corrupted. It is shown that the quantum value of a nonlocal game is computable if the players are allowed to share arbitrarily many copies of noisy maximally entangled states (MES). Hence, the hardness of the nonlocal games collapses in the presence of noise from the preshared entangled states.

In this paper, we consider fully quantum nonlocal games, which are a broader class of games where both questions and answers are quantum and the predicates are replaced by quantum measurements with binary outcomes: win and loss. More specifically, a fully quantum nonlocal game

𝔊=(𝒫,𝒬,,𝒜,,ϕin𝒫𝒬,{Pwin=M𝒜,Ploss=𝟙M𝒜})\mathfrak{G}=\left(\mathscr{P},\mathscr{Q},\mathscr{R},\mathscr{A},\mathscr{B},\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}},\left\{P_{\textsf{win}}=M^{\mathscr{A}\mathscr{B}\mathscr{R}},P_{\textsf{loss}}=\mathds{1}-M^{\mathscr{A}\mathscr{B}\mathscr{R}}\right\}\right)

consists of a referee and two non-communicating players: Alice and Bob, where 𝒫,𝒬,,𝒜,\mathscr{P},\mathscr{Q},\mathscr{R},\mathscr{A},\mathscr{B} are quantum systems, ϕin𝒫𝒬\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}} is a tripartite quantum state in 𝒫𝒬\mathscr{P}\otimes\mathscr{Q}\otimes\mathscr{R} and {Pwin,Ploss}\left\{P_{\textsf{win}},P_{\textsf{loss}}\right\} is a measurement acting on 𝒜\mathscr{A}\otimes\mathscr{B}\otimes\mathscr{R}. Alice, Bob, and the referee share the input state ϕin𝒫𝒬\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}}, where Alice, Bob, and the referee hold 𝒫,𝒬,\mathscr{P},\mathscr{Q},\mathscr{R}, respectively, at the beginning of the game. Alice and Bob are supposed to perform quantum operations mapping 𝒫\mathscr{P} to 𝒜\mathscr{A} and 𝒬\mathscr{Q} to \mathscr{B}, and then send the quantum states in 𝒜\mathscr{A} and \mathscr{B} to the referee, respectively. After receiving the quantum messages from the players, the referee performs the POVM measurement {Pwin,Ploss}\left\{P_{\textsf{win}},P_{\textsf{loss}}\right\}. Again, the players are allowed to share arbitrary quantum states before the game starts. Both players know the description of ϕin\phi_{\textsf{in}} and the POVM. The quantum value of the game GG is the supremum of the probability that the players win the game. The supremum is over all possible preshared quantum states and the quantum operations that can be implemented by both parties. It is not hard to see if ϕin=x,yμ(x,y)|xx|𝒫|yy|𝒬|xyxy|\phi_{\textsf{in}}=\sum_{x,y}\mu\left(x,y\right)\left|x\middle\rangle\middle\langle x\right|^{\mathscr{P}}\otimes\left|y\middle\rangle\middle\langle y\right|^{\mathscr{Q}}\otimes\left|xy\middle\rangle\middle\langle xy\right|^{\mathscr{R}} and both PwinP_{\textsf{win}} and PlossP_{\textsf{loss}} are projectors on computational basis, where μ\mu is a bipartite distribution, then it boils down to a nonlocal game.

Fully quantum nonlocal games also capture the complexity class of two-prover one-round quantum multi-prover interactive proof systems 𝖰𝖬𝖨𝖯(2,1)\mathsf{QMIP}(2,1). The variants of nonlocal games, where either the questions or the answers are replaced by quantum messages have occurred in much literature [7, 30, 37, 10, 15, 8, 5, 25]. In [7], Buscemi introduced the so-called semi-quantum nonlocal games, which are nonlocal games with quantum questions and classical answers, and proved that semi-quantum nonlocal games can be used to characterize LOSR (local operations and shared randomness) paradigm. Such games are further used to study the entanglement verification in the subsequent work [8, 5]. In a different context, Regev and Vidick in [37] proposed quantum XOR games, where the questions are quantum and the answers are still classical. In [30], Leung, Toner, and Watrous introduced a communication task: coherent state exchange and its analogue in the setting of nonlocal games, where both questions and answers are quantum. In [15], Fitzsimons and Vidick demonstrated an efficient reduction that transforms a local Hamiltonian into a 5-players nonlocal game allowing classical questions and quantum answers. They showed that approximating the value of this game to a polynomial inverse accuracy is 𝖰𝖬𝖠\mathsf{QMA}-complete. In [10], Chung, Wu, and Yuen further proved a parallel repetition for nonlocal games where again questions are classical and answers are quantum.

As fully quantum nonlocal games are a generalization of nonlocal games, Ji et al.’s result [23, 24] implies that it is also undecidable to approximately compute the quantum value of a fully quantum nonlocal game, even if they are only allowed to share MESs.

In this paper, we continue the line of research in [36] to investigate whether the hardness of fully quantum nonlocal games can be maintained against the noise. More specifically, we consider the games where the players share arbitrarily many copies of noisy MES’s ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}. Each ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}} is a bipartite state in quantum system 𝒮𝒯\mathscr{S}\otimes\mathscr{T}, where Alice and Bob hold 𝒮\mathscr{S} and 𝒯\mathscr{T}, respectively. The value of a game can be written as

valQ(𝔊,ψ)=limnmaxΦAlice,ΦBobTr[Pwin((ΦAliceΦBob)(ϕin𝒫𝒬(ψ𝒮𝒯)n))].\mathrm{val}_{Q}(\mathfrak{G},\psi)=\lim_{n\rightarrow\infty}\max_{\Phi_{\textsf{Alice}},\Phi_{\textsf{Bob}}}\mathrm{Tr}\left[P_{\textsf{win}}\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes n}\right)\right)\right].

where the maximum is taken over all quantum operations ΦAlice:𝒫𝒮n𝒜\Phi_{\textsf{Alice}}:\mathscr{P}\otimes\mathscr{S}^{\otimes n}\rightarrow\mathscr{A} and ΦBob:𝒬𝒯n\Phi_{\textsf{Bob}}:\mathscr{Q}\otimes\mathscr{T}^{\otimes n}\rightarrow\mathscr{B}. Noisy MESs were introduced in [36], which will be defined later. They include depolarized EPR states (1ε)|ΨΨ|+ε𝟙/2𝟙/2(1-\varepsilon)\left|\Psi\middle\rangle\middle\langle\Psi\right|+\varepsilon\mathds{1}/2\otimes\mathds{1}/2, where ε>0\varepsilon>0 and |Ψ=(|00+|11)/2\left|\Psi\right\rangle=\left(\left|00\right\rangle+\left|11\right\rangle\right)/\sqrt{2} is an EPR state. [23, 24] proved that it is undecidable to approximate valQ(𝔊,|Ψ)\mathrm{val}_{Q}(\mathfrak{G},\left|\Psi\right\rangle) within constant precision.

Main results

In this paper, we prove that it is computable to approximate valQ(𝔊,ψ)\mathrm{val}_{Q}(\mathfrak{G},\psi) within arbitrarily small precision if ψ\psi is a noisy MES.

Theorem 1.1 (Main result, informal).

Given integer m2m\geq 2, δ(0,1)\delta\in(0,1) and a fully quantum nonlocal game 𝔊\mathfrak{G}, where players are allowed to share arbitrarily many copies mm-dimensional noisy MESs ψ\psi, there exists an explicitly computable bound D=D(ε,δ,m,𝔊)D=D\left(\varepsilon,\delta,m,\mathfrak{G}\right) such that it suffices for the players to share DD copies of ψ\psi to achieve the winning probability at least valQ(𝔊,ψ)δ\mathrm{val}_{Q}(\mathfrak{G},\psi)-\delta. Thus it is feasible to approximate the quantum value of the game (𝔊,ψ)\left(\mathfrak{G},\psi\right) to arbitrarily precision.

As mentioned above, the class of noisy MESs includes (1ε)|ΨΨ|+ε𝟙/2𝟙/2(1-\varepsilon)\left|\Psi\middle\rangle\middle\langle\Psi\right|+\varepsilon\mathds{1}/2\otimes\mathds{1}/2, where ε>0\varepsilon>0 and Ψ\Psi is an EPR state. It is as hard as Halting problem to approximate valQ(𝔊,|Ψ)\mathrm{val}_{Q}(\mathfrak{G},\left|\Psi\right\rangle) proved by [23, 24]. Therefore, our result implies that the hardness of fully quantum nonlocal games is also not robust against the noise in the preshared states.

This result generalizes [36] where the authors proved that it is feasible to approximate the values when both questions and answers are classical. Both works are built on the series of works for the decidability of non-interactive simulations of joint distributions  [17, 16, 12]. In the setting of non-interactive simulations of joint distributions, two non-communicating players Alice and Bob are provided a sequence of independent samples (x1,y1),(x2,y2),\left(x_{1},y_{1}\right),\left(x_{2},y_{2}\right),\ldots from a joint distribution μ\mu, where Alice observes x1,x2,x_{1},x_{2},\ldots and Bob observes y1,y2,y_{1},y_{2},\ldots. The question is to decide what joint distribution ν\nu Alice and Bob can sample. The research on this problem has a long history and fruitful results (see, for example [26] and the references therein). The quantum analogue was first studied by Delgosha and Beigi [13], which is referred to as local state transformation. The decidability of local state transformation is still widely open. In this work, we prove that the local state transformation is decidable when the source states are noisy MESs.

1.1 Contributions

The main contribution in this paper is developing a Fourier-analytic framework for the study of the space of super-operators. Here we list some conceptual or technical contributions, which are believed to be interesting in their own right and have further applications in quantum information science.

  1. 1.

    Analysis in the space of super-operators.

    The space of super-operators is difficult to understand in general. In this paper, we make a crucial observation that the quantum value of a fully quantum nonlocal game can be reformulated in terms of the Choi representations of the adjoint maps of the quantum operations. Instead of the space of super-operators, we apply Fourier analysis to the space spanned by those Choi representations. Then we prove an invariance principle for super-operators as well as a dimension reduction for quantum operations, which generalize the analogous results in [36].

    Our understanding of Fourier analysis in the space of super-operators is still very limited, although Boolean analysis has been studied extensively in both mathematics and theoretical computer science for decades. The approach taken in this paper may pave the way for the theory of Fourier analysis in the space of super-operators.

  2. 2.

    Invariance principle for super-operators.

    The classical invariance principle is a central limit theorem for polynomials [32], which asserts that the distribution of a low-degree and flat polynomial with random inputs uniformly drawn from {±1}n\left\{\pm 1\right\}^{n} is close to the distribution which is obtained by replacing the inputs with i.i.d. standard normal distributions. Here a polynomial is flat means that no variable has high influence on the value of the polynomial. In [36], the authors established an invariance principle for matrix spaces. This paper further proves an invariance principle for super-operators. This is essential to reduce the number of shared noisy MESs.

  3. 3.

    Dimension reduction for quantum operations.

    An important step in our proof is a dimension reduction for quantum operations, which enables us to reduce the dimensions of both players’ quantum operations. It, in turn, reduces the number of noisy MESs shared between the players. Dimension reductions for quantum operations are usually difficult and sometimes even impossible [19, 39]. In this paper, we prove a dimension reduction via an invariance principle for super-operators and the dimension reduction for polynomials in Gaussian spaces [16]. we adopt the techniques in [16] with a delicate analysis. It leads to an exponential upper bound in the main theorem. which also improves the doubly exponential upper bound in [36].

1.2 Comparison with [36]

In [36], the authors applied Fourier analysis to the Hilbert space where both players’ measurements stay, and proved hypercontractive inequalities, quantum invariance principles and dimension reductions for matrices and random matrices. In a fully quantum nonlocal game, both players perform quantum operations. Hence, a natural approach is to further extend the framework in [17, 36] to the space of super-operators.

The first difficulty occurs as the answers are quantum. In [36], the authors applied the framework to each pair of POVM elements (one from Alice and one from Bob). Further taking a union bound, the result concludes. Hence, it suffices to work on the space where the POVM elements stay, which is a tensor product of identical Hilbert spaces. This approach fails when considering fully quantum nonlocal games as the answers are quantum. Hence, we need to have a convenient representation of super-operators to work on. It is known that there are several equivalent representations of super-operators [42]. In this paper, we choose the Choi representations of super-operators, which view a super-operator as an operator in the tensor product of the input space and the output space. Hence, the underlying Hilbert space is a tensor product of a number of identical Hilbert spaces and the output Hilbert space. Thus, the analysis in [36] cannot be generalized here directly.

The second difficulty occurs as the questions are quantum. In [36], the authors essentially proved an upper bound on the number of noisy MESs for each pair of inputs. If the precision of the approximation is good enough, then we can obtain an upper bound for all inputs again by a union bound because the questions are finite in a nonlocal game. This argument cannot be directly generalized to fully nonlocal games as the questions are the marginal state of the input state with Alice and Bob. Fortunately, this difficulty can be avoided as the input state is in a bounded-dimensional space and thus it suffices to prove the theorem for each basis element from a properly chosen basis in the space, and then take a union bound.

The last difficulty is that the rounding argument in [36] does not apply to fully quantum nonlocal games. In the end of the construction, the new super-operators are no longer valid quantum operations. In [36], the construction gives a number of Hermitian operators in the end. The rounding argument proves that it is possible to round these Hermitian operators to valid POVMs with small deviation. For fully quantum nonlocal games we need a new rounding argument which is able to round super-operators to valid quantum operations with small deviation in the end of the construction.

1.3 Proof overview

The proof is built on the framework in [17, 16, 12] for the decidability of non-interactive simulation of joint distributions. To explain the high-level idea of our proof, we start with the decidability of a particular task of local state transformation. Then we explain how to generalize it to nonlocal games.

Local state transformation

We are interested in the decidability of the following local state transformation problem.

Given δ>0\delta>0, a bipartite state σ\sigma and a noisy MES ψ\psi, suppose Alice and Bob share arbitrarily many copies of ψ\psi.

  • Yes. Alice and Bob are able to jointly generate a bipartite state σ\sigma^{\prime} using only local operations such that σ\sigma^{\prime} is δ\delta-close to σ\sigma, i.e., σσ1δ\left\|\sigma-\sigma^{\prime}\right\|_{1}\leq\delta.

  • No. Any quantum state σ\sigma^{\prime} that Alice and Bob can jointly generate using only local operations is 2δ2\delta-far from σ\sigma, i.e., σσ12δ\left\|\sigma-\sigma^{\prime}\right\|_{1}\geq 2\delta.

As there is no upper bound on the number of copies of ψ\psi, the decidability of this question is unclear. If it were proved that any quantum operation could be simulated by a quantum operation in a bounded dimension, then the problem would be decidable as we could search all possible quantum operations in a bounded-dimensional space via an ε\varepsilon-net and brute force. More specifically, suppose Alice and Bob share nn copies of noisy MESs ψ\psi and they perform quantum operations ΦAlice\Phi_{\textsf{Alice}} and ΦBob\Phi_{\textsf{Bob}}. For any precision parameter δ(0,1)\delta\in(0,1), we need to construct quantum operations ΦAlice~\widetilde{\Phi_{\textsf{Alice}}} and ΦBob~\widetilde{\Phi_{\textsf{Bob}}} acting on DD copies of ψ\psi, where DD is independent of nn, such that

(ΦAliceΦBob)(ψn)(ΦAlice~ΦBob~)(ψD).\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\psi^{\otimes n}\right)\approx\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\psi^{\otimes D}\right). (1)

To explain the high-level ideas, we assume that ψ\psi is a 22-qubit quantum state for simplicity. Let {𝒳a}a{0,1,2,3}\left\{\mathcal{X}_{a}\right\}_{a\in\left\{0,1,2,3\right\}} be an orthonormal basis in the space of 2×22\times 2 matrices. We observe that the left hand side of Eq. (1) is determined by the following 42n4^{2n} values:

{Tr[(𝒳a𝒳b)((ΦAliceΦBob)(ψn))]}a,b{0,1,2,3}n,\left\{\mathrm{Tr}\left[\left(\mathcal{X}_{a}\otimes\mathcal{X}_{b}\right)\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\psi^{\otimes n}\right)\right)\right]\right\}_{a,b\in\left\{0,1,2,3\right\}^{n}},

where 𝒳a=𝒳a1𝒳an\mathcal{X}_{a}=\mathcal{X}_{a_{1}}\otimes\cdots\otimes\mathcal{X}_{a_{n}}. Notice that

Tr[(𝒳a𝒳b)((ΦAliceΦBob)(ψn))]=Tr[((ΦAlice)(𝒳a)(ΦBob)(𝒳b))(ψn)],\mathrm{Tr}\left[\left(\mathcal{X}_{a}\otimes\mathcal{X}_{b}\right)\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\psi^{\otimes n}\right)\right)\right]=\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right)\otimes\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right)\right)\left(\psi^{\otimes n}\right)\right],

where (ΦAlice)\left(\Phi_{\textsf{Alice}}\right)^{*} and (ΦBob)\left(\Phi_{\textsf{Bob}}\right)^{*} are the adjoints of ΦAlice\Phi_{\textsf{Alice}} and ΦBob\Phi_{\textsf{Bob}}, respectively. Hence, Eq. (1) is equivalent to

Tr[((ΦAlice)(𝒳a)(ΦBob)(𝒳b))ψn]Tr[((ΦAlice~)(𝒳a)(ΦBob~)(𝒳b))ψD].\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right)\otimes\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right)\right)\psi^{\otimes n}\right]\approx\mathrm{Tr}\left[\left(\left(\widetilde{\Phi_{\textsf{Alice}}}\right)^{*}\left(\mathcal{X}_{a}\right)\otimes\left(\widetilde{\Phi_{\textsf{Bob}}}\right)^{*}\left(\mathcal{X}_{b}\right)\right)\psi^{\otimes D}\right]. (2)

Eq. (2) resembles the setting considered in [36]. It is proved in [36] that for any POVM {MiNj}i,j\left\{M_{i}\otimes N_{j}\right\}_{i,j} acting on ψn\psi^{\otimes n}, there exists POVM {MiNj}i,j\left\{M_{i}^{\prime}\otimes N_{j}^{\prime}\right\}_{i,j} acting on ψD\psi^{\otimes D} such that

Tr[(MiNj)ψn]Tr[(MiNj)ψD],\mathrm{Tr}\left[\left(M_{i}\otimes N_{j}\right)\psi^{\otimes n}\right]\approx\mathrm{Tr}\left[\left(M^{\prime}_{i}\otimes N^{\prime}_{j}\right)\psi^{\otimes D}\right],

for all i,ji,j. However, (ΦAlice)(𝒳a)\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right) and (ΦBob)(𝒳b)\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right) are not positive. It is even not clear how to characterize (ΦAlice)(𝒳a)\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right) and (ΦBob)(𝒳b)\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right) for valid quantum operations ΦAlice\Phi_{\textsf{Alice}} and ΦBob\Phi_{\textsf{Bob}}. Thus we cannot directly apply the results in [36]. Instead of working on each of (ΦAlice)(𝒳a)\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right) and (ΦBob)(𝒳b)\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right), we work on the Choi representations J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right), which include the information of (ΦAlice)(𝒳a)\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right) and (ΦBob)(𝒳b)\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right) for all a,ba,b. One more advantage of Choi representations is that we have a neat characterization of the Choi representations of quantum operations (refer to 3.2). Thus it is more convenient to bound the deviations of the intermediate super-operators from valid quantum operations throughout the construction. We consider the Fourier expansions of J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right), and reduce the dimensions of the super-operators via the framework for the decidability of non-interactive simulations of joint distributions in [17, 16, 12, 36]. To this end, we prove an invariance principle for super-operators, and combine it with the dimension reduction for polynomials in Gaussian spaces [16]. There are several prerequisites for the invariance principle. Firstly, the Choi representation should have low degree. Secondly, all but a constant number of systems are of low influence, that is, all but a constant number of subsystems do not influence the super-operators much. The construction takes several steps to adjust the Fourier coefficients of J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right) to meet those prerequisites. Meanwhile, the new super-operators still need to be close to valid quantum operations so that the value of the game does not change much. Once these prerequisites are satisfied, the basis elements in those subsystems with low influence are replaced by properly chosen Gaussian variables, which only causes a small deviation by the invariance principle.

The whole construction is summarized in Fig. 1. Each step is sketched as follows.

J((ΦA))J\left(\left(\Phi_{A}\right)^{*}\right) J((ΦB))J\left(\left(\Phi_{B}\right)^{*}\right) nn q. systems
Smoothing
objective: bounded deg
Lemma 5.1 Lemma 5.1
M(1)M^{(1)} N(1)N^{(1)}
nn q. systems
Regularization
bounded deg
bounded high inf systems
Lemma 5.6
M(1)M^{(1)} N(1)N^{(1)}
nn q. systems
Invariance principle
bounded deg
bounded q. systems
unbounded Gaussian vars
Lemma 5.7 Lemma 5.7
𝐌(2)\mathbf{M}^{(2)} 𝐍(2)\mathbf{N}^{(2)}
hh q. systems
O(nh)O(n-h) Gaussian vars
Dimension reduction
bounded q. systems
bounded Gaussian vars
Lemma 5.13
𝐌(3)\mathbf{M}^{(3)} 𝐍(3)\mathbf{N}^{(3)}
hh q. systems
n0n_{0} Gaussian vars
Smooth
bounded q. systems
bounded Gaussian vars
bounded deg
Lemma 5.18 Lemma 5.18
𝐌(4)\mathbf{M}^{(4)} 𝐍(4)\mathbf{N}^{(4)}
hh q. systems
n0n_{0} Gaussian vars
Multilinearization
bounded q. systems
bounded Gaussian vars
bounded deg & multilinear
Lemma 5.20 Lemma 5.20
𝐌(5)\mathbf{M}^{(5)} 𝐍(5)\mathbf{N}^{(5)}
hh q. systems
n0n1n_{0}n_{1} Gaussian vars
Invariance principle
bounded q. systems
Lemma 5.12 Lemma 5.12
M(6)M^{(6)} N(6)N^{(6)}
h+n0n1h+n_{0}n_{1} q. systems
Rounding
quantum operations
Lemma 5.23 Lemma 5.23
J((Φ~A))J\left(\left(\widetilde{\Phi}_{A}\right)^{*}\right) J((Φ~B))J\left(\left(\widetilde{\Phi}_{B}\right)^{*}\right)
h+n0n1h+n_{0}n_{1} q. systems
Figure 1: Construction of the transformations
  1. 1.

    Smoothing

    Suppose that Alice and Bob perform quantum operations ΦAlice\Phi_{\textsf{Alice}} and ΦBob\Phi_{\textsf{Bob}}, respectively. Let (ΦAlice),(ΦBob)\left(\Phi_{\textsf{Alice}}\right)^{*},\left(\Phi_{\textsf{Bob}}\right)^{*} be the adjoints of ΦAlice,ΦBob\Phi_{\textsf{Alice}},\Phi_{\textsf{Bob}} (defined in Eq. 5), respectively, and J((ΦAlice)),J((ΦBob))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right),J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right) be the corresponding Choi representations (defined in Eq. 6). Notice that J((ΦAlice)),J((ΦBob))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right),J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right) lie in the tensor-product space of the input Hilbert space and the output Hilbert space. The output Hilbert space is bounded-dimensional. And the input Hilbert space is unbounded, of which we aims to reduce the dimension.

    This step is aimed to obtain bounded-degree approximations of J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right). We apply a noise operator Δγ\Delta_{\gamma} for some γ(0,1)\gamma\in(0,1) defined in Definition 3.15 to both J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right) on the input spaces. Note that both Choi representations are positive operators. After smoothing the operation and truncating the high-degree parts, we get bounded-degree approximations M(1)M^{(1)} and N(1)N^{(1)}, of J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right), respectively. Though the bounded-degree approximations may no longer be positive, the deviation can be proved to be small.

  2. 2.

    Regularity

    This step is aimed to prove that the number of subsystems having high influence is bounded. The influence of a subsystem of a multipartite Hermitian operator is defined in Definition 3.4. Informally speaking, the influence measures how much the subsystem can affect the operator. For a bounded operator, the total influence, which is the summation of the influences of all subsystems, is upper bounded by the degree of the operator. This is a generalization of a standard result in Boolean analysis. Note that we have bounded-degree approximations after the first step. The desired result follows by a Markov inequality.

  3. 3.

    Invariance principle

    In this step, we use correlated Gaussian variables to substitute the basis elements in all the subsystems with low influence in M(1)M^{(1)} and N(1)N^{(1)}, after which we get random operators 𝐌(2)\mathbf{M}^{(2)} and 𝐍(2)\mathbf{N}^{(2)}, whose Fourier coefficients are low-degree multilinear polynomials in Gaussian variables. We also need to prove that, 𝐌(2)\mathbf{M}^{(2)} and 𝐍(2)\mathbf{N}^{(2)} are close to positive operators in expectation.

  4. 4.

    Dimension reduction

    This step is aimed to reduce the number of Gaussian variables. After applying a dimension reduction to 𝐌(2)\mathbf{M}^{(2)} and 𝐍(2)\mathbf{N}^{(2)}, we get random operators 𝐌(3)\mathbf{M}^{(3)} and 𝐍(3)\mathbf{N}^{(3)} containing a bounded number of Gaussian random variables. Unlike [36], we get an upper bound independent of the number of quantum subsystems via a more delicate analysis. However, the Fourier coefficients of 𝐌(3)\mathbf{M}^{(3)} and 𝐍(3)\mathbf{N}^{(3)} are no longer low-degree polynomials after the dimension reduction.

  5. 5.

    Smooth random operators

    The remaining steps are mainly concerned with removing the Gaussian variables. This step is aimed to get low-degree approximations of the Fourier coefficients of 𝐌(3)\mathbf{M}^{(3)} and 𝐍(3)\mathbf{N}^{(3)}. We apply the Ornstein-Uhlenbeck operator (aka noise operators in Gaussian space, see Definition 3.6) to the Gaussian variables in 𝐌(3)\mathbf{M}^{(3)} and 𝐍(3)\mathbf{N}^{(3)} and truncate the high-degree parts to get 𝐌(4)\mathbf{M}^{(4)} and 𝐍(4)\mathbf{N}^{(4)}. We should note that the Fourier coefficients of 𝐌(4)\mathbf{M}^{(4)} and 𝐍(4)\mathbf{N}^{(4)} are polynomials, but not multilinear.

  6. 6.

    Multilinearization

    This step is aimed to get multilinear approximations of the Fourier coefficients of 𝐌(4)\mathbf{M}^{(4)} and 𝐍(4)\mathbf{N}^{(4)}. To this end, We apply the multilinearization lemma in [16] to get random operators 𝐌(5)\mathbf{M}^{(5)} and 𝐍(5)\mathbf{N}^{(5)}. Now we are ready to use the invariance principle again to convert random operators back to operators.

  7. 7.

    Invariance to operators

    In this step we substitute the Gaussian variables with properly chosen basis elements, to get operators M(6)M^{(6)} and N(6)N^{(6)}, which have a bounded number of quantum subsystems. Again, we need to apply a quantum invariance principle to ensure that M(6)M^{(6)} and N(6)N^{(6)} are close to positive operators.

  8. 8.

    Rounding

    We now have operators M(6)M^{(6)} and N(6)N^{(6)} that are close to positive operators. The last thing to do is to round them to the Choi representations of the adjoints of some quantum operations. After the rounding, the whole construction is done.

From local state transformation to fully quantum nonlocal games

In the setting of a fully quantum nonlocal game, Alice and Bob share noisy MESs as well as an input state ϕin\phi_{\textsf{in}} which may be entangled with the referee. Thus, it can be reformulated as the following problem.

Given δ>0\delta>0, a tripartite state ϕin\phi_{\textsf{in}}, a noisy MES ψ\psi and a tripartite state σ\sigma, suppose Alice, Bob and referee share ϕin\phi_{\textsf{in}}. Additionally, Alice and Bob also share arbitrarily many copies of ψ\psi.

  • Yes. Alice and Bob are able to jointly generate a tripartite state σ\sigma^{\prime} among Alice, Bob and the referee using only local operations such that σ\sigma^{\prime} is δ\delta-close to σ\sigma, i.e., σσ1δ\left\|\sigma-\sigma^{\prime}\right\|_{1}\leq\delta.

  • No. Any tripartite state σ\sigma^{\prime} among Alice, Bob and the referee that Alice and Bob can jointly generate using only local operations is 2δ2\delta-far from σ\sigma, i.e., σσ12δ\left\|\sigma-\sigma^{\prime}\right\|_{1}\geq 2\delta.

In both cases, the referee does not perform any quantum operation.

Suppose the input state ϕin\phi_{\textsf{in}} is in the register 𝒫𝒬\mathscr{P}\otimes\mathscr{Q}\otimes\mathscr{R}, the target state σ\sigma is in the register 𝒜\mathscr{A}\otimes\mathscr{B}\otimes\mathscr{R}, and Alice and Bob share nn copies of noisy MES’s, i.e., (ψ𝒮𝒯)n\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes n}. They perform quantum operations ΦAlice\Phi_{\textsf{Alice}} and ΦBob\Phi_{\textsf{Bob}}, respectively, where ΦAlice:𝒫𝒮n𝒜\Phi_{\textsf{Alice}}:\mathscr{P}\otimes\mathscr{S}^{\otimes n}\rightarrow\mathscr{A} and ΦBob:𝒬𝒯n\Phi_{\textsf{Bob}}:\mathscr{Q}\otimes\mathscr{T}^{\otimes n}\rightarrow\mathscr{B}. For any precision parameter δ(0,1)\delta\in(0,1), we need to construct quantum operations ΦAlice~:𝒫𝒮D\widetilde{\Phi_{\textsf{Alice}}}:\mathscr{P}\otimes\mathscr{S}^{\otimes D} acting on DD copies of ψ\psi together with 𝒫\mathscr{P}, and ΦBob~:𝒬𝒯D\widetilde{\Phi_{\textsf{Bob}}}:\mathscr{Q}\otimes\mathscr{T}^{\otimes D} acting on DD copies of ψ\psi together with 𝒬\mathscr{Q}, such that

(ΦAliceΦBob)(ϕinψn)(ΦAlice~ΦBob~)(ϕinψD),\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\approx\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right), (3)

where DD is independent of nn. It is illustrated in Fig. 2.

{codi}\obj

|(PA)| & |(PB)| [3em]
|(A)| |(B)| |(A2)|Alice |(B2)|Bob
|(R)|Referee |(R2)|Referee
|(TA)| |(TB)|
|(A3)| |(B3)|
|(R3)|Referee
;

\mor

:[swap]A "ϕin\phi_{\textsf{in}}":- B; \morA :- R; \morB :- R; \mor:[shove=+2em] B -> A2; \morA2 :- B2; \morA2 :- R2; \morB2 :- R2; \mor:[shove=-1.5em,dashed] PA (ψ𝒮𝒯)n\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes n}:- PB; \mor:[shove=+1.5em,dashed] PA - PB; \mor:[shove=-.5em,dashed] PA - PB; \mor:[shove=+.5em,dashed] PA - PB; \mor:[shove=+1.5em,dashed] TA - TB; \mor:[shove=-1.5em,dashed] TA (ψ𝒮𝒯)D\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes D}:- TB; \mor:[shove=-.5em,dashed] TA - TB; \mor:[shove=+.5em,dashed] TA - TB; \morA3 :- B3; \morA3 :- R3; \morB3 :- R3; \mor:[swap]A3 "ϕin\phi_{\textsf{in}}":- B3; \mor:[swap]A2 "σ\sigma":- B2; \nodeat (-3.3,0.4) \approx ; \nodeat (-5.8,3.9)ΦAlice\Phi_{\textsf{Alice}}{\{; \nodeat (-1,3.9)}\}ΦBob\Phi_{\textsf{Bob}}; \nodeat (-5.8,-1.4)ΦAlice~\widetilde{\Phi_{\textsf{Alice}}}{\{; \nodeat (-1,-1.4)}\}ΦBob~\widetilde{\Phi_{\textsf{Bob}}}; \draw(-7,5.5) – (-7,-4.5) – (5.5,-4.5) – (5.5,5.5) – (-7,5.5);

Figure 2: Local state transformation

Let {r}r\left\{\mathcal{R}_{r}\right\}_{r} be an orthogonal basis in \mathscr{R}. Then the left-hand side of Eq. (3) is determined by the following set of values

{Tr[(𝒳a𝒳br)(ΦAliceΦBob)(ϕinψn)]}a,b,r={Tr[((ΦAlice)(𝒳a)(ΦBob)(𝒳b)r)(ϕinψn)]}a,b,r\left\{\mathrm{Tr}\left[\left(\mathcal{X}_{a}\otimes\mathcal{X}_{b}\otimes\mathcal{R}_{r}\right){\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)}\right]\right\}_{a,b,r}\\ =\left\{\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right)\otimes\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right)\otimes\mathcal{R}_{r}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right\}_{a,b,r}

By the fact that Tr=TrTr\mathrm{Tr}=\mathrm{Tr}\circ\mathrm{Tr}_{\mathscr{R}}, we have

{Tr[(𝒳a𝒳b)(ΦAliceΦBob)(ϕin,r~ψn)]}a,b,r={Tr[((ΦAlice)(𝒳a)(ΦBob)(𝒳b)r)(ϕin,r~ψn)]}a,b,r,\left\{\mathrm{Tr}\left[\left(\mathcal{X}_{a}\otimes\mathcal{X}_{b}\right){\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\widetilde{\phi_{\textsf{in},r}}\otimes\psi^{\otimes n}\right)}\right]\right\}_{a,b,r}\\ =\left\{\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\left(\mathcal{X}_{a}\right)\otimes\left(\Phi_{\textsf{Bob}}\right)^{*}\left(\mathcal{X}_{b}\right)\otimes\mathcal{R}_{r}\right)\left(\widetilde{\phi_{\textsf{in},r}}\otimes\psi^{\otimes n}\right)\right]\right\}_{a,b,r}, (4)

where ϕin,r~=Tr(𝟙r)ϕin\widetilde{\phi_{\textsf{in},r}}=\mathrm{Tr}_{\mathscr{R}}\left(\mathds{1}\otimes\mathcal{R}_{r}\right)\phi_{\textsf{in}}. Notice that the difference between Eq. (4) and Eq. (1) is that there is an additional operator ϕin,r~\widetilde{\phi_{\textsf{in},r}}, which is a bounded-dimensional operator, but probably not a quantum state. We can still work on the Fourier expansions of the Choi representations J((ΦAlice))J\left(\left(\Phi_{\textsf{Alice}}\right)^{*}\right) and J((ΦBob))J\left(\left(\Phi_{\textsf{Bob}}\right)^{*}\right). We will show that the framework for local state transformation still works even if there is an additional bounded-dimensional operator ϕin,r~\widetilde{\phi_{\textsf{in},r}}.

2 Open problems

In this work, we prove computable upper bounds on local state transformations with noisy MESs as source states. With some extra work, we further obtain computable upper bounds on the preshared entanglement for fully quantum nonlocal games where the players are only allowed to share noisy MESs. This implies that fully quantum nonlocal games with noisy MESs are decidable. We now list some interesting open problems for future work.

  1. 1.

    If we compute the quantum values by ε\varepsilon-netting and searching over all the strategies, then the running time is at least doubly exponential in the size of the games. Can the upper bound on the entanglement or the time complexity be improved? It would be interesting to understand the exact complexity of fully quantum nonlocal games with noisy MESs. From the complexity-theoretic point of view, we may further investigate the complexity classes 𝖬𝖨𝖯ψ\mathsf{MIP}^{*}_{\psi} and 𝖰𝖬𝖨𝖯ψ\mathsf{QMIP}_{\psi}. Here 𝖬𝖨𝖯ψ\mathsf{MIP}^{*}_{\psi} is the set of languages that can be decided by entangled multiprover interactive proof systems, where the provers are only allowed to share arbitrarily many copies of ψ\psi and the provers exchange classical messages with verifiers. If the messages are quantum, then the class is 𝖰𝖬𝖨𝖯ψ\mathsf{QMIP}_{\psi}. What is the exact computational power of these complexity classes for constant-sized states ψ\psi? We only know the answer if ψ\psi is an EPR state, for which it is RE, or a separable state, for which it is NEXP. When ψ\psi is a noisy entangled quantum state, would the computational power increase when the players share more copies of ψ\psi? To what extent is the computational power of entangled multiprover interactive proof systems robust against noise?

