This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Department of Physics, Chung-Ang University, Seoul 06974, Korea

Dark mesons as self-interacting dark matter

Hyun Min Lee [email protected]
Abstract

We review the current status of model building for light dark matter in theories of QCD-like gauge groups in the hidden sector. The focus is upon the dark mesons with the SU(3)VSU(3)_{V} flavor symmetry in scenarios of Strongly Interacting Massive Particles. We show the production mechanism and the kinetic equilibrium condition for dark mesons and discuss a unitarization of dark chiral perturbation theory with vector mesons in the scheme of hidden gauge symmetry.

1 Introduction

Dark flavor or gauge symmetries have been playing important roles for model building for dark matter beyond the minimal scenarios with a single component dark matter. In particular, the accidental flavor symmetry in the dark sector ensures the stability of dark matter with multiple components, naturally rendering dark matter self-interacting to solve the small-scale problems at galaxies smallscale ; smallscale2 . We focus on the contact self-interactions for dark mesons in this review, but we note that there are alternative ways to make dark matter self-interacting through the non-perturbative enhancement with light mediators lightmed . We also remark that the effects of baryons and supernova feedback in simulations could resolve the small-scale problems baryons , although there are issues such as diversity problem that disk galaxies with the same maximal circular velocity exhibit a much larger scatter diversity .

In the case of dark flavor symmetry, dark quarks form meson bound states after the condensation of hidden QCD, which are natural candidates for light dark matter due to small masses for dark quarks. The dark flavor symmetry determines the self-interactions for dark mesons in the dark chiral perturbation theory (ChPT) and allows for the Wess-Zumino-Witten (WZW) term with a coefficient fixed by the number of colors for a sufficiently large number of dark mesons. Then, we can determine the relic density for dark mesons by the freeze-out process with 323\to 2 meson-number changing processes 3to2 ; simpmeson1 ; simpmeson2 ; simpmeson3 . This is the so called Strongly Interacting Massive Particles (SIMPs), which should be distinguished from the case of dark matter candidates interacting with QCD. Then, the dark mesons have masses of sub-GeV scale for the correct relic density and they have a naturally large self-cross scattering cross section due to self-interactions to solve the small-scale problems.

The dark flavor symmetry can be broken partially by the gauging with local dark symmetries. When the dark flavor symmetry is gauged by a local U(1)U(1)^{\prime}, the gauge kinetic mixing between the U(1)U(1)^{\prime} and the hypercharge in the Standard Model (SM) communicates between the dark matter and the SM, so it is important to look for light resonances in the searches for SIMP dark matter at the intensity frontier experiments. Furthermore, when the dark flavor symmetry is gauged by a broken local non-abelian gauge symmetry, the so called hidden gauge symmetry, we can realize vector mesons in the dark sector as excitations in the dark ChPT and extend the dark ChPT for a better behavior at high energies.

Although we are not pursuing in this short review, we also remark the case of dark gauge symmetry. When dark gauge symmetries are broken spontaneously by Higgs mechanism, they can make the massive gauge bosons stable due to the remaining custodial symmetry from the scalar potential. Non-abelian gauge symmetries such as SU(2)SU(2) in the dark sector vsimp ; vsimp2 fixe the self-interactions for dark gauge bosons in terms of the dark gauge coupling only. As a result, there is a definite prediction for the masses and gauge coupling for dark gauge bosons, being compatible with the relic density and the Bullet cluster bound. It is worthwhile to mention that the Higgs phase for the (partially) broken dark gauge symmetry with no light charged particles is dual to the confining phase for the hidden QCD under the name of Higgs/QCD complementarity vsimp . As a result, we could have the unified picture of strongly interacting dark matter as branching out from various realizations of hidden QCD with or without light dark quarks.

2 Dark QCD and dark matter

Suppose that the flavor symmetry for dark fermions, G=SU(Nf)L×SU(Nf)RG=SU(N_{f})_{L}\times SU(N_{f})_{R} is broken to the diagonal subgroup, H=SU(Nf)VH=SU(N_{f})_{V}, due to the SU(Nc)SU(N_{c}) condensate of dark fermions. Then, dark mesons made of dark fermions, appear as pseudo-Goldstone bosons, and they are naturally strongly interacting, light and stable due to the flavor symmetry. The number of dark mesons is given by the number of broken generators of the flavor symmetry, which is Nf21N^{2}_{f}-1. In the case of QCD, Nc=3N_{c}=3 and Nf=3N_{f}=3, but there are more possibilities for dark sector with arbitrary numbers of colors and flavors.

The flavor symmetry and the dark QCD group can be generalized to other Lie groups such as G/H=SU(Nf)/SO(Nf)G/H=SU(N_{f})/SO(N_{f}) for SO(Nc)SO(N_{c}) and SU(2Nf)/Sp(2Nf)SU(2N_{f})/Sp(2N_{f}) for Sp(Nc)Sp(N_{c}). In particular, a nonzero Wess-Zumino-Witten (WZW) term wz ; witten for dark mesons exists only for a nontrivial homotopy group, π5(G/H)=Z\pi_{5}(G/H)=Z, i.e. Nf3N_{f}\geq 3.

