This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: School of Physics, Southeast University, Nanjing 210094, China

Decay properties of PcP_{c} states through the Fierz rearrangement

Hua-Xing Chen
(Received: date / Accepted: date)
Abstract

We systematically study hidden-charm pentaquark currents with the quark configurations [c¯u][udc][\bar{c}u][udc], [c¯d][uuc][\bar{c}d][uuc], and [c¯c][uud][\bar{c}c][uud]. Some of their relations are derived using the Fierz rearrangement of the Dirac and color indices, and the obtained results are used to study strong decay properties of PcP_{c} states as D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecules. We calculate their relative branching ratios for the J/ψpJ/\psi p, ηcp\eta_{c}p, χc0p\chi_{c0}p, χc1p\chi_{c1}p, D¯()0Λc+\bar{D}^{(*)0}\Lambda_{c}^{+}, D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+}, and D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} decay channels. We propose to search for the Pc(4312)P_{c}(4312) in the ηcp\eta_{c}p channel and the Pc(4440)/Pc(4457)P_{c}(4440)/P_{c}(4457) in the D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+} channel.

journal: Eur. Phys. J. C

1 Introduction

Since the discovery of the X(3872)X(3872) in 2003 by Belle Choi:2003ue , many charmonium-like XYZXYZ states were discovered in the past twenty years pdg . Besides, the LHCb Collaboration observed three enhancements in the J/ψpJ/\psi p invariant mass spectrum of the ΛbJ/ψpK\Lambda_{b}\to J/\psi pK decays Aaij:2015tga ; Aaij:2019vzc :

Pc(4312)+:\displaystyle P_{c}(4312)^{+}: M=\displaystyle M= 4311.9±0.70.6+6.8 MeV,\displaystyle 4311.9\pm 0.7^{+6.8}_{-0.6}\mbox{ MeV}\,,
Γ=\displaystyle\Gamma= 9.8±2.74.5+3.7 MeV,\displaystyle 9.8\pm 2.7^{+3.7}_{-4.5}\mbox{ MeV}\,,
Pc(4440)+:\displaystyle P_{c}(4440)^{+}: M=\displaystyle M= 4440.3±1.34.7+4.1 MeV,\displaystyle 4440.3\pm 1.3^{+4.1}_{-4.7}\mbox{ MeV}\,,
Γ=\displaystyle\Gamma= 20.6±4.910.1+8.7 MeV,\displaystyle 20.6\pm 4.9^{+8.7}_{-10.1}\mbox{ MeV}\,,
Pc(4457)+:\displaystyle P_{c}(4457)^{+}: M=\displaystyle M= 4457.3±0.61.7+4.1 MeV,\displaystyle 4457.3\pm 0.6^{+4.1}_{-1.7}\mbox{ MeV}\,,
Γ=\displaystyle\Gamma= 6.4±2.01.9+5.7 MeV.\displaystyle 6.4\pm 2.0^{+5.7}_{-1.9}\mbox{ MeV}\,.

These structures contain at least five quarks, c¯cuud\bar{c}cuud, so they are perfect candidates of hidden-charm pentaquark states. Together with the charmonium-like XYZXYZ states, their studies are significantly improving our understanding of the non-perturbative behaviors of the strong interaction at the low energy region Chen:2016qju ; Liu:2019zoy ; Lebed:2016hpi ; Esposito:2016noz ; Guo:2017jvc ; Ali:2017jda ; Olsen:2017bmm ; Karliner:2017qhf ; Brambilla:2019esw ; Guo:2019twa .

The Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457) are just below the D¯Σc\bar{D}\Sigma_{c} and D¯Σc\bar{D}^{*}\Sigma_{c} thresholds, so it is quite natural to interpret them as D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecular states, whose existence had been predicted in Refs. Wu:2010jy ; Wang:2011rga ; Yang:2011wz ; Karliner:2015ina ; Wu:2012md before the LHCb experiment performed in 2015 Aaij:2015tga . This experiment observed two structures Pc(4380)P_{c}(4380) and Pc(4450)P_{c}(4450). Later in 2019 another LHCb experiment Aaij:2019vzc observed a new structure Pc(4312)P_{c}(4312) and further separated the Pc(4450)P_{c}(4450) into two substructures Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457).

To explain these PcP_{c} states, various theoretical interpretations were proposed, such as loosely-bound meson-baryon molecular states Chen:2019asm ; Liu:2019tjn ; He:2019ify ; Huang:2019jlf ; Guo:2019kdc ; Fernandez-Ramirez:2019koa ; Xiao:2019aya ; Meng:2019ilv ; Wu:2019adv ; Wang:2019hyc ; Yamaguchi:2019seo ; Valderrama:2019chc ; Liu:2019zvb ; Burns:2019iih ; Wang:2019ato ; Gutsche:2019mkg ; Du:2019pij ; Azizi:2016dhy ; Chen:2019bip and tightly-bound pentaquark states Maiani:2015vwa ; Lebed:2015tna ; Stancu:2019qga ; Giron:2019bcs ; Ali:2019npk ; Weng:2019ynv ; Eides:2019tgv ; Wang:2019got ; Cheng:2019obk ; Ali:2019clg , etc. Since they have only been observed in the J/ψpJ/\psi p invariant mass spectrum by LHCb Aaij:2015tga ; Aaij:2019vzc , it is crucial to search for some other decay channels in order to better understand their nature. There have been some theoretical studies on this subject, using the heavy quark symmetry Voloshin:2019aut ; Sakai:2019qph , effective approaches Guo:2019fdo ; Xiao:2019mst ; Cao:2019kst ; Lin:2019qiv , QCD sum rules Xu:2019zme , and the quark interchange model Wang:2019spc , etc. We refer to reviews Chen:2016qju ; Liu:2019zoy ; Lebed:2016hpi ; Esposito:2016noz ; Guo:2017jvc ; Ali:2017jda ; Olsen:2017bmm ; Karliner:2017qhf ; Brambilla:2019esw ; Guo:2019twa and references therein for detailed discussions.

In this paper we shall apply the Fierz rearrangement of the Dirac and color indices to study strong decay properties of PcP_{c} states as D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecules, which method has been used in Ref. Chen:2019wjd to study strong decay properties of the Zc(3900)Z_{c}(3900) and X(3872)X(3872). A similar arrangement of the spin and color indices in the nonrelativistic case was used to study decay properties of XYZXYZ and PcP_{c} states in Refs. Voloshin:2013dpa ; Maiani:2017kyi ; Voloshin:2018pqn ; Voloshin:2019aut ; Wang:2019spc ; Xiao:2019spy ; Cheng:2020nho .

In this paper we shall use the c¯\bar{c}, cc, uu, uu, and dd (q=u/dq=u/d) quarks to construct hidden-charm pentaquark currents with the three configurations: [c¯u][udc][\bar{c}u][udc], [c¯d][uuc][\bar{c}d][uuc], and [c¯c][uud][\bar{c}c][uud]. In Refs. Chen:2015moa ; Chen:2016otp ; Xiang:2017byz we have found that these three configurations can be related as a whole, while in the present study we shall further find that two of them are already enough to be related to each other, just with the color-octet-color-octet meson-baryon terms included. Using these relations, we shall study strong decay properties of PcP_{c} states as D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states.

Our strategy is quite straightforward. First we need a hidden-charm pentaquark current, such as

η1(x,y)\displaystyle\eta_{1}(x,y) =\displaystyle= [δabc¯a(x)γ5ub(x)]\displaystyle[\delta^{ab}\bar{c}_{a}(x)\gamma_{5}u_{b}(x)]
×[ϵcdeucT(y)γμdd(y)γμγ5ce(y)],\displaystyle~{}~{}~{}~{}~{}\times[\epsilon^{cde}u_{c}^{T}(y)\mathbb{C}\gamma_{\mu}d_{d}(y)\gamma^{\mu}\gamma_{5}c_{e}(y)]\,,

where aea\cdots e are color indices. It is the current best coupling to the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} molecular state of JP=1/2J^{P}=1/2^{-}, through

0|η1(x,y)|D¯0Σc+;1/2(q)=fPcu(q),\langle 0|\eta_{1}(x,y)|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}(q)\rangle=f_{P_{c}}u(q)\,, (3)

where u(q)u(q) is the Dirac spinor of the PcP_{c} state.

After the Fierz rearrangement of the Dirac and color indices, we can transform it to be

η1(x,y)\displaystyle\eta_{1}(x,y) \displaystyle\rightarrow 112[c¯a(x)γ5ca(x)]N(y)\displaystyle-{1\over 12}~{}[\bar{c}_{a}(x^{\prime})\gamma_{5}c_{a}(x^{\prime})]~{}N(y^{\prime})
+124[c¯a(x)γμca(x)]γμγ5N(y)+,\displaystyle~{}~{}+{1\over 24}~{}[\bar{c}_{a}(x^{\prime})\gamma_{\mu}c_{a}(x^{\prime})]~{}\gamma^{\mu}\gamma_{5}N(y^{\prime})+\cdots\,,

where

N=ϵabc(uaTdb)γ5ucϵabc(uaTγ5db)uc,N=\epsilon^{abc}(u_{a}^{T}\mathbb{C}d_{b})\gamma_{5}u_{c}-\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{5}d_{b})u_{c}\,, (5)

is the Ioffe’s light baryon field well coupling to the proton Ioffe:1981kw ; Ioffe:1982ce ; Espriu:1983hu . Hence, η1(x,y)\eta_{1}(x^{\prime},y^{\prime}) couples to the ηcp\eta_{c}p and J/ψpJ/\psi p channels simultaneously:

0|η1(x,y)|ηcp\displaystyle\langle 0|\eta_{1}(x^{\prime},y^{\prime})|\eta_{c}p\rangle \displaystyle\approx 1120|c¯aγ5ca|ηc0|N|p+,\displaystyle-{1\over 12}\langle 0|\bar{c}_{a}\gamma_{5}c_{a}|\eta_{c}\rangle~{}\langle 0|N|p\rangle+\cdots\,, (6)
0|η1(x,y)|ψp\displaystyle\langle 0|\eta_{1}(x^{\prime},y^{\prime})|\psi p\rangle \displaystyle\approx 1240|c¯aγμca|ψγμγ50|N|p+.\displaystyle{1\over 24}\langle 0|\bar{c}_{a}\gamma_{\mu}c_{a}|\psi\rangle~{}\gamma^{\mu}\gamma_{5}\langle 0|N|p\rangle+\cdots\,.

The above two equations can be easily used to calculate the relative branching ratio of the PcP_{c} decay into ηcp\eta_{c}p to its decay into J/ψpJ/\psi p Yu:2017zst . Detailed discussions on this will be given below.

This paper is organized as follows. In Sec. 2 we systematically study hidden-charm pentaquark currents with the quark content c¯cuud\bar{c}cuud. We consider three different configurations, [c¯u][udc][\bar{c}u][udc], [c¯d][uuc][\bar{c}d][uuc], and [c¯c][uud][\bar{c}c][uud], whose relations are derived in Sec. 3 using the Fierz rearrangement of the Dirac and color indices. In Sec. 4 we extract some strong decay properties of D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} and D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states, which are combined in Sec. 5 to further study strong decay properties of D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=1/2I=1/2. The results are summarized in Sec. 6.

2 Hidden-charm pentaquark currents

Refer to caption
(a)  [c¯u][udc][\bar{c}u][udc] current η(x,y)\eta(x,y)
Refer to caption
(b)  [c¯d][uuc][\bar{c}d][uuc] current ξ(x,y)\xi(x,y)
Refer to caption
(c)  [c¯c][uud][\bar{c}c][uud] current θ(x,y)\theta(x,y)
Figure 1: Three types of hidden-charm pentaquark currents. Quarks are shown in red/green/blue color, and antiquarks are shown in cyan/magenta/yellow color.

We can use c¯\bar{c}, cc, uu, uu, and dd (q=u/dq=u/d) quarks to construct many types of hidden-charm pentaquark currents. In the present study we need the following three, as illustrated in Fig. 1:

η(x,y)\displaystyle\eta(x,y) =\displaystyle= [c¯a(x)Γ1ηub(x)][[ucT(y)Γ2ηdd(y)]Γ3ηce(y)],\displaystyle[\bar{c}_{a}(x)\Gamma^{\eta}_{1}u_{b}(x)]~{}\Big{[}[u^{T}_{c}(y)\mathbb{C}\Gamma^{\eta}_{2}d_{d}(y)]~{}\Gamma^{\eta}_{3}c_{e}(y)\Big{]}\,,
ξ(x,y)\displaystyle\xi(x,y) =\displaystyle= [c¯a(x)Γ1ξdb(x)][[ucT(y)Γ2ξud(y)]Γ3ξce(y)],\displaystyle[\bar{c}_{a}(x)\Gamma^{\xi}_{1}d_{b}(x)]~{}\Big{[}[u^{T}_{c}(y)\mathbb{C}\Gamma^{\xi}_{2}u_{d}(y)]~{}\Gamma^{\xi}_{3}c_{e}(y)\Big{]}\,,
θ(x,y)\displaystyle\theta(x,y) =\displaystyle= [c¯a(x)Γ1θcb(x)][[qcT(y)Γ2θqd(y)]Γ3θqe(y)],\displaystyle[\bar{c}_{a}(x)\Gamma^{\theta}_{1}c_{b}(x)]~{}\Big{[}[q^{T}_{c}(y)\mathbb{C}\Gamma^{\theta}_{2}q_{d}(y)]~{}\Gamma^{\theta}_{3}q_{e}(y)\Big{]}\,,

where Γ1/2/3η/ξ/θ\Gamma_{1/2/3}^{\eta/\xi/\theta} are Dirac matrices, the subscripts aea\cdots e are color indices, and the sum over repeated indices (both superscripts and subscripts) is taken.

All the independent hidden-charm tetraquark currents of JPC=1+±J^{PC}=1^{+\pm} have been constructed in Refs. Chen:2008qw ; Chen:2013jra ; Chen:2010ze ; Chen:2019wjd . However, in this case there are hundreds of hidden-charm pentaquark currents, and it is difficult to find out all the independent ones (see Refs. Chen:2015moa ; Chen:2016otp for relevant discussions). Hence, in this paper we shall not construct all the currents, but just investigate those that are needed to study decay properties of the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457). We shall separately investigate their color and Lorentz structures in the following subsections.

2.1 Color structure

Taking η(x,y)\eta(x,y) as an example, there are two possibilities to compose a color-singlet field: [c¯u]𝟏c[udc]𝟏c[\bar{c}u]_{\mathbf{1}_{c}}[udc]_{\mathbf{1}_{c}} and [c¯u]𝟖c[udc]𝟖c[\bar{c}u]_{\mathbf{8}_{c}}[udc]_{\mathbf{8}_{c}}. We can use the color-singlet-color-singlet meson-baryon term

[δabc¯aub][ϵcdeucddce],[\delta^{ab}\bar{c}_{a}u_{b}][\epsilon^{cde}u_{c}d_{d}c_{e}]\,, (8)

to describe the former, while there are three color-octet-color-octet meson-baryon terms for the latter:

[λnabc¯aub][ϵcdfλnfeucddce],\displaystyle[\lambda^{ab}_{n}\bar{c}_{a}u_{b}][\epsilon^{cdf}\lambda^{fe}_{n}u_{c}d_{d}c_{e}]\,,
[λnabc¯aub][ϵdefλnfcucddce],\displaystyle[\lambda^{ab}_{n}\bar{c}_{a}u_{b}][\epsilon^{def}\lambda^{fc}_{n}u_{c}d_{d}c_{e}]\,, (9)
[λnabc¯aub][ϵecfλnfducddce].\displaystyle[\lambda^{ab}_{n}\bar{c}_{a}u_{b}][\epsilon^{ecf}\lambda^{fd}_{n}u_{c}d_{d}c_{e}]\,.

Only two of them are independent due to

ϵcdfλnfe+ϵdefλnfc+ϵecfλnfd=0,\epsilon^{cdf}\lambda^{fe}_{n}+\epsilon^{def}\lambda^{fc}_{n}+\epsilon^{ecf}\lambda^{fd}_{n}=0\,, (10)

which is consistent with the group theory that there are two and only two octets in 𝟑c𝟑c𝟑c=𝟏c𝟖c𝟖c𝟏𝟎c\mathbf{3}_{c}\otimes\mathbf{3}_{c}\otimes\mathbf{3}_{c}=\mathbf{1}_{c}\oplus\mathbf{8}_{c}\oplus\mathbf{8}_{c}\oplus\mathbf{10}_{c}. Similar argument applies to ξ(x,y)\xi(x,y) and θ(x,y)\theta(x,y).

In Refs. Chen:2015moa ; Chen:2016otp we use the color rearrangement

δabϵcde=δacϵbde+δadϵcbe+δaeϵcdb,\delta^{ab}\epsilon^{cde}=\delta^{ac}\epsilon^{bde}+\delta^{ad}\epsilon^{cbe}+\delta^{ae}\epsilon^{cdb}\,, (11)

together with the Fierz rearrangement to derive the relations among all the three types of currents, e.g., we can transform an η\eta current into the combination of many ξ\xi and θ\theta currents:

ηξ+θ.\eta\rightarrow\xi+\theta\,. (12)

In the present study we further derive another color rearrangement:

δabϵcde=13δaeϵbcd12λnaeϵbcfλnfd+12λnaeϵbdfλnfc.\delta^{ab}\epsilon^{cde}={1\over 3}~{}\delta^{ae}\epsilon^{bcd}-{1\over 2}~{}\lambda^{ae}_{n}\epsilon^{bcf}\lambda^{fd}_{n}+{1\over 2}~{}\lambda^{ae}_{n}\epsilon^{bdf}\lambda^{fc}_{n}\,. (13)

Note that the other color-octet-color-octet meson-baryon term λnaeϵcdfλnfb\lambda^{ae}_{n}\epsilon^{cdf}\lambda^{fb}_{n} can also be included, but the first coefficient 1/31/3 always remains the same. This is reasonable because the probability of the relevant fall-apart decay is just 33% if only considering the color degree of freedom, as shown in Figs. 2(a) and 3(a).

Using the above color rearrangement in the color space, together with the Fierz rearrangement in the Lorentz space to interchange the ubu_{b} and cec_{e} quark fields, we can transform an η\eta current into the combination of many θ\theta currents (both color-singlet-color-singlet and color-octet-color-octet ones). Similar arguments can be applied to relate

ηξ,ξθ,θη,\eta\leftrightarrow\xi\,,~{}~{}~{}\xi\leftrightarrow\theta\,,~{}~{}~{}\theta\leftrightarrow\eta\,, (14)

whose explicit formulae will be given in Sec. 3.