  2. 2.

    Local state transformation is one of the most basic quantum communication tasks. Beigi [1] initiated the study of the decidability of local state transformation and proved several sufficient conditions and necessary conditions [1, 13]. However, to the best of our knowledge, this problem is still widely open. There are many other communication tasks with similar settings, which are also not well understood. For example, distillable entanglement measure and entanglement formation measure are two of the most well-studied entanglement measures [3] defined in a similar setting. The only difference in this setting is that classical communication between the players is free, and we aim to optimize the ratio between the number of target states and the number of source states. After decades of efforts, we still don’t know how to compute the distillable entanglement measure or the entanglement formation measure of a given state. It is tempting to see whether the framework in this paper could provide new insights into the computability of these quantities.

  3. 3.

    There are several "tensored" quantities in quantum information theory that are not known how to compute, such as quantum channel capacities [18], various regularized entanglement measures [20] and quantum information complexity [40]. Some of them look extremely simple but turn out to be notoriously hard, such as the quantum channel capacities of depolarizing channels [29]. Can we use the framework in this paper to design algorithms for these quantities?

  4. 4.

    Given the wide range of applicability of Boolean analysis, Montanaro and Osborne initiated the study of its extensions to quantum setting, where they introduced quantum boolean functions [31]. Several key concepts and results have been successfully generalized to the quantum setting (readers may refer to the introduction in [38] for more details). Some fundamental problems are still open, such as quantum KKL conjecture [31, 38]. Meanwhile, Fourier analysis in quantum settings has found applications in various topics, such as quantum communication complexity [2], circuit complexity [6], property testing of unitary operators [41], learning quantum juntas [9], learning quantum dynamics [38], etc. It is fascinating to see more applications of this growing field in quantum information and quantum computation.

Acknowledgements

The authors thank Zhengfeng Ji for helpful discussion. This work was supported by National Natural Science Foundation of China (Grant No. 61972191), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302900) and the Program for Innovative Talents and Entrepreneur in Jiangsu.

3 Preliminary

For readers’ convenience, we list all the notations used in this paper in Appendix A. Given n>0n\in\mathbb{Z}_{>0}, let [n][n] and [n]0[n]_{\geq 0} represent the sets {1,,n}\left\{1,\dots,n\right\} and {0,,n1}\left\{0,\dots,n-1\right\}, respectively. For all a0na\in\mathbb{Z}^{n}_{\geq 0}, we define |a|=|{i:ai>0}|\left|a\right|=\left|\left\{i:a_{i}>0\right\}\right|. In this paper, the lower-cased letters in bold 𝐠,𝐡,\mathbf{g},\mathbf{h},\dots are reserved for random variables, and the capital letters in bold 𝐌,𝐍\mathbf{M},\mathbf{N} are reserved for random operators.

Convention 3.1.

We use 𝒜,,\mathscr{A},\mathscr{B},\dots to represent quantum systems, and the basis in the system is represented by the same letter in the calligraphy font. For instance, the basis in the quantum system 𝒜\mathscr{A} is represented by {𝒜0,𝒜1,}\left\{\mathcal{A}_{0},\mathcal{A}_{1},\ldots\right\}. The dimension of quantum systems 𝒜,\mathscr{A},\mathscr{B} are denoted by |𝒜|,||\left|\mathscr{A}\right|,\left|\mathscr{B}\right|, respectively. To keep notations short, the dimension of a quantum system is also represented by the corresponding lower-cased letter in the sans serif font, e.g., the dimensions of quantum systems 𝒜,\mathscr{A},\mathscr{B} may be also represented by 𝖺\mathsf{a},𝖻\mathsf{b}, respectively.

3.1 Quantum mechanics

We first review the formalism of quantum mechanics. Readers may refer to [34, 42] for a thorough treatment. A quantum system 𝒮\mathscr{S} is associated with a finite-dimensional Hilbert space, known as the state space of the system. We consider the space of linear operators acting on the states and equip the space with the normalized Hilbert-Schmidt inner product

P,Q=1𝗌TrPQ.\left\langle P,Q\right\rangle=\frac{1}{\mathsf{s}}\mathrm{Tr}~{}P^{\dagger}Q.

where PP^{\dagger} denotes the conjugate transpose of PP and 𝗌\mathsf{s} is the dimension of 𝒮\mathscr{S}.

A quantum state in 𝒮\mathscr{S} can be completely described by a density operator, which is a positive semi-definite operator with trace one. We denote the set of all linear operators in the state space by 𝒮\mathcal{M}_{\mathscr{S}}, and the set of Hermitian operators by 𝒮\mathcal{H}_{\mathscr{S}}. The identity operator is denoted by 𝟙𝒮\mathds{1}_{\mathscr{S}}. If the dimension of 𝒮\mathscr{S} is 𝗌\mathsf{s}, we may write 𝒮=𝗌\mathcal{H}_{\mathscr{S}}=\mathcal{H}_{\mathsf{s}} or 𝟙𝒮=𝟙𝗌\mathds{1}_{\mathscr{S}}=\mathds{1}_{\mathsf{s}}. The subscripts 𝒮\mathscr{S} and 𝗌\mathsf{s} may be dropped whenever it is clear from the context. The state of a composite quantum system is the Kronecker product of the state spaces of the component systems. In this paper, we use the shorthand 𝒮𝒜\mathscr{S}\mathscr{A} to represent 𝒮𝒜\mathscr{S}\otimes\mathscr{A}. A state of a composite system with two components is called a bipartite state. The Hermitian space of the composition of nn Hermitian space 𝒮\mathcal{H}_{\mathscr{S}} is denoted by 𝒮n\mathcal{H}_{\mathscr{S}}^{\otimes n}, or 𝒮n\mathcal{H}_{\mathscr{S}}^{n} for short. Quantum measurements are described by a POVM, that is, a number of positive operators {Em}\left\{E_{m}\right\} summing to identity. The index mm refers to the measurement outcomes that may occur in the experiment. If the state of the quantum system is ρ\rho immediately before the measurement then the probability that result mm occurs is given by TrEmρ\mathrm{Tr}~{}E_{m}\rho.

Given quantum systems 𝒮,𝒜\mathscr{S},\mathscr{A}, let (𝒮,𝒜)\mathcal{L}\left(\mathscr{S},\mathscr{A}\right) denote the set of all linear maps from 𝒮\mathcal{M}_{\mathscr{S}} to 𝒜\mathcal{M}_{\mathscr{A}}, and if the input system 𝒮\mathscr{S} and the output system are the same, we write (𝒮)\mathcal{L}\left(\mathscr{S}\right) for simplicity. A quantum operation from the input system 𝒮\mathscr{S} to the output system 𝒜\mathscr{A} is represented by a CPTP (completely positive and trace preserving) map Φ(𝒮,𝒜)\Phi\in\mathcal{L}\left(\mathscr{S},\mathscr{A}\right). An important example of quantum operations is partial trace. Given quantum systems 𝒮,𝒜\mathscr{S},\mathscr{A}, and a bipartite state ψ𝒮𝒜𝒮𝒜\psi^{\mathscr{S}\mathscr{A}}\in\mathcal{H}_{\mathscr{S}}\otimes\mathcal{H}_{\mathscr{A}} (𝒮𝒜\mathcal{H}_{\mathscr{S}\mathscr{A}} for short), the partial trace Tr𝒜\mathrm{Tr}_{\mathscr{A}} derives the marginal state ψ𝒮\psi^{\mathscr{S}} of the subsystem 𝒮\mathscr{S} from ψ𝒮𝒜\psi^{\mathscr{S}\mathscr{A}}. The partial trace Tr𝒜(𝒮𝒜,𝒮)\mathrm{Tr}_{\mathscr{A}}\in\mathcal{L}\left(\mathscr{S}\mathscr{A},\mathscr{S}\right) is given by

ψ𝒮=Tr𝒜ψ𝒮𝒜=i(𝟙𝒮i|)ψ𝒮𝒜(𝟙𝒮|i),\psi^{\mathscr{S}}=\mathrm{Tr}_{\mathscr{A}}~{}\psi^{\mathscr{S}\mathscr{A}}=\sum_{i}\left(\mathds{1}_{\mathscr{S}}\otimes\left\langle i\right|\right)\psi^{\mathscr{S}\mathscr{A}}\left(\mathds{1}_{\mathscr{S}}\otimes\left|i\right\rangle\right),

where {|i}\left\{\left|i\right\rangle\right\} is an orthonormal basis in 𝒜\mathscr{A}. It is easy to verify that the operation is independent of the choice of basis {|i}\left\{\left|i\right\rangle\right\}.

For a given map Φ(𝒮,𝒜)\Phi\in\mathcal{L}\left(\mathscr{S},\mathscr{A}\right), the adjoint of Φ\Phi is defined to be the unique map Φ(𝒜,𝒮)\Phi^{*}\in\mathcal{L}\left(\mathscr{A},\mathscr{S}\right) that satisfies

TrΦ(Q)P=TrQΦ(P)\mathrm{Tr}~{}\Phi^{*}(Q)^{\dagger}P=\mathrm{Tr}~{}Q^{\dagger}\Phi(P) (5)

for all P(𝒮)P\in\mathcal{L}(\mathscr{S}) and Q(𝒜)Q\in\mathcal{L}(\mathscr{A}).

Given Ψ(𝒜,𝒮)\Psi\in\mathcal{L}\left(\mathscr{A},\mathscr{S}\right), the Choi representation of Ψ\Psi is a linear map J:(𝒜,𝒮)(𝒮𝒜)J:\mathcal{L}\left(\mathscr{A},\mathscr{S}\right)\rightarrow\mathcal{H}\left(\mathscr{S}\mathscr{A}\right) defined as follows:

J(Ψ)=aΨ(𝒜a~)𝒜a~,J\left(\Psi\right)=\sum_{a}\Psi\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\widetilde{\mathcal{A}_{a}}, (6)

where 𝒜a~=𝒜a/|𝒜|\widetilde{\mathcal{A}_{a}}=\mathcal{A}_{a}/\sqrt{\left|\mathscr{A}\right|}111The denominator is because of the demoninator in the definition of the inner product 1𝗌TrPQ.\frac{1}{\mathsf{s}}\mathrm{Tr}~{}P^{\dagger}Q., and {𝒜a:a[|𝒜|2]0}\left\{\mathcal{A}_{a}:a\in\left[\left|\mathscr{A}\right|^{2}\right]_{\geq 0}\right\} is an orthonormal basis in 𝒜\mathscr{A}. In [42] the Choi representation is defined using the basis {Ei,j}i,j[|𝒜|]\left\{E_{i,j}\right\}_{i,j\in\left[\left|\mathscr{A}\right|\right]}, where the (i,j)(i,j)-entry of Ei,jE_{i,j} is 11 and the others are 0. It is easy to verify that the definition is independent of the choice of basis. JJ is a linear bijection. Ψ\Psi can be recovered from its Choi representation J(Ψ)J\left(\Psi\right) as follows.

Ψ(P)=Tr𝒜(J(Ψ)(𝟙𝒮P)).\Psi\left(P\right)=\mathrm{Tr}_{\mathscr{A}}\left(J\left(\Psi\right)\left(\mathds{1}_{\mathscr{S}}\otimes P^{\dagger}\right)\right). (7)
Fact 3.2.

[42] Given Φ(𝒮,𝒜)\Phi\in\mathcal{L}\left(\mathscr{S},\mathscr{A}\right), the following three statements are equivalent.

  1. 1.

    Φ\Phi is completely positive.

  2. 2.

    Φ\Phi^{*} is completely positive.

  3. 3.

    J(Φ)0J\left(\Phi^{*}\right)\geq 0.

And the following four statements are equivalent as well.

  1. 1.

    Φ\Phi is trace preserving.

  2. 2.

    Φ\Phi^{*} is unital, that is, Φ(𝟙𝒜)=𝟙𝒮\Phi^{*}\left(\mathds{1}_{\mathscr{A}}\right)=\mathds{1}_{\mathscr{S}}.

  3. 3.

    Tr𝒜J(Φ)=𝟙𝒮\mathrm{Tr}_{\mathscr{A}}J\left(\Phi\right)=\mathds{1}_{\mathscr{S}}.

  4. 4.

    Tr𝒜J(Φ)=𝟙𝒮\mathrm{Tr}_{\mathscr{A}}J\left(\Phi^{*}\right)=\mathds{1}_{\mathscr{S}}.

Proof.

For the first part, item 1 and item 2 are equivalent by definition. Item 3 is equivalent to item 1 is by Theorem 2.22 in [42]. For the second part, item 1 and item 2 are equivalent by definition. Item 1 and item 3 are equivalent by Theorem 2.26 in [42]. To see the equivalence between item 2 and item 4, let {𝒜a}a\left\{\mathcal{A}_{a}\right\}_{a} be an orthonormal basis in 𝒜\mathscr{A} with 𝒜0=𝟙𝒜\mathcal{A}_{0}=\mathds{1}_{\mathscr{A}}. By the definition of the Choi representation,

Tr𝒜J(Φ)=Tr𝒜(aΦ(𝒜a~)𝒜a~)=Φ(𝒜0)=Φ(𝟙𝒜),\\ Tr_{\mathscr{A}}J\left(\Phi^{*}\right)=\mathrm{Tr}_{\mathscr{A}}\left(\sum_{a}\Phi^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\widetilde{\mathcal{A}_{a}}\right)=\Phi^{*}\left(\mathcal{A}_{0}\right)=\Phi^{*}\left(\mathds{1}_{\mathscr{A}}\right),

where the second equality is by the orthonormality of {𝒜a}a\left\{\mathcal{A}_{a}\right\}_{a} and our choice 𝒜0=𝟙𝒜\mathcal{A}_{0}=\mathds{1}_{\mathscr{A}}. It is easy to see item 2 and item 4 are equivalent. ∎

By the above fact, Φ\Phi is a quantum operation if and only if J(Φ)0J\left(\Phi^{*}\right)\geq 0 and Tr𝒜J(Φ)=𝟙𝒮\mathrm{Tr}_{\mathscr{A}}J\left(\Phi^{*}\right)=\mathds{1}_{\mathscr{S}}.

We also need the following fact.

Fact 3.3.

[36, Fact 2.1] Given quantum systems 𝒮,𝒯\mathscr{S},\mathscr{T}, operators P𝒮,Q𝒯P\in\mathcal{H}_{\mathscr{S}},Q\in\mathcal{H}_{\mathscr{T}} and a bipartite state ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}}, it holds that

  1. 1.

    Tr((P𝟙𝒯)ψ𝒮)=TrPψ𝒮\mathrm{Tr}\left(\left(P\otimes\mathds{1}_{\mathscr{T}}\right)\psi^{\mathscr{S}}\right)=\mathrm{Tr}~{}P\psi^{\mathscr{S}};

  2. 2.

    |Tr((PQ)ψ𝒮𝒯)|(TrP2ψ𝒮)1/2(TrQ2ψ𝒯)1/2\left|\mathrm{Tr}\left(\left(P\otimes Q\right)\psi^{\mathscr{S}\mathscr{T}}\right)\right|\leq\left(\mathrm{Tr}~{}P^{2}\psi^{\mathscr{S}}\right)^{1/2}\cdot\left(\mathrm{Tr}~{}Q^{2}\psi^{\mathscr{T}}\right)^{1/2}.

3.2 Fourier analysis in Gaussian space

Given n>0n\in\mathbb{Z}_{>0}, let γn\gamma_{n} represent a standard nn-dimensional normal distribution. A function f:nf:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}} is in L2(,γn)L^{2}\left({\mathbb{R}},\gamma_{n}\right) if

nf(x)2γn(dx)<.\int_{{\mathbb{R}}^{n}}f(x)^{2}\gamma_{n}\left(\mathrm{d}x\right)<\infty.

All the functions involved in this paper are in L2(,γn)L^{2}\left({\mathbb{R}},\gamma_{n}\right). We equip L2(,γn)L^{2}\left({\mathbb{R}},\gamma_{n}\right) with an inner product

f,gγn=𝔼xγn[f(x)g(x)].\left\langle f,g\right\rangle_{\gamma_{n}}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\sim\gamma_{n}\end{subarray}}\>\!\!\left[f(x)g(x)\right].

Given fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), the 2-norm of ff is defined to be

f2=f,fγn.\left\|f\right\|_{2}=\sqrt{\left\langle f,f\right\rangle_{\gamma_{n}}}.

The set of Hermite polynomials forms an orthonormal basis in L2(,γ1)L^{2}\left({\mathbb{R}},\gamma_{1}\right) with respect to the inner product ,γ1\left\langle\cdot,\cdot\right\rangle_{\gamma_{1}}. The Hermite polynomials Hr:H_{r}:{\mathbb{R}}\rightarrow{\mathbb{R}} for r0r\in\mathbb{Z}_{\geq 0} are defined as

H0(x)=1;H1(x)=x;Hr(x)=(1)rr!ex2/2drdxrex2/2.H_{0}\left(x\right)=1;H_{1}\left(x\right)=x;H_{r}\left(x\right)=\frac{(-1)^{r}}{\sqrt{r!}}\mathrm{e}^{x^{2}/2}\frac{\mathrm{d}^{r}}{\mathrm{d}x^{r}}\mathrm{e}^{-x^{2}/2}.

For any σ(σ1,,σn)0n\sigma\in\left(\sigma_{1},\ldots,\sigma_{n}\right)\in\mathbb{Z}_{\geq 0}^{n}, define Hσ:nH_{\sigma}:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}} as

Hσ(x)=i=1nHσi(xi).H_{\sigma}\left(x\right)=\prod_{i=1}^{n}H_{\sigma_{i}}\left(x_{i}\right).

The set {Hσ:σ0n}\left\{H_{\sigma}:\sigma\in\mathbb{Z}_{\geq 0}^{n}\right\} forms an orthonormal basis in L2(,γn)L^{2}\left({\mathbb{R}},\gamma_{n}\right). Every function fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) has an Hermite expansion as

f(x)=σ0nf^(σ)Hσ(x),f\left(x\right)=\sum_{\sigma\in\mathbb{Z}_{\geq 0}^{n}}\widehat{f}\left(\sigma\right)\cdot H_{\sigma}\left(x\right),

where f^(σ)\widehat{f}\left(\sigma\right)’s are the Hermite coefficients of ff, which can be obtained by f^(σ)=Hσ,fγn\widehat{f}\left(\sigma\right)=\left\langle H_{\sigma},f\right\rangle_{\gamma_{n}}. The degree of ff is defined to be

deg(f)=max{i=1nσi:f^(σ)0}.\deg\left(f\right)=\max\left\{\sum_{i=1}^{n}\sigma_{i}:~{}\widehat{f}\left(\sigma\right)\neq 0\right\}.

We say fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) is multilinear if f^(σ)=0\widehat{f}\left(\sigma\right)=0 for σ{0,1}n\sigma\notin\left\{0,1\right\}^{n}.

Definition 3.4.

Given a function fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), the variance of ff is defined to be

Var[f]=𝔼𝐱γn[|f(𝐱)𝔼[f]|2].\mathrm{Var}\>\!\!\left[f\right]=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[\left|f\left(\mathbf{x}\right)-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[f\right]\right|^{2}\right].

The influence of the ii-th coordinate(variable) on ff, denoted by Infi(f)\mathrm{Inf}_{i}\left(f\right), is defined by

Infi(f)=𝔼𝐱γn[Var𝐱iγ1[f(𝐱1,,𝐱i1,𝐱i,𝐱i+1,𝐱n)]].\mathrm{Inf}_{i}\left(f\right)=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[\mathrm{Var}_{\mathbf{x}^{\prime}_{i}\sim\gamma_{1}}\>\!\!\left[f\left(\mathbf{x}_{1},\dots,\mathbf{x}_{i-1},\mathbf{x}^{\prime}_{i},\mathbf{x}_{i+1},\dots\mathbf{x}_{n}\right)\right]\right].

The following fact summarizes some basic properties of variance and influence.

Fact 3.5.

[35, Proposition 8.16 and Proposition 8.23] Given fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), it holds that

  1. 1.

    Var[f]=σ0nf^(σ)2σf^(σ)2=f22.\mathrm{Var}\>\!\!\left[f\right]=\sum_{\sigma\neq 0^{n}}\widehat{f}\left(\sigma\right)^{2}\leq\sum_{\sigma}\widehat{f}\left(\sigma\right)^{2}=\left\|f\right\|_{2}^{2}.

  2. 2.

    Infi(f)=σi0f^(σ)2Var[f].\mathrm{Inf}_{i}\left(f\right)=\sum_{\sigma_{i}\neq 0}\widehat{f}\left(\sigma\right)^{2}\leq\mathrm{Var}\>\!\!\left[f\right].

Definition 3.6.

Given 0ν10\leq\nu\leq 1 and fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), we define the Ornstein-Uhlenbeck operator UνU_{\nu} to be

Uνf(z)=𝔼𝐱γn[f(νz+1ν2𝐱)].U_{\nu}f\left(z\right)=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[f\left(\nu z+\sqrt{1-\nu^{2}}\mathbf{x}\right)\right].
Fact 3.7.

[35, Page 338, Proposition 11.37] For any 0ν10\leq\nu\leq 1 and fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), it holds that

Uνf=σ0nf^(σ)νi=1nσiHσ.U_{\nu}f=\sum_{\sigma\in\mathbb{Z}_{\geq 0}^{n}}\widehat{f}\left(\sigma\right)\nu^{\sum_{i=1}^{n}\sigma_{i}}H_{\sigma}.

A vector-valued function f=(f1,,fk):nkf=\left(f_{1},\dots,f_{k}\right):{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}^{k} is in L2(k,γn)L^{2}\left({\mathbb{R}}^{k},\gamma_{n}\right) if fiL2(,γn)f_{i}\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) for all i[n]i\in[n]. The 22-norm of ff is defined to be

f2=(i=1kfi22)1/2.\left\|f\right\|_{2}=\left(\sum_{i=1}^{k}\left\|f_{i}\right\|_{2}^{2}\right)^{1/2}.

The action of Ornstein-Uhlenbeck operator on ff is defined to be

Uνf=(Uνf1,,Uνfk).U_{\nu}f=\left(U_{\nu}f_{1},\dots,U_{\nu}f_{k}\right). (8)

Given ρ[0,1]\rho\in[0,1], 𝒢ρ\mathcal{G}_{\rho} denotes the distribution of ρ\rho-correlated Gaussians, that is,

(𝐠,𝐡)N((00),(1ρρ1)).\left(\mathbf{g},\mathbf{h}\right)\sim N\left(\begin{pmatrix}0\\ 0\end{pmatrix},\begin{pmatrix}1&\rho\\ \rho&1\end{pmatrix}\right).

Given f,gL2(,γn)f,g\in L^{2}\left({\mathbb{R}},\gamma_{n}\right), we denote

f,g𝒢ρn=𝔼(𝐱,𝐲)𝒢ρn[f(𝐱)g(𝐲)].\left\langle f,g\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\left(\mathbf{x},\mathbf{y}\right)\sim\mathcal{G}_{\rho}^{\otimes n}\end{subarray}}\>\!\!\left[f(\mathbf{x})g(\mathbf{y})\right].

3.3 Fourier analysis in matrix space

Given 1m,p1\leq m,p\leq\infty, and HmH\in\mathcal{H}_{m}, the pp-norm of HH is defined to be

Hp=(Tr|H|p)1/p,\left\|H\right\|_{p}=\left(\mathrm{Tr}~{}\left|H\right|^{p}\right)^{1/p},

where |H|=(H2)1/2\left|H\right|=\left(H^{2}\right)^{1/2}. It is easy to verify that for 1qp1\leq q\leq p\leq\infty,

HpHqm1/q1/pHp.\left\|H\right\|_{p}\leq\left\|H\right\|_{q}\leq m^{1/q-1/p}\left\|H\right\|_{p}. (9)

The normalized pp-norm of HH is defined as

|H|p=(1mTr|H|p)1/p.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|H\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{p}=\left(\frac{1}{m}\mathrm{Tr}~{}\left|H\right|^{p}\right)^{1/p}.

For 1qp1\leq q\leq p\leq\infty, by Eq. 9, we have

|H|q|H|pm1/q1/p|H|q.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|H\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{q}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|H\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{p}\leq m^{1/q-1/p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|H\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{q}. (10)

Given P,QmP,Q\in\mathcal{H}_{m}, we define an inner product over {\mathbb{R}}:

P,Q=1mTrPQ.\left\langle P,Q\right\rangle=\frac{1}{m}\mathrm{Tr}~{}PQ.

We need the following particular classes of bases in m\mathcal{H}_{m} on which our Fourier analysis is based.

Definition 3.8.

Let {i}i[m2]0\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} be an orthonormal basis in m\mathcal{H}_{m} over {\mathbb{R}}. We say {i}i[m2]0\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} is a standard orthonormal basis if 0=𝟙m\mathcal{B}_{0}=\mathds{1}_{m}.

Fact 3.9.

Let {i}i=0m21\left\{\mathcal{B}_{i}\right\}_{i=0}^{m^{2}-1} be a standard orthonormal basis in m\mathcal{H}_{m}. Then

{σ=i=1nσi}σ[m2]0n\left\{\mathcal{B}_{\sigma}=\otimes_{i=1}^{n}\mathcal{B}_{\sigma_{i}}\right\}_{\sigma\in[m^{2}]_{\geq 0}^{n}}

is a standard orthonormal basis in mn\mathcal{H}_{m}^{\otimes n}.

Given a standard orthonormal basis {i}i=0m21\left\{\mathcal{B}_{i}\right\}_{i=0}^{m^{2}-1} in m\mathcal{H}_{m}, every HmnH\in\mathcal{H}_{m}^{\otimes n} has a Fourier expansion:

H=σ[m2]0nH^(σ)σ,H=\sum_{\sigma\in\left[m^{2}\right]_{\geq 0}^{n}}\widehat{H}\left(\sigma\right)\mathcal{B}_{\sigma},

where H^(σ)\widehat{H}\left(\sigma\right)\in{\mathbb{R}} are the Fourier coefficients. The basic properties of H^(σ)\widehat{H}\left(\sigma\right)’s are summarized in the following fact, which can be easily derived from the orthonormality of {σ}σ[m2]0n\left\{\mathcal{B}_{\sigma}\right\}_{\sigma\in[m^{2}]_{\geq 0}^{n}}.

Fact 3.10.

[36, Fact 2.11] Given a standard orthonormal basis {i}i[m2]0\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} in m\mathcal{H}_{m} and M,NmM,N\in\mathcal{H}_{m}, it holds that

  1. 1.

    M,N=σM^(σ)N^(σ)\left\langle M,N\right\rangle=\sum_{\sigma}\widehat{M}\left(\sigma\right)\widehat{N}\left(\sigma\right).

  2. 2.

    |M|22=M,M=σM^(σ)2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\left\langle M,M\right\rangle=\sum_{\sigma}\widehat{M}\left(\sigma\right)^{2}.

  3. 3.

    𝟙m,M=M^(0)\left\langle\mathds{1}_{m},M\right\rangle=\widehat{M}\left(0\right).

Definition 3.11.

Let ={i}i[m2]0\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} be a standard orthonormal basis in m\mathcal{H}_{m}, P,QmnP,Q\in\mathcal{H}_{m}^{\otimes n}

  1. 1.

    The degree of PP is defined to be

    degP=max{|σ|:P^(σ)0}.\deg P=\max\left\{\left|\sigma\right|:\widehat{P}\left(\sigma\right)\neq 0\right\}.

    Recall that |σ|\left|\sigma\right| represents the number of nonzero entries of σ\sigma.

  2. 2.

    For any i[n]i\in[n], the influence of ii-th coordinate is defined to be

    Infi(P)=|P𝟙mTriP|22,\mathrm{Inf}_{i}\left(P\right)={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P-\mathds{1}_{m}\otimes\mathrm{Tr}_{i}P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}, (11)

    where 𝟙m\mathds{1}_{m} is in the ii’th quantum system, and the partial trace Tri\mathrm{Tr}_{i} derives the marginal state of the remaining n1n-1 quantum systems except for the ii’th one.

  3. 3.

    The total influence of PP is defined to be

    Inf(P)=iInfi(P).\mathrm{Inf}\left(P\right)=\sum_{i}\mathrm{Inf}_{i}\left(P\right).
Fact 3.12.

[36, Lemma 2.16] Given PmnP\in\mathcal{H}_{m}^{\otimes n}, a standard orthonormal basis ={i}i[m2]0\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} in m\mathcal{H}_{m}, it holds that

  1. 1.

    Infi(P)=σ:σi0|P^(σ)|2.\mathrm{Inf}_{i}\left(P\right)=\sum_{\sigma:\sigma_{i}\neq 0}\left|\widehat{P}\left(\sigma\right)\right|^{2}.

  2. 2.

    Inf(P)=σ|σ||P^(σ)|2degP|P|22.\mathrm{Inf}\left(P\right)=\sum_{\sigma}\left|\sigma\right|\left|\widehat{P}\left(\sigma\right)\right|^{2}\leq\deg P\cdot{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2}.

With the notion of degrees, we define the low-degree part and the high-degree part of an operator.

Definition 3.13.

Given m,t>0m,t\in\mathbb{Z}_{>0}, a standard orthonormal basis ={i}i[m2]0\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} in m\mathcal{H}_{m} and PmnP\in\mathcal{H}_{m}^{\otimes n}, we define

Pt=σ[m2]0n:|σ|tP^(σ)σ;P^{\leq t}=\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}:\left|\sigma\right|\leq t}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma};
Pt=σ[m2]0n:|σ|tP^(σ)σP^{\geq t}=\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}:\left|\sigma\right|\geq t}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma}

and

P=t=σ[m2]0n:|σ|=tP^(σ)σ,P^{=t}=\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}:\left|\sigma\right|=t}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma},

where P^(σ)\widehat{P}\left(\sigma\right)’s are the Fourier coefficients of PP with respect to the basis \mathcal{B}.

Fact 3.14.

[36, Lemma 2.15] The degree of PP is independent of the choices of bases. Moreover, Pt,PtP^{\leq t},P^{\geq t} and P=tP^{=t} are also independent of the choices of bases.

Definition 3.15.

Given a quantum system 𝒮\mathscr{S} with dimension |𝒮|=𝗌\left|\mathscr{S}\right|=\mathsf{s}, γ[0,1]\gamma\in[0,1], the depolarizing operation Δγ:𝒮𝒮\Delta_{\gamma}:\mathcal{H}_{\mathscr{S}}\rightarrow\mathcal{H}_{\mathscr{S}} is defined as follows. For any P𝒮P\in\mathcal{H}_{\mathscr{S}},

Δγ(P)=γP+1γ𝗌(TrP)𝟙𝒮.\Delta_{\gamma}\left(P\right)=\gamma P+\frac{1-\gamma}{\mathsf{s}}\left(\mathrm{Tr}~{}P\right)\cdot\mathds{1}_{\mathscr{S}}.
Fact 3.16.

[36, Lemma 3.6 and Lemma 6.1] Given n,m>0n,m\in\mathbb{Z}_{>0}, γ[0,1]\gamma\in[0,1], a standard orthonormal basis of m\mathcal{H}_{m}: ={i}i=0m21\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i=0}^{m^{2}-1}, the following holds:

  1. 1.

    For any PmnP\in\mathcal{H}_{m}^{\otimes n} with a Fourier expansion P=σ[m2]0nP^(σ)σP=\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma}, it holds that

    Δγ(P)=σ[m2]0nγ|σ|P^(σ)σ.\Delta_{\gamma}\left(P\right)=\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}}\gamma^{\left|\sigma\right|}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma}.
  2. 2.

    For any PmnP\in\mathcal{H}_{m}^{\otimes n}, |Δγ(P)|2|P|2{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\Delta_{\gamma}\left(P\right)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.

  3. 3.

    Δγ\Delta_{\gamma} is a quantum operation.

  4. 4.

    For any d>0,Pmnd\in\mathbb{Z}_{>0},P\in\mathcal{H}_{m}^{\otimes n}, it holds that

    |(Δγ(P))>d|2γd|P|2.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\Delta_{\gamma}(P)\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq\gamma^{d}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.
Definition 3.17 (Maximal correlation).

[1] Given quantum systems 𝒮,𝒯{\mathscr{S}},{\mathscr{T}} with dimensions 𝗌=|𝒮|\mathsf{s}=\left|\mathscr{S}\right| and 𝗍=|𝒯|\mathsf{t}=\left|\mathscr{T}\right|, ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} with ψ𝒮=𝟙𝒮/𝗌,ψ𝒯=𝟙𝒯/𝗍\psi^{\mathscr{S}}=\mathds{1}_{\mathscr{S}}/\mathsf{s},\psi^{\mathscr{T}}=\mathds{1}_{\mathscr{T}}/\mathsf{t}, the maximal correlation of ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}} is defined to be

ρ(ψ𝒮𝒯)=sup{|Tr((PQ)ψ𝒮𝒯)|:P𝒮,Q𝒯,TrP=TrQ=0,|P|2=|Q|2=1}.\rho\left(\psi^{\mathscr{S}\mathscr{T}}\right)=\sup\left\{\left|\mathrm{Tr}\left(\left(P\otimes Q\right)\psi^{\mathscr{S}\mathscr{T}}\right)\right|~{}:P\in\mathcal{H}_{\mathscr{S}},Q\in\mathcal{H}_{\mathscr{T}},\atop\mathrm{Tr}~{}P=\mathrm{Tr}~{}Q=0,{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|Q\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}=1\right\}.
Fact 3.18.

[1] Given quantum systems 𝒮,𝒯{\mathscr{S}},{\mathscr{T}} with dimensions 𝗌=|𝒮|\mathsf{s}=\left|\mathscr{S}\right| and 𝗍=|𝒯|\mathsf{t}=\left|\mathscr{T}\right|, ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} with ψ𝒮=𝟙𝒮/𝗌,ψ𝒯=𝟙𝒯/𝗍\psi^{\mathscr{S}}=\mathds{1}_{\mathscr{S}}/\mathsf{s},\psi^{\mathscr{T}}=\mathds{1}_{\mathscr{T}}/\mathsf{t}, it holds that ρ(ψ𝒮𝒯)1\rho\left(\psi^{\mathscr{S}\mathscr{T}}\right)\leq 1.

Definition 3.19.

Given quantum systems 𝒮,𝒯{\mathscr{S}},{\mathscr{T}} with dimensions 𝗌=|𝒮|\mathsf{s}=\left|\mathscr{S}\right| and 𝗍=|𝒯|\mathsf{t}=\left|\mathscr{T}\right|, a bipartite state ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} is a noisy maximally entangled state (MES) if ψ𝒮=𝟙𝒮/𝗌,ψ𝒯=𝟙𝒯/𝗍\psi^{\mathscr{S}}=\mathds{1}_{\mathscr{S}}/\mathsf{s},\psi^{\mathscr{T}}=\mathds{1}_{\mathscr{T}}/\mathsf{t} and its maximal correlation ρ<1\rho<1.

Beigi proved that depolarized maximally entangled states are noisy maximally entangled states.

Fact 3.20.

[1, Page 5 in arXiv version] [36, Lemma 3.9] For any 0ϵ<10\leq\epsilon<1, an integer m>1m>1, it holds that

ρ((1ϵ)|ΨΨ|+ϵ𝟙mm𝟙mm)=1ϵ,\rho\left(\left(1-\epsilon\right)\left|\Psi\middle\rangle\middle\langle\Psi\right|+\epsilon\frac{\mathds{1}_{m}}{m}\otimes\frac{\mathds{1}_{m}}{m}\right)=1-\epsilon,

where |Ψ=1mi=0m1|m,m\left|\Psi\right\rangle=\frac{1}{\sqrt{m}}\sum_{i=0}^{m-1}|m,m\rangle.

