This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

DC Current Generation and Power Feature in Strongly Driven Floquet-Bloch Systems

Qiang Gao Department of Physics, The University of Texas at Austin, Texas 78712, USA    Yafei Ren Department of Physics, The University of Texas at Austin, Texas 78712, USA Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA    Qian Niu Department of Physics, The University of Texas at Austin, Texas 78712, USA ICQD/HFNL and School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
Abstract

We study the DC current generation in a periodically driven Bloch system connected to a heat bath. Under a relaxation time approximation, the density matrix for such a system is obtained, which is related to two equilibria: a Floquet quasi-equilibrium where the density matrix is diagonal under the Floquet-Bloch eigenbasis and an instantaneous Bloch thermal equilibrium. Then, the current responses and their power features, i.e. the power input behavior, are discussed in a unified manner, which reveals that there exist an intrinsic current and an extrinsic correction. Remarkably, the intrinsic part consumes no energy and corresponds to the Floquet quasi-equilibrium, while the extrinsic part needs a sustained energy input and originates from a shift between two equilibrium ensembles. We further investigate that role of the external driving field strength finding that large DC currents can be generated under a relatively strong but not too strong driving field.

Introduction.— Periodically driven systems or Floquet systems have long been an intensively studied area in physics, since they provide controllable platforms for realizing many exotic physical phenomena such as the Floquet topological insulator [1, 2] and the (space-)time crystal [3, 4, 5, 6]. The external driving field has a wide range of possibilities: mechanical [7, 8], optical [9, 10], or even acoustic [6] drives, among which the optically driven systems have drawn the most attention due to their applications in industry like solar cell [11]. However, unlike the weakly driven system that can be dealt with using the perturbation theory [10], for periodically driven systems with strong external field strength, Floquet analysis is necessary [12, 13]. Recently, Floquet systems connected to heat sources characterizing more realistic open environments have also attracted many attentions [14, 15, 16, 17, 18, 19]. Being essentially energy non-conserved, Floquet systems constantly involve energy conversions between different forms [6, 19], whose power features are extremely important for energy conversion applications [20].

In this work, we consider a system with periodicity in both space and time, known as the Floquet-Bloch system, connected to a heat bath, and investigate the DC current generations and their power features. We first characterize the heat bath through a relaxation time approximation [12, 21], and obtain the density matrix for a non-interacting Floquet-Bloch system with damping, which is related to two equilibria: an instantaneous Bloch thermal equilibrium and a Floquet quasi-equilibrium whose density matrix is diagonal under the Floquet-Bloch eigenbasis. In the weakly damping but strongly driven regime, we find that the current responses consists of an intrinsic part and an extrinsic correction due to the damping, which are nonzero for systems with broken time-reversal and inversion symmetries. The power features are the following: the intrinsic part is dissipationless and related to the Floquet quasi-equilibrium, while the extrinsic part needs a sustained energy input and originates from a shift between two equilibrium ensembles. Thus the generation of the intrinsic current enhances the overall power efficiency. We also investigate the role of the driving field strength in the DC current generations revealing that the currents become larger under a relatively stronger field but drops dramatically at a certain point where a Floquet gap transition happens.

Floquet Analysis.— We start from a non-driven Bloch system characterized by: H^B(𝒓)|φ𝒌α(𝒓)=Eα(𝒌)|φ𝒌α(𝒓)\hat{H}_{B}(\boldsymbol{r})|\varphi^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle=E_{\alpha}(\boldsymbol{k})|\varphi^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle, where H^B(𝒓)=H^B(𝒓+𝑹)\hat{H}_{B}(\boldsymbol{r})=\hat{H}_{B}(\boldsymbol{r}+\boldsymbol{R}) is the static Hamiltonian with NBN_{B} multiple bands, α{1,2,,NB}\alpha\in\{1,2,\cdots,N_{B}\} stands for the Bloch band index, and 𝒌\boldsymbol{k} is the lattice momentum. According to Bloch’s Theorem, the wavefunction can be expressed as a plane wave multiplied by a spatially periodic function: |φ𝒌α(𝒓)=ei𝒌𝒓|u𝒌α(𝒓)|\varphi^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle=e^{i\boldsymbol{k}\cdot\boldsymbol{r}}|u^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle, where |u𝒌α(𝒓+𝑹)=|u𝒌α(𝒓)|u^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r}+\boldsymbol{R})\rangle=|u^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle. Then, we apply the time-periodic driving field 𝑨(t)\boldsymbol{A}(t) to the Bloch system which makes H^BH^(𝒓,t)\hat{H}_{B}\to\hat{H}(\boldsymbol{r},t) with periodicity in time H^(𝒓,t)=H^(𝒓,t+T)\hat{H}(\boldsymbol{r},t)=\hat{H}(\boldsymbol{r},t+T), and the Schrödinger equation reads

H^(𝒓,t)|Ψ(𝒓,t)=it|Ψ(𝒓,t).\hat{H}(\boldsymbol{r},t)|\Psi(\boldsymbol{r},t)\rangle=i\hbar\partial_{t}|\Psi(\boldsymbol{r},t)\rangle. (1)

To solve Eq.(1), we introduce an extended Floquet-Bloch basis {|ϕn,𝒌α(𝒓,t)einΩt|φ𝒌α(𝒓)}\{|\phi^{\alpha}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\equiv e^{-in\Omega t}|\varphi^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle\} which is the original Bloch wavefunction shifted in energy by integer multiples of Ω2π/T\Omega\equiv 2\pi/T [6, 22]. Here nn is the Floquet multiplicity. Under the extended Floquet-Bloch basis, we can expand the wavefunction as

|Ψ𝒌μ(𝒓,t)=eiωμ(𝒌)tn,βfn,𝒌μ,β|ϕn,𝒌β(𝒓,t)\begin{split}|\Psi^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle=e^{-i\omega_{\mu}(\boldsymbol{k})t}\sum_{n,\beta}f^{\mu,\beta}_{n,\boldsymbol{k}}|\phi^{\beta}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\end{split} (2)

where ωμ\omega_{\mu} is the quasi-energy with band index μ\mu. We then denote n,βfn,𝒌μ,β|ϕn,𝒌β(𝒓,t)ei𝒌𝒓|u~𝒌μ(𝒓,t)\sum_{n,\beta}f^{\mu,\beta}_{n,\boldsymbol{k}}|\phi^{\beta}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\equiv e^{i\boldsymbol{k}\cdot\boldsymbol{r}}|\tilde{u}_{\boldsymbol{k}}^{\mu}(\boldsymbol{r},t)\rangle as the corresponding Floquet-Bloch eigenstate with |u~𝒌μ(𝒓,t)|\tilde{u}_{\boldsymbol{k}}^{\mu}(\boldsymbol{r},t)\rangle referring to the Floquet-Bloch periodic function that has the same periodicity as the Hamiltonian [23]. The expansion coefficient fn,𝒌μ,βf^{\mu,\beta}_{n,\boldsymbol{k}} satisfies the following eigen-equation: n,αm,n;β,αfn,𝒌μ,α=ωμfm,𝒌μ,β\sum_{n,\alpha}\mathcal{H}_{m,n;\beta,\alpha}f^{\mu,\alpha}_{n,\boldsymbol{k}}=\hbar\omega_{\mu}f^{\mu,\beta}_{m,\boldsymbol{k}} with the kernel matrix

m,n;α,βϕm,𝒌α(𝒓,t)|H^(𝒓,t)it|ϕn,𝒌β(𝒓,t),\begin{split}\mathcal{H}_{m,n;\alpha,\beta}&\equiv\langle\langle\phi^{\alpha}_{m,\boldsymbol{k}}(\boldsymbol{r},t)|\hat{H}(\boldsymbol{r},t)-i\hbar\partial_{t}|\phi^{\beta}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\rangle,\end{split} (3)

where 1/T0T\langle\langle\cdot\rangle\rangle\equiv 1/T\int_{0}^{T}\langle\cdot\rangle is the spacetime inner product. The quasi-energy ωμ\omega_{\mu} inherits the degrees of freedom of the Bloch system, so in principle, we will have NBN_{B} different quasi-energy bands {ω1,ω2,,ωNB}\{\omega_{1},\omega_{2},\cdots,\omega_{N_{B}}\} within a Floquet Brillouin zone. More details about the matrix m,n;α,β\mathcal{H}_{m,n;\alpha,\beta} are given in the Supplementary Material [24].

Approach to Floquet Quasi-Equilibrium.— We now consider a Floquet-Bloch system connected to a heat bath which introduces damping. Such damping system is governed by the following quantum Liouville equation (=1\hbar=1[12, 21]:

itρ^(𝒌,t)=[H^(𝒌,t),ρ^(𝒌,t)]+i[D^,ρ^(𝒌,t)],i\partial_{t}\hat{\rho}(\boldsymbol{k},t)=[\hat{H}(\boldsymbol{k},t),\hat{\rho}(\boldsymbol{k},t)]+i[\hat{D},\hat{\rho}(\boldsymbol{k},t)], (4)

where ρ^(𝒌,t)\hat{\rho}(\boldsymbol{k},t) is the density operator of the system at fixed 𝒌\boldsymbol{k} and H^(𝒌,t)ei𝒌𝒓H^(𝒓,t)ei𝒌𝒓\hat{H}(\boldsymbol{k},t)\equiv e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}\hat{H}(\boldsymbol{r},t)e^{i\boldsymbol{k}\cdot\boldsymbol{r}} is the Hamiltonian of the corresponding non-damping system. In this work, we will restrict our discussion in 𝒌\boldsymbol{k}-conserved systems. The density matrix operator can be expanded using either the static Bloch eigenbasis {|u𝒌α}\{|u^{\alpha}_{\boldsymbol{k}}\rangle\} or the Floquet-Bloch eigenbasis {|u~𝒌μ(t)}\{|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\} (index 𝒓\boldsymbol{r} is omitted):

ρ^(𝒌,t)=α,βρα,βB(𝒌,t)|u𝒌αu𝒌β|=μ,νρμ,νF(𝒌,t)|u~𝒌μ(t)u~𝒌ν(t)|,\begin{split}\hat{\rho}(\boldsymbol{k},t)&=\sum_{\alpha,\beta}\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\\ &=\sum_{\mu,\nu}\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\langle\tilde{u}^{\nu}_{\boldsymbol{k}}(t)|,\end{split} (5)

where ρα,βB(𝒌,t)\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t) and ρμ,νF(𝒌,t)\rho^{F}_{\mu,\nu}(\boldsymbol{k},t) are the density matrix elements under two eigenbases, respectively. The operator D^\hat{D} characterizes the damping due to the heat transfer and the electron scattering. The role of damping is to relax the system to a thermal equilibrium with the heat bath, while the Floquet drive is to strike the system out of equilibrium. Under the relaxation time approximation [21, 25], we can write

[D^,ρ^(𝒌,t)]=Γ[ρ^(𝒌,t)ρ^B,eq(𝒌,t)]αβΓα,β(𝒌)ρα,βB(𝒌,t)|u𝒌αu𝒌β|\begin{split}[\hat{D},\hat{\rho}(\boldsymbol{k},t)]=&-\Gamma[\hat{\rho}(\boldsymbol{k},t)-\hat{\rho}^{B,eq}(\boldsymbol{k},t)]\\ &-\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\end{split} (6)

where the first line characterizes the thermal contact with damping rate Γ\Gamma, and the second line is the pure dephasing caused by the electron scattering [12] with dephasing rate Γα,β\Gamma^{\prime}_{\alpha,\beta}. The ρ^B,eq(𝒌,t)\hat{\rho}^{B,eq}(\boldsymbol{k},t) is an instantaneous Bloch equilibrium, which is not diagonal under the static Bloch eigenbasis: ρ^B,eq(𝒌,t)=α,βρα,βB,eq(𝒌,t)|u𝒌αu𝒌β|\hat{\rho}^{B,eq}(\boldsymbol{k},t)=\sum_{\alpha,\beta}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}| [24]. This equilibrium indicates a field dragging effect (see Eq. (16) for a special case).