2.2 η/ξ(x,y)\eta/\xi(x,y) and heavy baryon fields

Table 1: Couplings of meson operators to meson states, where color indices are omitted for simplicity. Taken from Ref. Chen:2019wjd .
  Operators  IGJPCI^{G}J^{PC}       Mesons  IGJPCI^{G}J^{PC}    Couplings       Decay Constants
IS=c¯cI^{S}=\bar{c}c 0+0++0^{+}0^{++} χc0(1P)\chi_{c0}(1P) 0+0++0^{+}0^{++} 0|IS|χc0=mχc0fχc0\langle 0|I^{S}|\chi_{c0}\rangle=m_{\chi_{c0}}f_{\chi_{c0}} fχc0=343f_{\chi_{c0}}=343 MeV Veliev:2010gb
IP=c¯iγ5cI^{P}=\bar{c}i\gamma_{5}c 0+0+0^{+}0^{-+} ηc\eta_{c} 0+0+0^{+}0^{-+} 0|IP|ηc=ληc\langle 0|I^{P}|\eta_{c}\rangle=\lambda_{\eta_{c}} ληc=fηcmηc22mc\lambda_{\eta_{c}}={f_{\eta_{c}}m_{\eta_{c}}^{2}\over 2m_{c}}
IμV=c¯γμcI^{V}_{\mu}=\bar{c}\gamma_{\mu}c 010^{-}1^{--} J/ψJ/\psi 010^{-}1^{--} 0|IμV|J/ψ=mJ/ψfJ/ψϵμ\langle 0|I^{V}_{\mu}|J/\psi\rangle=m_{J/\psi}f_{J/\psi}\epsilon_{\mu} fJ/ψ=418f_{J/\psi}=418 MeV Becirevic:2013bsa
IμA=c¯γμγ5cI^{A}_{\mu}=\bar{c}\gamma_{\mu}\gamma_{5}c 0+1++0^{+}1^{++} ηc\eta_{c} 0+0+0^{+}0^{-+} 0|IμA|ηc=ipμfηc\langle 0|I^{A}_{\mu}|\eta_{c}\rangle=ip_{\mu}f_{\eta_{c}} fηc=387f_{\eta_{c}}=387 MeV Becirevic:2013bsa
χc1(1P)\chi_{c1}(1P) 0+1++0^{+}1^{++} 0|IμA|χc1=mχc1fχc1ϵμ\langle 0|I^{A}_{\mu}|\chi_{c1}\rangle=m_{\chi_{c1}}f_{\chi_{c1}}\epsilon_{\mu} fχc1=335f_{\chi_{c1}}=335 MeV Novikov:1977dq
IμνT=c¯σμνcI^{T}_{\mu\nu}=\bar{c}\sigma_{\mu\nu}c 01±0^{-}1^{\pm-} J/ψJ/\psi 010^{-}1^{--} 0|IμνT|J/ψ=ifJ/ψT(pμϵνpνϵμ)\langle 0|I^{T}_{\mu\nu}|J/\psi\rangle=if^{T}_{J/\psi}(p_{\mu}\epsilon_{\nu}-p_{\nu}\epsilon_{\mu}) fJ/ψT=410f_{J/\psi}^{T}=410 MeV Becirevic:2013bsa
hc(1P)h_{c}(1P) 01+0^{-}1^{+-} 0|IμνT|hc=ifhcTϵμναβϵαpβ\langle 0|I^{T}_{\mu\nu}|h_{c}\rangle=if^{T}_{h_{c}}\epsilon_{\mu\nu\alpha\beta}\epsilon^{\alpha}p^{\beta} fhcT=235f_{h_{c}}^{T}=235 MeV Becirevic:2013bsa
OS=c¯qO^{S}=\bar{c}q 0+0^{+} D¯0\bar{D}_{0}^{*} 0+0^{+} 0|OS|D¯0=mD0fD0\langle 0|O^{S}|\bar{D}_{0}^{*}\rangle=m_{D_{0}^{*}}f_{D_{0}^{*}} fD0=410f_{D_{0}^{*}}=410 MeV Narison:2015nxh
OP=c¯iγ5qO^{P}=\bar{c}i\gamma_{5}q 00^{-} D¯\bar{D} 00^{-} 0|OP|D¯=λD\langle 0|O^{P}|\bar{D}\rangle=\lambda_{D} λD=fDmD2mc+md\lambda_{D}={f_{D}m_{D}^{2}\over{m_{c}+m_{d}}}
OμV=c¯γμqO^{V}_{\mu}=\bar{c}\gamma_{\mu}q 11^{-} D¯\bar{D}^{*} 11^{-} 0|OμV|D¯=mDfDϵμ\langle 0|O^{V}_{\mu}|\bar{D}^{*}\rangle=m_{D^{*}}f_{D^{*}}\epsilon_{\mu} fD=253f_{D^{*}}=253 MeV Chang:2018aut
OμA=c¯γμγ5qO^{A}_{\mu}=\bar{c}\gamma_{\mu}\gamma_{5}q 1+1^{+} D¯\bar{D} 00^{-} 0|OμA|D¯=ipμfD\langle 0|O^{A}_{\mu}|\bar{D}\rangle=ip_{\mu}f_{D} fD=211.9f_{D}=211.9 MeV pdg
D¯1\bar{D}_{1} 1+1^{+} 0|OμA|D¯1=mD1fD1ϵμ\langle 0|O^{A}_{\mu}|\bar{D}_{1}\rangle=m_{D_{1}}f_{D_{1}}\epsilon_{\mu} fD1=356f_{D_{1}}=356 MeV Narison:2015nxh
OμνT=c¯σμνqO^{T}_{\mu\nu}=\bar{c}\sigma_{\mu\nu}q 1±1^{\pm} D¯\bar{D}^{*} 11^{-} 0|OμνT|D¯=ifDT(pμϵνpνϵμ)\langle 0|O^{T}_{\mu\nu}|\bar{D}^{*}\rangle=if_{D^{*}}^{T}(p_{\mu}\epsilon_{\nu}-p_{\nu}\epsilon_{\mu}) fDT220f_{D^{*}}^{T}\approx 220 MeV
1+1^{+}

In this subsection we construct the η(x,y)\eta(x,y) and ξ(x,y)\xi(x,y) currents. To do this, we need charmed meson operators as well as their couplings to charmed meson states, which can be found in Table 1 (see Ref. Chen:2019wjd and references therein for detailed discussions). We also need “ground-state” charmed baryon fields, which have been systematically constructed and studied in Refs. Liu:2007fg ; Chen:2017sci ; Cui:2019dzj using the method of QCD sum rules Shifman:1978bx ; Reinders:1984sr within the heavy quark effective theory Grinstein:1990mj ; Eichten:1989zv ; Falk:1990yz . We briefly summarize the results here.

The interpolating fields coupling to the JP=1/2+J^{P}=1/2^{+} ground-state charmed baryons Λc\Lambda_{c} and Σc\Sigma_{c} are

JΛc+\displaystyle J_{\Lambda_{c}^{+}} =\displaystyle= ϵabc[uaTγ5db]cc,\displaystyle\epsilon^{abc}[u_{a}^{T}\mathbb{C}\gamma_{5}d_{b}]c_{c}\,,
2JΣc++\displaystyle\sqrt{2}J_{\Sigma_{c}^{++}} =\displaystyle= ϵabc[uaTγμub]γμγ5cc,\displaystyle\epsilon^{abc}[u_{a}^{T}\mathbb{C}\gamma_{\mu}u_{b}]\gamma^{\mu}\gamma_{5}c_{c}\,, (15)
JΣc+\displaystyle J_{\Sigma_{c}^{+}} =\displaystyle= ϵabc[uaTγμdb]γμγ5cc,\displaystyle\epsilon^{abc}[u_{a}^{T}\mathbb{C}\gamma_{\mu}d_{b}]\gamma^{\mu}\gamma_{5}c_{c}\,,
2JΣc0\displaystyle\sqrt{2}J_{\Sigma_{c}^{0}} =\displaystyle= ϵabc[daTγμdb]γμγ5cc.\displaystyle\epsilon^{abc}[d_{a}^{T}\mathbb{C}\gamma_{\mu}d_{b}]\gamma^{\mu}\gamma_{5}c_{c}\,.

Their couplings are defined as

0|J|=fu,\langle 0|J_{\mathcal{B}}|\mathcal{B}\rangle=f_{\mathcal{B}}u_{\mathcal{B}}\,, (16)

where uu_{\mathcal{B}} is the Dirac spinor of the charmed baryon {\mathcal{B}}, and the decay constants ff_{\mathcal{B}} have been calculated in Refs. Liu:2007fg ; Chen:2017sci ; Cui:2019dzj to be

fΛc\displaystyle f_{\Lambda_{c}} =\displaystyle= 0.015GeV3,\displaystyle 0.015{\rm~{}GeV}^{3}\,, (17)
fΣc\displaystyle f_{\Sigma_{c}} =\displaystyle= 0.036GeV3.\displaystyle 0.036{\rm~{}GeV}^{3}\,.

The above results are evaluated within the heavy quark effective theory, but for light baryon fields we shall use full QCD decay constants (see Sec. 2.3). This causes some, but not large, theoretical uncertainties.

Actually, there are several other charmed baryon fields, such as:

  • the “ground-state” field of pure JP=3/2+J^{P}=3/2^{+}

    JΣc+μ=P3/2μαϵabc[uaTγαdb]cc,J^{\mu}_{\Sigma_{c}^{*+}}=P_{3/2}^{\mu\alpha}~{}\epsilon^{abc}[u_{a}^{T}\mathbb{C}\gamma_{\alpha}d_{b}]c_{c}\,, (18)

    which couples to the JP=3/2+J^{P}=3/2^{+} ground-state charmed baryons Σc+\Sigma_{c}^{*+}, with P3/2μαP_{3/2}^{\mu\alpha} the J=3/2J=3/2 projection operator

    P3/2μα=gμαγμγα4.P_{3/2}^{\mu\alpha}=g^{\mu\alpha}-{\gamma^{\mu}\gamma^{\alpha}\over 4}\,. (19)
  • the “excited” charmed baryon field

    J=ϵabc[uaTdb]γ5cc,J^{*}_{\mathcal{B}}=\epsilon^{abc}[u_{a}^{T}\mathbb{C}d_{b}]\gamma_{5}c_{c}\,, (20)

    which contains the excited diquark field ϵabcuaTdb\epsilon^{abc}u_{a}^{T}\mathbb{C}d_{b} of JP=0J^{P}=0^{-}.

For completeness, we list all of them in Appendix B, and refer to Ref. Dmitrasinovic for detailed discussions. The major advantage of using the heavy quark effective theory is that within this framework all these charmed baryon fields do not couple to the JP=1/2+J^{P}=1/2^{+} ground-state charmed baryons Λc\Lambda_{c} and Σc\Sigma_{c} groundbaryon . However, some of them, both “ground-state” and “excited” fields, can couple to the JP=3/2+J^{P}=3/2^{+} ground-state charmed baryon Σc\Sigma_{c}^{*}. Hence, we do/can not study decays of PcP_{c} states into the D¯Σc\bar{D}\Sigma_{c}^{*} final state in the present study.

Combing charmed meson operators and ground-state charmed baryon fields, we can construct the η(x,y)\eta(x,y) and ξ(x,y)\xi(x,y) currents. In the molecular picture the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457) can be interpreted as the D¯Σc\bar{D}\Sigma_{c} hadronic molecular state of JP=1/2J^{P}={1/2}^{-}, the D¯Σc\bar{D}^{*}\Sigma_{c} one of JP=1/2J^{P}={1/2}^{-}, and the D¯Σc\bar{D}^{*}\Sigma_{c} one of JP=3/2J^{P}={3/2}^{-} Wu:2012md ; Chen:2019asm ; Liu:2019tjn :

|D¯Σc;1/2;θ1\displaystyle|\bar{D}\Sigma_{c};{1/2}^{-};\theta_{1}\rangle (21)
=cosθ1|D¯0Σc+J=1/2+sinθ1|D¯Σc++J=1/2,\displaystyle~{}~{}~{}~{}=\cos\theta_{1}~{}|\bar{D}^{0}\Sigma_{c}^{+}\rangle_{J=1/2}+\sin\theta_{1}~{}|\bar{D}^{-}\Sigma_{c}^{++}\rangle_{J=1/2}\,,
|D¯Σc;1/2;θ2\displaystyle|\bar{D}^{*}\Sigma_{c};{1/2}^{-};\theta_{2}\rangle (22)
=cosθ2|D¯0Σc+J=1/2+sinθ2|D¯Σc++J=1/2,\displaystyle~{}~{}~{}~{}=\cos\theta_{2}~{}|\bar{D}^{*0}\Sigma_{c}^{+}\rangle_{J=1/2}+\sin\theta_{2}~{}|\bar{D}^{*-}\Sigma_{c}^{++}\rangle_{J=1/2}\,,
|D¯Σc;3/2;θ3\displaystyle|\bar{D}^{*}\Sigma_{c};{3/2}^{-};\theta_{3}\rangle (23)
=cosθ3|D¯0Σc+J=3/2+sinθ3|D¯Σc++J=3/2,\displaystyle~{}~{}~{}~{}=\cos\theta_{3}~{}|\bar{D}^{*0}\Sigma_{c}^{+}\rangle_{J=3/2}+\sin\theta_{3}~{}|\bar{D}^{*-}\Sigma_{c}^{++}\rangle_{J=3/2}\,,

where θi\theta_{i} (i=1,2,3i=1,2,3) are isospin parameters (θi=55o\theta_{i}=-55^{\rm o} for I=1/2I=1/2 and θi=35o\theta_{i}=35^{\rm o} for I=3/2I=3/2). Their relevant interpolating currents are:

Ji(α)\displaystyle J_{i}^{(\alpha)} =\displaystyle= cosθiηi(α)+sinθiξi(α),\displaystyle\cos\theta_{i}~{}\eta_{i}^{(\alpha)}+\sin\theta_{i}~{}\xi_{i}^{(\alpha)}\,, (24)

where

η1\displaystyle\eta_{1} =\displaystyle= [c¯aγ5ua]Σc+\displaystyle[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Sigma_{c}^{+}
=\displaystyle= [δabc¯aγ5ub][ϵcdeucTγμddγμγ5ce],\displaystyle[\delta^{ab}\bar{c}_{a}\gamma_{5}u_{b}]~{}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}d_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,,
η2\displaystyle\eta_{2} =\displaystyle= [c¯aγνua]γνγ5Σc+\displaystyle[\bar{c}_{a}\gamma_{\nu}u_{a}]~{}\gamma^{\nu}\gamma_{5}\Sigma_{c}^{+}
=\displaystyle= [δabc¯aγνub]γνγ5[ϵcdeucTγμddγμγ5ce],\displaystyle[\delta^{ab}\bar{c}_{a}\gamma_{\nu}u_{b}]~{}\gamma^{\nu}\gamma_{5}~{}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}d_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,,
η3α\displaystyle\eta_{3}^{\alpha} =\displaystyle= P3/2αν[c¯aγνua]Σc+\displaystyle P_{3/2}^{\alpha\nu}~{}[\bar{c}_{a}\gamma_{\nu}u_{a}]~{}\Sigma_{c}^{+}
=\displaystyle= [δabc¯aγνub]P3/2αν[ϵcdeucTγμddγμγ5ce],\displaystyle[\delta^{ab}\bar{c}_{a}\gamma_{\nu}u_{b}]~{}P_{3/2}^{\alpha\nu}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}d_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,,

and

ξ1\displaystyle\xi_{1} =\displaystyle= [c¯aγ5da]Σc++\displaystyle[\bar{c}_{a}\gamma_{5}d_{a}]~{}\Sigma_{c}^{++}
=\displaystyle= 12[δabc¯aγ5db][ϵcdeucTγμudγμγ5ce],\displaystyle{1\over\sqrt{2}}~{}[\delta^{ab}\bar{c}_{a}\gamma_{5}d_{b}]~{}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}u_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,,
ξ2\displaystyle\xi_{2} =\displaystyle= [c¯aγνda]γνγ5Σc++\displaystyle[\bar{c}_{a}\gamma_{\nu}d_{a}]~{}\gamma^{\nu}\gamma_{5}\Sigma_{c}^{++}
=\displaystyle= 12[δabc¯aγνdb]γνγ5[ϵcdeucTγμudγμγ5ce],\displaystyle{1\over\sqrt{2}}~{}[\delta^{ab}\bar{c}_{a}\gamma_{\nu}d_{b}]~{}\gamma^{\nu}\gamma_{5}~{}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}u_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,,
ξ3α\displaystyle\xi_{3}^{\alpha} =\displaystyle= P3/2αν[c¯aγνda]Σc++\displaystyle P_{3/2}^{\alpha\nu}~{}[\bar{c}_{a}\gamma_{\nu}d_{a}]~{}\Sigma_{c}^{++}
=\displaystyle= 12[δabc¯aγνdb]P3/2αν[ϵcdeucTγμudγμγ5ce].\displaystyle{1\over\sqrt{2}}~{}[\delta^{ab}\bar{c}_{a}\gamma_{\nu}d_{b}]~{}P_{3/2}^{\alpha\nu}[\epsilon^{cde}u_{c}^{T}\mathbb{C}\gamma_{\mu}u_{d}\gamma^{\mu}\gamma_{5}c_{e}]\,.

In the above expressions we have written JJ_{\mathcal{B}} as \mathcal{B} for simplicity.

2.3 θ(x,y)\theta(x,y) and light baryon fields

In this subsection we construct the θ(x,y)\theta(x,y) currents, which can be constructed by combing charmonium operators and light baryon fields. Hence, we need charmonium operators as well as their couplings to charmonium states, which can be found in Table 1 (see Ref. Chen:2019wjd and references therein for detailed discussions). We also need light baryon fields, which have been systematically studied in Refs. Ioffe:1981kw ; Ioffe:1982ce ; Espriu:1983hu ; Chen:2008qv ; Chen:2009sf ; Chen:2010ba ; Chen:2011rh ; Dmitrasinovic:2016hup . We briefly summarize the results here.

According to the results of Ref. Chen:2008qv , we can use uu, uu, and dd (q=u/dq=u/d) quarks to construct five independent baryon fields:

N1\displaystyle N_{1} =\displaystyle= ϵabc(uaTdb)γ5uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}d_{b})\gamma_{5}u_{c}\,,
N2\displaystyle N_{2} =\displaystyle= ϵabc(uaTγ5db)uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{5}d_{b})u_{c}\,,
N3μ\displaystyle N_{3}^{\mu} =\displaystyle= P3/2μαϵabc(uaTγαγ5db)γ5uc,\displaystyle P_{3/2}^{\mu\alpha}~{}\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\alpha}\gamma_{5}d_{b})\gamma_{5}u_{c}\,, (31)
N4μ\displaystyle N_{4}^{\mu} =\displaystyle= P3/2μαϵabc(uaTγαdb)uc,\displaystyle P_{3/2}^{\mu\alpha}~{}\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\alpha}d_{b})u_{c}\,,
N5μν\displaystyle N_{5}^{\mu\nu} =\displaystyle= P3/2μναβϵabc(uaTσαβdb)γ5uc,\displaystyle P_{3/2}^{\mu\nu\alpha\beta}~{}\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma_{\alpha\beta}d_{b})\gamma_{5}u_{c}\,,

where the projection operator P3/2μναβP_{3/2}^{\mu\nu\alpha\beta} is

P3/2μναβ\displaystyle P_{3/2}^{\mu\nu\alpha\beta} =\displaystyle= gμαgνβ2gμβgνα2gμα4γνγβ+gμβ4γνγα\displaystyle{g^{\mu\alpha}g^{\nu\beta}\over 2}-{g^{\mu\beta}g^{\nu\alpha}\over 2}-{g^{\mu\alpha}\over 4}\gamma^{\nu}\gamma^{\beta}+{g^{\mu\beta}\over 4}\gamma^{\nu}\gamma^{\alpha} (32)
+gνα4γμγβgνβ4γμγα+16σμνσαβ.\displaystyle+{g^{\nu\alpha}\over 4}\gamma^{\mu}\gamma^{\beta}-{g^{\nu\beta}\over 4}\gamma^{\mu}\gamma^{\alpha}+{1\over 6}\sigma^{\mu\nu}\sigma^{\alpha\beta}\,.

All the other light baryon fields (including other ϵabc[uaTΓ1db]Γ2uc\epsilon^{abc}[u^{T}_{a}\mathbb{C}\Gamma_{1}d_{b}]\Gamma_{2}u_{c} fields as well as all the ϵabc[uaTΓ3ub]Γ4dc\epsilon^{abc}[u^{T}_{a}\mathbb{C}\Gamma_{3}u_{b}]\Gamma_{4}d_{c} fields) can be transformed to N1,2,3,4,5(μν)N^{(\mu\nu)}_{1,2,3,4,5}, as shown in Appendix B.

