This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Darboux coordinates on the BFM spaces111MSC2010: 14N15,17B37,20G44,81R10

Syu Kato222Department of Mathematics, Kyoto University, Oiwake Kita-Shirakawa Sakyo Kyoto 606-8502 JAPAN E-mail:[email protected]
Abstract

Bezrukavnikov-Finkelberg-Mirković [Compos. Math. 141 (2005)] identified the equivariant KK-group of an affine Grassmannian, that we refer as (the coordinate ring of) a BFM space á là Teleman [Proc. ICM Seoul (2014)], with a version of Toda lattice. We give a new system of generators and relations of a certain localization of this space, that can be seen as a version of its Darboux coordinate. This establishes a conjecture in Finkelberg-Tymbaliuk [Progress in Math. 300 (2019)] that relates the BFM space of a connected reductive algebraic group with those of Levi subgroups.

Introduction

Let GG be a connected reductive algebraic group over {\mathbb{C}}. Let BB be a Borel subgroup of GG and let HBH\subset B be its maximal torus. Let GrG\mathrm{Gr}_{G} denote the (thin) affine Grassmannian of GG. The GG-equivariant KK-group KG(GrG)K_{G}(\mathrm{Gr}_{G}) of GrG\mathrm{Gr}_{G} admits the structure of an algebra, and it is identified with the phase space of the relativistic Toda lattice in [4]. In particular, the space KG(GrG)K_{G}(\mathrm{Gr}_{G}) carries a Poisson bracket. Braverman-Finkelberg-Nakajima [42, 9, 10] constructed a commutative algebra 𝒜(G,V)\mathscr{A}(G,V) for each representation VV of GG, whose spectrum is supposed to be a part of the space of vacua in the corresponding three-dimensional gauge theory. The space GrG\mathrm{Gr}_{G} played an essential rôle there, and we have a Poisson algebra embedding

𝒜(G,V)𝒜(G,{0})=KG(GrG).\mathscr{A}(G,V)\hookrightarrow\mathscr{A}(G,\{0\})=K_{G}(\mathrm{Gr}_{G}). (0.1)

In addition, Teleman [45] gives a recipe to understand 𝒜(G,V)\mathscr{A}(G,V) from KG(GrG)K_{G}(\mathrm{Gr}_{G}).

Associated to GG, we have its flag manifold \mathscr{B}. In [26, 25], we have constructed a ring morphism connecting KG(GrG)K_{G}(\mathrm{Gr}_{G}) with the equivariant quantum KK-group qKG()qK_{G}(\mathscr{B}) of \mathscr{B} ([19, 36]):

KG(GrG)locqKG()loc,K_{G}(\mathrm{Gr}_{G})_{\mathrm{loc}}\cong qK_{G}(\mathscr{B})_{\mathrm{loc}}, (0.2)

where the subscripts ``loc"``\mathrm{loc}" denote certain localizations, whose meaning differs in the both sides. This result, commonly referred to as the KK-theoretic Peterson isomorphism ([34]), also exhibits an aspect of the rich structures of KG(GrG)K_{G}(\mathrm{Gr}_{G}).

Finkelberg-Tymbaliuk [17] extensively studied KGL(n)(GrGL(n))K_{\mathop{GL}(n)}(\mathrm{Gr}_{\mathop{GL}(n)}) and deduced an algebra morphism

KGL(n)(GrGL(n))KL(GrL)K_{\mathop{GL}(n)}(\mathrm{Gr}_{\mathop{GL}(n)})\longrightarrow K_{L}(\mathrm{Gr}_{L}) (0.3)

for a connected (standard) Levi subgroup LGL(n)L\subset\mathop{GL}(n). As this homomorphism is an incarnation of the coproduct structure of their shifted affine quantum groups (and also as they have similar homomorphisms for homologies [15]), they led to conjecture that (0.3) exists for every connected reductive GG and also with the extra 𝔾m\mathbb{G}_{m}-action given by the loop rotation action.

The goal of this paper is to answer this conjecture affirmatively as:

Theorem A (\doteq Theorem 5.1 + Corollary 5.2).

For each connected reductive subgroup HLGH\subset L\subset G, we have a chain of injective algebra homomorphisms:

KG×𝔾m(GrG)KL×𝔾m(GrL)KH×𝔾m(GrH).K_{G\times\mathbb{G}_{m}}(\mathrm{Gr}_{G})\hookrightarrow K_{L\times\mathbb{G}_{m}}(\mathrm{Gr}_{L})\hookrightarrow K_{H\times\mathbb{G}_{m}}(\mathrm{Gr}_{H}).

Since the main portion of Theorem A is the case of simple and simply connected GG, we concentrate into this case in the rest of this introduction.

Here KH×𝔾m(GrH)K_{H\times\mathbb{G}_{m}}(\mathrm{Gr}_{H}) is the (quantized) Heisenberg algebra, and hence this embedding can be seen to equip each KL×𝔾m(GrL)K_{L\times\mathbb{G}_{m}}(\mathrm{Gr}_{L}) with its Darboux coordinate system. In addition, Corollary 3.10 supplies its modification that describes a certain localization of the ring KL×𝔾m(GrL)K_{L\times\mathbb{G}_{m}}(\mathrm{Gr}_{L}). This makes KG×𝔾m(GrG)K_{G\times\mathbb{G}_{m}}(\mathrm{Gr}_{G}) into (the quantized phase space of) an integrable system called the relativistic Toda lattice, as described in Bezrukavnikov-Finkelberg-Mirković [4]. In view of the homology version of (0.2) discovered by Peterson [44], it can be understood as the KK-theoretic version of the fundamental presentation of (equivariant) quantum cohomology of flag varieties due to Givental-Kim [22] and Kim [30].

In the course of the proof of Theorem A, we exhibit the non-commutative version of the main result in [26]:

Theorem B (\doteq Corollary 3.3 and Theorem 3.7).

We have a commutative diagram, whose bottom arrow is an isomorphism of non-commutative rings:

KH×𝔾m(𝐐Grat)KH×𝔾m(GrG)locΦqKH×𝔾m()locΨ,\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 31.41133pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 55.41133pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{H\times\mathbb{G}_{m}}(\mathbf{Q}_{G}^{\mathrm{rat}})}$}}}}}}}{\hbox{\kern 157.5289pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-31.41133pt\raise-40.62997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{K_{H\times\mathbb{G}_{m}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 131.24788pt\raise-40.62997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.02051pt\raise-30.12997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 32.37314pt\raise-14.92332pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.11423pt\raise-5.60222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 78.3296pt\raise-40.62997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 131.24788pt\raise-40.62997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{qK_{H\times\mathbb{G}_{m}}(\mathscr{B})_{\mathrm{loc}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 140.07236pt\raise-30.12997pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@hook{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 118.13521pt\raise-14.92332pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\Psi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 92.24408pt\raise-5.60222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces,

where 𝐐Grat\mathbf{Q}_{G}^{\mathrm{rat}} is the semi-infinite flag manifold of GG ([25])(\cite[cite]{[\@@bibref{}{Kat18d}{}{}]}). Moreover, all of these morphisms respect Schubert bases.

Our strategy to prove Theorem A is as follows: We first refine some of the algebraic arguments in [26] to prove Theorem B. Then, we transplant the natural operations of KG×𝔾m(𝐐Grat)K_{G\times\mathbb{G}_{m}}(\mathbf{Q}_{G}^{\mathrm{rat}}) and give an algebra generator set of a suitable localization KG×𝔾m(GrG)locK_{G\times\mathbb{G}_{m}}(\mathrm{Gr}_{G})_{\mathrm{loc}} of KG×𝔾m(GrG)K_{G\times\mathbb{G}_{m}}(\mathrm{Gr}_{G}) in term of the Heisenberg action of KH×𝔾m(GrH)K_{H\times\mathbb{G}_{m}}(\mathrm{Gr}_{H}). These boil down the proof of Theorem A into a comparison of integral structures. For this comparison, we prove the (𝔾m\mathbb{G}_{m}-equivariant version of the) following, best expressed in the language of quantum KK-groups.

Let L\mathscr{B}^{L} be the flag variety of LL. Let 𝕏\mathbb{X}^{*} be the weight lattice of HH. Let {ϖi}i𝙸\{\varpi_{i}\}_{i\in\mathtt{I}} be the set of fundamental weights with respect to HBH\subset B. We have line bundles 𝒪(ϖi){\mathcal{O}}_{\mathscr{B}}(-\varpi_{i}) and 𝒪L(ϖi){\mathcal{O}}_{\mathscr{B}^{L}}(-\varpi_{i}) on \mathscr{B} and L\mathscr{B}^{L}, respectively. Let Q+Q^{\vee}_{+} denote the nonnegative span of positive coroots of GG, and let QL,+Q^{\vee}_{L,+} denote the nonnegative span of positive coroots of LL. We have a natural inclusion QL,+Q+Q^{\vee}_{L,+}\subset Q^{\vee}_{+}. Let us employ the definition of quantum KK-groups as:

qKG()=KG()[[Q+]]and qKL(L)=KL(L)[[QL,+]],qK_{G}(\mathscr{B})=K_{G}(\mathscr{B})\otimes{\mathbb{C}}[\![Q^{\vee}_{+}]\!]\hskip 14.22636pt\text{and}\hskip 14.22636ptqK_{L}(\mathscr{B}^{L})=K_{L}(\mathscr{B}^{L})\otimes{\mathbb{C}}[\![Q^{\vee}_{L,+}]\!],

where βQ+\beta\in Q^{\vee}_{+} defines a formal variable Qβ[[Q+]]Q^{\beta}\in{\mathbb{C}}[\![Q^{\vee}_{+}]\!]. These spaces are equipped with the commutative ring structures whose multiplications are denoted by \star. The multiplication \star coincides with the usual multiplications rules of KG()K_{G}(\mathscr{B}) or KL(L)K_{L}(\mathscr{B}^{L}) by setting Qβ=0Q^{\beta}=0 for all β0\beta\neq 0.

Theorem C (\doteq Theorem 4.1).

There exists a surjective morphism of rings

qKG()qKL(L)qK_{G}(\mathscr{B})\longrightarrow\!\!\!\!\!\rightarrow qK_{L}(\mathscr{B}^{L})

obtained by setting Qβ0Q^{\beta}\equiv 0 for βQ+QL,+\beta\in Q^{\vee}_{+}\setminus Q^{\vee}_{L,+}. This morphism sends the quantum multiplication of 𝒪(ϖi){\mathcal{O}}_{\mathscr{B}}(-\varpi_{i}) to the quantum multiplication by 𝒪L(ϖi){\mathcal{O}}_{\mathscr{B}^{L}}(-\varpi_{i}) for each i𝙸i\in\mathtt{I}.

We remark that the classical analogue of Theorem C is an isomorphism, sometimes referred to as the “induction equivalence”. We present a direct proof in the main body of this paper, that yields an interesting representation theoretic consequence (Corollary 4.4), though it holds in much greater generality (Theorem A.1). Theorems C and [27, Theorem A] upgrade the key observations in Leoung-Li [37] to the KK-theoretic settings.

Example D.