Under the Floquet-Bloch eigenbasis, we can rewrite the quantum Liouville equation as [24]:

itρμ,νF=[ωμ(𝒌)ων(𝒌)iΓ]ρμ,νF+iΓρ¯μ,νeqi𝒮μ,ν,i\partial_{t}\rho^{F}_{\mu,\nu}=\left[\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-i\Gamma\right]\rho^{F}_{\mu,\nu}+i\Gamma\bar{\rho}^{eq}_{\mu,\nu}-i\mathcal{S}_{\mu,\nu}, (7)

where ρ¯μ,νeq(𝒌,t)α,βρα,βB,eq(𝒌,t)u~𝒌μ(t)|u𝒌αu𝒌β|u~𝒌ν(t)\bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k},t)\equiv\sum_{\alpha,\beta}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}(t)\rangle is still the instantaneous Bloch equilibrium but expanded in the Floquet eigenbasis, and 𝒮μ,ν(𝒌,t)αβΓα,β(𝒌)u~𝒌μ(t)|ρα,βB(𝒌)|u𝒌αu𝒌β|u~𝒌ν(t)\mathcal{S}_{\mu,\nu}(\boldsymbol{k},t)\equiv\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|\rho^{B}_{\alpha,\beta}(\boldsymbol{k})|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}(t)\rangle is the scattering contribution. It is hard to solve the differential equation above, especially when the scattering matrix 𝒮μ,ν\mathcal{S}_{\mu,\nu} is unknown. However, the system will evolve into a steady state similar to a forced damping oscillator whose changing frequency synchronizes with the external driving frequency. Therefore, we can do the Fourier transformations: ρμ,νF(𝒌,t)=lρμ,νF,l(𝒌)eilΩt\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)=\sum_{l}\rho^{F,l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t}, ρ¯μ,νeq(𝒌,t)=lρ¯μ,νeq,l(𝒌)eilΩt\bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k},t)=\sum_{l}\bar{\rho}^{eq,l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t}, and 𝒮μ,ν(𝒌,t)=l𝒮μ,νl(𝒌)eilΩt\mathcal{S}_{\mu,\nu}(\boldsymbol{k},t)=\sum_{l}\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t}. By inserting those Fourier expansions into Eq. (27), we obtain a solution for the density matrix:

ρμ,νF,l(𝒌)=iΓρ¯μ,νeq,l(𝒌)+i𝒮μ,νl(𝒌)ωμ(𝒌)ων(𝒌)lΩiΓ.\rho^{F,l}_{\mu,\nu}(\boldsymbol{k})=\frac{-i\Gamma\bar{\rho}^{eq,l}_{\mu,\nu}(\boldsymbol{k})+i\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})}{\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-l\Omega-i\Gamma}. (8)

To further simplify our considerations, we introduce two extremes: one is the pure thermal contact, Δ𝑨,ΓΓα,β\Delta_{\boldsymbol{A}},\Gamma\gg\Gamma^{\prime}_{\alpha,\beta}, where the electron-electron interaction is surpassed, for example, by large dielectric constant of the material; the other is the isolated system, Δ𝑨,Γα,βΓ\Delta_{\boldsymbol{A}},\Gamma^{\prime}_{\alpha,\beta}\gg\Gamma, where the system is isolated from any heat sources. The Δ𝑨=minμν,l{|ωμ(𝒌)ων(𝒌)lΩ|}\Delta_{\boldsymbol{A}}=\min_{\mu\neq\nu,l}\{|\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-l\Omega|\} is the minimum direct gap of the Floquet-Bloch system. Our main interest in this work is the first extreme where we can approximately let Γα,β=0\Gamma^{\prime}_{\alpha,\beta}=0, corresponding to a non-interacting Floquet-Bloch system. Thus, the density matrix becomes:

ρμ,νF(𝒌,t;Γ)=n,m,l,α,βiΓeilΩtρα,βB,eq,m(𝒌)(fn,𝒌μ,α)fn+lm,𝒌ν,βωμ(𝒌)ων(𝒌)lΩiΓ,\begin{split}&\rho^{F}_{\mu,\nu}(\boldsymbol{k},t;\Gamma)=\\ &\sum_{n,m,l,\alpha,\beta}-i\Gamma e^{-il\Omega t}\frac{\rho^{B,eq,m}_{\alpha,\beta}(\boldsymbol{k})\left(f_{n,\boldsymbol{k}}^{\mu,\alpha}\right)^{*}f_{n+l-m,\boldsymbol{k}}^{\nu,\beta}}{\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-l\Omega-i\Gamma},\end{split} (9)

which is in general non-diagonal and time-dependent. Here ρα,βB,eq,m(𝒌)\rho^{B,eq,m}_{\alpha,\beta}(\boldsymbol{k}) is the Fourier component of ρα,βB,eq(𝒌,t)=mρα,βB,eq,m(𝒌)eimΩt\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)=\sum_{m}\rho^{B,eq,m}_{\alpha,\beta}(\boldsymbol{k})e^{-im\Omega t}. One can check that this density matrix is Hermitian and more importantly gauge invariant under the gauge transformation |u𝒌αeiθ𝒌α|u𝒌α|u^{\alpha}_{\boldsymbol{k}}\rangle\to e^{-i\theta^{\alpha}_{\boldsymbol{k}}}|u^{\alpha}_{\boldsymbol{k}}\rangle.

The density matrix in Eq. (9) indicates two special Γ\Gamma-independent ensembles. Either, through a very large damping (Γ\Gamma\to\infty), the system is quickly relaxed to an instantaneous Bloch equilibrium with the heat bath, in which the density matrix is reduced to ρ^B,eq(𝒌,t)\hat{\rho}^{B,eq}(\boldsymbol{k},t). Or, by turning off the thermal contact (Γ0\Gamma\rightarrow 0), we obtain a diagonal density matrix:

ρμ,νF,eq(𝒌)=δμ,νn,m,α,βρα,βB,eq,m(𝒌)(fn,𝒌μ,α)fnm,𝒌ν,β,\rho^{F,eq}_{\mu,\nu}(\boldsymbol{k})=\delta_{\mu,\nu}\sum_{n,m,\alpha,\beta}\rho^{B,eq,m}_{\alpha,\beta}(\boldsymbol{k})\left(f_{n,\boldsymbol{k}}^{\mu,\alpha}\right)^{*}f_{n-m,\boldsymbol{k}}^{\nu,\beta}, (10)

where we have used the fact that limΓ0iΓωμωνlΩiΓ=δμ,νδl,0\lim_{\Gamma\rightarrow 0}\frac{-i\Gamma}{\omega_{\mu}-\omega_{\nu}-l\Omega-i\Gamma}=\delta_{\mu,\nu}\delta_{l,0}. One can also show that this is the instantaneous Bloch equilibrium projected onto the Floquet-Bloch eigenbasis with off-diagonal terms erased by damping: ρμ,μF,eq=u~𝒌μ(t)|ρ^B,eq(𝒌,t)|u~𝒌μ(t)\rho^{F,eq}_{\mu,\mu}=\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|\hat{\rho}^{B,eq}(\boldsymbol{k},t)|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\rangle, which indicates that with no heat contact (i.e. isolated system), it is a so-called diagonal ensemble [26, 27]:

ρ^F,eq(𝒌,t)=μρμ,μF,eq(𝒌)|u~𝒌μ(t)u~𝒌μ(t)|.\hat{\rho}^{F,eq}(\boldsymbol{k},t)=\sum_{\mu}\rho^{F,eq}_{\mu,\mu}(\boldsymbol{k})|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|. (11)

In the remainder, we refer to this diagonal ensemble as the Floquet quasi-equilibrium since its density matrix element is diagonal and time-independent under the Floquet-Bloch eigenbasis.

Floquet-Liouville Equation: DC Current Response and Power Input.— The essence of a Floquet system is that it evolves periodically in time, which superficially renders the fact that for an operator 𝒪^\hat{\mathcal{O}} also periodic in time, we have 0Tddttr(ρ^𝒪^)𝑑t=tr(ρ^𝒪^)|t=Ttr(ρ^𝒪^)|t=0=0\int_{0}^{T}\frac{d}{dt}\text{tr}(\hat{\rho}\hat{\mathcal{O}})dt=\text{tr}(\hat{\rho}\hat{\mathcal{O}})|_{t=T}-\text{tr}(\hat{\rho}\hat{\mathcal{O}})|_{t=0}=0. One can combine such fact with the quantum Liouville equation to obtain the following Floquet-Liouville equation under the Floquet-Bloch eigenbasis [24]:

TrF[ρ^t𝒪^]=iTrF[ρ^[H^ω,𝒪^]]TrF[[D^,ρ^]𝒪^],\text{Tr}^{F}[\hat{\rho}\partial_{t}\hat{\mathcal{O}}]=-i\text{Tr}^{F}[\hat{\rho}[\hat{H}-\omega,\hat{\mathcal{O}}]]-\text{Tr}^{F}[[\hat{D},\hat{\rho}]\hat{\mathcal{O}}], (12)

where TrF[\ThisStyle\SavedStyle]μu~𝒌μ(t)|\ThisStyle\SavedStyle|u~𝒌μ(t)\text{Tr}^{F}[\mathbin{\ThisStyle{\vbox{\hbox{\scalebox{0.5}{$\SavedStyle\bullet$}}}}}]\equiv\sum_{\mu}\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|\mathbin{\ThisStyle{\vbox{\hbox{\scalebox{0.5}{$\SavedStyle\bullet$}}}}}|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\rangle is the Floquet spacetime trace and ω\omega is the quasi-energy of corresponding Floquet eigenstate: ω|u~𝒌μ(t)ωμ(𝒌)|u~𝒌μ(t)\omega|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\rightarrow\omega_{\mu}(\boldsymbol{k})|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle. This Floquet-Liouville equation allows us to study many DC responses in periodically driven systems in a unified manner. In this section, we focus on the DC current response and the driven power. The discussion will be based on the main result in Eq. (9) and the assumptions for obtaining it, where we ignored the electron-electron interactions. In such setting, the damping term in Eq. (22) can be reduced to [D^,ρ^]=Γ(ρ^ρ^B,eq)[\hat{D},\hat{\rho}]=-\Gamma(\hat{\rho}-\hat{\rho}^{B,eq}).

The DC charge current can be calculated by (ignoring e-e from now on): 𝒋DC=d𝒌TrF[ρ^𝒗^]\boldsymbol{j}_{DC}=\int\text{d}\boldsymbol{k}\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}] with 𝒗^𝒌H^(𝒌,t)\hat{\boldsymbol{v}}\equiv\partial_{\boldsymbol{k}}\hat{H}(\boldsymbol{k},t) the velocity operator. In favor of Eq. (38), we choose 𝒪^=i𝒌\hat{\mathcal{O}}=i\partial_{\boldsymbol{k}} and end up with the following result [24]:

TrF[ρ^𝒗^]=TrF[ρ^F,eq𝒗^]+Γ×TrF[(ρ^F,eqρ^B,eq)i𝒌]+Λ,\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]=\text{Tr}^{F}[\hat{\rho}^{F,eq}\hat{\boldsymbol{v}}]+\Gamma\times\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})i\partial_{\boldsymbol{k}}]+\Lambda, (13)

where Λ=O(Γ2Δ𝑨iΓ)\Lambda=O(\frac{\Gamma^{2}}{\Delta_{\boldsymbol{A}}-i\Gamma}) is a correction that contains higher orders of Γ\Gamma and is negligible when ΓΔ𝑨\Gamma\ll\Delta_{\boldsymbol{A}}. One can treat TrF[ρ^F(B),eqi𝒌]\text{Tr}^{F}[\hat{\rho}^{F(B),eq}i\partial_{\boldsymbol{k}}], the ensemble average of the operator i𝒌i\partial_{\boldsymbol{k}}, as the polarization projected onto the Floquet (Bloch) eigenspace. In this work, we focus on the weakly damping but strongly driven regime where Λ0\Lambda\to 0.

