This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Decay properties of Ds0(2317)+D_{s0}^{*}(2317)^{+} as a conventional cs¯c\bar{s} meson

Meng Han [email protected] Department of Physics and Technology, Hebei University, Baoding, 071002, China Wei Li Department of Physics and Technology, Hebei University, Baoding, 071002, China Su-Yan Pei Department of Physics and Technology, Hebei University, Baoding, 071002, China Ting-Ting Liu Department of Physics and Technology, Hebei University, Baoding, 071002, China Guo-Li Wang [email protected], corresponding author Department of Physics and Technology, Hebei University, Baoding, 071002, China

Abstract

Taking Ds0(2317)+D_{s0}^{*}(2317)^{+} as a conventional cs¯c\bar{s} meson, we calculate its dominant strong and electromagnetic decays in the framework of the Bethe-Salpeter method. Our results are Γ(Ds0+Ds+π0)=7.831.55+1.97\Gamma(D_{s0}^{*+}\to D_{s}^{+}\pi^{0})=7.83^{+1.97}_{-1.55} keV and Γ(Ds0+Ds+γ)=2.550.45+0.37\Gamma(D_{s0}^{*+}\to D_{s}^{*+}\gamma)=2.55^{+0.37}_{-0.45} keV. The contributions of the different partial waves from the initial and final state wave functions to the decay width are also calculated, and we find that the relativistic corrections in both decay processes are very large.

I.   Introduction

The particle Ds0(2317)+D_{s0}^{*}(2317)^{+} was discovered in the invariant mass distribution of Ds+π0D_{s}^{+}\pi^{0} by the BABAR collaboration in 2003 [1]. According to an analysis of experimental data, it is proposed that its isospin and spin parity quantum number are I(JP)=0(0+)I(J^{P})=0(0^{+}), its mass is MM=2317.8 ±\pm 0.5 MeV, and its full width is Γ<3.8\Gamma<3.8 MeV [2]. Since its discovery, its small width and low mass [3] have aroused great interest among experimentalists [4, 6, 5] and high-energy physics theorists [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Experts have not fully understood the internal structure of Ds0(2317)D_{s0}^{*}(2317); it has been interpreted as a traditional cs¯c\bar{s} state [7, 8, 9, 10, 11, 12], while others think it might be an exotic meson state, such as a D-K bound state [17, 18, 19, 23], cs¯qq¯{c}\bar{s}q\bar{q} teraquark state [13, 14, 15], or DsπD_{s}\pi quasibound state [16] or a mixture of a cs¯c\bar{s} meson and a cs¯qq¯{c}\bar{s}q\bar{q} tetraquark [21, 22], cs¯c\bar{s} meson combined with quark-antiquark and meson-meson interpolators [24], cs¯c\bar{s} meson whith the effect of nearby DKDK threshold taken into account by employing the corresponding four-quark operators [25], cs¯c\bar{s} meson using interpolating fields of different structures [26] etc. A more detailed description of exotic hadrons can be found in Ref.[27].

In order to determine its internal structure, futher study of its production and decay is needed, especially its decay, which is important for revealing its internal composition, because different internal structures will lead to different decay behaviors and branching ratios. If it is a traditional meson, the Ds0(2317)D_{s0}^{*}(2317) mass is lower than the threshold of Ds+ηD_{s}+\eta or Du,d+KD_{u,d}+K; thus, these possible Okubo-Zweig-Iizuka(OZI)-allowed decay channels are kinematically forbidden. Cho and Wise proposed the ηπ0\eta-\pi^{0} mixing mechanism and the origin of isospin violating effects from the mass splitting of uu and dd quarks [28]. In this case, Ds0(2317)+D_{s0}^{*}(2317)^{+} is converted first into Ds+ηD_{s}^{+}\eta and then into Ds+π0D_{s}^{+}\pi^{0} by the mixing, i.e.i.e., Ds0(2317)+Ds+ηDs+π0D_{s0}^{*}(2317)^{+}\to D_{s}^{+}\eta\to D_{s}^{+}\pi^{0}. Therefore, the strong decay channel Ds0(2317)+Ds+π0D_{s0}^{*}(2317)^{+}\to D_{s}^{+}\pi^{0} is the dominant decay channel of this particle. This conclusion is supported by experimental data [2]. Ds0(2317)D_{s0}^{*}(2317) has another permissible decay channel, i.e.i.e., the electromagnetic (EM) decay channel Ds0(2317)DsγD_{s0}^{*}(2317)\rightarrow D_{s}^{*}\gamma. Normally, EM decay is far narrower than strong decay, but because it is not affected by isospin violation, the EM decay width may be less different from the strong decay width.

There have been discussions of its strong and EM decays using different models [8, 13, 3, 7, 10, 29, 9]. Among them, Godfrey found a large branching ratio to DsγD_{s}^{*}\gamma for Ds0(2317)D_{s0}^{*}(2317); Bardeen etalet~{}al [8] studied Ds+πD_{s}+\pi, Ds+2πD_{s}+2\pi, and EM transitions from the full chiral theory; Colangelo and Fazio used the method based on heavy quark symmetries and the vector meson dominance ansatz to study the strong and EM decays; Zhu etalet~{}al used the 3P03P_{0} model [12] and the light-cone QCD sum rule (LCQSR) [30] to study the strong decays of Ds0(2317)D_{s0}^{*}(2317); Liu etalet~{}al studied the strong pionic and radiative decays in the Constituent Quark Meson model [31]; Wang calculated the corresponding strong coupling constant in the framework of the LCQSR [32] and the radiative decay with the assumption of vector meson dominance; Guo etalet~{}al studied the strong decay by constructing an effective chiral Lagrangian under the assumption of a hadronic molecule [33]; and Liu etalet~{}al [34] studied the strong decay under the assumption of a DKDK molecule in lattice QCD.