Among the five fields defined in Eqs. (31), the former two N1,2N_{1,2} have pure spin J=1/2J=1/2, and the latter three N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5} have pure spin J=3/2J=3/2. In the present study we shall study decays of PcP_{c} states into charmonia and protons, but not study their decays into charmonia and Δ/N\Delta/N^{*}, since the couplings of N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5} to Δ/N\Delta/N^{*} have not been (well) investigated in the literature. Therefore, we only keep N1,2N_{1,2} but omit N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5}. Moreover, we shall find that all the terms in our calculations do not depend on N1+N2N_{1}+N_{2}, so we only need to consider the Ioffe’s light baryon field

NN1N2.N\equiv N_{1}-N_{2}\,. (33)

This field has been well studied in Refs. Ioffe:1981kw ; Ioffe:1982ce ; Espriu:1983hu and suggested to couple to the proton through

0|N|p=fpup,\langle 0|N|p\rangle=f_{p}u_{p}\,, (34)

with the decay constant evaluated in Ref. Chen:2012ex to be

fp=0.011GeV3.f_{p}=0.011{\rm~{}GeV}^{3}\,. (35)

3 Fierz rearrangement

Refer to caption
(a)  ηθ\eta\rightarrow\theta
Refer to caption
(b)  ηη\eta\rightarrow\eta
Refer to caption
(c)  ηξ\eta\rightarrow\xi
Figure 2: Fall-apart decays of PcP_{c} states as D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular states, investigated through the η(x,y)\eta(x,y) currents. There are three possibilities: a) ηθ\eta\rightarrow\theta, b) ηη\eta\rightarrow\eta, and c) ηξ\eta\rightarrow\xi. Their probabilities are the same (33%), if only considering the color degree of freedom.
Refer to caption
(a)  ξθ\xi\rightarrow\theta
Refer to caption
(b)  ξη\xi\rightarrow\eta
Refer to caption
(c)  ξη\xi\rightarrow\eta
Figure 3: Fall-apart decays of PcP_{c} states as D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states, investigated through the ξ(x,y)\xi(x,y) currents. There are three possibilities: a) ξθ\xi\rightarrow\theta, b) ξη\xi\rightarrow\eta, and c) again ξη\xi\rightarrow\eta. Their probabilities are the same (33%), if only considering the color degree of freedom.

In this section we study the Fierz rearrangement of the η(x,y)\eta(x,y) and ξ(x,y)\xi(x,y) currents, which will be used to investigate fall-apart decays of PcP_{c} states in Sec. 4. Taking η(x,y)\eta(x,y) as an example, when the c¯a(x)\bar{c}_{a}(x) and ce(y)c_{e}(y) quarks meet each other and the ub(x)u_{b}(x), uc(y)u_{c}(y), and dd(y)d_{d}(y) quarks meet together at the same time, a D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular state can decay into one charmonium meson and one light baryon. This is the decay process depicted in Fig. 2(a):

[δabc¯a(x)ub(x)][ϵcdeuc(y)dd(y)ce(y)]\displaystyle\left[\delta^{ab}\bar{c}_{a}(x)u_{b}(x)\right]~{}\left[\epsilon^{cde}u_{c}(y)d_{d}(y)c_{e}(y)\right]
\displaystyle\rightarrow δabc¯a(xx)ub(xy)\displaystyle\delta^{ab}\bar{c}_{a}(x\to x^{\prime})u_{b}(x\to y^{\prime})
ϵcdeuc(yy)dd(yy)ce(yx)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\otimes\epsilon^{cde}u_{c}(y\to y^{\prime})d_{d}(y\to y^{\prime})c_{e}(y\to x^{\prime})
=\displaystyle= 13δaeϵbcdc¯a(x)ub(y)uc(y)dd(y)ce(x)+\displaystyle{1\over 3}\delta^{ae}\epsilon^{bcd}\otimes\bar{c}_{a}(x^{\prime})u_{b}(y^{\prime})\otimes u_{c}(y^{\prime})d_{d}(y^{\prime})c_{e}(x^{\prime})+\cdots
=\displaystyle= 13[δaec¯a(x)ce(x)][ϵbcdub(y)uc(y)dd(y)]+.\displaystyle{1\over 3}\left[\delta^{ae}\bar{c}_{a}(x^{\prime})c_{e}(x^{\prime})\right]\oplus\left[\epsilon^{bcd}u_{b}(y^{\prime})u_{c}(y^{\prime})d_{d}(y^{\prime})\right]+\cdots.

The first step is a dynamical process, during which we assume that all the color, flavor, spin and orbital structures remain unchanged, so the relevant current also remains the same. The second and third steps can be described by applying the Fierz rearrangement to interchange both the color and Dirac indices of the ub(y)u_{b}(y^{\prime}) and ce(x)c_{e}(x^{\prime}) quark fields.

Still taking η(x,y)\eta(x,y) as an example: when the c¯a(x)\bar{c}_{a}(x) and uc(y)u_{c}(y) quarks meet each other and the ub(x)u_{b}(x), dd(y)d_{d}(y), and ce(y)c_{e}(y) quarks meet together at the same time, a D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular state can decay into one charmed meson and one charmed baryon, as depicted in Fig. 2(b); when the c¯a(x)\bar{c}_{a}(x) and dd(y)d_{d}(y) quarks meet each other and the ub(x)u_{b}(x), uc(y)u_{c}(y), and ce(y)c_{e}(y) quarks meet together at the same time, a D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular state can also decay into one charmed meson and one charmed baryon, as depicted in Fig. 2(c). Similarly, decays of D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states can be investigated through the ξ(x,y)\xi(x,y) currents, as depicted in Fig. 3(a,b,c).

In the following subsections we shall study the above fall-apart decay processes, by applying the Fierz rearrangement fierz of the Dirac and color indices to relate the η\eta, ξ\xi, and θ\theta currents. This method has been used to systematically study light baryon and tetraquark operators/currents in Refs. Chen:2008qv ; Chen:2009sf ; Chen:2010ba ; Chen:2011rh ; Dmitrasinovic:2016hup ; Chen:2006hy ; Chen:2006zh ; Chen:2007xr ; Chen:2008ej ; Chen:2008qw ; Chen:2013jra ; Chen:2018kuu . We note that the Fierz rearrangement in the Lorentz space is actually a matrix identity, which is valid if each quark field in the initial and final operators is at the same location, e.g., we can apply the Fierz rearrangement to transform a non-local η\eta current with the quark fields η=[c¯(x)u(y)][u(y)d(y)c(x)]\eta=[\bar{c}(x^{\prime})u(y^{\prime})]~{}[u(y^{\prime})d(y^{\prime})c(x^{\prime})] into the combination of many non-local θ\theta currents with the quark fields at same locations θ=[c¯(x)c(x)][u(y)u(y)d(y)]\theta=[\bar{c}(x^{\prime})c(x^{\prime})]~{}[u(y^{\prime})u(y^{\prime})d(y^{\prime})]. Hence, this rearrangement exactly describes the third step of Eq. (3).

3.1 ηθ\eta\rightarrow\theta and ξθ\xi\rightarrow\theta

Using Eq. (13), together with the Fierz rearrangement to interchange the ubu_{b} and cec_{e} quark fields, we can transform an η(x,y)\eta(x,y) current into the combination of many θ\theta currents:

η1\displaystyle\eta_{1} \displaystyle\rightarrow 112[c¯aca]γ5N112[c¯aγ5ca]N\displaystyle{1\over 12}~{}[\bar{c}_{a}c_{a}]~{}\gamma_{5}N-{1\over 12}~{}[\bar{c}_{a}\gamma_{5}c_{a}]~{}N
+124[c¯aγμγ5ca]γμN+124[c¯aγμca]γμγ5N\displaystyle+{1\over 24}~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N+{1\over 24}~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N
+,\displaystyle+~{}\cdots\,,
η2\displaystyle\eta_{2} \displaystyle\rightarrow 16[c¯aca]γ5N+16[c¯aγ5ca]N\displaystyle{1\over 6}~{}[\bar{c}_{a}c_{a}]~{}\gamma_{5}N+{1\over 6}~{}[\bar{c}_{a}\gamma_{5}c_{a}]~{}N
+112[c¯aγμγ5ca]γμN112[c¯aγμca]γμγ5N\displaystyle+{1\over 12}~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N-{1\over 12}~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N
112[c¯aσμνca]σμνγ5N+,\displaystyle-{1\over 12}~{}[\bar{c}_{a}\sigma_{\mu\nu}c_{a}]~{}\sigma^{\mu\nu}\gamma_{5}N~{}+~{}\cdots\,,
η3α\displaystyle\eta_{3}^{\alpha} \displaystyle\rightarrow [c¯aγμγ5ca](116gαμγ5+i48σαμγ5)N\displaystyle[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\left({1\over 16}g^{\alpha\mu}\gamma_{5}+{i\over 48}\sigma^{\alpha\mu}\gamma_{5}\right)N
+[c¯aγμca](116gαμi48σαμ)N+.\displaystyle+~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\left(-{1\over 16}g^{\alpha\mu}-{i\over 48}\sigma^{\alpha\mu}\right)N~{}+~{}\cdots\,.

In the above transformations we have changed the coordinates according to the first step of Eq. (3), which are not shown explicitly here for simplicity. Besides, we have omitted in \cdots that: a) the color-octet-color-octet meson-baryon terms, and b) terms depending on the J=3/2J=3/2 light baryon fields N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5}. Hence, we have only kept, but kept all, the color-singlet-color-singlet meson-baryon terms depending on the J=1/2J=1/2 fields N1N_{1} and N2N_{2}. This is not an easy task because we need to use many identities given in Eqs. (127) and (128) of Appendix B in order to safely omit N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5}. Moreover, we can find in the above expressions that all terms contain the Ioffe’s light baryon field NN1N2N\equiv N_{1}-N_{2}, and there are no terms depending on N1+N2N_{1}+N_{2}.

The above transformations can be used to describe the fall-apart decay process depicted in Fig. 2(a) for D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular states. Similarly, we can investigate the fall-apart decay process depicted in Fig. 3(a) for D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states. To do this, we need to use Eq. (13), together with the Fierz rearrangement to interchange the dbd_{b} and cec_{e} quark fields, to transform a ξ(x,y)\xi(x,y) current into the combination of many θ\theta currents:

2ξ1\displaystyle\sqrt{2}\xi_{1} \displaystyle\rightarrow 16[c¯aca]γ5N+16[c¯aγ5ca]N\displaystyle-{1\over 6}~{}[\bar{c}_{a}c_{a}]~{}\gamma_{5}N+{1\over 6}~{}[\bar{c}_{a}\gamma_{5}c_{a}]~{}N
112[c¯aγμγ5ca]γμN112[c¯aγμca]γμγ5N\displaystyle-{1\over 12}~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N-{1\over 12}~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N
+,\displaystyle+~{}\cdots\,,
2ξ2\displaystyle\sqrt{2}\xi_{2} \displaystyle\rightarrow 13[c¯aca]γ5N13[c¯aγ5ca]N\displaystyle-{1\over 3}~{}[\bar{c}_{a}c_{a}]~{}\gamma_{5}N-{1\over 3}~{}[\bar{c}_{a}\gamma_{5}c_{a}]~{}N
16[c¯aγμγ5ca]γμN+16[c¯aγμca]γμγ5N\displaystyle-{1\over 6}~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N+{1\over 6}~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N
+16[c¯aσμνca]σμνγ5N+,\displaystyle+{1\over 6}~{}[\bar{c}_{a}\sigma_{\mu\nu}c_{a}]~{}\sigma^{\mu\nu}\gamma_{5}N~{}+~{}\cdots\,,
2ξ3α\displaystyle\sqrt{2}\xi_{3}^{\alpha} \displaystyle\rightarrow [c¯aγμγ5ca](18gαμγ5i24σαμγ5)N\displaystyle[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\left(-{1\over 8}g^{\alpha\mu}\gamma_{5}-{i\over 24}\sigma^{\alpha\mu}\gamma_{5}\right)N
+[c¯aγμca](18gαμ+i24σαμ)N+.\displaystyle+~{}[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\left({1\over 8}g^{\alpha\mu}+{i\over 24}\sigma^{\alpha\mu}\right)N~{}+~{}\cdots\,.

3.2 ηη\eta\rightarrow\eta and ηξ\eta\rightarrow\xi

First we derive a color rearrangement similar to Eq. (13):

δabϵcde=13δacϵbde12λnacϵbdfλnfe+12λnacϵbefλnfd.\delta^{ab}\epsilon^{cde}={1\over 3}~{}\delta^{ac}\epsilon^{bde}-{1\over 2}~{}\lambda^{ac}_{n}\epsilon^{bdf}\lambda^{fe}_{n}+{1\over 2}~{}\lambda^{ac}_{n}\epsilon^{bef}\lambda^{fd}_{n}\,. (43)

Using this identity, together with the Fierz rearrangement to interchange the ubu_{b} and ucu_{c} quark fields, we can transform an η(x,y)\eta(x,y) current into the combination of many η\eta currents.

Besides, we can derive another similar color rearrangement:

δabϵcde=13δadϵcbe+12λnadϵbcfλnfe12λnadϵbefλnfc.\delta^{ab}\epsilon^{cde}={1\over 3}~{}\delta^{ad}\epsilon^{cbe}+{1\over 2}~{}\lambda^{ad}_{n}\epsilon^{bcf}\lambda^{fe}_{n}-{1\over 2}~{}\lambda^{ad}_{n}\epsilon^{bef}\lambda^{fc}_{n}\,. (44)

Using this identity, together with the Fierz rearrangement to interchange the ubu_{b} and ddd_{d} quark fields, we can transform an η(x,y)\eta(x,y) current into the combination of many ξ\xi currents.

The above two transformations describe the fall-apart decay processes depicted in Fig. 2(b,c) for D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} molecular states. Altogether, we obtain:

η1\displaystyle\eta_{1} \displaystyle\rightarrow 112[c¯aγμua]γμγ5Λc+\displaystyle{1\over 12}~{}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\gamma^{\mu}\gamma_{5}\Lambda_{c}^{+}
112[c¯aγ5ua]Σc+212[c¯aγ5da]Σc++\displaystyle-{1\over 12}~{}[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Sigma_{c}^{+}-{\sqrt{2}\over 12}~{}[\bar{c}_{a}\gamma_{5}d_{a}]~{}\Sigma_{c}^{++}
124[c¯aσμνua]ϵμνρσγσγ5(14γργ5Σc+)\displaystyle-{1\over 24}~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\epsilon^{\mu\nu\rho\sigma}\gamma_{\sigma}\gamma_{5}\left(-{1\over 4}\gamma_{\rho}\gamma_{5}\Sigma_{c}^{+}\right)
224[c¯aσμνda]ϵμνρσγσγ5(14γργ5Σc++)+,\displaystyle-{\sqrt{2}\over 24}~{}[\bar{c}_{a}\sigma_{\mu\nu}d_{a}]\epsilon^{\mu\nu\rho\sigma}\gamma_{\sigma}\gamma_{5}\left(-{1\over 4}\gamma_{\rho}\gamma_{5}\Sigma_{c}^{++}\right)+\cdots\,,
η2\displaystyle\eta_{2} \displaystyle\rightarrow 13[c¯aγ5ua]Λc+112[c¯aσμνua]σμνγ5Λc+\displaystyle{1\over 3}~{}[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Lambda_{c}^{+}-{1\over 12}~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\Lambda_{c}^{+}
16[c¯aγμua](14γμγ5Σc+)\displaystyle-{1\over 6}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\left(-{1\over 4}\gamma^{\mu}\gamma_{5}\Sigma_{c}^{+}\right)
i6[c¯aγμγ5ua]σμνγ5(14γνγ5Σc+)\displaystyle-{i\over 6}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}u_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)
26[c¯aγμda](14γμγ5Σc++)\displaystyle-{\sqrt{2}\over 6}[\bar{c}_{a}\gamma_{\mu}d_{a}]~{}\left(-{1\over 4}\gamma^{\mu}\gamma_{5}\Sigma_{c}^{++}\right)
i26[c¯aγμγ5da]σμνγ5(14γνγ5Σc++)+,\displaystyle-{i\sqrt{2}\over 6}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}d_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{++}\right)+\cdots\,,
η3α\displaystyle\eta_{3}^{\alpha} \displaystyle\rightarrow (i48gαμγν+i48gανγμ148ϵαβμνγβγ5)\displaystyle\left(-{i\over 48}g^{\alpha\mu}\gamma^{\nu}+{i\over 48}g^{\alpha\nu}\gamma^{\mu}-{1\over 48}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
×[c¯aσμνua]Λc+\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\Lambda_{c}^{+}
+(112gαμγνγ5112gανγμγ5+124gμνγαγ5)\displaystyle+~{}\left(-{1\over 12}g^{\alpha\mu}\gamma^{\nu}\gamma_{5}-{1\over 12}g^{\alpha\nu}\gamma^{\mu}\gamma_{5}+{1\over 24}g^{\mu\nu}\gamma^{\alpha}\gamma_{5}\right)
×[c¯aγμua](14γνγ5Σc+)\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)
+(124gαμγν124gανγμi24ϵαβμνγβγ5)\displaystyle+~{}\left({1\over 24}g^{\alpha\mu}\gamma^{\nu}-{1\over 24}g^{\alpha\nu}\gamma^{\mu}-{i\over 24}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
×[c¯aγμγ5ua](14γνγ5Σc+)\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}u_{a}]~{}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)
+(112gαμγνγ5112gανγμγ5+124gμνγαγ5)\displaystyle+~{}\left(-{1\over 12}g^{\alpha\mu}\gamma^{\nu}\gamma_{5}-{1\over 12}g^{\alpha\nu}\gamma^{\mu}\gamma_{5}+{1\over 24}g^{\mu\nu}\gamma^{\alpha}\gamma_{5}\right)
×2[c¯aγμda](14γνγ5Σc++)\displaystyle~{}~{}~{}\times~{}\sqrt{2}~{}[\bar{c}_{a}\gamma_{\mu}d_{a}]~{}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{++}\right)
+(124gαμγν124gανγμi24ϵαβμνγβγ5)\displaystyle+~{}\left({1\over 24}g^{\alpha\mu}\gamma^{\nu}-{1\over 24}g^{\alpha\nu}\gamma^{\mu}-{i\over 24}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
×2[c¯aγμγ5da](14γνγ5Σc++)+.\displaystyle~{}~{}~{}\times\sqrt{2}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}d_{a}]\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{++}\right)+\cdots.

In the above transformations we have only kept, but kept all, the color-singlet-color-singlet meson-baryon terms depending on the JP=1/2+J^{P}=1/2^{+} “ground-state” charmed baryon fields given in Eqs. (15). Again, this is not an easy task because we need to carefully omit the terms depending on the other charmed baryon fields, B𝟑¯,1GB^{G}_{\mathbf{\bar{3}},1}, B𝟑¯,3GB^{G}_{\mathbf{\bar{3}},3}, B𝟑¯,μGB^{G}_{\mathbf{\bar{3}},\mu}, B𝟔,5UB^{U}_{\mathbf{6},5}, B𝟔,μUB^{U}_{\mathbf{6},\mu}, B𝟔,μUB^{\prime U}_{\mathbf{6},\mu}, and B𝟔,μνUB^{U}_{\mathbf{6},\mu\nu}, whose definitions can be found in Appendix B.