We want to make the following remarks for the result in the Eq. (41): (i) it is gauge invariant [24], allowing us to choose any gauge for convenience; (ii) the linear order correction in Γ\Gamma is geometrical and related to a shift in polarization between two (quasi-)equilibrium ensembles; (iii) via a gauge transformation: |u~𝒌μ(t)eiθ𝒌μ|u~𝒌μ(t)|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\to e^{-i\theta^{\mu}_{\boldsymbol{k}}}|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle with θ𝒌μ=𝒌0𝒌𝑑𝒌u~𝒌μ(t)|ρ^B,eqi𝒌|u~𝒌μ(t)/ρμ,μF,eq(𝒌)\theta^{\mu}_{\boldsymbol{k}}=\int_{\boldsymbol{k}_{0}}^{\boldsymbol{k}}d\boldsymbol{k}^{\prime}\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}^{\prime}}(t)|\hat{\rho}^{B,eq}i\partial_{\boldsymbol{k}^{\prime}}|\tilde{u}^{\mu}_{\boldsymbol{k}^{\prime}}(t)\rangle\rangle/\rho^{F,eq}_{\mu,\mu}(\boldsymbol{k}^{\prime}), we can rewrite Eq. (41) as TrF[ρ^𝒗^]=TrF[ρ^F,eq𝒗^~]\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]=\text{Tr}^{F}[\hat{\rho}^{F,eq}\tilde{\hat{\boldsymbol{v}}}] with 𝒗^~𝒗^+Γi𝒌\tilde{\hat{\boldsymbol{v}}}\equiv\hat{\boldsymbol{v}}+\Gamma i\partial_{\boldsymbol{k}} defined as the shifted velocity operator. Then the current reads:

𝒋DC=d𝒌μρμ,μF,eq(ωμ𝒌+Γ𝓐μF)𝒋DCIn+𝒋DCEx,\boldsymbol{j}_{DC}=\int\text{d}\boldsymbol{k}\sum_{\mu}\rho^{F,eq}_{\mu,\mu}\left(\frac{\partial\omega_{\mu}}{\partial\boldsymbol{k}}+\Gamma\boldsymbol{\mathcal{A}}^{F}_{\mu}\right)\equiv\boldsymbol{j}_{DC}^{\text{In}}+\boldsymbol{j}_{DC}^{\text{Ex}}, (14)

where 𝓐μFu~𝒌μ(t)|i𝒌|u~𝒌μ(t)\boldsymbol{\mathcal{A}}^{F}_{\mu}\equiv\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(t)|i\partial_{\boldsymbol{k}}|\tilde{u}^{\mu}_{\boldsymbol{k}}(t)\rangle\rangle is the Floquet Berry connection after choosing the above gauge [28]. The current is now fully diagonal in the Floquet band index μ\mu and contains: 𝒋DCIn\boldsymbol{j}_{DC}^{\text{In}}, Γ\Gamma-independent and thus an intrinsic current; 𝒋DCEx\boldsymbol{j}_{DC}^{\text{Ex}}, linear in Γ\Gamma and an extrinsic contribution that reflects a shift in polarization between two ensembles. It is worth noting that the current response written in Eq. (14) manifests its possible topological natures as the Berry connection comes into play [29].

There are requirements for having nonzero current responses. The first requirement is about symmetry. The extrinsic current 𝒋DCEx\boldsymbol{j}_{DC}^{\text{Ex}} is related to a shift in the polarization of electrons, which is nonzero if the inversion symmetry (parity) is broken. However, for the intrinsic current 𝒋DCIn\boldsymbol{j}_{DC}^{\text{In}}, we also need to break the time-reversal symmetry (TRS), since 𝒌ωμ\partial_{\boldsymbol{k}}\omega_{\mu} is odd under TRS. Another requirement is special for 𝒋DCIn\boldsymbol{j}_{DC}^{\text{In}} that the quasi-equilibrium distribution ρμ,μF,eq\rho^{F,eq}_{\mu,\mu} should not be a function of quasi-energy ωμ\omega_{\mu}, otherwise, the intrinsic current will always be zero due to the periodicity of ωμ\omega_{\mu} in the Brillouin zone.

To generate the currents, we need to know how much energy should the Floquet drive provide to sustain the DC currents, i.e. the power features. We now specify the Floquet drive as coherent light where the Hamiltonian takes the form H^(𝒌,t)=H^B(𝒌+𝑨(t))\hat{H}(\boldsymbol{k},t)=\hat{H}_{B}(\boldsymbol{k}+\boldsymbol{A}(t)) with 𝑨(t)\boldsymbol{A}(t) the vector potential. Then, the net power provided by the light over one Floquet period is P¯net=𝑑𝒌P¯(𝒌)=𝑑𝒌TrF[𝑬(t)ρ^𝒗^]\bar{P}_{\text{net}}=\int d\boldsymbol{k}\bar{P}(\boldsymbol{k})=\int d\boldsymbol{k}\text{Tr}^{F}[\boldsymbol{E}(t)\cdot\hat{\rho}\hat{\boldsymbol{v}}] with 𝑬(t)=t𝑨(t)\boldsymbol{E}(t)=-\partial_{t}\boldsymbol{A}(t) the AC electric field. By choosing 𝒪^=H^(𝒌,t)\hat{\mathcal{O}}=\hat{H}(\boldsymbol{k},t) in Eq. (38), we get the input power at specific 𝒌\boldsymbol{k} [24]:

P¯(𝒌)=Γ×TrF[(ρ^F,eqρ^B,eq)H^]+O(Γ2Δ𝑨iΓ),\bar{P}(\boldsymbol{k})=\Gamma\times\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})\hat{H}]+O(\frac{\Gamma^{2}}{\Delta_{\boldsymbol{A}}-i\Gamma}), (15)

indicating that the intrinsic current is dissipationless, while the extrinsic current needs a sustained power input. Such result is understandable since for intrinsic current, we ignored the interactions among electrons giving no internal damping channels; but for extrinsic current, damping is involved and the power is related to a energy shift between two ensembles.

It’s important to see the power feature in energy non-conserved systems since it tells us the direction of energy flow which in our case is from Floquet drive to the heat bath. More remarkable is that intrinsic current is dissipationless which can be favored in energy conversion applications. Combined with the symmetry argument, breaking TRS would help to obtain such desirable current. As for the extrinsic current, it becomes dominant in TRS preserved systems and more importantly its power efficiency defined as 𝒋DCEx/P¯net\boldsymbol{j}_{DC}^{\text{Ex}}/\bar{P}_{\text{net}} reflects some band properties [24]. The field dependence of the DC currents and power feature is also important and will be discussed in the next section.

Refer to caption
Figure 1: (a) The thermal distribution of electrons sitting on a two-band Bloch system described by Eq. (17) with ε1=0.1\varepsilon_{1}=0.1, ε2=0\varepsilon_{2}=0, t1=0.11t_{1}=0.11, t2=0.05+0.02it_{2}=0.05+0.02i, t3=0.1t_{3}=0.1, t4=0t_{4}=0, d=1d=1, and s=0.2s=0.2. The chemical potential and temperature are set to be μc=0\mu_{c}=0 and kB𝒯=0.01k_{B}\mathcal{T}=0.01, respectively. (b) The Floquet quasi-equilibrium distribution according to Eq. (10), after turning on the Floquet drive with frequency Ω=0.3\Omega=0.3 and amplitude |𝑨|=0.3|\boldsymbol{A}|=0.3. The distributions are reflected by colors with color bars alongside each panel.
Refer to caption
Figure 2: (a) The intrinsic current 𝒋DCIn\boldsymbol{j}_{DC}^{\text{In}}, (b) the extrinsic current 𝒋DCEx\boldsymbol{j}_{DC}^{\text{Ex}}, (c) the net power input P¯net\bar{P}_{\text{net}}, and (d) the Floquet direct gap Δ𝑨\Delta_{\boldsymbol{A}} as functions of |𝑨||\boldsymbol{A}| for Ω=0.3\Omega=0.3 (blue) and Ω=0.35\Omega=0.35 (red), with (dashed) and without (solid) dragging effect included, respectively. We mark the turning points of curves in panels (b-d) using dotted arrows. In this calculation, we require that ΓΔ𝑨0.01\Gamma\ll\Delta_{\boldsymbol{A}}\sim 0.01. Parameters used are the same as in Fig. 1.

Case Study: A Two-band System Connected to A Heat Bath.— Consider a two-band model in which we explicitly break the TRS and parity to see the DC current generations and power features under strong driving field. The setup is a two-band Bloch system HB(𝒌)H_{B}(\boldsymbol{k}) with E1(𝒌)E_{1}(\boldsymbol{k}), E2(𝒌)E_{2}(\boldsymbol{k}) and |u𝒌1|u^{1}_{\boldsymbol{k}}\rangle, |u𝒌2|u^{2}_{\boldsymbol{k}}\rangle as its two gaped energy bands and corresponding eigenstates. Then a coherent linearly polarized light, 𝑨(t)=𝑨eiΩt+𝑨eiΩt\boldsymbol{A}(t)=\boldsymbol{A}e^{i\Omega t}+\boldsymbol{A}^{*}e^{-i\Omega t}, is applied to the Bloch system as a Floquet drive. The Hamiltonian then becomes H(𝒌,t)=HB(𝒌+𝑨(t))H(\boldsymbol{k},t)=H_{B}(\boldsymbol{k}+\boldsymbol{A}(t)). The system is then connected to a heat bath at temperature 𝒯\mathcal{T}, which, at thermal equilibrium, obeys the Fermi-Dirac distribution: ρα,αB,eq,s(𝒌)=1e[Eα(𝒌)μc]/kB𝒯+1\rho^{B,eq,s}_{\alpha,\alpha}(\boldsymbol{k})=\frac{1}{e^{[E_{\alpha}(\boldsymbol{k})-\mu_{c}]/k_{B}\mathcal{T}}+1}, with μc\mu_{c} the chemical potential sitting in the gap. The instantaneous Bloch thermal equilibrium can be approximated as [24]

ρα,βB,eq(𝒌,t)ρα,αB,eq,sδα,β+i𝑨(t)𝓐α,βB(𝒌)(ρα,αB,eq,sρβ,βB,eq,s),\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)\approx\rho^{B,eq,s}_{\alpha,\alpha}\delta_{\alpha,\beta}+i\boldsymbol{A}(t)\cdot\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}(\boldsymbol{k})(\rho^{B,eq,s}_{\alpha,\alpha}-\rho^{B,eq,s}_{\beta,\beta}), (16)

where 𝓐α,βBu𝒌α|i𝒌|u𝒌β\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}\equiv\langle u^{\alpha}_{\boldsymbol{k}}|i\partial_{\boldsymbol{k}}|u^{\beta}_{\boldsymbol{k}}\rangle is the Bloch berry connection, and the second term on the right hand side represents a field dragging effect. The two Floquet bands denoted as ω±(𝒌)\omega_{\pm}(\boldsymbol{k}) can be found by diagonalizing the corresponding kernel matrix in Eq. (18). One last thing is that the damping rate Γ\Gamma can in general depend on field and momentum, which makes the current and the total power hard to be evaluated. Here for simplicity, we assume a constant Γ\Gamma.

In Fig. 1 and Fig. 2, we show some numerical results. The Bloch model is a 1D diatomic chain with Hamiltonian [30]

HB(k)=[ε1+2t3cos(kd)eiks(t1+t2eikd)eiks(t1+t2eikd)ε2+2t4cos(kd)]H_{B}(k)=\begin{bmatrix}\varepsilon_{1}+2t_{3}\cos(kd)&e^{-iks}(t_{1}+t_{2}e^{ikd})\\ e^{iks}(t_{1}^{*}+t_{2}^{*}e^{-ikd})&\varepsilon_{2}+2t_{4}\cos(kd)\end{bmatrix} (17)

and other set-ups are the same as mentioned before, except for restricting in 1D. First, we plot in Fig. 1(a) the static Bloch thermal equilibrium distribution and in Fig. 1(b) the corresponding Floquet quasi-equilibrium distribution. Note that in the Bloch thermal equilibrium, the electron distribution is a function of the energy, while in the Floquet quasi-equilibrium, the distribution is not a function of the quasi-energy, as one can see from Fig. 1(b) that kk points with same quasi-energies have different distributions. The reason is that the Floquet quasi-equilibrium is indeed a non-equilibrium state.