In these studies, there is a lack of the relativistic method. Therefore, in this paper, we assume Ds0(2317)D_{s0}^{*}(2317) as the cs¯c\bar{s} traditional meson and study its strong and EM decays under the Bethe-Salpeter (BS) framework. The BS equation is a formally exact equation to describe the relativistic bound state [35, 36]. Using the BS method, we have studied the strong decays [38, 37] and electromagnetic decays [39, 40] of some particles, and the results are in good agreement with the experimental data. In this paper, we will show the advantages of the relativistic BS method, which can help reveal why the decay width of Ds0(2317)D_{s0}^{*}(2317) is so small, especially the radiative electromagnetic decay width.

The remainder of this paper is organized as follows. We show the hadronic matrix elements and the formula for the two-body strong decay width of Ds0(2317)Dsπ0D_{s0}^{*}(2317)\to D_{s}\pi^{0} through ηπ0\eta-\pi^{0} mixing in Section II. EM decay is presented in Section III. We show and compare our results with experimental data and other theoretical approaches in literature and summarize our results in Section IV.

II.   two-body strong decay of Ds0(2317)D_{s0}^{*}(2317)

In this section, we give the formula for calculating the hadronic transition matrix element and the strong decay, as well as the relativistic wave functions used.

Refer to caption
Figure 1: Original strong decay diagram for Ds0(2317)+Ds+π0D_{s0}^{*}(2317)^{+}\to D_{s}^{+}\pi^{0}.
Refer to caption
Figure 2: Strong decay diagram for Ds0(2317)+Ds+π0D_{s0}^{*}(2317)^{+}\to D_{s}^{+}\pi^{0} after approximation.

A Hadronic transition matrix element

When both quarks in the initial state appear in the final state meson, the strong decay of Ds0(2317)+D_{s0}^{*}(2317)^{+} can be expressed by a Feynman diagram, as shown in Fig.1. The transition matrix element of the two-body strong decay Ds0(2317)+Ds+ηD_{s0}^{*}(2317)^{+}\to D_{s}^{+}\eta can be expressed as (we compute the Ds0(2317)+Ds+ηD_{s0}^{*}(2317)^{+}\to D_{s}^{+}\eta process first, and then we import ηπ0\eta-\pi^{0} mixing for Ds+ηDs+π0D_{s}^{+}\eta\to D_{s}^{+}\pi^{0})[41]

Ds+(Pf)η(P)|Ds0+(P)=d4xeiPx(Mη2P2)Ds+(Pf)|Φη(x)|Ds0+(P),\left<D_{s}^{+}(P_{{}_{f}})\eta(P^{{}^{\prime}})|D_{s0}^{*+}(P)\right>=\int d^{4}xe^{iP^{{}^{\prime}}x}(M_{\eta}^{2}-P^{{}^{\prime}2})\left<D_{s}^{+}(P_{{}_{f}})|\Phi_{\eta}(x)|D_{s0}^{*+}(P)\right>, (1)

where, PP, PfP_{{}_{f}}, and PP^{{}^{\prime}} represent the momenta of Ds0(2317)+D_{s0}^{*}(2317)^{+}, Ds+D_{s}^{+} and η\eta, respectively. Φη(x)\Phi_{\eta}(x) represents the field of η\eta. And the light meson field is expressed as the derivative of the axial-vector flow divided by the decay constant fPf_{{}_{P}} of the light pseudoscalar meson according to the PCAC relation:

Φη(x)=1Mη2fPμ(s¯γμγ5s).\Phi_{\eta}(x)=\frac{1}{M_{\eta}^{2}f_{{}_{P}}}\partial^{\mu}(\bar{s}\gamma_{\mu}\gamma_{5}s). (2)

Fig.1 can be approximately converted into Fig.2 by using Eq.1.

By combining Eqs.(1) and (2), we obtain

Ds+(Pf)η(P)|Ds0+(P)=Mη2P2Mη2fPd4xeiPxDs+(Pf)|μ(s¯γμγ5s)|Ds0+(P).\left<D_{s}^{+}(P_{{}_{f}})\eta(P^{{}^{\prime}})|D_{s0}^{*+}(P)\right>=\frac{M_{\eta}^{2}-P^{{}^{\prime}2}}{M_{\eta}^{2}f_{{}_{P}}}\int d^{4}xe^{iP^{{}^{\prime}}x}\left<D_{s}^{+}(P_{{}_{f}})|\partial^{\mu}\left(\bar{s}\gamma_{\mu}\gamma_{5}s\right)|D_{s0}^{*+}(P)\right>. (3)

By using partial integration and applying the low-energy theorem, we can obtain the form of the transition matrix element in the momentum space. It can be written as

Ds+(Pf)η(P)|Ds0(P)\displaystyle\left<D_{s}^{+}(P_{{}_{f}})\eta(P^{{}^{\prime}})|D_{s0}^{*}(P)\right> =Mη2P2Mη2fPd4xeiPxDs+(Pf)|μ(s¯γμγ5s)|Ds0+(P)\displaystyle=\frac{M_{\eta}^{2}-P^{{}^{\prime}2}}{M_{\eta}^{2}f_{{}_{P}}}\int d^{4}xe^{iP^{{}^{\prime}}x}\left<D_{s}^{+}(P_{{}_{f}})|\partial^{\mu}\left(\bar{s}\gamma_{\mu}\gamma_{5}s\right)|D_{s0}^{*+}(P)\right> (4)
=iPμ(Mη2P2)Mη2fPd4xeiPxDs+(Pf)|s¯γμγ5s|Ds0+(P)\displaystyle=\frac{-iP^{{}^{\prime}\mu}\left(M_{\eta}^{2}-P^{{}^{\prime}2}\right)}{M_{\eta}^{2}f_{{}_{P}}}\int d^{4}xe^{iP^{{}^{\prime}}x}\left<D_{s}^{+}(P_{{}_{f}})|\bar{s}\gamma_{\mu}\gamma_{5}s|D_{s0}^{*+}(P)\right>
(2π)4δ4(PPfP)iPμfPDs+(Pf)|s¯γμγ5s|Ds0+(P).\displaystyle\approx(2\pi)^{4}\delta^{4}(P-P_{{}_{f}}-P^{{}^{\prime}})\frac{-iP^{{}^{\prime}\mu}}{f_{{}_{P}}}\left<D_{s}^{+}(P_{{}_{f}})|\bar{s}\gamma_{\mu}\gamma_{5}s|D_{s0}^{*+}(P)\right>.