Fact 3.21.

[36, Lemma 7.3] Given quantum systems 𝒮,𝒯{\mathscr{S}},{\mathscr{T}} with dimensions 𝗌=|𝒮|\mathsf{s}=\left|\mathscr{S}\right| and 𝗍=|𝒯|\mathsf{t}=\left|\mathscr{T}\right|, if ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} is a noisy MES with maximal correlation ρ\rho, then there exist standard orthonormal bases {𝒮s}s[𝗌2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}} and {𝒯t}t[𝗍2]0\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} in 𝒮\mathscr{S} and 𝒯\mathscr{T}, respectively, such that

Tr((𝒮i𝒯j)ψ𝒮𝒯)={ciif i=j0otherwise,\mathrm{Tr}\left(\left(\mathcal{S}_{i}\otimes\mathcal{T}_{j}\right)\psi^{\mathscr{S}\mathscr{T}}\right)=\begin{cases}c_{i}~{}&\mbox{if $i=j$}\\ 0~{}&\mbox{otherwise},\end{cases} (12)

where c1=1,c2=ρc_{1}=1,c_{2}=\rho and c1c2c30c_{1}\geq c_{2}\geq c_{3}\geq\ldots\geq 0.

As described in Section 1.2, one of the difficulties is that the input of a fully quantum nonlocal game is a tripartite quantum state. The following lemma enables us to ’discretize’ the input state by properly chosen orthonormal bases.

Lemma 3.22.

Given quantum systems 𝒫,𝒬,\mathscr{P},\mathscr{Q},\mathscr{R} with |𝒫|=𝗉,|𝒬|=𝗊,||=𝗋\left|\mathscr{P}\right|=\mathsf{p},\left|\mathscr{Q}\right|=\mathsf{q},\left|\mathscr{R}\right|=\mathsf{r}, an orthonormal basis {r}r[𝗋2]0\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} in \mathcal{H}_{\mathscr{R}}, a tripartite quantum state ϕin𝒫𝒬\phi_{\textsf{in}}\in\mathcal{H}_{\mathscr{P}\mathscr{Q}\mathscr{R}} and an integer r[𝗋2]0r\in\left[\mathsf{r}^{2}\right]_{\geq 0}, there exist orthonormal bases {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}} and {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} in 𝒫\mathcal{H}_{\mathscr{P}} and 𝒬\mathcal{H}_{\mathscr{Q}}, respectively, which may depend on rr, such that

Tr[(𝒫p~𝒬q~r~)ϕin]={kpif p=q0otherwise,\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]=\begin{cases}k_{p}&\text{if }p=q\\ 0&\text{otherwise,}\end{cases} (13)

where 𝒫p~=𝒫p/𝗉\widetilde{\mathcal{P}_{p}}=\mathcal{P}_{p}/\sqrt{\mathsf{p}}, 𝒬q~=𝒬q/𝗊\widetilde{\mathcal{Q}_{q}}=\mathcal{Q}_{q}/\sqrt{\mathsf{q}}, r~=r/𝗋\widetilde{\mathcal{R}_{r}}=\mathcal{R}_{r}/\sqrt{\mathsf{r}} and k0,,k𝗉21[0,1]k_{0},\dots,k_{\mathsf{p}^{2}-1}\in[0,1]. 222Assume 𝗉𝗊\mathsf{p}\geq\mathsf{q} without loss of generality. If 𝗉>𝗊\mathsf{p}>\mathsf{q}, then k𝗊2==k𝗉21=0.k_{\mathsf{q}^{2}}=\dots=k_{\mathsf{p}^{2}-1}=0.

Remark 3.23.

Notice that {𝒫p}p[𝗉2]0,{𝒬q}q[𝗊2]0,{r}r[𝗋2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}},\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}},\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} are not required to be standard orthonormal bases.

Proof of Lemma 3.22.

Let {𝒫p}p[𝗉2]0\left\{\mathcal{P}^{\prime}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}} and {𝒬q}q[𝗊2]0\left\{\mathcal{Q}^{\prime}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} be arbitrary orthonormal bases in 𝒫\mathcal{H}_{\mathscr{P}} and 𝒬\mathcal{H}_{\mathscr{Q}}, respectively. Let MM be a 𝗉2×𝗊2\mathsf{p}^{2}\times\mathsf{q}^{2} matrix such that

Mp,q=Tr(𝒫p~𝒬q~r~)ϕin.M_{p,q}=\mathrm{Tr}~{}\left(\widetilde{\mathcal{P}^{\prime}_{p}}\otimes\widetilde{\mathcal{Q}^{\prime}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}.

Then MM is a real matrix. Thus, it has a singular value decomposition

M=UDV,M=UDV^{\dagger},

where U𝗉2U\in\mathcal{M}_{\mathsf{p}^{2}} and V𝗊2V\in\mathcal{M}_{\mathsf{q}^{2}} are orthonormal matrices (i.e., real unitary matrices) and DD is a 𝗉2×𝗊2\mathsf{p}^{2}\times\mathsf{q}^{2} diagonal matrix with diagonal entries non-negative. Define

𝒫p=p[𝗉2]0Up,p𝒫p\mathcal{P}_{p}=\sum_{p^{\prime}\in\left[\mathsf{p}^{2}\right]_{\geq 0}}U^{\dagger}_{p,p^{\prime}}\mathcal{P}^{\prime}_{p^{\prime}}

and

𝒬q=q[𝗊2]0Vq,q𝒬q.\mathcal{Q}_{q}=\sum_{q^{\prime}\in\left[\mathsf{q}^{2}\right]_{\geq 0}}V_{q^{\prime},q}\mathcal{Q}^{\prime}_{q^{\prime}}.

Then {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}} and {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} are orthonormal bases as well. We have

Tr[(𝒫p~𝒬q~r~)ϕin]{0if p=q,=0otherwise.\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\begin{cases}\geq 0&\text{if }p=q,\\ =0&\text{otherwise.}\end{cases}

In particular, since {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}, {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} and {r}r[𝗋2]0\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} are orthonormal bases,

|Tr[(𝒫p~𝒬q~r~)ϕin]|\displaystyle\left|\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\right|
\displaystyle\leq~{} 𝒫p~𝒬q~r~ϕin1(Hölder’s)\displaystyle\left\|\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right\|\left\|\phi_{\textsf{in}}\right\|_{1}\quad\mbox{(H\"{o}lder's)}
=\displaystyle=~{} 𝒫p~𝒬q~r~\displaystyle\left\|\widetilde{\mathcal{P}_{p}}\right\|\left\|\widetilde{\mathcal{Q}_{q}}\right\|\left\|\widetilde{\mathcal{R}_{r}}\right\|
\displaystyle\leq~{} 𝒫p~2𝒬q~2r~2\displaystyle\left\|\widetilde{\mathcal{P}_{p}}\right\|_{2}\left\|\widetilde{\mathcal{Q}_{q}}\right\|_{2}\left\|\widetilde{\mathcal{R}_{r}}\right\|_{2}
=\displaystyle=~{} 1,\displaystyle 1,

Eq. 13 holds. ∎

3.4 Random operators

In this subsection, we introduce random operators defined in [36], which unifies Gaussian variables and operators.

Definition 3.24.

[36] Given p,h,n,m>0p,h,n,m\in\mathbb{Z}_{>0}, we say 𝐏\mathbf{P} is a random operator if it can be expressed as

𝐏=σ[m2]0hpσ(𝐠)σ,\mathbf{P}=\sum_{\sigma\in[m^{2}]_{\geq 0}^{h}}p_{\sigma}\left(\mathbf{g}\right)\mathcal{B}_{\sigma},

where {i}i[m2]0\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}} is a standard orthonormal basis in m\mathcal{H}_{m}, pσ:np_{\sigma}:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}} for all σ[m2]0h\sigma\in[m^{2}]_{\geq 0}^{h} and 𝐠γn.\mathbf{g}\sim\gamma_{n}. 𝐏Lp(mh,γn)\mathbf{P}\in L^{p}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right) if pσLp(,γn)p_{\sigma}\in L^{p}\left({\mathbb{R}},\gamma_{n}\right) for all σ[m2]0h\sigma\in[m^{2}]_{\geq 0}^{h}. Define a vector-valued function

p=(pσ)σ[m2]0h:nm2h.p=\left(p_{\sigma}\right)_{\sigma\in[m^{2}]_{\geq 0}^{h}}:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}^{m^{2h}}.

We say pp is the associated vector-valued function of 𝐏\mathbf{P} under the basis {i}i[m2]0\left\{\mathcal{B}_{i}\right\}_{i\in\left[m^{2}\right]_{\geq 0}}.

The degree of 𝐏\mathbf{P}, denoted by deg(𝐏)\deg\left(\mathbf{P}\right), is

maxσ[m2]0hdeg(pσ).\max_{\sigma\in[m^{2}]_{\geq 0}^{h}}\deg\left(p_{\sigma}\right).

We say 𝐏\mathbf{P} is multilinear if pσ()p_{\sigma}\left(\cdot\right) is multilinear for all σ[m2]0h\sigma\in[m^{2}]_{\geq 0}^{h}.

Fact 3.25.

[36, Lemma 2.23] Given n,h,m>0n,h,m\in\mathbb{Z}_{>0}, let 𝐏L2(mh,γn)\mathbf{P}\in L^{2}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right) with an associated vector-valued function pp under a standard orthonormal basis. It holds that 𝔼[|𝐏|22]=p22.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{P}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]=\left\|p\right\|_{2}^{2}.

We say a pair of random operators (𝐏,𝐐)Lp(mh,γn)×Lp(mh,γn)\left(\mathbf{P},\mathbf{Q}\right)\in L^{p}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right)\times L^{p}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right) are joint random operators if the random variables (𝐠,𝐡)\left(\mathbf{g},\mathbf{h}\right) in (𝐏,𝐐)\left(\mathbf{P},\mathbf{Q}\right) are drawn from a joint distribution 𝒢ρn\mathcal{G}_{\rho}^{\otimes n} for 0ρ10\leq\rho\leq 1.

3.5 Rounding maps

Given a closed convex set Δk\Delta\subseteq{\mathbb{R}}^{k}, the rounding map of Δ\Delta, denoted by :kk\mathcal{R}:{\mathbb{R}}^{k}\rightarrow{\mathbb{R}}^{k}, is defined as follows:

(x)=argmin{yx2:yΔ}.\mathcal{R}(x)=\arg\min\left\{\left\|y-x\right\|_{2}:y\in\Delta\right\}.

The following well-known fact states that the rounding maps of closed convex sets are Lipschitz continuous with Lipschitz constant being 1.

Fact 3.26.

[4, Page 149, Proposition 3.2.1] Let Δ\Delta be a nonempty closed convex set in k{\mathbb{R}}^{k} with the rounding map \mathcal{R}. It holds that

(x)(y)2xy2,\left\|\mathcal{R}\left(x\right)-\mathcal{R}\left(y\right)\right\|_{2}\leq\left\|x-y\right\|_{2},

for any x,ykx,y\in{\mathbb{R}}^{k}.

Define a function ζ:\zeta:{\mathbb{R}}\rightarrow{\mathbb{R}} as follows.

ζ(x)={x2if x00otherwise.\zeta\left(x\right)=\begin{cases}x^{2}~{}&\mbox{if $x\leq 0$}\\ 0~{}&\mbox{otherwise}\end{cases}. (14)

The function ζ\zeta measures the distance between an Hermitian operator and the set of positive semi-definite operators in 22-norm.

Fact 3.27.

[36, Lemma 9.1] Given m>0m\in\mathbb{Z}_{>0}, HmH\in\mathcal{H}_{m}, it holds that

Trζ(H)=min{HX22:X0}.\mathrm{Tr}~{}\zeta\left(H\right)=\min\left\{\left\|H-X\right\|_{2}^{2}:X\geq 0\right\}.
Fact 3.28.

[36, Lemma 10.4] For any Hermitian matrices PP and QQ, it holds that

|Tr(ζ(P+Q)ζ(P))|2(P2Q2+Q22).\left|\mathrm{Tr}~{}\left(\zeta\left(P+Q\right)-\zeta\left(P\right)\right)\right|\leq 2\left(\left\|P\right\|_{2}\left\|Q\right\|_{2}+\left\|Q\right\|_{2}^{2}\right).

4 Main results

Theorem 4.1.

Given ϵ(0,1)\epsilon\in\left(0,1\right), n,s>0n,s\in\mathbb{Z}_{>0}, and quantum systems 𝒫,𝒬,,𝒮,𝒯,𝒜,\mathscr{P},\mathscr{Q},\mathscr{R},{\mathscr{S}},{\mathscr{T}},{\mathscr{A}},{\mathscr{B}} with dimensions 𝗉=|𝒫|,𝗊=|𝒬|,𝗋=||,𝗌=|𝒮|,𝗍=|𝒯|,𝖺=|𝒜|,𝖻=||.\mathsf{p}=\left|\mathscr{P}\right|,\mathsf{q}=\left|\mathscr{Q}\right|,\mathsf{r}=\left|\mathscr{R}\right|,\mathsf{s}=\left|\mathscr{S}\right|,\mathsf{t}=\left|\mathscr{T}\right|,\mathsf{a}=\left|\mathscr{A}\right|,\mathsf{b}=\left|\mathscr{B}\right|. Let {𝒜a}a[𝖺2]0\left\{\mathcal{A}_{a}\right\}_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}, {b}b[𝖻2]0\left\{\mathcal{B}_{b}\right\}_{b\in\left[\mathsf{b}^{2}\right]_{\geq 0}}, {r}r[𝗋2]0\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} be orthonormal bases in 𝒜\mathcal{H}_{\mathscr{A}}, \mathcal{H}_{\mathscr{B}} and \mathcal{H}_{\mathscr{R}}, respectively. Let ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} be a noisy MES with the maximal correlation ρ=ρ(ψ𝒮𝒯)<1\rho=\rho\left(\psi^{\mathscr{S}\mathscr{T}}\right)<1, which is defined in Definition 3.17. Let ϕin𝒫𝒬𝒫𝒬\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}}\in\mathcal{H}_{\mathscr{P}\mathscr{Q}\mathscr{R}} be an arbitrary tripartite quantum state. Then there exists an explicitly computable D=D(ρ,ϵ,s,𝗉,𝗊,𝗋,𝗌,𝗍,𝖺,𝖻)D=D\left(\rho,\epsilon,s,\mathsf{p},\mathsf{q},\mathsf{r},\mathsf{s},\mathsf{t},\mathsf{a},\mathsf{b}\right), such that for all quantum operations ΦAlice(𝒮n𝒫,𝒜)\Phi_{\textsf{Alice}}\in\mathcal{L}\left(\mathscr{S}^{n}\mathscr{P},\mathscr{A}\right), ΦBob(𝒯n𝒬,)\Phi_{\textsf{Bob}}\in\mathcal{L}\left(\mathscr{T}^{n}\mathscr{Q},\mathscr{B}\right), there exist quantum operations ΦAlice~(𝒮D𝒫,𝒜)\widetilde{\Phi_{\textsf{Alice}}}\in\mathcal{L}\left(\mathscr{S}^{D}\mathscr{P},\mathscr{A}\right), ΦBob~(𝒯D𝒬,)\widetilde{\Phi_{\textsf{Bob}}}\in\mathcal{L}\left(\mathscr{T}^{D}\mathscr{Q},\mathscr{B}\right) such that for all a[𝖺2]0a\in\left[\mathsf{a}^{2}\right]_{\geq 0}, b[𝖻2]0b\in\left[\mathsf{b}^{2}\right]_{\geq 0}, r[𝗋2]0r\in\left[\mathsf{r}^{2}\right]_{\geq 0}, 333Remind that 𝒜a~=𝒜a/𝖺\widetilde{\mathcal{A}_{a}}=\mathcal{A}_{a}/\sqrt{\mathsf{a}}, b~=b/𝖻\widetilde{\mathcal{B}_{b}}=\mathcal{B}_{b}/\sqrt{\mathsf{b}} and r~=r/𝗋\widetilde{\mathcal{R}_{r}}=\mathcal{R}_{r}/\sqrt{\mathsf{r}}.

|Tr[(ΦAlice(𝒜a~)ΦBob(b~)r~)(ϕin𝒫𝒬(ψ𝒮𝒯)n)]Tr[(ΦAlice~(𝒜a~)ΦBob~(b~)r~)(ϕin𝒫𝒬(ψ𝒮𝒯)D)]|ϵ.\left|\mathrm{Tr}\left[\left(\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes n}\right)\right]\right.\\ -\left.\mathrm{Tr}\left[\left(\widetilde{\Phi_{\textsf{Alice}}^{*}}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\widetilde{\Phi_{\textsf{Bob}}^{*}}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes D}\right)\right]\right|\leq\epsilon.

In particular, one may choose

D=exp(poly(𝖺,𝖻,𝗉,𝗊,𝗋,log𝗌,log𝗍,11ρ,1ϵ)).D=\exp\left(\mathrm{poly}\left(\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q},\mathsf{r},\log\mathsf{s},\log\mathsf{t},\frac{1}{1-\rho},\frac{1}{\epsilon}\right)\right).
Theorem 4.2.

Given parameters 0<ϵ,ρ<10<\epsilon,\rho<1, and a fully quantum nonlocal game

𝔊=(𝒫,𝒬,,𝒜,,ϕin,{M𝒜,𝟙M𝒜}),\mathfrak{G}=\left(\mathscr{P},\mathscr{Q},\mathscr{R},\mathscr{A},\mathscr{B},\phi_{\textsf{in}},\left\{M^{\mathscr{A}\mathscr{B}\mathscr{R}},\mathds{1}-M^{\mathscr{A}\mathscr{B}\mathscr{R}}\right\}\right),

with dimensions 𝗉=|𝒫|,𝗊=|𝒬|,𝗋=||,𝗌=|𝒮|,𝗍=|𝒯|,𝖺=|𝒜|,𝖻=||\mathsf{p}=\left|\mathscr{P}\right|,\mathsf{q}=\left|\mathscr{Q}\right|,\mathsf{r}=\left|\mathscr{R}\right|,\mathsf{s}=\left|\mathscr{S}\right|,\mathsf{t}=\left|\mathscr{T}\right|,\mathsf{a}=\left|\mathscr{A}\right|,\mathsf{b}=\left|\mathscr{B}\right|, suppose the two players are restricted to share an arbitrarily finite number of noisy MES states ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}, i.e., ψ𝒮=𝟙𝒮/𝗌\psi^{\mathscr{S}}=\mathds{1}_{\mathscr{S}}/\mathsf{s}, ψ𝒯=𝟙𝒯/𝗍\psi^{\mathscr{T}}=\mathds{1}_{\mathscr{T}}/\mathsf{t} with the maximal correlation ρ<1\rho<1 as defined in Definition 3.17. Let valQ(𝔊,ψ𝒮𝒯)\mathrm{val}_{Q}(\mathfrak{G},\psi^{\mathscr{S}\mathscr{T}}) be the supremum of the winning probability that the players can achieve. Then there exists an explicitly computable bound D=D(ρ,ϵ,𝗉,𝗊,𝗋,𝗌,𝗍,𝖺,𝖻)D=D\left(\rho,\epsilon,\mathsf{p},\mathsf{q},\mathsf{r},\mathsf{s},\mathsf{t},\mathsf{a},\mathsf{b}\right) such that it suffices for the players to share DD copies of ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}} to achieve the winning probability at least valQ(𝔊,ψ𝒮𝒯)ϵ\mathrm{val}_{Q}(\mathfrak{G},\psi^{\mathscr{S}\mathscr{T}})-\epsilon. In particular, one may choose

D=exp(poly(𝖺,𝖻,𝗉,𝗊,𝗋,log𝗌,log𝗍,11ρ,1ϵ)).D=\exp\left(\mathrm{poly}\left(\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q},\mathsf{r},\log\mathsf{s},\log\mathsf{t},\frac{1}{1-\rho},\frac{1}{\epsilon}\right)\right).
Proof.

To keep the notations short, the superscripts will be omitted whenever it is clear from the context. Suppose the players share nn copies of ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}} and employ the strategy (ΦAlice,ΦBob)\left(\Phi_{\textsf{Alice}},\Phi_{\textsf{Bob}}\right) with the winning probability valQ(𝔊,ψ𝒮𝒯)\mathrm{val}_{Q}(\mathfrak{G},\psi^{\mathscr{S}\mathscr{T}}). We apply Theorem 4.1 to (ΦAlice,ΦBob)\left(\Phi_{\textsf{Alice}},\Phi_{\textsf{Bob}}\right) with ϵϵ/(𝖺𝖻𝗋)3/2\epsilon\leftarrow\epsilon/(\mathsf{a}\mathsf{b}\mathsf{r})^{3/2} to obtain (ΦAlice~,ΦBob~)\left(\widetilde{\Phi_{\textsf{Alice}}},\widetilde{\Phi_{\textsf{Bob}}}\right). We claim that the strategy (ΦAlice~,ΦBob~)\left(\widetilde{\Phi_{\textsf{Alice}}},\widetilde{\Phi_{\textsf{Bob}}}\right) wins the game with probability at least valQ(𝔊,ψ𝒮𝒯)ϵ\mathrm{val}_{Q}(\mathfrak{G},\psi^{\mathscr{S}\mathscr{T}})-\epsilon.

Let {𝒜a}a[𝖺2]0\left\{\mathcal{A}_{a}\right\}_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}, {b}b[𝖻2]0\left\{\mathcal{B}_{b}\right\}_{b\in\left[\mathsf{b}^{2}\right]_{\geq 0}}, {r}r[𝗋2]0\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} be orthonormal bases in 𝒜\mathcal{H}_{\mathscr{A}}, \mathcal{H}_{\mathscr{B}} and \mathcal{H}_{\mathscr{R}}, respectively. From Theorem 4.1, for all a[𝖺2]0a\in\left[\mathsf{a}^{2}\right]_{\geq 0}, b[𝖻2]0b\in\left[\mathsf{b}^{2}\right]_{\geq 0}, r[𝗋2]0r\in\left[\mathsf{r}^{2}\right]_{\geq 0}, we have

|Tr[(ΦAlice(𝒜a~)ΦBob(b~)r~)(ϕinψn)]Tr[(ΦAlice~(𝒜a~)ΦBob~(b~)r~)(ϕinψD)]|ϵ/(𝖺𝖻𝗋)3/2.\left|\mathrm{Tr}\left[\left(\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right.\\ -\left.\mathrm{Tr}\left[\left(\widetilde{\Phi_{\textsf{Alice}}^{*}}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\widetilde{\Phi_{\textsf{Bob}}^{*}}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\right|\leq\epsilon/(\mathsf{a}\mathsf{b}\mathsf{r})^{3/2}.

By Eq. 5, it is equivalent to

|Tr[((ΦAliceΦBob)(ϕinψn))(𝒜a~b~r~)]Tr[((ΦAlice~ΦBob~)(ϕinψD))(𝒜a~b~r~)]|ϵ/(𝖺𝖻𝗋)3/2.\left|\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right)\left(\widetilde{\mathcal{A}_{a}}\otimes\widetilde{\mathcal{B}_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\right]\right.\\ \left.-\mathrm{Tr}\left[\left(\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right)\left(\widetilde{\mathcal{A}_{a}}\otimes\widetilde{\mathcal{B}_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\right]\right|\leq\epsilon/(\mathsf{a}\mathsf{b}\mathsf{r})^{3/2}.

We finally get the desired result:

|Tr[M𝒜((ΦAliceΦBob)(ϕinψn)(ΦAlice~ΦBob~)(ϕinψD))]|\displaystyle\left|\mathrm{Tr}\left[M^{\mathscr{A}\mathscr{B}\mathscr{R}}\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)-\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right)\right]\right|
()\displaystyle\overset{(\star)}{\leq}~{} M𝒜(ΦAliceΦBob)(ϕinψn)(ΦAlice~ΦBob~)(ϕinψD)1\displaystyle\left\|M^{\mathscr{A}\mathscr{B}\mathscr{R}}\right\|\cdot\left\|\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)-\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right\|_{1}
()\displaystyle\overset{(\star\star)}{\leq}~{} (𝖺𝖻𝗋)1/2(ΦAliceΦBob)(ϕinψn)(ΦAlice~ΦBob~)(ϕinψD)2\displaystyle\left(\mathsf{a}\mathsf{b}\mathsf{r}\right)^{1/2}\left\|\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)-\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right\|_{2}
=\displaystyle=~{} (𝖺𝖻𝗋a,b,r(Tr[((ΦAliceΦBob)(ϕinψn))(𝒜a~b~r~)]\displaystyle\left(\mathsf{a}\mathsf{b}\mathsf{r}\sum_{a,b,r}\left(\mathrm{Tr}\left[\left(\left(\Phi_{\textsf{Alice}}\otimes\Phi_{\textsf{Bob}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right)\left(\widetilde{\mathcal{A}_{a}}\otimes\widetilde{\mathcal{B}_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\right]\right.\right.
Tr[((ΦAlice~ΦBob~)(ϕinψD))(𝒜a~b~r~)])2)1/2\displaystyle\left.\left.-\mathrm{Tr}\left[\left(\left(\widetilde{\Phi_{\textsf{Alice}}}\otimes\widetilde{\Phi_{\textsf{Bob}}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right)\left(\widetilde{\mathcal{A}_{a}}\otimes\widetilde{\mathcal{B}_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\right]\right)^{2}\right)^{1/2}
\displaystyle\leq~{} ϵ,\displaystyle\epsilon,

where ()(\star) is by Hölder’s inequality, and ()(\star\star) is by Eq. 9.

4.1 Notations and setup

The proof of Theorem 4.1 involves a number of notations. To keep the proof succinct, we introduce the setup and the notations that are used frequently in the rest of the paper. Some of the notations have been defined in Theorem 4.1. We collect them here for readers’ convenience.

The notations used to represent quantum systems, bases, dimensions and operators are summarized in Table 1 following 3.1.

System 𝒮\mathscr{S} 𝒫\mathscr{P} 𝒜\mathscr{A} 𝒯\mathscr{T} 𝒬\mathscr{Q} \mathscr{B} \mathscr{R}
Basis {𝒮s}\left\{\mathcal{S}_{s}\right\} {𝒫p}\left\{\mathcal{P}_{p}\right\} {𝒜a}\left\{\mathcal{A}_{a}\right\} {𝒯t}\left\{\mathcal{T}_{t}\right\} {𝒬q}\left\{\mathcal{Q}_{q}\right\} {b}\left\{\mathcal{B}_{b}\right\} {r}\left\{\mathcal{R}_{r}\right\}
Dimension 𝗌\mathsf{s} 𝗉\mathsf{p} 𝖺\mathsf{a} 𝗍\mathsf{t} 𝗊\mathsf{q} 𝖻\mathsf{b} 𝗋\mathsf{r}
Operator M N
Table 1: Some notations
Setup 4.3.

Given quantum systems 𝒫,𝒬,,𝒮,𝒯,𝒜,\mathscr{P},\mathscr{Q},\mathscr{R},\mathscr{S},\mathscr{T},\mathscr{A},\mathscr{B} with dimensions

𝗉=|𝒫|,𝗊=|𝒬|,𝗋=||,𝗌=|𝒮|,𝗍=|𝒯|,𝖺=|𝒜|,𝖻=||,\mathsf{p}=\left|\mathscr{P}\right|,\mathsf{q}=\left|\mathscr{Q}\right|,\mathsf{r}=\left|\mathscr{R}\right|,\mathsf{s}=\left|\mathscr{S}\right|,\mathsf{t}=\left|\mathscr{T}\right|,\mathsf{a}=\left|\mathscr{A}\right|,\mathsf{b}=\left|\mathscr{B}\right|,

let ϕin𝒫𝒬\phi_{\textsf{in}}^{\mathscr{P}\mathscr{Q}\mathscr{R}} be the input state in 𝒫𝒬\mathscr{P}\otimes\mathscr{Q}\otimes\mathscr{R} shared among Alice, Bob and the referee, where Alice, Bob and the referee hold 𝒫\mathscr{P}, 𝒬\mathscr{Q} and \mathscr{R}, respectively. Let ψ𝒮𝒯𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}\in\mathcal{H}_{\mathscr{S}\mathscr{T}} be the noisy MES shared between Alice and Bob, where Alice has 𝒮\mathscr{S} and Bob has 𝒯\mathscr{T}. Let ρ<1\rho<1 be the maximal correlation of ψ𝒮𝒯\psi^{\mathscr{S}\mathscr{T}}. Let 𝒜{\mathscr{A}} and {\mathscr{B}} be the answer registers of Alice and Bob, respectively.

Let {𝒮s}s[𝗌2]0,{𝒯t}t[𝗍2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}},\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} be standard orthonormal bases in 𝒮,𝒯\mathcal{H}_{\mathscr{S}},\mathcal{H}_{\mathscr{T}}, respectively. Let {𝒜a}a[𝖺2]0,{b}b[𝖻2]0,{𝒫p}p[𝗉2]0,{𝒬q}q[𝗊2]0,{r}r[𝗋2]0\left\{\mathcal{A}_{a}\right\}_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}},\left\{\mathcal{B}_{b}\right\}_{b\in\left[\mathsf{b}^{2}\right]_{\geq 0}},\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}},\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}},\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}} be orthonormal bases (not necessary to be standard orthonormal) in 𝒜,,𝒫,𝒬,\mathcal{H}_{\mathscr{A}},\mathcal{H}_{\mathscr{B}},\mathcal{H}_{\mathscr{P}},\mathcal{H}_{\mathscr{Q}},\mathcal{H}_{\mathscr{R}}, respectively. We require that {𝒮s}s[𝗌2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}} and {𝒯t}t[𝗍2]0\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} satisfy Eq. 12. For convenience, we denote 𝒜a~\widetilde{\mathcal{A}_{a}} to be 𝒜a/𝖺\mathcal{A}_{a}/\sqrt{\mathsf{a}}. The same for b~\widetilde{\mathcal{B}_{b}}, 𝒫p~\widetilde{\mathcal{P}_{p}}, 𝒬q~\widetilde{\mathcal{Q}_{q}}, r~\widetilde{\mathcal{R}_{r}}.

When we use universal quantifiers, we omit the ranges of the variables whenever they are clear in the context. For example, we say “for all aa, bb” to mean “for all a[𝖺2]0a\in\left[\mathsf{a}^{2}\right]_{\geq 0}, b[𝖻2]0b\in\left[\mathsf{b}^{2}\right]_{\geq 0}”.

Given M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}, for all p,ap,a, we define MaM_{a} to be Tr𝒜[(𝟙𝒮n𝒫𝒜a~)M]\mathrm{Tr}_{\mathscr{A}}\left[\left(\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}\otimes\widetilde{\mathcal{A}_{a}}\right)M\right], and Mp,aM_{p,a} to be Tr𝒫[(𝟙𝒮n𝒫p~)Ma]\mathrm{Tr}_{\mathscr{P}}\left[\left(\mathds{1}_{\mathscr{S}^{n}}\otimes\widetilde{\mathcal{P}_{p}}\right)M_{a}\right]. Similar for N,Nb,Nq,bN,N_{b},N_{q,b}. In other words,

M=a[𝖺2]0Ma𝒜a~,N=b[𝖻2]0Nbb~.M=\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}M_{a}\otimes\widetilde{\mathcal{A}_{a}},\quad N=\sum_{b\in\left[\mathsf{b}^{2}\right]_{\geq 0}}N_{b}\otimes\widetilde{\mathcal{B}_{b}}. (15)

and

Ma=p[𝗉2]0Mp,a𝒫p~,Nb=q[𝗊2]0Nq,b𝒬q~.M_{a}=\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}M_{p,a}\otimes\widetilde{\mathcal{P}_{p}},\quad N_{b}=\sum_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}}N_{q,b}\otimes\widetilde{\mathcal{Q}_{q}}. (16)

4.2 Proof of Theorem 4.1

Proof of Theorem 4.1.

Let δ,θ\delta,\theta be parameters which are chosen later. The proof is composed of several steps.

  • Smoothing

    We apply Lemma 5.1 to J(ΦAlice)J\left(\Phi_{\textsf{Alice}}^{*}\right) and J(ΦBob)J\left(\Phi_{\textsf{Bob}}^{*}\right) with δδ\delta\leftarrow\delta to get M(1)M^{(1)} and N(1)N^{(1)}, respectively. They satisfy the following.

    1. 1.

      For all a,ba,b:

      |Ma(1)|21and|Nb(1)|21,{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(1)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1\quad\mbox{and}\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(1)}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1,

      where Ma(1)M^{(1)}_{a} and Nb(1)N^{(1)}_{b} are defined in Eq. (15).

    2. 2.

      For all a,b,ra,b,r:

      |Tr[(ΦAlice(𝒜a~)ΦBob(b~)r~)(ϕinψn)]Tr[(Ma(1)Nb(1)r~)(ϕinψn)]|δ.\left|\mathrm{Tr}\left[\left(\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right.\\ -\left.\mathrm{Tr}\left[\left(M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\delta.
    3. 3.

      For all a,b,p,qa,b,p,q, Mp,a(1)M^{(1)}_{p,a} and Nq,b(1)N^{(1)}_{q,b} have degree at most d1d_{1}, where Mp,a(1)M^{(1)}_{p,a} and Nq,b(1)N^{(1)}_{q,b} are defined in Eq. (16).

    4. 4.
      1𝗌nTrζ(M(1))δand1𝗍nTrζ(N(1))δ,\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M^{(1)}\right)\leq\delta\quad\mbox{and}\quad\frac{1}{\mathsf{t}^{n}}\mathrm{Tr}~{}\zeta\left(N^{(1)}\right)\leq\delta,

      where ζ\zeta is defined in Eq. 14.

    5. 5.

      M0(1)=𝟙𝒮n𝒫/𝖺M^{(1)}_{0}=\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}/\sqrt{\mathsf{a}} and N0(1)=𝟙𝒯n𝒬/𝖻N^{(1)}_{0}=\mathds{1}_{\mathscr{T}^{n}\mathscr{Q}}/\sqrt{\mathsf{b}}.

    Here d1=O(𝖺2𝖻2𝗉𝗊δ(1ρ))d_{1}=O\left(\frac{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}{\delta\left(1-\rho\right)}\right).

  • Regularization

    Applying Lemma 5.6 to M(1)M^{(1)} and N(1)N^{(1)} with θθ,dd1\theta\leftarrow\theta,d\leftarrow d_{1}, we obtain H[n]H\subseteq[n] of size hd1(𝖺+𝖻)/θh\leq d_{1}\left(\mathsf{a}+\mathsf{b}\right)/\theta such that for all iHi\notin H:

    Infi(M)θ,Infi(N)θ.\mathrm{Inf}_{i}\left(M\right)\leq\theta,\quad\mathrm{Inf}_{i}\left(N\right)\leq\theta.
  • Invariance to random operators

    Applying Lemma 5.7 to M(1)M^{(1)}, N(1)N^{(1)} and HH, we obtain joint random operators 𝐌(2)\mathbf{M}^{(2)} and 𝐍(2)\mathbf{N}^{(2)} satisfying the following.

    1. 1.

      For all a,b,p,qa,b,p,q:

      𝔼[|||𝐌p,a(2)|||22]1/2=|||Mp,a(1)|||2and𝔼[|||𝐍q,b(2)|||22]1/2=|||Nq,b(1)|||2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(2)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(1)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(2)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(1)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.
    2. 2.