Notice that the 1D model with the parameters we choose largely breaks the TRS and parity, which induces nonzero current responses. In Fig. 2(a,b), we plot the intrinsic and extrinsic currents as functions of the field strength |𝑨||\boldsymbol{A}| for two different driven frequencies. Meanwhile, we also explicitly illustrate the influence of the dragging effect which basically gives numerical corrections. An important observation is that at relatively small |𝑨||\boldsymbol{A}| (but still Δ𝑨Γ\Delta_{\boldsymbol{A}}\gg\Gamma), we have approximately 𝒋DCIn|𝑨|\boldsymbol{j}_{DC}^{\text{In}}\propto|\boldsymbol{A}| and 𝒋DCExΓ|𝑨|\boldsymbol{j}_{DC}^{\text{Ex}}\propto\Gamma|\boldsymbol{A}|, latter of which is consistent with the prediction made in Ref. [29]. It is interesting to see that the net power input depicted in Fig. 2(c) shows a strong linear dependence in field strength in a larger field regime. Such linearity is persistent even after a large correction due to the dragging effect. However, when |𝑨||\boldsymbol{A}| is getting larger, the complexity appears that the currents and power input start to decrease significantly at some turning points. This feature then tells us that there exists an optimized field strength for current generation, namely the DC currents should be generated with strong but not too strong field. Here we give a phenomenological explanation that the decreases in those quantities are consequences of large band shifting under strong driving. To confirm this, we plot the Floquet direct band gaps in Fig. 2(d). When |𝑨||\boldsymbol{A}| is fairly small, the gap opens at the resonant points where E1+ΩE2=0E_{1}+\Omega-E_{2}=0 (see Fig. 1(b)), and grows linearly in |𝑨||\boldsymbol{A}|. However, as |𝑨||\boldsymbol{A}| gets larger, we have to consider the band shifting, namely the self-energy correction to the electron, denoted as δE1,2(k)\delta E_{1,2}(k). The gap moves to points where E1+δE1+ΩE2δE2=0E_{1}+\delta E_{1}+\Omega-E_{2}-\delta E_{2}=0 and is compressed by the band shifting. Thus we see that the gaps are shrinking at larger |𝑨||\boldsymbol{A}|. As the field gets even larger such that the resonant points disappear, i.e. |E1+δE1E2δE2|<Ω|E_{1}+\delta E_{1}-E_{2}-\delta E_{2}|<\Omega for all kk, the gap becomes trivial, which is simply a separation between two shifted Bloch bands. We observe and mark the turning points in Fig. 2(d) which indicates that the gap transfers from a resonant split to a trivial separation. This then explains the decreases in the extrinsic current and the power feature, confirmed by the correspondence of the turning points marked in Fig. 2(b-d). We notice that the intrinsic current decreases a little earlier than the extrinsic, indicating extra possible effects such as more balanced population under stronger field. We emphasize that this strong field effect works in effectively two-band systems and may get complicated in multiband systems.

Discussions and Remarks.— In this work, we discussed DC currents and their power features in a non-interacting Floquet-Bloch system with weak damping and strong drive. The results show the behaviors of the Bloch system under intensive drive. We want to briefly discuss what may happen when considering more aspects.

First is about the weak field limit where the field strength is small enough and ΓΔ𝑨\Gamma\gg\Delta_{\boldsymbol{A}}. Starting from the density matrix in Eq. (9), we can reproduce the well-known non-linear shift current as previously obtained using perturbation theory or Floquet Green’s function method [24, 29, 31]. Another important aspect is the electron-electron interactions that has been ignored in this work. We want to note that, technically, the interaction normally leads to heating of the system, which tends to erase notable features like the current responses [32, 33, 34]. Lastly, the oversimplification of the constant damping rate Γ\Gamma may fail at large field strength. Therefore, the theory needs to further take into account possible field or even momentum dependence of the damping, for example the treatments in Refs. [14, 15]. However, we believe that in some highly controllable platforms, like the cold atom system, the parameters can be tuned to suit the approximations we used in this work. We also claim that despite various damping mechanisms, the formula in Eq. (38) is general and the intrinsic current response is present under broken TRS, which is important for efficiently generating DC currents.

Q. G. acknowledges financial support of the Provost’s Graduate Excellence Fellowship from The University of Texas at Austin.

References

  • [1] Rechtsman, Mikael C., et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
  • [2] Lindner, Netanel H and Refael, Gil and Galitski, Victor. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).
  • [3] Else, Dominic V and Bauer, Bela and Nayak, Chetan. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).
  • [4] Zhang, Jiehang, et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).
  • [5] Autti, S and Eltsov, VB and Volovik, GE. Observation of a time quasicrystal and its transition to a superfluid time crystal. Phys. Rev. Lett. 120, 215301 (2018).
  • [6] Gao, Qiang and Niu, Qian. Floquet-Bloch Oscillations and Intraband Zener Tunneling in an Oblique Spacetime Crystal. Phys. Rev. Lett. 127, 036401 (2021).
  • [7] Wallquist, Margareta, et al. Hybrid quantum devices and quantum engineering. Physica Scripta 2009, 014001 (2009).
  • [8] Li, Peng-Bo and Zhou, Yuan and Gao, Wei-Bo and Nori, Franco. Enhancing spin-phonon and spin-spin interactions using linear resources in a hybrid quantum system. Phys. Rev. Lett. 125, 153602 (2020).
  • [9] Oka, Takashi and Kitamura, Sota. Floquet engineering of quantum materials. Annual Review of Condensed Matter Physics 10, 387–408 (2019).
  • [10] Atanasov, R., et al. Coherent control of photocurrent generation in bulk semiconductors. Phys. Rev. Lett. 76, 1703 (1996).
  • [11] Nelson, Jenny A. The physics of solar cells. World Scientific Publishing Company (2003).
  • [12] Ho, Tak-San and Wang, Kwanghsi and Chu, Shih-I. Floquet-Liouville supermatrix approach: Time development of density-matrix operator and multiphoton resonance fluorescence spectra in intense laser fields. Phys. Rev. A 33, 1798 (1986).
  • [13] Kohler, Sigmund and Lehmann, Jörg and Hänggi, Peter. Driven quantum transport on the nanoscale. Physics Reports 406, 379–443 (2005)
  • [14] Dehghani, Hossein and Oka, Takashi and Mitra, Aditi. Dissipative Floquet topological systems. Phys. Rev. B 90, 195429 (2014),
  • [15] Dehghani, Hossein and Oka, Takashi and Mitra, Aditi. Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator. Phys. Rev. B 91, 155422 (2015).
  • [16] Seetharam, Karthik I, et al. Controlled population of Floquet-Bloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 (2015).
  • [17] Iadecola, Thomas and Chamon, Claudio. Floquet systems coupled to particle reservoirs. Phys. Rev. B 91, 184301 (2015).
  • [18] Shirai, Tatsuhiko and Mori, Takashi and Miyashita, Seiji. Condition for emergence of the Floquet-Gibbs state in periodically driven open systems. Phys. Rev. E 91, 030101 (2015).
  • [19] S. A. Sato, et al. Floquet states in dissipative open quantum systems. Journal of Physics B: Atomic, Molecular and Optical Physics 53, 225601 (2020).
  • [20] Bai, Si-Yuan and An, Jun-Hong. Floquet engineering to reactivate a dissipative quantum battery. Phys. Rev. A 102, 060201 (2020).
  • [21] S. A. Sato, et al. Microscopic Theory for the Light-Induced Anomalous Hall Effect in Graphene. Phys. Rev. B 99, 214302 (2019).
  • [22] Gómez-León, Alvaro and Platero, Gloria. Floquet-Bloch theory and topology in periodically driven lattices. Phys. Rev. Lett. 110, 200403 (2013).
  • [23] In this work, we use the following convention for notations: (α,β)(\alpha,\beta) and (μ,ν)(\mu,\nu) are band indies for Bloch systems and Floquet-Bloch systems, respectively; (m,n)(m,n) are the multiplicities of the Floquet frequency Ω\Omega in the Floquet exponents; |Φ𝒌μ=ei𝒌𝒓|u~𝒌μ|\Phi^{\mu}_{\boldsymbol{k}}\rangle=e^{i\boldsymbol{k}\cdot\boldsymbol{r}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle and |φ𝒌β=ei𝒌𝒓|u𝒌β|\varphi^{\beta}_{\boldsymbol{k}}\rangle=e^{i\boldsymbol{k}\cdot\boldsymbol{r}}|u^{\beta}_{\boldsymbol{k}}\rangle stand for Floquet-Bloch state and Bloch state, respectively. An example will be the Floquet-Bloch eigenstate: |Φ𝒌μ(𝒓,t)n,βfn,𝒌μ,βeinΩt|φ𝒌β(𝒓,t)|\Phi^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle\equiv\sum_{n,\beta}f^{\mu,\beta}_{n,\boldsymbol{k}}e^{-in\Omega t}|\varphi^{\beta}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle, where the Floquet exponent multiplicity nn and the Bloch band index β\beta are summed over.
  • [24] For more details, see the supplementary material.
  • [25] Relaxation time approximation allows us to have an analytic solution for the density matrix. In such approximation, the interaction between the Bloch system and the heat bath commutes with that between the Bloch system and the Floquet drive. For more elaborated electron-heat bath interaction, see Refs. [14, 15, 16, 17].
  • [26] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and Its Mechanism for Generic Isolated Quantum Systems. Nature 452, 854 (2008).
  • [27] D’Alessio, Luca and Rigol, Marcos. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).
  • [28] By choosing the zero-reference gauge, the Floquet Berry connection becomes: 𝓐μFn,m,α,β,β(δα,βδm,0ρα,βB,eq,m/ρμ,μF,eq)(fn,𝒌μ,α)u𝒌β|i𝒌[|u𝒌βfnm,𝒌μ,β]\boldsymbol{\mathcal{A}}^{F}_{\mu}\equiv\sum_{n,m,\alpha,\beta,\beta^{\prime}}(\delta_{\alpha,\beta}\delta_{m,0}-\rho^{B,eq,m}_{\alpha,\beta}/\rho^{F,eq}_{\mu,\mu})\left(f_{n,\boldsymbol{k}}^{\mu,\alpha}\right)^{*}\langle u_{\boldsymbol{k}}^{\beta}|i\frac{\partial}{\partial\boldsymbol{k}}\left[|u_{\boldsymbol{k}}^{\beta^{\prime}}\rangle f_{n-m,\boldsymbol{k}}^{\mu,\beta^{\prime}}\right].
  • [29] T. Morimoto and N. Nagaosa. Topological Nature of Nonlinear Optical Effects in Solids. Sci. Adv. 2, e1501524 (2016).
  • [30] The parameters are the following: ε1\varepsilon_{1}, ε2\varepsilon_{2} are two on-site energies of two atoms in single unit cell; dd, ss are the lattice constant and distance between two atoms within a unit cell, respectively; t1t_{1}, t2t_{2} and t3t_{3}, t4t_{4} are the nearest neighbor and next nearest neighbor hopping constants, respectively.
  • [31] Young, Steve M and Rappe, Andrew M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).
  • [32] D’Alessio, Luca and Rigol, Marcos. Long-time Behavior of Isolated Periodically Driven Interacting Lattice Systems. Phys. Rev. X 4, 041048 (2014).
  • [33] Lazarides, Achilleas and Das, Arnab and Moessner, Roderich. Equilibrium states of generic quantum systems subject to periodic driving. Phys. Rev. E 90, 012110 (2014).
  • [34] Genske, Maximilian and Rosch, Achim. Floquet-Boltzmann equation for periodically driven Fermi systems. Phys. Rev. A 92, 062108 (2015).