Assume that G=SL(n,)G=\mathop{SL}(n,{\mathbb{C}}). Let us choose the fundamental weights ϖ1,,ϖn1\varpi_{1},\ldots,\varpi_{n-1} and simple coroots α1,,αn1\alpha_{1}^{\vee},\ldots,\alpha_{n-1}^{\vee} in accordance with the table in the end of Bourbaki [6]. We understand that ϖn=0\varpi_{n}=0. Let V=nV={\mathbb{C}}^{n} be the dual vector representation of GG. According to Givental-Lee [20], we have

chV=[𝒪(ϖ1)]+i=1n1aϖi([𝒪(ϖi+1)])qKG(),\mathrm{ch}\,V=[{\mathcal{O}}_{\mathscr{B}}(-\varpi_{1})]+\sum_{i=1}^{n-1}a^{\varpi_{i}}([{\mathcal{O}}_{\mathscr{B}}(-\varpi_{i+1})])\in qK_{G}(\mathscr{B}),

where we have aϖi=(1Qαi)([𝒪(ϖi)])1EndqKG()a^{\varpi_{i}}=(1-Q^{\alpha_{i}^{\vee}})([{\mathcal{O}}_{\mathscr{B}}(-\varpi_{i})]\star)^{-1}\in\mathrm{End}\,qK_{G}(\mathscr{B}). Let LGL\subset G be a Levi subgroup. If we specialize Qαi=0Q^{\alpha_{i}^{\vee}}=0 when αiQL,+\alpha_{i}^{\vee}\not\in Q^{\vee}_{L,+}, then the effect of chV\mathrm{ch}\,V restricts to that of qKL(L)qK_{L}(\mathscr{B}^{L}). When αiQL,+\alpha_{i}^{\vee}\not\in Q^{\vee}_{L,+}, the effect aϖia^{\varpi_{i}} becomes a character twist on qKL(L)qK_{L}(\mathscr{B}^{L}).

Here we warn that the definition of quantum KK-groups, as well as the normalizations in Theorem C and Example D are different from the main body of the paper for the sake of simplicity of expositions.

The organization of this paper is as follows: After recalling preliminary stuffs in §1, we provide a certain collection of elements in the equivariant KK-groups of semi-infinite flag manifolds (Theorem 2.15) in §2. These collections are the “reduced version” of line bundles, and the only non-trivial point is that we can divide the classes of line bundles properly. Using these elements, we provide (Proposition 3.8) a new system of generators of KG(GrG)locK_{G}(\mathrm{Gr}_{G})_{\mathrm{loc}} in §3. In order to transplant elements from semi-infinite flag manifolds to affine Grassmannian, we prove Theorem B (Theorem 3.7). In §4, we prove Theorem C (Theorem 4.1), that is an essential tool to compute the “leading terms” of the the maps in Theorem A. Using them, we prove Theorem A in §5. In Appendix A, we present an another proof of Theorem C (Theorem A.1) that applies in much greater generality.

1 Preliminaries

A vector space is always a {\mathbb{C}}-vector space, and a graded vector space refers to a \mathbb{Z}-graded vector space whose graded pieces are finite-dimensional and its grading is bounded from the above. Tensor products are taken over {\mathbb{C}} unless stated otherwise. We define the graded dimension of a graded vector space as

gdimM:=iqidimMi((q1)).\mathrm{gdim}\,M:=\sum_{i\in\mathbb{Z}}q^{i}\dim_{{\mathbb{C}}}M_{i}\in\mathbb{Q}(\!(q^{-1})\!).

We set q:=[q,q1]{\mathbb{C}}_{q}:={\mathbb{C}}[q,q^{-1}]. As a rule, we suppress \emptyset and associated parenthesis from notation. This particularly applies to =𝙹𝙸\emptyset=\mathtt{J}\subset\mathtt{I} frequently used to specify parabolic subgroups.

1.1 Groups, root systems, and Weyl groups

Basically, material presented in this subsection can be found in [13, 33].

Let GG be a connected, reductive algebraic group over {\mathbb{C}} such that [G,G][G,G] is a simply connected group of rank rr and we have a complementary torus HH^{\prime} such that G[G,G]×HG\cong[G,G]\times H^{\prime}. Let BB and HH be a Borel subgroup and a maximal torus of GG such that HBH\subset B. We set NN (=[B,B])(=[B,B]) to be the unipotent radical of BB. We denote the Lie algebra of an algebraic group by the corresponding German small letter. We have a (finite) Weyl group W:=NG(H)/HW:=N_{G}(H)/H. For an algebraic group EE, we denote its set of [z]{\mathbb{C}}[z]-valued points by E[z]E[z], its set of [[z]]{\mathbb{C}}[\![z]\!]-valued points by E[[z]]E[\![z]\!], and its set of (z){\mathbb{C}}(z)-valued points by E(z)E(z). Let 𝐈G[[z]]\mathbf{I}\subset G[\![z]\!] be the preimage of BGB\subset G via the evaluation at z=0z=0 (the Iwahori subgroup of G[[z]]G[\![z]\!]).

Let 𝕏:=Homgr(H,𝔾m)\mathbb{X}^{*}:=\mathrm{Hom}_{gr}(H,\mathbb{G}_{m}) be the weight lattice of HH, and let 𝕏(G)\mathbb{X}^{*}(G) denote the subgroup of 𝕏\mathbb{X}^{*} whose elements define characters of GG. We set 𝕏\mathbb{X}_{*} and 𝕏(G)\mathbb{X}_{*}(G) as the dual lattices of 𝕏\mathbb{X}^{*} and 𝕏(G)\mathbb{X}^{*}(G), respectively. We denote the natural pairings of lattices by ,\left<\bullet,\bullet\right>.

Let Δ𝕏\Delta\subset\mathbb{X}^{*} be the set of roots, let Δ+Δ\Delta_{+}\subset\Delta be the set of roots that yield root subspaces in 𝔟\mathfrak{b}, and let ΠΔ+\Pi\subset\Delta_{+} be the set of simple roots. We set Δ:=Δ+\Delta_{-}:=-\Delta_{+}. Let Q𝕏Q^{\vee}\subset\mathbb{X}_{*} be the \mathbb{Z}-span of coroots. We define ΠQ\Pi^{\vee}\subset Q^{\vee} to be the set of positive simple coroots, and let Q+QQ_{+}^{\vee}\subset Q^{\vee} be the set of non-negative integer span of Π\Pi^{\vee}. For β,γ𝕏\beta,\gamma\in\mathbb{X}_{*}, we define βγ\beta\geq\gamma if and only if βγQ+\beta-\gamma\in Q^{\vee}_{+}. Let 𝙸:={1,2,,r}\mathtt{I}:=\{1,2,\ldots,r\}. We fix bijections 𝙸ΠΠ\mathtt{I}\cong\Pi\cong\Pi^{\vee} such that i𝙸i\in\mathtt{I} corresponds to αiΠ\alpha_{i}\in\Pi, its coroot αiΠ\alpha_{i}^{\vee}\in\Pi^{\vee}, and a simple reflection siWs_{i}\in W corresponding to αi\alpha_{i}. We also have a reflection sαWs_{\alpha}\in W corresponding to αΔ+\alpha\in\Delta_{+}. For each 𝙹𝙸\mathtt{J}\subset\mathtt{I}, we set 𝕏+(𝙹):={λ𝕏αi,λ0,i𝙹}\mathbb{X}^{*}_{+}(\mathtt{J}):=\{\lambda\in\mathbb{X}^{*}\mid\left<\alpha^{\vee}_{i},\lambda\right>\geq 0,\hskip 5.69054pt\forall i\in\mathtt{J}\}. Let {ϖi}i𝙸𝕏+\{\varpi_{i}\}_{i\in\mathtt{I}}\subset\mathbb{X}^{*}_{+} be the set of fundamental weights (i.e. αi,ϖj=δi,j\left<\alpha_{i}^{\vee},\varpi_{j}\right>=\delta_{i,j}) and we set ρ:=i𝙸ϖi=12αΔ+α𝕏+\rho:=\sum_{i\in\mathtt{I}}\varpi_{i}=\frac{1}{2}\sum_{\alpha\in\Delta^{+}}\alpha\in\mathbb{X}^{*}_{+}.

For a subset 𝙹𝙸\mathtt{J}\subset\mathtt{I}, we define P𝙹P^{\mathtt{J}} to be the standard parabolic subgroup of GG corresponding to 𝙹\mathtt{J}. I.e. we have 𝔟𝔭𝙹𝔤\mathfrak{b}\subset\mathfrak{p}^{\mathtt{J}}\subset\mathfrak{g} and 𝔭𝙹\mathfrak{p}^{\mathtt{J}} contains the root subspace corresponding to αi-\alpha_{i} (i𝙸i\in\mathtt{I}) if and only if i𝙹i\in\mathtt{J}. Then, the set of characters of P𝙹P^{\mathtt{J}} is identified with 𝕏0(𝙹):=𝕏(G)Λ(𝙸𝙹)\mathbb{X}^{*}_{0}(\mathtt{J}):=\mathbb{X}^{*}(G)\oplus\Lambda^{(\mathtt{I}\setminus\mathtt{J})}, where we set Λ𝙹:=i𝙹ϖi\Lambda^{\mathtt{J}}:=\sum_{i\in\mathtt{J}}\mathbb{Z}\varpi_{i}. We also set

Λ++𝙹:=j𝙹>0ϖjΛ+𝙹:=j𝙹0ϖj𝕏,Q𝙹,+:=j𝙹0αjQ𝙹:=j𝙹αj.\Lambda^{\mathtt{J}}_{++}:=\sum_{j\in\mathtt{J}}\mathbb{Z}_{>0}\varpi_{j}\subset\Lambda^{\mathtt{J}}_{+}:=\sum_{j\in\mathtt{J}}\mathbb{Z}_{\geq 0}\varpi_{j}\subset\mathbb{X}^{*},\hskip 8.53581ptQ_{\mathtt{J},+}^{\vee}:=\sum_{j\in\mathtt{J}}\mathbb{Z}_{\geq 0}\alpha_{j}^{\vee}\subset Q_{\mathtt{J}}^{\vee}:=\sum_{j\in\mathtt{J}}\mathbb{Z}\alpha_{j}^{\vee}.

We define W𝙹WW^{\mathtt{J}}\subset W to be the subgroup generated by {si}i𝙹\{s_{i}\}_{i\in\mathtt{J}}. It is the Weyl group of the maximal reductive subgroup L𝙹L^{\mathtt{J}} of P𝙹P^{\mathtt{J}} that contains HH (we refer L𝙹L^{\mathtt{J}} as the standard Levi subgroup of P𝙹P^{\mathtt{J}} in the below).

Let λ𝕏\lambda\in\mathbb{X}^{*}. We consider the subset

Σ(λ):=convex span of {Wλ}𝕏.\Sigma(\lambda):=\text{convex span of }\{W\lambda\}\subset\mathbb{X}^{*}\otimes_{\mathbb{Z}}\mathbb{R}.

We set Σ(λ):=Σ(λ){Wλ}\Sigma_{*}(\lambda):=\Sigma(\lambda)\setminus\{W\lambda\}.

We set 𝐆:=G×𝔾m\mathbf{G}:=G\times\mathbb{G}_{m}, 𝐋𝙹:=L𝙹×𝔾m\mathbf{L}^{\mathtt{J}}:=L^{\mathtt{J}}\times\mathbb{G}_{m}, and 𝐇:=H×𝔾m\mathbf{H}:=H\times\mathbb{G}_{m} for the simplicity of notation.