Then, the transition amplitude for the process Ds0(2317)+Ds++ηD_{s0}^{*}(2317)^{+}\to D_{s}^{+}+\eta is

T=iPμfPDs+(Pf)|s¯γμγ5s|Ds0+(P).T=\frac{-iP^{{}^{\prime}\mu}}{f_{{}_{P}}}\left<D_{s}^{+}(P_{{}_{f}})|\bar{s}\gamma_{\mu}\gamma_{5}s|D_{s0}^{*+}(P)\right>. (5)

In the Mandelstam form [42], the transition amplitude can be written as an overlapping integral of the initial and final meson wave functions [43]

\displaystyle\mathcal{M} =Ds+(Pf)|s¯γμγ5s|Ds0+(P)\displaystyle=\left<D_{s}^{+}(P_{{}_{f}})|\bar{s}\gamma_{\mu}\gamma_{5}s|D_{s0}^{*+}(P)\right> (6)
=d4q(2π)4d4qf(2π)4Tr[χ¯Pf(qf)S11χP(q)γμγ5](2π)4δ4(p1p1f)\displaystyle=\int\frac{d^{4}q}{\left(2\pi\right)^{4}}\frac{d^{4}q_{{}_{f}}}{\left(2\pi\right)^{4}}Tr\left[\bar{\chi}_{P_{{}_{f}}}\left(q_{{}_{f}}\right)S_{1}^{-1}\chi_{P}\left(q\right)\gamma_{\mu}\gamma_{5}\right]\left(2\pi\right)^{4}\delta^{4}\left(p_{{}_{1}}-p_{{}_{1f}}\right)
d3q2π3Tr[φ¯Pf++(qα1Pf)MφP++(q)γμγ5],\displaystyle\approx\int\frac{d^{3}q_{\perp}}{2\pi^{3}}Tr\left[\bar{\varphi}_{P_{{}_{f}}}^{++}(q_{\perp}-\alpha_{1}P_{{}_{f\perp}})\frac{\not{P}}{M}\varphi_{P}^{++}\left(q_{\perp}\right)\gamma_{\mu}\gamma_{5}\right],

where χP(q)\chi_{{}_{P}}\left(q\right) and χPf(qf){\chi}_{{}_{P_{{}_{f}}}}\left(q_{{}_{f}}\right) represent the relativistic BS wave functions of Ds0(2317)+D_{s0}^{*}(2317)^{+} and Ds+D_{s}^{+}, respectively. qq and qfq_{{}_{f}} represent the internal relative momenta of the initial and final mesons, respectively. p1p_{{}_{1}}, p2p_{{}_{2}}, p1fp_{{}_{1f}} and p2fp_{{}_{2f}} represent the momenta of the quarks and anti-quarks of the initial and final mesons, respectively. S1S_{1} represents the propagator of the quarks. MM represents the mass of Ds0(2317)+D_{s0}^{*}(2317)^{+}, and α1=mcmc+ms\alpha_{1}=\frac{m_{c}}{m_{c}+m_{s}} with the quark mass mcm_{c} and the anti-quark mass ms¯m_{\bar{s}}; φPf++\varphi_{P_{{}_{f}}}^{++} and φP++\varphi_{P}^{++} represent the positive-energy wave functions of Ds+D_{s}^{+} and Ds0(2317)+D_{s0}^{*}(2317)^{+}, respectively. PfP_{{}_{f\perp}} is defined as Pfμ=Pfμ(PPfM2)PμP_{{}_{f\perp}}^{\mu}=P_{{}_{f}}^{\mu}-(\frac{P\cdot P_{{}_{f}}}{M^{2}})P^{\mu} (similar definition to qq_{\perp}), and φ¯Pf++\bar{\varphi}_{P_{{}_{f}}}^{++} is defined as γ0(φPf++)γ0\gamma_{0}(\varphi_{P_{{}_{f}}}^{++})^{\dagger}\gamma_{0}.

B Relativistic wave functions

In our model, we use the modified BS method based on the constituent quark model to give the wave functions for JPJ^{P} or JPCJ^{PC} states. Here, we will directly give the corresponding positive energy wave functions of initial and final states.

1 0+0^{+} state Ds0+D_{s0}^{*+}

The relativistic positive energy Salpeter wave function for the JPJ^{P} = 0+0^{+} state Ds0(2317)+D_{s0}^{*}(2317)^{+} (P03{}^{3}P_{0} state), can be written as

φ0+++(P,q)=A1+A2M+A3+A4M:\varphi_{0^{+}}^{++}\left(P,q_{\perp}\right)=A_{1}\not{q}_{\perp}+A_{2}\frac{\not{P}\not{q}_{\perp}}{M}+A_{3}+A_{4}\frac{\not{P}}{M}: (7)

where the AiA_{i} (i=1,2,3,4) are related to the original radial wave functions f1f_{1} and f2f_{2} of the 0+0^{+} wave function [44], quark mass mim_{i}, quark energy ωi\omega_{i} (i=c,s), and meson mass MM,

A1=12(f1+f2mc+msωc+ωs),A2=ωc+ωsmc+msA1,A_{1}=\frac{1}{2}(f_{1}+f_{2}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}),~{}~{}~{}A_{2}=\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}A_{1},
A3=q2ωc+ωsmcωs+msωcA1,A4=msωcmcωsmc+msA1.A_{3}=q_{\perp}^{2}\frac{\omega_{c}+\omega_{s}}{m_{c}\omega_{s}+m_{s}\omega_{c}}A_{1},~{}~{}~{}A_{4}=\frac{m_{s}\omega_{c}-m_{c}\omega_{s}}{m_{c}+m_{s}}A_{1}.