      For all a,b,ra,b,r:

      𝔼[Tr[(𝐌a(2)𝐍b(2)r~)(ϕinψh)]]=Tr[(Ma(1)Nb(1)r~)(ϕinψn)].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(2)}_{a}\otimes\mathbf{N}^{(2)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\\ =\mathrm{Tr}\left[\left(M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right].
    3. 3.
      |1𝗌h𝔼[Trζ(𝐌(2))]1𝗌nTrζ(M(1))|O(𝗉10/3𝖺4(3d1𝗌d1/2θd1)2/3)\left|\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(2)}\right)\right]-\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M^{(1)}\right)\right|\leq O\left(\mathsf{p}^{10/3}\mathsf{a}^{4}\left(3^{d_{1}}\mathsf{s}^{d_{1}/2}\sqrt{\theta}d_{1}\right)^{2/3}\right)

      and

      |1𝗍h𝔼[Trζ(𝐍(2))]1𝗍nTrζ(N(1))|O(𝗊10/3𝖻4(3d1𝗍d1/2θd1)2/3).\left|\frac{1}{\mathsf{t}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(2)}\right)\right]-\frac{1}{\mathsf{t}^{n}}\mathrm{Tr}~{}\zeta\left(N^{(1)}\right)\right|\leq O\left(\mathsf{q}^{10/3}\mathsf{b}^{4}\left(3^{d_{1}}\mathsf{t}^{d_{1}/2}\sqrt{\theta}d_{1}\right)^{2/3}\right).
    4. 4.

      𝐌0(2)=𝟙𝒮h𝒫/𝖺\mathbf{M}^{(2)}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0(2)=𝟙𝒯h𝒬/𝖻\mathbf{N}^{(2)}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

  • Dimension Reduction

    Applying Lemma 5.13 to (𝐌(2),𝐍(2))\left(\mathbf{M}^{(2)},\mathbf{N}^{(2)}\right) with δδ/4(𝖺𝖻𝗉𝗊𝗋)2\delta\leftarrow\delta/4\left(\mathsf{a}\mathsf{b}\mathsf{p}\mathsf{q}\mathsf{r}\right)^{2}, dd1d\leftarrow d_{1}, n2(𝗌21)(nh)n\leftarrow 2\left(\mathsf{s}^{2}-1\right)\left(n-h\right), α1/8\alpha\leftarrow 1/8, if we sample 𝐆γn×n0\mathbf{G}\sim\gamma_{n\times n_{0}}, then item 1 to 3 in Lemma 5.13 hold with probability at least 3/4δ/2>03/4-\delta/2>0. Thus we get joint random operators (𝐌(3),𝐍(3))\left(\mathbf{M}^{(3)},\mathbf{N}^{(3)}\right) such that the following holds:

    1. 1.

      For all a,b,p,qa,b,p,q:

      𝔼[|𝐌p,a(3)|22](1+δ)𝔼[|𝐌p,a(2)|22]and𝔼[|𝐍q,b(3)|22](1+δ)𝔼[|𝐍q,b(2)|22].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(3)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(2)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(3)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(2)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].
    2. 2.
      𝔼𝐱[Trζ(𝐌(3))]8𝔼𝐠[Trζ(𝐌(2))]and𝔼𝐲[Trζ(𝐍(3))]8𝔼𝐡[Trζ(𝐍(2))].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(3)}\right)\right]\leq 8\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(2)}\right)\right]~{}\mbox{and}~{}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(3)}\right)\right]\leq 8\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(2)}\right)\right].
    3. 3.

      For all a,b,ra,b,r:

      |𝔼𝐱,𝐲[Tr[(𝐌a(3)𝐍b(3)r~)(ϕin(ψ𝒮𝒯)h)]]𝔼𝐠,𝐡[Tr[(𝐌a(2)𝐍b(2)r~)(ϕin(ψ𝒮𝒯)h)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(3)}_{a}\otimes\mathbf{N}^{(3)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g},\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(2)}_{a}\otimes\mathbf{N}^{(2)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes h}\right)\right]\right]\right|\leq\delta.
    4. 4.

      𝐌0(3)=𝟙𝒮h𝒫/𝖺\mathbf{M}^{(3)}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0(3)=𝟙𝒯h𝒬/𝖻\mathbf{N}^{(3)}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

    Here n0=O((𝖺𝖻𝗋)12(𝗉𝗊)20d1O(d1)δ6)n_{0}=O\left(\frac{\left(\mathsf{a}\mathsf{b}\mathsf{r}\right)^{12}\left(\mathsf{p}\mathsf{q}\right)^{20}d_{1}^{O(d_{1})}}{\delta^{6}}\right).

  • Smoothing random operators

    Applying Lemma 5.18 to (𝐌(3),𝐍(3))\left(\mathbf{M}^{(3)},\mathbf{N}^{(3)}\right) with δδ,hh,nn0\delta\leftarrow\delta,h\leftarrow h,n\leftarrow n_{0}, we obtain joint random operators (𝐌(4),𝐍(4))\left(\mathbf{M}^{(4)},\mathbf{N}^{(4)}\right) satisfying the following.

    1. 1.

      For all a,b,p,qa,b,p,q:

      deg(𝐌p,a(4))d2anddeg(𝐍q,b(4))d2.\deg\left(\mathbf{M}^{(4)}_{p,a}\right)\leq d_{2}\quad\mbox{and}\quad\deg\left(\mathbf{N}^{(4)}_{q,b}\right)\leq d_{2}.
    2. 2.

      For all a,b,p,qa,b,p,q:

      𝔼[|||𝐌p,a(4)|||22]1/2𝔼[|||𝐌p,a(3)|||22]1/2and𝔼[|||𝐍q,b(4)|||22]1/2𝔼[|||𝐍q,b(3)|||22]1/2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(4)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(3)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(4)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(3)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}.
    3. 3.
      𝔼[Trζ(𝐌(4))]𝔼[Trζ(𝐌(3))]+δand𝔼[Trζ(𝐍(4))]𝔼[Trζ(𝐍(3))]+δ.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(4)}\right)\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(3)}\right)\right]+\delta~{}\mbox{and}~{}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(4)}\right)\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(3)}\right)\right]+\delta.
    4. 4.

      For all a,b,ra,b,r:

      |𝔼[Tr[(𝐌a(4)𝐍b(4)r~)(ϕinψh)]]𝔼[Tr[(𝐌a(3)𝐍b(3)r~)(ϕinψh)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(4)}_{a}\otimes\mathbf{N}^{(4)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(3)}_{a}\otimes\mathbf{N}^{(3)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|\leq\delta.
    5. 5.

      𝐌0(4)=𝟙𝒮h𝒫/𝖺\mathbf{M}^{(4)}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0(4)=𝟙𝒯h𝒬/𝖻\mathbf{N}^{(4)}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

    Here d2=O(𝖺2𝖻2𝗉𝗊δ(1ρ))d_{2}=O\left(\frac{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}{\delta\left(1-\rho\right)}\right).

  • Multilinearization

    Suppose that

    𝐌p,a(4)=s[𝗌2]0hms,p,a(4)(𝐱)𝒮sand𝐍q,b(4)=t[𝗍2]0hnt,q,b(4)(𝐲)𝒯t.\mathbf{M}^{(4)}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{(4)}_{s,p,a}\left(\mathbf{x}\right)\mathcal{S}_{s}\quad\mbox{and}\quad\mathbf{N}^{(4)}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n^{(4)}_{t,q,b}\left(\mathbf{y}\right)\mathcal{T}_{t}.

    We apply Lemma 5.20 to (𝐌(4),𝐍(4))\left(\mathbf{M}^{(4)},\mathbf{N}^{(4)}\right) with dd2,hh,nn0,δθd\leftarrow d_{2},h\leftarrow h,n\leftarrow n_{0},\delta\leftarrow\theta, we obtain multilinear random operators (𝐌(5),𝐍(5))\left(\mathbf{M}^{(5)},\mathbf{N}^{(5)}\right) such that the following holds:

    1. 1.

      For all a,b,p,qa,b,p,q, 𝐌p,a(5)\mathbf{M}^{(5)}_{p,a} and 𝐍q,b(5)\mathbf{N}^{(5)}_{q,b} are degree-d2d_{2} multilinear random operators.

    2. 2.

      Suppose that

      𝐌p,a(5)=s[𝗌2]0hms,p,a(5)(𝐱)𝒮sand𝐍q,b(5)=t[𝗍2]0hnt,q,b(5)(𝐲)𝒯t,\mathbf{M}^{(5)}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{(5)}_{s,p,a}\left(\mathbf{x}\right)\mathcal{S}_{s}\quad\mbox{and}\quad\mathbf{N}^{(5)}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n^{(5)}_{t,q,b}\left(\mathbf{y}\right)\mathcal{T}_{t},

      where (𝐱,𝐲)𝒢ρn0n1\left(\mathbf{x},\mathbf{y}\right)\sim\mathcal{G}_{\rho}^{\otimes n_{0}\cdot n_{1}}. For all (i,j)[n0]×[n1],a,b,p,q,s,t\left(i,j\right)\in[n_{0}]\times[n_{1}],a,b,p,q,s,t,

      Inf(i1)n1+j(ms,p,a(5))θInfi(ms,p,a(4))andInf(i1)n1+j(nt,q,b(5))θInfi(nt,q,b(4)).\mathrm{Inf}_{(i-1)n_{1}+j}\left(m^{(5)}_{s,p,a}\right)\leq\theta\cdot\mathrm{Inf}_{i}\left(m^{(4)}_{s,p,a}\right)\quad\mbox{and}\quad\mathrm{Inf}_{(i-1)n_{1}+j}\left(n^{(5)}_{t,q,b}\right)\leq\theta\cdot\mathrm{Inf}_{i}\left(n^{(4)}_{t,q,b}\right).
    3. 3.

      For all a,ba,b:

      𝔼[|𝐌a(5)|22]𝔼[|𝐌a(4)|22]and𝔼[|𝐍b(5)|22]𝔼[|𝐍b(4)|22].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(5)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(4)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(5)}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(4)}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].
    4. 4.
      1𝗌h|𝔼[Trζ(𝐌(5))]𝔼[Trζ(𝐌(4))]|δ\frac{1}{\mathsf{s}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(5)}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(4)}\right)\right]\right|\leq\delta

      and

      1𝗍h|𝔼[Trζ(𝐍(5))]𝔼[Trζ(𝐍(4))]|δ.\frac{1}{\mathsf{t}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(5)}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(4)}\right)\right]\right|\leq\delta.
    5. 5.

      For all a,b,ra,b,r:

      |𝔼[Tr[(𝐌a(5)𝐍b(5)r~)(ϕinψh)]]𝔼[Tr[(𝐌a(4)𝐍b(4)r~)(ϕinψh)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(5)}_{a}\otimes\mathbf{N}^{(5)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(4)}_{a}\otimes\mathbf{N}^{(4)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|\leq\delta.
    6. 6.

      𝐌0(5)=𝟙𝒮h𝒫/𝖺\mathbf{M}^{(5)}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0(5)=𝟙𝒯h𝒬/𝖻\mathbf{N}^{(5)}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

    Here n1=O(𝖺4𝖻4𝗉2𝗊2d22θ2)n_{1}=O\left(\frac{\mathsf{a}^{4}\mathsf{b}^{4}\mathsf{p}^{2}\mathsf{q}^{2}d_{2}^{2}}{\theta^{2}}\right).

  • Invariance to operators Applying item 2 above, 3.5 and 3.25, we have

    s,p,aInfi(ms,p,a(5))θ𝗉𝖺𝔼[|𝐌(4)|22].\sum_{s,p,a}\mathrm{Inf}_{i}\left(m^{(5)}_{s,p,a}\right)\leq\theta\cdot\mathsf{p}\cdot\mathsf{a}\cdot\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(4)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].

    Similarly, we have

    t,q,bInfi(nt,q,b(5))θ𝗊𝖻𝔼[|𝐍(4)|22].\sum_{t,q,b}\mathrm{Inf}_{i}\left(n^{(5)}_{t,q,b}\right)\leq\theta\cdot\mathsf{q}\cdot\mathsf{b}\cdot\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(4)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].

    Let

    θ0=max{θ𝔼[|𝐌(4)|22],θ𝔼[|𝐍(4)|22]}.\theta_{0}=\max\left\{\theta\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(4)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right],\theta\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(4)}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\right\}.

    We apply Lemma 5.12 to (𝐌(5),𝐍(5))\left(\mathbf{M}^{(5)},\mathbf{N}^{(5)}\right) with nn0n1,hh,dd2,θθ0n\leftarrow n_{0}n_{1},h\leftarrow h,d\leftarrow d_{2},\theta\leftarrow\theta_{0} to get (M(6),N(6))\left(M^{(6)},N^{(6)}\right) satisfying that:

    1. 1.

      For all a,b,p,qa,b,p,q:

      |||Mp,a(6)|||2=𝔼[|||𝐌p,a(5)|||22]1/2and|||Nq,b(6)|||2=𝔼[|||𝐍q,b(5)|||22]1/2.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(5)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\quad\mbox{and}\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(6)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(5)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}.
    2. 2.

      For all a,b,ra,b,r:

      Tr[(Ma(6)Nb(6)r~)(ϕinψn0n1+h)]=𝔼[Tr[(𝐌a(5)𝐍b(5)r~)(ϕinψh)]].\mathrm{Tr}\left[\left(M^{(6)}_{a}\otimes N^{(6)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n_{0}n_{1}+h}\right)\right]\\ =\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(5)}_{a}\otimes\mathbf{N}^{(5)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right].
    3. 3.
      |1𝗌n0n1+hTrζ(M(6))1𝗌h𝔼[Trζ(𝐌(5))]|O(𝗉10/3𝖺4(3d2𝗌d2/2θ0d2)2/3)\left|\frac{1}{\mathsf{s}^{n_{0}n_{1}+h}}\mathrm{Tr}~{}\zeta\left(M^{(6)}\right)-\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(5)}\right)\right]\right|\leq O\left(\mathsf{p}^{10/3}\mathsf{a}^{4}\left(3^{d_{2}}\mathsf{s}^{d_{2}/2}\sqrt{\theta_{0}}d_{2}\right)^{2/3}\right)

      and

      |1𝗍n0n1+hTrζ(N(6))1𝗍h𝔼[Trζ(𝐍(5))]|O(𝗊10/3𝖻4(3d2𝗍d2/2θ0d2)2/3).\left|\frac{1}{\mathsf{t}^{n_{0}n_{1}+h}}\mathrm{Tr}~{}\zeta\left(N^{(6)}\right)-\frac{1}{\mathsf{t}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(5)}\right)\right]\right|\leq O\left(\mathsf{q}^{10/3}\mathsf{b}^{4}\left(3^{d_{2}}\mathsf{t}^{d_{2}/2}\sqrt{\theta_{0}}d_{2}\right)^{2/3}\right).
    4. 4.

      M0(6)=𝟙𝒮n0n1+h𝒫/𝖺M^{(6)}_{0}=\mathds{1}_{\mathscr{S}^{n_{0}n_{1}+h}\mathscr{P}}/\sqrt{\mathsf{a}} and N0(6)=𝟙𝒯n0n1+h𝒬/𝖻N^{(6)}_{0}=\mathds{1}_{\mathscr{T}^{n_{0}n_{1}+h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

  • Rounding

    Applying Lemma 5.23 to M(6)M^{(6)} and N(6)N^{(6)}, we get M~\widetilde{M} and N~\widetilde{N} satisfying

    a|Ma(6)Ma~|22=𝖺|M(6)M~|22O((𝖺7𝗉𝗌𝖣Trζ(M(6)))1/2),{\sum_{a}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}-\widetilde{M_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}}=\mathsf{a}\cdot{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}-\widetilde{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq O\left(\left(\frac{\mathsf{a}^{7}}{\mathsf{p}\mathsf{s^{D}}}\mathrm{Tr}~{}\zeta\left(M^{(6)}\right)\right)^{1/2}\right), (17)
    b|Nb(6)Nb~|22=𝖻|N(6)N~|22O((𝖻7𝗊𝗍𝖣Trζ(N(6)))1/2).{\sum_{b}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(6)}_{b}-\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}}=\mathsf{b}\cdot{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(6)}-\widetilde{N}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq O\left(\left(\frac{\mathsf{b}^{7}}{\mathsf{q}\mathsf{t^{D}}}\mathrm{Tr}~{}\zeta\left(N^{(6)}\right)\right)^{1/2}\right). (18)

    Let D=h+n0n1D=h+n_{0}n_{1}. Then

    |Tr[(Ma(6)Nb(6)r~Ma~Nb~r~)(ϕinψD)]|\displaystyle\left|\mathrm{Tr}\left[\left(M^{(6)}_{a}\otimes N^{(6)}_{b}\otimes\widetilde{\mathcal{R}_{r}}-\widetilde{M_{a}}\otimes\widetilde{N_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\right|
    \displaystyle\leq~{} |Tr[(Ma(6)(Nb(6)Nb~)r~)(ϕinψD)]|\displaystyle\left|\mathrm{Tr}\left[\left(M^{(6)}_{a}\otimes\left(N^{(6)}_{b}-\widetilde{N_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\right|
    +|Tr[((Ma(6)Ma~)Nb~r~)(ϕinψD)]|\displaystyle+\left|\mathrm{Tr}\left[\left(\left(M^{(6)}_{a}-\widetilde{M_{a}}\right)\otimes\widetilde{N_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\right|
    ()\displaystyle\overset{(\star)}{\leq}~{} (𝗉𝗊)1/2(|Ma(6)|2|Nb(6)Nb~|2+|Ma(6)Ma~|2|Nb~|2)\displaystyle\left(\mathsf{p}\mathsf{q}\right)^{1/2}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(6)}_{b}-\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}-\widetilde{M_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\right)
    \displaystyle\leq~{} (𝗉𝗊)1/2(|Ma(6)|2(b|Nb(6)Nb~|22)1/2+(a|Ma(6)Ma~|22)1/2|Nb~|2)\displaystyle\left(\mathsf{p}\mathsf{q}\right)^{1/2}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\left(\sum_{b}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(6)}_{b}-\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}+\left(\sum_{a}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}-\widetilde{M_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\right)
    ()\displaystyle\overset{(\star\star)}{\leq}~{} (|Ma(6)|2O((𝖻7𝗉2𝗊𝗍DTrζ(N(6)))1/4)+|Nb~|2O((𝖺7𝗉𝗊2𝗌DTrζ(M(6)))1/4)),\displaystyle\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(6)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}O\left(\left(\frac{\mathsf{b}^{7}\mathsf{p}^{2}\mathsf{q}}{\mathsf{t}^{D}}\mathrm{Tr}~{}\zeta\left(N^{(6)}\right)\right)^{1/4}\right)+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}O\left(\left(\frac{\mathsf{a}^{7}\mathsf{p}\mathsf{q}^{2}}{\mathsf{s}^{D}}\mathrm{Tr}~{}\zeta\left(M^{(6)}\right)\right)^{1/4}\right)\right),

    where ()(\star) is by Lemma 5.29 and ()(\star\star) is by Eq. 17 and Eq. 18.

Keeping track of the parameters in the construction, we are able to upper bound Trζ(M(6))/𝗌D\mathrm{Tr}~{}\zeta\left(M^{(6)}\right)/\mathsf{s}^{D} and Trζ(N(6))/𝗍D\mathrm{Tr}~{}\zeta\left(N^{(6)}\right)/\mathsf{t}^{D}. Finally, by the triangle inequality we are able to upper bound

|Tr[(ΦAlice(𝒜a~)ΦBob(b~)r)(ϕinψn)]Tr[(Ma~Nb~r)(ϕinψD)]|\left|\mathrm{Tr}\left[\left(\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\mathcal{R}_{r}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]-\mathrm{Tr}\left[\left(\widetilde{M_{a}}\otimes\widetilde{N_{b}}\otimes\mathcal{R}_{r}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\right|

The dependency of the parameters is pictorially described in Fig. 3.

{codi}\obj

&[11em] |(B)| Smoothing   (Lemma 5.1) [14em]

|(H)| ϵ\epsilon |(C)| Regularization (Lemma 5.6)

|(A)| δ,θ\delta,\theta in Eq. 19 Given 𝖺,𝖻,𝗉,𝗊,\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q}, 𝗋,𝗌,𝗍,ρ\mathsf{r},\mathsf{s},\mathsf{t},\rho |(D)| Dimension reduction (Lemma 5.13) |(E)| D=h+n0n1D=h+n_{0}\cdot n_{1}

|(F)| Smoothing random operators (Lemma 5.18)

|(G)| Multilinearization (Lemma 5.20)

; \mor:[swap] H determines:-> A; \mor:[bend left = 40] A δδ:-> B; \mor:[bend left = 20] * θθ:-> C; \mor* δδ/4(𝖺\mathsf{a}𝖻\mathsf{b}𝗉\mathsf{p}𝗊\mathsf{q}𝗋\mathsf{r})^2:-> D; \mor:[bend right = 20] * δδ:-> F; \mor:[bend right = 40] * δθ:-> G; \morB d←d_1=O(𝖺2𝖻2𝗉𝗊δ(1ρ))\left({\frac{{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}}{{\delta(1-\rho)}}}\right):-> C; \mor:[bend left = 20] C h≤d_1(𝖺\mathsf{a}+𝖻\mathsf{b})/θ:-> E; \mor:D n_0=O((𝖺𝖻𝗋)12(𝗉𝗊)20d1O(d1)δ6)\left({\frac{{(\mathsf{a}\mathsf{b}\mathsf{r})^{12}(\mathsf{p}\mathsf{q})^{20}d_{1}^{O(d_{1})}}}{{\delta^{6}}}}\right) :-> *; \morF d←d_2=O(𝖺2𝖻2𝗉𝗊δ(1ρ))\left({\frac{{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}}{{\delta(1-\rho)}}}\right) :-> G; \mor:[swap, bend right = 40] G n_1=O(𝖺4𝖻4𝗉2𝗊2d22θ2)\left({\frac{{\mathsf{a}^{4}\mathsf{b}^{4}\mathsf{p}^{2}\mathsf{q}^{2}d_{2}^{2}}}{{\theta^{2}}}}\right) :-> E; \mor:[swap, bend right = 20, shove = +3.1em] B [" dd1d\leftarrow d_{1} "] :-> D;

Figure 3: Dependency of parameters in the proof of Theorem 4.1

We define Ψ𝖠𝗅𝗂𝖼𝖾(𝒜,𝒮D𝒫)\Psi_{\mathsf{Alice}}\in\mathcal{L}\left(\mathscr{A},\mathscr{S}^{D}\mathscr{P}\right), Ψ𝖡𝗈𝖻(,𝒯D𝒬)\Psi_{\mathsf{Bob}}\in\mathcal{L}\left(\mathscr{B},\mathscr{T}^{D}\mathscr{Q}\right) as follows:

Ψ𝖠𝗅𝗂𝖼𝖾(X)=Tr𝒜(M~(𝟙𝒮D𝒫X)),\Psi_{\mathsf{Alice}}\left(X\right)=\mathrm{Tr}_{\mathscr{A}}\left(\widetilde{M}\left(\mathds{1}_{\mathscr{S}^{D}\mathscr{P}}\otimes X^{\dagger}\right)\right),
Ψ𝖡𝗈𝖻(Y)=Tr(N~(𝟙𝒯D𝒬Y)),\Psi_{\mathsf{Bob}}\left(Y\right)=\mathrm{Tr}_{\mathscr{B}}\left(\widetilde{N}\left(\mathds{1}_{\mathscr{T}^{D}\mathscr{Q}}\otimes Y^{\dagger}\right)\right),

just as Eq. 7. Let ΦAlice~=Ψ𝖠𝗅𝗂𝖼𝖾\widetilde{\Phi_{\textsf{Alice}}}=\Psi_{\mathsf{Alice}}^{*} and ΦBob~=Ψ𝖡𝗈𝖻\widetilde{\Phi_{\textsf{Bob}}}=\Psi_{\mathsf{Bob}}^{*}. Then by 3.2, ΦAlice~\widetilde{\Phi_{\textsf{Alice}}} and ΦBob~\widetilde{\Phi_{\textsf{Bob}}} are quantum operations. Furthermore,

Tr[((ΦAlice~)(𝒜a~)(ΦBob~)(b~)r~)(ϕinψD)]=Tr[(Ma~Nb~r~)(ϕinψD)].\mathrm{Tr}\left[\left(\left(\widetilde{\Phi_{\textsf{Alice}}}\right)^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\left(\widetilde{\Phi_{\textsf{Bob}}}\right)^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right]\\ =\mathrm{Tr}\left[\left(\widetilde{M_{a}}\otimes\widetilde{N_{b}}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes D}\right)\right].

And by 3.2 and Lemma 5.3,

|Nb~|2=|(ΦBob~)(b~)|21.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{N_{b}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\widetilde{\Phi_{\textsf{Bob}}}\right)^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1.

Choosing

δ=O(ϵ),θ=ϵ12exp(𝖺2𝖻2𝗉𝗊log𝗌log𝗍ϵ(1ρ)),\delta=O(\epsilon),\quad\theta=\frac{\epsilon^{12}}{\exp\left(\frac{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}\log\mathsf{s}\log\mathsf{t}}{\epsilon(1-\rho)}\right)}, (19)

we finally conclude the result. ∎

5 Construction

Theorem 4.1 states that, given an arbitrarily dimensional strategy, it can be simulated by a strategy with a bounded number of shared noisy maximally entangled states. This section focuses on the construction of the new strategies, which consists of several steps. We adopt the notations and the setup given in Section 4.1.

5.1 Smoothing

Lemma 5.1.

Given 4.3, let δ(0,1)\delta\in\left(0,1\right), n>0n\in\mathbb{Z}_{>0}. There exists an explicitly computable d=d(ρ,δ,𝖺,𝖻,𝗉,𝗊)d=d\left(\rho,\delta,\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q}\right) and maps f:𝒮n𝒫𝒜𝒮n𝒫𝒜f:\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}\rightarrow\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}, g:𝒯n𝒬𝒯n𝒬g:\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}}\rightarrow\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}} such that for all quantum operations ΦAlice(𝒮n𝒫,𝒜),ΦBob(𝒯n𝒬,)\Phi_{\textsf{Alice}}\in\mathcal{L}\left(\mathscr{S}^{n}\mathscr{P},\mathscr{A}\right),\Phi_{\textsf{Bob}}\in\mathcal{L}\left(\mathscr{T}^{n}\mathscr{Q},\mathscr{B}\right), denoting M=J(ΦAlice)M=J\left(\Phi_{\textsf{Alice}}^{*}\right) and N=J(ΦBob)N=J\left(\Phi_{\textsf{Bob}}^{*}\right), the operators M(1)=f(M)M^{(1)}=f\left(M\right) and N(1)=g(N)N^{(1)}=g\left(N\right) satisfy the following.

  1. 1.

    For all a,ba,b:

    |Ma(1)|21and|Nb(1)|21,{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(1)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1\quad\mbox{and}\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(1)}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1,

    where Ma(1)M^{(1)}_{a} and Nb(1)N^{(1)}_{b} are defined in Eq. (15).

  2. 2.

    For all a,b,ra,b,r:

    |Tr[(ΦAlice(𝒜a~)ΦBob(b~)r~)(ϕinψn)]Tr[(Ma(1)Nb(1)r~)(ϕinψn)]|δ.\left|\mathrm{Tr}\left[\left(\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right)\otimes\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right.\\ -\left.\mathrm{Tr}\left[\left(M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\delta.
  3. 3.

    For all a,b,p,qa,b,p,q, Mp,a(1)M^{(1)}_{p,a} and Nq,b(1)N^{(1)}_{q,b} have degree at most dd, where Mp,a(1)M^{(1)}_{p,a} and Nq,b(1)N^{(1)}_{q,b} are defined in Eq. (16).

  4. 4.
    1𝗌nTrζ(M(1))δand1𝗍nTrζ(N(1))δ,\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M^{(1)}\right)\leq\delta\quad\mbox{and}\quad\frac{1}{\mathsf{t}^{n}}\mathrm{Tr}~{}\zeta\left(N^{(1)}\right)\leq\delta,

    where ζ\zeta is defined in Eq. 14.

  5. 5.

    M0(1)=𝟙𝒮n𝒫/𝖺M^{(1)}_{0}=\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}/\sqrt{\mathsf{a}} and N0(1)=𝟙𝒯n𝒬/𝖻N^{(1)}_{0}=\mathds{1}_{\mathscr{T}^{n}\mathscr{Q}}/\sqrt{\mathsf{b}}.

In particular, one may take d=O(𝖺2𝖻2𝗉𝗊δ(1ρ))d=O\left(\frac{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}{\delta\left(1-\rho\right)}\right).

Remark 5.2.

By 3.27, ζ()\zeta(\cdot) describes the distance to the set of positive operators. Thus, item 4 implies that M(1)M^{(1)} and N(1)N^{(1)} are still close to positive operators after the smoothing operation. By 3.2, item 4 and item 5 together imply that M(1)M^{(1)} and N(1)N^{(1)} are close to the Choi representations of adjoints of quantum operations.

Proof of Lemma 5.1.

By Eq. 15 and the definition of the Choi representation in Eq. 6, we have

Ma=ΦAlice(𝒜a~),Nb=ΦBob(b~),M_{a}=\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{a}}\right),\quad N_{b}=\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{b}}\right),

for all a,ba,b. By Lemma 5.3, |Ma|21{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1 and |Nb|21{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1.

Define parameters

δ=δ4𝖺2𝖻2𝗉𝗊,γ=1C(1ρ)δlog(1δ),d=O(log2(1/δ)δ(1ρ)).\delta^{\prime}=\frac{\delta}{4\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}},\quad\gamma=1-C\frac{\left(1-\rho\right)\delta^{\prime}}{\log(1-\delta^{\prime})},\quad d=O\left(\frac{\log^{2}(1/\delta^{\prime})}{\delta^{\prime}(1-\rho)}\right).

Set

M=(Δγ𝟙𝒫𝒜)M,M^{\prime}=\left(\Delta_{\gamma}\otimes\mathds{1}_{\mathscr{P}\mathscr{A}}\right)M,

where the noise operator acts on 𝒮n\mathscr{S}^{n}. Similarly, define

N=(Δγ𝟙𝒬)N,N^{\prime}=\left(\Delta_{\gamma}\otimes\mathds{1}_{\mathscr{Q}\mathscr{B}}\right)N,

where the noise operator acts on 𝒯n\mathscr{T}^{n}. That is, for all a,b,ra,b,r,

Mp,a=Δγ(Mp,a),Nq,b=Δγ(Nq,b).M^{\prime}_{p,a}=\Delta_{\gamma}\left(M_{p,a}\right),\quad N^{\prime}_{q,b}=\Delta_{\gamma}\left(N_{q,b}\right).

By 3.2, M,N0M,N\geq 0. By 3.16 item 3, M,N0M^{\prime},N^{\prime}\geq 0 as well.

For all a,b,p,qa,b,p,q, define

Mp,a(1)=(Mp,a)d,Nq,b(1)=(Nq,b)d.M^{(1)}_{p,a}=\left(M^{\prime}_{p,a}\right)^{\leq d},\quad N^{(1)}_{q,b}=\left(N^{\prime}_{q,b}\right)^{\leq d}. (20)

Each item in Lemma 5.1 is proved as follows.

  1. 1.

    By 3.10 and 3.16 item 2,

    |Ma(1)|2|Ma|2|Ma|21,|Nb(1)|2|Nb|2|Nb|21.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{(1)}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{\prime}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1,\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{(1)}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{\prime}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1. (21)
  2. 2.

    By Lemma 5.4 and the choice of parameters, we have

    |Tr[(MaNbr~MaNbr~)(ϕinψn)]|δ/2.\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\delta/2.

    Using Lemma 5.5, we obtain

    |Tr[(MaNbr~Ma(1)Nb(1)r~)(ϕinψn)]|δ/2.\left|\mathrm{Tr}\left[\left(M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\delta/2.

    By the triangle inequality, we have

    |Tr[(MaNbr~Ma(1)Nb(1)r~)(ϕinψn)]|\displaystyle\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
    \displaystyle\leq~{} |Tr[(MaNbr~MaNbr~)(ϕinψn)]|\displaystyle\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
    +|Tr[(MaNbr~Ma(1)Nb(1)r~)(ϕinψn)]|\displaystyle+~{}\left|\mathrm{Tr}\left[\left(M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{(1)}_{a}\otimes N^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
    \displaystyle\leq~{} δ/2+δ/2=δ.\displaystyle\delta/2+\delta/2=\delta.
  3. 3.

    It holds by the definition of Mp,a(1)M^{(1)}_{p,a} and Nq,b(1)N^{(1)}_{q,b} in Eq. (20).

  4. 4.

    From Eq. (21)

    |M|22=1𝖺a[𝖺2]0|Ma|22𝖺,|N|22=1𝖻b[𝖻2]0|Nb|22𝖻.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{\prime}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\frac{1}{\mathsf{a}}\sum_{a\in[\mathsf{a}^{2}]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{\prime}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq\mathsf{a},\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{\prime}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\frac{1}{\mathsf{b}}\sum_{b\in[\mathsf{b}^{2}]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{\prime}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq\mathsf{b}.

    By 3.16 item 4,

    |(Ma)>d|2γd,|(Nb)>d|2γd.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(M_{a}^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq\gamma^{d},\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(N_{b}^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq\gamma^{d}.

    Thus

    |(M)>d|22=1𝖺a[𝖺2]0|(Ma)>d|22𝖺γ2d,{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(M^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\frac{1}{\mathsf{a}}\sum_{a\in[\mathsf{a}^{2}]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(M^{\prime}_{a}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq\mathsf{a}\gamma^{2d},
    |(N)>d|22=1𝖻b[𝖻2]0|(Nb)>d|22𝖻γ2d.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(N^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\frac{1}{\mathsf{b}}\sum_{b\in[\mathsf{b}^{2}]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(N^{\prime}_{b}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq\mathsf{b}\gamma^{2d}.

    By 3.28, and the fact that ζ(P)=ζ(Q)=0\zeta\left(P^{\prime}\right)=\zeta\left(Q^{\prime}\right)=0 since PP^{\prime} and QQ^{\prime} are positive,

    1𝗌nTrζ(M(1))4𝖺|M|2|(M)>d|24𝖺2γdδ\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M^{(1)}\right)\leq 4\mathsf{a}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M^{\prime}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(M^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 4\mathsf{a}^{2}\gamma^{d}\leq\delta

    and

    1𝗍nTrζ(N(1))4𝖻|N|2|(N)>d|24𝖻2γdδ.\frac{1}{\mathsf{t}^{n}}\mathrm{Tr}~{}\zeta\left(N^{(1)}\right)\leq 4\mathsf{b}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N^{\prime}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(N^{\prime}\right)^{>d}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 4\mathsf{b}^{2}\gamma^{d}\leq\delta.
  5. 5.

    By 3.2, ΦAlice\Phi_{\textsf{Alice}}^{*} and ΦBob\Phi_{\textsf{Bob}}^{*} are unital. Thus

    M0=ΦAlice(𝒜0~)=𝟙𝒮n𝒫/𝖺,N0=ΦBob(0~)=𝟙𝒯n𝒬/𝖻.M_{0}=\Phi_{\textsf{Alice}}^{*}\left(\widetilde{\mathcal{A}_{0}}\right)=\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}/\sqrt{\mathsf{a}},\quad N_{0}=\Phi_{\textsf{Bob}}^{*}\left(\widetilde{\mathcal{B}_{0}}\right)=\mathds{1}_{\mathscr{T}^{n}\mathscr{Q}}/\sqrt{\mathsf{b}}.

    Since Δγ\Delta_{\gamma} is also unital, item 5 follows.

Lemma 5.3.

Given quantum systems 𝒜\mathscr{A} and 𝒮\mathscr{S}, let Φ(𝒜,𝒮)\Phi\in\mathcal{L}\left(\mathscr{A},\mathscr{S}\right) be positive and unital, and H𝒜H\in\mathcal{H}_{\mathscr{A}} satisfy TrH21\mathrm{Tr}\,H^{2}\leq 1. Then

|Φ(H)|21.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\Phi\left(H\right)\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1.
Proof.