Let Δaf:=Δ×δ{mδ}m0\Delta_{\mathrm{af}}:=\Delta\times\mathbb{Z}\delta\cup\{m\delta\}_{m\neq 0} be the untwisted affine root system of Δ\Delta with its positive part Δ+Δaf,+\Delta_{+}\subset\Delta_{\mathrm{af},+}. We set α0:=ϑ+δ\alpha_{0}:=-\vartheta+\delta, Πaf:=Π{α0}\Pi_{\mathrm{af}}:=\Pi\cup\{\alpha_{0}\}, and 𝙸af:=𝙸{0}\mathtt{I}_{\mathrm{af}}:=\mathtt{I}\cup\{0\}, where ϑ\vartheta is the highest root of Δ+\Delta_{+}. We set Waf:=WQW_{\mathrm{af}}:=W\ltimes Q^{\vee} and call it the affine Weyl group. It is a reflection group generated by {sii𝙸af}\{s_{i}\mid i\in\mathtt{I}_{\mathrm{af}}\}, where s0s_{0} is the reflection with respect to α0\alpha_{0}. Let :Waf0\ell:W_{\mathrm{af}}\rightarrow\mathbb{Z}_{\geq 0} be the length function and let w0𝙹Ww_{0}^{\mathtt{J}}\in W be the longest element in W𝙹WafW^{\mathtt{J}}\subset W_{\mathrm{af}}. We set W~af:=W𝕏\widetilde{W}_{\mathrm{af}}:=W\ltimes\mathbb{X}_{*} and call it the extended affine Weyl group. We have tβ𝕏W~aft_{\beta}\in\mathbb{X}_{*}\subset\widetilde{W}_{\mathrm{af}} for each β𝕏\beta\in\mathbb{X}_{*} such that tβWaft_{\beta}\in W_{\mathrm{af}} for βQ\beta\in Q^{\vee}, utβu1=tuβut_{\beta}u^{-1}=t_{u\beta} for each uWu\in W, and tϑ:=sϑs0t_{-\vartheta^{\vee}}:=s_{\vartheta}s_{0} (for the coroot ϑ\vartheta^{\vee} of ϑ\vartheta). By setting

(wtγ)=(tγw)=(w)\ell(wt_{\gamma})=\ell(t_{\gamma}w)=\ell(w)

for wWafw\in W_{\mathrm{af}} and γ𝕏(G)\gamma\in\mathbb{X}_{*}(G), we extend the length function to W~af\widetilde{W}_{\mathrm{af}} (that is possible by 𝕏𝕏(G)×Q\mathbb{X}_{*}\cong\mathbb{X}_{*}(G)\times Q^{\vee}).

Let \leq be the Bruhat order of WafW_{\mathrm{af}}. In other words, wvw\leq v holds if and only if a subexpression of a reduced decomposition of vv yields a reduced decomposition of ww (see [5]). We define the generic (semi-infinite) Bruhat order 2\leq_{\frac{\infty}{2}} as:

w2vwtβvtβfor every βQ such that β,αi0 for i𝙸.w\leq_{\frac{\infty}{2}}v\Leftrightarrow wt_{\beta}\leq vt_{\beta}\hskip 14.22636pt\text{for every }\beta\in Q^{\vee}\text{ such that }\left<\beta,\alpha_{i}\right>\ll 0\text{ for }i\in\mathtt{I}. (1.1)

By [38], this defines a preorder on WafW_{\mathrm{af}}. Here we remark that wvw\leq v if and only if w2vw\geq_{\frac{\infty}{2}}v for w,vWw,v\in W.

Theorem 1.1 (Peterson [44] Lecture 13).

Let wWafw\in W_{\mathrm{af}} be such that w2ew\leq_{\frac{\infty}{2}}e. We have w=utβw=ut_{\beta} for some uWu\in W and βQ+\beta\in Q^{\vee}_{+}. \Box

For w,vW~afw,v\in\widetilde{W}_{\mathrm{af}}, we write w2vw\geq_{\frac{\infty}{2}}v if and only if there exists γ𝕏(G)\gamma\in\mathbb{X}_{*}(G) such that wtγ,vtγWafwt_{\gamma},vt_{\gamma}\in W_{\mathrm{af}} and wtγ2vtγwt_{\gamma}\geq_{\frac{\infty}{2}}vt_{\gamma}.

Let W~af\widetilde{W}_{\mathrm{af}}^{-} denote the set of minimal length representatives of W~af/W\widetilde{W}_{\mathrm{af}}/W in W~af\widetilde{W}_{\mathrm{af}}. We set

𝕏(𝙹):={β𝕏β,αi<0,i𝙹}\mathbb{X}_{*}^{-}(\mathtt{J}):=\{\beta\in\mathbb{X}_{*}\mid\left<\beta,\alpha_{i}\right><0,\forall i\in\mathtt{J}\}

and

𝕏(𝙹):={β𝕏β,αi0,i𝙹}.\mathbb{X}_{*}^{\leq}(\mathtt{J}):=\{\beta\in\mathbb{X}_{*}\mid\left<\beta,\alpha_{i}\right>\leq 0,\forall i\in\mathtt{J}\}.

We have 𝕏(𝙹)𝕏(𝙹)\mathbb{X}_{*}^{-}(\mathtt{J})\subset\mathbb{X}_{*}^{-}(\mathtt{J}^{\prime}) and 𝕏(𝙹)𝕏(𝙹)\mathbb{X}_{*}^{\leq}(\mathtt{J})\subset\mathbb{X}_{*}^{\leq}(\mathtt{J}^{\prime}) when 𝙹𝙹\mathtt{J}^{\prime}\subset\mathtt{J}.

Theorem 1.2 (see e.g. Macdonald [39]).

For β𝕏\beta\in\mathbb{X}_{*}^{-}, it holds:

  1. 1.

    We have (utβ)=(tβ)(u)\ell(ut_{\beta})=\ell(t_{\beta})-\ell(u) and (tβu)=(tβ)+(u)\ell(t_{\beta}u)=\ell(t_{\beta})+\ell(u) for every uWu\in W;

  2. 2.

    For each uWu\in W and β𝕏\beta^{\prime}\in\mathbb{X}_{*}^{\leq}, we have

    (tuβ)=(utβu1)=(tβ)and (tu(β+β))=(tuβ)+(tuβ)=2β+β,ρ;\hskip-22.76219pt\ell(t_{u\beta})=\ell(ut_{\beta}u^{-1})=\ell(t_{\beta})\hskip 8.53581pt\text{and}\hskip 8.53581pt\ell(t_{u(\beta+\beta^{\prime})})=\ell(t_{u\beta})+\ell(t_{u\beta^{\prime}})=2\left<\beta+\beta^{\prime},\rho\right>;
  3. 3.

    Each wW~afw\in\widetilde{W}_{\mathrm{af}}^{-} is decomposed into w=utγw=ut_{\gamma} for some uWu\in W and γ𝕏\gamma\in\mathbb{X}_{*}^{\leq} such that (w)=(tγ)(u)\ell(w)=\ell(t_{\gamma})-\ell(u).

Proof.

The first assertions follow from [39, (2.4.1)]. The second assertions follow from 1) and [39, (2.4.2)]. The third assertion is a consequence of [39, (2.4.3)]. ∎

For each λ𝕏+(𝙹)\lambda\in\mathbb{X}^{*}_{+}(\mathtt{J}), we denote a finite-dimensional simple P𝙹P^{\mathtt{J}}-module with a non-zero BB-eigenvector 𝐯λ\mathbf{v}_{\lambda} of HH-weight λ\lambda by V𝙹(λ)V^{\mathtt{J}}(\lambda). Let R(G)R(G) be the (complexified) representation ring of GG. We have an identification R(G)=([H])W𝕏R(G)=({\mathbb{C}}[H])^{W}\subset{\mathbb{C}}\mathbb{X}^{*} by taking characters. For a semi-simple HH-module VV, we set

chV:=λ𝕏eλdimHomH(λ,V).\mathrm{ch}\,V:=\sum_{\lambda\in\mathbb{X}^{*}}e^{\lambda}\cdot\dim_{{\mathbb{C}}}\mathrm{Hom}_{H}({\mathbb{C}}_{\lambda},V).

If VV is a \mathbb{Z}-graded HH-module in addition, then we set

gchV:=λ𝕏,nqneλdimHomH(λ,Vn).\mathrm{gch}\,V:=\sum_{\lambda\in\mathbb{X},n\in\mathbb{Z}}q^{n}e^{\lambda}\cdot\dim_{{\mathbb{C}}}\mathrm{Hom}_{H}({\mathbb{C}}_{\lambda},V_{n}).

For a 𝐇\mathbf{H}-equivariant coherent sheaf on a projective 𝐇\mathbf{H}-variety 𝒳\mathcal{X}, let χ(𝒳,)[𝐇]\chi(\mathcal{X},\mathcal{F})\in{\mathbb{C}}[\mathbf{H}] denote its equivariant Euler-Poincaré characteristic. We set 𝕏af:=𝕏δ\mathbb{X}^{*}_{\mathrm{af}}:=\mathbb{X}^{*}\oplus\mathbb{Z}\delta and understand that eδ=q𝕏af=[𝐇]e^{\delta}=q\in{\mathbb{C}}\mathbb{X}^{*}_{\mathrm{af}}={\mathbb{C}}[\mathbf{H}].

For 𝙹𝙹𝙸\mathtt{J}^{\prime}\subset\mathtt{J}\subset\mathtt{I}, we identify W𝙹/W𝙹W^{\mathtt{J}}/W^{\mathtt{J}^{\prime}} with its minimal coset representative in W𝙹W^{\mathtt{J}}. We set 𝙹𝙹:=P𝙹/P𝙹\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}:=P^{\mathtt{J}}/P^{\mathtt{J}^{\prime}} and call it the partial flag manifold of L𝙹L^{\mathtt{J}}. It is equipped with the Bruhat decomposition

𝙹𝙹=wW𝙹/W𝙹𝕆𝙹𝙹(w)\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}=\bigsqcup_{w\in W^{\mathtt{J}}/W^{\mathtt{J}^{\prime}}}\mathbb{O}^{\mathtt{J}}_{\mathtt{J}^{\prime}}(w)

into BB-orbits such that codim𝙹𝙹𝕆𝙹𝙹(w)=(w)\mathrm{codim}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}\mathbb{O}^{\mathtt{J}}_{\mathtt{J}^{\prime}}(w)=\ell(w) for each wW𝙹/W𝙹w\in W^{\mathtt{J}}/W^{\mathtt{J}^{\prime}}. We set 𝙹𝙹(w):=𝕆𝙹𝙹(w)¯𝙹\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}(w):=\overline{\mathbb{O}^{\mathtt{J}}_{\mathtt{J}^{\prime}}(w)}\subset\mathscr{B}^{\mathtt{J}}.