We should note that the wave function of a meson is not a pure wave; it actually includes different partial waves. For example, in the positive energy wave function, the A1A_{1} and A2A_{2} terms are PP waveswaves, which provide the main non-relativistic contribution, while the A3A_{3} and A4A_{4} terms are SS waveswaves, which give the main relativistic corrections [45].

2 00^{-} state Ds+D_{s}^{+}

The relativistic positive energy Salpeter wave function for Ds+D_{s}^{+} (S01{}^{1}S_{0} state) with JPJ^{P} = 00^{-} can be written as

φ0++(P,q)=[B1M+B2+B3+B4M]γ5,\varphi_{0^{-}}^{++}\left(P,q_{\perp}\right)=\left[B_{1}\frac{\not{P}}{M}+B_{2}+B_{3}\not{q}_{\perp}+B_{4}\frac{\not{q}_{\perp}\not{P}}{M}\right]\gamma_{5}, (8)

where the parameters BiB_{i} are functions of the radial wave functions g1g_{1} and g2g_{2} for the 00^{-} state [44]:

B1=M2(g1+g2mc+msωc+ωs),B2=ωc+ωsmc+msB1,B_{1}=\frac{M}{2}(g_{1}+g_{2}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}),~{}~{}~{}B_{2}=\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}B_{1},
B3=mcmsmcωs+msωcB1,B4=ωc+ωsmcωs+msωcB1.B_{3}=-\frac{m_{c}-m_{s}}{m_{c}\omega_{s}+m_{s}\omega_{c}}B_{1},~{}~{}~{}B_{4}=\frac{\omega_{c}+\omega_{s}}{m_{c}\omega_{s}+m_{s}\omega_{c}}B_{1}.

We point out that the B1B_{1} and B2B_{2} terms are SS waveswaves, which are the main partial waves of the meson, and the B3B_{3} and B4B_{4} terms are PP waveswaves which provide the main relativistic corrections [45].

C Decay width of strong decay

The two-body decay width formula can be expressed (import ηπ0\eta-\pi^{0} mixing) as

Γ=18π|Pf|M212J+1λ|Ttπηmπ2mη2|2,\Gamma=\frac{1}{8\pi}\frac{\left|\vec{P_{{}_{f}}}\right|}{M^{2}}\frac{1}{2J+1}\sum_{\lambda}\left|\frac{Tt_{\pi\eta}}{m^{2}_{\pi}-m^{2}_{\eta}}\right|^{2}, (9)

where |Pf|=[M2(Mfmπ)2][M2(Mf+mπ)2]/(2M)|\vec{P_{{}_{f}}}|=\sqrt{[M^{2}-(M_{f}-m_{\pi})^{2}][M^{2}-(M_{f}+m_{\pi})^{2}]}/(2M), which is the three-momenta of the final meson Ds+D_{s}^{+}. MM, MfM_{f}, and mπm_{\pi} represent the masses of the initial state and two final states, respectively. JJ represents the spin quantum number of the initial meson, which is 0 in this case. tπηt_{\pi\eta} is the mixing matrix entry of ηπ0\eta-\pi^{0}, and tπη=π0||η=0.003t_{\pi\eta}=\left<\pi^{0}\left|\mathcal{H}\right|\eta\right>=-0.003 GeV2 [46] is chosen.

III.   EM decay of Ds0(2317)+D_{s0}^{*}(2317)^{+}

Similarly, we give the Feynman diagram of the EM decay of Ds0(2317)+D_{s0}^{*}(2317)^{+}, corresponding to the two subplots of Fig.3:

Refer to caption
Figure 3: Feynman diagram responsible for the EM decay Ds0(2317)+Ds+γD_{s0}^{*}(2317)^{+}\to D_{s}^{*+}\gamma

A EM transition matrix element

The transition matrix element of the EM decay Ds0(2317)+DsγD_{s0}^{*}(2317)^{+}\rightarrow D_{s}^{*}\gamma can be written as

Ds(Pf,ϵ)γ(k,ϵ0)|Ds0+=(2π)4δ4(PPfk)ϵ0μμ,\left<D_{s}^{*}\left(P_{{}_{f}},\epsilon\right)\gamma\left(k,\epsilon_{0}\right)|D_{s0}^{*+}\right>=(2\pi)^{4}\delta^{4}\left(P-P_{{}_{f}}-k\right)\epsilon_{0\mu}\mathcal{M}^{\mu}, (10)

where ϵ0\epsilon_{0} and ϵ\epsilon represent the polarization vectors of the photon and final meson, respectively. PP, PfP_{{}_{f}}, and kk represent the momenta of the initial meson, final meson, and photon, respectively.

\mathcal{M} represents the invariant amplitude, which is expresed as

μ=d4q(2π)4d4qf(2π)4Tr\displaystyle\mathcal{M}^{\mu}=\int\frac{d^{4}q}{\left(2\pi\right)^{4}}\frac{d^{4}q_{{}_{f}}}{\left(2\pi\right)^{4}}Tr [χ¯Pf(qf)Q1γμχP(q)(2π)4δ4(p2p2)S21(p2)\displaystyle\left[\bar{\chi}_{P_{{}_{f}}}\left(q_{{}_{f}}\right)Q_{1}\gamma^{\mu}\chi_{P}\left(q\right)\left(2\pi\right)^{4}\delta^{4}(p_{2}-p_{2}^{{}^{\prime}})S_{2}^{-1}\left(p_{2}\right)\right. (11)
+χ¯Pf(qf)(2π)4δ4(p1p1)S11(p1)χP(q)Q2γμ].\displaystyle\left.+\bar{\chi}_{P_{{}_{f}}}\left(q_{{}_{f}}\right)\left(2\pi\right)^{4}\delta^{4}(p_{1}-p_{1}^{{}^{\prime}})S_{1}^{-1}\left(p_{1}\right)\chi_{P}\left(q\right)Q_{2}\gamma^{\mu}\right].