For simplicity and illustration, we focus on the flavor symmetry, SU(3)L×SU(3)R/SU(3)VSU(3)_{L}\times SU(3)_{R}/SU(3)_{V}, in the following discussion. Then, dark mesons are represented as Σ=exp(i2π/fπ)\Sigma={\rm exp}(i2\pi/f_{\pi}) with π=πata\pi=\pi^{a}t^{a}, in the basis of Gell-Mann matrices, with

π=12(12π0+16η0π+K+π12π0+16η0K0KK0¯26η0).\displaystyle\pi=\frac{1}{\sqrt{2}}\left(\begin{array}[]{ccc}\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta^{0}&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta^{0}&K^{0}\\ K^{-}&\overline{K^{0}}&-\frac{2}{\sqrt{6}}\eta^{0}\end{array}\right). (4)

Here, we note that η\eta^{\prime} meson can be also included when the global symmetry is extended to U(3)L×U(3)RU(3)_{L}\times U(3)_{R}, which is broken down to U(3)VU(3)_{V}.

When the mass matrix for dark quarks is of diagonal form,

Mq=(m1000m2000m3),\displaystyle M_{q}=\left(\begin{array}[]{ccc}m_{1}&0&0\\ 0&m_{2}&0\\ 0&0&m_{3}\end{array}\right), (8)

the corresponding masses for dark mesons are

mπ±2\displaystyle m^{2}_{{\pi}^{\pm}} =\displaystyle= μ(m1+m2),\displaystyle\mu(m_{1}+m_{2}), (9)
mK±2\displaystyle m^{2}_{{K}^{\pm}} =\displaystyle= μ(m1+m3),\displaystyle\mu(m_{1}+m_{3}), (10)
mK02\displaystyle m^{2}_{{K}^{0}} =\displaystyle= μ(m2+m3),\displaystyle\mu(m_{2}+m_{3}), (11)

and π0,η0{\pi}^{0},{\eta}^{0} mix by the following mixing mass matrix,

M02=μ(m1+m213(m1m2)13(m1m2)13(m1+m2+4m3)).\displaystyle M^{2}_{0}=\mu\left(\begin{array}[]{cc}m_{1}+m_{2}&\frac{1}{\sqrt{3}}(m_{1}-m_{2})\\ \frac{1}{\sqrt{3}}(m_{1}-m_{2})&\frac{1}{3}(m_{1}+m_{2}+4m_{3})\end{array}\right). (14)

For m1=m2=m3m_{1}=m_{2}=m_{3}, all the dark mesons have common masses, mπ2=2μm1m^{2}_{\pi}=2\mu m_{1}, being consistent with the unbroken SU(3)VSU(3)_{V} flavor symmetry. Then, the remaining flavor symmetry ensures the stability of dark mesons.

3 The relic abundances of SIMP mesons

The WZW term for dark mesons contain the 5-point self-interactions, given wz ; witten ; simpmeson1 by

WZW=2Nc15π2fπ5ϵμνρσTr[πμπνπρπσπ].\displaystyle{\cal L}_{WZW}=\frac{2N_{c}}{15\pi^{2}f^{5}_{\pi}}\,\epsilon^{\mu\nu\rho\sigma}{\rm Tr}[\pi\partial_{\mu}\pi\partial_{\nu}\pi\partial_{\rho}\pi\partial_{\sigma}\pi]. (15)

Then, the WZW term gives rise to 323\rightarrow 2 annihilation channels for dark mesons, so it determines the relic density for dark mesons in the early Universe after freeze-out. The corresponding annihilation cross section for 323\rightarrow 2 processes simpmeson1 ; average is given by

σv232=55Nc2mπ52π5fπ10t2Nπ3x2αeff3mπ5x2\displaystyle\langle\sigma v^{2}\rangle_{3\rightarrow 2}=\frac{5\sqrt{5}N^{2}_{c}m^{5}_{\pi}}{2\pi^{5}f^{10}_{\pi}}\frac{t^{2}}{N^{3}_{\pi}}\,x^{-2}\equiv\frac{\alpha^{3}_{\rm eff}}{m^{5}_{\pi}}\,x^{-2} (16)

where xmπ/Tx\equiv m_{\pi}/T with TT being the radiation temperature of the Universe, NπN_{\pi} is the number of dark mesons and t2t^{2} is the group theory factor, given by Nπ=Nf21N_{\pi}=N^{2}_{f}-1 and t2=43Nf(Nf21)(Nf24)t^{2}=\frac{4}{3}N_{f}(N^{2}_{f}-1)(N^{2}_{f}-4) for the SU(Nf)SU(N_{f}) flavor symmetry simpmeson1 , respectively. In our case, we take Nπ=8N_{\pi}=8 and Nf=3N_{f}=3, for which t2=160t^{2}=160. Henceforth, we assume that the maximum temperature of the Universe is large enough for dark mesons to be initially populated in equilibrium with the SM.