We have a notion of HH-equivariant KK-group KH(𝙹𝙹)K_{H}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}) of 𝙹𝙹\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}} with coefficients in {\mathbb{C}} (see e.g. [32]). Explicitly, we have

KH(𝙹𝙹)=wW𝙹/W𝙹[H][𝒪𝙹𝙹(w)].K_{H}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}})=\bigoplus_{w\in W^{\mathtt{J}}/W^{\mathtt{J}^{\prime}}}{\mathbb{C}}[H]\,[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}(w)}]. (1.2)

For each λw0𝙹𝕏0(𝙹)\lambda\in w_{0}^{\mathtt{J}}\mathbb{X}^{*}_{0}(\mathtt{J}^{\prime}), we have a line bundle 𝒪𝙹𝙹(λ){\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}(\lambda) such that

chH0(𝙹𝙹,𝒪𝙹𝙹(λ))=chV𝙹(λ),𝒪𝙹𝙹(λ)𝒪𝙹𝙹𝒪𝙹𝙹(μ)𝒪𝙹𝙹(λμ)\mathrm{ch}\,H^{0}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}},{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}(\lambda))=\mathrm{ch}\,V^{\mathtt{J}}(\lambda),\hskip 8.53581pt{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}(\lambda)\otimes_{{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}}{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}(-\mu)\cong{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}}}(\lambda-\mu)

holds for λ,μw0𝙹𝕏0(𝙹)𝕏+(𝙹)\lambda,\mu\in w_{0}^{\mathtt{J}}\mathbb{X}^{*}_{0}(\mathtt{J}^{\prime})\cap\mathbb{X}^{*}_{+}(\mathtt{J}).

1.2 The nil-DAHA and its spherical version

Definition 1.3.

The nil-DAHA q\mathscr{H}_{q} or q(G)\mathscr{H}_{q}(G) of type GG is a q{\mathbb{C}}_{q}-algebra generated by {eλ}λ𝕏{Di}i𝙸af{Tγ}γ𝕏(G)\{e^{\lambda}\}_{\lambda\in\mathbb{X}^{*}}\cup\{D_{i}\}_{i\in\mathtt{I}_{\mathrm{af}}}\cup\{T_{\gamma}\}_{\gamma\in\mathbb{X}_{*}(G)} subject to the following relations:

  1. 1.

    eλ+μ=eλeμe^{\lambda+\mu}=e^{\lambda}\cdot e^{\mu} for λ,μ𝕏\lambda,\mu\in\mathbb{X}^{*};

  2. 2.

    Di2=DiD_{i}^{2}=D_{i} for each i𝙸afi\in\mathtt{I}_{\mathrm{af}};

  3. 3.

    For each distinct i,j𝙸afi,j\in\mathtt{I}_{\mathrm{af}}, we set mi,j>0m_{i,j}\in\mathbb{Z}_{>0} as the minimum number such that (sisj)mi,j=1(s_{i}s_{j})^{m_{i,j}}=1. Then, we have

    DiDjmi,j-terms=DjDimi,j-terms;\overbrace{D_{i}D_{j}\cdots}^{m_{i,j}\text{-terms}}=\overbrace{D_{j}D_{i}\cdots}^{m_{i,j}\text{-terms}};
  4. 4.

    For each λ𝕏\lambda\in\mathbb{X}^{*} and i𝙸afi\in\mathtt{I}_{\mathrm{af}}, we have

    DieλesiλDi=eλesiλ1eαi,where eα0=qeϑ;D_{i}e^{\lambda}-e^{s_{i}\lambda}D_{i}=\frac{e^{\lambda}-e^{s_{i}\lambda}}{1-e^{\alpha_{i}}},\hskip 14.22636pt\text{where}\hskip 14.22636pte^{\alpha_{0}}=q\cdot e^{-\vartheta^{\vee}};
  5. 5.

    TγTγ=TγTγT_{\gamma}T_{\gamma^{\prime}}=T_{\gamma^{\prime}}T_{\gamma} for each γ,γ𝕏(G)\gamma,\gamma^{\prime}\in\mathbb{X}_{*}(G);

  6. 6.

    TγDi=DiTγT_{\gamma}D_{i}=D_{i}T_{\gamma} for each i𝙸afi\in\mathtt{I}_{\mathrm{af}} and γ𝕏(G)\gamma\in\mathbb{X}_{*}(G);

  7. 7.

    Tγeλ=qγ,λeλTγT_{\gamma}e^{\lambda}=q^{\left<\gamma,\lambda\right>}e^{\lambda}T_{\gamma} for each λ𝕏\lambda\in\mathbb{X}^{*} and γ𝕏(G)\gamma\in\mathbb{X}_{*}(G).

We also consider the q{\mathbb{C}}_{q}-subalgebras q0,q(𝙹)q\mathscr{H}_{q}^{0},\mathscr{H}_{q}(\mathtt{J})\subset\mathscr{H}_{q} generated by {Dii𝙸af}\{D_{i}\mid i\in\mathtt{I}_{\mathrm{af}}\} and {eλ,Diλ𝕏,i𝙹}\{e^{\lambda},D_{i}\mid\lambda\in\mathbb{X}^{*},i\in\mathtt{J}\} (for 𝙹𝙸af\mathtt{J}\subset\mathtt{I}_{\mathrm{af}}), respectively.

Let 𝒮q:=[𝐇]Waf\mathscr{S}_{q}^{\prime}:={\mathbb{C}}[\mathbf{H}]\otimes{\mathbb{C}}W_{\mathrm{af}} be the smash product algebra, whose multiplication reads as:

(eλw)(eμv)=eλ+wμwvλ,μ𝕏af,w,vWaf.(e^{\lambda}\otimes w)(e^{\mu}\otimes v)=e^{\lambda+w\mu}\otimes wv\hskip 14.22636pt\lambda,\mu\in\mathbb{X}^{*}_{\mathrm{af}},w,v\in W_{\mathrm{af}}.

We add 1tγW~af1\otimes t_{\gamma}\in{\mathbb{C}}\otimes{\mathbb{C}}\widetilde{W}_{\mathrm{af}} (γ𝕏(G)\gamma\in\mathbb{X}_{*}(G)) such that

(eλtγ)(eμtγ)=qγ,μeλ+μtγ+γλ,μ𝕏af,γ,γ𝕏(G)(e^{\lambda}\otimes t_{\gamma})(e^{\mu}\otimes t_{\gamma^{\prime}})=q^{\left<\gamma,\mu\right>}e^{\lambda+\mu}\otimes t_{\gamma+\gamma^{\prime}}\hskip 14.22636pt\lambda,\mu\in\mathbb{X}^{*}_{\mathrm{af}},\gamma,\gamma^{\prime}\in\mathbb{X}_{*}(G)

to 𝒮q\mathscr{S}_{q}^{\prime} to obtain the smash product algebra 𝒮q:=[𝐇]W~af\mathscr{S}_{q}:={\mathbb{C}}[\mathbf{H}]\otimes{\mathbb{C}}\widetilde{W}_{\mathrm{af}}. Let (𝐇){\mathbb{C}}(\mathbf{H}) denote the fraction field of (the Laurant polynomial algebra) [𝐇]{\mathbb{C}}[\mathbf{H}]. We have a scalar extension

q:=(𝐇)[𝐇]𝒮q=(𝐇)W~af.\mathscr{R}_{q}:={\mathbb{C}}(\mathbf{H})\otimes_{{\mathbb{C}}[\mathbf{H}]}\mathscr{S}_{q}={\mathbb{C}}(\mathbf{H})\otimes_{{\mathbb{C}}}{\mathbb{C}}\widetilde{W}_{\mathrm{af}}.

The following is a very slight extension of [35] §2.2 (and hence we omit its proof):

Theorem 1.4 (cf. [35] §2.2).

We have an embedding of algebras ı:qq\imath^{*}:\mathscr{H}_{q}\hookrightarrow\mathscr{R}_{q}:

eλeλ1,\displaystyle e^{\lambda}\mapsto e^{\lambda}\otimes 1,\,\, Di11eαi1eαi1eαisi,Tγ1tγ.\displaystyle D_{i}\mapsto\frac{1}{1-e^{\alpha_{i}}}\otimes 1-\frac{e^{\alpha_{i}}}{1-e^{\alpha_{i}}}\otimes s_{i},\,T_{\gamma}\mapsto 1\otimes t_{\gamma}.

for each λ𝕏af,i𝙸af,\lambda\in\mathbb{X}^{*}_{\mathrm{af}},i\in\mathtt{I}_{\mathrm{af}}, and γ𝕏(G)\gamma\in\mathbb{X}_{*}(G).

Corollary 1.5 (Leibniz fule for DiD_{i}).

Let i𝙸afi\in\mathtt{I}_{\mathrm{af}} and λ𝕏af\lambda\in\mathbb{X}^{*}_{\mathrm{af}}. We have

Dieλ=eλesiλ1eαi+esiλDiin q.D_{i}\cdot e^{\lambda}=\frac{e^{\lambda}-e^{s_{i}\lambda}}{1-e^{\alpha_{i}}}+e^{s_{i}\lambda}\cdot D_{i}\hskip 8.53581pt\text{in}\hskip 8.53581pt\mathscr{R}_{q}.

Since we have a natural action of q\mathscr{R}_{q} on (𝐇){\mathbb{C}}(\mathbf{H}), we obtain an action of q\mathscr{H}_{q} on (𝐇){\mathbb{C}}(\mathbf{H}) (in a way it preserves [𝐇]{\mathbb{C}}[\mathbf{H}]), that we call the polynomial representation.

For wtγWafw\in t_{\gamma}W_{\mathrm{af}} (γ𝕏(G)\gamma\in\mathbb{X}_{*}(G)), we find a reduced expression w=tγsi1siw=t_{\gamma}s_{i_{1}}\cdots s_{i_{\ell}} (i1,,i𝙸afi_{1},\ldots,i_{\ell}\in\mathtt{I}_{\mathrm{af}}) and set

Dw:=TγDsi1Dsi2Dsiq.D_{w}:=T_{\gamma}D_{s_{i_{1}}}D_{s_{i_{2}}}\cdots D_{s_{i_{\ell}}}\in\mathscr{H}_{q}.

By Definition 1.3 3), the element DwD_{w} is independent of the choice of a reduced expression. By Definition 1.3 2), we have DiDw0=Dw0D_{i}D_{w_{0}}=D_{w_{0}} for each i𝙸i\in\mathtt{I}, and hence Dw02=Dw0D_{w_{0}}^{2}=D_{w_{0}}. We have an explicit form

Dw0=1(wWw)eραΔ+(eα/2eα/2)1𝒜qD_{w_{0}}=1\otimes\left(\sum_{w\in W}w\right)\cdot\frac{e^{-\rho}}{\prod_{\alpha\in\Delta^{+}}(e^{-\alpha/2}-e^{\alpha/2})}\otimes 1\in\mathscr{A}_{q} (1.3)

obtained from the (left WW-invariance of the) Weyl character formula. We set

qsphqsph(G):=Dw0qDw0\mathscr{H}_{q}^{\mathrm{sph}}\equiv\mathscr{H}_{q}^{\mathrm{sph}}(G):=D_{w_{0}}\mathscr{H}_{q}D_{w_{0}}

and call it the spherical nil-DAHA of type GG.

Theorem 1.6 (see e.g. Kostant-Kumar [32]).

We have a q(𝙸)\mathscr{H}_{q}(\mathtt{I})-action on K𝐇()K_{\mathbf{H}}(\mathscr{B}) with the following properties:

  1. 1.

    For each λ𝕏\lambda\in\mathbb{X}^{*}, the left multiplication by eλq(𝙸)e^{\lambda}\in\mathscr{H}_{q}(\mathtt{I}) is equal to the HH-character twist of K𝐇()K_{\mathbf{H}}(\mathscr{B}) by eλe^{\lambda};

  2. 2.

    For each i𝙸i\in\mathtt{I}, we have

    Di([𝒪(w)])={[𝒪(siw)](siw<w)[𝒪(w)](siw>w);D_{i}([{\mathcal{O}}_{\mathscr{B}(w)}])=\begin{cases}[{\mathcal{O}}_{\mathscr{B}(s_{i}w)}]&(s_{i}w<w)\\ [{\mathcal{O}}_{\mathscr{B}(w)}]&(s_{i}w>w)\end{cases};
  3. 3.