Here, Q1Q_{1} and Q2Q_{2} represent the electric charges (in unit of ee) of quark and anti-quark, respectively. We use the instantaneous approximation to obtain the following form of the amplitude [43]:

μ=d3q(2π)3Tr\displaystyle\mathcal{M}^{\mu}=\int\frac{d^{3}q}{\left(2\pi\right)^{3}}Tr [Q1φ¯Pf++(q+α2Pf)γμφP++(q)M\displaystyle\left[Q_{1}\bar{\varphi}_{P_{{}_{f}}}^{++}\left(q_{\perp}+\alpha_{2}P_{f\perp}\right)\gamma^{\mu}\varphi_{P}^{++}\left(q_{\perp}\right)\frac{\not{P}}{M}\right. (12)
+Q2φ¯Pf++(qα1Pf)MφP++γμ],\displaystyle\left.+Q_{2}\bar{\varphi}_{P_{{}_{f}}}^{++}\left(q_{\perp}-\alpha_{1}P_{f\perp}\right)\frac{\not{P}}{M}\varphi_{P}^{++}\gamma^{\mu}\right],

where MM represents the mass of Ds0(2317)+D_{s0}^{*}(2317)^{+}, and qf=q+α2Pfq_{f\perp}=q_{\perp}+\alpha_{2}P_{f\perp} and qf=qα1Pfq_{f\perp}=q_{\perp}-\alpha_{1}P_{f\perp} correspond to two different processes. α1=mcmc+ms\alpha_{1}=\frac{m_{c}}{m_{c}+m_{s}} and α2=msmc+ms\alpha_{2}=\frac{m_{s}}{m_{c}+m_{s}} are substituted into the above formula with the quark mass mcm_{c} and the anti-quark mass ms¯m_{\bar{s}}, respectively.

B Relativistic wave function for 11^{-} state DsD_{s}^{*}

The relativistic positive energy Salpeter wave function for DsD_{s}^{*} (S13{}^{3}S_{1} state) can be written as

φ1++(P,q)=\displaystyle\varphi_{1^{-}}^{++}\left(P,q_{\perp}\right)= C1ε̸+C2ε̸+C3(ε̸qε)+C4(ε̸qε)\displaystyle C_{1}\not{\varepsilon}+C_{2}\not{\varepsilon}\not{P}+C_{3}\left(\not{q}_{\perp}\not{\varepsilon}-q_{\perp}\cdot\varepsilon\right)+C_{4}\left(\not{P}\not{\varepsilon}\not{q}_{\perp}-\not{P}q_{\perp}\cdot\varepsilon\right) (13)
+qε(C5+C6+C7+C8),\displaystyle+q_{\perp}\cdot\varepsilon\left(C_{5}+C_{6}\not{P}+C_{7}\not{q}_{\perp}+C_{8}\not{q}_{\perp}\not{P}\right),

where we define the parameters CiC_{i} using the radial wave functions fif_{i} (i=3,4,5,6) for a 11^{-} state [44]:

C1=M2(f5f6ωc+ωsmc+ms),\displaystyle C_{1}=\frac{M}{2}\left(f_{5}-f_{6}\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}\right),
C2=12mc+msωc+ωs(f5f6ωc+ωsmc+ms),\displaystyle C_{2}=-\frac{1}{2}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\left(f_{5}-f_{6}\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}\right),
C3=M2ωsωcmcωs+msωc(f5f6ωc+ωsmc+ms),\displaystyle C_{3}=\frac{M}{2}\frac{\omega_{s}-\omega_{c}}{m_{c}\omega_{s}+m_{s}\omega_{c}}\left(f_{5}-f_{6}\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}\right),
C4=12ωc+ωsωcωs+mcmsq2(f5f6ωc+ωsmc+ms),\displaystyle C_{4}=\frac{1}{2}\frac{\omega_{c}+\omega_{s}}{\omega_{c}\omega_{s}+m_{c}m_{s}-q_{\perp}^{2}}\left(f_{5}-f_{6}\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}\right),
C5=12Mmc+msωcωs+mcms+q2[M2(f5f6mc+msωc+ωs)+q2(f3+f4mc+msωc+ωs)],\displaystyle C_{5}=\frac{1}{2M}\frac{m_{c}+m_{s}}{\omega_{c}\omega_{s}+m_{c}m_{s}+q_{\perp}^{2}}\left[M^{2}\left(f_{5}-f_{6}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)+q_{\perp}^{2}\left(f_{3}+f_{4}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)\right],
C6=12M2ωc+ωsωcωs+mcms+q2[M2(f5f6mc+msωc+ωs)+q2(f3+f4mc+msωc+ωs)],\displaystyle C_{6}=\frac{1}{2M^{2}}\frac{\omega_{c}+\omega_{s}}{\omega_{c}\omega_{s}+m_{c}m_{s}+q_{\perp}^{2}}\left[M^{2}\left(f_{5}-f_{6}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)+q_{\perp}^{2}\left(f_{3}+f_{4}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)\right],
C7=12M(f3+f4mc+msωc+ωs)f6Mmcωs+msωc,\displaystyle C_{7}=\frac{1}{2M}\left(f_{3}+f_{4}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)-\frac{f_{6}M}{m_{c}\omega_{s}+m_{s}\omega_{c}},
C8=12M2ωc+ωsmc+ms(f3+f4mc+msωc+ωs)f5ωc+ωs(mc+ms)(ωcωs+mcmsq2).\displaystyle C_{8}=\frac{1}{2M^{2}}\frac{\omega_{c}+\omega_{s}}{m_{c}+m_{s}}\left(f_{3}+f_{4}\frac{m_{c}+m_{s}}{\omega_{c}+\omega_{s}}\right)-f_{5}\frac{\omega_{c}+\omega_{s}}{\left(m_{c}+m_{s}\right)\left(\omega_{c}\omega_{s}+m_{c}m_{s}-q_{\perp}^{2}\right)}.