When dark mesons annihilate dominantly by the WZW term, the relic densities for dark mesons, nπi=18nDMn_{\rm\pi_{i}}=\frac{1}{8}n_{\rm DM}, are the same and they are governed by the following Boltzmann equation,

n˙DM+3HnDM=σv232nDM2(nDMnDMeq)\displaystyle{\dot{n}}_{\rm DM}+3Hn_{\rm DM}=-\langle\sigma v^{2}\rangle_{3\rightarrow 2}\,n^{2}_{\rm DM}\Big{(}n_{\rm DM}-n^{\rm eq}_{\rm DM}\Big{)} (17)

where nDMeqn^{\rm eq}_{\rm DM} is the equilibrium number density of dark matter. As a result, the dark matter relic density is determined average to be

ΩDMh2\displaystyle\Omega_{\rm DM}h^{2} =\displaystyle= 1.05×1010GeV2g3/4(6MPmπ3/αeff3)1/2xf3\displaystyle\frac{1.05\times 10^{-10}\,{\rm GeV}^{-2}}{g^{3/4}_{*}(6M_{P}m^{3}_{\pi}/\alpha^{3}_{\rm eff})^{-1/2}x^{-3}_{f}} (18)
=\displaystyle= 0.12(10.75g)3/4(xf15)3(mπ300MeV)3/2(46αeff)3/2.\displaystyle 0.12\bigg{(}\frac{10.75}{g_{*}}\bigg{)}^{3/4}\bigg{(}\frac{x_{f}}{15}\bigg{)}^{3}\Big{(}\frac{m_{\pi}}{300\,{\rm MeV}}\Big{)}^{3/2}\Big{(}\frac{46}{\alpha_{\rm eff}}\Big{)}^{3/2}.

Here, the effective self-coupling is given by

αeff=1Nπ(55Nc2t22π5)1/3(mπfπ)10/3=46(Nc3)2/3(mπ/fπ4.2)10/3\displaystyle\alpha_{\rm eff}=\frac{1}{N_{\pi}}\bigg{(}\frac{5\sqrt{5}N^{2}_{c}t^{2}}{2\pi^{5}}\bigg{)}^{1/3}\bigg{(}\frac{m_{\pi}}{f_{\pi}}\bigg{)}^{10/3}=46\Big{(}\frac{N_{c}}{3}\Big{)}^{2/3}\bigg{(}\frac{m_{\pi}/f_{\pi}}{4.2}\bigg{)}^{10/3} (19)

where we took Nπ=8N_{\pi}=8 and Nf=3N_{f}=3 in the second equality. For a large NfN_{f}, we have Nc2t2/Nπ34Nc2/(3Nf)N^{2}_{c}t^{2}/N^{3}_{\pi}\simeq 4N^{2}_{c}/(3N_{f}), so we need a large number of colors to maintain the effective self-coupling. In order to get the correct relic density from eq. (18), we need to choose mπ/fπm_{\pi}/f_{\pi} to be close to unitarity bound, as follows,

mπfπ4.2(mπ300MeV)3/10(3Nc)1/5.\displaystyle\frac{m_{\pi}}{f_{\pi}}\simeq 4.2\bigg{(}\frac{m_{\pi}}{300\,{\rm MeV}}\bigg{)}^{3/10}\Big{(}\frac{3}{N_{c}}\Big{)}^{1/5}. (20)

On the other hand, in the dark ChPT for dark mesons, the self-scattering cross section for dark mesons is given simpmeson1 , as follows,

σselfmπ=mπa232πNπ2fπ4\displaystyle\frac{\sigma_{\rm self}}{m_{\pi}}=\frac{m_{\pi}a^{2}}{32\pi N^{2}_{\pi}f^{4}_{\pi}} (21)

with a2=8(Nf21)(3Nf42Nf2+6)/Nf2a^{2}=8(N^{2}_{f}-1)(3N^{4}_{f}-2N^{2}_{f}+6)/N^{2}_{f} for the SU(Nf)SU(N_{f}) flavor symmetry. For Nf=3N_{f}=3, we get a2/Nπ2=773a^{2}/N^{2}_{\pi}=\frac{77}{3} and it becomes saturated to 2424 for a large NfN_{f}. Then, due to the bound from Bullet cluster smallscale2 , σself/mπ1cm2/g\sigma_{\rm self}/m_{\pi}\lesssim 1\,{\rm cm^{2}/g}, we can set the bound on the dark matter self-coupling for Nf=3N_{f}=3, as follows,

αeff64(mπ300MeV)5/2(Nc3)2/3.\displaystyle\alpha_{\rm eff}\lesssim 64\bigg{(}\frac{m_{\pi}}{300\,{\rm MeV}}\bigg{)}^{5/2}\Big{(}\frac{N_{c}}{3}\Big{)}^{2/3}. (22)

Therefore, from eqs. (18) and (22), we can satisfy the relic density condition and the Bullet cluster bound for mπ300MeVm_{\pi}\sim 300\,{\rm MeV} and αeff46\alpha_{\rm eff}\sim 46 (or mπ/fπ4.2m_{\pi}/f_{\pi}\sim 4.2).