    For λ𝕏\lambda\in\mathbb{X}^{*}, the twist by 𝒪(λ){\mathcal{O}}_{\mathscr{B}}(\lambda) defines a q(𝙸)\mathscr{H}_{q}(\mathtt{I})-module automorphism;

  4. 4.

    We have K𝐆()=Dw0K𝐇()K_{\mathbf{G}}(\mathscr{B})=D_{w_{0}}K_{\mathbf{H}}(\mathscr{B});

  5. 5.

    We have K𝐇()=q(𝙸)[𝒪]=q[H]K𝐆()K𝐇()K_{\mathbf{H}}(\mathscr{B})=\mathscr{H}_{q}(\mathtt{I})\cdot[{\mathcal{O}}_{\mathscr{B}}]={\mathbb{C}}_{q}[H]\cdot K_{\mathbf{G}}(\mathscr{B})\subset K_{\mathbf{H}}(\mathscr{B}).

Corollary 1.7.

For each 𝙹𝙹𝙸\mathtt{J}^{\prime}\subset\mathtt{J}\subset\mathtt{I}, we have a q(𝙹)\mathscr{H}_{q}(\mathtt{J}^{\prime})-module map

K𝐇(𝙹)K𝐇(𝙹)K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}})\longrightarrow K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}^{\prime}})

that sends [𝒪𝙹(λ)][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}(\lambda)] to [𝒪𝙹(λ)][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}^{\prime}}}(\lambda)] for every λ𝕏\lambda\in\mathbb{X}^{*}.

Proof.

We have an algebra map K𝐋𝙹(𝙹)K𝐋𝙹(𝙹)K_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}})\longrightarrow K_{\mathbf{L}^{\mathtt{J}^{\prime}}}(\mathscr{B}^{\mathtt{J}^{\prime}}) that sends [𝒪𝙹(λ)][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}(\lambda)] to [𝒪𝙹(λ)][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}^{\prime}}}(\lambda)] for every λ𝕏\lambda\in\mathbb{X}^{*}. It is invariant under the action of DjD_{j} for j𝙹j\in\mathtt{J}^{\prime} by Theorem 1.6 3). By extending the scalar, we obtain a map K𝐇(𝙹)K𝐇(𝙹)K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}})\longrightarrow K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}^{\prime}}). By the Leibniz rule, this map commutes with the DiD_{i}-actions for each i𝙹i\in\mathtt{J}^{\prime}. Thus, it gives rise to a q(𝙹)\mathscr{H}_{q}(\mathtt{J}^{\prime})-module map as required. ∎

Corollary 1.8 ([32]).

For each 𝙹𝙹𝙸\mathtt{J}^{\prime}\subset\mathtt{J}\subset\mathtt{I}, the pullback defines a subspace

K𝐇(𝙹𝙹)K𝐇(𝙹)Dw0𝙹K𝐇(𝙹).K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}^{\prime}})\cong K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}})D_{w_{0}^{\mathtt{J}^{\prime}}}\subset K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}}).

1.3 Quasi-map spaces

Here we recall basics of quasi-map spaces from [16, 14].

We have WW-equivariant isomorphism H2(,)QH_{2}(\mathscr{B},\mathbb{Z})\cong Q^{\vee}. This identifies the (integral points of the) effective cone of \mathscr{B} with Q+Q_{+}^{\vee}. A quasi-map (f,D)(f,D) is a map f:1f:\mathbb{P}^{1}\rightarrow\mathscr{B} together with an 𝙸\mathtt{I}-colored effective divisor

D=i𝙸,x1()mx(αi)αi[x]QDiv1with mx(α)0.D=\sum_{i\in\mathtt{I},x\in\mathbb{P}^{1}({\mathbb{C}})}m_{x}(\alpha^{\vee}_{i})\alpha^{\vee}_{i}\otimes[x]\in Q^{\vee}\otimes_{\mathbb{Z}}\mathrm{Div}\,\mathbb{P}^{1}\hskip 8.53581pt\text{with}\hskip 8.53581ptm_{x}(\alpha^{\vee})\in\mathbb{Z}_{\geq 0}.

We call DD the defect of (f,D)(f,D). We define the total defect of (f,D)(f,D) by

|D|:=i𝙸,x1()mx(αi)αiQ+.|D|:=\sum_{i\in\mathtt{I},x\in\mathbb{P}^{1}({\mathbb{C}})}m_{x}(\alpha^{\vee}_{i})\alpha^{\vee}_{i}\in Q_{+}^{\vee}.

For each βQ+\beta\in Q_{+}^{\vee}, we set

𝒬(,β):={f:1X quasi-map s.t. f[1]+|D|=β},\mathscr{Q}(\mathscr{B},\beta):=\{f:\mathbb{P}^{1}\rightarrow X\mid\text{ quasi-map s.t. }f_{*}[\mathbb{P}^{1}]+|D|=\beta\},

where f[1]f_{*}[\mathbb{P}^{1}] is the class of the image of 1\mathbb{P}^{1} multiplied by the degree of 1Imf\mathbb{P}^{1}\to\mathrm{Im}\,f. We denote 𝒬(,β)\mathscr{Q}(\mathscr{B},\beta) by 𝒬G(β)\mathscr{Q}_{G}(\beta) or 𝒬(β)\mathscr{Q}(\beta) for simplicity.

Definition 1.9 (Drinfeld-Plücker data).

Consider a collection ={(ψλ,λ)}λΛ+\mathcal{L}=\{(\psi_{\lambda},\mathcal{L}^{\lambda})\}_{\lambda\in\Lambda_{+}} of inclusions ψλ:λV(λ)𝒪1\psi_{\lambda}:\mathcal{L}^{\lambda}\hookrightarrow V(\lambda)\otimes_{{\mathbb{C}}}\mathcal{O}_{\mathbb{P}^{1}} of line bundles λ\mathcal{L}^{\lambda} over 1\mathbb{P}^{1}. The data \mathcal{L} is called a Drinfeld-Plücker data (DP-data) if the canonical inclusion of GG-modules

ηλ,μ:V(λ+μ)V(λ)V(μ)\eta_{\lambda,\mu}:V(\lambda+\mu)\hookrightarrow V(\lambda)\otimes V(\mu)

induces an isomorphism

ηλ,μid:ψλ+μ(λ+μ)ψλ(λ)𝒪1ψμ(μ)\eta_{\lambda,\mu}\otimes\mathrm{id}:\psi_{\lambda+\mu}(\mathcal{L}^{\lambda+\mu})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\psi_{\lambda}(\mathcal{L}^{\lambda})\otimes_{{\mathcal{O}}_{\mathbb{P}^{1}}}\psi_{\mu}(\mathcal{L}^{\mu})

for every λ,μΛ+\lambda,\mu\in\Lambda_{+}.

Theorem 1.10 (Drinfeld, see Finkelberg-Mirković [16]).

The variety 𝒬(β)\mathscr{Q}(\beta) is isomorphic to the variety formed by isomorphism classes of the DP-data ={(ψλ,λ)}λΛ+\mathcal{L}=\{(\psi_{\lambda},\mathcal{L}^{\lambda})\}_{\lambda\in\Lambda_{+}} such that degλ=w0β,λ\deg\,\mathcal{L}^{\lambda}=\left<w_{0}\beta,\lambda\right>. In addition, 𝒬(β)\mathscr{Q}(\beta) is an irreducible variety of dimension dim+2β,ρ\dim\,\mathscr{B}+2\left<\beta,\rho\right>.

Theorem 1.11 (Braverman-Finkelberg [8]).

The variety 𝒬(β)\mathscr{Q}(\beta) is a normal variety with rational singularities.

For each λ𝕏\lambda\in\mathbb{X}^{*}, and βQ+\beta\in Q_{+}^{\vee}, we have a GG-equivariant line bundle 𝒪𝒬(β)(λ){\mathcal{O}}_{\mathscr{Q}(\beta)}(\lambda) obtained by the tensor product of the pull-backs 𝒪𝒬(β)(ϖi){\mathcal{O}}_{\mathscr{Q}(\beta)}(\varpi_{i}) of the ii-th 𝒪(1){\mathcal{O}}(1) via the embedding

𝒬(β)i𝙸(V(ϖi)[z]w0β,ϖi)\mathscr{Q}(\beta)\hookrightarrow\prod_{i\in\mathtt{I}}\mathbb{P}(V(\varpi_{i})\otimes_{{\mathbb{C}}}{\mathbb{C}}[z]_{\leq-\left<w_{0}\beta,\varpi_{i}\right>}) (1.4)

and a GG-character. We have χ(𝒬(β),𝒪𝒬(λ))[𝐇]\chi(\mathscr{Q}(\beta),{\mathcal{O}}_{\mathscr{Q}}(\lambda))\in{\mathbb{C}}[\mathbf{H}] for βQ,λ𝕏\beta\in Q^{\vee},\lambda\in\mathbb{X}^{*}, where the grading qq is understood to count the degree of zz detected by the 𝔾m\mathbb{G}_{m}-action. Here we understand that χ(𝒬(β),𝒪𝒬(β)(λ))=0\chi(\mathscr{Q}(\beta),{\mathcal{O}}_{\mathscr{Q}(\beta)}(\lambda))=0 if βQ+\beta\not\in Q^{\vee}_{+}.

We have an embedding 𝒬(β)\mathscr{B}\subset\mathscr{Q}(\beta) such that the line bundles 𝒪(λ){\mathcal{O}}(\lambda) (λ𝕏\lambda\in\mathbb{X}^{*}) correspond to each other by restrictions ([8, 24]).

1.4 Graph and map spaces and their line bundles

We refer [31, 18, 20] for the precise definitions of the notions appearing in this subsection.

For each non-negative integer nn and βQ+\beta\in Q^{\vee}_{+}, we set 𝒢n,β\mathscr{GB}_{n,\beta} to be the space of stable maps of genus zero curves with nn-marked points to (1×)(\mathbb{P}^{1}\times\mathscr{B}) of bidegree (1,β)(1,\beta), that is also called the graph space of \mathscr{B}. A point of 𝒢n,β\mathscr{GB}_{n,\beta} is a genus zero curve CC with nn-marked points {x1,,xn}\{x_{1},\ldots,x_{n}\}, together with a map to 1\mathbb{P}^{1} of degree one. Hence, we have a unique 1\mathbb{P}^{1}-component of CC that maps isomorphically onto 1\mathbb{P}^{1}. We call this component the main component of CC and denote it by C0C_{0}. For a genus zero curve CC, let |C||C| denote the number of its irreducible components. The space 𝒢n,β\mathscr{GB}_{n,\beta} is a normal projective variety by [18, Theorem 2] that have at worst quotient singularities arising from the automorphism of curves (in particular, they have rational singularities). The natural 𝐇\mathbf{H}-action on (1×)(\mathbb{P}^{1}\times\mathscr{B}) induces a natural 𝐇\mathbf{H}-action on 𝒢n,β\mathscr{GB}_{n,\beta}. Moreover, 𝒢0,β\mathscr{GB}_{0,\beta} has only finitely many isolated 𝐇\mathbf{H}-fixed points, and thus we can apply the formalism of Atiyah-Bott-Lefschetz localization (cf. [20, p200L26] and [8, Proof of Lemma 5]).