I Supplementary Material

I.1 Primes on Floquet-Bloch eigenbasis

As discussed in the main text, the Floquet-Bloch Hamiltonian H^(𝒓,t;𝑨)\hat{H}(\boldsymbol{r},t;\boldsymbol{A}) can be reduced to a kernel matrix under the extended Floquet-Bloch basis {|ϕn,𝒌α(𝒓,t)einΩt|φ𝒌α(𝒓)}\{|\phi^{\alpha}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\equiv e^{-in\Omega t}|\varphi^{\alpha}_{\boldsymbol{k}}(\boldsymbol{r})\rangle\}:

m,n;α,β(𝒌)ϕm,𝒌α(𝒓,t)|H^(𝒓,t;𝑨)it|ϕn,𝒌β(𝒓,t).\begin{split}\mathcal{H}_{m,n;\alpha,\beta}(\boldsymbol{k})&\equiv\langle\langle\phi^{\alpha}_{m,\boldsymbol{k}}(\boldsymbol{r},t)|\hat{H}(\boldsymbol{r},t;\boldsymbol{A})-i\hbar\partial_{t}|\phi^{\beta}_{n,\boldsymbol{k}}(\boldsymbol{r},t)\rangle\rangle.\end{split} (18)

Then we need to solve the eigen-equation: n,αm,n;β,α(𝒌)fn,𝒌μ,α=ωμ(𝒌)fn,𝒌μ,β\sum_{n,\alpha}\mathcal{H}_{m,n;\beta,\alpha}(\boldsymbol{k})f^{\mu,\alpha}_{n,\boldsymbol{k}}=\hbar\omega_{\mu}(\boldsymbol{k})f^{\mu,\beta}_{n,\boldsymbol{k}}. We emphasize that the corresponding eigen-energies have a certain pattern: {ωμ=1+nΩ,,ωμ=NB+nΩ}\{\omega_{\mu=1}+n\Omega,\cdots,\omega_{\mu=N_{B}}+n\Omega\} with nn the Floquet index running over all integers and NBN_{B} the number of bands of the corresponding Bloch system. Since the eigen-energies have such periodicity, we can always restrict our considerations within a finite range, say [0,Ω][0,\Omega], which is referred to the Floquet Brillouin zone. The energy confined in such range is called the quasi-energy.

Nevertheless, the kernel matrix m,n;α,β(𝒌)\mathcal{H}_{m,n;\alpha,\beta}(\boldsymbol{k}) itself defines a complete Hilbert space with eigenvalues as described above and corresponding eigenvectors (𝒇ωμ+lΩ)n,α=fn+l,𝒌μ,α(\boldsymbol{f}_{\omega_{\mu}+l\Omega})_{n,\alpha}=f^{\mu,\alpha}_{n+l,\boldsymbol{k}}. Those eigenvectors form an orthnormal and complete basis, which means that we have

n,β(fn,𝒌μ,β)fn+l,𝒌ν,β=δμ,νδl,0,n,ν(fn,𝒌ν,α)fn+l,𝒌ν,β=δα,βδl,0.\begin{split}\sum_{n,\beta}\left(f_{n,\boldsymbol{k}}^{\mu,\beta}\right)^{*}f_{n+l,\boldsymbol{k}}^{\nu,\beta}&=\delta_{\mu,\nu}\delta_{l,0},\\ \sum_{n,\nu}\left(f_{n,\boldsymbol{k}}^{\nu,\alpha}\right)^{*}f_{n+l,\boldsymbol{k}}^{\nu,\beta}&=\delta_{\alpha,\beta}\delta_{l,0}.\end{split} (19)

Those two relations then enable the Floquet-Bloch eigenbasis {|u~𝒌μ(𝒓,t)}\{|\tilde{u}^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle\} to be also orthnormal and complete at a specific 𝒌\boldsymbol{k}:

u~𝒌μ(𝒓,t)|u~𝒌ν(𝒓,t)=δμ,ν,μ|u~𝒌μ(𝒓,t)u~𝒌μ(𝒓,t)|=𝑰^\begin{split}\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle&=\delta_{\mu,\nu},\\ \sum_{\mu}|\tilde{u}^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)|&=\hat{\boldsymbol{I}}\end{split} (20)

where |u~𝒌μ(𝒓,t)ei𝒌𝒓|Φ𝒌μ(𝒓,t)=n,βfn,𝒌μ,βeinΩt|u𝒌β(𝒓,t)|\tilde{u}^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle\equiv e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}|\Phi^{\mu}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle=\sum_{n,\beta}f^{\mu,\beta}_{n,\boldsymbol{k}}e^{-in\Omega t}|u^{\beta}_{\boldsymbol{k}}(\boldsymbol{r},t)\rangle is the periodic part of the Floquet-Bloch eigen-wavefunction.

I.2 Derivation of QLE in FLoquet Picture and the Density Matrix

The QLE:

itρ^(𝒌,t)=[H^(𝒌,t),ρ^(𝒌,t)]+i[D^,ρ^(𝒌,t)],i\partial_{t}\hat{\rho}(\boldsymbol{k},t)=[\hat{H}(\boldsymbol{k},t),\hat{\rho}(\boldsymbol{k},t)]+i[\hat{D},\hat{\rho}(\boldsymbol{k},t)], (21)

where

[D^,ρ^(𝒌,t)]=Γ[ρ^(𝒌,t)ρ^B,eq(𝒌,t)]αβΓα,β(𝒌)ρα,βB(𝒌,t)|u𝒌αu𝒌β|.\begin{split}[\hat{D},\hat{\rho}(\boldsymbol{k},t)]=&-\Gamma[\hat{\rho}(\boldsymbol{k},t)-\hat{\rho}^{B,eq}(\boldsymbol{k},t)]\\ &-\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|.\end{split} (22)

We emphasize here that ρ^B,eq(𝒌,t)\hat{\rho}^{B,eq}(\boldsymbol{k},t) is the instantaneous Bloch equilibrium density operator, for which we give a detailed discussion in the next section. Now project the QLE onto the Floquet eigenbasis:

u~𝒌μ|itρ^(𝒌,t)|u~𝒌ν=u~𝒌μ|[H^(𝒌,t),ρ^(𝒌,t)]|u~𝒌ν+iu~𝒌μ|[D^,ρ^(𝒌,t)]|u~𝒌ν,\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|i\partial_{t}\hat{\rho}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle=\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|[\hat{H}(\boldsymbol{k},t),\hat{\rho}(\boldsymbol{k},t)]|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle+i\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|[\hat{D},\hat{\rho}(\boldsymbol{k},t)]|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle, (23)

where, from the Schrodinger equation, we have

H^(𝒌,t)eiωμ(𝒌)t|u~𝒌μ=iteiωμ(𝒌)t|u~𝒌μ=eiωμ(𝒌)t(ωμ(𝒌)+it)|u~𝒌μit|u~𝒌μ=(H^(𝒌,t)ωμ(𝒌))|u~𝒌μ,\begin{split}\hat{H}(\boldsymbol{k},t)e^{-i\omega_{\mu}(\boldsymbol{k})t}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle&=i\partial_{t}e^{-i\omega_{\mu}(\boldsymbol{k})t}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle=e^{-i\omega_{\mu}(\boldsymbol{k})t}(\omega_{\mu}(\boldsymbol{k})+i\partial_{t})|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\\ &\Rightarrow i\partial_{t}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle=(\hat{H}(\boldsymbol{k},t)-\omega_{\mu}(\boldsymbol{k}))|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle,\end{split} (24)

and then

u~𝒌μ|itρ^(𝒌,t)|u~𝒌ν=itρμ,νF(𝒌,t)itu~𝒌μ|ρ^(𝒌,t)|u~𝒌νu~𝒌μ|ρ^(𝒌,t)|itu~𝒌ν=itρμ,νF(𝒌,t)+u~𝒌μ|[H^(𝒌,t),ρ^(𝒌,t)]|u~𝒌ν[ωμ(𝒌)ων(𝒌)]ρμ,νF(𝒌,t),\begin{split}\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|i\partial_{t}\hat{\rho}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle&=i\partial_{t}\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)-\langle i\partial_{t}\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle-\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}(\boldsymbol{k},t)|i\partial_{t}\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle\\ &=i\partial_{t}\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)+\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|[\hat{H}(\boldsymbol{k},t),\hat{\rho}(\boldsymbol{k},t)]|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle-[\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})]\rho^{F}_{\mu,\nu}(\boldsymbol{k},t),\end{split} (25)

where ρμ,νF(𝒌,t)u~𝒌μ|ρ^(𝒌,t)|u~𝒌ν\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)\equiv\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle is the density matrix element in Floquet eigenbasis.

Now let’s evaluate the damping term:

u~𝒌μ|[D^,ρ^(𝒌,t)]|u~𝒌ν=Γu~𝒌μ|ρ^(𝒌,t)|u~𝒌ν+Γu~𝒌μ|ρ^B,eq(𝒌,t)|u~𝒌ναβΓα,β(𝒌)u~𝒌μ|ρα,βB(𝒌,t)|u𝒌αu𝒌β|u~𝒌ν=Γρμ,νF(𝒌,t)+Γα,βρα,βB,eq(𝒌,t)u~𝒌μ|u𝒌αu𝒌β|u~𝒌ναβΓα,β(𝒌)u~𝒌μ|ρα,βB(𝒌,t)|u𝒌αu𝒌β|u~𝒌ν=Γρμ,νF(𝒌,t)+Γρ¯μ,νeq(𝒌)𝒮μ,ν(𝒌,t),\begin{split}&\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|[\hat{D},\hat{\rho}(\boldsymbol{k},t)]|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle\\ =&-\Gamma\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle+\Gamma\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}^{B,eq}(\boldsymbol{k},t)|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle-\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle\\ =&-\Gamma\rho_{\mu,\nu}^{F}(\boldsymbol{k},t)+\Gamma\sum_{\alpha,\beta}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle-\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\rho^{B}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle\\ =&-\Gamma\rho_{\mu,\nu}^{F}(\boldsymbol{k},t)+\Gamma\bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k})-\mathcal{S}_{\mu,\nu}(\boldsymbol{k},t),\end{split} (26)

where ρ¯μ,νeq(𝒌)α,βρα,βB,eq(𝒌,t)u~𝒌μ|u𝒌αu𝒌β|u~𝒌ν\bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k})\equiv\sum_{\alpha,\beta}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle is the instantaneous Bloch equilibrium density matrix in Floquet picture and 𝒮μ,ν(𝒌,t)αβΓα,β(𝒌)u~𝒌μ|ρα,βB(𝒌)|u𝒌αu𝒌β|u~𝒌ν\mathcal{S}_{\mu,\nu}(\boldsymbol{k},t)\equiv\sum_{\alpha\neq\beta}\Gamma^{\prime}_{\alpha,\beta}(\boldsymbol{k})\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\rho^{B}_{\alpha,\beta}(\boldsymbol{k})|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|\tilde{u}^{\nu}_{\boldsymbol{k}}\rangle is the scattering matrix. Putting all together, we have the QLE in Floquet picture:

itρμ,νF(𝒌,t)=[ωμ(𝒌)ων(𝒌)iΓ]ρμ,νF(𝒌,t)+iΓρ¯μ,νeq(𝒌,t)i𝒮μ,ν(𝒌,t),i\partial_{t}\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)=\left[\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-i\Gamma\right]\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)+i\Gamma\bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k},t)-i\mathcal{S}_{\mu,\nu}(\boldsymbol{k},t), (27)

After a long time evolution, the Floquet-Bloch system enters into a stationary state where its changing frequency synchronizes with the Floquet drive frenquecy Ω\Omega. In that case, we can do the Fourier transformation:

ρμ,νF(𝒌,t)=lρμ,νF,l(𝒌)eilΩt,ρ¯μ,νeq(𝒌,t)=lρ¯μ,νeq,l(𝒌)eilΩt,𝒮μ,ν(𝒌,t)=l𝒮μ,νl(𝒌)eilΩt.\begin{split}\rho^{F}_{\mu,\nu}(\boldsymbol{k},t)&=\sum_{l}\rho^{F,l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t},\\ \bar{\rho}^{eq}_{\mu,\nu}(\boldsymbol{k},t)&=\sum_{l}\bar{\rho}^{eq,l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t},\\ \mathcal{S}_{\mu,\nu}(\boldsymbol{k},t)&=\sum_{l}\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})e^{-il\Omega t}.\end{split} (28)

By inserting those Fourier expansions into Eq. (27), we can easily obtain a solution for the density matrix:

ρμ,νF,l(𝒌)=iΓρ¯μ,νeq,l(𝒌)+i𝒮μ,νl(𝒌)ωμ(𝒌)ων(𝒌)lΩiΓ.\rho^{F,l}_{\mu,\nu}(\boldsymbol{k})=\frac{-i\Gamma\bar{\rho}^{eq,l}_{\mu,\nu}(\boldsymbol{k})+i\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})}{\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-l\Omega-i\Gamma}. (29)

I.3 Instantaneous Bloch equilibrium under static Bloch eigenbasis and its induced dragging effect