4 ZZ^{\prime} portal and kinetic equilibrium

For communication between dark matter and the SM, we consider the partial gauging of the flavor symmetry with a dark local U(1)U(1)^{\prime}. The corresponding gauge boson ZZ^{\prime} with mass mZm_{Z^{\prime}} has a gauge kinetic mixing with the SM hypercharge as g.m=12sinξFμνBμν{\cal L}_{\rm g.m}=-\frac{1}{2}\sin\xi\,F^{\prime}_{\mu\nu}B^{\mu\nu} with Fμν=μZννZμF^{\prime}_{\mu\nu}=\partial_{\mu}Z^{\prime}_{\nu}-\partial_{\nu}Z^{\prime}_{\mu} simpmeson2 . We take the charge operator QQ^{\prime} for dark quarks under the U(1)U(1)^{\prime} simpmeson2 to be diagonal but non-universal, as follows,

Q=(100010001).\displaystyle Q^{\prime}=\left(\begin{array}[]{ccc}1&0&0\\ 0&-1&0\\ 0&0&-1\end{array}\right). (26)

Then, the AVV anomalies for the dark chiral symmetry are absent because Tr(Q2ta)=0{\rm Tr}(Q^{\prime 2}t^{a})=0 for taSU(3)t^{a}\in SU(3) for Q2=0Q^{\prime 2}=0. Then, neutral SIMP mesons are stable. But, there exist AAAV anomaly terms for πππZ\pi-\pi-\pi-Z^{\prime} interactions simpmeson2 . In comparison, for QCD, we have Q=diag(2/3,1/3,1/3)Q={\rm diag}(2/3,-1/3,-1/3) for electromagnetism, for which neutral mesons in QCD become unstable due to chiral anomalies.

When the mass matrix for dark quarks in eq. (8) is proportional to identity, the dark charge operator in eq. (26) leads to the following ZZ^{\prime} gauge interactions for dark mesons simpmeson2 ,

Z,2π\displaystyle{\cal L}_{Z^{\prime},2\pi} =\displaystyle= 2igZZμ(K+μKKμK++π+μππμπ+)\displaystyle 2ig_{Z^{\prime}}Z^{\prime}_{\mu}\Big{(}K^{+}\partial^{\mu}K^{-}-K^{-}\partial^{\mu}K^{+}+\pi^{+}\partial^{\mu}\pi^{-}-\pi^{-}\partial^{\mu}\pi^{+}\Big{)} (27)
+4gZ2ZμZμ(K+K+π+π)\displaystyle+4g^{2}_{Z^{\prime}}Z^{\prime}_{\mu}Z^{\prime\mu}(K^{+}K^{-}+\pi^{+}\pi^{-})

where gZg_{Z^{\prime}} is the ZZ^{\prime} gauge coupling. Moreover, for a small gauge kinetic mixing, ξ1\xi\ll 1, and mZmZm_{Z^{\prime}}\ll m_{Z}, the ZZ^{\prime} interactions to the SM are given z3dm ; exodm by

Z,SM=eεZμ(JEMμ+mZ22cW2mZ2JZμ)\displaystyle{\cal L}_{Z^{\prime},{\rm SM}}=-e\varepsilon Z^{\prime}_{\mu}\bigg{(}J^{\mu}_{\rm EM}+\frac{m^{2}_{Z^{\prime}}}{2c^{2}_{W}m^{2}_{Z}}\,J^{\mu}_{Z}\bigg{)} (28)

where εcWξ\varepsilon\equiv c_{W}\xi with cW=cosθWc_{W}=\cos\theta_{W}, and JEMμ,JZμJ^{\mu}_{\rm EM},J^{\mu}_{Z} are electromagnetic and neutral currents in the SM, for instance, JEMμ=e¯γμeJ^{\mu}_{\rm EM}={\bar{e}}\gamma^{\mu}e for electron and JZμ=ν¯γμPLνJ^{\mu}_{Z}={\bar{\nu}}\gamma^{\mu}P_{L}\nu for neutrinos.

The ZZ^{\prime} portal interaction is crucial to maintain dark matter in kinetic equilibrium with the SM plasma during freeze-out z3dm ; simpmeson2 ; vsimp ; exodm ; vsimp2 . Otherwise, the dark matter temperature could differ from the radiation temperature, getting unsuppressed due to continuous 323\to 2 annihilations until late times and preventing the dark matter from making the structure formation 3to2 .

The time evolution of the kinetic energy KK for dark mesons with 323\to 2 annihilation processes vsimp is dictated by

K˙+2HK=mπ2HT1+Tγπ(T)\displaystyle{\dot{K}}+2HK=-m^{2}_{\pi}HT^{-1}+T\gamma_{\pi}(T) (29)

where γπ(T)\gamma_{\pi}(T) is the momentum relaxation rate for dark mesons. Then, in the case with 323\to 2 dominance for dark matter annihilation, the kinetic equilibrium is achieved for γπ(T)>H(mπ/T)2\gamma_{\pi}(T)>H(m_{\pi}/T)^{2}.