3.3 ξη\xi\rightarrow\eta

Following the procedures used in the previous subsection, we can transform a ξ(x,y)\xi(x,y) current into the combination of many η\eta currents (without ξ\xi currents):

2ξ1\displaystyle\sqrt{2}\xi_{1} \displaystyle\rightarrow 16[c¯aγμua]γμγ5Λc+16[c¯aγ5ua]Σc+\displaystyle-{1\over 6}~{}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\gamma^{\mu}\gamma_{5}\Lambda_{c}^{+}-{1\over 6}~{}[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Sigma_{c}^{+}
112[c¯aσμνua]ϵμνρσγσγ5(14γργ5Σc+)\displaystyle-{1\over 12}~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\epsilon^{\mu\nu\rho\sigma}\gamma_{\sigma}\gamma_{5}\left(-{1\over 4}\gamma_{\rho}\gamma_{5}\Sigma_{c}^{+}\right)
+,\displaystyle+~{}\cdots\,,
2ξ2\displaystyle\sqrt{2}\xi_{2} \displaystyle\rightarrow 23[c¯aγ5ua]Λc++16[c¯aσμνua]σμνγ5Λc+\displaystyle-{2\over 3}~{}[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Lambda_{c}^{+}+{1\over 6}~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\Lambda_{c}^{+}
13[c¯aγμua](14γμγ5Σc+)\displaystyle-{1\over 3}~{}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\left(-{1\over 4}\gamma^{\mu}\gamma_{5}\Sigma_{c}^{+}\right)
i3[c¯aγμγ5ua]σμνγ5(14γνγ5Σc+)+,\displaystyle-{i\over 3}~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}u_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)+\cdots\,,
2ξ3α\displaystyle\sqrt{2}\xi_{3}^{\alpha} \displaystyle\rightarrow (i24gαμγνi24gανγμ+124ϵαβμνγβγ5)\displaystyle\left({i\over 24}g^{\alpha\mu}\gamma^{\nu}-{i\over 24}g^{\alpha\nu}\gamma^{\mu}+{1\over 24}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
×[c¯aσμνua]Λc+\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\Lambda_{c}^{+}
+(16gαμγνγ516gανγμγ5+112gμνγαγ5)\displaystyle+~{}\left(-{1\over 6}g^{\alpha\mu}\gamma^{\nu}\gamma_{5}-{1\over 6}g^{\alpha\nu}\gamma^{\mu}\gamma_{5}+{1\over 12}g^{\mu\nu}\gamma^{\alpha}\gamma_{5}\right)
×[c¯aγμua](14γνγ5Σc+)\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)
+(112gαμγν112gανγμi12ϵαβμνγβγ5)\displaystyle+~{}\left({1\over 12}g^{\alpha\mu}\gamma^{\nu}-{1\over 12}g^{\alpha\nu}\gamma^{\mu}-{i\over 12}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
×[c¯aγμγ5ua](14γνγ5Σc+)+.\displaystyle~{}~{}~{}\times~{}[\bar{c}_{a}\gamma_{\mu}\gamma_{5}u_{a}]~{}\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\Sigma_{c}^{+}\right)+\cdots\,.

The above transformations describe the fall-apart decay processes depicted in Fig. 3(b,c) for D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states.

4 Decay properties of D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} and D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states

In this section we use the Fierz rearrangements derived in the previous section to extract some strong decay properties of D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} and D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} molecular states. We shall separately investigate:

  • |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle, the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} molecular state of JP=1/2J^{P}=1/2^{-}, through the η1(x,y)\eta_{1}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.2);

  • |D¯Σc++;1/2|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle, the D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} molecular state of JP=1/2J^{P}=1/2^{-}, through the ξ1(x,y)\xi_{1}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3);

  • |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle, the D¯0Σc+\bar{D}^{*0}\Sigma_{c}^{+} molecular state of JP=1/2J^{P}=1/2^{-}, through the η2(x,y)\eta_{2}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.2);

  • |D¯Σc++;1/2|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle, the D¯Σc++\bar{D}^{*-}\Sigma_{c}^{++} molecular state of JP=1/2J^{P}=1/2^{-}, through the ξ2(x,y)\xi_{2}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3);

  • |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle, the D¯0Σc+\bar{D}^{*0}\Sigma_{c}^{+} molecular state of JP=3/2J^{P}=3/2^{-}, through the η3α(x,y)\eta_{3}^{\alpha}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.2);

  • |D¯Σc++;3/2|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle, the D¯Σc++\bar{D}^{*-}\Sigma_{c}^{++} molecular state of JP=3/2J^{P}=3/2^{-}, through the ξ3α(x,y)\xi_{3}^{\alpha}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3).

The obtained results will be combined in Sec. 5 to further study decay properties of D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with definite isospins.

4.1 η1θ/η/ξ\eta_{1}\rightarrow\theta/\eta/\xi

In this subsection we study strong decay properties of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle through the η1(x,y)\eta_{1}(x,y) current. First we use the Fierz rearrangement given in Eq. (3.1) to study the decay process depicted in Fig. 2(a), i.e., decays of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle into one charmonium meson and one light baryon. Together with Table 1, we extract the following decay channels that are kinematically allowed:

  1. 1.

    The decay of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle into ηcp\eta_{c}p is contributed by both [c¯aγ5ca]N[\bar{c}_{a}\gamma_{5}c_{a}]~{}N and [c¯aγμγ5ca]γμN[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N:

    D¯0Σc+;1/2(q)|ηc(q1)p(q2)\displaystyle\langle\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\eta_{c}(q_{1})~{}p(q_{2})\rangle
    \displaystyle\approx ia112ληcfpu¯up+ia124fηcfpq1μu¯γμup\displaystyle{ia_{1}\over 12}~{}\lambda_{\eta_{c}}f_{p}~{}\bar{u}u_{p}+{ia_{1}\over 24}~{}f_{\eta_{c}}f_{p}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}
    \displaystyle\equiv Aηcpu¯up+Aηcpq1μu¯γμup,\displaystyle A_{\eta_{c}p}~{}\bar{u}u_{p}+A^{\prime}_{\eta_{c}p}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}\,,

    where uu and upu_{p} are the Dirac spinors of the PcP_{c} state with JP=1/2J^{P}=1/2^{-} and the proton, respectively; a1a_{1} is an overall factor, related to the coupling of η1(x,y)\eta_{1}(x,y) to |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle as well as the dynamical process of Fig. 2(a); the two coupling constants AηcpA_{\eta_{c}p} and AηcpA^{\prime}_{\eta_{c}p} are defined for the two different effective Lagrangians

    ηcp\displaystyle\mathcal{L}_{\eta_{c}p} =\displaystyle= AηcpP¯cNηc,\displaystyle A_{\eta_{c}p}~{}\bar{P}_{c}N~{}\eta_{c}\,, (52)
    ηcp\displaystyle\mathcal{L}^{\prime}_{\eta_{c}p} =\displaystyle= AηcpP¯cγμNμηc.\displaystyle A^{\prime}_{\eta_{c}p}~{}\bar{P}_{c}\gamma_{\mu}N~{}\partial^{\mu}\eta_{c}\,. (53)
  2. 2.

    The decay of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle into J/ψpJ/\psi p is contributed by [c¯aγμca]γμγ5N[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N:

    D¯0Σc+;1/2(q)|J/ψ(q1,ϵ1)p(q2)\displaystyle\langle\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}(q)|J/\psi(q_{1},\epsilon_{1})~{}p(q_{2})\rangle
    \displaystyle\approx a124mJ/ψfJ/ψfpϵ1μu¯γμγ5up\displaystyle{a_{1}\over 24}~{}m_{J/\psi}f_{J/\psi}f_{p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{p}
    \displaystyle\equiv Aψpϵ1μu¯γμγ5up,\displaystyle A_{\psi p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{p}\,,

    where AψpA_{\psi p} is defined for

    ψp\displaystyle\mathcal{L}_{\psi p} =\displaystyle= AψpP¯cγμγ5Nψμ.\displaystyle A_{\psi p}~{}\bar{P}_{c}\gamma_{\mu}\gamma_{5}N~{}\psi^{\mu}\,. (55)

Then we use the Fierz rearrangement given in Eq. (3.2) to study the decay processes depicted in Fig. 2(b,c), i.e., decays of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle into one charmed meson and one charmed baryon. Together with Table 1, we extract only one decay channel that is kinematically allowed:

  1. 3.

    The decay of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle into D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} is contributed by [c¯aγμua]γμγ5Λc+[\bar{c}_{a}\gamma_{\mu}u_{a}]~{}\gamma^{\mu}\gamma_{5}\Lambda_{c}^{+}:

    D¯0Σc+;1/2(q)|D¯0(q1,ϵ1)Λc+(q2)\displaystyle\langle\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\bar{D}^{*0}(q_{1},\epsilon_{1})~{}\Lambda_{c}^{+}(q_{2})\rangle
    \displaystyle\approx a212mDfDfΛcϵ1μu¯γμγ5uΛc\displaystyle{a_{2}\over 12}~{}m_{D^{*}}f_{D^{*}}f_{\Lambda_{c}}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{\Lambda_{c}}
    \displaystyle\equiv AD¯Λcϵ1μu¯γμγ5uΛc+,\displaystyle A_{\bar{D}^{*}\Lambda_{c}}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{\Lambda_{c}^{+}}\,,

    where uΛcu_{\Lambda_{c}} is the Dirac spinor of the Λc+\Lambda_{c}^{+}; a2a_{2} is an overall factor, related to the coupling of η1(x,y)\eta_{1}(x,y) to |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle as well as the dynamical processes of Fig. 2(b,c); the coupling constant AD¯ΛcA_{\bar{D}^{*}\Lambda_{c}} is defined for

    D¯Λc\displaystyle\mathcal{L}_{\bar{D}^{*}\Lambda_{c}} =\displaystyle= AD¯ΛcP¯cγμγ5Λc+D¯,μ.\displaystyle A_{\bar{D}^{*}\Lambda_{c}}~{}\bar{P}_{c}\gamma_{\mu}\gamma_{5}\Lambda_{c}^{+}~{}\bar{D}^{*,\mu}\,. (57)

In the molecular picture the Pc(4312)P_{c}(4312) is usually interpreted as the D¯Σc\bar{D}\Sigma_{c} hadronic molecular state of JP=1/2J^{P}={1/2}^{-}. Accordingly, we assume the mass of |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle to be 4311.9 MeV (more parameters can be found in Appendix A), and summarize the above decay amplitudes to obtain the following (relative) decay widths:

Γ(|D¯0Σc+;1/2ηcp)\displaystyle\Gamma(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= a121.1×105GeV7,\displaystyle a_{1}^{2}~{}1.1\times 10^{5}~{}{\rm GeV}^{7}\,,
Γ(|D¯0Σc+;1/2J/ψp)\displaystyle\Gamma(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\to J/\psi p) =\displaystyle= a122.8×104GeV7,\displaystyle a_{1}^{2}~{}2.8\times 10^{4}~{}{\rm GeV}^{7}\,,
Γ(|D¯0Σc+;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= a222.0×104GeV7.\displaystyle a_{2}^{2}~{}2.0\times 10^{4}~{}{\rm GeV}^{7}\,.

There are two different effective Lagrangians for the |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle decays into the ηcp\eta_{c}p final state, as given in Eqs. (52) and (53). It is interesting to see their individual contributions:

Γ(|D¯0Σc+;1/2ηcp)|ηcp\displaystyle\Gamma(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\to\eta_{c}p)\big{|}_{\mathcal{L}_{\eta_{c}p}} =\displaystyle= a124.9×104GeV7,\displaystyle a_{1}^{2}~{}4.9\times 10^{4}~{}{\rm GeV}^{7}\,,
Γ(|D¯0Σc+;1/2ηcp)|ηcp\displaystyle\Gamma(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\to\eta_{c}p)\big{|}_{\mathcal{L}^{\prime}_{\eta_{c}p}} =\displaystyle= a121.1×104GeV7.\displaystyle a_{1}^{2}~{}1.1\times 10^{4}~{}{\rm GeV}^{7}\,.

Hence, the former is about four times larger than the latter. We note that their interference can be important, but the phase angle between them, i.e., the phase angle between the two coupling constants AηcpA_{\eta_{c}p} and AηcpA^{\prime}_{\eta_{c}p}, can not be well determined in the present study. We shall investigate its relevant uncertainty in Appendix C.

4.2 ξ1θ/η\xi_{1}\rightarrow\theta/\eta

In this subsection we follow the procedures used in the previous subsection to study decay properties of |D¯Σc++;1/2|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle, through the ξ1(x,y)\xi_{1}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3). Again, we assume its mass to be 4311.9 MeV, and obtain the following (relative) decay widths:

Γ(|D¯Σc++;1/2ηcp)\displaystyle\Gamma(|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= b122.1×105GeV7,\displaystyle b_{1}^{2}~{}2.1\times 10^{5}~{}{\rm GeV}^{7}\,,
Γ(|D¯Σc++;1/2J/ψp)\displaystyle\Gamma(|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle\to J/\psi p) =\displaystyle= b125.7×104GeV7,\displaystyle b_{1}^{2}~{}5.7\times 10^{4}~{}{\rm GeV}^{7}\,,
Γ(|D¯Σc++;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= b223.9×104GeV7.\displaystyle b_{2}^{2}~{}3.9\times 10^{4}~{}{\rm GeV}^{7}\,.

Here b1b_{1} and b2b_{2} are two overall factors, which we simply assume to be b1=a1b_{1}=a_{1} and b2=a2b_{2}=a_{2} in the following analyses.

The above widths of the |D¯Σc++;1/2|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle decays into the ηcp\eta_{c}p, J/ψpJ/\psi p, and D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} final states are all two times larger than those given in Eqs. (LABEL:result:eta1) for the |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle decays.

4.3 η2θ/η/ξ\eta_{2}\rightarrow\theta/\eta/\xi

In this subsection we follow the procedures used in Sec. 4.1 to study decay properties of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle through the η2(x,y)\eta_{2}(x,y) current. First we use the Fierz rearrangement given in Eq. (3.1) to study the decay process depicted in Fig. 2(a):

  1. 1.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into ηcp\eta_{c}p is

    D¯0Σc+;1/2(q)|ηc(q1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\eta_{c}(q_{1})~{}p(q_{2})\rangle
    \displaystyle\approx ic16ληcfpu¯up+ic112fηcfpq1μu¯γμup\displaystyle-{ic_{1}\over 6}~{}\lambda_{\eta_{c}}f_{p}~{}\bar{u}u_{p}+{ic_{1}\over 12}~{}f_{\eta_{c}}f_{p}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}
    \displaystyle\equiv Cηcpu¯up+Cηcpq1μu¯γμup,\displaystyle C_{\eta_{c}p}~{}\bar{u}u_{p}+C^{\prime}_{\eta_{c}p}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}\,,

    where c1c_{1} is an overall factor.

  2. 2.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into J/ψpJ/\psi p is contributed by both [c¯aγμca]γμγ5N[\bar{c}_{a}\gamma_{\mu}c_{a}]~{}\gamma^{\mu}\gamma_{5}N and [c¯aσμνca]σμνγ5N[\bar{c}_{a}\sigma_{\mu\nu}c_{a}]~{}\sigma^{\mu\nu}\gamma_{5}N:

    D¯0Σc+;1/2(q)|J/ψ(q1,ϵ1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)|J/\psi(q_{1},\epsilon_{1})~{}p(q_{2})\rangle
    \displaystyle\approx c112mJ/ψfJ/ψfpϵ1μu¯γμγ5up\displaystyle-{c_{1}\over 12}~{}m_{J/\psi}f_{J/\psi}f_{p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{p}
    ic16fJ/ψTfpq1μϵ1νu¯σμνγ5up\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-{ic_{1}\over 6}~{}f^{T}_{J/\psi}f_{p}~{}q_{1}^{\mu}\epsilon_{1}^{\nu}\bar{u}\sigma_{\mu\nu}\gamma_{5}u_{p}
    \displaystyle\equiv Cψpϵ1μu¯γμγ5up+Cψpq1μϵ1νu¯σμνγ5up,\displaystyle C_{\psi p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}\gamma_{5}u_{p}+C^{\prime}_{\psi p}~{}q_{1}^{\mu}\epsilon_{1}^{\nu}\bar{u}\sigma_{\mu\nu}\gamma_{5}u_{p}\,,

    where the two coupling constants CψpC_{\psi p} and CψpC^{\prime}_{\psi p} are defined for

    ψp\displaystyle\mathcal{L}_{\psi p} =\displaystyle= CψpP¯cγμγ5Nψμ,\displaystyle C_{\psi p}~{}\bar{P}_{c}\gamma_{\mu}\gamma_{5}N~{}\psi^{\mu}\,, (63)
    ψp\displaystyle\mathcal{L}^{\prime}_{\psi p} =\displaystyle= CψpP¯cσμνγ5Nμψν.\displaystyle C^{\prime}_{\psi p}~{}\bar{P}_{c}\sigma_{\mu\nu}\gamma_{5}N~{}\partial^{\mu}\psi^{\nu}\,. (64)
  3. 3.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into χc0(1P)p\chi_{c0}(1P)p is contributed by [c¯aca]γ5N[\bar{c}_{a}c_{a}]~{}\gamma_{5}N:

    D¯0Σc+;1/2(q)|χc0(q1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)|\chi_{c0}(q_{1})~{}p(q_{2})\rangle
    \displaystyle\approx c16mχc0fχc0fpu¯γ5up\displaystyle{c_{1}\over 6}~{}m_{\chi_{c0}}f_{\chi_{c0}}f_{p}~{}\bar{u}\gamma_{5}u_{p}
    \displaystyle\equiv Cχc0pu¯γ5up,\displaystyle C_{\chi_{c0}p}~{}\bar{u}\gamma_{5}u_{p}\,,

    where Cχc0pC_{\chi_{c0}p} is defined for

    χc0p\displaystyle\mathcal{L}_{\chi_{c0}p} =\displaystyle= Cχc0pP¯cγ5Nχc0.\displaystyle C_{\chi_{c0}p}~{}\bar{P}_{c}\gamma_{5}N~{}\chi_{c0}\,. (66)
  4. 4.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into χc1(1P)p\chi_{c1}(1P)p is contributed by [c¯aγμγ5ca]γμN[\bar{c}_{a}\gamma_{\mu}\gamma_{5}c_{a}]~{}\gamma^{\mu}N:

    D¯0Σc+;1/2(q)|χc1(q1,ϵ1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)|\chi_{c1}(q_{1},\epsilon_{1})~{}p(q_{2})\rangle
    \displaystyle\approx c112mχc1fχc1fpϵ1μu¯γμup\displaystyle{c_{1}\over 12}~{}m_{\chi_{c1}}f_{\chi_{c1}}f_{p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}
    \displaystyle\equiv Cχc1pϵ1μu¯γμup,\displaystyle C_{\chi_{c1}p}~{}\epsilon_{1}^{\mu}\bar{u}\gamma_{\mu}u_{p}\,,

    where Cχc1pC_{\chi_{c1}p} is defined for

    χc1p\displaystyle\mathcal{L}_{\chi_{c1}p} =\displaystyle= Cχc1pP¯cγμNχc1μ.\displaystyle C_{\chi_{c1}p}~{}\bar{P}_{c}\gamma_{\mu}N~{}\chi_{c1}^{\mu}\,. (68)

    This decay channel may be kinematically allowed, depending on whether the Pc(4457)P_{c}(4457) is interpreted as |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle or not.