In the QLE, we used the instantaneous Bloch thermal equilibrium ρ^B,eq(𝒌,t)\hat{\rho}^{B,eq}(\boldsymbol{k},t) emphasizing the fact that when Γ\Gamma\to\infty, the system is always relaxed to the instantaneous Bloch equilibrium with the heat bath, namely the Floquet dynamics is totally washed out by extremely fast damping. Let’s first give the proper definition of the instantaneous Bloch eigenstates:

H^(𝒌,𝑨(t))|u𝒌α(t)=Eα(𝒌,t)|u𝒌α(t)\hat{H}(\boldsymbol{k},\boldsymbol{A}(t))|u^{\alpha}_{\boldsymbol{k}}(t)\rangle=E_{\alpha}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}(t)\rangle (30)

where Eα(𝒌,t)E_{\alpha}(\boldsymbol{k},t) and |u𝒌α(t)|u^{\alpha}_{\boldsymbol{k}}(t)\rangle are the instantaneous eigenenergy and eigenstate, respectively. One should notice that the time-dependence introduced by the driving field 𝑨(t)\boldsymbol{A}(t) is simply a parameter and does not enters the dynamics. Then we claim that the instantaneous Bloch equilibrium is diagonal under the instantaneous Bloch basis:

ρ^B,eq(𝒌,t)=αρ~α,αB,eq(𝒌,t)|u𝒌α(t)u𝒌α(t)|.\hat{\rho}^{B,eq}(\boldsymbol{k},t)=\sum_{\alpha}\tilde{\rho}^{B,eq}_{\alpha,\alpha}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}(t)\rangle\langle u^{\alpha}_{\boldsymbol{k}}(t)|. (31)

We then expand this density matrix in the static Bloch eigenbasis111This requires that the Hilbert space spanned by the instantaneous Bloch basis {|u𝒌α(t)}\{|u^{\alpha}_{\boldsymbol{k}}(t)\rangle\} is equivalent to that spanned by the static Bloch basis {|u𝒌α}\{|u^{\alpha}_{\boldsymbol{k}}\rangle\}, which may not be true. However, one can show that the difference (if exists) can only occur at the second or higher orders in the external field strength.:

ρ^B,eq(𝒌,t)=α,βρα,βB,eq(𝒌,t)|u𝒌αu𝒌β|,\hat{\rho}^{B,eq}(\boldsymbol{k},t)=\sum_{\alpha,\beta}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\beta}_{\boldsymbol{k}}|, (32)

where the static Bloch eigenbasis corresponds to non-driven Bloch system, i.e. |u𝒌α=|u𝒌α(t)|𝑨(t)=0|u^{\alpha}_{\boldsymbol{k}}\rangle=|u^{\alpha}_{\boldsymbol{k}}(t)\rangle|_{\boldsymbol{A}(t)=0}. Now, let’s also introduce the static Bloch equilibrium which is the thermal equilibrium without Floquet drive (𝑨(t)=0\boldsymbol{A}(t)=0):

ρ^B,eq,s(𝒌)=αρα,αB,eq,s(𝒌)|u𝒌αu𝒌α|.\hat{\rho}^{B,eq,s}(\boldsymbol{k})=\sum_{\alpha}\rho^{B,eq,s}_{\alpha,\alpha}(\boldsymbol{k})|u^{\alpha}_{\boldsymbol{k}}\rangle\langle u^{\alpha}_{\boldsymbol{k}}|. (33)

For example, for Fermi-Dirac distribution, we have ρα,αB,eq,s(𝒌)=1/(e[Eα(𝒌)μc]/kB𝒯+1)\rho^{B,eq,s}_{\alpha,\alpha}(\boldsymbol{k})=1/(e^{[E_{\alpha}(\boldsymbol{k})-\mu_{c}]/k_{B}\mathcal{T}}+1).

Then the question is how to determine the instantaneous density matrix in Eq. (32) given the static density matrix in Eq. (33). In general, one needs to know the detailed Hamiltonian to answer the question. So, in the following, we specify our consideration to be a coherent light driven system which is also studied in the main text. In such case, the Hamiltonian becomes H^(𝒌,𝑨(t))=H^B(𝒌+𝑨(t))\hat{H}(\boldsymbol{k},\boldsymbol{A}(t))=\hat{H}_{B}(\boldsymbol{k}+\boldsymbol{A}(t)) where 𝑨(t)\boldsymbol{A}(t) is the vector potential. The minimal substitution allows us to easily identify that

ρ~α,αB,eq(𝒌,t)=ρα,αB,eq,s(𝒌+𝑨(t));|u𝒌α(t)=|u𝒌+𝑨(t)α.\begin{split}\tilde{\rho}^{B,eq}_{\alpha,\alpha}(\boldsymbol{k},t)&=\rho^{B,eq,s}_{\alpha,\alpha}(\boldsymbol{k}+\boldsymbol{A}(t));\\ |u^{\alpha}_{\boldsymbol{k}}(t)\rangle&=|u^{\alpha}_{\boldsymbol{k}+\boldsymbol{A}(t)}\rangle.\end{split} (34)

Thus, the matrix element ρα,βB,eq(𝒌,t)\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t) in Eq. (32) is given by

ρα,βB,eq(𝒌,t)=u𝒌α|ηρη,ηB,eq,s(𝒌+𝑨(t))|u𝒌+𝑨(t)ηu𝒌+𝑨(t)η|u𝒌β=η[ρη,ηB,eq,s(𝒌)+𝑨(t)𝒌ρη,ηB,eq,s(𝒌)+]u𝒌α|[|u𝒌η+𝑨(t)𝒌|u𝒌η+]×[u𝒌η|+𝑨(t)𝒌u𝒌η|+]|u𝒌β=η[ρη,ηB,eq,s(𝒌)+𝑨(t)𝒌ρη,ηB,eq,s(𝒌)+](δα,ηi𝑨(t)𝓐α,ηB(𝒌)+)×(δη,β+i𝑨(t)𝓐η,βB(𝒌)+),\begin{split}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)&=\langle u^{\alpha}_{\boldsymbol{k}}|\sum_{\eta}\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k}+\boldsymbol{A}(t))|u^{\eta}_{\boldsymbol{k}+\boldsymbol{A}(t)}\rangle\langle u^{\eta}_{\boldsymbol{k}+\boldsymbol{A}(t)}|u^{\beta}_{\boldsymbol{k}}\rangle\\ &=\sum_{\eta}\left[\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k})+\boldsymbol{A}(t)\cdot\frac{\partial}{\partial\boldsymbol{k}}\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k})+\cdots\right]\langle u^{\alpha}_{\boldsymbol{k}}|\left[|u^{\eta}_{\boldsymbol{k}}\rangle+\boldsymbol{A}(t)\cdot\frac{\partial}{\partial\boldsymbol{k}}|u^{\eta}_{\boldsymbol{k}}\rangle+\cdots\right]\\ &\qquad\times\left[\langle u^{\eta}_{\boldsymbol{k}}|+\boldsymbol{A}(t)\cdot\frac{\partial}{\partial\boldsymbol{k}}\langle u^{\eta}_{\boldsymbol{k}}|+\cdots\right]|u^{\beta}_{\boldsymbol{k}}\rangle\\ &=\sum_{\eta}\left[\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k})+\boldsymbol{A}(t)\cdot\frac{\partial}{\partial\boldsymbol{k}}\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k})+\cdots\right]\left(\delta_{\alpha,\eta}-i\boldsymbol{A}(t)\cdot\boldsymbol{\mathcal{A}}^{B}_{\alpha,\eta}(\boldsymbol{k})+\cdots\right)\\ &\qquad\times\left(\delta_{\eta,\beta}+i\boldsymbol{A}(t)\cdot\boldsymbol{\mathcal{A}}^{B}_{\eta,\beta}(\boldsymbol{k})+\cdots\right),\end{split} (35)

where 𝓐α,βB(𝒌)u𝒌α|i𝒌|u𝒌β\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}(\boldsymbol{k})\equiv\langle u^{\alpha}_{\boldsymbol{k}}|i\partial_{\boldsymbol{k}}|u^{\beta}_{\boldsymbol{k}}\rangle is the interband Bloch Berry connection. However, the expression is still very complicated, which needs to be simplified. Recall that ρη,ηB,eq,s(𝒌)\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k}) is the static Bloch equilibrium distribution, we have that for low temperature, if the corresponding Bloch system obeys Fermi-Dirac distribution and the chemical potential is in the gap, we can ignore the derivatives of ρη,ηB,eq,s(𝒌)\rho^{B,eq,s}_{\eta,\eta}(\boldsymbol{k}) in the above equation. One should anticipate that there could be large corrections if the temperature is high or the chemical potential is not in the gap. The matrix element can be written up to the second order in the field strength |𝑨(t)||\boldsymbol{A}(t)| as:

ρα,βB,eq(𝒌,t)=ρα,αB,eq,s(𝒌)δα,β+i[𝑨(t)𝓐α,βB(𝒌)+12𝑨(t)𝑨(t)𝒌𝓐α,βB(𝒌)](ρα,αB,eq,sρβ,βB,eq,s)+𝑨(t)𝑨(t)η𝓐α,ηB(𝒌)𝓐η,βB(𝒌)(ρη,ηB,eq,sρα,αB,eq,s+ρβ,βB,eq,s2)+O(|𝑨(t)|3),\begin{split}\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)&=\rho^{B,eq,s}_{\alpha,\alpha}(\boldsymbol{k})\delta_{\alpha,\beta}+i\left[\boldsymbol{A}(t)\cdot\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}(\boldsymbol{k})+\frac{1}{2}\boldsymbol{A}(t)\boldsymbol{A}(t)\cdot\frac{\partial}{\partial\boldsymbol{k}}\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}(\boldsymbol{k})\right](\rho^{B,eq,s}_{\alpha,\alpha}-\rho^{B,eq,s}_{\beta,\beta})\\ &+\boldsymbol{A}(t)\boldsymbol{A}(t)\cdot\sum_{\eta}\boldsymbol{\mathcal{A}}^{B}_{\alpha,\eta}(\boldsymbol{k})\boldsymbol{\mathcal{A}}^{B}_{\eta,\beta}(\boldsymbol{k})\left(\rho^{B,eq,s}_{\eta,\eta}-\frac{\rho^{B,eq,s}_{\alpha,\alpha}+\rho^{B,eq,s}_{\beta,\beta}}{2}\right)+O(|\boldsymbol{A}(t)|^{3}),\end{split} (36)

where we can see the first term on the right hand side is exactly the static Bloch equilibrium, while the rest field-dependent terms are corrections that we define as the field dragging effect. To further simplify our consideration, we only showcase the first order dragging correction in the case study in the main text, which we approximate:

ρα,βB,eq(𝒌,t)ρα,αB,eq,sδα,β+i𝑨(t)𝓐α,βB(𝒌)(ρα,αB,eq,sρβ,βB,eq,s),\rho^{B,eq}_{\alpha,\beta}(\boldsymbol{k},t)\approx\rho^{B,eq,s}_{\alpha,\alpha}\delta_{\alpha,\beta}+i\boldsymbol{A}(t)\cdot\boldsymbol{\mathcal{A}}^{B}_{\alpha,\beta}(\boldsymbol{k})(\rho^{B,eq,s}_{\alpha,\alpha}-\rho^{B,eq,s}_{\beta,\beta}), (37)

because we believe that the higher order terms give only quantitative differences that won’t change the physics in the simple two-band system we investigated. Another interesting thing is that the instantaneous density matrix in Eq. (36) is actually gauge-dependent since it is related to the Berry connections. However, we find that the gauge dependence is exactly canceled out by the corresponding gauge dependence of the Floquet coefficient fn,𝒌μ,αf_{n,\boldsymbol{k}}^{\mu,\alpha}. One can then check the gauge invariance of the density matrix in Eq. (9) in the main text.