In the presence of ZZ^{\prime} portal couplings in eq, (27), the charged dark mesons scatter off the SM particles in the thermal plasma by K±eK±e{K}^{\pm}e\rightarrow{K}^{\pm}e and π±eπ±e{\pi}^{\pm}e\rightarrow{\pi}^{\pm}e. Then, the corresponding momentum relaxation rate for the dark mesons, K±{K}^{\pm} and π±\pi^{\pm} simpmeson2 , are given by

γK±=γπ±=320ζ(7)π3ε2e2gZ2mπmZ4T6.\displaystyle\gamma_{{K}^{\pm}}=\gamma_{{\pi}^{\pm}}=\frac{320\zeta(7)}{\pi^{3}}\frac{\varepsilon^{2}e^{2}g^{2}_{Z^{\prime}}}{m_{\pi}m^{4}_{Z^{\prime}}}\,T^{6}. (30)

Therefore, as far as γK±=γπ±>H(mπ/T)2\gamma_{{K}^{\pm}}=\gamma_{{\pi}^{\pm}}>H(m_{\pi}/T)^{2}, the dark mesons, K±{K}^{\pm} and π±\pi^{\pm}, remain in kinetic equilibrium with the SM, and so do the rest neutral dark mesons due to their strong self-interactions with the charged mesons. From H=0.33g1/2T2/MPH=0.33g^{1/2}_{*}T^{2}/M_{P} at T=15/mπT=15/m_{\pi}, the condition for kinetic equilibrium at freeze-out with eq. (30) becomes

|ε|gZ1.4×104(mZ1GeV)2(xf15)3(300MeVmπ)3/2.\displaystyle|\varepsilon|g_{Z^{\prime}}\gtrsim 1.4\times 10^{-4}\Big{(}\frac{m_{Z^{\prime}}}{1\,{\rm GeV}}\Big{)}^{2}\Big{(}\frac{x_{f}}{15}\Big{)}^{3}\bigg{(}\frac{300\,{\rm MeV}}{m_{\pi}}\bigg{)}^{3/2}. (31)

We remark several issues with the introduction of the flavor-dependent U(1)U(1)^{\prime}. First, the charge operator in eq. (26) breaks the SU(3)VSU(3)_{V} flavor symmetry to an SU(2)VSU(2)_{V} subgroup, so higher dimensional operators violating the flavor symmetry for dark mesons, such as fπΛ2μπa(l¯γμl)\frac{f_{\pi}}{\Lambda^{2}}\partial_{\mu}\pi^{a}({\bar{l}}\gamma^{\mu}l) or fπ2Λ3πaFμνF~μν\frac{f^{2}_{\pi}}{\Lambda^{3}}\,\pi^{a}F_{\mu\nu}{\tilde{F}}^{\mu\nu} must be sufficiently suppressed for the stability of neutral dark mesons simpmeson2 .

Moreover, dark mesons receive mass corrections due to ZZ^{\prime} gauge interactions, so masses for charged and uncharged dark mesons get split as Δmπ2=cgZ2fπ2\Delta m^{2}_{\pi}=c\,g^{2}_{Z^{\prime}}f^{2}_{\pi} where c116π2μ2mZ2c\sim\frac{1}{16\pi^{2}}\frac{\mu^{2}}{m^{2}_{Z^{\prime}}}. Nonetheless, the charged dark mesons can be stable dark matter as far as they are the lightest particles charged under the U(1)U(1)^{\prime}, and their relic densities can be still determined dominantly by the 323\to 2 processes as described for the exact dark flavor symmetry, as far as the mass splitting is small enough for the 222\to 2 annihilation processes with dark mesons only to remain decoupled at low temperatures comparable to the mass splitting.

Furthermore, due to the gauging of the WZW term with U(1)U(1)^{\prime}, there are extra couplings between dark mesons and ZZ^{\prime}, leading to additional annihilation channels, πππZ\pi\pi\rightarrow\pi Z^{\prime} and ππZZ\pi\pi\to Z^{\prime}Z^{\prime} simpmeson2 . Then, we need to choose mZ>mπm_{Z^{\prime}}>m_{\pi} in order to forbid such 222\to 2 channels during the freeze-out. But, we also note that if the ZZ^{\prime} mass is close to dark meson masses, the forbidden 222\to 2 channels can be important for determining the relic density semi .

We refer to Ref. zportal for the detailed meson phenomenology with ZZ^{\prime} portal and to Refs. semi ; split ; split2 for the recent developments of cosmology and phenomenology on split dark mesons. There are alternative ways to maintain the kinetic equilibrium of dark mesons by axion-like couplings axion .

5 Perturbativity and vector resonances

As we discussed in Section 3, the correct relic density is achieved when the dark chiral perturbation theory with dark mesons is close to the unitarity bound, namely, we need a large value of mπ/fπm_{\pi}/f_{\pi}. In this section, we include the dark vector mesons in the scheme of hidden local symmetry and discuss their impacts on unitarizing the dark matter self-coupling, being compatible with the Bullet cluster bound.

Including hidden local symmetry Hlocal=SU(3)VH_{\rm local}=SU(3)_{V} in addition to the global symmetry G=SU(3)L×SU(3)RG=SU(3)_{L}\times SU(3)_{R}, vector mesons can be expressed in the following matrix form simpmeson3 ,

Vμ(x)=12(12ρμ0+16ω8μρμ+Kμ+ρμ12ρμ0+16ω8μKμ0KμKμ0¯26ω8μ.)V_{\mu}(x)=\frac{1}{\sqrt{2}}~{}\begin{pmatrix}\frac{1}{\sqrt{2}}\rho_{\mu}^{0}+\frac{1}{\sqrt{6}}\omega_{8\mu}&\rho_{\mu}^{+}&K_{\mu}^{*+}\\ \rho_{\mu}^{-}&-\frac{1}{\sqrt{2}}\rho_{\mu}^{0}+\frac{1}{\sqrt{6}}\omega_{8\mu}&K_{\mu}^{*0}\\ K_{\mu}^{*-}&\overline{K_{\mu}^{*0}}&-\frac{2}{\sqrt{6}}\omega_{8\mu}.\end{pmatrix} (32)