We have a morphism πn,β:𝒢n,β𝒬(β)\pi_{n,\beta}:\mathscr{GB}_{n,\beta}\rightarrow\mathscr{Q}(\beta) that factors through 𝒢0,β\mathscr{GB}_{0,\beta} (Givental’s main lemma [21]; see [14, §8] and [18, §1.3]). Let 𝚎𝚟~j:𝒢n,β1×\widetilde{\mathtt{ev}}_{j}:\mathscr{GB}_{n,\beta}\to\mathbb{P}^{1}\times\mathscr{B} (1jn1\leq j\leq n) be the evaluation at the jj-th marked point, and let 𝚎𝚟j:𝒢n,β\mathtt{ev}_{j}:\mathscr{GB}_{n,\beta}\to\mathscr{B} be its composition with the second projection. The variety 𝒢n,β\mathscr{GB}_{n,\beta} is irreducible (as a special feature of flag varieties, see [18, §1.2] and [29]).

Let 𝒳(β)𝒢2,β\mathscr{X}(\beta)\subset\mathscr{GB}_{2,\beta} denote the subscheme such that the first marked point projects to 010\in\mathbb{P}^{1}, and the second marked point projects to 1\infty\in\mathbb{P}^{1} through the first projection of 1×\mathbb{P}^{1}\times\mathscr{B}. By abuse of notation, we write the restriction of 𝚎𝚟i\mathtt{ev}_{i} (i=1,2i=1,2) to 𝒳(β)\mathscr{X}(\beta) by the same letter. Let πβ:𝒳(β)𝒬(β)\pi_{\beta}:\mathscr{X}(\beta)\rightarrow\mathscr{Q}(\beta) be the restriction of π2,β\pi_{2,\beta} to 𝒳(β)\mathscr{X}(\beta). In view of Theorem 1.11, the morphism πβ\pi_{\beta} is the rational resolution of singularities in an orbifold sense.

For each λ𝕏\lambda\in\mathbb{X}^{*}, we have a line bundle 𝒪𝒳(β)(λ):=πβ𝒪𝒬(β)(λ){\mathcal{O}}_{\mathscr{X}(\beta)}(\lambda):=\pi_{\beta}^{*}{\mathcal{O}}_{\mathscr{Q}(\beta)}(\lambda). In case we want to stress the group GG, we write 𝒳G(β)\mathscr{X}_{G}(\beta) instead of 𝒳(β)\mathscr{X}(\beta).

1.5 Equivariant quantum KK-group of \mathscr{B}

We introduce a polynomial ring Q+{\mathbb{C}}Q^{\vee}_{+} and the formal power series ring [[Q+]]{\mathbb{C}}[\![Q^{\vee}_{+}]\!] with their variables Qi=QαiQ_{i}=Q^{\alpha_{i}^{\vee}} (i𝙸i\in\mathtt{I}). We set Qβ:=i𝙸Qiβ,ϖiQ^{\beta}:=\prod_{i\in\mathtt{I}}Q_{i}^{\left<\beta,\varpi_{i}\right>} for each βQ\beta\in Q^{\vee}. We define the 𝐆\mathbf{G}-equivariant (small) quantum DqD_{q}-module of \mathscr{B} as:

qK𝐆():=K𝐆()Q+.qK_{\mathbf{G}}(\mathscr{B}):=K_{\mathbf{G}}(\mathscr{B})\otimes{\mathbb{C}}Q^{\vee}_{+}. (1.5)

Note that the specialization q=1q=1 yields

qKG():=KG()Q+.qK_{G}(\mathscr{B}):=K_{G}(\mathscr{B})\otimes{\mathbb{C}}Q^{\vee}_{+}. (1.6)

Let qK𝐆()qK_{\mathbf{G}}(\mathscr{B})^{\wedge} and qKG()qK_{G}(\mathscr{B})^{\wedge} denote the completions of qK𝐆()qK_{\mathbf{G}}(\mathscr{B}) and qKG()qK_{G}(\mathscr{B}) with respect to the variables {Qi}i𝙸\{Q_{i}\}_{i\in\mathtt{I}}.

Let ,𝙶𝚆\left<\bullet,\bullet\right>^{\mathtt{GW}} be the R(𝐆)R(\mathbf{G})-linear pairing on qK𝐆()qK_{\mathbf{G}}(\mathscr{B})^{\wedge} defined as:

a,b𝙶𝚆:=βQ+χ(𝒳(β),ev1aev1b)Qβ[𝐇][[Q+]]a,bqK𝐆().\left<a,b\right>^{\mathtt{GW}}:=\sum_{\beta\in Q^{\vee}_{+}}\chi(\mathscr{X}(\beta),\mathrm{ev}_{1}^{*}a\otimes\mathrm{ev}_{1}^{*}b)Q^{\beta}\in{\mathbb{C}}[\mathbf{H}][\![Q^{\vee}_{+}]\!]\hskip 14.22636pta,b\in qK_{\mathbf{G}}(\mathscr{B})^{\wedge}.

Since the specialization Qβ=0Q^{\beta}=0 (β0\beta\neq 0) recovers the (𝐆\mathbf{G}-equivariant) Euler-Poincaré pairing of \mathscr{B}, we know that ,𝙶𝚆\left<\bullet,\bullet\right>^{\mathtt{GW}} is non-degenerate. For each λ𝕏\lambda\in\mathbb{X}^{*}, the bilinear functional

a,bλ𝙶𝚆:=βQ+χ(𝒳(β),πβ𝒪𝒬(β)(λ)ev1aev1b)Qβ[𝐇][[Q+]]\left<a,b\right>^{\mathtt{GW}}_{\lambda}:=\sum_{\beta\in Q^{\vee}_{+}}\chi(\mathscr{X}(\beta),\pi_{\beta}^{*}{\mathcal{O}}_{\mathscr{Q}(\beta)}(\lambda)\otimes\mathrm{ev}_{1}^{*}a\otimes\mathrm{ev}_{1}^{*}b)Q^{\beta}\in{\mathbb{C}}[\mathbf{H}][\![Q^{\vee}_{+}]\!]

induces a(n unique) linear operator Aλ()A^{\lambda}(\bullet) on qK𝐆()qK_{\mathbf{G}}(\mathscr{B})^{\wedge} such that

Aλa,b𝙶𝚆=a,bλ𝙶𝚆a,bqK𝐆().\left<A^{\lambda}a,b\right>^{\mathtt{GW}}=\left<a,b\right>^{\mathtt{GW}}_{\lambda}\hskip 14.22636pta,b\in qK_{\mathbf{G}}(\mathscr{B})^{\wedge}.

We remark that the operator AλA^{\lambda} is the character twist when λ𝕏(G)\lambda\in\mathbb{X}^{*}(G). In case we want to stress the dependence on GG, we write ,G𝙶𝚆\left<\bullet,\bullet\right>^{\mathtt{GW}}_{G} and AGλA^{\lambda}_{G} instead of ,𝙶𝚆\left<\bullet,\bullet\right>^{\mathtt{GW}} and AλA^{\lambda}, respectively.

Theorem 1.12 (Iritani-Milanov-Tonita [23] and [26]).

We have:

  1. 1.

    For λ,μ𝕏\lambda,\mu\in\mathbb{X}^{*}, we have AλAμ=Aλ+μA^{\lambda}\circ A^{\mu}=A^{\lambda+\mu} in EndR(𝐆)(qK𝐆())\mathrm{End}_{R(\mathbf{G})}(qK_{\mathbf{G}}(\mathscr{B})^{\wedge});

  2. 2.

    For λ𝕏\lambda\in\mathbb{X}^{*} and cK𝐆()1qK𝐆()c\in K_{\mathbf{G}}(\mathscr{B})\otimes 1\subset qK_{\mathbf{G}}(\mathscr{B}), we have

    Aλc𝒪(λ)𝒪cmod(Qii𝙸);A^{\lambda}c\equiv{\mathcal{O}}_{\mathscr{B}}(\lambda)\otimes_{{\mathcal{O}}_{\mathscr{B}}}c\mod(Q_{i}\mid i\in\mathtt{I});
  3. 3.

    The q=1q=1 specialization of the operator AϖiA^{-\varpi_{i}} (i𝙸)(i\in\mathtt{I}) is the quantum multiplication by [𝒪(ϖi)][{\mathcal{O}}_{\mathscr{B}}(-\varpi_{i})] on qKG()qK_{G}(\mathscr{B});

  4. 4.

    The R(G)R(G)-action, the Q{\mathbb{C}}Q^{\vee}-action, together with the quantum multiplications by [𝒪(ϖi)][{\mathcal{O}}_{\mathscr{B}}(-\varpi_{i})] (i𝙸)(i\in\mathtt{I}), generates qKG()qK_{G}(\mathscr{B}) as a ring;

  5. 5.

    For fq[Aλ,Qβλ𝕏,βQ+]f\in{\mathbb{C}}_{q}[A^{\lambda},Q^{\beta}\mid\lambda\in\mathbb{X}^{*},\beta\in Q^{\vee}_{+}], we have f[𝒪]=0f[{\mathcal{O}}_{\mathscr{B}}]=0 in qK𝐆()qK_{\mathbf{G}}(\mathscr{B}) if and only if

    f[𝒪],[𝒪]λ𝙶𝚆=0λΛ+.\left<f[{\mathcal{O}}_{\mathscr{B}}],[{\mathcal{O}}_{\mathscr{B}}]\right>^{\mathtt{GW}}_{\lambda}=0\hskip 14.22636pt\lambda\in\Lambda_{+}.
Proof.

The first two assertions follows from [23] Proposition 2.13 and Proposition 2.10, respectively. The third assertion is [1, Lemma 6] (or [26, Theorem 4.2]). The fourth assertion is a consequence of the finiteness of quantum KK-groups, seen in [1, Proposition 9] and [26, Corollary 3.3]. The fifth assertion can be read off from the proof of [26, Theorem 3.11]. ∎

2 Preparatory results

2.1 Affine Grassmanians

We define our (thin) affine Grassmannian and (thin) flag manifold by

GrG:=G((z))/G[[z]]and XG:=G((z))/𝐈,\mathrm{Gr}_{G}:=G(\!(z)\!)/G[\![z]\!]\hskip 8.53581pt\text{and}\hskip 8.53581ptX_{G}:=G(\!(z)\!)/{\mathbf{I}},

respectively. We have a natural map π:XGGrG\pi:X_{G}\rightarrow\mathrm{Gr}_{G} whose fiber is isomorphic to \mathscr{B}. By [3, §4.6] (cf. [40, §2]), the sets of connected components of GrG\mathrm{Gr}_{G} and XGX_{G} are in bijection with 𝕏(G)\mathbb{X}_{*}(G). Here we note that our assumption on GG guarantees that all connected components of GrG\mathrm{Gr}_{G} are mutually isomorphic as ind-varieties with G[[z]]G[\![z]\!]-actions.

Theorem 2.1 (Bruhat decomposition, [33] Corollary 6.1.20).