I.4 Derivation of The Floquet-Liouville equation

In this section we will derive the Floquet-Liouville equation as stated in the main text that for an arbitrary operator 𝒪^\hat{\mathcal{O}} that is time-independent or periodic in time with Floquet period, we have

TrF[ρ^t𝒪^]=iTrF[ρ^[H^ω,𝒪^]]TrF[[D^,ρ^]𝒪^],\text{Tr}^{F}[\hat{\rho}\partial_{t}\hat{\mathcal{O}}]=-i\text{Tr}^{F}[\hat{\rho}[\hat{H}-\omega,\hat{\mathcal{O}}]]-\text{Tr}^{F}[[\hat{D},\hat{\rho}]\hat{\mathcal{O}}], (38)

where TrF[\ThisStyle\SavedStyle]μu~𝒌μ|\ThisStyle\SavedStyle|u~𝒌μ\text{Tr}^{F}[\mathbin{\ThisStyle{\vbox{\hbox{\scalebox{0.5}{$\SavedStyle\bullet$}}}}}]\equiv\sum_{\mu}\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\mathbin{\ThisStyle{\vbox{\hbox{\scalebox{0.5}{$\SavedStyle\bullet$}}}}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\rangle is the Floquet spacetime trace and ω\omega is the quasi-energy of corresponding Floquet eigenstate: ω|u~𝒌μωμ(𝒌)|u~𝒌μ\omega|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\rightarrow\omega_{\mu}(\boldsymbol{k})|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle. The derivation is quite straightforward. We consider the following quantity:

ddtu~𝒌μ|ρ^𝒪^|u~𝒌μ=tu~𝒌μ|ρ^𝒪^|u~𝒌μ+u~𝒌μ|t(ρ^𝒪^)|u~𝒌μ+u~𝒌μ|ρ^𝒪^|tu~𝒌μ=iu~𝒌μ|[H^ω,ρ^𝒪^]|u~𝒌μ+u~𝒌μ|(tρ^)𝒪^|u~𝒌μ+u~𝒌μ|ρ^t𝒪^|u~𝒌μ.\begin{split}\frac{d}{dt}\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle&=\langle\partial_{t}\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle+\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\partial_{t}(\hat{\rho}\hat{\mathcal{O}})|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle+\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\partial_{t}\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\\ &=i\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|[\hat{H}-\omega,\hat{\rho}\hat{\mathcal{O}}]|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle+\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|(\partial_{t}\hat{\rho})\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle+\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\partial_{t}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle.\end{split} (39)

Then, recall the quantum Liouville equation and the fact that 1T0Tddtu~𝒌μ|ρ^𝒪^|u~𝒌μ=u~𝒌μ|ρ^𝒪^|u~𝒌μ|t=Tu~𝒌μ|ρ^𝒪^|u~𝒌μ|t=0=0\frac{1}{T}\int_{0}^{T}\frac{d}{dt}\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle=\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle|_{t=T}-\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}\hat{\mathcal{O}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle|_{t=0}=0, Eq. (39) ends up to be Eq. (38) after taking the time average and summing over index μ\mu.

One thing we should notice is that the quasi-energy ω\omega is not just a number in the commutator, instead it has dependence on momentum 𝒌\boldsymbol{k}. This then renders the facts that for density matrix ρ^\hat{\rho}, we have [ρ^,ω]=0[\hat{\rho},\omega]=0; but for operator like i𝒌i\partial_{\boldsymbol{k}}, we have [i𝒌,ω]=i𝒌ω(𝒌)[i\partial_{\boldsymbol{k}},\omega]=i\partial_{\boldsymbol{k}}\omega(\boldsymbol{k}).

I.5 DC current response and Floquet power input

Now, in favor of the Floquet-Liouville equation derived in last section, we can obtain some DC responses. For current response, we choose 𝒪^=i𝒌\hat{\mathcal{O}}=i\partial_{\boldsymbol{k}} in Eq. (38), and obtain the following result:

TrF[ρ^𝒗^]=μρμ,μF,l=0ωμ(𝒌)𝒌TrF[[D^,ρ^]i𝒌],\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]=\sum_{\mu}\rho^{F,l=0}_{\mu,\mu}\frac{\partial\omega_{\mu}(\boldsymbol{k})}{\partial\boldsymbol{k}}-\text{Tr}^{F}[[\hat{D},\hat{\rho}]i\partial_{\boldsymbol{k}}], (40)

where 𝒗^=H^(𝒌,t)𝒌\hat{\boldsymbol{v}}=\frac{\partial\hat{H}(\boldsymbol{k},t)}{\partial\boldsymbol{k}} is the velocity operator. Thus the DC current can be calculated using 𝒋DC=e𝑑𝒌TrF[ρ^𝒗^]\boldsymbol{j}_{\text{DC}}=-e\int d\boldsymbol{k}\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]. In the main text, we ignored the electron-electron interaction which is to set 𝒮μ,νl(𝒌)=0\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})=0 in Eq. (29). In such setting, ρμ,μF,l=0=(ρ^F,eq)μ,μ\rho^{F,l=0}_{\mu,\mu}=(\hat{\rho}^{F,eq})_{\mu,\mu} is just the Floquet-Bloch quasi-equilibrium distribution and the damping term is reduced to [D^,ρ^]=Γ(ρ^ρ^B,eq)[\hat{D},\hat{\rho}]=-\Gamma(\hat{\rho}-\hat{\rho}^{B,eq}). At the weak damping and strongly driven regime, i.e. ΓΔ𝑨minμν,l{|ωμ(𝒌)ων(𝒌)lΩ|}\Gamma\ll\Delta_{\boldsymbol{A}}\equiv\min_{\mu\neq\nu,l}\{|\omega_{\mu}(\boldsymbol{k})-\omega_{\nu}(\boldsymbol{k})-l\Omega|\}, we also have ρ^=ρ^F,eq+O(ΓΔ𝑨iΓ)\hat{\rho}=\hat{\rho}^{F,eq}+O(\frac{\Gamma}{\Delta_{\boldsymbol{A}}-i\Gamma}). Putting all together, we have the result in the main text that:

TrF[ρ^𝒗^]=TrF[ρ^F,eq𝒗^]+Γ×TrF[(ρ^F,eqρ^B,eq)i𝒌]+O(Γ2Δ𝑨iΓ).\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]=\text{Tr}^{F}[\hat{\rho}^{F,eq}\hat{\boldsymbol{v}}]+\Gamma\times\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})i\partial_{\boldsymbol{k}}]+O(\frac{\Gamma^{2}}{\Delta_{\boldsymbol{A}}-i\Gamma}). (41)

One can also check the above expression by explicitly evaluating the spacetime trace TrF[ρ^𝒗^]\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}].

For Floquet power input, we choose 𝒪^=H^\hat{\mathcal{O}}=\hat{H} in Eq. (38), and also adopt the above used approximations, ending up with

TrF[ρ^tH^]=Γ×TrF[(ρ^F,eqρ^B,eq)H^]+O(Γ2Δ𝑨iΓ).\text{Tr}^{F}[\hat{\rho}\partial_{t}\hat{H}]=\Gamma\times\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})\hat{H}]+O(\frac{\Gamma^{2}}{\Delta_{\boldsymbol{A}}-i\Gamma}). (42)

To illustrate that TrF[ρ^tH^]\text{Tr}^{F}[\hat{\rho}\partial_{t}\hat{H}] gives the average energy that the Floquet drive inputs into the system, we now specify the drive as coherent light with vector potential 𝑨(t)\boldsymbol{A}(t). Thus the Hamiltonian takes the form H^(𝒌,t)=H^B(𝒌q𝑨(t))\hat{H}(\boldsymbol{k},t)=\hat{H}_{B}(\boldsymbol{k}-q\boldsymbol{A}(t)), where H^B\hat{H}_{B} is the Hamiltonian of the static Bloch system and q=eq=-e is the charge. Then, we have

H^t=q𝑨tH^q𝑨=q𝑨tH^𝒌=q𝑬𝒗^,\frac{\partial\hat{H}}{\partial t}=\frac{\partial q\boldsymbol{A}}{\partial t}\cdot\frac{\partial\hat{H}}{\partial q\boldsymbol{A}}=-q\frac{\partial\boldsymbol{A}}{\partial t}\cdot\frac{\partial\hat{H}}{\partial\boldsymbol{k}}=q\boldsymbol{E}\cdot\hat{\boldsymbol{v}}, (43)

where 𝑬=t𝑨\boldsymbol{E}=-\partial_{t}\boldsymbol{A} is the external electric field. Therefore, the Floquet power input averaged over one Floquet period is just P¯(𝒌)TrF[q𝑬(t)ρ^𝒗^]=TrF[ρ^tH^]\bar{P}(\boldsymbol{k})\equiv\text{Tr}^{F}[q\boldsymbol{E}(t)\cdot\hat{\rho}\hat{\boldsymbol{v}}]=\text{Tr}^{F}[\hat{\rho}\partial_{t}\hat{H}]. We argue that for other types of Floquet derive like phononic drive, the power input should also have the general form in Eq. (42).

I.6 Gauge Dependence of the DC current

Let’s talk about the gauge dependence of the DC current 𝒋\boldsymbol{j}. As a physical observable, it should be gauge invariant. We are only interested in two major contributions in Eq. (41): intrinsic current at zeroth order in Γ\Gamma; and non-equilibrium current at first order in Γ\Gamma. The intrinsic contribution is manifestly gauge invariant since it only involves the equilibrium Floquet-Bloch density matrix, while the second contribution requires a little analysis to check whether it is gauge invariant.

The primary gauge dependence we consider here comes from the U(1)U(1) gauge of the wavefunction:

|u~𝒌μeiθ𝒌μ|u~𝒌μ.|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\rightarrow e^{-i\theta^{\mu}_{\boldsymbol{k}}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle. (44)

Upon this gauge transformation, the velocity expectation value will have an extra term

Γ×TrF[(ρ^F,eqρ^B,eq)𝒌𝜽],\Gamma\times\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})\partial_{\boldsymbol{k}}\boldsymbol{\theta}], (45)

which is zero because

TrF[(ρ^F,eqρ^B,eq)𝒌𝜽]=n,μ,βρμ,μF,0(𝒌)|fn,𝒌μ,β|2𝒌θ𝒌μμu~𝒌μ|ρ^B,eq|u~𝒌μ𝒌θ𝒌μ=μρμ,μF,0(𝒌)(n,β|fn,𝒌μ,β|2)𝒌θ𝒌μμρμ,μF,0(𝒌)𝒌θ𝒌μ=μ(ρμ,μF,0(𝒌)ρμ,μF,0(𝒌))𝒌θ𝒌μ=0.\begin{split}\text{Tr}^{F}[(\hat{\rho}^{F,eq}-\hat{\rho}^{B,eq})\partial_{\boldsymbol{k}}\boldsymbol{\theta}]=&\sum_{n,\mu,\beta}\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})|f^{\mu,\beta}_{n,\boldsymbol{k}}|^{2}\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}-\sum_{\mu}\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}^{B,eq}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\rangle\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}\\ =&\sum_{\mu}\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})\left(\sum_{n,\beta}|f^{\mu,\beta}_{n,\boldsymbol{k}}|^{2}\right)\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}-\sum_{\mu}\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}\\ =&\sum_{\mu}\left(\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})-\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})\right)\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}=0.\end{split} (46)

So, the current is gauge invariant. We can then fix the gauge and recast the expression of the current into a totally diagonal form. By choosing the following special gauge:

𝒌θ𝒌μ=u~𝒌μ|ρ^B,eqi𝒌|u~𝒌μρμ,μF,0(𝒌),\partial_{\boldsymbol{k}}\theta^{\mu}_{\boldsymbol{k}}=\frac{\langle\langle\tilde{u}^{\mu}_{\boldsymbol{k}}|\hat{\rho}^{B,eq}i\partial_{\boldsymbol{k}}|\tilde{u}^{\mu}_{\boldsymbol{k}}\rangle\rangle}{\rho^{F,0}_{\mu,\mu}(\boldsymbol{k})}, (47)

we have the final form of the expectation value of velocity operator as

TrF[ρ^𝒗^]=TrF[ρ^F,eq𝒗^~]\text{Tr}^{F}[\hat{\rho}\hat{\boldsymbol{v}}]=\text{Tr}^{F}[\hat{\rho}^{F,eq}\tilde{\hat{\boldsymbol{v}}}] (48)

where 𝒗^~(𝒌,t;Γ)𝒗^+Γ(i𝒌+gauge term)\tilde{\hat{\boldsymbol{v}}}(\boldsymbol{k},t;\Gamma)\equiv\hat{\boldsymbol{v}}+\Gamma(i\partial_{\boldsymbol{k}}+\text{gauge term}), defined as the shifted velocity operator. We have to note here that the operator 𝒗^~\tilde{\hat{\boldsymbol{v}}} is in general gauge dependent, but the gauge term vanishes at condition in Eq. (47).