Here, we note that ω0\omega_{0} vector meson can be also included when the global symmetry is extended to U(3)L×U(3)RU(3)_{L}\times U(3)_{R}, which is broken down to U(3)VU(3)_{V}. The masses and couplings of vector mesons to dark mesons are given by

ΔV=mV2TrVμVμ2igVππTr(Vμ[μπ,π])a4fπ2Tr([π,μπ]2)\displaystyle\Delta{\cal L}_{V}=m_{V}^{2}{\rm Tr}V_{\mu}V^{\mu}-2ig_{V\pi\pi}{\rm Tr}\left(V_{\mu}[\partial^{\mu}\pi,\pi]\right)-\frac{a}{4f^{2}_{\pi}}{\rm Tr}\left([\pi,\partial_{\mu}\pi]^{2}\right) (33)

with

mV2\displaystyle m_{V}^{2} =\displaystyle= ag2fπ2,\displaystyle ag^{2}f_{\pi}^{2}, (34)
gVππ\displaystyle g_{V\pi\pi} =\displaystyle= 12ag.\displaystyle\frac{1}{2}ag. (35)

Due to the full flavor symmetry, H=SU(3)VH=SU(3)_{V}, vector mesons have common masses and universal interactions to dark mesons. In the ordinary hadron system a2a\simeq 2, but aa can be considered as a free parameter in the dark ChPT. Then, we can take mVm_{V} and mπm_{\pi} to be independent by suitably varying the dark quark masses.

For vector mesons, the WZW term can be generalized due to gauge invariance under the hidden local symmetry, as follows,

Γanom=d4x[WZW15C(c11+c22+c33)]\Gamma^{anom}=\int d^{4}x\left[\mathcal{L}_{WZW}-15C(c_{1}{\cal L}_{1}+c_{2}{\cal L}_{2}+c_{3}{\cal L}_{3})\right] (36)

where CiNc240π2C\equiv-i\frac{N_{c}}{240\pi^{2}}, and the gauged WZW terms, 1,2,3{\cal L}_{1,2,3}, contain the interactions between vector mesons and pions, up to 𝒪(g/fπ3)\mathcal{O}(g/f_{\pi}^{3}), as follows,

1\displaystyle{\cal L}_{1} =\displaystyle= 4gfπ3ϵμνρσTr[Vμνπρπσπ]=2,\displaystyle-\frac{4g}{f_{\pi}^{3}}\epsilon^{\mu\nu\rho\sigma}~{}{\rm Tr}[V_{\mu}\partial_{\nu}\pi\partial_{\rho}\pi\partial_{\sigma}\pi]=-{\cal L}_{2}, (37)
3\displaystyle{\cal L}_{3} =\displaystyle= 2igfπϵμνρσTr[(μVν)(VρσπρπVσ)]\displaystyle-\frac{2ig}{f_{\pi}}\epsilon^{\mu\nu\rho\sigma}\,{\rm Tr}[(\partial_{\mu}V_{\nu})(V_{\rho}\partial_{\sigma}\pi-\partial_{\rho}\pi\,V_{\sigma})] (38)
4g2fπϵμνρσTr[VμVνVρσπ].\displaystyle-\frac{4g^{2}}{f_{\pi}}\epsilon^{\mu\nu\rho\sigma}\,{\rm Tr}[V_{\mu}V_{\nu}V_{\rho}\partial_{\sigma}\pi].

Then, the above new vector meson terms induce additional 323\rightarrow 2 processes between the dark mesons. and contribute to the 222\rightarrow 2 self-scattering for dark mesons. In particular, the 323\rightarrow 2 annihilation cross section can be enhanced near the resonance resonance ; average ; simpmeson3 for mV3mπm_{V}\sim 3m_{\pi} or mV2mπm_{V}\sim 2m_{\pi}, so the unitarity violation in the dark chiral perturbation can be delayed until higher energies.

We take the effective 323\rightarrow 2 cross section before thermal average average ; simpmeson3 to be

(σv2)=κbVγV(ϵVu2)2+γV2(\sigma v^{2})=\frac{\kappa b_{V}\gamma_{V}}{(\epsilon_{V}-u^{2})^{2}+\gamma^{2}_{V}} (39)

where bV=14(v12+v22+v32)212(v14+v24+v34)b_{V}=\frac{1}{4}(v_{1}^{2}+v_{2}^{2}+v_{3}^{2})^{2}-\frac{1}{2}(v_{1}^{4}+v_{2}^{4}+v_{3}^{4}), κ\kappa is the velocity-independent coefficient depending on mπ/fπm_{\pi}/f_{\pi} as well as aa and the anomaly coefficients, c1,c2,c3c_{1},c_{2},c_{3}, and