Then we use the Fierz rearrangement given in Eq. (3.2) to study the decay processes depicted in Fig. 2(b,c):

  1. 5.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+} is contributed by [c¯aγ5ua]Λc+[\bar{c}_{a}\gamma_{5}u_{a}]~{}\Lambda_{c}^{+}:

    D¯0Σc+;1/2(q)|D¯0(q1)Λc+(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\bar{D}^{0}(q_{1})~{}\Lambda_{c}^{+}(q_{2})\rangle
    \displaystyle\approx ic23λDfΛcu¯uΛc\displaystyle-{ic_{2}\over 3}~{}\lambda_{D}f_{\Lambda_{c}}~{}\bar{u}u_{\Lambda_{c}}
    \displaystyle\equiv CD¯Λcu¯uΛc,\displaystyle C_{\bar{D}\Lambda_{c}}~{}\bar{u}u_{\Lambda_{c}}\,,

    where c2c_{2} is an overall factor, and the coupling constant CD¯ΛcC_{\bar{D}\Lambda_{c}} is defined for

    D¯Λc\displaystyle\mathcal{L}_{\bar{D}\Lambda_{c}} =\displaystyle= CD¯ΛcP¯cΛc+D¯0.\displaystyle C_{\bar{D}\Lambda_{c}}~{}\bar{P}_{c}\Lambda_{c}^{+}~{}\bar{D}^{0}\,. (70)
  2. 6.

    The decay of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} is contributed by [c¯aσμνua]σμνγ5Λc+[\bar{c}_{a}\sigma_{\mu\nu}u_{a}]~{}\sigma^{\mu\nu}\gamma_{5}\Lambda_{c}^{+}:

    D¯0Σc+;1/2(q)|D¯0(q1,ϵ1)Λc+(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\bar{D}^{*0}(q_{1},\epsilon_{1})~{}\Lambda_{c}^{+}(q_{2})\rangle
    \displaystyle\approx ic26fDTfΛcq1μϵ1νu¯σμνγ5uΛc\displaystyle-{ic_{2}\over 6}~{}f^{T}_{D^{*}}f_{\Lambda_{c}}~{}q_{1}^{\mu}\epsilon_{1}^{\nu}\bar{u}\sigma_{\mu\nu}\gamma_{5}u_{\Lambda_{c}}
    \displaystyle\equiv CD¯Λcq1μϵ1νu¯σμνγ5uΛc,\displaystyle C^{\prime}_{\bar{D}^{*}\Lambda_{c}}~{}q_{1}^{\mu}\epsilon_{1}^{\nu}\bar{u}\sigma_{\mu\nu}\gamma_{5}u_{\Lambda_{c}}\,,

    where CD¯ΛcC^{\prime}_{\bar{D}^{*}\Lambda_{c}} is defined for

    D¯Λc\displaystyle\mathcal{L}^{\prime}_{\bar{D}^{*}\Lambda_{c}} =\displaystyle= CD¯ΛcP¯cσμνγ5Λc+μD¯0,ν.\displaystyle C^{\prime}_{\bar{D}^{*}\Lambda_{c}}~{}\bar{P}_{c}\sigma_{\mu\nu}\gamma_{5}\Lambda_{c}^{+}~{}\partial^{\mu}\bar{D}^{*0,\nu}\,. (72)
  3. 7.

    Decays of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle into the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} and D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final states are:

    D¯0Σc+;1/2(q)|D¯0(q1)Σc+(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\bar{D}^{0}(q_{1})~{}\Sigma_{c}^{+}(q_{2})\rangle
    \displaystyle\approx ic28fDfΣcq1μu¯γμuΣc\displaystyle{ic_{2}\over 8}~{}f_{D}f_{\Sigma_{c}}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{\Sigma_{c}}
    \displaystyle\equiv CD¯Σcq1μu¯γμuΣc,\displaystyle C_{\bar{D}\Sigma_{c}}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{\Sigma_{c}}\,,
    D¯0Σc+;1/2(q)|D¯(q1)Σc++(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}(q)~{}|~{}\bar{D}^{-}(q_{1})~{}\Sigma_{c}^{++}(q_{2})\rangle
    \displaystyle\approx i2c28fDfΣcq1μu¯γμuΣc\displaystyle{i\sqrt{2}c_{2}\over 8}~{}f_{D}f_{\Sigma_{c}}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{\Sigma_{c}}
    \displaystyle\equiv 2CD¯Σcq1μu¯γμuΣc,\displaystyle\sqrt{2}C_{\bar{D}\Sigma_{c}}~{}q_{1}^{\mu}\bar{u}\gamma_{\mu}u_{\Sigma_{c}}\,,

    where CD¯ΣcC_{\bar{D}\Sigma_{c}} is defined for

    D¯Σc\displaystyle\mathcal{L}_{\bar{D}\Sigma_{c}} =\displaystyle= CD¯ΣcP¯cγμΣc+μD¯0\displaystyle C_{\bar{D}\Sigma_{c}}~{}\bar{P}_{c}\gamma_{\mu}\Sigma_{c}^{+}~{}\partial^{\mu}\bar{D}^{0}
    +2CD¯ΣcP¯cγμΣc++μD¯.\displaystyle~{}~{}~{}~{}~{}~{}+\sqrt{2}C_{\bar{D}\Sigma_{c}}~{}\bar{P}_{c}\gamma_{\mu}\Sigma_{c}^{++}~{}\partial^{\mu}\bar{D}^{-}\,.

In the molecular picture the Pc(4440)P_{c}(4440) is sometimes interpreted as the D¯Σc\bar{D}^{*}\Sigma_{c} hadronic molecular state of JP=1/2J^{P}={1/2}^{-}. Accordingly, we assume the mass of |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle to be 4440.3 MeV, and summarize the above decay amplitudes to obtain the following (relative) decay widths:

Γ(|D¯0Σc+;1/2ηcp)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= c125.8×104GeV7,\displaystyle c_{1}^{2}~{}5.8\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to J/\psi p) =\displaystyle= c124.6×105GeV7,\displaystyle c_{1}^{2}~{}4.6\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2χc0p)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\chi_{c0}p) =\displaystyle= c122.0×103GeV7,\displaystyle c_{1}^{2}~{}2.0\times 10^{3}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\bar{D}^{0}\Lambda_{c}^{+}) =\displaystyle= c225.5×105GeV7,\displaystyle c_{2}^{2}~{}5.5\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= c221.9×105GeV7,\displaystyle c_{2}^{2}~{}1.9\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= c221.6×105GeV7,\displaystyle c_{2}^{2}~{}1.6\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= c223.2×105GeV7.\displaystyle c_{2}^{2}~{}3.2\times 10^{5}~{}{\rm GeV}^{7}.

Besides, |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle can also couple to χc1p\chi_{c1}p, but this channel is kinematically forbidden under the assumption M|D¯0Σc+;1/2=4440.3M_{|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle}=4440.3 MeV.

There are two different effective Lagrangians for the |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle decays into the J/ψpJ/\psi p final state, as given in Eqs. (63) and (64). It is interesting to see their individual contributions:

Γ(|D¯0Σc+;1/2J/ψp)|ψp\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to J/\psi p)\big{|}_{\mathcal{L}_{\psi p}} =\displaystyle= c121.5×105GeV7,\displaystyle c_{1}^{2}~{}1.5\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;1/2J/ψp)|ψp\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\to J/\psi p)\big{|}_{\mathcal{L}^{\prime}_{\psi p}} =\displaystyle= c126.1×105GeV7.\displaystyle c_{1}^{2}~{}6.1\times 10^{5}~{}{\rm GeV}^{7}.

Hence, the former is about four times smaller than the latter. Again, the phase angle between them can be important, whose relevant uncertainty will be investigated in Appendix C.

4.4 ξ2θ/η\xi_{2}\rightarrow\theta/\eta

In this subsection we follow the procedures used in the previous subsection to study decay properties of |D¯Σc++;1/2|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle, through the ξ2(x,y)\xi_{2}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3). Again, we assume its mass to be 4440.3 MeV, and obtain the following (relative) decay widths:

Γ(|D¯Σc++;1/2ηcp)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= d121.2×105GeV7,\displaystyle d_{1}^{2}~{}1.2\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;1/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to J/\psi p) =\displaystyle= d129.3×105GeV7,\displaystyle d_{1}^{2}~{}9.3\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;1/2χc0p)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to\chi_{c0}p) =\displaystyle= d124.1×103GeV7,\displaystyle d_{1}^{2}~{}4.1\times 10^{3}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to\bar{D}^{0}\Lambda_{c}^{+}) =\displaystyle= d221.1×106GeV7,\displaystyle d_{2}^{2}~{}1.1\times 10^{6}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= d223.8×105GeV7,\displaystyle d_{2}^{2}~{}3.8\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;1/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= d223.2×105GeV7.\displaystyle d_{2}^{2}~{}3.2\times 10^{5}~{}{\rm GeV}^{7}.

Here d1d_{1} and d2d_{2} are two overall factors, which we simply assume to be d1=c1d_{1}=c_{1} and d2=c2d_{2}=c_{2} in the following analyses.

The above results suggest that |D¯Σc++;1/2|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle can not fall-apart decay into the D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final state, as depicted in Fig. 3(b,c), while |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle can. The widths of the |D¯Σc++;1/2|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle decays into other final states, including ηcp\eta_{c}p, J/ψpJ/\psi p, χc0p\chi_{c0}p, D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+}, D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+}, and D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+}, are all two times larger than those given in Eqs. (LABEL:result:eta2) for the |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle decays.

4.5 η3αθ/η/ξ\eta_{3}^{\alpha}\rightarrow\theta/\eta/\xi

In this subsection we follow the procedures used in Sec. 4.1 and Sec. 4.3 to study decay properties of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle through the η3α(x,y)\eta_{3}^{\alpha}(x,y) current. First we use the Fierz rearrangement given in Eq. (3.1) to study the decay process depicted in Fig. 2(a):

  1. 1.

    The decay of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle into ηcp\eta_{c}p is

    D¯0Σc+;3/2(q)|ηc(q1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)~{}|~{}\eta_{c}(q_{1})~{}p(q_{2})\rangle
    \displaystyle\approx ie1fηcfpq1μu¯α(116gαμγ5+i48σαμγ5)up,\displaystyle ie_{1}~{}f_{\eta_{c}}f_{p}~{}q_{1}^{\mu}\bar{u}^{\alpha}\left({1\over 16}g^{\alpha\mu}\gamma_{5}+{i\over 48}\sigma^{\alpha\mu}\gamma_{5}\right)u_{p}\,,

    where uαu^{\alpha} is the spinor of the PcP_{c} state with JP=3/2J^{P}=3/2^{-}, and e1e_{1} is an overall factor.

  2. 2.

    The decay of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle into J/ψpJ/\psi p is

    D¯0Σc+;3/2(q)|J/ψ(q1,ϵ1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)|J/\psi(q_{1},\epsilon_{1})~{}p(q_{2})\rangle
    \displaystyle\approx e1mJ/ψfJ/ψfpϵ1μu¯α(116gαμi48σαμ)up.\displaystyle e_{1}~{}m_{J/\psi}f_{J/\psi}f_{p}~{}\epsilon_{1}^{\mu}\bar{u}^{\alpha}\left(-{1\over 16}g^{\alpha\mu}-{i\over 48}\sigma^{\alpha\mu}\right)u_{p}\,.
  3. 3.

    The decay of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle into χc1(1P)p\chi_{c1}(1P)p is

    D¯0Σc+;3/2(q)|χc1(q1,ϵ1)p(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)|\chi_{c1}(q_{1},\epsilon_{1})~{}p(q_{2})\rangle
    \displaystyle\approx e1mχc1fχc1fpϵ1μu¯α(116gαμγ5+i48σαμγ5)up.\displaystyle e_{1}~{}m_{\chi_{c1}}f_{\chi_{c1}}f_{p}~{}\epsilon_{1}^{\mu}\bar{u}^{\alpha}\left({1\over 16}g^{\alpha\mu}\gamma_{5}+{i\over 48}\sigma^{\alpha\mu}\gamma_{5}\right)u_{p}\,.

    This decay channel may be kinematically allowed, depending on whether the Pc(4457)P_{c}(4457) is interpreted as |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle or not.

Then we use the Fierz rearrangement given in Eq. (3.2) to study the decay processes depicted in Fig. 2(b,c):

  1. 4.

    The decay of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle into D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} is

    D¯0Σc+;3/2(q)|D¯0(q1,ϵ1)Λc+(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)~{}|~{}\bar{D}^{*0}(q_{1},\epsilon_{1})~{}\Lambda_{c}^{+}(q_{2})\rangle
    \displaystyle\approx 2ie2fDTfΛcq1μϵ1ν×\displaystyle 2ie_{2}~{}f^{T}_{D^{*}}f_{\Lambda_{c}}~{}q_{1}^{\mu}\epsilon_{1}^{\nu}~{}\times~{}
    u¯α(i48gαμγν+i48gανγμ148ϵαβμνγβγ5)uΛc,\displaystyle~{}\bar{u}^{\alpha}\left(-{i\over 48}g^{\alpha\mu}\gamma^{\nu}+{i\over 48}g^{\alpha\nu}\gamma^{\mu}-{1\over 48}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)u_{\Lambda_{c}},

    where e2e_{2} is an overall factor.

  2. 5.

    Decays of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle into the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} and D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final states are:

    D¯0Σc+;3/2(q)|D¯0(q1)Σc+(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)~{}|~{}\bar{D}^{0}(q_{1})~{}\Sigma_{c}^{+}(q_{2})\rangle
    \displaystyle\approx ie2fDfΣcq1μ\displaystyle ie_{2}~{}f_{D}f_{\Sigma_{c}}~{}q_{1}^{\mu}
    ×u¯α(124gαμγν124gανγμi24ϵαβμνγβγ5)\displaystyle\times~{}\bar{u}^{\alpha}\left({1\over 24}g^{\alpha\mu}\gamma^{\nu}-{1\over 24}g^{\alpha\nu}\gamma^{\mu}-{i\over 24}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
    ×(14γνγ5)uΣc,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\right)u_{\Sigma_{c}}\,,
    D¯0Σc+;3/2(q)|D¯(q1)Σc++(q2)\displaystyle\langle\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}(q)~{}|~{}\bar{D}^{-}(q_{1})~{}\Sigma_{c}^{++}(q_{2})\rangle
    \displaystyle\approx 2ie2fDfΣcq1μ\displaystyle\sqrt{2}ie_{2}~{}f_{D}f_{\Sigma_{c}}~{}q_{1}^{\mu}
    ×u¯α(124gαμγν124gανγμi24ϵαβμνγβγ5)\displaystyle\times~{}\bar{u}^{\alpha}\left({1\over 24}g^{\alpha\mu}\gamma^{\nu}-{1\over 24}g^{\alpha\nu}\gamma^{\mu}-{i\over 24}\epsilon^{\alpha\beta\mu\nu}\gamma_{\beta}\gamma_{5}\right)
    ×(14γνγ5)uΣc.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\times\left(-{1\over 4}\gamma_{\nu}\gamma_{5}\right)~{}u_{\Sigma_{c}}\,.

In the molecular picture the Pc(4457)P_{c}(4457) is sometimes interpreted as the D¯Σc\bar{D}^{*}\Sigma_{c} hadronic molecular state of JP=3/2J^{P}={3/2}^{-}. Accordingly, we assume the mass of |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle to be 4457.3 MeV, and summarize the above decay amplitudes to obtain the following (relative) decay widths:

Γ(|D¯0Σc+;3/2ηcp)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to\eta_{c}p) =\displaystyle= e12240GeV7,\displaystyle e_{1}^{2}~{}240~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;3/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to J/\psi p) =\displaystyle= e124.7×104GeV7,\displaystyle e_{1}^{2}~{}4.7\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;3/2χc1p)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to\chi_{c1}p) =\displaystyle= e1215GeV7,\displaystyle e_{1}^{2}~{}15~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;3/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= e221.6×104GeV7,\displaystyle e_{2}^{2}~{}1.6\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;3/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= e225.7GeV7,\displaystyle e_{2}^{2}~{}5.7~{}{\rm GeV}^{7},
Γ(|D¯0Σc+;3/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= e2211GeV7.\displaystyle e_{2}^{2}~{}11~{}{\rm GeV}^{7}.

Hence, |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle does not couple to the χc0p\chi_{c0}p channel, different from |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle.

4.6 ξ3αθ/η\xi_{3}^{\alpha}\rightarrow\theta/\eta

In this subsection we follow the procedures used in the previous subsection to study decay properties of |D¯Σc++;3/2|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle, through the ξ3α(x,y)\xi_{3}^{\alpha}(x,y) current and the Fierz rearrangements given in Eqs. (3.1) and (3.3). Again, we assume its mass to be 4457.3 MeV, and obtain the following (relative) decay widths:

Γ(|D¯Σc++;3/2ηcp)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\to\eta_{c}p) =\displaystyle= f12490GeV7,\displaystyle f_{1}^{2}~{}490~{}{\rm GeV}^{7},
Γ(|D¯Σc++;3/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\to J/\psi p) =\displaystyle= f129.3×104GeV7,\displaystyle f_{1}^{2}~{}9.3\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;3/2χc1p)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\to\chi_{c1}p) =\displaystyle= f1230GeV7,\displaystyle f_{1}^{2}~{}30~{}{\rm GeV}^{7},
Γ(|D¯Σc++;3/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= f223.3×104GeV7,\displaystyle f_{2}^{2}~{}3.3\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯Σc++;3/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= f2211GeV7.\displaystyle f_{2}^{2}~{}11~{}{\rm GeV}^{7}.

Here f1f_{1} and f2f_{2} are two overall factors, which we simply assume to be f1=e1f_{1}=e_{1} and f2=e2f_{2}=e_{2} in the following analyses.

The above results suggest that |D¯Σc++;3/2|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle can not fall-apart decay into the D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final state, as depicted in Fig. 3(b,c), while |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle can. The widths of the |D¯Σc++;3/2|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle decays into other final states, including ηcp\eta_{c}p, J/ψpJ/\psi p, χc1p\chi_{c1}p, D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+}, and D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+}, are all two times larger than those given in Eqs. (LABEL:result:eta3) for the |D¯0Σc+;3/2|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle decays.

5 Isospin of D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states

In this section we collect the results calculated in the previous section to further study decay properties of D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with definite isospins.

The D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=1/2I=1/2 can be obtained by using Eqs. (21), (22), and (23) with θi=55o\theta_{i}=-55^{\rm o}:

|D¯()Σc;12/32\displaystyle|\bar{D}^{(*)}\Sigma_{c};{1\over 2}^{-}/{3\over 2}^{-}\rangle (87)
=13|D¯()0Σc+J=12/3223|D¯()Σc++J=12/32.\displaystyle~{}~{}=\sqrt{1\over 3}~{}|\bar{D}^{(*)0}\Sigma_{c}^{+}\rangle_{J={1\over 2}/{3\over 2}}-\sqrt{2\over 3}~{}|\bar{D}^{(*)-}\Sigma_{c}^{++}\rangle_{J={1\over 2}/{3\over 2}}\,.

Combining the results of Sec. 4.1 and Sec. 4.2, we obtain:

Γ(|D¯Σc;1/2ηcp)\displaystyle\Gamma(|\bar{D}\Sigma_{c};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= a123.2×105GeV7,\displaystyle a_{1}^{2}~{}3.2\times 10^{5}~{}{\rm GeV}^{7}\,,
Γ(|D¯Σc;1/2J/ψp)\displaystyle\Gamma(|\bar{D}\Sigma_{c};1/2^{-}\rangle\to J/\psi p) =\displaystyle= a128.5×104GeV7,\displaystyle a_{1}^{2}~{}8.5\times 10^{4}~{}{\rm GeV}^{7}\,,
Γ(|D¯Σc;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}\Sigma_{c};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= a225.9×104GeV7.\displaystyle a_{2}^{2}~{}5.9\times 10^{4}~{}{\rm GeV}^{7}\,.