I.7 Reproducing the non-linear optical Shift Current in the weak field limit

In previous sections, we derived a formula for current response using the density matrix approach and discussed the result at the large field limit which is ΓΔ𝑨\Gamma\ll\Delta_{\boldsymbol{A}}. In this section, we want to show that at weak field limit where ΓΔ𝑨\Gamma\gg\Delta_{\boldsymbol{A}}, the density matrix formalism can reproduce the result of the well-known shift current if the time reversal symmetry (TRS) is preserved.

The main idea is that with small field strength |𝑨||\boldsymbol{A}|, we can truncate the Hamiltonian kernel matrix m,n;α,β(𝒌)\mathcal{H}_{m,n;\alpha,\beta}(\boldsymbol{k}) to a minimum 2×22\times 2 matrix [29]:

2×2(𝒌)=[E1(k)+Ωe𝑨𝒗12Be𝑨𝒗21BE2(k)],\mathcal{H}_{2\times 2}(\boldsymbol{k})=\begin{bmatrix}E_{1}(k)+\hbar\Omega&e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}\\ e\boldsymbol{A}\cdot\boldsymbol{v}^{B}_{21}&E_{2}(k)\end{bmatrix}, (49)

where 𝒗αβB(𝒌)=u𝒌α|𝒌HB(𝒌)|u𝒌β\boldsymbol{v}^{B}_{\alpha\beta}(\boldsymbol{k})=\langle u^{\alpha}_{\boldsymbol{k}}|\partial_{\boldsymbol{k}}H_{B}(\boldsymbol{k})|u^{\beta}_{\boldsymbol{k}}\rangle is the velocity matrix of the original Bloch system. Now, the model is simple enough so that we can have an analytical expression for the DC current in non-interacting Floquet-Bloch systems where again 𝒮μ,νl(𝒌)=0\mathcal{S}^{l}_{\mu,\nu}(\boldsymbol{k})=0 in Eq. (29). For simplicity, we also ignore the field dragging effect described in Eq. (37) at small field strength |𝑨||\boldsymbol{A}|. The DC current can then be fully evaluated without assuming the scale of Γ\Gamma and the result reads

𝒋DC=ed𝒌[(ρ1,1B,eq+ρ2,2B,eq)𝒌[E1(𝒌)+E2(𝒌)]2+(ρ1,1B,eqρ2,2B,eq)(ΩΔ𝒌B2𝒌logΔ𝒌+2Γ|e𝑨𝒗12B|2Δ𝒌2+Γ2𝓡𝒌+2Γ2|e𝑨𝒗12B|Δ𝒌2+Γ2𝝌𝒌)],\begin{split}\boldsymbol{j}_{\text{DC}}=&-e\int\text{d}\boldsymbol{k}\left[(\rho^{B,eq}_{1,1}+\rho^{B,eq}_{2,2})\frac{\partial_{\boldsymbol{k}}[E_{1}(\boldsymbol{k})+E_{2}(\boldsymbol{k})]}{2\hbar}\right.\\ &+\left.(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\left(\frac{\hbar\Omega-\Delta^{B}_{\boldsymbol{k}}}{2\hbar}\partial_{\boldsymbol{k}}\log\Delta_{\boldsymbol{k}}+\frac{2\Gamma|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}+\frac{2\Gamma^{2}|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}\boldsymbol{\chi}_{\boldsymbol{k}}\right)\right],\end{split} (50)

where Δ𝒌BE2(𝒌)E1(𝒌)\Delta^{B}_{\boldsymbol{k}}\equiv E_{2}(\boldsymbol{k})-E_{1}(\boldsymbol{k}), Δ𝒌(E1+ΩE2)2+4|e𝑨𝒗12B|2\Delta_{\boldsymbol{k}}\equiv\sqrt{(E_{1}+\hbar\Omega-E_{2})^{2}+4|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}} are the gap functions for the original Bloch system and the Floquet-Bloch system, respectively. Therefore, the minimum direct gap defined before is just Δ𝑨=2|e𝑨𝒗12B|\Delta_{\boldsymbol{A}}=2|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|. 𝓡𝒌𝒌arg(𝒗12B)+𝓐2B𝓐1B\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}\equiv\partial_{\boldsymbol{k}}\arg(\boldsymbol{v}^{B}_{12})+\boldsymbol{\mathcal{A}}^{B}_{2}-\boldsymbol{\mathcal{A}}^{B}_{1} is the so-called shift vector, with 𝓐αB=u𝒌α|i𝒌|u𝒌α\boldsymbol{\mathcal{A}}^{B}_{\alpha}=\langle u^{\alpha}_{\boldsymbol{k}}|i\partial_{\boldsymbol{k}}|u^{\alpha}_{\boldsymbol{k}}\rangle being the Bloch Berry connection. 𝝌𝒌\boldsymbol{\chi}_{\boldsymbol{k}} denotes [|e𝑨𝒗12B|𝒌(E1+ΩE2)(E1+ΩE2)𝒌|e𝑨𝒗12B|]/Δ𝒌2[|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|\partial_{\boldsymbol{k}}(E_{1}+\hbar\Omega-E_{2})-(E_{1}+\hbar\Omega-E_{2})\partial_{\boldsymbol{k}}|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|]/\Delta_{\boldsymbol{k}}^{2} for convenience. We note that the term involving 𝝌𝒌\boldsymbol{\chi}_{\boldsymbol{k}} scales roughly as 1/|𝑨|1/|\boldsymbol{A}|, which makes it important in weak field, while it is not so important in strong field regime. Now, if we assume the system has TRS, then most of the contributions in Eq. (50) vanish because that the corresponding integrands are odd under 𝒌𝒌\boldsymbol{k}\to-\boldsymbol{k}. The current is further reduced to

𝒋DCTRS=ed𝒌(ρ1,1B,eqρ2,2B,eq)2Γ|e𝑨𝒗12B|2Δ𝒌2+Γ2𝓡𝒌.\boldsymbol{j}^{\text{TRS}}_{\text{DC}}=-e\int\text{d}\boldsymbol{k}(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\frac{2\Gamma|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}. (51)

We adopt the idea used in Ref. [29] that in the limit where Γ\Gamma and |e𝑨𝒗12B||e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}| are much smaller than the energy dispersion and Γ|e𝑨𝒗12B|\Gamma\gg|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|, we have

𝒋DCTRS=e2π|e𝑬|2Ω2d𝒌(ρ1,1B,eqρ2,2B,eq)δ(E1+ΩE2)|𝒗12B|2𝓡𝒌,\boldsymbol{j}^{\text{TRS}}_{\text{DC}}=-e\frac{2\pi|e\boldsymbol{E}|^{2}}{\Omega^{2}}\int\text{d}\boldsymbol{k}(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\delta(E_{1}+\hbar\Omega-E_{2})|\boldsymbol{v}^{B}_{12}|^{2}\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}, (52)

which is exactly the non-linear optical shift current [31]. Here |𝑬|=Ω|𝑨||\boldsymbol{E}|=\Omega|\boldsymbol{A}| is the corresponding electric field strength.

I.8 Power signature and its implication on Floquet dynamics

One can follow the same procedure in the previous section and obtain the power input in a relatively weak field regime as:

P¯net=d𝒌(ρ1,1B,eqρ2,2B,eq)2ΓΩ|e𝑨𝒗12B|2Δ𝒌2+Γ2.\bar{P}_{\text{net}}=\int\text{d}\boldsymbol{k}(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\frac{2\Gamma\Omega|e\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}. (53)

We want to simplify our discussion by excluding the contribution from terms involving 𝝌𝒌\boldsymbol{\chi}_{\boldsymbol{k}} in Eq. (50) as it becomes less important in the strong field regime. However, we notice it could give a large correction in the weak field and we leave it to a future study. An observation of the net power is that this power input is always positive as long as the population difference between two bands is positive.

Refer to caption
Figure 3: The extrinsic power efficiency FExF^{\text{Ex}} as functions of |𝑨||\boldsymbol{A}| for Ω=0.3\Omega=0.3 (blue) and Ω=0.35\Omega=0.35 (red), respectively. Parameters used are the same as in the main text.

Let’s now look at the power efficiency for generating the extrinsic current which has an analytic expression in the weak field regime:

FEx=𝒋DCExP¯net=d𝒌(ρ1,1B,eqρ2,2B,eq)2Γ|𝑨𝒗12B|2Δ𝒌2+Γ2𝓡𝒌d𝒌(ρ1,1B,eqρ2,2B,eq)2ΓΩ|𝑨𝒗12B|2Δ𝒌2+Γ2𝓡𝒌𝑨Ω,F^{\text{Ex}}=\frac{\boldsymbol{j}^{\text{Ex}}_{\text{DC}}}{\bar{P}_{\text{net}}}=\frac{\int\text{d}\boldsymbol{k}(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\frac{2\Gamma|\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}}{\int\text{d}\boldsymbol{k}(\rho^{B,eq}_{1,1}-\rho^{B,eq}_{2,2})\frac{2\Gamma\Omega|\boldsymbol{A}^{*}\cdot\boldsymbol{v}^{B}_{12}|^{2}}{\Delta_{\boldsymbol{k}}^{2}+\Gamma^{2}}}\equiv\frac{\langle\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}\rangle_{\boldsymbol{A}}}{\Omega}, (54)

where we have omitted the electric charge (e)(-e) and 𝓡𝒌𝑨\langle\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}\rangle_{\boldsymbol{A}} is defined as the dynamical average of the shift vector 𝓡𝒌\boldsymbol{\mathcal{R}}_{\boldsymbol{k}} in the transition process. If we assume a fully filled Bloch band E1E_{1} and an empty E2E_{2}, then in the weak field and sufficient small damping limit, the extrinsic power efficiency becomes

FEx𝒌i𝓡𝒌i|𝒗12B(𝒌i)𝒗11B(𝒌i)𝒗22B(𝒌i)|Ω𝒌i|𝒗12B(𝒌i)𝒗11B(𝒌i)𝒗22B(𝒌i)|,F^{\text{Ex}}\approx\frac{\sum_{\boldsymbol{k}_{i}}\boldsymbol{\mathcal{R}}_{\boldsymbol{k}_{i}}|\frac{\boldsymbol{v}^{B}_{12}(\boldsymbol{k}_{i})}{\boldsymbol{v}^{B}_{11}(\boldsymbol{k}_{i})-\boldsymbol{v}^{B}_{22}(\boldsymbol{k}_{i})}|}{\Omega\sum_{\boldsymbol{k}_{i}}|\frac{\boldsymbol{v}^{B}_{12}(\boldsymbol{k}_{i})}{\boldsymbol{v}^{B}_{11}(\boldsymbol{k}_{i})-\boldsymbol{v}^{B}_{22}(\boldsymbol{k}_{i})}|}, (55)

which is field-independent. The summation is over all resonant 𝒌i\boldsymbol{k}_{i} such that E1(𝒌i)+ΩE2(𝒌i)=0E_{1}(\boldsymbol{k}_{i})+\hbar\Omega-E_{2}(\boldsymbol{k}_{i})=0. For the two-band model considered in the main text, we can estimate this factor to be FEx1.26F^{\text{Ex}}\approx 1.26 for Ω=0.3\Omega=0.3 and FEx1.24F^{\text{Ex}}\approx 1.24 for Ω=0.35\Omega=0.35, respectively. Although this field-independent feature is found in the weak field limit, in the Fig. 3 where we plot FExF^{\text{Ex}} as a function of field strength |𝑨||\boldsymbol{A}|, we do observe constant-like behaviors in the range of relatively small |𝑨||\boldsymbol{A}| and values for two different Ω\Omega’s are closed to the values estimated above. However, the efficiency shows strong field dependence when the field is getting stronger. Thus, we say that the extrinsic power efficiency is of particular importance that reflects the Floquet dynamics.