The positive energy wave function φ1++(P,q)\varphi_{1^{-}}^{++}\left(P,q_{\perp}\right) for DsD_{s}^{*} includes three partial waves: the C1C_{1} and C2C_{2} terms are SS waveswaves; the C3C_{3}, C4C_{4}, C5C_{5}, and C6C_{6} terms are PP waveswaves; and the C7C_{7} and C8C_{8} terms are DD waveswaves [45].

IV.   Result and discussion

In this paper, the following masses of constituent quarks are adopted: mcm_{c} = 1.62 GeV and msm_{s} = 0.50 GeV. We take the meson mass to have the following values: MDs0+M_{D_{s0}^{*+}} = 2.317 GeV, MDs+M_{D_{s}^{+}} = 1.968 GeV, MDsM_{D_{s}^{*}} = 2.112 GeV, MηM_{\eta} = 0.548 GeV, and Mπ0M_{\pi^{0}} = 0.135 GeV[2]. The decay constant is fπf_{\pi} = 0.130 GeV.

A Numerical results for decay widths

1 Strong decay

Our relativistic prediction result for the strong decay of Ds0(2317)+D_{s0}^{*}(2317)^{+} is

Γ(Ds0+Ds+π0)=7.831.55+1.97keV,\Gamma(D_{s0}^{*+}\to D_{s}^{+}\pi^{0})=7.83_{-1.55}^{+1.97}~{}{\rm keV}, (14)

where the theoretical uncertainties are also shown. These uncertainties are calculated by varying all the input parameters simultaneously within ±5%\pm 5\% of the central value, and the largest variation is taken.

For comparison, we list our prediction and those of other groups in Table 1. As shown, our prediction Γ(Ds+π0)\Gamma(D_{s}^{+}\pi^{0}) = 7.831.55+1.977.83_{-1.55}^{+1.97} keV is consistent with the theoretical results in Refs. [9, 31, 8, 47]. Among them, Ref.[9] is based on the heavy quark symmetries and vector meson dominance ansatz; Ref.[31] is based on the framework of the Constituent-Quark-Meson (CQM) model; and Ref.[8] is based on full chiral theory. We also refer to Ref.[47], in which the QCD sum rules were used to analyze the strong decay process under the hypothesis of the four-quark state. In Table 1, the last two predictions of Refs.[33, 34], which assume that Ds0(2317)+D_{s0}^{*}(2317)^{+} is a DKDK hadronic molecule, differ significantly from our prediction and others,indicating that the strong decay may be crucial to test the nature of Ds0(2317)+D_{s0}^{*}(2317)^{+}.

Table 1: Strong decay widths (in units of keV) of Ds0(2317)+D_{s0}^{*}(2317)^{+}
Decay chnnal Our work [9] [31] [7] [8] [47] [33] [34]
Γ(Ds0+Ds+π0)\Gamma(D_{s0}^{*+}\to D_{s}^{+}\pi^{0}) 7.831.55+1.977.83_{-1.55}^{+1.97} 6 3.68-8.71 \sim10 7.74 6±\pm2 180±110180\pm 110 133±22133\pm 22

2 EM decay

Our relativistic prediction of the EM decay of Ds0(2317)+D_{s0}^{*}(2317)^{+} is

Γ(Ds0+Dsγ)=2.550.45+0.37keV.\Gamma(D_{s0}^{*+}\to D_{s}^{*}\gamma)=2.55_{-0.45}^{+0.37}~{}{\rm keV}. (15)

Our result and those from other theoretical groups are presented in Table 2 for comparison. Our result is slightly larger than those from Refs.[9, 31, 7] (within a reasonable margin of error); consistent with the prediction in Ref.[32], which was calculated in the framework of the light-cone QCD sum rules, and slightly smaller than the prediction in Ref.[48], which assumes that Ds0(2317)+D_{s0}^{*}(2317)^{+} is a DKDK molecule.

Table 2: EM decay widths (in unit of keV) of Ds0(2317)+D_{s0}^{*}(2317)^{+}
Decay chnnal our work [9] [31] [7] [32] [48]
Γ(Ds0+Dsγ)\Gamma(D_{s0}^{*+}\to D_{s}^{*}\gamma) 2.550.45+0.372.55_{-0.45}^{+0.37} 1 \sim1.1 1.9 1.3-9.9 3.7±0.33.7\pm 0.3

B Contributions of different partial waves

As mentioned previously, the complete relativistic wave function for a JPJ^{P} state is not a pure wave. It includes different partial waves [45]: both the non-relativistic main part and the relativistic correction terms are included. We calculate the contributions (to the decay width) of different partial waves in the initial and final states. The results for strong decay are presented in Table 3, and those for EM decay are presented in Table 4. In the tables, “completecomplete” means that the complete wave function is used, “SS wavewave” means that only the SS partial wave makes a contribution and other partial waves are ignored.