We have 𝐈{\mathbf{I}}-orbit decompositions

GrG=β𝕏GrG̊(β)and X=wW~af𝕆Gaf(w)\mathrm{Gr}_{G}=\bigsqcup_{\beta\in\mathbb{X}_{*}}\mathring{\mathrm{Gr}_{G}}(\beta)\hskip 8.53581pt\text{and}\hskip 8.53581ptX=\bigsqcup_{w\in\widetilde{W}_{\mathrm{af}}}\mathbb{O}_{G}^{\mathrm{af}}(w)

with the following properties:

  1. 1.

    we have 𝕆Gaf(v)𝕆Gaf(w)¯\mathbb{O}_{G}^{\mathrm{af}}(v)\subset\overline{\mathbb{O}_{G}^{\mathrm{af}}(w)} if and only if vwv\leq w;

  2. 2.

    π(𝕆Gaf(w))GrG̊(β)\pi(\mathbb{O}_{G}^{\mathrm{af}}(w))\subset\mathring{\mathrm{Gr}_{G}}(\beta) if and only if wtβWw\in t_{\beta}W. \Box

Let us set GrG(β):=GrG̊(β)¯\mathrm{Gr}_{G}(\beta):=\overline{\mathring{\mathrm{Gr}_{G}}(\beta)} and Xw:=𝕆Gaf(w)¯X_{w}:=\overline{\mathbb{O}_{G}^{\mathrm{af}}(w)} for β𝕏\beta\in\mathbb{X}_{*} and wW~afw\in\widetilde{W}_{\mathrm{af}}. For wW~afw\in\widetilde{W}_{\mathrm{af}}^{-}, we also set GrG(w):=GrG(β)\mathrm{Gr}_{G}(w):=\mathrm{Gr}_{G}(\beta) for β𝕏\beta\in\mathbb{X}_{*} such that wtβWw\in t_{\beta}W.

We set

K𝐇(GrG):=β𝕏[𝐇][𝒪GrG(β)]and K𝐇(XG):=wW~af[𝐇][𝒪Xw].K_{\mathbf{H}}(\mathrm{Gr}_{G}):=\bigoplus_{\beta\in\mathbb{X}_{*}}{\mathbb{C}}[\mathbf{H}]\,[{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}]\hskip 8.53581pt\text{and}\hskip 8.53581ptK_{\mathbf{H}}(X_{G}):=\bigoplus_{w\in\widetilde{W}_{\mathrm{af}}}{\mathbb{C}}[\mathbf{H}]\,[{\mathcal{O}}_{X_{w}}].

The following is an affine version of Theorem 1.6:

Theorem 2.2 (Kostant-Kumar [32]).

The vector space K𝐇(XG)K_{\mathbf{H}}(X_{G}) affords a regular representation of q\mathscr{H}_{q} such that:

  1. 1.

    the subalgebra [𝐇]q{\mathbb{C}}[\mathbf{H}]\subset\mathscr{H}_{q} acts by the multiplication of the coefficients;

  2. 2.

    we have Di[𝒪Xw]=[𝒪Xsiw]D_{i}[{\mathcal{O}}_{X_{w}}]=[{\mathcal{O}}_{X_{s_{i}w}}] (siw>w)(s_{i}w>w) or [𝒪Xw][{\mathcal{O}}_{X_{w}}] (siw<w)(s_{i}w<w). \Box

Being a regular representation, we sometimes identify K𝐇(XG)K_{\mathbf{H}}(X_{G}) with q\mathscr{H}_{q} (through eλ[𝒪Xw]eλDwe^{\lambda}[{\mathcal{O}}_{X_{w}}]\leftrightarrow e^{\lambda}D_{w} for λ𝕏af,wW~af\lambda\in\mathbb{X}_{*}^{\mathrm{af}},w\in\widetilde{W}_{\mathrm{af}}) and consider product of two elements in qK𝐇(XG)\mathscr{H}_{q}\cup K_{\mathbf{H}}(X_{G}). We may denote this product on K𝐇(XG)K_{\mathbf{H}}(X_{G}) by q\odot_{q}.

Theorem 2.3 (Kostant-Kumar [32]).

The pullback defines an inclusion map π:K𝐇(GrG)K𝐇(XG)\pi^{*}:K_{\mathbf{H}}(\mathrm{Gr}_{G})\hookrightarrow K_{\mathbf{H}}(X_{G}) such that

π[𝒪GrG(β)]=[Xtβ]Dw0βQ.\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}]=[X_{t_{\beta}}]D_{w_{0}}\hskip 14.22636pt\beta\in Q^{\vee}.

In particular, Imπ=qqDw0\mathrm{Im}\,\pi^{*}=\mathscr{H}_{q}\odot_{q}D_{w_{0}} is a q\mathscr{H}_{q}-submodule. \Box

Theorem 2.4.

Let wW~afw\in\widetilde{W}_{\mathrm{af}}^{-} and let β𝕏\beta\in\mathbb{X}_{*}^{-}. We have

π[𝒪GrG(w)]qπ[𝒪GrG(β)]=π[𝒪GrG(wtβ)].\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(w)}]\odot_{q}\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}]=\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(wt_{\beta})}].
Proof.

We have (tβ)=(w0)+(w0tβ)\ell(t_{\beta})=\ell(w_{0})+\ell(w_{0}t_{\beta}) by Theorem 1.2 1). We have w=utγw=ut_{\gamma} for some uWu\in W and γ𝕏\gamma\in\mathbb{X}_{*}^{\leq} such that (w)=(tγ)(u)\ell(w)=\ell(t_{\gamma})-\ell(u) by Theorem 1.2 3). Now we have (utγ+β)=(w)+(tβ)\ell(ut_{\gamma+\beta})=\ell(w)+\ell(t_{\beta}) by Theorem 1.2 2). From these, the assertion follows by Theorem 2.2 and Theorem 2.3. ∎

Theorem 2.4 implies that the set

{π[𝒪GrG(β)]β𝕏}(K𝐇(GrG),q)\{\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}]\mid\beta\in\mathbb{X}_{*}^{-}\}\subset(K_{\mathbf{H}}(\mathrm{Gr}_{G}),\odot_{q})

forms a multiplicative system with respect to the right action. We denote by K𝐇(GrG)locK_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}} the localization of K𝐇(GrG)K_{\mathbf{H}}(\mathrm{Gr}_{G}) with respect to this right action. The action of an element [𝒪GrG(β)][{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}] on K𝐇(GrG)K_{\mathbf{H}}(\mathrm{Gr}_{G}) in Theorem 2.4 is torsion-free, and hence we have an embedding K𝐇(GrG)K𝐇(GrG)locK_{\mathbf{H}}(\mathrm{Gr}_{G})\subset K_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}}. Since the left q\mathscr{H}_{q}-module structure on (K𝐇(GrG),q)(K_{\mathbf{H}}(\mathrm{Gr}_{G}),\odot_{q}) commutes with this right action, we conclude that K𝐇(GrG)locK_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}} is a q\mathscr{H}_{q}-module that contains K𝐇(GrG)K_{\mathbf{H}}(\mathrm{Gr}_{G}).

Corollary 2.5.

Let i𝙸i\in\mathtt{I}. For β𝕏\beta\in\mathbb{X}_{*}^{-}, we set

𝐡i:=π[𝒪GrG(sitβ)]qπ[𝒪GrG(tβ)]1.{\mathbf{h}}_{i}:=\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(s_{i}t_{\beta})}]\odot_{q}\pi^{*}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\beta})}]^{-1}.

Then, the element 𝐡i{\mathbf{h}}_{i} is independent of the choice of β\beta.

Proof.

By Theorem 2.4, we have

[𝒪GrG(sitγ+β)]q[𝒪GrG(tγ+β)]1\displaystyle[{\mathcal{O}}_{\mathrm{Gr}_{G}(s_{i}t_{\gamma+\beta})}]\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\gamma+\beta})}]^{-1} =[𝒪GrG(sitβ)]q[𝒪GrG(tγ)]q[𝒪GrG(tγ)]1q[𝒪GrG(tβ)]1\displaystyle=[{\mathcal{O}}_{\mathrm{Gr}_{G}(s_{i}t_{\beta})}]\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\gamma})}]\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\gamma})}]^{-1}\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\beta})}]^{-1}
=[𝒪GrG(sitβ)]q[𝒪GrG(tβ)]1\displaystyle=[{\mathcal{O}}_{\mathrm{Gr}_{G}(s_{i}t_{\beta})}]\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\beta})}]^{-1}

for γ𝕏\gamma\in\mathbb{X}_{*}^{-}. Hence, we conclude the assertion. ∎

In the below, we may drop π\pi^{*} in the notation and consider

K𝐆(GrG)=Dw0K𝐇(GrG)Dw0K𝐇(XG)Dw0K𝐇(XG)K_{\mathbf{G}}(\mathrm{Gr}_{G})=D_{w_{0}}K_{\mathbf{H}}(\mathrm{Gr}_{G})\cong D_{w_{0}}K_{\mathbf{H}}(X_{G})D_{w_{0}}\subset K_{\mathbf{H}}(X_{G})

as a subalgebra of K𝐇(XG)K_{\mathbf{H}}(X_{G}). Note that [𝒪GrG(β)]K𝐆(GrG)[{\mathcal{O}}_{\mathrm{Gr}_{G}(\beta)}]\in K_{\mathbf{G}}(\mathrm{Gr}_{G}) for β𝕏\beta\in\mathbb{X}_{*}^{-}. In addition, [𝒪GrG(0)][{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}] is the multiplicative unit of K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}), and we sometimes denote it by 11. It is clear that K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) affords a regular representation of qsph\mathscr{H}_{q}^{\mathrm{sph}}.

For each γ𝕏\gamma\in\mathbb{X}_{*}, we can write γ=β1β2\gamma=\beta_{1}-\beta_{2}, where β1,β2𝕏\beta_{1},\beta_{2}\in\mathbb{X}_{*}^{-}. In particular, we have an element

𝚝γ:=[𝒪GrG(tβ1)]q[𝒪GrG(tβ2)]1.{\mathtt{t}}_{\gamma}:=[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\beta_{1}})}]\odot_{q}[{\mathcal{O}}_{\mathrm{Gr}_{G}(t_{\beta_{2}})}]^{-1}.
Lemma 2.6.

For each γQ\gamma\in Q^{\vee}, the element 𝚝γK𝐆(GrG)loc{\mathtt{t}}_{\gamma}\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} is independent of the choices involved.

Proof.

Similar to the proof of Corollary 2.5. The detail is left to the readers. ∎

2.2 Semi-infinite flag manifolds

In this subsection, we assume that GG is a simple algebraic group. This assumption implies Λ=𝕏\Lambda=\mathbb{X}^{*}, Q=𝕏Q^{\vee}=\mathbb{X}_{*}, and Waf=W~afW_{\mathrm{af}}=\widetilde{W}_{\mathrm{af}}. In [25], we have exhibited an ind-scheme 𝐐Grat\mathbf{Q}_{G}^{\mathrm{rat}} of ind-infinite type that is universal among these whose set {\mathbb{C}}-valued points are G((z))/(HN((z)))G(\!(z)\!)/(H\cdot N(\!(z)\!)). It is equipped with a G((z))G(\!(z)\!)-equivariant line bundle 𝒪𝐐Grat(λ){\mathcal{O}}_{\mathbf{Q}_{G}^{\mathrm{rat}}}(\lambda) for each λ𝕏\lambda\in\mathbb{X}^{*}. Here we normalized the label of line bundles such that Γ(𝐐Grat,𝒪𝐐Grat(λ))\Gamma(\mathbf{Q}_{G}^{\mathrm{rat}},{\mathcal{O}}_{\mathbf{Q}_{G}^{\mathrm{rat}}}(\lambda)) is co-generated by its HH-weight λ\lambda-part as a B((z))B(\!(z)\!)-module.