Since TrH21\mathrm{Tr}\,H^{2}\leq 1, we have H𝟙𝒜H\leq\mathds{1}_{\mathscr{A}}. By the positivity of Φ\Phi, Φ(𝟙𝒜H)0\Phi\left(\mathds{1}_{\mathscr{A}}-H\right)\geq 0. The fact that Φ\Phi is unital implies Φ(H)𝟙𝒮\Phi\left(H\right)\leq\mathds{1}_{\mathscr{S}}, from which the result concludes. ∎

Lemma 5.4.

Given 4.3, let ϵ(0,1)\epsilon\in(0,1), n>0n\in\mathbb{Z}_{>0}, M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}, N𝒯n𝒬N\in\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}}. It holds that for all a,b,ra,b,r,

|Tr[(MaNbr~Δγ𝒮(Ma)Δγ𝒯(Nb)r~)(ϕinψn)]|ϵ(𝗉𝗊)1/2|Ma|2|Nb|2\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-\Delta_{\gamma}^{\mathscr{S}}\left(M_{a}\right)\otimes\Delta^{\mathscr{T}}_{\gamma}\left(N_{b}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\epsilon\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}

for

(1ϵ)logρ/(logϵ+logρ)γ1,\left(1-\epsilon\right)^{\log\rho/\left(\log\epsilon+\log\rho\right)}\leq\gamma\leq 1,

where Δγ𝒮\Delta^{\mathscr{S}}_{\gamma} and Δγ𝒯\Delta^{\mathscr{T}}_{\gamma} are the depolarizing channels Δγ\Delta_{\gamma} acting on the nn-copies of systems 𝒮\mathscr{S} and 𝒯\mathscr{T}, respectively.

In particular, there exists an absolute constant CC such that it suffices to take

γ=1C(1ρ)ϵlog(1ϵ).\gamma=1-C\frac{\left(1-\rho\right)\epsilon}{\log(1-\epsilon)}.
Proof.

By Lemma 3.22, for any rr, we may choose bases {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}, {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} satisfying Eq. 13. Suppose that for all a,b,p,qa,b,p,q, Mp,aM_{p,a} and Nq,bN_{q,b} have Fourier expansions

Mp,a=s[𝗌2]0nMp,a^(s)𝒮s,Nq,b=t[𝗍2]0nNq,b^(t)𝒯t.M_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}}\widehat{M_{p,a}}\left(s\right)\mathcal{S}_{s},\quad N_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}}\widehat{N_{q,b}}\left(t\right)\mathcal{T}_{t}.

Then by 3.16 item 1,

Δγ(Mp,a)=s[𝗌2]0nMp,a^(s)γ|s|𝒮s,Δγ(Nq,b)=t[𝗍2]0nNq,b^(t)γ|t|𝒯t.\Delta_{\gamma}\left(M_{p,a}\right)=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}}\widehat{M_{p,a}}\left(s\right)\gamma^{\left|s\right|}\mathcal{S}_{s},\quad\Delta_{\gamma}\left(N_{q,b}\right)=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}}\widehat{N_{q,b}}\left(t\right)\gamma^{\left|t\right|}\mathcal{T}_{t}.

Note that our choice of γ\gamma gives us that, ρd(1γ2d)ϵ\rho^{d}\left(1-\gamma^{2d}\right)\leq\epsilon for all d>0.d\in\mathbb{Z}_{>0}. Then

|Tr[(MaNbr~Δγ𝒮(Ma)Δγ𝒯(Nb)r~)(ϕinψn)]|\displaystyle\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-\Delta^{\mathscr{S}}_{\gamma}\left(M_{a}\right)\otimes\Delta^{\mathscr{T}}_{\gamma}\left(N_{b}\right)\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
=\displaystyle=~{} |p,q,s,tMp,a^(s)Nq,b^(t)(1γ|s|+|t|)Tr[(𝒮s𝒯t)ψn]Tr[(𝒫p~𝒬q~r~)ϕin]|\displaystyle\left|\sum_{p,q,s,t}\widehat{M_{p,a}}\left(s\right)\widehat{N_{q,b}}\left(t\right)\left(1-\gamma^{\left|s\right|+\left|t\right|}\right)\mathrm{Tr}\left[\left(\mathcal{S}_{s}\otimes\mathcal{T}_{t}\right)\psi^{\otimes n}\right]\cdot\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\right|
=()\displaystyle\overset{(\star)}{=}~{} |p,sMp,a^(s)Np,b^(s)(1γ2|s|)cskp|\displaystyle\left|\sum_{p,s}\widehat{M_{p,a}}\left(s\right)\widehat{N_{p,b}}\left(s\right)\left(1-\gamma^{2\left|s\right|}\right)c_{s}\cdot k_{p}\right|
()\displaystyle\overset{(\star\star)}{\leq}~{} (p,sMp,a^(s)2(1γ2|s|)ρ|s|)1/2(p,sNp,b^(s)2(1γ2|s|)ρ|s|)1/2\displaystyle\left(\sum_{p,s}\widehat{M_{p,a}}\left(s\right)^{2}\left(1-\gamma^{2\left|s\right|}\right)\rho^{\left|s\right|}\right)^{1/2}\cdot\left(\sum_{p,s}\widehat{N_{p,b}}\left(s\right)^{2}\left(1-\gamma^{2\left|s\right|}\right)\rho^{\left|s\right|}\right)^{1/2}
\displaystyle\leq~{} ϵ(p,sMp,a^(s)2)1/2(p,sNp,b^(s)2)1/2\displaystyle\epsilon\left(\sum_{p,s}\widehat{M_{p,a}}\left(s\right)^{2}\right)^{1/2}\cdot\left(\sum_{p,s}\widehat{N_{p,b}}\left(s\right)^{2}\right)^{1/2}
()\displaystyle\overset{(\star\star\star)}{\leq}~{} ϵ(p|Mp,a|22)1/2(p|Np,b|22)1/2\displaystyle\epsilon\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}\cdot\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}
\displaystyle\leq~{} ϵ(𝗉𝗊)1/2|Ma|2|Nb|2,\displaystyle\epsilon\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2},

where (\star) is by the choices of {𝒫p}p[𝗉2]0,{𝒬q}q[𝗊2]0,{r}r[𝗋2]0,{𝒮s}s[𝗌2]0,{𝒯t}t[𝗍2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}},\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}},\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}},\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}},\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} in 4.3, which satisfy Eq. 12 and Eq. 13; (\star\star) is by Cauchy-Schwartz inequality; (\star\star\star) is by 3.10 item 2. ∎

Lemma 5.5.

Given d>0d\in\mathbb{Z}_{>0}, operators M,M𝒮n𝒫𝒜,N,N𝒯n𝒬M,M^{\prime}\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}},N,N^{\prime}\in\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}} satisfying that for all a,b,p,qa,b,p,q,

Mp,a=Mp,ad,Nq,b=Nq,bd,M^{\prime}_{p,a}=M_{p,a}^{\leq d},\quad N^{\prime}_{q,b}=N_{q,b}^{\leq d},

where Mp,a,Np,a,Mp,adM_{p,a},N_{p,a},M_{p,a}^{\leq d} and Nq,bdN_{q,b}^{\leq d} are defined in Definition 3.13 and Eq. (16). it holds that

|Tr[(MaNbr~MaNbr~)(ϕinψn)]|ρd(𝗉𝗊)1/2|Ma|2|Nb|2\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\rho^{d}\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
Proof.

By Lemma 3.22, for any rr, we can choose bases {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}, {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} satisfying Eq. 13. By 3.14, M,NM^{\prime},N^{\prime} are independent of the choice of the bases {𝒮s}s[𝗌2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}} and {𝒯t}t[𝗍2]0\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} in 𝒮\mathscr{S} and 𝒯\mathscr{T}, respectively. Then

|Tr[(MaNbr~MaNbr~)(ϕinψn)]|\displaystyle\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}-M^{\prime}_{a}\otimes N^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
=\displaystyle=~{} |p,q,s,tMp,a^(s)Nq,b^(t)Tr[(𝒮s𝒯t)ψn]Tr[(𝒫p~𝒬q~r~)ϕin]\displaystyle\left|\sum_{p,q,s,t}\widehat{M_{p,a}}\left(s\right)\widehat{N_{q,b}}\left(t\right)\mathrm{Tr}\left[\left(\mathcal{S}_{s}\otimes\mathcal{T}_{t}\right)\psi^{\otimes n}\right]\cdot\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\right.
p,q,s,t:|s|d,|t|dMp,a^(s)Nq,b^(t)Tr[(𝒮s𝒯t)ψn]Tr[(𝒫p~𝒬q~r~)ϕin]|\displaystyle-\left.\sum_{p,q,s,t:\left|s\right|\leq d,\left|t\right|\leq d}\widehat{M_{p,a}}\left(s\right)\widehat{N_{q,b}}\left(t\right)\mathrm{Tr}\left[\left(\mathcal{S}_{s}\otimes\mathcal{T}_{t}\right)\psi^{\otimes n}\right]\cdot\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\right|
=()\displaystyle\overset{(\star)}{=}~{} |p,s:|s|>dMp,a^(s)Np,b^(s)cskp|\displaystyle\left|\sum_{p,s:\left|s\right|>d}\widehat{M_{p,a}}\left(s\right)\widehat{N_{p,b}}\left(s\right)c_{s}\cdot k_{p}\right|
()\displaystyle\overset{(\star\star)}{\leq}~{} ρd(p,s:|s|>dMp,a^(s)2)1/2(p,s:|s|>dNp,b^(s)2)1/2\displaystyle\rho^{d}\left(\sum_{p,s:\left|s\right|>d}\widehat{M_{p,a}}\left(s\right)^{2}\right)^{1/2}\cdot\left(\sum_{p,s:\left|s\right|>d}\widehat{N_{p,b}}\left(s\right)^{2}\right)^{1/2}
()\displaystyle\overset{(\star\star\star)}{\leq}~{} ρd(p|Mp,a|22)1/2(p|Np,b|22)1/2\displaystyle\rho^{d}\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}\cdot\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}
\displaystyle\leq~{} ρd(𝗉𝗊)1/2|Ma|2|Nb|2,\displaystyle\rho^{d}\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2},

where (\star) is by Eq. 12 and Eq. 13, (\star\star) is by Cauchy-Schwarz inequality and (\star\star\star) is by 3.10 item 2. ∎

5.2 Regularization

Lemma 5.6.

Given 4.3, let θ(0,1)\theta\in\left(0,1\right), d,n>0d,n\in\mathbb{Z}_{>0}, operators M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}} and N𝒯n𝒬N\in\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}} satisfy that Mp,a,M_{p,a}, Nq,bN_{q,b} have degree at most dd for all a,b,p,q,ra,b,p,q,r. Furthermore, |Ma|21{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1, |Nb|21{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 1 for all a,ba,b. Then there exists a subset H[n]H\subseteq[n] of size hd(𝖺+𝖻)/θh\leq d\left(\mathsf{a}+\mathsf{b}\right)/\theta such that for all ii-th 𝒮\mathscr{S} or 𝒯\mathscr{T} system, iHi\notin H,

Infi(M)θ,Infi(N)θ.\mathrm{Inf}_{i}\left(M\right)\leq\theta,\quad\mathrm{Inf}_{i}\left(N\right)\leq\theta.
Proof.

Set

HM={i:Infi(M)>θ}H_{M}=\left\{i:\mathrm{Inf}_{i}\left(M\right)>\theta\right\}

of size hMh_{M}. Then

θhM\displaystyle\theta h_{M}~{}\leq~{} i=1nInfi(M)\displaystyle\sum_{i=1}^{n}\mathrm{Inf}_{i}\left(M\right)
=\displaystyle=~{} i=1n|M𝟙𝒮TriM|22(by Eq. 11)\displaystyle\sum_{i=1}^{n}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M-\mathds{1}_{\mathscr{S}}\otimes\mathrm{Tr}_{i}M\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\quad\quad\mbox{(by \lx@cref{creftype~refnum}{eqn:definf})}
=\displaystyle=~{} 1𝗉𝖺i=1na[𝖺2]0p[𝗉2]0|Mp,a𝟙𝒮TriMp,a|22(by Eqs. (15)&(16))\displaystyle\frac{1}{\mathsf{p}\mathsf{a}}\sum_{i=1}^{n}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}\atop p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}-\mathds{1}_{\mathscr{S}}\otimes\mathrm{Tr}_{i}M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\quad\quad\mbox{(by Eqs.~{}\eqref{eqn:defMa}\&\eqref{eqn:defmpa})}
=\displaystyle=~{} 1𝗉𝖺i=1na[𝖺2]0p[𝗉2]0Infi(Mp,a)(by Eq. 11)\displaystyle\frac{1}{\mathsf{p}\mathsf{a}}\sum_{i=1}^{n}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}\atop p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}\mathrm{Inf}_{i}\left(M_{p,a}\right)\quad\quad\mbox{(by \lx@cref{creftype~refnum}{eqn:definf})}
\displaystyle\leq~{} d𝗉𝖺a[𝖺2]0p[𝗉2]0|Mp,a|22(by 3.12 item 2)\displaystyle\frac{d}{\mathsf{p}\mathsf{a}}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}\atop p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\quad\quad\mbox{(by \lx@cref{creftype~refnum}{fac:partialvariance} item 2)}
=\displaystyle=~{} d𝖺a[𝖺2]0|Ma|22(by Eqs. (15)&(16))\displaystyle\frac{d}{\mathsf{a}}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\quad\quad\mbox{(by Eqs.~{}\eqref{eqn:defMa}\&\eqref{eqn:defmpa})}
\displaystyle\leq~{} d𝖺.\displaystyle d\mathsf{a}.

Similarly,

HN={i:Infi(N)>θ}H_{N}=\left\{i:\mathrm{Inf}_{i}\left(N\right)>\theta\right\}

is of size hNd𝖻θh_{N}\leq\frac{d\mathsf{b}}{\theta}. Define H=HMHNH=H_{M}\cup H_{N}, the conclusion holds by a union bound. ∎

5.3 Invariance principle

The following is the main result in this subsection.

Lemma 5.7.

Given 4.3, let θ(0,1)\theta\in\left(0,1\right), n,d>0n,d\in\mathbb{Z}_{>0}, H[n]H\subseteq[n] of size hh. There exist maps f:𝒮n𝒫𝒜×2(𝗌21)(nh)L2(𝒮h𝒫𝒜,γ2(𝗌21)(nh))f:\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}\times{\mathbb{R}}^{2\left(\mathsf{s}^{2}-1\right)\left(n-h\right)}\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{2\left(\mathsf{s}^{2}-1\right)\left(n-h\right)}\right) and g:𝒯n𝒬×2(𝗍21)(nh)L2(𝒯h𝒬,γ2(𝗍21)(nh))g:\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}}\times{\mathbb{R}}^{2\left(\mathsf{t}^{2}-1\right)\left(n-h\right)}\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{2\left(\mathsf{t}^{2}-1\right)\left(n-h\right)}\right) satisfying the following.

For any M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}}, N𝒯n𝒬N\in\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}} we define

(𝐌,𝐍)=(f(M,𝐠),g(N,𝐡))(𝐠,𝐡)𝒢ρ2(𝗌21)(nh).\left(\mathbf{M},\mathbf{N}\right)=\left(f\left(M,\mathbf{g}\right),g\left(N,\mathbf{h}\right)\right)_{\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{\rho}^{\otimes 2\left(\mathsf{s}^{2}-1\right)\left(n-h\right)}}.

If M,NM,N satisfy that

  1. 1.

    For all a,ba,b, |Ma|221{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq 1 and |Nb|221{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq 1;

  2. 2.

    For all a,b,p,qa,b,p,q, Ma,pM_{a,p} and Nb,qN_{b,q} have degree at most dd;

  3. 3.

    For all iHi\notin H, Infi(M)θ\mathrm{Inf}_{i}\left(M\right)\leq\theta, Infi(N)θ\mathrm{Inf}_{i}\left(N\right)\leq\theta;

  4. 4.

    M0=𝟙𝒮n𝒫/𝖺,N0=𝟙𝒯n𝒬/𝖻M_{0}=\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}/\sqrt{\mathsf{a}},N_{0}=\mathds{1}_{\mathscr{T}^{n}\mathscr{Q}}/\sqrt{\mathsf{b}},

where MaM_{a} and NbN_{b} are defined in Eq. (15), then the following holds:

  1. 1.

    For all a,b,p,qa,b,p,q, 𝐌p,aL2(𝒮h,γ2(𝗌21)(nh))\mathbf{M}_{p,a}\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}},\gamma_{2\left(\mathsf{s}^{2}-1\right)\left(n-h\right)}\right) and 𝐍q,bL2(𝒯h,γ2(𝗍21)(nh))\mathbf{N}_{q,b}\in L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}},\gamma_{2\left(\mathsf{t}^{2}-1\right)\left(n-h\right)}\right) are degree-dd multilinear joint random operators with the joint random variables drawn from 𝒢ρ2(𝗌21)(nh)\mathcal{G}_{\rho}^{\otimes 2\left(\mathsf{s}^{2}-1\right)\left(n-h\right)}, where 𝐌p,a\mathbf{M}_{p,a} and 𝐍q,b\mathbf{N}_{q,b} are defined in Eq. (16).

  2. 2.

    For all a,b,p,qa,b,p,q:

    𝔼[|𝐌p,a|22]=|Mp,a|22and𝔼[|𝐍q,b|22]=|Nq,b|22.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}.
  3. 3.

    For all a,b,ra,b,r:

    𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]]=Tr[(MaNbr~)(ϕinψn)].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]=\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right].
  4. 4.
    |1𝗌h𝔼[Trζ(𝐌)]1𝗌nTrζ(M)|O(𝗉10/3𝖺4(3d𝗌d/2θd)2/3)\left|\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]-\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M\right)\right|\leq O\left(\mathsf{p}^{10/3}\mathsf{a}^{4}\left(3^{d}\mathsf{s}^{d/2}\sqrt{\theta}d\right)^{2/3}\right)

    and

    |1𝗍h𝔼[Trζ(𝐍)]1𝗍nTrζ(N)|O(𝗊10/3𝖻4(3d𝗍d/2θd)2/3).\left|\frac{1}{\mathsf{t}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}\right)\right]-\frac{1}{\mathsf{t}^{n}}\mathrm{Tr}~{}\zeta\left(N\right)\right|\leq O\left(\mathsf{q}^{10/3}\mathsf{b}^{4}\left(3^{d}\mathsf{t}^{d/2}\sqrt{\theta}d\right)^{2/3}\right).
  5. 5.

    𝐌0=𝟙𝒮h𝒫/𝖺\mathbf{M}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0=𝟙𝒯h𝒬/𝖻\mathbf{N}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Before proving the lemma, we need to introduce the quantum invariance principle for the function ζ()\zeta\left(\cdot\right) defined as Eq. 14.

Definition 5.8.

Given k,l>0k,l\in\mathbb{Z}_{>0}, for all multilinear random operator 𝐌L2(𝒮k𝒫𝒜,γl)\mathbf{M}\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{k}\mathscr{P}\mathscr{A}},\gamma_{l}\right), assume that for all p,ap,a,

𝐌p,a=s[𝗌2]0kms,p,a(𝐱)𝒮s,\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{k}}m_{s,p,a}\left(\mathbf{x}\right)\mathcal{S}_{s},

where xγlx\sim\gamma_{l}, and ms,p,am_{s,p,a} is multilinear for all s,p,as,p,a. For all d>0d\in\mathbb{Z}_{>0}, define

ud=sup{𝔼[|||𝐌|||44]1/4𝔼[|||𝐌|||22]1/2:𝐌L2(𝒮k𝒫𝒜,γl),k>0,>0,deg(ms,p,a)+|s|d for all s,p,a}.u_{d}=\sup\left\{\frac{\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}}{\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}}:\mathbf{M}\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{k}\mathscr{P}\mathscr{A}},\gamma_{l}\right),k>0,\ell>0,\deg\left(m_{s,p,a}\right)+\left|s\right|\leq d\text{ for all }s,p,a\right\}.

The following is the quantum invariance principle for the function ζ()\zeta\left(\cdot\right).

Lemma 5.9.

[36, Lemma 10.10]444The statement is slightly different from that of [36]. But the proof is exactly the same. Given 4.3, let θ(0,1)\theta\in\left(0,1\right), n,d,h>0n,d,h\in\mathbb{Z}_{>0}, H[n]H\subseteq[n] of size |H|=h\left|H\right|=h, M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}} with the expansion as Eqs. (15)&(16) satisfies the following.

  1. 1.

    For all aa, |Ma|221{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq 1.

  2. 2.

    For all a,pa,p, Ma,pM_{a,p} have degree at most dd.

  3. 3.

    For all iHi\notin H,

    Infi(M)θ.\mathrm{Inf}_{i}\left(M\right)\leq\theta.

Suppose Mp,aM_{p,a} has a Fourier expansion

Mp,a=s[𝗌2]0kMp,a^(s)𝒮s.M_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{k}}\widehat{M_{p,a}}\left(s\right)\mathcal{S}_{s}.

Define

𝐌p,a=s[𝗌2]0kMp,a^(s)iH𝐠i,si(iH𝒮si).\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{k}}\widehat{M_{p,a}}\left(s\right)\prod_{i\notin H}\mathbf{g}_{i,s_{i}}\left(\bigotimes_{i\in H}\mathcal{S}_{s_{i}}\right).

Then it holds that

|1𝗌h𝔼[Trζ(𝐌)]1𝗌nTrζ(M)|O(𝗉𝖺(ud2θd𝖺)2/3),\left|\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]-\frac{1}{\mathsf{s}^{n}}\mathrm{Tr}~{}\zeta\left(M\right)\right|\leq O\left(\mathsf{p}\mathsf{a}\left(u_{d}^{2}\sqrt{\theta}d\mathsf{a}\right)^{2/3}\right),

where udu_{d} is defined in Definition 5.8.

The following is a hypercontractive inequality for random operators in L2(mh,γn)L^{2}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right).

Lemma 5.10.

[36, Lemma 8.12] Given 4.3, integers h,n0h,n\geq 0, and a quantum system 𝒮\mathcal{S}, it holds that

𝔼[|||𝐌|||44]1/43d/2md/4𝔼[|||𝐌|||22]1/2,\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}\leq 3^{d/2}m^{d/4}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2},

for all multilinear random operator 𝐌L2(mh,γn)\mathbf{M}\in L^{2}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right), where d=maxa[m2]0h(deg(pa)+|a|)d=\max_{a\in[m^{2}]_{\geq 0}^{h}}\left(\deg\left(p_{a}\right)+\left|a\right|\right).

The following lemma generalizes the hypercontractivity above to the operators in space L2(𝒮h𝒫𝒜,γn)L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right).

Lemma 5.11.

Given 4.3, let n,d,h>0n,d,h\in\mathbb{Z}_{>0} and a random operator 𝐌L2(𝒮h𝒫𝒜,γn)\mathbf{M}\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right). Suppose

𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮s\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}

for any p,a,p,a, where 𝐠γn\mathbf{g}\sim\gamma_{n}, ms,p,am_{s,p,a} is a multilinear polynomial, and deg(ms,p,a)+|s|d\deg\left(m_{s,p,a}\right)+\left|s\right|\leq d for all s,p,as,p,a. Then

𝔼[|||𝐌|||44]1/43d/2𝗉7/4𝖺7/4𝗌d/4𝔼[|||𝐌|||22]1/2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}\leq 3^{d/2}\mathsf{p}^{7/4}\mathsf{a}^{7/4}\mathsf{s}^{d/4}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}.

Namely, ud3d/2𝗉3/4𝖺3/4𝗌d/4u_{d}\leq 3^{d/2}\mathsf{p}^{3/4}\mathsf{a}^{3/4}\mathsf{s}^{d/4}, where udu_{d} is defined in Definition 5.8.

Proof.
𝔼[|||𝐌|||44]1/4\displaystyle\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}~{}\leq~{} p[𝗉2]0a[𝖺2]0𝔼[|||𝐌p,a𝒫p~𝒜a~|||44]1/4\displaystyle\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}\atop a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\otimes\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{A}_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}
=\displaystyle=~{} p[𝗉2]0a[𝖺2]0𝔼[|||𝐌p,a|||44]1/4|||𝒫p~|||4|||𝒜a~|||4\displaystyle\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}\atop a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}^{4}\right]^{1/4}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{\mathcal{P}_{p}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{\mathcal{A}_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{4}
()\displaystyle\overset{(\star)}{\leq}~{} p,a3d/2𝗌d/4𝔼[|||𝐌p,a|||22]1/2𝗉1/4𝖺1/4|||𝒫p~|||2|||𝒜a~|||2\displaystyle\sum_{p,a}3^{d/2}\mathsf{s}^{d/4}\cdot\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\mathsf{p}^{1/4}\mathsf{a}^{1/4}\cdot{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{\mathcal{P}_{p}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\widetilde{\mathcal{A}_{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
()\displaystyle\overset{(\star\star)}{\leq}~{} 3d/2𝗉5/4𝖺5/4𝗌d/4(p[𝗉2]0a[𝖺2]0𝔼[|𝐌p,a|22])1/2\displaystyle 3^{d/2}\mathsf{p}^{5/4}\mathsf{a}^{5/4}\mathsf{s}^{d/4}\left(\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}\atop a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\right)^{1/2}
=\displaystyle=~{} 3d/2𝗉7/4𝖺7/4𝗌d/4𝔼[|||𝐌|||22]1/2,\displaystyle 3^{d/2}\mathsf{p}^{7/4}\mathsf{a}^{7/4}\mathsf{s}^{d/4}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2},

where (\star) is by Lemma 5.10 and Eq. 10, and (\star) is by the well-known fact that i=1nxi(ni=1nxi2)1/2\sum_{i=1}^{n}x_{i}\leq\left(n\sum_{i=1}^{n}x_{i}^{2}\right)^{1/2} for all x1,,xn0x_{1},\dots,x_{n}\geq 0. ∎

We are now ready to prove Lemma 5.7.

Proof of Lemma 5.7.

Suppose for all a,b,p,qa,b,p,q, Mp,aM_{p,a} and Nq,bN_{q,b} have Fourier expansions

Mp,a=s[𝗌2]0nMp,a^(s)𝒮sM_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}}\widehat{M_{p,a}}\left(s\right)\mathcal{S}_{s}

and

Nq,b=t[𝗍2]0nNq,b^(t)𝒯t.N_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}}\widehat{N_{q,b}}\left(t\right)\mathcal{T}_{t}.

By the convention in 4.3, {𝒮s}s[𝗌2]0n\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}} and {𝒯t}t[𝗍2]0n\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}} are standard orthonormal bases in 𝒮n\mathcal{H}_{\mathscr{S}}^{\otimes n} and 𝒯n\mathcal{H}_{\mathscr{T}}^{\otimes n}, respectively, which satisfy Eq. (12).

Without loss of generality, we assume that 𝗌𝗍\mathsf{s}\geq\mathsf{t}. We further assume for now that the Gaussian random variables with different correlations are allowed. This assumption will be removed later. Define n𝗌2n\mathsf{s}^{2} independent joint random variables {(𝐠i,j,𝐡i,j)}i[n],j[𝗌2]0\left\{\left(\mathbf{g}^{\prime}_{i,j},\mathbf{h}^{\prime}_{i,j}\right)\right\}_{i\in[n],j\in\left[\mathsf{s}^{2}\right]_{\geq 0}}, where 𝐠i,0=𝐡i,0=1\mathbf{g}^{\prime}_{i,0}=\mathbf{h}^{\prime}_{i,0}=1 for all i[n]i\in[n], (𝐠i,j,𝐡i,j)𝒢cj\left(\mathbf{g}^{\prime}_{i,j},\mathbf{h}^{\prime}_{i,j}\right)\sim\mathcal{G}_{c_{j}} for all i[n],j[𝗌21]i\in[n],j\in\left[\mathsf{s}^{2}-1\right], and cjc_{j} is defined in Eq. 12.

Define

𝐌p,a=s[𝗌2]0nMp,a^(s)iH𝐠i,si(iH𝒮si)\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}}\widehat{M_{p,a}}\left(s\right)\prod_{i\notin H}\mathbf{g}^{\prime}_{i,s_{i}}\left(\bigotimes_{i\in H}\mathcal{S}_{s_{i}}\right) (22)

and

𝐍q,b=t[𝗍2]0nNq,b^(t)iH𝐡i,ti(iH𝒯ti),\mathbf{N}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}}\widehat{N_{q,b}}\left(t\right)\prod_{i\notin H}\mathbf{h}^{\prime}_{i,t_{i}}\left(\bigotimes_{i\in H}\mathcal{T}_{t_{i}}\right), (23)

where {𝒮s}s[𝗌2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}} and {𝒯t}t[𝗍2]0\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} are standard orthonormal bases in 𝒮\mathcal{H}_{\mathscr{S}} and 𝒯\mathcal{H}_{\mathscr{T}}, respectively, which satisfy Eq. (12), by the convention in 4.3. Then we have the correlation matching:

Tr(𝒮j𝒯j)ψ𝒮𝒯=𝔼[𝐠i,j𝐡i,j]=δj,jcj\mathrm{Tr}~{}\left(\mathcal{S}_{j}\otimes\mathcal{T}_{j^{\prime}}\right)\psi^{\mathscr{S}\mathscr{T}}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathbf{g}^{\prime}_{i,j}\mathbf{h}^{\prime}_{i,j^{\prime}}\right]=\delta_{j,j^{\prime}}c_{j} (24)

for i[H]i\notin[H] and j,js[𝗌2]0j,j^{\prime}\in s\in\left[\mathsf{s}^{2}\right]_{\geq 0}.

Each item in Lemma 5.7 is proved as follows.

  1. 1.

    It follows trivially by Eqs. (22)&(23).

  2. 2.

    By direct calculation, we have

    𝔼[|𝐌p,a|22]=s[𝗌2]0n|Mp,a^(s)|2=|Mp,a|22\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{n}}\left|\widehat{M_{p,a}}\left(s\right)\right|^{2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}

    and

    𝔼[|𝐌p,a|22]=t[𝗍2]0n|Nq,b^(t)|2=|Nq,b|22.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{n}}\left|\widehat{N_{q,b}}\left(t\right)\right|^{2}={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}.
  3. 3.

    By the convention of {𝒫p}p[𝗉2]0,{𝒬q}q[𝗊2]0,{r}r[𝗋2]0,{𝒮s}s[𝗌2]0,{𝒯t}t[𝗍2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}},\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}},\left\{\mathcal{R}_{r}\right\}_{r\in\left[\mathsf{r}^{2}\right]_{\geq 0}},\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}},\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} in 4.3 and the correlation matching Eq. (24), we have

    𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]]\displaystyle\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]
    =\displaystyle=~{} s,pMp,a^(s)Np,b^(s)cskp\displaystyle\sum_{s,p}\widehat{M_{p,a}}\left(s\right)\widehat{N_{p,b}}\left(s\right)c_{s}k_{p}
    =\displaystyle=~{} Tr[(MaNbr~)(ϕinψn)].\displaystyle\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right].
  4. 4.

    It holds by Lemma 5.9 and Lemma 5.11.

  5. 5.

    It holds trivially by the definition of 𝐌\mathbf{M} and 𝐍\mathbf{N}.

It remains to show that, given c[0,ρ]c\in[0,\rho], 𝒢c\mathcal{G}_{c} can be simulated by sampling from 𝒢ρ\mathcal{G}_{\rho}. Indeed, let (𝐠(1),𝐡(1))\left(\mathbf{g}^{(1)},\mathbf{h}^{(1)}\right) and (𝐠(2),𝐡(2))\left(\mathbf{g}^{(2)},\mathbf{h}^{(2)}\right) be drawn from 𝒢ρ\mathcal{G}_{\rho} independently. Define

𝐠\displaystyle\mathbf{g} =𝐠(1),\displaystyle=\mathbf{g}^{(1)},
𝐡\displaystyle\mathbf{h} =cρ𝐡(1)+1c2ρ2𝐡(2).\displaystyle=\frac{c}{\rho}\mathbf{h}^{(1)}+\sqrt{1-\frac{c^{2}}{\rho^{2}}}\mathbf{h}^{(2)}.

Then (𝐠,𝐡)𝒢c\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{c}. It is easy to see that all the items still hold with the replacement.

The following lemma converts random operators to operators.

Lemma 5.12.

Given θ(0,1)\theta\in\left(0,1\right), n,d>0n,d\in\mathbb{Z}_{>0}, H[n]H\subseteq[n] of size hh, there exist maps f:L2(𝒮h𝒫𝒜,γn)𝒮n+h𝒫𝒜,g:L2(𝒮h𝒫𝒜,γn)𝒯n+h𝒬f:L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\rightarrow\mathcal{H}_{\mathscr{S}^{n+h}\mathscr{P}\mathscr{A}},g:L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\rightarrow\mathcal{H}_{\mathscr{T}^{n+h}\mathscr{Q}\mathscr{B}} such that the following holds:

Let (𝐌,𝐍)L2(𝒮h𝒫𝒜,γn)×L2(𝒯h𝒬,γn)\left(\mathbf{M},\mathbf{N}\right)\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\times L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right) be any joint random operators with the expansions as Eqs. (15)&(16) satisfying the following.

  1. 1.

    For all a,ba,b, 𝔼[|𝐌p,a|22]1\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 1 and 𝔼[|𝐍q,b|22]1\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 1.

  2. 2.

    For all a,b,p,qa,b,p,q, 𝐌p,a\mathbf{M}_{p,a} and 𝐍q,b\mathbf{N}_{q,b} are degree-dd multilinear random operators.

  3. 3.

    For all a,b,p,qa,b,p,q, suppose that

    𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮s,𝐍q,b=t[𝗍2]0hnt,q,b(𝐡)𝒯t,\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s},\quad\mathbf{N}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n_{t,q,b}\left(\mathbf{h}\right)\mathcal{T}_{t},

    where (𝐠,𝐡)𝒢ρn\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{\rho}^{\otimes n}, and {𝒮s}s[𝗌2]0\left\{\mathcal{S}_{s}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}} and {𝒯t}t[𝗍2]0\left\{\mathcal{T}_{t}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}} are standard orthonormal bases in 𝒮\mathcal{H}_{\mathscr{S}} and 𝒯\mathcal{H}_{\mathscr{T}}, respectively, which satisfy Eq. (12), it holds that

    1𝗉𝖺s,p,aInfi(ms,p,a)θ,1𝗊𝖻t,q,bInfi(nt,q,b)θ.\frac{1}{\mathsf{p}\mathsf{a}}\sum_{s,p,a}\mathrm{Inf}_{i}\left(m_{s,p,a}\right)\leq\theta,\quad\frac{1}{\mathsf{q}\mathsf{b}}\sum_{t,q,b}\mathrm{Inf}_{i}\left(n_{t,q,b}\right)\leq\theta.
  4. 4.

    𝐌0=𝟙𝒮n𝒫/𝖺,𝐍0=𝟙𝒯n𝒬/𝖻\mathbf{M}_{0}=\mathds{1}_{\mathscr{S}^{n}\mathscr{P}}/\sqrt{\mathsf{a}},\mathbf{N}_{0}=\mathds{1}_{\mathscr{T}^{n}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Then

(M,N)=(f(𝐌),g(𝐍))𝒮n+h𝒫𝒜×𝒯n+h𝒬\left(M,N\right)=\left(f\left(\mathbf{M}\right),g\left(\mathbf{N}\right)\right)\in\mathcal{H}_{\mathscr{S}^{n+h}\mathscr{P}\mathscr{A}}\times\mathcal{H}_{\mathscr{T}^{n+h}\mathscr{Q}\mathscr{B}}

satisfies the following.

  1. 1.

    For all a,b,p,qa,b,p,q:

    |Mp,a|22=𝔼[|𝐌p,a|22]and|Nq,b|22=𝔼[|𝐍q,b|22].{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{and}\quad{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].
  2. 2.