1 Strong decay

Table 3: Strong decay width (keV) of different partial waves for Ds0+Ds+π0D_{s0}^{*+}\to D_{s}^{+}\pi^{0} (0+0)(0^{+}\to 0^{-})
0+0^{+} 00^{-} completecomplete SS wavewave (B1,B2)(B_{1},B_{2}) PP wavewave (B3,B4)(B_{3},B_{4})
completecomplete 7.831.55+1.977.83_{-1.55}^{+1.97} 16.92.11+2.5216.9_{-2.11}^{+2.52} 1.740.09+0.081.74_{-0.09}^{+0.08}
PP wave(A1,A2)wave(A_{1},A_{2}) 11.31.95+2.4311.3_{-1.95}^{+2.43} 21.82.50+2.9421.8_{-2.50}^{+2.94} 1.700.10+0.081.70_{-0.10}^{+0.08}
SS wave(A3,A4))wave(A_{3},A_{4})) 0.32±0.010.32\pm 0.01 0.30±0.010.30\pm 0.01 2.270.03+0.04×1042.27_{-0.03}^{+0.04}\times 10^{-4}

From Table 3, we can see that the main contribution of the 0+0^{+} state Ds0+D_{s0}^{*+} comes from its PP wavewave, which is the non-relativistic part, and the relativistic correction (SS wavewave) makes a small contribution. Meanwhile, for the 00^{-} state Ds+D_{s}^{+}, the main contribution comes from its SS partial wave, which is the non-relativistic part, and the relativistic correction part (PP partial wave) makes a very small contribution.

In the strong decay, If we only keep the non-relativistic wave functions and ignore the other partial waves for both the initial and final states, we obtain the non-relativistic result

Γ0(Ds0+Ds+π0)=21.82.50+2.94keV,\Gamma_{0}(D_{s0}^{*+}\to D_{s}^{+}\pi^{0})=21.8_{-2.50}^{+2.94}~{}{\rm keV}, (16)

which is far larger than the relativistic one of Γ=7.831.55+1.97\Gamma=7.83^{+1.97}_{-1.55} keV, indicating that the relativistic correction in this transition is very large.

2 EM decay

Table 4: EM decay width (keV) of different partial waves for Ds0+DsγD_{s0}^{*+}\to D_{s}^{*}\gamma (0+1)(0^{+}\to 1^{-})
0+0^{+} 11^{-} completecomplete SS wavewave (C1,C2)(C_{1},C_{2}) PP wavewave (C3,C4,C5,C6)(C_{3},C_{4},C_{5},C_{6}) DD wavewave (C7,C8)(C_{7},C_{8})
completecomplete 2.550.45+0.372.55_{-0.45}^{+0.37} 0.16±0.050.16\pm 0.05 1.390.15+0.131.39_{-0.15}^{+0.13} 1.990.26+0.25×1041.99_{-0.26}^{+0.25}\times 10^{-4}
PP wave(A1,A2)wave(A_{1},A_{2}) 4.260.61+0.524.26_{-0.61}^{+0.52} 0.830.17+0.150.83_{-0.17}^{+0.15} 1.351.13+0.101.35_{-1.13}^{+0.10} 7.22.29+2.46×1057.2_{-2.29}^{+2.46}\times 10^{-5}
SS wave(A3,A4))wave(A_{3},A_{4})) 0.21±0.010.21\pm 0.01 0.26±0.020.26\pm 0.02 3.492.95+4.84×1043.49_{-2.95}^{+4.84}\times 10^{-4} 5.110.36+1.66×1045.11_{-0.36}^{+1.66}\times 10^{-4}

Table 4 presents the contributions of different partial waves in the EM decay Ds0+DsγD_{s0}^{*+}\to D_{s}^{*}\gamma. The main contribution of Ds0+D_{s0}^{*+} comes from its PP wavewave, which is its dominant partial wave. The final state DsD_{s}^{*} is a 11^{-} vector. It is usually denoted as a S13{}^{3}\textrm{S}_{1} state in a non-relativistic method, which means that it is an SS wavewave dominated state. We have shown that in addition to the dominant SS wavewave, its wave function also includes PP and DD partial waves, and they provide the relativistic corrections. From Table 4, we can see that the contribution of its dominant SS partial wavewave is suppressed, while the PP wavewave gives the main contribution, indicating that the relativistic correction is dominant in this EM decay. We can see this if we take the non-relativistic limit without relativistic correction. In Table 4, if only the PP wavewave in the initial state and the SS wavewave in the final state make contributions, the non-relativistic result is obtained:

Γ0(Ds0+Dsγ)=0.830.17+0.15keV,\Gamma_{0}(D_{s0}^{*+}\to D_{s}^{*}\gamma)=0.83_{-0.17}^{+0.15}~{}{\rm keV}, (17)

which is far smaller than the relativistic one of Γ=2.550.45+0.37\Gamma=2.55^{+0.37}_{-0.45} keV.

C Summary

In this paper, taking the particle Ds0(2317)+D_{s0}^{*}(2317)^{+} as the conventional cs¯c\bar{s} meson, we calculate its main decay processes in the framework of the Bethe-Salpeter method, i.e.i.e., the strong decay and electromagnetic decay. Our results are Γ(Ds0+Ds+π0)=7.831.55+1.97\Gamma(D_{s0}^{*+}\to D_{s}^{+}\pi^{0})=7.83^{+1.97}_{-1.55} keV and Γ(Ds0+Ds+γ)=2.550.45+0.37\Gamma(D_{s0}^{*+}\to D_{s}^{*+}\gamma)=2.55^{+0.37}_{-0.45} keV. Because of the low mass, Ds0(2317)+D_{s0}^{*}(2317)^{+} has no direct OZI-allowed strong decay channel. Its strong decay channel Ds0(2317)+Ds+π0D_{s0}^{*}(2317)^{+}\to D_{s}^{+}\pi^{0} violates the isospin conservation, and the ηπ0\eta-\pi^{0} mixing is needed. Owing to this mixing effect, the strong decay width is relatively small.