Combining the results of Sec. 4.3 and Sec. 4.4, we obtain:

Γ(|D¯Σc;1/2ηcp)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\eta_{c}p) =\displaystyle= c121.7×105GeV7,\displaystyle c_{1}^{2}~{}1.7\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to J/\psi p) =\displaystyle= c121.4×106GeV7,\displaystyle c_{1}^{2}~{}1.4\times 10^{6}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2χc0p)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\chi_{c0}p) =\displaystyle= c126.1×103GeV7,\displaystyle c_{1}^{2}~{}6.1\times 10^{3}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\bar{D}^{0}\Lambda_{c}^{+}) =\displaystyle= c221.7×106GeV7,\displaystyle c_{2}^{2}~{}1.7\times 10^{6}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= c225.6×105GeV7,\displaystyle c_{2}^{2}~{}5.6\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= c225.4×104GeV7,\displaystyle c_{2}^{2}~{}5.4\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= c221.1×105GeV7.\displaystyle c_{2}^{2}~{}1.1\times 10^{5}~{}{\rm GeV}^{7}.

Combining the results of Sec. 4.5 and Sec. 4.6, we obtain:

Γ(|D¯Σc;3/2ηcp)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to\eta_{c}p) =\displaystyle= e12730GeV7,\displaystyle e_{1}^{2}~{}730~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2J/ψp)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to J/\psi p) =\displaystyle= e121.4×105GeV7,\displaystyle e_{1}^{2}~{}1.4\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2χc1p)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to\chi_{c1}p) =\displaystyle= e1246GeV7,\displaystyle e_{1}^{2}~{}46~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2D¯0Λc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to\bar{D}^{*0}\Lambda_{c}^{+}) =\displaystyle= e224.9×104GeV7,\displaystyle e_{2}^{2}~{}4.9\times 10^{4}~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= e221.9GeV7,\displaystyle e_{2}^{2}~{}1.9~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= e223.8GeV7.\displaystyle e_{2}^{2}~{}3.8~{}{\rm GeV}^{7}.

Comparing the above values with those given in Eqs. (LABEL:result:eta1), (LABEL:result:eta2), and (LABEL:result:eta3), we find that the decay widths of the three D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=1/2I=1/2 into the ηcp\eta_{c}p, J/ψpJ/\psi p, χc0p\chi_{c0}p, χc1p\chi_{c1}p, D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+}, and D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} final states also with I=1/2I=1/2 are increased by three times, and their decay widths into the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} and D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final states are decreased by three times. We shall further discuss these results in Sec. 6.

For completeness, we also list here the results for the three D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=3/2I=3/2 (as if they existed), which can be obtained by using Eqs. (21), (22), and (23) with θi=35o\theta_{i}=35^{\rm o}:

|D¯()Σc;12/32\displaystyle|\bar{D}^{(*)}\Sigma_{c};{1\over 2}^{-\prime}/{3\over 2}^{-\prime}\rangle (91)
=23|D¯()0Σc+J=12/32+13|D¯()Σc++J=12/32.\displaystyle~{}~{}=\sqrt{2\over 3}~{}|\bar{D}^{(*)0}\Sigma_{c}^{+}\rangle_{J={1\over 2}/{3\over 2}}+\sqrt{1\over 3}~{}|\bar{D}^{(*)-}\Sigma_{c}^{++}\rangle_{J={1\over 2}/{3\over 2}}\,.

Naively assuming their masses to be 4311.94311.9 MeV, 4440.34440.3 MeV, and 4457.34457.3 MeV, respectively, we obtain the following non-zero (relative) decay widths:

Γ(|D¯Σc;1/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-\prime}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= c224.3×105GeV7,\displaystyle c_{2}^{2}~{}4.3\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc;1/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};1/2^{-\prime}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= c222.2×105GeV7,\displaystyle c_{2}^{2}~{}2.2\times 10^{5}~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2D¯0Σc+)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-\prime}\rangle\to\bar{D}^{0}\Sigma_{c}^{+}) =\displaystyle= e2215GeV7,\displaystyle e_{2}^{2}~{}15~{}{\rm GeV}^{7},
Γ(|D¯Σc;3/2D¯Σc++)\displaystyle\Gamma(|\bar{D}^{*}\Sigma_{c};3/2^{-\prime}\rangle\to\bar{D}^{-}\Sigma_{c}^{++}) =\displaystyle= e227.6GeV7.\displaystyle e_{2}^{2}~{}7.6~{}{\rm GeV}^{7}.

Comparing them with Eqs. (LABEL:result:eta1), (LABEL:result:eta2), and (LABEL:result:eta3), we find that the three D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=3/2I=3/2 can not fall-apart decay into the ηcp\eta_{c}p, J/ψpJ/\psi p, χc0p\chi_{c0}p, χc1p\chi_{c1}p, D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+}, and D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} final states with I=1/2I=1/2, their widths into the D¯0Σc+\bar{D}^{0}\Sigma_{c}^{+} final state are increased by a factor of 8/38/3, and their widths into the D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} final state are reduced to two third. We summarize these results in Appendix C, which we shall not discuss any more.

6 Summary and conclusions

In this paper we systematically study hidden-charm pentaquark currents with the quark content c¯cuud\bar{c}cuud. We investigate three different configurations, η=[c¯u][udc]\eta=[\bar{c}u][udc], ξ=[c¯d][uuc]\xi=[\bar{c}d][uuc], and θ=[c¯c][uud]\theta=[\bar{c}c][uud]. Some of their relations are derived using the Fierz rearrangement of the Dirac and color indices, and the obtained results are used to study strong decay properties of D¯()Σc\bar{D}^{(*)}\Sigma_{c} molecular states with I=1/2I=1/2 and JP=1/2J^{P}=1/2^{-} and 3/23/2^{-}.

Before drawing conclusions, we would like to generally discuss about the uncertainty. In the present study we work under the naive factorization scheme, so our uncertainty is larger than the well-developed QCD factorization scheme Beneke:1999br ; Beneke:2000ry ; Beneke:2001ev , that is at the 5% level when being applied to conventional (heavy) hadrons Li:2020rcg . On the other hand, the pentaquark decay constants, such as fPcf_{P_{c}}, are removed when calculating relative branching ratios. This significantly reduces our uncertainty. Accordingly, we roughly estimate our uncertainty to be at the X50%+100%X^{+100\%}_{-~{}50\%} level.

In the molecular picture the Pc(4312)P_{c}(4312) is usually interpreted as the D¯Σc\bar{D}\Sigma_{c} hadronic molecular state of JP=1/2J^{P}={1/2}^{-}, and the Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457) are sometimes interpreted as the D¯Σc\bar{D}^{*}\Sigma_{c} hadronic molecular states of JP=1/2J^{P}={1/2}^{-} and 3/2{3/2}^{-} respectively (sometimes interpreted as states of JP=3/2J^{P}={3/2}^{-} and 1/2{1/2}^{-} respectively) Wu:2012md ; Chen:2019asm ; Liu:2019tjn . Using their masses measured in the LHCb experiment Aaij:2019vzc as inputs, we calculate some of their relative decay widths. The obtained results have been summarized in Eqs. (LABEL:result:etaxi1), (LABEL:result:etaxi2), and (LABEL:result:etaxi3), from which we further obtain:

{widetext}
  • We obtain the following relative branching ratios for the |D¯Σc;1/2|\bar{D}\Sigma_{c};1/2^{-}\rangle decays:

    (|D¯Σc;1/2J/ψp:ηcp:D¯0Λc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow~{}~{}~{}J/\psi p~{}~{}~{}:~{}~{}~{}~{}~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}~{}~{}~{}~{}:~{}~{}~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}\right)\over\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:3.8:0.69t.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}~{}:\,~{}~{}~{}~{}~{}~{}~{}~{}3.8~{}~{}~{}~{}~{}~{}~{}~{}\,:~{}~{}~{}~{}0.69t~{}\,.
  • We obtain the following relative branching ratios for the |D¯Σc;1/2|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle decays:

    (|D¯Σc;1/2J/ψp:ηcp:χc0p:D¯0Λc+:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:~{}~{}\eta_{c}p~{}~{}:\,~{}\chi_{c0}p~{}\,:~{}\bar{D}^{0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.13:0.004:1.2t:0.41t:0.04t:0.08t.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}\,:\,~{}0.13~{}\,:~{}0.004~{}:\,~{}~{}1.2t~{}~{}\,:\,~{}~{}0.41t~{}~{}\,:~{}~{}0.04t~{}~{}:~{}~{}~{}0.08t~{}\,.
  • We obtain the following relative branching ratios for the |D¯Σc;3/2|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle decays:

    (|D¯Σc;3/2J/ψp:ηcp:χc1p:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:~{}~{}\eta_{c}p~{}~{}:\,~{}\chi_{c1}p~{}\,:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.005:104:0.35t:105t:105t.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}\,:~{}0.005~{}:~{}10^{-4}~{}:\,~{}~{}0.35t~{}~{}\,:\,~{}10^{-5}t~{}\,:~{}~{}~{}10^{-5}t~{}\,.

In these expressions, ta22a12c22c12e22e12t\equiv{a_{2}^{2}\over a_{1}^{2}}\approx{c_{2}^{2}\over c_{1}^{2}}\approx{e_{2}^{2}\over e_{1}^{2}} is the parameter measuring which processes happen more easily, the processes depicted in Figs. 2&3(a) or the processes depicted in Figs. 2&3(b,c). Generally speaking, the exchange of one light quark with another light quark seems to be easier than the exchange of one light quark with another heavy quark Landau , so it can be the case that t1t\geq 1. There are two phase angles, which have not been taken into account in the above expressions yet. We investigate their relevant uncertainties in Appendix C, where we also give the relative branching ratios for the D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecular states of I=3/2I=3/2, and separately for the D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} and D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} hadronic molecular states.

To extract these results:

  • We have only considered the leading-order fall-apart decays described by color-singlet-color-singlet meson-baryon currents, but neglected the 𝒪(αs)\mathcal{O}(\alpha_{s}) corrections described by color-octet-color-octet meson-baryon currents, so there can be other possible decay channels.

  • We have omitted all the charmed baryon fields of J=3/2J=3/2, so we can not study decays of PcP_{c} states into the D¯Σc\bar{D}\Sigma_{c}^{*} final state. However, we have kept all the charmed baryon fields that can couple to the JP=1/2+J^{P}=1/2^{+} ground-state charmed baryons Λc\Lambda_{c} and Σc\Sigma_{c}, i.e., fields given in Eqs. (15), so decays of PcP_{c} states into the D¯()Λc\bar{D}^{(*)}\Lambda_{c} and D¯Σc\bar{D}\Sigma_{c} final states have been well investigated in the present study.

  • We have omitted all the light baryon fields of J=3/2J=3/2, so we can not study decays of PcP_{c} states into charmonia and Δ/N\Delta/N^{*}. However, we have kept all the light baryon fields of JP=1/2+J^{P}=1/2^{+}, i.e., terms depending on N1N_{1} and N2N_{2}, so decays of PcP_{c} states into charmonia and protons have been well investigated in the present study.

Our conclusions are:

  • Firstly, we compare the ηcp\eta_{c}p and J/ψpJ/\psi p channels:

    (|D¯Σc;1/2ηcp)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow\eta_{c}p\right)\over\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 3.8,\displaystyle 3.8\,,
    (|D¯Σc;1/2ηcp)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow\eta_{c}p\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.13,\displaystyle 0.13\,, (96)
    (|D¯Σc;3/2ηcp)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow\eta_{c}p\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.005.\displaystyle 0.005\,.

    These ratios are quite similar to those obtained using the heavy quark spin symmetry Voloshin:2019aut . This is quite reasonable because no spin symmetry breaking is introduced during the calculation before using the decay constants for the mesons, so that the heavy quark spin symmetry is automatically built in our formalism. Since the width of the |D¯Σc;1/2|\bar{D}\Sigma_{c};1/2^{-}\rangle decay into the ηcp\eta_{c}p final state is comparable to its decay width into J/ψpJ/\psi p, we propose to confirm the existence of the Pc(4312)P_{c}(4312) in the ηcp\eta_{c}p channel.

  • Secondly, we compare the D¯()Λc\bar{D}^{(*)}\Lambda_{c} and J/ψpJ/\psi p channels:

    (|D¯Σc;1/2D¯0Λc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow\bar{D}^{0}\Lambda_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 1.2t,\displaystyle 1.2t\,, (97)

    and

    (|D¯Σc;1/2D¯0Λc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow\bar{D}^{*0}\Lambda_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.69t,\displaystyle 0.69t\,,
    (|D¯Σc;1/2D¯0Λc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow\bar{D}^{*0}\Lambda_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.41t,\displaystyle 0.41t\,, (98)
    (|D¯Σc;3/2D¯0Λc+)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow\bar{D}^{*0}\Lambda_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.35t.\displaystyle 0.35t\,.

    Accordingly, we propose to observe the Pc(4312)P_{c}(4312), Pc(4440)P_{c}(4440), and Pc(4457)P_{c}(4457) in the D¯0Λc+\bar{D}^{*0}\Lambda_{c}^{+} channel. Moreover, the D¯0Λc+\bar{D}^{0}\Lambda_{c}^{+} channel can be an ideal channel to extract the spin-parity quantum numbers of the Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457).

  • Thirdly, we compare the D¯Σc\bar{D}\Sigma_{c} and J/ψpJ/\psi p channels:

    (|D¯Σc;1/2D¯0Σc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow\bar{D}^{0}\Sigma_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.04t,\displaystyle 0.04t\,, (99)
    (|D¯Σc;1/2D¯Σc++)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow\bar{D}^{-}\Sigma_{c}^{++}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 0.08t,\displaystyle 0.08t\,,

    and

    (|D¯Σc;3/2D¯0Σc+)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow\bar{D}^{0}\Sigma_{c}^{+}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 105t,\displaystyle 10^{-5}t\,, (100)
    (|D¯Σc;3/2D¯Σc++)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow\bar{D}^{-}\Sigma_{c}^{++}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)} \displaystyle\approx 105t.\displaystyle 10^{-5}t\,.

    Accordingly, we propose to observe the Pc(4440)P_{c}(4440) and Pc(4457)P_{c}(4457) in the D¯Σc++\bar{D}^{-}\Sigma_{c}^{++} channel, which is another possible channel to extract their spin-parity quantum numbers.

Acknowledgments

We thank Utku Can, Philipp Gubler, and Makoto Oka for helpful discussions. This project is supported by the National Natural Science Foundation of China under Grants No. 11722540 and No. 12075019.

Appendix A Parameters and decay formulae

We list masses of PcP_{c} states used in the present study, taken from the LHCb experiment Aaij:2019vzc :

Pc(4312)+:m\displaystyle P_{c}(4312)^{+}~{}:~{}m =\displaystyle= 4311.9 MeV,\displaystyle 4311.9\mbox{ MeV}\,,
Pc(4440)+:m\displaystyle P_{c}(4440)^{+}~{}:~{}m =\displaystyle= 4440.3 MeV,\displaystyle 4440.3\mbox{ MeV}\,, (101)
Pc(4457)+:m\displaystyle P_{c}(4457)^{+}~{}:~{}m =\displaystyle= 4457.3 MeV.\displaystyle 4457.3\mbox{ MeV}\,.

We list masses of charmonium mesons and charmed mesons used in the present study, taken from PDG pdg and partly averaged over isospin:

ηc(1S):m\displaystyle\eta_{c}(1S)~{}:~{}m =\displaystyle= 2983.9 MeV,\displaystyle 2983.9\mbox{ MeV}\,,
J/ψ(1S):m\displaystyle J/\psi(1S)~{}:~{}m =\displaystyle= 3096.900 MeV,\displaystyle 3096.900\mbox{ MeV}\,,
χc0(1P):m\displaystyle\chi_{c0}(1P)~{}:~{}m =\displaystyle= 3414.71 MeV,\displaystyle 3414.71\mbox{ MeV}\,, (102)
χc1(1P):m\displaystyle\chi_{c1}(1P)~{}:~{}m =\displaystyle= 3510.67 MeV,\displaystyle 3510.67\mbox{ MeV}\,,
D/D¯:m\displaystyle D/\bar{D}~{}:~{}m =\displaystyle= 1867.24 MeV,\displaystyle 1867.24\mbox{ MeV}\,,
D/D¯:m\displaystyle D^{*}/\bar{D}^{*}~{}:~{}m =\displaystyle= 2008.55 MeV.\displaystyle 2008.55\mbox{ MeV}\,.

We list masses of the proton and charmed baryons used in the present study, taken from PDG pdg and partly averaged over isospin:

proton:m\displaystyle{\rm proton}~{}:~{}m =\displaystyle= 938.272 MeV,\displaystyle 938.272\mbox{ MeV}\,,
Λc+:m\displaystyle\Lambda_{c}^{+}~{}:~{}m =\displaystyle= 2286.46 MeV,\displaystyle 2286.46\mbox{ MeV}\,, (103)
Σc:m\displaystyle\Sigma_{c}~{}:~{}m =\displaystyle= 2453.44 MeV.\displaystyle 2453.44\mbox{ MeV}\,.

In this paper we only investigate two-body decays, and their widths can be easily calculated. In the calculations we use the following formula for baryon fields of spin 1/2 and 3/2:

spinu(p)u¯(p)\displaystyle\sum_{spin}u(p)\bar{u}(p) =\displaystyle= (p/+m),\displaystyle\left(p\!\!\!/+m\right)\,, (104)
spinuμ(p)u¯μ(p)\displaystyle\sum_{spin}u_{\mu}(p)\bar{u}_{\mu^{\prime}}(p) =\displaystyle= (gμμ13γμγμ\displaystyle\Big{(}g_{\mu\mu^{\prime}}-{1\over 3}\gamma_{\mu}\gamma_{\mu^{\prime}}
\displaystyle- pμγμpμγμ3m2pμpμ3m2)(p/+m).\displaystyle{p_{\mu}\gamma_{\mu^{\prime}}-p_{\mu^{\prime}}\gamma_{\mu}\over 3m}-{2p_{\mu}p_{\mu^{\prime}}\over 3m^{2}}\Big{)}\left(p\!\!\!/+m\right)\,.