    For all a,b,ra,b,r:

    Tr[(MaNbr~)(ϕinψn+h)]=𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]].\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n+h}\right)\right]=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right].
  3. 3.
    |1𝗌n+hTrζ(M)1𝗌h𝔼[Trζ(𝐌)]|O(𝗉10/3𝖺4(3d𝗌d/2θd)2/3)\left|\frac{1}{\mathsf{s}^{n+h}}\mathrm{Tr}~{}\zeta\left(M\right)-\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]\right|\leq O\left(\mathsf{p}^{10/3}\mathsf{a}^{4}\left(3^{d}\mathsf{s}^{d/2}\sqrt{\theta}d\right)^{2/3}\right)

    and

    |1𝗍n+hTrζ(N)1𝗍h𝔼[Trζ(𝐍)]|O(𝗊10/3𝖻4(3d𝗍d/2θd)2/3).\left|\frac{1}{\mathsf{t}^{n+h}}\mathrm{Tr}~{}\zeta\left(N\right)-\frac{1}{\mathsf{t}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}\right)\right]\right|\leq O\left(\mathsf{q}^{10/3}\mathsf{b}^{4}\left(3^{d}\mathsf{t}^{d/2}\sqrt{\theta}d\right)^{2/3}\right).
  4. 4.

    M0=𝟙𝒮n+h𝒫/𝖺M_{0}=\mathds{1}_{\mathscr{S}^{n+h}\mathscr{P}}/\sqrt{\mathsf{a}} and N0=𝟙𝒯n+h𝒬/𝖻N_{0}=\mathds{1}_{\mathscr{T}^{n+h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Proof.

For all a,b,p,qa,b,p,q, since 𝐌p,a\mathbf{M}_{p,a} and 𝐍q,b\mathbf{N}_{q,b} are multilinear random operators, we can assume that

ms,p,a(𝐠)=μ{0,1}nms,p,a^(μ)j=1n𝐠jμj;m_{s,p,a}\left(\mathbf{g}\right)=\sum_{\mu\in\{0,1\}^{n}}\widehat{m_{s,p,a}}(\mu)\prod_{j=1}^{n}\mathbf{g}_{j}^{\mu_{j}};
nt,q,b(𝐡)=μ{0,1}nnt,q,b^(μ)j=1n𝐡jμj,n_{t,q,b}\left(\mathbf{h}\right)=\sum_{\mu\in\{0,1\}^{n}}\widehat{n_{t,q,b}}(\mu)\prod_{j=1}^{n}\mathbf{h}_{j}^{\mu_{j}},

where ms,p,a^(μ)\widehat{m_{s,p,a}}(\mu), nt,q,b^(μ)\widehat{n_{t,q,b}}(\mu)\in{\mathbb{R}} for all s,ts,t. Then 𝐌p,a\mathbf{M}_{p,a} and 𝐍q,b\mathbf{N}_{q,b} can be expressed as

𝐌p,a=s[𝗌2]0hμ{0,1}nms,p,a^(μ)j=1n𝐠jμj𝒮s;\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{m_{s,p,a}}(\mu)\prod_{j=1}^{n}\mathbf{g}_{j}^{\mu_{j}}\mathcal{S}_{s};
𝐍q,b=t[𝗍2]0hμ{0,1}nnt,q,b^(μ)j=1n𝐡jμj𝒯t.\mathbf{N}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{n_{t,q,b}}(\mu)\prod_{j=1}^{n}\mathbf{h}_{j}^{\mu_{j}}\mathcal{T}_{t}.

Define

Mp,a=s[𝗌2]0hμ{0,1}nms,p,a^(μ)(j=1n𝒮μj)𝒮s;M_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{m_{s,p,a}}(\mu)\left(\bigotimes_{j=1}^{n}\mathcal{S}_{\mu_{j}}\right)\otimes\mathcal{S}_{s};
Nq,b=t[𝗍2]0hμ{0,1}nnt,q,b^(μ)(j=1n𝒯μj)𝒯t.N_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{n_{t,q,b}}(\mu)\left(\bigotimes_{j=1}^{n}\mathcal{T}_{\mu_{j}}\right)\otimes\mathcal{T}_{t}.

Each item of Lemma 5.12 is proved as follows.

  1. 1.

    By direct calculation, we have

    𝔼[|𝐌p,a|22]=|Mp,a|22=s[𝗌2]0hμ{0,1}nms,p,a^(μ)2\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{m_{s,p,a}}(\mu)^{2}

    and

    𝔼[|𝐍q,b|22]=|Nq,b|22=t[𝗍2]0hμ{0,1}nnt,q,b^(μ)2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]={\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}\sum_{\mu\in\{0,1\}^{n}}\widehat{n_{t,q,b}}(\mu)^{2}.
  2. 2.

    By the same argument as item 3 in the proof of Lemma 5.7, we have

    Tr[(MaNbr~)(ϕinψn)]\displaystyle\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]
    =\displaystyle=~{} s,pμ{0,1}nms,p,a^(μ)ns,p,b^(μ)ρ|μ|cskp\displaystyle\sum_{s,p}\sum_{\mu\in\{0,1\}^{n}}\widehat{m_{s,p,a}}(\mu)\widehat{n_{s,p,b}}(\mu)\rho^{\left|\mu\right|}c_{s}k_{p}
    =\displaystyle=~{} 𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]].\displaystyle\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right].
  3. 3.

    Observe that for all iHi\notin H,

    Infi(M)=()\displaystyle\mathrm{Inf}_{i}\left(M\right)\overset{(\star)}{=}~{} 1𝗉𝖺a,pInfi(Mp,a)\displaystyle\frac{1}{\mathsf{p}\mathsf{a}}\sum_{a,p}\mathrm{Inf}_{i}\left(M_{p,a}\right)
    =\displaystyle=~{} 1𝗉𝖺s,p,aμ:μi=1ms,p,a^(μ)2\displaystyle\frac{1}{\mathsf{p}\mathsf{a}}\sum_{s,p,a}\sum_{\mu:\mu_{i}=1}\widehat{m_{s,p,a}}(\mu)^{2}
    =\displaystyle=~{} 1𝗉𝖺s,p,aInfi(ms,p,a)\displaystyle\frac{1}{\mathsf{p}\mathsf{a}}\sum_{s,p,a}\mathrm{Inf}_{i}\left(m_{s,p,a}\right)
    \displaystyle\leq~{} θ,\displaystyle\theta,

    where ()(\star) is by Eq. 11 combined with direct calculation.

    Similarly, Infi(N)θ\mathrm{Inf}_{i}\left(N\right)\leq\theta. Then from Lemma 5.9 and Lemma 5.11, item 3 holds.

  4. 4.

    It follows immediately from the constructions of ff and gg.

5.4 Dimension reduction

The following is the main result in this subsection.

Lemma 5.13.

Given 4.3, let δ,α>0,d,n,h>0\delta,\alpha>0,d,n,h\in\mathbb{Z}_{>0},

(𝐌,𝐍)L2(𝒮h𝒫𝒜,γn)×L2(𝒯h𝒬,γn),\left(\mathbf{M},\mathbf{N}\right)\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\times L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right),

be degree-dd multilinear joint random operators satisfying the following.

  1. 1.

    For all a,b,p,qa,b,p,q,

    𝐌p,a=S[n]𝐠SMS,p,a,𝐍q,b=S[n]𝐡SNS,q,b,\mathbf{M}_{p,a}=\sum_{S\subseteq[n]}\mathbf{g}_{S}M_{S,p,a},\quad\mathbf{N}_{q,b}=\sum_{S\subseteq[n]}\mathbf{h}_{S}N_{S,q,b}, (25)

    where (𝐠,𝐡)𝒢ρn\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{\rho}^{\otimes n}, 𝐠S=iS𝐠i\mathbf{g}_{S}=\prod_{i\in S}\mathbf{g}_{i},𝐡S=iS𝐡i\mathbf{h}_{S}=\prod_{i\in S}\mathbf{h}_{i}, MS,p,a𝒮hM_{S,p,a}\in\mathcal{H}_{\mathscr{S}^{h}}, NS,q,b𝒯hN_{S,q,b}\in\mathcal{H}_{\mathscr{T}^{h}} for all S[n]S\subseteq[n];

  2. 2.

    For all a,b,p,qa,b,p,q, 𝔼[|𝐌p,a|22]1\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 1 and 𝔼[|𝐍q,b|22]1\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 1;

  3. 3.

    𝐌0=𝟙𝒮h𝒫/𝖺\mathbf{M}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0=𝟙𝒯h𝒬/𝖻\mathbf{N}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Then there exists an explicitly computable n0=n0(d,δ,𝗉,𝗊)n_{0}=n_{0}\left(d,\delta,\mathsf{p},\mathsf{q}\right) and maps fG:L2(𝒮h𝒫𝒜,γn)L2(𝒮h𝒫𝒜,γn0)f_{G}:L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n_{0}}\right), gG:L2(𝒯h𝒬,γn)L2(𝒯h𝒬,γn0)g_{G}:L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n_{0}}\right) for Gn×n0G\in{\mathbb{R}}^{n\times n_{0}}, such that the following holds:

The joint random operators (𝐌G,𝐍G)=(fG(𝐌),gG(𝐍))\left(\mathbf{M}_{G},\mathbf{N}_{G}\right)=\left(f_{G}\left(\mathbf{M}\right),g_{G}\left(\mathbf{N}\right)\right) with expansions as Eqs. (15) and (16) satisfy

𝐌p,aG=S[n]iSGiT𝐱𝐱2MS,p,a\mathbf{M}^{G}_{p,a}=\sum_{S\subseteq[n]}\prod_{i\in S}\frac{G_{i}^{T}\mathbf{x}}{\left\|\mathbf{x}\right\|_{2}}\cdot M_{S,p,a}

and

𝐍q,bG=S[n]iSGiT𝐲𝐲2NS,q,b,\mathbf{N}^{G}_{q,b}=\sum_{S\subseteq[n]}\prod_{i\in S}\frac{G_{i}^{T}\mathbf{y}}{\left\|\mathbf{y}\right\|_{2}}\cdot N_{S,q,b},

where GiG_{i} is the ii’th row of GG. If we sample 𝐆γn×n0\mathbf{G}\sim\gamma_{n\times n_{0}}, then with probability at least 12(𝖺𝖻𝗉𝗊𝗋)2δ2α1-2\left(\mathsf{a}\mathsf{b}\mathsf{p}\mathsf{q}\mathsf{r}\right)^{2}\delta-2\alpha, the following holds:

  1. 1.

    For all a,b,p,qa,b,p,q:

    𝔼𝐱[|𝐌p,a𝐆|22](1+δ)𝔼[|𝐌p,a|22]and𝔼𝐲[|𝐍q,b𝐆|22](1+δ)𝔼[|𝐍q,b|22].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{\mathbf{G}}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{y}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{\mathbf{G}}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].
  2. 2.
    𝔼𝐱[Trζ(𝐌𝐆)]1α𝔼𝐠[Trζ(𝐌)]and𝔼𝐲[Trζ(𝐍𝐆)]1α𝔼𝐡[Trζ(𝐍)].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{\mathbf{G}}\right)\right]\leq\frac{1}{\alpha}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]~{}\mbox{and}~{}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{\mathbf{G}}\right)\right]\leq\frac{1}{\alpha}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}\right)\right].
  3. 3.

    For all a,b,ra,b,r:

    |𝔼𝐱,𝐲[Tr[(𝐌a𝐆𝐍b𝐆r~)(ϕinψh)]]𝔼𝐠,𝐡[Tr[(𝐌a𝐍br~)(ϕinψh)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{\mathbf{G}}_{a}\otimes\mathbf{N}^{\mathbf{G}}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g},\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|\leq\delta.
  4. 4.

    𝐌0𝐆=𝟙𝒮h𝒫/𝖺\mathbf{M}^{\mathbf{G}}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0𝐆=𝟙𝒯h𝒬/𝖻\mathbf{N}^{\mathbf{G}}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

In particular, one may take n0=O(𝗉8𝗊8dO(d)δ6)n_{0}=O\left(\frac{\mathsf{p}^{8}\mathsf{q}^{8}d^{O(d)}}{\delta^{6}}\right).

Remark 5.14.

[36, Lemma 11.1] uses a rough union bound to give an upper bound of n0n_{0} that is exponential to hh. This paper takes a refined analysis following [16] and obtains an upper bound of n0n_{0} independent of hh. This leads to an exponential upper bound instead of a doubly-exponential one in the main result.

To keep the proof succinct, we define for a,b,ra,b,r,

Fa,b,r(G)\displaystyle F_{a,b,r}(G) =𝔼𝐱,𝐲[Tr[(𝐌aG𝐍bGr~)(ϕinψh)]]\displaystyle=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{G}_{a}\otimes\mathbf{N}^{G}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]
Ga,b,r\displaystyle G_{a,b,r} =𝔼𝐠,𝐡[Tr[(𝐌a𝐍br~)(ϕinψh)]]\displaystyle=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g},\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]
𝐮S\displaystyle\mathbf{u}_{S} =iSGiT𝐱𝐱2,\displaystyle=\prod_{i\in S}\frac{G_{i}^{T}\mathbf{x}}{\left\|\mathbf{x}\right\|_{2}},
𝐯S\displaystyle\mathbf{v}_{S} =iSGiT𝐲𝐲2.\displaystyle=\prod_{i\in S}\frac{G_{i}^{T}\mathbf{y}}{\left\|\mathbf{y}\right\|_{2}}.

Remind that the randomness of 𝐌aG,𝐌a\mathbf{M}^{G}_{a},\mathbf{M}_{a} and 𝐍bG,𝐍b\mathbf{N}^{G}_{b},\mathbf{N}_{b} is from the random variables 𝐱\mathbf{x} and 𝐲\mathbf{y}, respectively.

To prove Lemma 5.13 item 3, we need the following lemma.

Lemma 5.15.

Given 4.3, let δ>0,d,n,h>0\delta>0,d,n,h\in\mathbb{Z}_{>0}. There exists n0(d,δ,𝗉,𝗊)n_{0}(d,\delta,\mathsf{p},\mathsf{q}) such that the following holds for all a,b,ra,b,r: For 𝐆γn×n0\mathbf{G}\sim\gamma_{n\times n_{0}},

(Mean bound)|𝔼𝐆[Fa,b,r(𝐆)]Ga,b,r|δ,\displaystyle\mbox{(Mean bound)}\quad\quad\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]-G_{a,b,r}\right|\leq\delta,
(Variance bound)Var𝐆[Fa,b,r(𝐆)]δ.\displaystyle\mbox{(Variance bound)}\quad\quad\mathrm{Var}_{\mathbf{G}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]\leq\delta.

In particular, one may take n0=O(𝗉8𝗊8dO(d)δ2)n_{0}=O\left(\frac{\mathsf{p}^{8}\mathsf{q}^{8}d^{O(d)}}{\delta^{2}}\right).

We borrow the following technical lemma from [16].

Lemma 5.16.

[16, Lemma A.8, Lemma A.9] Given parameters ρ[0,1]\rho\in[0,1], d>0d\in\mathbb{Z}_{>0} and δ>0\delta>0, there exists an explicitly computable n0(d,δ)n_{0}(d,\delta) such that the following hold:

  1. 1.

    For all subsets S,T[n]S,T\subseteq[n] satisfying |S|,|T|d\left|S\right|,\left|T\right|\leq d, it holds that

    if ST:𝔼𝐆,𝐱,𝐲[𝐮S𝐯T]=0,\displaystyle\text{if }S\neq T:\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]=0,
    if S=T:|𝔼𝐆,𝐱,𝐲[𝐮S𝐯T]ρ|S||δ.\displaystyle\text{if }S=T:\quad\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]-\rho^{\left|S\right|}\right|\leq\delta.
  2. 2.

    For all subsets S,T,S,T[n]S,T,S^{\prime},T^{\prime}\subseteq[n] satisfying |S|,|T|,|S|,|T|d\left|S\right|,\left|T\right|,\left|S^{\prime}\right|,\left|T^{\prime}\right|\leq d, it holds that

    if STST:|𝔼𝐆,𝐱,𝐲,𝐱,𝐲[𝐮S𝐯T𝐮S𝐯T](𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])(𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])|=0,\text{if }S\triangle T\triangle S^{\prime}\triangle T^{\prime}\neq\emptyset:\\ \left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]-\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]\right)\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]\right)\right|=0,
    if STST=:|𝔼𝐆,𝐱,𝐲,𝐱,𝐲[𝐮S𝐯T𝐮S𝐯T](𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])(𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])|δ.\text{if }S\triangle T\triangle S^{\prime}\triangle T^{\prime}=\emptyset:\\ \left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]-\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]\right)\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]\right)\right|\leq\delta.

    Here, STSTS\triangle T\triangle S^{\prime}\triangle T^{\prime} is the symmetric difference of the sets S,T,S,TS,T,S^{\prime},T^{\prime}.

In particular, one may take n0=dO(d)δ2.n_{0}=\frac{d^{O(d)}}{\delta^{2}}.

Proof of Lemma 5.15.

By Lemma 3.22, for any rr, we can choose bases {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}, {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} satisfying Eq. 13. Applying Lemma 5.16 with parameters dd and δδ/(𝗉𝗊)1/2\delta\leftarrow\delta/\left(\mathsf{p}\mathsf{q}\right)^{1/2}, we have

|𝔼𝐆[Fa,b,r(𝐆)]Ga,b,r|\displaystyle\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]-G_{a,b,r}\right|
=\displaystyle=~{} |𝔼𝐆,𝐱,𝐲[Tr[(𝐌aG𝐍bGr~)(ϕinψh)]]\displaystyle\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{G}_{a}\otimes\mathbf{N}^{G}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.
𝔼𝐠,𝐡[Tr[(𝐌a𝐍br~)(ϕinψh)]]|\displaystyle\left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g},\mathbf{h}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|
=()\displaystyle\overset{(\star)}{=}~{} |S,T[n],p(𝔼𝐆,𝐱,𝐲[𝐮S𝐯T]𝔼𝐠,𝐡[𝐠S𝐡T])Tr[(MS,p,aNT,p,b)ψh]kp|\displaystyle\left|\sum_{S,T\subseteq[n],p}\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g},\mathbf{h}\end{subarray}}\>\!\!\left[\mathbf{g}_{S}\mathbf{h}_{T}\right]\right)\mathrm{Tr}\left[\left(M_{S,p,a}\otimes N_{T,p,b}\right)\psi^{\otimes h}\right]\cdot k_{p}\right|
()\displaystyle\overset{(\star\star)}{\leq}~{} δ(𝗉𝗊)1/2S[n],p|Tr[(MS,p,aNS,p,b)ψh]kp|\displaystyle\frac{\delta}{\left(\mathsf{p}\mathsf{q}\right)^{1/2}}\sum_{S\subseteq[n],p}\left|\mathrm{Tr}\left[\left(M_{S,p,a}\otimes N_{S,p,b}\right)\psi^{\otimes h}\right]\cdot k_{p}\right|
()\displaystyle\overset{(\star\star\star)}{\leq}~{} δ(𝗉𝗊)1/2S[n],p|MS,p,a|2|NS,p,b|2\displaystyle\frac{\delta}{\left(\mathsf{p}\mathsf{q}\right)^{1/2}}\sum_{S\subseteq[n],p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{S,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
\displaystyle\leq~{} δ(𝗉𝗊)1/2(S[n],p|MS,p,a|22S[n],p|NS,p,b|22)1/2\displaystyle\frac{\delta}{\left(\mathsf{p}\mathsf{q}\right)^{1/2}}\left(\sum_{S\subseteq[n],p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\cdot\sum_{S\subseteq[n],p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{S,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}
(4)\displaystyle\overset{(4\star)}{\leq}~{} δ(𝔼[|𝐌a|22]𝔼[|𝐍b|22])1/2\displaystyle\delta\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\right)^{1/2}
\displaystyle\leq~{} δ,\displaystyle\delta,

where ()(\star) is by Eq. 13, ()(\star\star) is by Lemma 5.16 item 1, ()(\star\star\star) is by 3.3 and  Lemma 3.22, and (4)(4\star) is by Eq. 16 and Eq. 25.

Using Lemma 5.16 with parameters dd and δδ/(9d𝗉4)\delta\leftarrow\delta/\left(9^{d}\mathsf{p}^{4}\right), we have

Var𝐆[Fa,b,r(𝐆)]\displaystyle\mathrm{Var}_{\mathbf{G}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]
=\displaystyle=~{} 𝔼𝐆[Fa,b,r(𝐆)2](𝔼𝐆[Fa,b,r(𝐆)])2\displaystyle\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})^{2}\right]-\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]\right)^{2}
\displaystyle\leq~{} S,T,S,T[n],p,p|𝔼𝐆,𝐱,𝐲,𝐱,𝐲[𝐮S𝐯T𝐮S𝐯T](𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])(𝔼𝐆,𝐱,𝐲[𝐮S𝐯T])|\displaystyle\sum_{S,T,S^{\prime},T^{\prime}\subseteq[n],p,p^{\prime}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]-\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x},\mathbf{y}\end{subarray}}\>\!\!\left[\mathbf{u}_{S}\mathbf{v}_{T}\right]\right)\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x^{\prime}},\mathbf{y^{\prime}}\end{subarray}}\>\!\!\left[\mathbf{u^{\prime}}_{S^{\prime}}\mathbf{v^{\prime}}_{T^{\prime}}\right]\right)\right|
|Tr[(MS,p,aNT,p,b)ψh]Tr[(MS,p,aNT,p,b)ψh]kpkp|\displaystyle\left|\mathrm{Tr}\left[\left(M_{S,p,a}\otimes N_{T,p,b}\right)\psi^{\otimes h}\right]\mathrm{Tr}\left[\left(M_{S^{\prime},p^{\prime},a}\otimes N_{T^{\prime},p^{\prime},b}\right)\psi^{\otimes h}\right]k_{p}k_{p^{\prime}}\right|
()\displaystyle\overset{(\star)}{\leq}~{} δ9d𝗉4S,T,S,T[n]STST=,p,p|MS,p,a|2|NT,p,b|2|MS,p,a|2|NT,p,b|2,\displaystyle\frac{\delta}{9^{d}\mathsf{p}^{4}}\sum_{S,T,S^{\prime},T^{\prime}\subseteq[n]\atop S\triangle T\triangle S^{\prime}\triangle T^{\prime}=\emptyset,p,p^{\prime}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S^{\prime},p^{\prime},a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T^{\prime},p^{\prime},b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2},

where ()(\star) is by Lemma 5.16 item 2, 3.3 and Lemma 3.22.

S,T,S,T[n]STST=,p,p|MS,p,a|2|NT,p,b|2|MS,p,a|2|NT,p,b|29d𝗉4|Ma|22|Nb|22.\sum_{S,T,S^{\prime},T^{\prime}\subseteq[n]\atop S\triangle T\triangle S^{\prime}\triangle T^{\prime}=\emptyset,p,p^{\prime}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S^{\prime},p^{\prime},a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T^{\prime},p^{\prime},b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq 9^{d}\mathsf{p}^{4}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}.

For all a,b,pa,b,p, define functions fp,a,gp,b:{1,1}nf_{p,a},g_{p,b}:\left\{-1,1\right\}^{n}\rightarrow{\mathbb{R}} over the boolean hypercube as,

fp,a(x)=S[n]|S|d|MS,p,a|2xSandgp,b(x)=T[n]|T|d|NT,p,b|2xT.f_{p,a}(x)=\sum_{S\subseteq[n]\atop\left|S\right|\leq d}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}x_{S}\quad\text{and}\quad g_{p,b}(x)=\sum_{T\subseteq[n]\atop\left|T\right|\leq d}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}x_{T}.

By the hypercontractive inequality [35, Page 243, Bonami Lemma]

𝔼x[fp,a(x)4]9d(𝔼x[fp,a(x)2])2and𝔼x[gp,b(x)4]9d(𝔼x[gp,b(x)2])2,\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[f_{p,a}(x)^{4}\right]\leq 9^{d}\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[f_{p,a}(x)^{2}\right]\right)^{2}\quad\text{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[g_{p,b}(x)^{4}\right]\leq 9^{d}\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[g_{p,b}(x)^{2}\right]\right)^{2},

we finish the proof as follows.

S,T,S,T[n]STST=,p,p|MS,p,a|2|NT,p,b|2|MS,p,a|2|NT,p,b|2\displaystyle\sum_{S,T,S^{\prime},T^{\prime}\subseteq[n]\atop S\triangle T\triangle S^{\prime}\triangle T^{\prime}=\emptyset,p,p^{\prime}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S^{\prime},p^{\prime},a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T^{\prime},p^{\prime},b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
=\displaystyle= S,T,S,T[n],p,p|MS,p,a|2|NT,p,b|2|MS,p,a|2|NT,p,b|2𝔼x[xSxSxTxT]\displaystyle\sum_{S,T,S^{\prime},T^{\prime}\subseteq[n],p,p^{\prime}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S^{\prime},p^{\prime},a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T^{\prime},p^{\prime},b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[x_{S}x_{S^{\prime}}x_{T}x_{T^{\prime}}\right]
=\displaystyle=~{} 𝔼x[(pfp,a(x)gp,b(x))2]\displaystyle\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[\left(\sum_{p}f_{p,a}(x)g_{p,b}(x)\right)^{2}\right]
\displaystyle\leq~{} 𝗉2p𝔼x[(fp,a(x)gp,b(x))2]\displaystyle\mathsf{p}^{2}\sum_{p}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[\left(f_{p,a}(x)g_{p,b}(x)\right)^{2}\right]
\displaystyle\leq~{} 𝗉2p(𝔼x[fp,a(x)4]𝔼x[gp,b(x)4])1/2\displaystyle\mathsf{p}^{2}\sum_{p}\left(\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[f_{p,a}(x)^{4}\right]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[g_{p,b}(x)^{4}\right]\right)^{1/2}
\displaystyle\leq~{} 9d𝗉2p𝔼x[fp,a(x)2]𝔼x[gp,b(x)2]\displaystyle 9^{d}\mathsf{p}^{2}\sum_{p}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[f_{p,a}(x)^{2}\right]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}x\end{subarray}}\>\!\!\left[g_{p,b}(x)^{2}\right]
=\displaystyle=~{} 9d𝗉2p((S[n]|MS,p,a|22)(T[n]|NT,p,b|22))\displaystyle 9^{d}\mathsf{p}^{2}\sum_{p}\left(\left(\sum_{S\subseteq[n]}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)\left(\sum_{T\subseteq[n]}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)\right)
\displaystyle\leq~{} 9d𝗉2S[n],p|MS,p,a|22T[n],p|NT,p,b|22\displaystyle 9^{d}\mathsf{p}^{2}\sum_{S\subseteq[n],p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{S,p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\sum_{T\subseteq[n],p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{T,p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
()\displaystyle\overset{(\star)}{\leq}~{} 9d𝗉4|Ma|22|Nb|22,\displaystyle 9^{d}\mathsf{p}^{4}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2},

where ()(\star) is by Eq. 16 and Eq. 25. ∎

The following fact is for item 1 in Lemma 5.13.

Fact 5.17.

[16, Theorem 3.1] Given parameters n,d+n,d\in\mathbb{N}_{+}, ρ[0,1]\rho\in[0,1] and δ>0\delta>0, there exists an explicitly computable D=D(d,δ)D=D\left(d,\delta\right) such that the following holds:

For all nn and any degree-dd multilinear polynomials α,β:n\alpha,\beta:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}}, and Gn×DG\in{\mathbb{R}}^{n\times D}, define functions αG,βG:D\alpha_{G},\beta_{G}:{\mathbb{R}}^{D}\rightarrow{\mathbb{R}} as

αG(x)=α(Gxx2)andβG(x)=β(Gxx2).\alpha_{G}\left(x\right)=\alpha\left(\frac{Gx}{\left\|x\right\|_{2}}\right)~{}\mbox{and}~{}\beta_{G}\left(x\right)=\beta\left(\frac{Gx}{\left\|x\right\|_{2}}\right).

Then

Pr𝐆γn×D[|α𝐆,β𝐆𝒢ρDα,β𝒢ρn|<δα2β2]1δ.\Pr_{\mathbf{G}\sim\gamma_{n\times D}}\left[\left|\left\langle\alpha_{\mathbf{G}},\beta_{\mathbf{G}}\right\rangle_{\mathcal{G}_{\rho}^{\otimes D}}-\left\langle\alpha,\beta\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}\right|<\delta\left\|\alpha\right\|_{2}\left\|\beta\right\|_{2}\right]\geq 1-\delta.

If α\alpha and β\beta are identical and ρ=1\rho=1, we have

Pr𝐆γn×D[|α𝐆22α22|δα22]1δ;\displaystyle\Pr_{\mathbf{G}\sim\gamma_{n\times D}}\left[\left|\left\|\alpha_{\mathbf{G}}\right\|_{2}^{2}-\left\|\alpha\right\|_{2}^{2}\right|\leq\delta\left\|\alpha\right\|_{2}^{2}\right]\geq 1-\delta;
Pr𝐆γn×D[|β𝐆22β22|δβ22]1δ.\displaystyle\Pr_{\mathbf{G}\sim\gamma_{n\times D}}\left[\left|\left\|\beta_{\mathbf{G}}\right\|_{2}^{2}-\left\|\beta\right\|_{2}^{2}\right|\leq\delta\left\|\beta\right\|_{2}^{2}\right]\geq 1-\delta.

In particular, one may take D=dO(d)δ6D=\frac{d^{O\left(d\right)}}{\delta^{6}}.

Proof of Lemma 5.13.

Rewrite

𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮s\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}

and

𝐌p,aG=s[𝗌2]0hms,p,aG(𝐱)𝒮s.\mathbf{M}^{G}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{G}_{s,p,a}\left(\mathbf{x}\right)\mathcal{S}_{s}.

where ms,p,a:nm_{s,p,a}:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}} is a degree-dd multilinear polynomial and ms,p,aG:n0m^{G}_{s,p,a}:{\mathbb{R}}^{n_{0}}\rightarrow{\mathbb{R}} for all s,p,as,p,a. By the definition of 𝐌p,aG\mathbf{M}^{G}_{p,a}, we have ms,p,aG(𝐱)=ms,p,a(G𝐱/x2)m^{G}_{s,p,a}\left(\mathbf{x}\right)=m_{s,p,a}\left(G\mathbf{x}/\left\|x\right\|_{2}\right). Each item in Lemma 5.1 is proved as follows.

  1. 1.

    By 5.17, with probability at least 1δ1-\delta, we get

    𝔼𝐱[|𝐌p,a𝐆|22]=s[𝗌2]0hms,p,aG22(1+δ)s[𝗌2]0hms,p,a22=(1+δ)𝔼[|𝐌p,a|22].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{\mathbf{G}}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\left\|m^{G}_{s,p,a}\right\|_{2}^{2}\leq\left(1+\delta\right)\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\left\|m_{s,p,a}\right\|_{2}^{2}=\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].

    Similarly, 𝔼𝐲[|𝐍q,b𝐆|22](1+δ)𝔼[|𝐍q,b|22]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{y}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{\mathbf{G}}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\left(1+\delta\right)\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right], so item 1 holds.

  2. 2.

    We first observe that for all fixed 𝐱n0\mathbf{x}\in{\mathbb{R}}^{n_{0}}, the distribution of G𝐱/𝐱2G\mathbf{x}/\left\|\mathbf{x}\right\|_{2} is identical to that of a standard nn-variate Gaussian distribution. Thus, we immediately have that,

    𝔼𝐆,𝐱[Trζ(𝐌𝐆)]=𝔼𝐠[Trζ(𝐌)].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G},\mathbf{x}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}_{\mathbf{G}}\right)\right]=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right].

    Thus, using Markov’s inequality, we get that with probability at least 1α,1-\alpha,

    𝔼𝐱[Trζ(𝐌𝐆)]1α𝔼𝐠[Trζ(𝐌)].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}_{\mathbf{G}}\right)\right]\leq\frac{1}{\alpha}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{g}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right].
  3. 3.

    We invoke Lemma 5.15 with δδ3/2\delta\leftarrow\delta^{3}/2 and n0=O(𝗉8𝗊8dO(d)/δ6)n_{0}=O\left(\mathsf{p}^{8}\mathsf{q}^{8}d^{O(d)}/\delta^{6}\right) . Using Chebyshev’s inequality and the Variance bound in Lemma 5.15, we have that for all η>0\eta>0,

    Pr𝐆[|Fa,b,r(𝐆)𝔼𝐆[Fa,b,r(𝐆)]|>η]δ32η2.\Pr_{\mathbf{G}}\left[\left|F_{a,b,r}(\mathbf{G})-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]\right|>\eta\right]\leq\frac{\delta^{3}}{2\eta^{2}}.

    Using the triangle inequality, and the Mean bound in Lemma 5.15, we get

    Pr𝐆[|Fa,b,r(𝐆)Ga,b,r|>δ]\displaystyle\Pr_{\mathbf{G}}\left[\left|F_{a,b,r}(\mathbf{G})-G_{a,b,r}\right|>\delta\right]
    \displaystyle\leq~{} Pr𝐆[|Fa,b,r(𝐆)𝔼𝐆[Fa,b,r(𝐆)]|+|𝔼𝐆[Fa,b,r(𝐆)]Ga,b,r|>δ]\displaystyle\Pr_{\mathbf{G}}\left[\left|F_{a,b,r}(\mathbf{G})-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]\right|+\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]-G_{a,b,r}\right|>\delta\right]
    \displaystyle\leq~{} Pr𝐆[|Fa,b,r(𝐆)𝔼𝐆[Fa,b,r(𝐆)]|>δδ2]\displaystyle\Pr_{\mathbf{G}}\left[\left|F_{a,b,r}(\mathbf{G})-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{G}\end{subarray}}\>\!\!\left[F_{a,b,r}(\mathbf{G})\right]\right|>\delta-\delta^{2}\right]
    \displaystyle\leq~{} δ.\displaystyle\delta.
  4. 4.

    It follows directly by the construction of 𝐌𝐆\mathbf{M}^{\mathbf{G}} and 𝐍𝐆\mathbf{N}^{\mathbf{G}}.

Items 1 to 4 hold simultaneously with probability 12(𝖺𝖻𝗉𝗊𝗋)2δ2α1-2\left(\mathsf{a}\mathsf{b}\mathsf{p}\mathsf{q}\mathsf{r}\right)^{2}\delta-2\alpha by a union bound. ∎

5.5 Smoothing random operators

Lemma 5.18.

Given 4.3, let δ>0,n,h>0\delta>0,n,h\in\mathbb{Z}_{>0},

(𝐌,𝐍)L2(𝒮h𝒫𝒜,γn)×L2(𝒯h𝒬,γn),\left(\mathbf{M},\mathbf{N}\right)\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\times L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right),

be joint random operators with the expansions Eqs. (15)&(16), where

𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮sand𝐍q,b=t[𝗍2]0hnt,q,b(𝐡)𝒯t.\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}\quad\mbox{and}\quad\mathbf{N}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n_{t,q,b}\left(\mathbf{h}\right)\mathcal{T}_{t}. (26)

Suppose they satisfy that

  1. 1.

    (𝐠,𝐡)𝒢ρn\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{\rho}^{\otimes n};

  2. 2.

    For all a,ba,b, 𝔼[|𝐌a|22]2\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 2, 𝔼[|𝐍b|22]2\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 2;

  3. 3.

    𝐌0=𝟙𝒮h𝒫/𝖺\mathbf{M}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0=𝟙𝒯h𝒬/𝖻\mathbf{N}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Then there exists an explicitly computable d=d(ρ,δ,𝖺,𝖻,𝗉,𝗊)d=d\left(\rho,\delta,\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q}\right) and maps f:L2(𝒮h𝒫𝒜,γn)L2(𝒮h𝒫𝒜,γn),g:L2(𝒯h𝒬,γn)L2(𝒯h𝒬,γn)f:L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right),g:L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right) such that

(𝐌(1),𝐍(1))=(f(𝐌),g(𝐍))\left(\mathbf{M}^{(1)},\mathbf{N}^{(1)}\right)=\left(f(\mathbf{M}),g(\mathbf{N})\right)

satisfies the following.