(ϵV,γV)={(mV24mπ24mπ2,mVΓV4mπ2),mV3mπ,(mV29mπ29mπ2,mVΓV9mπ2),mV2mπ,\displaystyle(\epsilon_{V},\gamma_{V})=\left\{\begin{array}[]{c}(\frac{m_{V}^{2}-4m_{\pi}^{2}}{4m_{\pi}^{2}},\frac{m_{V}\Gamma_{V}}{4m^{2}_{\pi}}),\,\,\,\quad\quad m_{V}\approx 3m_{\pi},\\ (\frac{m_{V}^{2}-9m_{\pi}^{2}}{9m_{\pi}^{2}},\frac{m_{V}\Gamma_{V}}{9m^{2}_{\pi}}),\,\,\,\,\,\,m_{V}\approx 2m_{\pi},\end{array}\right. (42)

and u2=12(v12+v22)14v32u^{2}=\frac{1}{2}(v^{2}_{1}+v^{2}_{2})-\frac{1}{4}v^{2}_{3} for two-pion resonances and u2=13(v12+v22+v32)u^{2}=\frac{1}{3}(v^{2}_{1}+v^{2}_{2}+v^{2}_{3}) for three-pion resonances. Here, v1,2,3v_{1,2,3} are the speeds of initial dark pions given in the center of mass frame for the 323\rightarrow 2 processes. Then, choosing the vector meson masses near the resonances and making the thermal average under the narrow width approximation with ΓV/mV1\Gamma_{V}/m_{V}\ll 1 where ΓV\Gamma_{V} is the width of vector mesons, we obtain the thermal averaged 323\rightarrow 2 annihilation cross section average ; simpmeson3 as

σv2R{81π128κϵV4x3e32ϵVx,mV3mπ,83πκϵV3/2x1/2eϵVx,mV2mπ,.\langle\sigma v^{2}\rangle_{R}\approx\left\{\begin{array}[]{c}\frac{81\pi}{128}\,\kappa\epsilon^{4}_{V}x^{3}e^{-\frac{3}{2}\epsilon_{V}x},\,\,\,\quad\quad m_{V}\approx 3m_{\pi},\\ \frac{8}{3}\sqrt{\pi}\,\kappa\epsilon^{3/2}_{V}x^{1/2}\,e^{-\epsilon_{V}x},\,\,\,\,\,\,m_{V}\approx 2m_{\pi},\end{array}\right.. (43)

As a result, the 323\to 2 annihilation cross section can be enhanced at resonances of vector mesons, resolving the perturbativity problem of SIMP scenarios with dark mesons only. On the other hand, the 222\to 2 self-scattering cross section is not enhanced at mV2mπm_{V}\sim 2m_{\pi} because of the overall velocity suppression for the corresponding resonance channel. Thus, we can keep the self-scattering cross section below the Bullet cluster bound, satisfying the correct relic density within the region of perturbativity.

6 Conclusions

We have presented the overview on dark mesons in a hidden QCD with dark flavor symmetries and focused on the interesting new candidates for dark matter with large self-interactions. The WZW 5-point interactions for dark mesons violate the Z2Z_{2} parity, so they lead to meson-number changing 323\to 2 processes for dark mesons as in QCD. However, the dark mesons are indistinguishable and stable, thanks to the unbroken dark flavor symmetry, so they are good candidates for self-interacting dark matter.

We also sketched the roles of the dark local U(1)U(1)^{\prime} for maintaining the kinetic equilibrium for dark matter and avoiding the problem of structure formation at late times that would exist for a completely decoupled dark matter. The dark flavor symmetry is partially broken due to the dark U(1)U(1)^{\prime}, but the 323\to 2 processes remain the dominant processes for determining the relic density as far as the mass splitting between mesons are small enough.

Finally, it was stressed that the excited states in the dark ChPT such as vector mesons can make the 323\to 2 annihilation cross section enhanced near the new resonances and extend the parameter space for satisfying the unitarity beyond the dark ChPT.

Acknowledgments

The work is supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2019R1A2C2003738 and NRF-2018R1A4A1025334).