Appendix B Heavy and light baryon fields

First we construct charmed baryon interpolating fields. We refer to Ref. Dmitrasinovic for detailed discussions. There are altogether nine independent charmed baryon fields:

B𝟑¯,1G\displaystyle B^{G}_{\mathbf{\bar{3}},1} =\displaystyle= ϵabcϵABG(qAaTqBb)γ5cc,\displaystyle\epsilon_{abc}\epsilon^{ABG}(q_{A}^{aT}\mathbb{C}q_{B}^{b})\gamma_{5}c^{c}\,, (106)
B𝟑¯,2G\displaystyle B^{G}_{\mathbf{\bar{3}},2} =\displaystyle= ϵabcϵABG(qAaTγ5qBb)cc,\displaystyle\epsilon_{abc}\epsilon^{ABG}(q_{A}^{aT}\mathbb{C}\gamma_{5}q_{B}^{b})c^{c}\,, (107)
B𝟑¯,3G\displaystyle B^{G}_{\mathbf{\bar{3}},3} =\displaystyle= ϵabcϵABG(qAaTγμγ5qBb)γμcc,\displaystyle\epsilon_{abc}\epsilon^{ABG}(q_{A}^{aT}\mathbb{C}\gamma_{\mu}\gamma_{5}q_{B}^{b})\gamma^{\mu}c^{c}\,, (108)
B𝟑¯,μG\displaystyle B^{G}_{\mathbf{\bar{3}},\mu} =\displaystyle= Pμν3/2ϵabcϵABG(qAaTγνγ5qBb)γ5cc,\displaystyle P^{3/2}_{\mu\nu}\epsilon_{abc}\epsilon^{ABG}(q_{A}^{aT}\mathbb{C}\gamma^{\nu}\gamma_{5}q_{B}^{b})\gamma_{5}c^{c}\,, (109)
B𝟔,4U\displaystyle B^{U}_{\mathbf{6},4} =\displaystyle= ϵabcSABU(qAaTγμqBb)γμγ5cc,\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\gamma_{\mu}q_{B}^{b})\gamma^{\mu}\gamma_{5}c^{c}\,, (110)
B𝟔,5U\displaystyle B^{U}_{\mathbf{6},5} =\displaystyle= ϵabcSABU(qAaTσμνqBb)σμνγ5cc,\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\sigma_{\mu\nu}q_{B}^{b})\sigma^{\mu\nu}\gamma_{5}c^{c}\,, (111)
B𝟔,μU\displaystyle B^{U}_{\mathbf{6},\mu} =\displaystyle= Pμν3/2ϵabcSABU(qAaTγνqBb)cc,\displaystyle P^{3/2}_{\mu\nu}\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\gamma^{\nu}q_{B}^{b})c^{c}\,, (112)
B𝟔,μU\displaystyle B^{\prime U}_{\mathbf{6},\mu} =\displaystyle= Pμν3/2(B𝟔,7U,ν+B𝟔,8νU,ν),\displaystyle P^{3/2}_{\mu\nu}(B^{U,\nu}_{\mathbf{6},7}+B^{U,\nu}_{\mathbf{6},8\nu})\,, (113)
B𝟔,μνU\displaystyle B^{U}_{\mathbf{6},\mu\nu} =\displaystyle= Pμναβ3/2(B𝟔,7U,αβ+B𝟔,8U,αβ),\displaystyle P^{3/2}_{\mu\nu\alpha\beta}(B^{U,\alpha\beta}_{\mathbf{6},7}+B^{U,\alpha\beta}_{\mathbf{6},8})\,, (114)

where

B𝟔,7μU\displaystyle B^{U}_{\mathbf{6},7\mu} =\displaystyle= ϵabcSABU(qAaTσμνqBb)γνcc,\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\sigma_{\mu\nu}q_{B}^{b})\gamma^{\nu}c^{c}\,, (115)
B𝟔,8μU\displaystyle B^{U}_{\mathbf{6},8\mu} =\displaystyle= ϵabcSABU(qAaTσμνγ5qBb)γνγ5cc,\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\sigma_{\mu\nu}\gamma_{5}q_{B}^{b})\gamma^{\nu}\gamma_{5}c^{c}\,, (116)
B𝟔,7μνU\displaystyle B^{U}_{\mathbf{6},7\mu\nu} =\displaystyle= ϵabcSABU(qAaTσμνqBb)γ5cc,\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\sigma_{\mu\nu}q_{B}^{b})\gamma_{5}c^{c}\,, (117)
B𝟔,8μνU\displaystyle B^{U}_{\mathbf{6},8\mu\nu} =\displaystyle= ϵabcSABU(qAaTσμνγ5qBb)cc.\displaystyle\epsilon_{abc}S^{U}_{AB}(q_{A}^{aT}\mathbb{C}\sigma_{\mu\nu}\gamma_{5}q_{B}^{b})c^{c}\,. (118)

In the above expressions, a,b,ca,b,c are color indices and the sum over repeated indices is taken; A,B,G,UA,B,G,U are SU(3)SU(3) flavor indices, so that qA={u,d,s}q_{A}=\{u,d,s\}; ϵABG\epsilon^{ABG} is the totally antisymmetric matrix with G=1,2,3G=1,2,3, so that B𝟑¯,iGB^{G}_{\mathbf{\bar{3}},i} belong to the SU(3)SU(3) flavor 𝟑¯F\mathbf{\bar{3}}_{F} representation; SABUS^{U}_{AB} are the totally symmetric matrices with U=16U=1\cdots 6, so that B𝟔,iUB^{U}_{\mathbf{6},i} belong to the SU(3)SU(3) flavor 𝟔F\mathbf{6}_{F} representation; ccc^{c} is the charm quark field with the color index cc; \mathbb{C} is the charge-conjugation matrix; Pμν3/2P^{3/2}_{\mu\nu} and Pμναβ3/2P^{3/2}_{\mu\nu\alpha\beta} are two J=3/2J=3/2 projection operators.

Among the nine fields given in Eqs. (106-114), B𝟑¯,1GB^{G}_{\mathbf{\bar{3}},1}, B𝟑¯,2GB^{G}_{\mathbf{\bar{3}},2}, B𝟑¯,3GB^{G}_{\mathbf{\bar{3}},3}, B𝟔,4UB^{U}_{\mathbf{6},4}, and B𝟔,5UB^{U}_{\mathbf{6},5} have pure spin J=1/2J=1/2, and B𝟑¯,μGB^{G}_{\mathbf{\bar{3}},\mu}, B𝟔,μUB^{U}_{\mathbf{6},\mu}, B𝟔,μUB^{\prime U}_{\mathbf{6},\mu}, and B𝟔,μνUB^{U}_{\mathbf{6},\mu\nu} have pure spin J=3/2J=3/2. In the present study we only take into account the JP=1/2+J^{P}=1/2^{+} “ground-state” charmed baryon fields, B𝟑¯,2GB^{G}_{\mathbf{\bar{3}},2} and B𝟔,4UB^{U}_{\mathbf{6},4}; while we omit other charmed baryon fields, B𝟑¯,1GB^{G}_{\mathbf{\bar{3}},1}, B𝟑¯,3GB^{G}_{\mathbf{\bar{3}},3}, B𝟑¯,μGB^{G}_{\mathbf{\bar{3}},\mu}, B𝟔,5UB^{U}_{\mathbf{6},5}, B𝟔,μUB^{U}_{\mathbf{6},\mu}, B𝟔,μUB^{\prime U}_{\mathbf{6},\mu}, and B𝟔,μνUB^{U}_{\mathbf{6},\mu\nu}, all of which do not couple to the JP=1/2+J^{P}=1/2^{+} ground-state charmed baryons Λc\Lambda_{c} and Σc\Sigma_{c} within the framework of heavy quark effective theory groundbaryon .

Then we give the relations among light baryon fields. We refer to Refs. Ioffe:1981kw ; Ioffe:1982ce ; Espriu:1983hu ; Chen:2008qv ; Chen:2009sf ; Chen:2010ba ; Chen:2011rh ; Dmitrasinovic:2016hup for detailed discussions. According to the results of Ref. Chen:2008qv , we can use uu, uu, and dd (q=u/dq=u/d) quarks to construct five independent baryon fields:

N1\displaystyle N_{1} =\displaystyle= ϵabc(uaTdb)γ5uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}d_{b})\gamma_{5}u_{c}\,, (119)
N2\displaystyle N_{2} =\displaystyle= ϵabc(uaTγ5db)uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{5}d_{b})u_{c}\,, (120)
N3μ\displaystyle N_{3}^{\prime\mu} =\displaystyle= ϵabc(uaTγμγ5db)γ5uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}\gamma_{5}d_{b})\gamma_{5}u_{c}\,, (121)
N4μ\displaystyle N_{4}^{\prime\mu} =\displaystyle= ϵabc(uaTγμdb)uc,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}d_{b})u_{c}\,, (122)
N5μν\displaystyle N_{5}^{\prime\mu\nu} =\displaystyle= ϵabc(uaTσμνdb)γ5uc.\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}d_{b})\gamma_{5}u_{c}\,. (123)

Among these fields, the former two N1,2N_{1,2} have pure spin J=1/2J=1/2, but the latter three N3,4,5μ(ν)N^{\prime\mu(\nu)}_{3,4,5} do not have pure spin J=3/2J=3/2. We need to further use the projection operators P3/2μαP_{3/2}^{\mu\alpha} and P3/2μναβP_{3/2}^{\mu\nu\alpha\beta} to obtain N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5}, already given in Eqs. (31), which have pure spin J=3/2J=3/2. The relations between N3,4,5μ(ν)N^{\mu(\nu)}_{3,4,5} and N3,4,5μ(ν)N^{\prime\mu(\nu)}_{3,4,5} are

N3μ\displaystyle N_{3}^{\mu} =\displaystyle= P3/2μα×N3α\displaystyle P_{3/2}^{\mu\alpha}\times N_{3\alpha}^{\prime}
=\displaystyle= N3μ+14γμγ5(N1N2),\displaystyle N_{3}^{\prime\mu}+{1\over 4}\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
N4μ\displaystyle N_{4}^{\mu} =\displaystyle= P3/2μα×N4α\displaystyle P_{3/2}^{\mu\alpha}\times N_{4\alpha}^{\prime}
=\displaystyle= N4μ+14γμγ5(N1N2),\displaystyle N_{4}^{\prime\mu}+{1\over 4}\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
N5μν\displaystyle N_{5}^{\mu\nu} =\displaystyle= P3/2μναβ×N5αβ\displaystyle P_{3/2}^{\mu\nu\alpha\beta}\times N_{5\alpha\beta}^{\prime}
=\displaystyle= N5μν+i2γνγ5(N3μ+N4μ)\displaystyle N_{5}^{\prime\mu\nu}+{i\over 2}\gamma^{\nu}\gamma_{5}(N_{3}^{\prime\mu}+N_{4}^{\prime\mu})
i2γμγ5(N3ν+N4ν)+13σμν(2N1N2).\displaystyle-{i\over 2}\gamma^{\mu}\gamma_{5}(N_{3}^{\prime\nu}+N_{4}^{\prime\nu})+{1\over 3}\sigma^{\mu\nu}(2N_{1}-N_{2})\,.

All the other baryon fields can be transformed to N1,2,3,4,5(μν)N^{(\prime\mu\nu)}_{1,2,3,4,5} (and so to N1,2,3,4,5(μν)N^{(\mu\nu)}_{1,2,3,4,5}) through:

ϵabc(uaTγμdb)γμγ5uc=N1N2,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}d_{b})\gamma_{\mu}\gamma_{5}u_{c}=N_{1}-N_{2}\,, (127)
ϵabc(uaTγμγ5db)γμuc=N1N2,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}\gamma_{5}d_{b})\gamma_{\mu}u_{c}=N_{1}-N_{2}\,,
ϵabc(uaTσμνdb)σμνγ5uc=2N12N2,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}d_{b})\sigma_{\mu\nu}\gamma_{5}u_{c}=-2N_{1}-2N_{2}\,,
ϵabc(uaTγνdb)σμνuc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\nu}d_{b})\sigma^{\mu\nu}u_{c}
=iN4μiγμγ5(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-iN_{4}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
ϵabc(uaTγνγ5db)σμνγ5uc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\nu}\gamma_{5}d_{b})\sigma^{\mu\nu}\gamma_{5}u_{c}
=iN3μiγμγ5(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-iN_{3}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
ϵabc(uaTσμνdb)γνuc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}d_{b})\gamma_{\nu}u_{c}
=iN3μ+iN4μ+iγμγ5N1,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=iN_{3}^{\prime\mu}+iN_{4}^{\prime\mu}+i\gamma^{\mu}\gamma_{5}N_{1}\,,
ϵabc(uaTσμνγ5db)γνγ5uc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}\gamma_{5}d_{b})\gamma_{\nu}\gamma_{5}u_{c}
=iN3μiN4μ+iγμγ5N2,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-iN_{3}^{\prime\mu}-iN_{4}^{\prime\mu}+i\gamma^{\mu}\gamma_{5}N_{2}\,,
ϵabc(uaTσμνγ5db)uc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}\gamma_{5}d_{b})u_{c}
=N5μν+iγνγ5(N3μ+N4μ)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=N_{5}^{\prime\mu\nu}+i\gamma^{\nu}\gamma_{5}(N_{3}^{\prime\mu}+N_{4}^{\prime\mu})
iγμγ5(N3ν+N4ν)+σμν(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-i\gamma^{\mu}\gamma_{5}(N_{3}^{\prime\nu}+N_{4}^{\prime\nu})+\sigma^{\mu\nu}(N_{1}-N_{2})\,,
ϵabcϵμνρσ(uaTσραdb)σσαuc\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\sigma_{\rho\alpha}d_{b})\sigma_{\sigma\alpha}u_{c}
=2N5μνiγνγ5(N3μ+N4μ)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-2N_{5}^{\prime\mu\nu}-i\gamma^{\nu}\gamma_{5}(N_{3}^{\prime\mu}+N_{4}^{\prime\mu})
+iγμγ5(N3ν+N4ν)2σμνN1,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+i\gamma^{\mu}\gamma_{5}(N_{3}^{\prime\nu}+N_{4}^{\prime\nu})-2\sigma^{\mu\nu}N_{1}\,,
ϵabcϵμνρσ(uaTγρdb)γσuc\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\gamma_{\rho}d_{b})\gamma_{\sigma}u_{c}
=iγνγ5N4μ+iγμγ5N4νσμν(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-i\gamma^{\nu}\gamma_{5}N_{4}^{\prime\mu}+i\gamma^{\mu}\gamma_{5}N_{4}^{\prime\nu}-\sigma^{\mu\nu}(N_{1}-N_{2})\,,
ϵabcϵμνρσ(uaTγργ5db)γσγ5uc\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\gamma_{\rho}\gamma_{5}d_{b})\gamma_{\sigma}\gamma_{5}u_{c}
=iγνγ5N3μ+iγμγ5N3νσμν(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-i\gamma^{\nu}\gamma_{5}N_{3}^{\prime\mu}+i\gamma^{\mu}\gamma_{5}N_{3}^{\prime\nu}-\sigma^{\mu\nu}(N_{1}-N_{2})\,,

and

ϵabc(uaTub)γ5dc=0,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}u_{b})\gamma_{5}d_{c}=0\,, (128)
ϵabc(uaTγ5ub)dc=0,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{5}u_{b})d_{c}=0\,,
ϵabc(uaTγμub)γμγ5dc=2N1+2N2,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}u_{b})\gamma_{\mu}\gamma_{5}d_{c}=-2N_{1}+2N_{2}\,,
ϵabc(uaTγμγ5ub)γμdc=0,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}\gamma_{5}u_{b})\gamma_{\mu}d_{c}=0\,,
ϵabc(uaTσμνub)σμνγ5dc=4N1+4N2,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}u_{b})\sigma_{\mu\nu}\gamma_{5}d_{c}=4N_{1}+4N_{2}\,,
ϵabc(uaTγμub)dc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}u_{b})d_{c}
=N3μ+N4μ+γμγ5(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=N_{3}^{\prime\mu}+N_{4}^{\prime\mu}+\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
ϵabc(uaTγμγ5ub)γ5dc=0,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma^{\mu}\gamma_{5}u_{b})\gamma_{5}d_{c}=0\,,
ϵabc(uaTγνub)σμνdc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\nu}u_{b})\sigma^{\mu\nu}d_{c}
=iN3μiN4μ+iγμγ5(N1N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-iN_{3}^{\prime\mu}-iN_{4}^{\prime\mu}+i\gamma^{\mu}\gamma_{5}(N_{1}-N_{2})\,,
ϵabc(uaTγνγ5ub)σμνγ5dc=0,\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\gamma_{\nu}\gamma_{5}u_{b})\sigma^{\mu\nu}\gamma_{5}d_{c}=0\,,
ϵabc(uaTσμνub)γνdc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}u_{b})\gamma_{\nu}d_{c}
=iN3μ+iN4μiγμγ5(N1+N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-iN_{3}^{\prime\mu}+iN_{4}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}(N_{1}+N_{2})\,,
ϵabc(uaTσμνγ5ub)γνγ5dc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}\gamma_{5}u_{b})\gamma_{\nu}\gamma_{5}d_{c}
=iN3μiN4μiγμγ5(N1+N2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=iN_{3}^{\prime\mu}-iN_{4}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}(N_{1}+N_{2})\,,
ϵabc(uaTσμνub)γ5dc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}u_{b})\gamma_{5}d_{c}
=N5μν+iγνγ5N3μiγμγ5N3ν+σμνN1,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=N_{5}^{\prime\mu\nu}+i\gamma^{\nu}\gamma_{5}N_{3}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}N_{3}^{\prime\nu}+\sigma^{\mu\nu}N_{1}\,,
ϵabc(uaTσμνγ5ub)dc\displaystyle\epsilon^{abc}(u_{a}^{T}\mathbb{C}\sigma^{\mu\nu}\gamma_{5}u_{b})d_{c}
=N5μν+iγνγ5N4μiγμγ5N4ν+σμνN1,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=N_{5}^{\prime\mu\nu}+i\gamma^{\nu}\gamma_{5}N_{4}^{\prime\mu}-i\gamma^{\mu}\gamma_{5}N_{4}^{\prime\nu}+\sigma^{\mu\nu}N_{1}\,,
ϵabcϵμνρσ(uaTσραub)σσαdc\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\sigma_{\rho\alpha}u_{b})\sigma_{\sigma\alpha}d_{c}
=2N5μνiγνγ5(N3μ+N4μ)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-2N_{5}^{\prime\mu\nu}-i\gamma^{\nu}\gamma_{5}(N_{3}^{\prime\mu}+N_{4}^{\prime\mu})
+iγμγ5(N3ν+N4ν)+2σμνN2,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+i\gamma^{\mu}\gamma_{5}(N_{3}^{\prime\nu}+N_{4}^{\prime\nu})+2\sigma^{\mu\nu}N_{2}\,,
ϵabcϵμνρσ(uaTγρub)γσdc\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\gamma_{\rho}u_{b})\gamma_{\sigma}d_{c}
=iγνγ5(N3μ+N4μ)+iγμγ5(N3ν+N4ν),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=-i\gamma^{\nu}\gamma_{5}(N_{3}^{\prime\mu}+N_{4}^{\prime\mu})+i\gamma^{\mu}\gamma_{5}(N_{3}^{\prime\nu}+N_{4}^{\prime\nu})\,,
ϵabcϵμνρσ(uaTγργ5ub)γσγ5dc=0.\displaystyle\epsilon^{abc}\epsilon^{\mu\nu\rho\sigma}(u_{a}^{T}\mathbb{C}\gamma_{\rho}\gamma_{5}u_{b})\gamma_{\sigma}\gamma_{5}d_{c}=0\,.

Appendix C Uncertainties due to phase angles

There are two different effective Lagrangians for the |D¯0Σc+;1/2|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle (and |D¯Σc++;1/2|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle) decay into the ηcp\eta_{c}p final state, as given in Eqs. (52) and (53):

ηcp\displaystyle\mathcal{L}_{\eta_{c}p} =\displaystyle= gηcpP¯cNηc,\displaystyle g_{\eta_{c}p}~{}\bar{P}_{c}N~{}\eta_{c}\,, (129)
ηcp\displaystyle\mathcal{L}^{\prime}_{\eta_{c}p} =\displaystyle= gηcpP¯cγμNμηc.\displaystyle g^{\prime}_{\eta_{c}p}~{}\bar{P}_{c}\gamma_{\mu}N~{}\partial^{\mu}\eta_{c}\,. (130)

There are also two different effective Lagrangians for the |D¯0Σc+;1/2|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle (and |D¯Σc++;1/2|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle) decay into the J/ψpJ/\psi p final state, as given in Eqs. (63) and (64):

ψp\displaystyle\mathcal{L}_{\psi p} =\displaystyle= gψpP¯cγμγ5Nψμ,\displaystyle g_{\psi p}~{}\bar{P}_{c}\gamma_{\mu}\gamma_{5}N~{}\psi^{\mu}\,, (131)
ψp\displaystyle\mathcal{L}^{\prime}_{\psi p} =\displaystyle= gψpP¯cσμνγ5Nμψν.\displaystyle g^{\prime}_{\psi p}~{}\bar{P}_{c}\sigma_{\mu\nu}\gamma_{5}N~{}\partial^{\mu}\psi^{\nu}\,. (132)

There can be a phase angle θ\theta between gηcpg_{\eta_{c}p} and gηcpg^{\prime}_{\eta_{c}p} and another phase angle θ\theta^{\prime} between gψpg_{\psi p} and gψpg^{\prime}_{\psi p}, both of which can not be determined in the present study. In this appendix we rotate θ/θ\theta/\theta^{\prime} and redo all the calculations.