  1. 1.

    For all a,b,p,qa,b,p,q:

    deg(𝐌p,a(1))danddeg(𝐍q,b(1))d.\deg\left(\mathbf{M}^{(1)}_{p,a}\right)\leq d\quad\mbox{and}\quad\deg\left(\mathbf{N}^{(1)}_{q,b}\right)\leq d.
  2. 2.

    For all a,b,p,qa,b,p,q:

    𝔼[|||𝐌p,a(1)|||22]1/2𝔼[|||𝐌p,a|||22]1/2and𝔼[|||𝐍q,b(1)|||22]1/2𝔼[|||𝐍q,b|||22]1/2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(1)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(1)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}.
  3. 3.
    𝔼[Trζ(𝐌(1))]𝔼[Trζ(𝐌)]+δand𝔼[Trζ(𝐍(1))]𝔼[Trζ(𝐍)]+δ.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(1)}\right)\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]+\delta~{}\mbox{and}~{}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{(1)}\right)\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}\right)\right]+\delta.
  4. 4.

    For all a,b,ra,b,r:

    |𝔼[Tr[(𝐌a(1)𝐍b(1)r~)(ϕinψh)]]𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(1)}_{a}\otimes\mathbf{N}^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|\leq\delta.
  5. 5.

    𝐌0(1)=𝟙𝒮h𝒫/𝖺\mathbf{M}^{(1)}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0(1)=𝟙𝒯h𝒬/𝖻\mathbf{N}^{(1)}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

In particular, one may take d=O(𝖺2𝖻2𝗉𝗊δ(1ρ))d=O\left(\frac{\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}}{\delta\left(1-\rho\right)}\right).

To prove Lemma 5.18, we need the following fact.

Fact 5.19.

[16, Lemma 4.1] Let ρ[0,1),δ>0,k,n>0\rho\in[0,1),\delta>0,k,n\in\mathbb{Z}_{>0} be any given constant parameters, f,gL2(k,γn)f,g\in L^{2}\left({\mathbb{R}}^{k},\gamma_{n}\right); Λ1,Λ2k\Lambda_{1},\Lambda_{2}\subseteq{\mathbb{R}}^{k} be closed convex sets. Set 1\mathcal{R}_{1} and 2\mathcal{R}_{2} be rounding maps of Λ1\Lambda_{1} and Λ2\Lambda_{2}, respectively. Then there exists explicitly computable ν=ν(ρ,δ),d=d(ρ,δ)\nu=\nu\left(\rho,\delta\right),d=d(\rho,\delta) such that the following holds:

  1. 1.

    For all i[k]i\in[k], it holds that

    (Uν(fi))d2Uν(fi)2fi2and(Uν(gi))d2Uν(gi)2gi2.\left\|\left(U_{\nu}(f_{i})\right)^{\leq d}\right\|_{2}\leq\left\|U_{\nu}(f_{i})\right\|_{2}\leq\left\|f_{i}\right\|_{2}~{}\mbox{and}~{}\left\|\left(U_{\nu}(g_{i})\right)^{\leq d}\right\|_{2}\leq\left\|U_{\nu}(g_{i})\right\|_{2}\leq\left\|g_{i}\right\|_{2}.
  2. 2.
    1Uν(fi)Uν(fi)21ff2\left\|\mathcal{R}_{1}\circ U_{\nu}(f_{i})-U_{\nu}(f_{i})\right\|_{2}\leq\left\|\mathcal{R}_{1}\circ f-f\right\|_{2}

    and

    2Uν(gi)Uν(gi)22gg2.\left\|\mathcal{R}_{2}\circ U_{\nu}(g_{i})-U_{\nu}(g_{i})\right\|_{2}\leq\left\|\mathcal{R}_{2}\circ g-g\right\|_{2}.
  3. 3.

    For all i[k]i\in[k],

    (Uν(fi))>d22δUν(fi)22and(Uν(gi))>d22δUν(gi)22\left\|\left(U_{\nu}(f_{i})\right)^{>d}\right\|_{2}^{2}\leq\delta\left\|U_{\nu}(f_{i})\right\|_{2}^{2}\quad\mbox{and}\quad\left\|\left(U_{\nu}(g_{i})\right)^{>d}\right\|_{2}^{2}\leq\delta\left\|U_{\nu}(g_{i})\right\|_{2}^{2}
  4. 4.

    For all i[k]i\in[k],

    |fi(𝐱),gi(𝐲)𝒢ρn(Uν(fi))d(𝐱),(Uν(gi))d(𝐲)𝒢ρn|δfi2gi2;\left|\left\langle f_{i}\left(\mathbf{x}\right),g_{i}\left(\mathbf{y}\right)\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}-\left\langle\left(U_{\nu}(f_{i})\right)^{\leq d}\left(\mathbf{x}\right),\left(U_{\nu}(g_{i})\right)^{\leq d}\left(\mathbf{y}\right)\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}\right|\leq\delta\left\|f_{i}\right\|_{2}\left\|g_{i}\right\|_{2};

In particular, one may take

ν=(1δ)logρ/(logδ+logρ),d=log(1/δ)2log(1/ν)=O(log21δδ(1ρ)).\nu=(1-\delta)^{\log\rho/\left(\log\delta+\log\rho\right)},d=\frac{\log(1/\delta)}{2\log(1/\nu)}=O\left(\frac{\log^{2}\frac{1}{\delta}}{\delta\left(1-\rho\right)}\right).

We are now ready to prove Lemma 5.18.

Proof of Lemma 5.18.

Set

δ=δ16𝖺2𝖻2𝗉𝗊,ν=(1δ)logρlogδ+logρ,d=log(1/δ)2log(1/ν)=O(log21δδ(1ρ)).\delta^{\prime}=\frac{\delta}{16\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}},\quad\nu=(1-\delta^{\prime})^{\frac{\log\rho}{\log\delta^{\prime}+\log\rho}},\quad d=\frac{\log(1/\delta^{\prime})}{2\log(1/\nu)}=O\left(\frac{\log^{2}\frac{1}{\delta^{\prime}}}{\delta^{\prime}\left(1-\rho\right)}\right).

For any a,b,p,q,s,ta,b,p,q,s,t, let ms,p,a=Uν(ms,p,a),nt,q,b=Uν(nt,q,b),ms,p,a(1)=(ms,p,a)d,nt,q,b(1)=(nt,q,b)dm^{\prime}_{s,p,a}=U_{\nu}(m_{s,p,a}),n^{\prime}_{t,q,b}=U_{\nu}(n_{t,q,b}),m^{(1)}_{s,p,a}=\left(m^{\prime}_{s,p,a}\right)^{\leq d},n^{(1)}_{t,q,b}=\left(n^{\prime}_{t,q,b}\right)^{\leq d}, where UνU_{\nu} is the Ornstein-Uhlenbeck operator defined in Definition 3.6 and Eq. 8. For all a,b,p,qa,b,p,q, define

𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮s\displaystyle\mathbf{M}^{\prime}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{\prime}_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}\quad and𝐍q,b=t[𝗍2]0hnt,q,b(𝐡)𝒯t;\displaystyle\mbox{and}\quad\mathbf{N}^{\prime}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n^{\prime}_{t,q,b}\left(\mathbf{h}\right)\mathcal{T}_{t};
𝐌p,a(1)=s[𝗌2]0hms,p,a(1)(𝐠)𝒮s\displaystyle\mathbf{M}^{(1)}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{(1)}_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}\quad and𝐍q,b(1)=t[𝗍2]0hnt,q,b(1)(𝐡)𝒯t.\displaystyle\mbox{and}\quad\mathbf{N}^{(1)}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n^{(1)}_{t,q,b}\left(\mathbf{h}\right)\mathcal{T}_{t}. (27)

Set vector-valued functions m=(ms,p,a)s[𝗌2]0h,p[𝗉2]0,a[𝖺2]0,m=(ms,p,a)s[𝗌2]0h,p[𝗉2]0,a[𝖺2]0m=\left(m_{s,p,a}\right)_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h},p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}},m^{\prime}=\left(m^{\prime}_{s,p,a}\right)_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h},p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}and m(1)=(ms,p,a(1))s[𝗌2]0h,p[𝗉2]0,a[𝖺2]0m^{(1)}=\left(m^{(1)}_{s,p,a}\right)_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h},p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}. Each item in Lemma 5.18 is proved as follows:

  1. 1.

    It follows directly by the definition of 𝐌(1)\mathbf{M}^{(1)} and 𝐍(1)\mathbf{N}^{(1)}.

  2. 2.

    We apply 3.25 and 5.19 item 1,

    𝔼[|𝐌p,a(1)|22]=mp,a(1)22mp,a22=𝔼[|𝐌p,a|22].\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{(1)}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]=\left\|m^{(1)}_{p,a}\right\|_{2}^{2}\leq\left\|m_{p,a}\right\|_{2}^{2}=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].

    where mp,am_{p,a} is the associated vector-valued function (in Definition 3.24) of 𝐌p,a\mathbf{M}_{p,a}. Similarly, 𝔼[|𝐍q,b(1)|22]𝔼[|𝐍q,b|22]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{(1)}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{q,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right].

  3. 3.

    Define a convex set

    Λ={x𝗌h𝗉𝖺:s,p,axs,p,a𝒮s𝒫p~𝒜a~0},\Lambda=\left\{x\in{\mathbb{R}}^{\mathsf{s}^{h}\mathsf{p}\mathsf{a}}:\sum_{s,p,a}x_{s,p,a}\mathcal{S}_{s}\otimes\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{A}_{a}}\geq 0\right\},

    and let \mathcal{R} be a rounding map of Λ\Lambda. Note that 0Λ0\in\Lambda, thus by 3.26, for all x𝗌h𝗉𝖺x\in{\mathbb{R}}^{\mathsf{s}^{h}\mathsf{p}\mathsf{a}}, we have

    (x)2x2.\left\|\mathcal{R}(x)\right\|_{2}\leq\left\|x\right\|_{2}. (28)

    By 3.25, 3.27 and 5.19 item 2, we have

    1𝗌h𝔼[Trζ(𝐌)]=mm22mm22=1𝗌h𝔼[Trζ(𝐌)].\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{\prime}\right)\right]=\left\|\mathcal{R}\circ m^{\prime}-m^{\prime}\right\|_{2}^{2}\leq\left\|\mathcal{R}\circ m-m\right\|_{2}^{2}=\frac{1}{\mathsf{s}^{h}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]. (29)

    By 3.25 and 3.27, we have

    1𝗌h|𝔼[Trζ(𝐌(1))]𝔼[Trζ(𝐌)]|\displaystyle\frac{1}{\mathsf{s}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{(1)}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{\prime}\right)\right]\right|
    =\displaystyle=~{} |m(1)m(1)22mm22|\displaystyle\left|\left\|\mathcal{R}\circ m^{(1)}-m^{(1)}\right\|_{2}^{2}-\left\|\mathcal{R}\circ m^{\prime}-m^{\prime}\right\|_{2}^{2}\right|
    =\displaystyle=~{} |m(1)m(1)2mm2|(m(1)m(1)2+mm2)\displaystyle\left|\left\|\mathcal{R}\circ m^{(1)}-m^{(1)}\right\|_{2}-\left\|\mathcal{R}\circ m^{\prime}-m^{\prime}\right\|_{2}\right|\left(\left\|\mathcal{R}\circ m^{(1)}-m^{(1)}\right\|_{2}+\left\|\mathcal{R}\circ m^{\prime}-m^{\prime}\right\|_{2}\right)
    \displaystyle\leq~{} (m(1)m2+m(1)m2)(m(1)2+m(1)2+m2+m2)\displaystyle\left(\left\|\mathcal{R}\circ m^{(1)}-\mathcal{R}\circ m^{\prime}\right\|_{2}+\left\|m^{(1)}-m^{\prime}\right\|_{2}\right)\left(\left\|\mathcal{R}\circ m^{(1)}\right\|_{2}+\left\|m^{(1)}\right\|_{2}+\left\|\mathcal{R}\circ m^{\prime}\right\|_{2}+\left\|m^{\prime}\right\|_{2}\right)
    \displaystyle\leq~{} 8m(1)m2m2(3.26 and Eq. 28)\displaystyle 8\left\|m^{(1)}-m^{\prime}\right\|_{2}\left\|m^{\prime}\right\|_{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:rounding} and \lx@cref{creftype~refnum}{eqn:Rcontraction})}
    \displaystyle\leq~{} 8δm22(5.19 item 3)\displaystyle 8\delta^{\prime}\left\|m^{\prime}\right\|_{2}^{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:smoothGaussian} item 3)}
    \displaystyle\leq~{} 8δm22(5.19 item 1)\displaystyle 8\delta^{\prime}\left\|m\right\|_{2}^{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:smoothGaussian} item 1)}
    =\displaystyle=~{} 8δs[𝗌2]0hp[𝗉2]0,a[𝖺2]0ms,p,a22\displaystyle 8\delta^{\prime}\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\left\|m_{s,p,a}\right\|_{2}^{2}
    =\displaystyle=~{} 8δp[𝗉2]0,a[𝖺2]0𝔼[|𝐌p,a|2](3.25)\displaystyle 8\delta^{\prime}\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}\right]\quad\mbox{(\lx@cref{creftype~refnum}{lem:randoperator})}
    =\displaystyle=~{} 8δ𝗉a[𝖺2]0𝔼[|𝐌a|22](Eq. 16)\displaystyle 8\delta^{\prime}\mathsf{p}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{(\lx@cref{creftype~refnum}{eqn:defmpa})}
    \displaystyle\leq~{} 16δ𝗉𝖺2δ.\displaystyle 16\delta^{\prime}\mathsf{p}\mathsf{a}^{2}~{}\leq~{}\delta.

    Combined with Eq. 29, we conclude the first inequality in item 3. The second inequality follows by the same argument.

  4. 4.

    By Eqs. (12)(13) and the definitions of 𝐌a,𝐍b,𝐌a(1),𝐍b(1)\mathbf{M}_{a},\mathbf{N}_{b},\mathbf{M}^{(1)}_{a},\mathbf{N}^{(1)}_{b}, we have

    |𝔼[Tr[(𝐌a(1)𝐍b(1)r~𝐌a𝐍br~)(ϕin(ψ𝒮𝒯)h)]]|\displaystyle\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{(1)}_{a}\otimes\mathbf{N}^{(1)}_{b}\otimes\widetilde{\mathcal{R}_{r}}-\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes h}\right)\right]\right]\right|
    =\displaystyle=~{} |s,p(ms,p,a(1),ns,p,b(1)𝒢ρnms,p,a,ns,p,b𝒢ρn)cskp|\displaystyle\left|\sum_{s,p}\left(\left\langle m^{(1)}_{s,p,a},n^{(1)}_{s,p,b}\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}-\left\langle m_{s,p,a},n_{s,p,b}\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}\right)c_{s}k_{p}\right|
    \displaystyle\leq~{} δs,pms,p,a2ns,p,b2(5.19 item 4)\displaystyle\delta^{\prime}\sum_{s,p}\left\|m_{s,p,a}\right\|_{2}\left\|n_{s,p,b}\right\|_{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:smoothGaussian} item 4)}
    \displaystyle\leq~{} δ(s,pms,p,a22)1/2(s,pns,p,b22)1/2\displaystyle\delta^{\prime}\left(\sum_{s,p}\left\|m_{s,p,a}\right\|_{2}^{2}\right)^{1/2}\left(\sum_{s,p}\left\|n_{s,p,b}\right\|_{2}^{2}\right)^{1/2}
    \displaystyle\leq~{} (𝗉𝗊)1/2δ𝔼[|||𝐌a|||22]1/2𝔼[|||𝐍b|||22]1/2(3.25 and Eq. 16)\displaystyle\left(\mathsf{p}\mathsf{q}\right)^{1/2}\delta^{\prime}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\quad\mbox{(\lx@cref{creftype~refnum}{lem:randoperator} and \lx@cref{creftype~refnum}{eqn:defmpa})}
    \displaystyle\leq~{} δ.\displaystyle\delta.
  5. 5.

    It follows directly by the definition of 𝐌(1)\mathbf{M}^{(1)} and 𝐍(1)\mathbf{N}^{(1)}.

5.6 Multilinearization

Lemma 5.20.

Given 4.3, let δ>0,d,n,h>0\delta>0,d,n,h\in\mathbb{Z}_{>0},

(𝐌,𝐍)L2(𝒮h𝒫𝒜,γn)×L2(𝒯h𝒬,γn),\left(\mathbf{M},\mathbf{N}\right)\in L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\times L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right),

be joint random operators with

𝐌p,a=s[𝗌2]0hms,p,a(𝐠)𝒮sand𝐍q,b=t[𝗍2]0hnt,q,b(𝐡)𝒯t,\mathbf{M}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m_{s,p,a}\left(\mathbf{g}\right)\mathcal{S}_{s}\quad\mbox{and}\quad\mathbf{N}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n_{t,q,b}\left(\mathbf{h}\right)\mathcal{T}_{t},

as defined in Eqs. (16) satisfying that

  1. 1.

    (𝐠,𝐡)𝒢ρn\left(\mathbf{g},\mathbf{h}\right)\sim\mathcal{G}_{\rho}^{\otimes n}.

  2. 2.

    For all a,ba,b, 𝔼[|𝐌a|22]2\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 2 and 𝔼[|𝐍b|22]2\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\leq 2.

  3. 3.

    For all a,ba,b, deg(𝐌a)d,deg(𝐍b)d\deg\left(\mathbf{M}^{\prime}_{a}\right)\leq d,\deg\left(\mathbf{N}^{\prime}_{b}\right)\leq d.

  4. 4.

    𝐌0=𝟙𝒮h𝒫/𝖺\mathbf{M}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0=𝟙𝒯h𝒬/𝖻\mathbf{N}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

Then there exists an explicitly computable t=t(ρ,δ,𝖺,𝖻,𝗉,𝗊)t=t\left(\rho,\delta,\mathsf{a},\mathsf{b},\mathsf{p},\mathsf{q}\right) and maps f:L2(𝒮h𝒫𝒜,γn)L2(𝒮h𝒫𝒜,γnn1),g:L2(𝒯h𝒬,γn)L2(𝒯h𝒬,γnn1)f:L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{S}^{h}\mathscr{P}\mathscr{A}},\gamma_{n\cdot n_{1}}\right),g:L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n}\right)\rightarrow L^{2}\left(\mathcal{H}_{\mathscr{T}^{h}\mathscr{Q}\mathscr{B}},\gamma_{n\cdot n_{1}}\right) such that

(𝐌,𝐍)=(f(𝐌),g(𝐍))\left(\mathbf{M}^{\prime},\mathbf{N}^{\prime}\right)=\left(f(\mathbf{M}),g(\mathbf{N})\right)

satisfies the following:

  1. 1.

    For all a,b,p,qa,b,p,q, 𝐌p,a\mathbf{M}^{\prime}_{p,a} and 𝐍q,b\mathbf{N}^{\prime}_{q,b} are degree-dd multilinear random operators.

  2. 2.

    Suppose that

    𝐌p,a=s[𝗌2]0hms,p,a(𝐱)𝒮sand𝐍q,b=t[𝗍2]0hnt,q,b(𝐲)𝒯t,\mathbf{M}^{\prime}_{p,a}=\sum_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}}m^{\prime}_{s,p,a}\left(\mathbf{x}\right)\mathcal{S}_{s}\quad\mbox{and}\quad\mathbf{N}^{\prime}_{q,b}=\sum_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}n^{\prime}_{t,q,b}\left(\mathbf{y}\right)\mathcal{T}_{t},

    where (𝐱,𝐲)𝒢ρnn1\left(\mathbf{x},\mathbf{y}\right)\sim\mathcal{G}_{\rho}^{\otimes n\cdot n_{1}}. For all (i,j)[n]×[n1],a,b,p,q,s,t\left(i,j\right)\in[n]\times[n_{1}],a,b,p,q,s,t,

    Inf(i1)n1+j(ms,p,a)δInfi(ms,p,a)andInf(i1)n1+j(nt,q,b)δInfi(nt,q,b).\mathrm{Inf}_{(i-1)n_{1}+j}\left(m^{\prime}_{s,p,a}\right)\leq\delta\cdot\mathrm{Inf}_{i}\left(m_{s,p,a}\right)\quad\mbox{and}\quad\mathrm{Inf}_{(i-1)n_{1}+j}\left(n^{\prime}_{t,q,b}\right)\leq\delta\cdot\mathrm{Inf}_{i}\left(n_{t,q,b}\right).
  3. 3.

    For all a,ba,b:

    𝔼[|||𝐌a|||22]1/2𝔼[|||𝐌a|||22]1/2and𝔼[|||𝐍b|||22]1/2𝔼[|||𝐍b|||22]1/2.\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}^{\prime}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\quad\mbox{and}\quad\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}^{\prime}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}\leq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]^{1/2}.
  4. 4.
    1𝗌h|𝔼[Trζ(𝐌)]𝔼[Trζ(𝐌)]|δ\frac{1}{\mathsf{s}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{\prime}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]\right|\leq\delta

    and

    1𝗍h|𝔼[Trζ(𝐍)]𝔼[Trζ(𝐍)]|δ.\frac{1}{\mathsf{t}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}^{\prime}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{N}\right)\right]\right|\leq\delta.
  5. 5.

    For all a,b,ra,b,r:

    |𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]]𝔼[Tr[(𝐌a𝐍br~)(ϕinψh)]]|δ.\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{\prime}_{a}\otimes\mathbf{N}^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right.\\ \left.-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes h}\right)\right]\right]\right|\leq\delta.
  6. 6.

    𝐌0=𝟙𝒮h𝒫/𝖺\mathbf{M}^{\prime}_{0}=\mathds{1}_{\mathscr{S}^{h}\mathscr{P}}/\sqrt{\mathsf{a}} and 𝐍0=𝟙𝒯h𝒬/𝖻\mathbf{N}^{\prime}_{0}=\mathds{1}_{\mathscr{T}^{h}\mathscr{Q}}/\sqrt{\mathsf{b}}.

In particular, one may take n1=O(𝖺4𝖻4𝗉2𝗊2d2/δ2)n_{1}=O\left(\mathsf{a}^{4}\mathsf{b}^{4}\mathsf{p}^{2}\mathsf{q}^{2}d^{2}/\delta^{2}\right).

We need the following notion introduced in [16] before constructing 𝐌\mathbf{M}^{\prime} and 𝐍\mathbf{N}^{\prime}.

Definition 5.21.

[16] Suppose fL2(,γn)f\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) is given with a Hermite expansion

f=σ0nf^(σ)Hσ.f=\sum_{\sigma\in\mathbb{Z}_{\geq 0}^{n}}\widehat{f}\left(\sigma\right)H_{\sigma}.

The multilinear truncation of ff is defined to be the function f𝓂𝓁L2(,γn)f^{\mathpzc{ml}}\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) given by

f𝓂𝓁=σ{0,1}nf^(σ)Hσ.f^{\mathpzc{ml}}=\sum_{\sigma\in\left\{0,1\right\}^{n}}\widehat{f}\left(\sigma\right)H_{\sigma}.

The following fact is crucial to our proof.

Fact 5.22.

[36, Fact 13.3][16, Lemma 5.1] Given parameters ρ[0,1],δ>0\rho\in[0,1],\delta>0 and d>0d\in\mathbb{Z}_{>0}, there exists n1=n1(d,δ)n_{1}=n_{1}\left(d,\delta\right) such that the following holds:

Let f,gL2(,γn)f,g\in L^{2}\left({\mathbb{R}},\gamma_{n}\right) be degree-dd polynomials. There exist polynomials f¯,g¯L2(,γnn1)\bar{f},\bar{g}\in L^{2}\left({\mathbb{R}},\gamma_{n\cdot n_{1}}\right) over variables

x¯={xj(i):(i,j)[n]×[n1]}andy¯={yj(i):(i,j)[n]×[n1]}\bar{x}=\left\{x_{j}^{\left(i\right)}:\left(i,j\right)\in[n]\times[n_{1}]\right\}~{}\mbox{and}~{}\bar{y}=\left\{y_{j}^{\left(i\right)}:\left(i,j\right)\in[n]\times[n_{1}]\right\}

satisfying the following:

  1. 1.

    f¯𝓂𝓁\bar{f}^{\mathpzc{ml}} and g¯𝓂𝓁\bar{g}^{\mathpzc{ml}} are multilinear with degree dd.

  2. 2.

    f¯𝓂𝓁2f¯2=f2\left\|\bar{f}^{\mathpzc{ml}}\right\|_{2}\leq\left\|\bar{f}\right\|_{2}=\left\|f\right\|_{2} and g¯𝓂𝓁2g¯2=g2\left\|\bar{g}^{\mathpzc{ml}}\right\|_{2}\leq\left\|\bar{g}\right\|_{2}=\left\|g\right\|_{2}.

  3. 3.

    Given two independent random variables 𝐠γn\mathbf{g}\sim\gamma_{n} and 𝐱γnn1\mathbf{x}\sim\gamma_{n\cdot n_{1}}, the distributions of f(𝐠)f\left(\mathbf{g}\right) and f¯(𝐱)\bar{f}\left(\mathbf{x}\right) are identical and the distributions of g(𝐠)g\left(\mathbf{g}\right) and g¯(𝐱)\bar{g}\left(\mathbf{x}\right) are identical.

  4. 4.

    f¯f¯𝓂𝓁2δ2f2\left\|\bar{f}-\bar{f}^{\mathpzc{ml}}\right\|_{2}\leq\frac{\delta}{2}\left\|f\right\|_{2} and g¯g¯𝓂𝓁2δ2g2\left\|\bar{g}-\bar{g}^{\mathpzc{ml}}\right\|_{2}\leq\frac{\delta}{2}\left\|g\right\|_{2}.

  5. 5.

    For all (i,j)[n]×[n1]\left(i,j\right)\in[n]\times[n_{1}], it holds that

    Infxj(i)(f¯𝓂𝓁)δInfi(f)andInfyj(i)(g¯𝓂𝓁)δInfi(g).\mathrm{Inf}_{x^{\left(i\right)}_{j}}\left(\bar{f}^{\mathpzc{ml}}\right)\leq\delta\cdot\mathrm{Inf}_{i}\left(f\right)~{}\mbox{and}~{}\mathrm{Inf}_{y^{\left(i\right)}_{j}}\left(\bar{g}^{\mathpzc{ml}}\right)\leq\delta\cdot\mathrm{Inf}_{i}\left(g\right).
  6. 6.

    |f¯𝓂𝓁,g¯𝓂𝓁𝒢ρnn1f,g𝒢ρn|δf2g2\left|\left\langle\bar{f}^{\mathpzc{ml}},\bar{g}^{\mathpzc{ml}}\right\rangle_{\mathcal{G}^{\otimes n\cdot n_{1}}_{\rho}}-\left\langle f,g\right\rangle_{\mathcal{G}^{\otimes n}_{\rho}}\right|\leq\delta\left\|f\right\|_{2}\left\|g\right\|_{2}.

In particular, we may take n1=O(d2/δ2).n_{1}=O\left(d^{2}/\delta^{2}\right).

We are now ready to prove Lemma 5.20.

Proof of Lemma 5.20.

Take δ=δ/𝖺2𝖻2𝗉𝗊\delta^{\prime}=\delta/\mathsf{a}^{2}\mathsf{b}^{2}\mathsf{p}\mathsf{q}. For all a,b,p,qa,b,p,q, applying 5.22 to {ms,p,a}s[𝗌2]0h\left\{m_{s,p,a}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}} and {nt,q,b}t[𝗍2]0h\left\{n_{t,q,b}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}} with δδ\delta\leftarrow\delta^{\prime}, we get {ms,p,a¯}s[𝗌2]0h\left\{\overline{m_{s,p,a}}\right\}_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h}} and {nt,q,b¯}t[𝗍2]0h\left\{\overline{n_{t,q,b}}\right\}_{t\in\left[\mathsf{t}^{2}\right]_{\geq 0}^{h}}. Let ms,p,a()=ms,p,a¯𝓂𝓁()m^{\prime}_{s,p,a}\left(\cdot\right)=\overline{m_{s,p,a}}^{\mathpzc{ml}}\left(\cdot\right) and nt,q,b()=nt,q,b¯𝓂𝓁()n^{\prime}_{t,q,b}\left(\cdot\right)=\overline{n_{t,q,b}}^{\mathpzc{ml}}\left(\cdot\right). Each item of Lemma 5.20 is proved as follows.

  1. 1.

    It is implied by 5.22 item 1.

  2. 2.

    It is implied by 5.22 item 5.

  3. 3.

    It follows from 3.25 and the item 3 in 5.22.

  4. 4.

    We prove the first inequality in item 4. The second inequality follows from the same argument. Define a convex set

    Λ={x𝗌h𝗉𝖺:s,p,axs,p,a𝒮s𝒫p~𝒜a~0},\Lambda=\left\{x\in{\mathbb{R}}^{\mathsf{s}^{h}\mathsf{p}\mathsf{a}}:\sum_{s,p,a}x_{s,p,a}\mathcal{S}_{s}\otimes\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{A}_{a}}\geq 0\right\},

    and let \mathcal{R} be a rounding map of Λ\Lambda. Note that 0Λ0\in\Lambda, thus by 3.26, for all x𝗌h𝖺x\in{\mathbb{R}}^{\mathsf{s}^{h}\mathsf{a}}, we have

    (x)2x2.\left\|\mathcal{R}(x)\right\|_{2}\leq\left\|x\right\|_{2}. (30)

    Let m=(ms,p,a)s[𝗌2]0h,p[𝗉2]0,a[𝖺2]0m=\left(m_{s,p,a}\right)_{s\in\left[\mathsf{s}^{2}\right]_{\geq 0}^{h},p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}, similar for mm^{\prime}, m¯\bar{m} and m¯𝓂𝓁\bar{m}^{\mathpzc{ml}}. Then by 3.25 and 3.27,

    1𝗌h|𝔼[Trζ(𝐌)]𝔼[Trζ(𝐌)]|\displaystyle\frac{1}{\mathsf{s}^{h}}\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}^{\prime}\right)\right]-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}~{}\zeta\left(\mathbf{M}\right)\right]\right|
    =\displaystyle=~{} |mm22mm22|\displaystyle\left|\left\|m^{\prime}-\mathcal{R}\circ m^{\prime}\right\|_{2}^{2}-\left\|m-\mathcal{R}\circ m\right\|_{2}^{2}\right|
    =\displaystyle=~{} |m¯𝓂𝓁m¯𝓂𝓁22m¯m¯22|(5.22 item 3)\displaystyle\left|\left\|\bar{m}^{\mathpzc{ml}}-\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}^{2}-\left\|\bar{m}-\mathcal{R}\circ\bar{m}\right\|_{2}^{2}\right|\quad\quad\mbox{(\lx@cref{creftype~refnum}{fac:mulilinear} item 3)}
    =\displaystyle=~{} |(m¯𝓂𝓁m¯𝓂𝓁2m¯m¯2)(m¯𝓂𝓁m¯𝓂𝓁2+m¯m¯2)|\displaystyle\left|\left(\left\|\bar{m}^{\mathpzc{ml}}-\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}-\left\|\bar{m}-\mathcal{R}\circ\bar{m}\right\|_{2}\right)\left(\left\|\bar{m}^{\mathpzc{ml}}-\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}+\left\|\bar{m}-\mathcal{R}\circ\bar{m}\right\|_{2}\right)\right|
    \displaystyle\leq~{} |(m¯m¯𝓂𝓁2+m¯m¯𝓂𝓁2)(m¯𝓂𝓁2+m¯𝓂𝓁2+m¯2+m¯2)|\displaystyle\left|\left(\left\|\bar{m}-\bar{m}^{\mathpzc{ml}}\right\|_{2}+\left\|\mathcal{R}\circ\bar{m}-\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}\right)\left(\left\|\bar{m}^{\mathpzc{ml}}\right\|_{2}+\left\|\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}+\left\|\bar{m}\right\|_{2}+\left\|\mathcal{R}\circ\bar{m}\right\|_{2}\right)\right|
    \displaystyle\leq~{} 4m2(m¯m¯𝓂𝓁2+m¯m¯𝓂𝓁2)(5.22 item 2 and Eq. 28)\displaystyle 4\left\|m\right\|_{2}\left(\left\|\bar{m}-\bar{m}^{\mathpzc{ml}}\right\|_{2}+\left\|\mathcal{R}\circ\bar{m}-\mathcal{R}\circ\bar{m}^{\mathpzc{ml}}\right\|_{2}\right)\quad\quad\mbox{(\lx@cref{creftype~refnum}{fac:mulilinear} item 2 and \lx@cref{creftype~refnum}{eqn:Rcontraction})}
    \displaystyle\leq~{} 8m2m¯m¯𝓂𝓁2(3.26)\displaystyle 8\left\|m\right\|_{2}\left\|\bar{m}-\bar{m}^{\mathpzc{ml}}\right\|_{2}\quad\quad\mbox{(\lx@cref{creftype~refnum}{fac:rounding})}
    \displaystyle\leq~{} 4δm22(5.22 item 4)\displaystyle 4\delta^{\prime}\left\|m\right\|_{2}^{2}\quad\quad\mbox{(\lx@cref{creftype~refnum}{fac:mulilinear} item 4)}
    =\displaystyle=~{} 4δp[𝗉2]0,a[𝖺2]0sms,p,a22\displaystyle 4\delta^{\prime}\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\sum_{s}\left\|m_{s,p,a}\right\|_{2}^{2}
    =\displaystyle=~{} 4δp[𝗉2]0,a[𝖺2]0𝔼[|||𝐌p,a|||2](3.25)\displaystyle 4\delta^{\prime}\sum_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0},a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}\right]\quad\mbox{(\lx@cref{creftype~refnum}{lem:randoperator})}
    =\displaystyle=~{} 4δ𝗉a[𝖺2]0𝔼[|||𝐌a|||22](Eq. 16)\displaystyle 4\delta^{\prime}\mathsf{p}\sum_{a\in\left[\mathsf{a}^{2}\right]_{\geq 0}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right]\quad\mbox{(\lx@cref{creftype~refnum}{eqn:defmpa})}
    \displaystyle\leq~{} 8δ𝗉𝖺2δ.\displaystyle 8\delta^{\prime}\mathsf{p}\mathsf{a}^{2}~{}\leq~{}\delta.
  5. 5.

    By Eqs. (12)(13) and the definitions of 𝐌a,𝐍b,𝐌a,𝐍b\mathbf{M}_{a},\mathbf{N}_{b},\mathbf{M}^{\prime}_{a},\mathbf{N}^{\prime}_{b}, we have

    |𝔼[Tr[(𝐌a𝐍br~𝐌a𝐍br~)(ϕin(ψ𝒮𝒯)h)]]|\displaystyle\left|\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[\mathrm{Tr}\left[\left(\mathbf{M}^{\prime}_{a}\otimes\mathbf{N}^{\prime}_{b}\otimes\widetilde{\mathcal{R}_{r}}-\mathbf{M}_{a}\otimes\mathbf{N}_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\left(\psi^{\mathscr{S}\mathscr{T}}\right)^{\otimes h}\right)\right]\right]\right|
    =\displaystyle=~{} |s,p(ms,p,a,ns,p,b𝒢ρnms,p,a,ns,p,b𝒢ρn)cskp|\displaystyle\left|\sum_{s,p}\left(\left\langle m^{\prime}_{s,p,a},n^{\prime}_{s,p,b}\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}-\left\langle m_{s,p,a},n_{s,p,b}\right\rangle_{\mathcal{G}_{\rho}^{\otimes n}}\right)c_{s}k_{p}\right|
    \displaystyle\leq~{} δs,pms,p,a2ns,p,b2(5.22 item 6)\displaystyle\delta^{\prime}\sum_{s,p}\left\|m_{s,p,a}\right\|_{2}\left\|n_{s,p,b}\right\|_{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:mulilinear} item 6)}
    \displaystyle\leq~{} δ(s,pms,p,a22)1/2(s,pns,p,b22)1/2\displaystyle\delta^{\prime}\left(\sum_{s,p}\left\|m_{s,p,a}\right\|_{2}^{2}\right)^{1/2}\left(\sum_{s,p}\left\|n_{s,p,b}\right\|_{2}^{2}\right)^{1/2}
    \displaystyle\leq~{} (𝗉𝗊)1/2δ𝔼[|||𝐌a|||22]1/2𝔼[|||𝐍b|||22]1/2(3.25 and Eq. 16)\displaystyle\left(\mathsf{p}\mathsf{q}\right)^{1/2}\delta^{\prime}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{M}_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2}\right]^{1/2}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{N}_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}^{2}_{2}\right]^{1/2}\quad\mbox{(\lx@cref{creftype~refnum}{lem:randoperator} and \lx@cref{creftype~refnum}{eqn:defmpa})}
    \displaystyle\leq~{} δ.\displaystyle\delta.
  6. 6.