In addition, we calculated the contributions of different partial waves. For the decay of Ds0+Ds+π0D_{s0}^{*+}\to D_{s}^{+}\pi^{0}, the main contribution comes from the dominant partial waves of initial and final states, while for the Ds0+DsγD_{s0}^{*+}\to D_{s}^{*}\gamma decay, the main contribution comes from the dominant partial wave in the initial state and the small PP partial wave in the final state. In both cases, the relativistic corrections are very large.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under the Grants Nos. 12075073 and 11865001, the Natural Science Foundation of Hebei province under the Grant No. A2021201009, Post-graduate’s Innovation Fund Project of Hebei University under the Grant No. HBU2022BS002.

References

  • [1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 90, 242001 (2003).
  • [2] R.L. Workman et al. (Particle Data Group), Prog. Theor. Phys. 2022, 083C01 (2022).
  • [3] P. Colangelo, F. De Fazio and R. Ferrandes, Mod. Phys. Lett. A 19, 2083 (2004).
  • [4] P. Krokovny et al. (Belle Collaboration), Phys. Rev. Lett.91, 262002 (2003).
  • [5] Y. Mikami et al. (Belle Collaboration), Phys. Rev. Lett. 92, 012002 (2004).
  • [6] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 68, 032002 (2003).
  • [7] S. Godfrey, Phys. Lett. B 568, 254 (2003).
  • [8] W. Bardeen, E. Eichten and C. Hill, Phys. Rev. D 68, 054024 (2003).
  • [9] P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003).
  • [10] Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004).
  • [11] P. Colangelo, F. De Fazio, and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).
  • [12] J. Lu, W.-Z. Deng, X.-L. Chen, and S.-L. Zhu, Phys. Rev. D 73, 054012 (2006).
  • [13] H.-Y. Cheng and W.-S. Hou, Phys. Lett. B 566, 193 (2003).
  • [14] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 181801 (2004).
  • [15] H. Kim and Y. Oh, Phys. Rev. D 72, 074012 (2005).
  • [16] A. P. Szczepaniak, Phys. Lett. B 567, 23 (2003).
  • [17] T. Barnes, F. E. Close, and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003).
  • [18] E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39 (2004).
  • [19] J. Hofmann and M. F. M. Lutz, Nucl. Phys. A733, 142 (2004).
  • [20] E. vanBeveren and G. Rupp, Phys. Rev. Lett. 91, 012003 (2003).
  • [21] T. E. Browder, S. Pakvasa, and A. A. Petrov, Phys. Lett. B578, 365 (2004).
  • [22] J. Vijande, F. Fernandez, and A. Valcarce, Phys. Rev. D73, 034002 (2006).
  • [23] G. K. C. Cheung, C. E. Thomas, D. J. Wilson, G. Moir, M. Peardon, S. M. Ryan, JHEP 02, 100 (2021).
  • [24] D. Mohler, C. B. Lang, L. Leskovec, S. Prelovsek and R. M. Woloshyn, Phys. Rev. Lett. 111, 222001 (2013).
  • [25] G. S. Bali, S. Collins, A. Cox and A. Schäfer, Phys. Rev. D 96, no.7, 074501 (2017).
  • [26] C. Alexandrou, J. Berlin, J. Finkenrath, T. Leontiou, M. Wagner, Phys. Rev. D 101, 034502 (2020).
  • [27] F.-K. Guo, PoSPoS LATTICE2022, 232 (2023).
  • [28] P. Cho and M.B. Wise, Phys. Rev. D49, 6228 (1994).
  • [29] T. Mehen and R. P. Springer, Phys. Rev. D 70, 074014 (2004).
  • [30] W. Wei, P. Z. Peng and S. L. Zhu, Phys. Rev. D 73, 034004 (2006).
  • [31] X. Liu, Y. M. Yu, S. M. Zhao and X. Q. Li, Eur. Phys. J. C 47, 445 (2006).
  • [32] Wang, Z.G., Physical Review D, 75, 034013 (2007) .
  • [33] F.-K. Guo, C. Hanhart, S. Krewald, U.-G. Meissner, Phys. Lett. B 666, 251 (2008).
  • [34] L. Liu, K. Orginos, F. K. Guo, C. Hanhart and U. G. Meissner, Phys. Rev. D 87, 014508 (2013).
  • [35] E. E. Salpeter, H. A. Bethe, Phys. Rev. 84, 1232 (1951).
  • [36] E. E. Salpeter, Phys. Rev. 87, 328 (1952).
  • [37] T. H. Wang, G. L. Wang, H. F. Fu and W. L. Ju, JHEP 07, 120 (2013).
  • [38] X.-Z. Tan, T.-H. Wang, Y. Jiang, S.-C. Li, Q. Li, G.-L. Wang, Eur. Phys. J. C 78, 583 (2018).
  • [39] T.-H. Wang, G.-L. Wang Phys. Lett. B 697, 233 (2011).
  • [40] T. H. Wang, G. L. Wang, Y. Jiang and W. L. Ju J. Phys. G 40, 035003(2013).
  • [41] C.-H. Chang, C. S. Kim, G.-L. Wang, Phys. Lett. B 623, 218 (2005).
  • [42] S. Mandelstam, Proc. R. Soc. Lond. 233, 248 (1955).
  • [43] C.-H. Chang, J.-K. Chen, G.-L. Wang, Commun. Theor. Phys. 46, 467 (2006).
  • [44] Z.-H. Wang, G.-L. Wang, H.-F. Fu, Y. Jiang, Phys. Lett. B 706, 389 (2012).
  • [45] G.-L. Wang, T.-H. Wang, Q. Li, C.-H. Chang, JHEP 05, 006 (2022).
  • [46] R. Dashen, Phys. Rev. 183, 1245 (1969).
  • [47] M. Nielsen, Phys. Lett. B 634, 35 (2006).
  • [48] H.-L. Fu, H. W. Griesshammer, F. K. Guo, C. Hanhart, U. G. Meissner, Eur. Phys. J. A 58, 70 (2022).