References

  • (1) D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett.  84, 3760 (2000) [astro-ph/9909386]; W. J. G. de Blok, Adv. Astron.  2010, 789293 (2010) [arXiv:0910.3538 [astro-ph.CO]]; M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat, Mon. Not. Roy. Astron. Soc.  415, L40 (2011) [arXiv:1103.0007 [astro-ph.CO]]; D. H. Weinberg, J. S. Bullock, F. Governato, R. K. de Naray and A. H. G. Peter, arXiv:1306.0913 [astro-ph.CO]; M. Rocha, A. H. G. Peter, J. S. Bullock, M. Kaplinghat, S. Garrison-Kimmel, J. Onorbe and L. A. Moustakas, Mon. Not. Roy. Astron. Soc.  430, 81 (2013) [arXiv:1208.3025 [astro-ph.CO]].
  • (2) S. Tulin and H. B. Yu, Phys. Rept.  730 (2018) 1 doi:10.1016/j.physrep.2017.11.004 [arXiv:1705.02358 [hep-ph]].
  • (3) J. L. Feng, M. Kaplinghat and H. B. Yu, Phys. Rev. Lett. 104 (2010), 151301 doi:10.1103/PhysRevLett.104.151301 [arXiv:0911.0422 [hep-ph]]; M. R. Buckley and P. J. Fox, Phys. Rev. D 81 (2010), 083522 doi:10.1103/PhysRevD.81.083522 [arXiv:0911.3898 [hep-ph]]; S. Tulin, H. B. Yu and K. M. Zurek, Phys. Rev. Lett. 110 (2013) no.11, 111301 doi:10.1103/PhysRevLett.110.111301 [arXiv:1210.0900 [hep-ph]]; S. Tulin, H. B. Yu and K. M. Zurek, Phys. Rev. D 87 (2013) no.11, 115007 doi:10.1103/PhysRevD.87.115007 [arXiv:1302.3898 [hep-ph]].
  • (4) F. Governato, A. Zolotov, A. Pontzen, C. Christensen, S. H. Oh, A. M. Brooks, T. Quinn, S. Shen and J. Wadsley, Mon. Not. Roy. Astron. Soc. 422 (2012), 1231-1240 doi:10.1111/j.1365-2966.2012.20696.x [arXiv:1202.0554 [astro-ph.CO]]; A. M. Brooks and A. Zolotov, Astrophys. J. 786 (2014), 87 doi:10.1088/0004-637X/786/2/87 [arXiv:1207.2468 [astro-ph.CO]].
  • (5) K. A. Oman, J. F. Navarro, A. Fattahi, C. S. Frenk, T. Sawala, S. D. M. White, R. Bower, R. A. Crain, M. Furlong and M. Schaller, et al. Mon. Not. Roy. Astron. Soc. 452 (2015) no.4, 3650-3665 doi:10.1093/mnras/stv1504 [arXiv:1504.01437 [astro-ph.GA]];
  • (6) A. Kamada, M. Kaplinghat, A. B. Pace and H. B. Yu, Phys. Rev. Lett. 119 (2017) no.11, 111102 doi:10.1103/PhysRevLett.119.111102 [arXiv:1611.02716 [astro-ph.GA]].
  • (7) E. D. Carlson, M. E. Machacek and L. J. Hall, Astrophys. J. 398 (1992), 43-52 doi:10.1086/171833
  • (8) Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J. G. Wacker, Phys. Rev. Lett. 115 (2015) no.2, 021301 doi:10.1103/PhysRevLett.115.021301 [arXiv:1411.3727 [hep-ph]].
  • (9) H. M. Lee and M. S. Seo, Phys. Lett. B 748 (2015), 316-322 doi:10.1016/j.physletb.2015.07.013 [arXiv:1504.00745 [hep-ph]].
  • (10) S. M. Choi, H. M. Lee, P. Ko and A. Natale, Phys. Rev. D 98 (2018) no.1, 015034 doi:10.1103/PhysRevD.98.015034 [arXiv:1801.07726 [hep-ph]].
  • (11) S. M. Choi, Y. Hochberg, E. Kuflik, H. M. Lee, Y. Mambrini, H. Murayama and M. Pierre, JHEP 10 (2017), 162 doi:10.1007/JHEP10(2017)162 [arXiv:1707.01434 [hep-ph]].
  • (12) S. M. Choi, H. M. Lee, Y. Mambrini and M. Pierre, JHEP 07 (2019), 049 doi:10.1007/JHEP07(2019)049 [arXiv:1904.04109 [hep-ph]].
  • (13) J. Wess and B. Zumino, Phys. Lett. B 37 (1971), 95-97 doi:10.1016/0370-2693(71)90582-X
  • (14) E. Witten, Nucl. Phys. B 223 (1983), 422-432 doi:10.1016/0550-3213(83)90063-9
  • (15) S. M. Choi, H. M. Lee and M. S. Seo, JHEP 04 (2017), 154 doi:10.1007/JHEP04(2017)154 [arXiv:1702.07860 [hep-ph]].
  • (16) S. M. Choi and H. M. Lee, JHEP 09 (2015), 063 doi:10.1007/JHEP09(2015)063 [arXiv:1505.00960 [hep-ph]].
  • (17) H. M. Lee, [arXiv:2006.13183 [hep-ph]].
  • (18) A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Phys. Rev. D 97 (2018) no.5, 055033 doi:10.1103/PhysRevD.97.055033 [arXiv:1801.05805 [hep-ph]].
  • (19) Y. Hochberg, E. Kuflik and H. Murayama, JHEP 05 (2016), 090 doi:10.1007/JHEP05(2016)090 [arXiv:1512.07917 [hep-ph]].
  • (20) A. Katz, E. Salvioni and B. Shakya, [arXiv:2006.15148 [hep-ph]].
  • (21) S. M. Choi, H. M. Lee and B. Zhu, [arXiv:2012.03713 [hep-ph]].
  • (22) A. Kamada, H. Kim and T. Sekiguchi, Phys. Rev. D 96 (2017) no.1, 016007 doi:10.1103/PhysRevD.96.016007 [arXiv:1704.04505 [hep-ph]]; Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Phys. Rev. D 98 (2018) no.11, 115031 doi:10.1103/PhysRevD.98.115031 [arXiv:1806.10139 [hep-ph]].
  • (23) S. M. Choi and H. M. Lee, Phys. Lett. B 758 (2016), 47-53 doi:10.1016/j.physletb.2016.04.055 [arXiv:1601.03566 [hep-ph]].