{widetext}
  • We obtain the following relative branching ratios for the D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecular states of I=1/2I=1/2:

    (|D¯Σc;1/2J/ψp:ηcp:D¯0Λc+)(|D¯Σc;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow~{}~{}~{}J/\psi p~{}~{}~{}:~{}~{}~{}~{}~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}~{}~{}~{}~{}:~{}~{}~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}\right)\over\mathcal{B}\left(|\bar{D}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.53.8:0.69t,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}~{}:~{}~{}~{}~{}~{}0.5\sim 3.8~{}~{}~{}~{}:\,~{}~{}~{}~{}0.69t~{}\,,
    (|D¯Σc;1/2J/ψp:ηcp:χc0p:D¯0Λc+:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc;1/2J/ψp)|θ=0\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:\,~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}\,:\,~{}\chi_{c0}p~{}\,:~{}\bar{D}^{0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-}\rangle\rightarrow J/\psi p\right)\big{|}_{\theta^{\prime}=0}}
    \displaystyle\approx 11.8:0.11.1:0.004:1.2t:0.41t:0.04t:0.08t,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1\sim 1.8~{}\,:~{}0.1\sim 1.1~{}:~{}0.004~{}:\,~{}~{}1.2t~{}~{}\,:\,~{}~{}0.41t~{}~{}\,:~{}~{}0.04t~{}~{}:\,~{}~{}~{}0.08t~{}\,,
    (|D¯Σc;3/2J/ψp:ηcp:χc1p:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:~{}~{}\eta_{c}p~{}~{}:\,~{}\chi_{c1}p~{}\,:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.005:104:0.35t:105t:105t.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}\,:~{}0.005~{}:~{}10^{-4}~{}:\,~{}~{}0.35t~{}~{}\,:\,~{}10^{-5}t~{}\,:~{}~{}~{}10^{-5}t~{}\,.
  • We obtain the following relative branching ratios for the D¯()Σc\bar{D}^{(*)}\Sigma_{c} hadronic molecular states of I=3/2I=3/2:

    (|D¯Σc;1/2D¯Σc++)(|D¯Σc;1/2D¯0Σc+)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-\prime}\rangle\rightarrow\bar{D}^{-}\Sigma_{c}^{++}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};1/2^{-\prime}\rangle\rightarrow\bar{D}^{0}\Sigma_{c}^{+}\right)} \displaystyle\approx 0.5,\displaystyle 0.5\,, (136)
    (|D¯Σc;3/2D¯Σc++)(|D¯Σc;3/2D¯0Σc+)\displaystyle{\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-\prime}\rangle\rightarrow\bar{D}^{-}\Sigma_{c}^{++}\right)\over\mathcal{B}\left(|\bar{D}^{*}\Sigma_{c};3/2^{-\prime}\rangle\rightarrow\bar{D}^{0}\Sigma_{c}^{+}\right)} \displaystyle\approx 0.5.\displaystyle 0.5\,. (137)
  • We obtain the following relative branching ratios for the D¯()0Σc+\bar{D}^{(*)0}\Sigma_{c}^{+} hadronic molecular states:

    (|D¯0Σc+;1/2J/ψp:ηcp:D¯0Λc+)(|D¯0Σc+;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\rightarrow~{}~{}~{}J/\psi p~{}~{}~{}:~{}~{}~{}~{}~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}~{}~{}~{}~{}:~{}~{}~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}\right)\over\mathcal{B}\left(|\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.53.8:0.69t,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}~{}:~{}~{}~{}~{}~{}0.5\sim 3.8~{}~{}~{}~{}:\,~{}~{}~{}~{}0.69t~{}\,,
    (|D¯0Σc+;1/2J/ψp:ηcp:χc0p:D¯0Λc+:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯0Σc+;1/2J/ψp)|θ=0\displaystyle{\mathcal{B}\left(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:\,~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}\,:\,~{}\chi_{c0}p~{}\,:~{}\bar{D}^{0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle\rightarrow J/\psi p\right)\big{|}_{\theta^{\prime}=0}}
    \displaystyle\approx 11.8:0.11.1:0.004:1.2t:0.41t:0.35t:0.70t,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1\sim 1.8~{}\,:~{}0.1\sim 1.1~{}:~{}0.004~{}:\,~{}~{}1.2t~{}~{}\,:\,~{}~{}0.41t~{}~{}\,:~{}~{}0.35t~{}~{}:\,~{}~{}~{}0.70t~{}\,,
    (|D¯0Σc+;3/2J/ψp:ηcp:χc1p:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯0Σc+;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:~{}~{}\eta_{c}p~{}~{}:\,~{}\chi_{c1}p~{}\,:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx 1:0.005:104:0.35t:104t:104t.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}1~{}~{}~{}~{}\,:~{}0.005~{}:~{}10^{-4}~{}:\,~{}~{}0.35t~{}~{}\,:\,~{}10^{-4}t~{}\,:~{}~{}~{}10^{-4}t~{}\,.
  • We obtain the following relative branching ratios for the D¯()Σc++\bar{D}^{(*)-}\Sigma_{c}^{++} hadronic molecular states:

    (|D¯Σc++;1/2J/ψp:ηcp:D¯0Λc+)(|D¯Σc++;1/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle\rightarrow~{}~{}~{}J/\psi p~{}~{}~{}:~{}~{}~{}~{}~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}~{}~{}~{}~{}:~{}~{}~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}\right)\over\mathcal{B}\left(|\bar{D}^{-}\Sigma_{c}^{++};1/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx  1:0.53.8:0.69t,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\,1~{}~{}~{}~{}~{}:~{}~{}~{}~{}~{}0.5\sim 3.8~{}~{}~{}~{}:\,~{}~{}~{}~{}0.69t~{}\,,
    (|D¯Σc++;1/2J/ψp:ηcp:χc0p:D¯0Λc+:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc++;1/2J/ψp)|θ=0\displaystyle{\mathcal{B}\left(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:\,~{}~{}~{}~{}\eta_{c}p~{}~{}~{}~{}\,:\,~{}\chi_{c0}p~{}\,:~{}\bar{D}^{0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*-}\Sigma_{c}^{++};1/2^{-}\rangle\rightarrow J/\psi p\right)\big{|}_{\theta^{\prime}=0}}
    \displaystyle\approx  11.8:0.11.1:0.004:1.2t:0.41t:0.35t:0,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\,1\sim 1.8~{}\,:~{}0.1\sim 1.1~{}:~{}0.004~{}:\,~{}~{}1.2t~{}~{}\,:\,~{}~{}0.41t~{}~{}\,:~{}~{}0.35t~{}~{}:\,~{}~{}~{}~{}~{}0~{}\,,
    (|D¯Σc++;3/2J/ψp:ηcp:χc1p:D¯0Λc+:D¯0Σc+:D¯Σc++)(|D¯Σc++;3/2J/ψp)\displaystyle{\mathcal{B}\left(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\rightarrow~{}~{}J/\psi p~{}~{}:~{}~{}\eta_{c}p~{}~{}:\,~{}\chi_{c1}p~{}\,:~{}\bar{D}^{*0}\Lambda_{c}^{+}~{}:~{}\bar{D}^{0}\Sigma_{c}^{+}~{}:~{}\bar{D}^{-}\Sigma_{c}^{++}~{}\right)\over\mathcal{B}\left(|\bar{D}^{*-}\Sigma_{c}^{++};3/2^{-}\rangle\rightarrow J/\psi p\right)}
    \displaystyle\approx  1:0.005:104:0.35t:104t:0.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\,1~{}~{}~{}~{}\,:~{}0.005~{}:~{}10^{-4}~{}:\,~{}~{}0.35t~{}~{}\,:\,~{}10^{-4}t~{}\,:~{}~{}~{}~{}~{}0~{}\,.

References

  • (1) S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett.  91, 262001 (2003).
  • (2) M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (3) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  115, 072001 (2015).
  • (4) R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  122, 222001 (2019).
  • (5) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept.  639, 1 (2016).
  • (6) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys.  107, 237 (2019).
  • (7) R. F. Lebed, R. E. Mitchell and E. S. Swanson, Prog. Part. Nucl. Phys.  93, 143 (2017).
  • (8) A. Esposito, A. Pilloni and A. D. Polosa, Phys. Rept.  668, 1 (2017).
  • (9) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Rev. Mod. Phys.  90, 015004 (2018).
  • (10) A. Ali, J. S. Lange and S. Stone, Prog. Part. Nucl. Phys.  97, 123 (2017).
  • (11) S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys.  90, 015003 (2018).
  • (12) M. Karliner, J. L. Rosner and T. Skwarnicki, Ann. Rev. Nucl. Part. Sci.  68, 17 (2018).
  • (13) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, arXiv:1907.07583 [hep-ex].
  • (14) F. K. Guo, X. H. Liu and S. Sakai, arXiv:1912.07030 [hep-ph].
  • (15) J. J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett.  105, 232001 (2010).
  • (16) W. L. Wang, F. Huang, Z. Y. Zhang and B. S. Zou, Phys. Rev. C 84, 015203 (2011).
  • (17) Z. C. Yang, Z. F. Sun, J. He, X. Liu and S. L. Zhu, Chin. Phys. C 36, 6 (2012).
  • (18) M. Karliner and J. L. Rosner, Phys. Rev. Lett.  115, 122001 (2015).
  • (19) J. J. Wu, T.-S. H. Lee and B. S. Zou, Phys. Rev. C 85, 044002 (2012).
  • (20) R. Chen, Z. F. Sun, X. Liu and S. L. Zhu, Phys. Rev. D 100, 011502(R) (2019).
  • (21) M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng, A. Hosaka and M. P. Valderrama, Phys. Rev. Lett.  122, 242001 (2019).
  • (22) J. He, Eur. Phys. J. C 79, 393 (2019).
  • (23) H. Huang, J. He and J. Ping, arXiv:1904.00221 [hep-ph].
  • (24) Z. H. Guo and J. A. Oller, Phys. Lett. B 793, 144 (2019).
  • (25) C. Fernández-Ramírez, A. Pilloni, M. Albaladejo, A. Jackura, V. Mathieu, M. Mikhasenko, J. A. Silva-Castro, A. P. Szczepaniak, [JPAC Collaboration], Phys. Rev. Lett.  123, 092001 (2019).
  • (26) C. W. Xiao, J. Nieves and E. Oset, Phys. Rev. D 100, 014021 (2019).
  • (27) L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Phys. Rev. D 100, 014031 (2019).
  • (28) J. J. Wu, T.-S. H. Lee and B. S. Zou, Phys. Rev. C 100, 035206 (2019).
  • (29) Z. G. Wang and X. Wang, arXiv:1907.04582 [hep-ph].
  • (30) Y. Yamaguchi, H. Garcia-Tecocoatzi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi and M. Takizawa, arXiv:1907.04684 [hep-ph].
  • (31) M. Pavon Valderrama, Phys. Rev. D 100, 094028 (2019).
  • (32) M. Z. Liu, T. W. Wu, M. Sánchez Sánchez, M. P. Valderrama, L. S. Geng and J. J. Xie, arXiv:1907.06093 [hep-ph].
  • (33) T. J. Burns and E. S. Swanson, Phys. Rev. D 100, 114033 (2019).
  • (34) B. Wang, L. Meng and S. L. Zhu, JHEP 1911, 108 (2019).
  • (35) T. Gutsche and V. E. Lyubovitskij, Phys. Rev. D 100, 094031 (2019).
  • (36) M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, J. A. Oller and Q. Wang, arXiv:1910.11846 [hep-ph].
  • (37) K. Azizi, Y. Sarac and H. Sundu, Phys. Rev. D 95, 094016 (2017).
  • (38) H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D 100, 051501(R) (2019).
  • (39) L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 749, 289 (2015).
  • (40) R. F. Lebed, Phys. Lett. B 749, 454 (2015).
  • (41) F. Stancu, Eur. Phys. J. C 79, 957 (2019).
  • (42) J. F. Giron, R. F. Lebed and C. T. Peterson, JHEP 1905, 061 (2019).
  • (43) A. Ali and A. Y. Parkhomenko, Phys. Lett. B 793, 365 (2019).
  • (44) X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 100, 016014 (2019).
  • (45) M. I. Eides, V. Y. Petrov and M. V. Polyakov, arXiv:1904.11616 [hep-ph].
  • (46) Z. G. Wang, arXiv:1905.02892 [hep-ph].
  • (47) J. B. Cheng and Y. R. Liu, Phys. Rev. D 100, 054002 (2019).
  • (48) A. Ali, I. Ahmed, M. J. Aslam, A. Y. Parkhomenko and A. Rehman, JHEP 1910, 256 (2019).
  • (49) M. B. Voloshin, Phys. Rev. D 100, 034020 (2019).
  • (50) S. Sakai, H. J. Jing and F. K. Guo, Phys. Rev. D 100, 074007 (2019).
  • (51) F. K. Guo, H. J. Jing, U. G. Meißner and S. Sakai, Phys. Rev. D 99, 091501(R) (2019).
  • (52) C. J. Xiao, Y. Huang, Y. B. Dong, L. S. Geng and D. Y. Chen, Phys. Rev. D 100, 014022 (2019).
  • (53) X. Cao and J. P. Dai, Phys. Rev. D 100, 054033 (2019).
  • (54) Y. H. Lin and B. S. Zou, Phys. Rev. D 100, 056005 (2019).
  • (55) Y. J. Xu, C. Y. Cui, Y. L. Liu and M. Q. Huang, arXiv:1907.05097 [hep-ph].
  • (56) G. J. Wang, L. Y. Xiao, R. Chen, X. H. Liu, X. Liu and S. L. Zhu, arXiv:1911.09613 [hep-ph].
  • (57) H. X. Chen, arXiv:1910.03269 [hep-ph].
  • (58) M. B. Voloshin, Phys. Rev. D 87, 091501(R) (2013).
  • (59) L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 778, 247 (2018).
  • (60) M. B. Voloshin, Phys. Rev. D 98, 034025 (2018).
  • (61) L. Y. Xiao, G. J. Wang and S. L. Zhu, arXiv:1912.12781 [hep-ph].
  • (62) J. B. Cheng, S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and T. Yao, arXiv:2001.05287 [hep-ph].
  • (63) H. X. Chen, W. Chen, X. Liu, T. G. Steele and S. L. Zhu, Phys. Rev. Lett.  115, 172001 (2015).
  • (64) H. X. Chen, E. L. Cui, W. Chen, X. Liu, T. G. Steele and S. L. Zhu, Eur. Phys. J. C 76, 572 (2016).
  • (65) J. B. Xiang, H. X. Chen, W. Chen, X. B. Li, X. Q. Yao and S. L. Zhu, Chin. Phys. C 43, 034104 (2019).
  • (66) B. L. Ioffe, Nucl. Phys. B 188, 317 (1981) Erratum: [Nucl. Phys. B 191, 591 (1981)].
  • (67) B. L. Ioffe, Z. Phys. C 18, 67 (1983).
  • (68) D. Espriu, P. Pascual and R. Tarrach, Nucl. Phys. B 214, 285 (1983).
  • (69) F. S. Yu, H. Y. Jiang, R. H. Li, C. D. Lü, W. Wang and Z. X. Zhao, Chin. Phys. C 42, 051001 (2018).
  • (70) H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 78, 054017 (2008).
  • (71) H. X. Chen, Eur. Phys. J. C 73, 2628 (2013).
  • (72) W. Chen and S. L. Zhu, Phys. Rev. D 83, 034010 (2011).
  • (73) E. V. Veliev, H. Sundu, K. Azizi and M. Bayar, Phys. Rev. D 82, 056012 (2010).
  • (74) D. Bečirević, G. Duplančić, B. Klajn, B. Melić and F. Sanfilippo, Nucl. Phys. B 883, 306 (2014).
  • (75) V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Phys. Rept.  41, 1 (1978).
  • (76) S. Narison, Nucl. Part. Phys. Proc.  270-272, 143 (2016).
  • (77) Q. Chang, X. N. Li, X. Q. Li and F. Su, Chin. Phys. C 42, 073102 (2018).
  • (78) X. Liu, H. X. Chen, Y. R. Liu, A. Hosaka and S. L. Zhu, Phys. Rev. D 77, 014031 (2008).
  • (79) H. X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu and S. L. Zhu, Phys. Rev. D 95, 094008 (2017).
  • (80) E. L. Cui, H. M. Yang, H. X. Chen and A. Hosaka, Phys. Rev. D 99, 094021 (2019).
  • (81) M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979).
  • (82) L. J. Reinders, H. Rubinstein and S. Yazaki, Phys. Rept.  127, 1 (1985).
  • (83) B. Grinstein, Nucl. Phys. B 339, 253 (1990).
  • (84) E. Eichten and B. R. Hill, Phys. Lett. B 234, 511 (1990).
  • (85) A. F. Falk, H. Georgi, B. Grinstein and M. B. Wise, Nucl. Phys. B 343, 1 (1990).
  • (86) V. Dmitrašinović and H. X. Chen, Phys. Rev. D 101, no.11, 114016 (2020).
  • (87) A full analysis on decay constants of charmed baryon fields, in preparation.
  • (88) H. X. Chen, V. Dmitrasinovic, A. Hosaka, K. Nagata and S. L. Zhu, Phys. Rev. D 78, 054021 (2008).
  • (89) H. X. Chen, V. Dmitrasinovic and A. Hosaka, Phys. Rev. D 81, 054002 (2010).
  • (90) H. X. Chen, V. Dmitrasinovic and A. Hosaka, Phys. Rev. D 83, 014015 (2011).
  • (91) H. X. Chen, V. Dmitrasinovic and A. Hosaka, Phys. Rev. C 85, 055205 (2012).
  • (92) V. Dmitrasinovic, H. X. Chen and A. Hosaka, Phys. Rev. C 93, 065208 (2016).
  • (93) H. X. Chen, Eur. Phys. J. C 72, 2180 (2012).
  • (94) M. Fierz, Z. Physik, 104, 553 (1937).
  • (95) H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 74, 054001 (2006).
  • (96) H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Lett. B 650, 369 (2007).
  • (97) H. X. Chen, A. Hosaka and S. L. Zhu, Phys. Rev. D 76, 094025 (2007).
  • (98) H. X. Chen, X. Liu, A. Hosaka and S. L. Zhu, Phys. Rev. D 78, 034012 (2008).
  • (99) H. X. Chen, C. P. Shen and S. L. Zhu, Phys. Rev. D 98, 014011 (2018).
  • (100) M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett.  83, 1914 (1999).
  • (101) M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 591, 313 (2000).
  • (102) M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606, 245 (2001).
  • (103) H. D. Li, C. D. Lü, C. Wang, Y. M. Wang and Y. B. Wei, JHEP 2004, 023 (2020).
  • (104) L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory), Pergamon Press, Oxford, 1977.