    It holds by the definition of 𝐌\mathbf{M}^{\prime} and 𝐍\mathbf{N}^{\prime}.

5.7 Rounding

For a Hermitian matrix XX, suppose it has a spectral decomposition UΛUU^{\dagger}\Lambda U, where UU is unitary and Λ\Lambda is diagonal. Define

X𝓅𝓈=UΛ𝓅𝓈U,X^{\mathpzc{pos}}=U^{\dagger}\Lambda^{\mathpzc{pos}}U,

where Λ𝓅𝓈\Lambda^{\mathpzc{pos}} is diagonal and Λ𝓅𝓈ii=Λii\Lambda^{\mathpzc{pos}}_{ii}=\Lambda_{ii} if Λii0\Lambda_{ii}\geq 0, and Λ𝓅𝓈ii=0\Lambda^{\mathpzc{pos}}_{ii}=0, otherwise. Let X+X^{+} be the Moore-Penrose inverse of XX. Namely,

X+=UΛ+U,X^{+}=U^{\dagger}\Lambda^{+}U,

where Λ+\Lambda^{+} is diagonal and Λ+ii=Λii1\Lambda^{+}_{ii}=\Lambda_{ii}^{-1} if Λii0\Lambda_{ii}\neq 0, and Λ+ii=0\Lambda^{+}_{ii}=0 otherwise.

Lemma 5.23.

Let J𝒮𝒜J\in\mathcal{H}_{\mathscr{S}\mathscr{A}} with 𝗌=|𝒮|\mathsf{s}=\left|\mathscr{S}\right| and 𝖺=|𝒜|\mathsf{a}=\left|\mathscr{A}\right| satisfy that Trζ(J)𝗌ϵ\mathrm{Tr}~{}\zeta(J)\leq\mathsf{s}\epsilon and Tr𝒜J=𝟙𝒮\mathrm{Tr}_{\mathscr{A}}J=\mathds{1}_{\mathscr{S}}. Then there exists J~𝒮𝒜\widetilde{J}\in\mathcal{H}_{\mathscr{S}\mathscr{A}} such that the following holds:

  1. 1.

    J~0\widetilde{J}\geq 0;

  2. 2.

    Tr𝒜J~=𝟙𝒮\mathrm{Tr}_{\mathscr{A}}\widetilde{J}=\mathds{1}_{\mathscr{S}};

  3. 3.

    |||JJ~|||22O(𝖺5/2ϵ){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J-\widetilde{J}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq O\left(\mathsf{a}^{5/2}\sqrt{\epsilon}\right).

Proof.

Let J𝓅𝓈𝒮J^{\mathpzc{pos}}_{\mathscr{S}} denote Tr𝒜J𝓅𝓈\mathrm{Tr}_{\mathscr{A}}J^{\mathpzc{pos}}, and Π𝒮\Pi_{\mathscr{S}} be the projector onto the support of J𝓅𝓈𝒮J^{\mathpzc{pos}}_{\mathscr{S}}. Note that J𝓅𝓈0J^{\mathpzc{pos}}\geq 0 implies J𝓅𝓈𝒮0J^{\mathpzc{pos}}_{\mathscr{S}}\geq 0. Define

J~=((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)+(𝟙𝒮Π𝒮)𝟙𝒜𝖺.\widetilde{J}=\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)+\left(\mathds{1}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right)\otimes\frac{\mathds{1}_{\mathscr{A}}}{\mathsf{a}}.

It is easy to verify that J~\widetilde{J} satisfies item 1 and 2. To prove item 3,

|||JJ~|||22\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J-\widetilde{J}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
\displaystyle\leq~{} 4(|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈|||22\displaystyle 4\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)-\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right.
+|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈J𝓅𝓈|||22+|||J𝓅𝓈J|||22+|||(𝟙𝒮Π𝒮)𝟙𝒜𝖺|||22)\displaystyle+\left.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}-J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}-J\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}+{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\mathds{1}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right)\otimes\frac{\mathds{1}_{\mathscr{A}}}{\mathsf{a}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)
\displaystyle\leq~{} O(𝖺2|||J𝓅𝓈𝒮𝟙𝒮|||2+ϵ/𝖺)(5.24 and 5.25)\displaystyle O\left(\mathsf{a}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+\epsilon/\mathsf{a}\right)\quad\quad\mbox{(\lx@cref{creftype~refnum}{claim:term1} and \lx@cref{creftype~refnum}{claim:term2})}
\displaystyle\leq~{} O(𝖺5/2ϵ)(Using Lemma 5.26 with J𝓅𝓈J).\displaystyle O\left(\mathsf{a}^{5/2}\sqrt{\epsilon}\right)\quad\quad\mbox{(Using \lx@cref{creftype~refnum}{lem:CommonTerm} with $J^{\mathpzc{pos}}-J$).}

Claim 5.24.
|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈|||22|||J𝓅𝓈𝒮𝟙𝒮|||2.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)-\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.
Claim 5.25.
|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈J𝓅𝓈|||22𝖺2|||J𝓅𝓈𝒮𝟙𝒮|||2(|||J𝓅𝓈𝒮𝟙𝒮|||2+1).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}-J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\leq\mathsf{a}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+1\right).
Lemma 5.26.

Let J𝒮𝒜J\in\mathcal{H}_{\mathscr{S}}\otimes\mathcal{H}_{\mathscr{A}}. It holds that

|||Tr𝒜J|||2𝖺|||J|||2.{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathrm{Tr}_{\mathscr{A}}J\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\leq\mathsf{a}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.
Proof.
(Tr𝒜J)i,j=(k=1𝒜(𝟙𝒮k|𝒜)J(𝟙𝒮|k𝒜))i,j=k=1𝒜J(i,k),(j,k).\displaystyle\left(\mathrm{Tr}_{\mathscr{A}}J\right)_{i,j}=\left(\sum_{k=1}^{\mathsf{\mathscr{A}}}\left(\mathds{1}_{\mathscr{S}}\otimes\left\langle k\right|_{\mathscr{A}}\right)J\left(\mathds{1}_{\mathscr{S}}\otimes\left|k\right\rangle_{\mathscr{A}}\right)\right)_{i,j}=\sum_{k=1}^{\mathsf{\mathscr{A}}}J_{(i,k),(j,k)}.

Thus,

|||Tr𝒜J|||22\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathrm{Tr}_{\mathscr{A}}J\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
=\displaystyle=~{} 1𝗌i,j|Tr𝒜J|i,j2\displaystyle\frac{1}{\mathsf{s}}\sum_{i,j}\left|\mathrm{Tr}_{\mathscr{A}}J\right|_{i,j}^{2}
=\displaystyle=~{} 1𝗌i,j|k[𝖺]J(i,k),(j,k)|2\displaystyle\frac{1}{\mathsf{s}}\sum_{i,j}\left|\sum_{k\in\left[\mathsf{a}\right]}J_{(i,k),(j,k)}\right|^{2}
\displaystyle\leq~{} 𝖺𝗌i,jk[𝖺]|J(i,k),(j,k)|2\displaystyle\frac{\mathsf{a}}{\mathsf{s}}\sum_{i,j}\sum_{k\in\left[\mathsf{a}\right]}\left|J_{(i,k),(j,k)}\right|^{2}
\displaystyle\leq~{} 𝖺2|||J|||22.\displaystyle\mathsf{a}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}.

Proof of 5.24.
|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈|||22\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)-\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
=\displaystyle=~{} 1𝗌𝖺Tr(𝟙𝒮𝒜((J𝓅𝓈𝒮)+𝟙𝒜))2J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\mathrm{Tr}\left(\mathds{1}_{\mathscr{S}\mathscr{A}}-\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\right)^{2}J^{\mathpzc{pos}}\left(\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}
\displaystyle\leq~{} 1𝗌Tr((𝟙𝒮(J𝓅𝓈𝒮)+)2𝟙𝒜)J𝓅𝓈(5.28 item 1 and 5.27)\displaystyle\frac{1}{\mathsf{s}}\mathrm{Tr}\left(\left(\mathds{1}_{\mathscr{S}}-\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\right)^{2}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\quad\mbox{(\lx@cref{creftype~refnum}{lem:pinvinequality} item 1 and \lx@cref{creftype~refnum}{lem:Jupbound})}
=\displaystyle=~{} 1𝗌Tr(𝟙𝒮(J𝓅𝓈𝒮)+)2J𝓅𝓈𝒮\displaystyle\frac{1}{\mathsf{s}}\mathrm{Tr}\left(\mathds{1}_{\mathscr{S}}-\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\right)^{2}J^{\mathpzc{pos}}_{\mathscr{S}}
\displaystyle\leq~{} 1𝗌Tr|𝟙𝒮(J𝓅𝓈𝒮)+|J𝓅𝓈𝒮(5.28 item 2)\displaystyle\frac{1}{\mathsf{s}}\mathrm{Tr}\left|\mathds{1}_{\mathscr{S}}-\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}\right|J^{\mathpzc{pos}}_{\mathscr{S}}\quad\quad\mbox{(\lx@cref{creftype~refnum}{lem:pinvinequality} item 2)}
=\displaystyle=~{} 1𝗌Tr|J𝓅𝓈𝒮Π𝒮|\displaystyle\frac{1}{\mathsf{s}}\mathrm{Tr}\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|
\displaystyle\leq~{} 1𝗌Tr|J𝓅𝓈𝒮𝟙𝒮|\displaystyle\frac{1}{\mathsf{s}}\mathrm{Tr}\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|
\displaystyle\leq~{} |||J𝓅𝓈𝒮𝟙𝒮|||2.\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}.

Proof of 5.25.
|||((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈J𝓅𝓈|||22\displaystyle{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}-J^{\mathpzc{pos}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
=\displaystyle=~{} 1𝗌𝖺Tr(J𝓅𝓈)2((Π𝒮(J𝓅𝓈𝒮)+)2𝟙𝒜)\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\mathrm{Tr}\left(J^{\mathpzc{pos}}\right)^{2}\left(\left(\Pi_{\mathscr{S}}-\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\right)^{2}\otimes\mathds{1}_{\mathscr{A}}\right)
\displaystyle\leq~{} 1𝗌𝖺Tr(J𝓅𝓈)2(|Π𝒮(J𝓅𝓈𝒮)+|𝟙𝒜)(5.28 item 2)\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\mathrm{Tr}\left(J^{\mathpzc{pos}}\right)^{2}\left(\left|\Pi_{\mathscr{S}}-\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}\right|\otimes\mathds{1}_{\mathscr{A}}\right)\quad\quad\mbox{(\lx@cref{creftype~refnum}{lem:pinvinequality} item 2)}
=\displaystyle=~{} 1𝗌𝖺Tr(J𝓅𝓈)2((J𝓅𝓈𝒮)+𝟙𝒜)(|J𝓅𝓈𝒮Π𝒮|𝟙𝒜)((J𝓅𝓈𝒮)+𝟙𝒜)\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\mathrm{Tr}\left(J^{\mathpzc{pos}}\right)^{2}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\left(\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|\otimes\mathds{1}_{\mathscr{A}}\right)\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)
=\displaystyle=~{} 1𝗌𝖺Tr((J𝓅𝓈𝒮)+𝟙𝒜)(J𝓅𝓈)2((J𝓅𝓈𝒮)+𝟙𝒜)(|J𝓅𝓈𝒮Π𝒮|𝟙𝒜)\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\mathrm{Tr}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\left(J^{\mathpzc{pos}}\right)^{2}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\left(\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|\otimes\mathds{1}_{\mathscr{A}}\right)
\displaystyle\leq~{} 1𝗌𝖺((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈2J𝓅𝓈2|J𝓅𝓈𝒮Π𝒮|𝟙𝒜2(Hölder’s)\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\left\|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\sqrt{J^{\mathpzc{pos}}}\right\|^{2}\left\|J^{\mathpzc{pos}}\right\|_{2}\left\|\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|\otimes\mathds{1}_{\mathscr{A}}\right\|_{2}\quad\mbox{(H\"{o}lder's)}
=\displaystyle=~{} 1𝗌𝖺((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈((J𝓅𝓈𝒮)+𝟙𝒜)J𝓅𝓈2|J𝓅𝓈𝒮Π𝒮|𝟙𝒜2\displaystyle\frac{1}{\mathsf{s}\mathsf{a}}\left\|\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)J^{\mathpzc{pos}}\left(\sqrt{\left(J^{\mathpzc{pos}}_{\mathscr{S}}\right)^{+}}\otimes\mathds{1}_{\mathscr{A}}\right)\right\|\left\|J^{\mathpzc{pos}}\right\|_{2}\left\|\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|\otimes\mathds{1}_{\mathscr{A}}\right\|_{2}
\displaystyle\leq~{} 1𝗌J𝓅𝓈2|J𝓅𝓈𝒮Π𝒮|𝟙𝒜2(5.27)\displaystyle\frac{1}{\mathsf{s}}\left\|J^{\mathpzc{pos}}\right\|_{2}\left\|\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right|\otimes\mathds{1}_{\mathscr{A}}\right\|_{2}\quad\quad\mbox{(\lx@cref{creftype~refnum}{lem:Jupbound})}
\displaystyle\leq~{} 𝖺2𝗌J𝓅𝓈𝒮2J𝓅𝓈𝒮Π𝒮2(5.27)\displaystyle\frac{\mathsf{a}^{2}}{\mathsf{s}}\left\|J^{\mathpzc{pos}}_{\mathscr{S}}\right\|_{2}\left\|J^{\mathpzc{pos}}_{\mathscr{S}}-\Pi_{\mathscr{S}}\right\|_{2}\quad\quad\mbox{(\lx@cref{creftype~refnum}{lem:Jupbound})}
\displaystyle\leq~{} 𝖺2|||J𝓅𝓈𝒮𝟙𝒮|||2(|||J𝓅𝓈𝒮𝟙𝒮|||2+1).\displaystyle\mathsf{a}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\left({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|J^{\mathpzc{pos}}_{\mathscr{S}}-\mathds{1}_{\mathscr{S}}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}+1\right).

Fact 5.27.

[43, Proposition 3.4] Let J𝒮𝒜J\in\mathcal{H}_{\mathscr{S}}\otimes\mathcal{H}_{\mathscr{A}} be positive, then

𝖺(Tr𝒜J)𝟙𝒜J.\mathsf{a}\left(\mathrm{Tr}_{\mathscr{A}}J\right)\otimes\mathds{1}_{\mathscr{A}}\geq J.
Fact 5.28.

[36, Lemma 9.5] Given Hermitian matrices AA and BB the following holds:

  1. 1.

    If AB0A\geq B\geq 0, then BA+BBBA^{+}B\leq B.

  2. 2.

    If A0A\geq 0, then (𝟙A)2|𝟙A2|(\mathds{1}-A)^{2}\leq\left|\mathds{1}-A^{2}\right|.

Lemma 5.29.

Given 4.3, let n>0n\in\mathbb{Z}_{>0}, M𝒮n𝒫𝒜M\in\mathcal{H}_{\mathscr{S}^{n}\mathscr{P}\mathscr{A}} and N𝒯n𝒬N\in\mathcal{H}_{\mathscr{T}^{n}\mathscr{Q}\mathscr{B}}. Then for all a,b,ra,b,r, we have

|Tr[(MaNbr~)(ϕinψn)]|(𝗉𝗊)1/2|||Ma|||2|||Nb|||2\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|\leq\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}
Proof.

By Lemma 3.22, for any rr, we can choose bases {𝒫p}p[𝗉2]0\left\{\mathcal{P}_{p}\right\}_{p\in\left[\mathsf{p}^{2}\right]_{\geq 0}}, {𝒬q}q[𝗊2]0\left\{\mathcal{Q}_{q}\right\}_{q\in\left[\mathsf{q}^{2}\right]_{\geq 0}} satisfying Eq. 13.

|Tr[(MaNbr~)(ϕinψn)]|\displaystyle\left|\mathrm{Tr}\left[\left(M_{a}\otimes N_{b}\otimes\widetilde{\mathcal{R}_{r}}\right)\left(\phi_{\textsf{in}}\otimes\psi^{\otimes n}\right)\right]\right|
=\displaystyle=~{} |p,qTr[(Mp,aNq,b)ψn]Tr[(𝒫p~𝒬q~r~)ϕin]|\displaystyle\left|\sum_{p,q}\mathrm{Tr}\left[\left(M_{p,a}\otimes N_{q,b}\right)\psi^{\otimes n}\right]\cdot\mathrm{Tr}\left[\left(\widetilde{\mathcal{P}_{p}}\otimes\widetilde{\mathcal{Q}_{q}}\otimes\widetilde{\mathcal{R}_{r}}\right)\phi_{\textsf{in}}\right]\right|
\displaystyle\leq~{} p|Tr[(Mp,aNp,b)ψn]|(Eq. 13)\displaystyle\sum_{p}\left|\mathrm{Tr}\left[\left(M_{p,a}\otimes N_{p,b}\right)\psi^{\otimes n}\right]\right|\quad\mbox{(\lx@cref{creftype~refnum}{eqn:pqdiag})}
\displaystyle\leq~{} p|||Mp,a|||2|||Np,b|||2(3.3)\displaystyle\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}\quad\mbox{(\lx@cref{creftype~refnum}{fac:cauchyschwartz})}
\displaystyle\leq~{} (p|||Mp,a|||22)1/2(p|||Np,b|||22)1/2\displaystyle\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{p,a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}\left(\sum_{p}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{p,b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}\right)^{1/2}
\displaystyle\leq~{} (𝗉𝗊)1/2|||Ma|||2|||Nb|||2\displaystyle\left(\mathsf{p}\mathsf{q}\right)^{1/2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M_{a}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|N_{b}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}

Appendix A List of notations

Δγ(P)\Delta_{\gamma}\left(P\right) noise operator, γP+1ρm(TrP)𝟙m\gamma P+\frac{1-\rho}{m}\left(\mathrm{Tr}P\right)\cdot\mathds{1}_{m}
Φ\Phi^{*} the adjoint of Φ\Phi
γn\gamma_{n} standard nn-dimensional normal distribution
|σ||\sigma| the number of nonzeros in σ\sigma
ζ(x)\zeta\left(x\right) {x2if x00otherwise\begin{cases}x^{2}~{}&\mbox{if $x\leq 0$}\\ 0~{}&\mbox{otherwise}\end{cases}
ABA\geq B the matrix ABA-B is positive semi-definite
𝒜a\mathcal{A}_{a} i=1n𝒜ai\otimes_{i=1}^{n}\mathcal{A}_{a_{i}}
degP\deg P max{|σ|:P^(σ)0}\max\left\{\left|\sigma\right|:\widehat{P}\left(\sigma\right)\neq 0\right\}
deg(𝐏)\deg\left(\mathbf{P}\right) maxσ[m2]0hdeg(pσ)\max_{\sigma\in[m^{2}]_{\geq 0}^{h}}\deg\left(p_{\sigma}\right)
deg(f)\deg\left(f\right) max{iσi:f^(σ)0}\max\left\{\sum_{i}\sigma_{i}:~{}\widehat{f}\left(\sigma\right)\neq 0\right\}
fLp(,γn)f\in L^{p}\left({\mathbb{R}},\gamma_{n}\right) f:n,n|f(x)|pγn(dx)<f:{\mathbb{R}}^{n}\rightarrow{\mathbb{R}},\int_{{\mathbb{R}}^{n}}\left|f(x)\right|^{p}\gamma_{n}\left(dx\right)<\infty
fLp(k,γn)f\in L^{p}\left({\mathbb{R}}^{k},\gamma_{n}\right) f1,,fkLp(,γn)f_{1},\dots,f_{k}\in L^{p}\left({\mathbb{R}},\gamma_{n}\right) for f=(f1,,fk)f=\left(f_{1},\ldots,f_{k}\right)
f,gγn\left\langle f,g\right\rangle_{\gamma_{n}} 𝔼𝐱γn[f(𝐱)g(𝐱)]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[f\left(\mathbf{x}\right)g\left(\mathbf{x}\right)\right]
fp\left\|f\right\|_{p} (n|f(x)|pγn(dx))1p\left(\int_{{\mathbb{R}}^{n}}\left|f(x)\right|^{p}\gamma_{n}\left(dx\right)\right)^{\frac{1}{p}}
(t=1kftpp)1/p\left(\sum_{t=1}^{k}\left\|f_{t}\right\|_{p}^{p}\right)^{1/p} for f=(f1,,fk)f=\left(f_{1},\ldots,f_{k}\right)
𝒢ρ\mathcal{G}_{\rho} ρ\rho-correlated Gaussian distribution N((00),(1ρρ1))N\left(\begin{pmatrix}0\\ 0\end{pmatrix},\begin{pmatrix}1&\rho\\ \rho&1\end{pmatrix}\right)
𝒮\mathcal{H}_{\mathscr{S}} the set of all Hermitian operators in the system 𝒮\mathscr{S}
m\mathcal{H}_{m} the set of all Hermitian operators of dimension mm
mn\mathcal{H}_{m}^{\otimes n} mmn times\underbrace{\mathcal{H}_{m}\otimes\cdots\otimes\mathcal{H}_{m}}_{n\text{ times}}
Hr(x)H_{r}\left(x\right) Hermite polynomial, (1)rr!ex2/2drdxrex2/2\frac{(-1)^{r}}{\sqrt{r!}}e^{x^{2}/2}\frac{d^{r}}{dx^{r}}e^{-x^{2}/2}
Hσ(x)H_{\sigma}\left(x\right) i=1nHσi(xi)\prod_{i=1}^{n}H_{\sigma_{i}}\left(x_{i}\right)
𝟙𝒮\mathds{1}_{\mathscr{S}} the identity operator in the system 𝒮\mathscr{S}
𝟙m\mathds{1}_{m} the identity operator of dimension mm
Inf(P)\mathrm{Inf}\left(P\right) iInfi(P)\sum_{i}\mathrm{Inf}_{i}\left(P\right)
Inf(f)\mathrm{Inf}\left(f\right) iInfi(f)\sum_{i}\mathrm{Inf}_{i}\left(f\right)
Infi(P)\mathrm{Inf}_{i}\left(P\right) |||P𝟙mTriP|||22{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|P-\mathds{1}_{m}\otimes\mathrm{Tr}_{i}P\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{2}^{2}
Infi(f)\mathrm{Inf}_{i}\left(f\right) 𝔼𝐱γn[Var𝐱iγ1[f(𝐱1,,𝐱i1,𝐱i,𝐱i+1,𝐱n)]]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[\mathrm{Var}_{\mathbf{x}^{\prime}_{i}\sim\gamma_{1}}\>\!\!\left[f\left(\mathbf{x}_{1},\dots,\mathbf{x}_{i-1},\mathbf{x}^{\prime}_{i},\mathbf{x}_{i+1},\dots\mathbf{x}_{n}\right)\right]\right]
J()J\left(\cdot\right) the Choi representation
(𝒮,𝒜)\mathcal{L}\left(\mathscr{S},\mathscr{A}\right) the set of all linear maps from 𝒮\mathcal{M}_{\mathscr{S}} to 𝒜\mathcal{M}_{\mathscr{A}}
(𝒮)\mathcal{L}\left(\mathscr{S}\right) (𝒮,𝒮)\mathcal{L}\left(\mathscr{S},\mathscr{S}\right)
𝒮\mathcal{M}_{\mathscr{S}} the set of all linear operators in the system 𝒮\mathscr{S}
m\mathcal{M}_{m} the set of all linear operators of dimension mm
mn\mathcal{M}_{m}^{\otimes n} mmn times\underbrace{\mathcal{M}_{m}\otimes\cdots\otimes\mathcal{M}_{m}}_{n\text{ times}}
M0M\geq 0 the matrix MM is positive semi-definite
MM^{\dagger} the transposed conjugate of MM
Mi,jM_{i,j} the (i,j)(i,j)-entry of MM
|||M|||p{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|M\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{p} (1mTr|H|p)1/p\left(\frac{1}{m}\mathrm{Tr}~{}\left|H\right|^{p}\right)^{1/p}
Mp\left\|M\right\|_{p} (Tr|H|p)1/p\left(\mathrm{Tr}~{}\left|H\right|^{p}\right)^{1/p}
M^(σ)\widehat{M}\left(\sigma\right) σ,M\left\langle\mathcal{B}_{\sigma},M\right\rangle, Fourier coefficient of MM with respect to \mathcal{B}
[n][n] {1,,n}\left\{1,\dots,n\right\}
[n]0[n]_{\geq 0} {0,,n1}\left\{0,\dots,n-1\right\}
p=(pσ)σ[m2]0hp=\left(p_{\sigma}\right)_{\sigma\in[m^{2}]_{\geq 0}^{h}} the associated vector-valued function of 𝐏\mathbf{P}
POVM M1,,Mt0M_{1},\ldots,M_{t}\geq 0 satisfying i=1tMi=𝟙\sum_{i=1}^{t}M_{i}=\mathds{1}
P,Q\left\langle P,Q\right\rangle 1mTrPQ\frac{1}{m}\mathrm{Tr}~{}P^{\dagger}Q
PtP^{\leq t} σ[m2]0n:|σ|tP^(σ)σ\sum_{\sigma\in[m^{2}]_{\geq 0}^{n}:\left|\sigma\right|\leq t}\widehat{P}\left(\sigma\right)\mathcal{B}_{\sigma}(similar for P<tP^{<t}, PtP^{\geq t}, P>tP^{>t}, P=tP^{=t})
𝐏Lp(mh,γn)\mathbf{P}\in L^{p}\left(\mathcal{H}_{m}^{\otimes h},\gamma_{n}\right) pσLp(,γn)p_{\sigma}\in L^{p}\left({\mathbb{R}},\gamma_{n}\right) for all σ[m2]0h\sigma\in[m^{2}]_{\geq 0}^{h}
(x)\mathcal{R}\left(x\right) argmin{xy22:yΔ}\arg\min\left\{\left\|x-y\right\|_{2}^{2}:y\in\Delta\right\}
Tr𝒮ψ𝒮𝒯\mathrm{Tr}_{\mathscr{S}}\psi^{\mathscr{S}\mathscr{T}} partial trace, i(𝟙𝒮i|)ψ𝒮𝒯(𝟙𝒮|i)\sum_{i}\left(\mathds{1}_{\mathscr{S}}\otimes\left\langle i\right|\right)\psi^{\mathscr{S}\mathscr{T}}\left(\mathds{1}_{\mathscr{S}}\otimes\left|i\right\rangle\right)
Uνf(z)U_{\nu}f\left(z\right) 𝔼𝐱γn[f(νz+1ν2𝐱)]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[f\left(\nu z+\sqrt{1-\nu^{2}}\mathbf{x}\right)\right]
(Uνf1,,Uνfk)\left(U_{\nu}f_{1},\ldots,U_{\nu}f_{k}\right) for f=(f1,,fk)f=\left(f_{1},\ldots,f_{k}\right)
Var[f]\mathrm{Var}\>\!\!\left[f\right] 𝔼𝐱γn[|f(𝐱)𝔼[f]|2]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\mathbf{x}\sim\gamma_{n}\end{subarray}}\>\!\!\left[\left|f\left(\mathbf{x}\right)-\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\end{subarray}}\>\!\!\left[f\right]\right|^{2}\right]
X𝓅𝓈X^{\mathpzc{pos}} UΛ𝓅𝓈UU\Lambda^{\mathpzc{pos}}U^{\dagger} where X=UΛUX=U\Lambda U^{\dagger} is a spectral decomposition
of XX and Λ𝓅𝓈i,i=Λi,i\Lambda^{\mathpzc{pos}}_{i,i}=\Lambda_{i,i} if Λi,i0\Lambda_{i,i}\geq 0 and Λ𝓅𝓈i,i=0\Lambda^{\mathpzc{pos}}_{i,i}=0 otherwise.
X+X^{+} Moore-Penrose inverse of XX.
>0\mathbb{Z}_{>0} the set of all positive integers.

References

  • [1] Salman Beigi. A new quantum data processing inequality. Journal of Mathematical Physics, 54(8):082202, 2013.
  • [2] A. Ben-Aroya, O. Regev, and R. d. Wolf. A hypercontractive inequality for matrix-valued functions with applications to quantum computing and ldcs. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 477–486, Oct 2008.
  • [3] Charles H. Bennett, Herbert J. Bernstein, Sandu Popescu, and Benjamin Schumacher. Concentrating partial entanglement by local operations. Phys. Rev. A, 53:2046–2052, Apr 1996.
  • [4] Dimitri P Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.
  • [5] Cyril Branciard, Denis Rosset, Yeong-Cherng Liang, and Nicolas Gisin. Measurement-device-independent entanglement witnesses for all entangled quantum states. Phys. Rev. Lett., 110:060405, Feb 2013.
  • [6] Kaifeng Bu, Roy J. Garcia, Arthur Jaffe, Dax Enshan Koh, and Lu Li. Complexity of quantum circuits via sensitivity, magic, and coherence. arXiv preprint arXiv:2204.12051, 2022.
  • [7] Francesco Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108:200401, May 2012.
  • [8] Eric G. Cavalcanti, Michael J. W. Hall, and Howard M. Wiseman. Entanglement verification and steering when alice and bob cannot be trusted. Phys. Rev. A, 87:032306, Mar 2013.
  • [9] Thomas Chen, Shivam Nadimpalli, and Henry Yuen. Testing and learning quantum juntas nearly optimally. arXiv preprint arXiv:2207.05898, 2207.05898.
  • [10] Kai-Min Chung, Xiaodi Wu, and Henry Yuen. Parallel Repetition for Entangled k-player Games via Fast Quantum Search. In David Zuckerman, editor, 30th Conference on Computational Complexity (CCC 2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 512–536, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  • [11] Richard Cleve, Peter Hoyer, Benjamin Toner, and John Watrous. Consequences and limits of nonlocal strategies. In Proceedings of the 19th IEEE Annual Conference on Computational Complexity, CCC ’04, pages 236–249, Washington, DC, USA, 2004. IEEE Computer Society.
  • [12] Anindya De, Elchanan Mossel, and Joe Neeman. Non interactive simulation of correlated distributions is decidable. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages 2728–2746, Philadelphia, PA, USA, 2018. Society for Industrial and Applied Mathematics.
  • [13] Payam Delgosha and Salman Beigi. Impossibility of local state transformation via hypercontractivity. Communications in Mathematical Physics, 332(1):449–476, Nov 2014.
  • [14] Joseph Fitzsimons, Zhengfeng Ji, Thomas Vidick, and Henry Yuen. Quantum proof systems for iterated exponential time, and beyond. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, New York, NY, USA, 2019. ACM.
  • [15] Joseph Fitzsimons and Thomas Vidick. A multiprover interactive proof system for the local hamiltonian problem. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS ’15, page 103–112, New York, NY, USA, 2015. Association for Computing Machinery.
  • [16] Badih Ghazi, Pritish Kamath, and Prasad Raghavendra. Dimension reduction for polynomials over gaussian space and applications. In Proceedings of the 33rd Computational Complexity Conference, CCC ’18, pages 28:1–28:37, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
  • [17] Badih Ghazi, Pritish Kamath, and Madhu Sudan. Decidability of non-interactive simulation of joint distributions. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 545–554, Los Alamitos, CA, USA, Oct 2016. IEEE Computer Society.
  • [18] L. Gyongyosi, S. Imre, and H. V. Nguyen. A survey on quantum channel capacities. IEEE Communications Surveys Tutorials, 20(2):1149–1205, Secondquarter 2018.
  • [19] Aram W. Harrow, Ashley Montanaro, and Anthony J. Short. Limitations on quantum dimensionality reduction. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata, Languages and Programming, pages 86–97, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
  • [20] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, Jun 2009.
  • [21] Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive proof for NEXP sound against entangled provers. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS ’12, pages 243–252, Washington, DC, USA, 2012. IEEE Computer Society.
  • [22] Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 885–898, New York, NY, USA, 2016. ACM.
  • [23] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP=RE\mathrm{MIP}^{*}=\mathrm{RE}. arXiv preprint arXiv:2001.04383, 2020.
  • [24] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Quantum soundness of the classical low individual degree test. arXiv preprint arXiv:2009.12982, 2020.
  • [25] Nathaniel Johnston, Rajat Mittal, Vincent Russo, and John Watrous. Extended non-local games and monogamy-of-entanglement games. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2189):20160003, may 2016.
  • [26] S. Kamath and V. Anantharam. On non-interactive simulation of joint distributions. IEEE Transactions on Information Theory, 62(6):3419–3435, June 2016.
  • [27] J. Kempe, O. Regev, and B. Toner. Unique games with entangled provers are easy. SIAM Journal on Computing, 39(7):3207–3229, 2010.
  • [28] Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and Thomas Vidick. Entangled games are hard to approximate. In Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’08, pages 447–456, Washington, DC, USA, 2008. IEEE Computer Society.
  • [29] Felix Leditzky, Nilanjana Datta, and Graeme Smith. Useful states and entanglement distillation. IEEE Transactions on Information Theory, 64(7):4689–4708, 2018.
  • [30] Debbie Leung, Ben Toner, and John Watrous. Coherent state exchange in multi-prover quantum interactive proof systems. Chicago Journal of Theoretical Computer Science, 2013(11), August 2013.
  • [31] Ashley Montanaro and Tobias J. Osborne. Quantum boolean functions. Chicago Journal of Theoretical Computer Science, 2010(1), January 2010.
  • [32] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. Annals of Mathematics, 171:295–341, Mar 2010.
  • [33] A. Natarajan and J. Wright. NEEXP is contained in MIP. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 510–518, Los Alamitos, CA, USA, nov 2019. IEEE Computer Society.
  • [34] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge, UK, 2000.
  • [35] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, Cambridge, UK, 2013.
  • [36] Minglong Qin and Penghui Yao. Nonlocal games with noisy maximally entangled states are decidable. SIAM Journal on Computing, 50(6):1800–1891, 2021.
  • [37] Oded Regev and Thomas Vidick. Quantum XOR games. ACM Trans. Comput. Theory, 7(4), aug 2015.
  • [38] Cambyse Roué, Melchior Wirth, and Haonan Zhang. Quantum talagrand, kkl and friedgut’s theorems and the learnability of quantum boolean functions. arXiv preprint arXiv:2209.07279, 2209.07279.
  • [39] C. J. Stark and A. W. Harrow. Compressibility of positive semidefinite factorizations and quantum models. IEEE Transactions on Information Theory, 62(5):2867–2880, 2016.
  • [40] Dave Touchette. Quantum information complexity. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 317–326, New York, NY, USA, 2015. ACM.
  • [41] Guoming Wang. Property testing of unitary operators. Phys. Rev. A, 84:052328, Nov 2011.
  • [42] John Watrous. Theory of Quantum Information. Cambridge University Press, Cambridge, UK, 2018.
  • [43] Pingping Zhang. On some inequalities related to positive block matrices. Linear Algebra and its Applications, 576:258–267, 2019.