Theorem 2.7 ([16, 14]).

We have an 𝐈{\mathbf{I}}-orbit decomposition

𝐐Grat=wWaf𝕆(w)\mathbf{Q}_{G}^{\mathrm{rat}}=\bigsqcup_{w\in W_{\mathrm{af}}}\mathbb{O}(w)

with the following properties:

  1. 1.

    each 𝕆(w)\mathbb{O}(w) has infinite dimension and infinite codimension in 𝐐Grat\mathbf{Q}_{G}^{\mathrm{rat}};

  2. 2.

    the right action of γQ\gamma\in Q^{\vee} on 𝐐Grat\mathbf{Q}_{G}^{\mathrm{rat}} yields the translation 𝕆(w)𝕆(wtγ)\mathbb{O}(w)\mapsto\mathbb{O}(wt_{\gamma});

  3. 3.

    we have 𝕆(w)𝕆(v)¯\mathbb{O}(w)\subset\overline{\mathbb{O}(v)} if and only if w2vw\leq_{\frac{\infty}{2}}v. \Box

We define a [𝐇]{\mathbb{C}}[\mathbf{H}]-module K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}) as:

K𝐇(𝐐Grat):={wWafaw[𝒪𝐐G(w)]aw[𝐇],β0Q s.t. autβ=0,uW,ββ0},K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}):=\{\sum_{w\in W_{\mathrm{af}}}a_{w}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mid a_{w}\in{\mathbb{C}}[\mathbf{H}],\,\exists\beta_{0}\in Q^{\vee}\text{ s.t. }a_{ut_{\beta}}=0,\,\forall u\in W,\beta\not>\beta_{0}\},

where the sum in the definition is understood to be formal (i.e. we allow infinite sums). We define its subset

K𝐇(𝐐G(tβ)):={wWafaw[𝒪𝐐G(w)]aw[𝐇] s.t. autγ=0,uW,γβ}K_{\mathbf{H}}(\mathbf{Q}_{G}(t_{\beta})):=\{\sum_{w\in W_{\mathrm{af}}}a_{w}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mid a_{w}\in{\mathbb{C}}[\mathbf{H}]\,\text{ s.t. }a_{ut_{\gamma}}=0,\,\forall u\in W,\gamma\not\geq\beta\}

for each βQ\beta\in Q^{\vee}. Employing the family {K𝐇(𝐐G(tβ))}βQ\{K_{\mathbf{H}}(\mathbf{Q}_{G}(t_{\beta}))\}_{\beta\in Q^{\vee}} of subsets of K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}) as an open base of 0, we obtain a topology on K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}).

Theorem 2.8 ([28] Theorem 6.5).

The vector space K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}) affords a representation of q\mathscr{H}_{q} such that:

  1. 1.

    the subalgebra [𝐇]q{\mathbb{C}}[\mathbf{H}]\subset\mathscr{H}_{q} acts by the multiplication as [𝐇]{\mathbb{C}}[\mathbf{H}]-modules;

  2. 2.

    we have

    Di([𝒪𝐐G(w)])={[𝒪𝐐G(siw)](siw>2w)[𝒪𝐐G(w)](siw<2w).D_{i}([{\mathcal{O}}_{\mathbf{Q}_{G}(w)}])=\begin{cases}[{\mathcal{O}}_{\mathbf{Q}_{G}(s_{i}w)}]&(s_{i}w>_{\frac{\infty}{2}}w)\\ [{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]&(s_{i}w<_{\frac{\infty}{2}}w)\end{cases}.

For each βQ\beta\in Q^{\vee}, we set

K𝐆(𝐐Grat):=Dw0(K𝐇(𝐐Grat))and K𝐆(𝐐G(tβ)):=Dw0(K𝐇(𝐐G(tβ))).K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}}):=D_{w_{0}}(K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}))\hskip 8.53581pt\text{and}\hskip 8.53581ptK_{\mathbf{G}}(\mathbf{Q}_{G}(t_{\beta})):=D_{w_{0}}(K_{\mathbf{H}}(\mathbf{Q}_{G}(t_{\beta}))).

From the description of Theorem 2.8, we deduce that the right QQ^{\vee}-action gives q\mathscr{H}_{q}-module endomorphisms of K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}). We denote this endomorphism for βQ\beta\in Q^{\vee} by QβQ^{\beta}. It gives rise to an endomorphism of K𝐆(𝐐Grat)K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}}). We set q((Q)):=qQqQ+q[[Q+]]{\mathbb{C}}_{q}(\!(Q^{\vee})\!):={\mathbb{C}}_{q}Q^{\vee}\otimes_{{\mathbb{C}}_{q}Q^{\vee}_{+}}{\mathbb{C}}_{q}[\![Q^{\vee}_{+}]\!]. The commutative rings qQ{\mathbb{C}}_{q}Q^{\vee} and q((Q)){\mathbb{C}}_{q}(\!(Q^{\vee})\!) act on K𝐆(𝐐Grat)K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}}) from the right.

Theorem 2.9.

For each λΛ\lambda\in\Lambda, the [𝐇]{\mathbb{C}}[\mathbf{H}]-linear extension of the assignment

[𝒪𝐐G(w)][𝒪𝐐G(w)(λ)]K𝐇(𝐐Grat)wWaf[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mapsto[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda)]\in K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}})\hskip 8.53581ptw\in W_{\mathrm{af}}

defines a q\mathscr{H}_{q}-module automorphism ((that we call Ξ(λ))\Xi(\lambda)). In addition, we have:

  1. 1.

    Ξ(λ)Ξ(μ)=Ξ(λ+μ)\Xi(\lambda)\circ\Xi(\mu)=\Xi(\lambda+\mu) for λ,μΛ\lambda,\mu\in\Lambda;

  2. 2.

    [𝒪𝐐G(w)(λ)]=ewλ[𝒪𝐐G(w)]+v<2wawv(λ)[𝒪𝐐G(v)][{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda)]=e^{w\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]+\sum_{v<_{\frac{\infty}{2}}w}a_{w}^{v}(\lambda)[{\mathcal{O}}_{\mathbf{Q}_{G}(v)}] for awv[𝐇]a_{w}^{v}\in{\mathbb{C}}[\mathbf{H}];

  3. 3.

    The coefficients awva_{w}^{v} belongs to a q{\mathbb{C}}_{q}-span of {eμ}μΣ(λ)\{e^{\mu}\}_{\mu\in\Sigma(\lambda)};

  4. 4.

    [𝒪(w)(λ)]=ewλ[𝒪(w)]+w<vWawv(λ)[𝒪(v)][{\mathcal{O}}_{\mathscr{B}(w)}(\lambda)]=e^{w\lambda}[{\mathcal{O}}_{\mathscr{B}(w)}]+\sum_{w<v\in W}a_{w}^{v}(\lambda)[{\mathcal{O}}_{\mathscr{B}(v)}] for each wWw\in W.

Proof.

The existence of the q\mathscr{H}_{q}-module structure and the assertion in the first item follow from [28, Theorem 6.4] (though the definition of the KK-groups are slightly different). The second item follows by [28, Theorem 5.10] since a path with the equal initial/final directions is unique, and the path interpretation of coefficients awva_{w}^{v} automatically imposes order relation v<2wv<_{\frac{\infty}{2}}w (see [28, §2.3]). The third item follows from the fact that awva_{w}^{v} is obtained as a qq-weighted count of the character of the global Weyl modules, whose set of HH-weights are contained in Σ(λ)\Sigma(\lambda) (see e.g. [24, §1.2]).

We prove the fourth item. The open dense G[[z]]G[\![z]\!]-orbit 𝕆\mathbb{O} of 𝐐G(e)\mathbf{Q}_{G}(e) is the affine fibration over \mathscr{B}, and its fiber is a homogeneous space of ker(G[[z]]G)\ker\,(G[\![z]\!]\to G). Since the restriction from 𝐐G(e)\mathbf{Q}_{G}(e) to \mathscr{B} passes μ𝒪𝐐G(e)(λ){\mathbb{C}}_{\mu}\otimes{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(\lambda) to μ𝒪(λ){\mathbb{C}}_{\mu}\otimes{\mathcal{O}}_{\mathscr{B}}(\lambda) (λ,μΛ\lambda,\mu\in\Lambda), this restriction yields a [𝐇]{\mathbb{C}}[\mathbf{H}]-linear map

K𝐇(𝐐G(e))K𝐇(𝕆)K𝐇(),K_{\mathbf{H}}(\mathbf{Q}_{G}(e))\longrightarrow K_{\mathbf{H}}(\mathbb{O})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}K_{\mathbf{H}}(\mathscr{B}),

with its kernel spanned by [𝒪𝐐(utβ)][{\mathcal{O}}_{\mathbf{Q}(ut_{\beta})}] for uWu\in W and β0\beta\neq 0. This also maps [𝒪𝐐(u)][{\mathcal{O}}_{\mathbf{Q}(u)}] to [𝒪(u)][{\mathcal{O}}_{\mathscr{B}(u)}] for each uWu\in W. Since vWv\not\in W and v2ev\leq_{\frac{\infty}{2}}e implies v=utβv=ut_{\beta} with uWu\in W and 0βQ+0\neq\beta\in Q^{\vee}_{+}, we conclude the assertion in the third item. ∎

Lemma 2.10 ([26] Lemma 1.14).

For each i𝙸i\in\mathtt{I}, we have

[𝒪𝐐G(si)]=[𝒪𝐐G(e)]eϖi[𝒪𝐐G(e)(ϖi)].[{\mathcal{O}}_{\mathbf{Q}_{G}(s_{i})}]=[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}]-e^{\varpi_{i}}[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(-\varpi_{i})].

We consider a [𝐇]{\mathbb{C}}[\mathbf{H}]-module endomorphism HiH_{i} (i𝙸i\in\mathtt{I}) of K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}) as:

Hi:[𝒪𝐐G(w)][𝒪𝐐G(w)]eϖi[𝒪𝐐G(w)(ϖi)]wWaf.H_{i}:[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mapsto[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]-e^{\varpi_{i}}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(-\varpi_{i})]\hskip 14.22636ptw\in W_{\mathrm{af}}.
Lemma 2.11.

For i,j𝙸i,j\in\mathtt{I}, we have

Ξ(ϖi)Qαj=qαj,ϖiQαjΞ(ϖi)EndqK𝐇(𝐐Grat).\Xi(\varpi_{i})\circ Q^{\alpha^{\vee}_{j}}=q^{-\left<\alpha^{\vee}_{j},\varpi_{i}\right>}Q^{\alpha^{\vee}_{j}}\circ\Xi(\varpi_{i})\in\mathrm{End}_{\mathscr{H}_{q}}K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}).
Proof.

For each wWafw\in W_{\mathrm{af}}, we have

Ξ(ϖi)([𝒪𝐐G(w)])=\displaystyle\Xi(\varpi_{i})([{\mathcal{O}}_{\mathbf{Q}_{G}(w)}])= vWafavw[𝒪𝐐G(v)],where avw[𝐇] and\displaystyle\sum_{v\in W_{\mathrm{af}}}a_{v}^{w}[{\mathcal{O}}_{\mathbf{Q}_{G}(v)}],\hskip 14.22636pt\text{where}\hskip 8.53581pta_{v}^{w}\in{\mathbb{C}}[\mathbf{H}]\text{ and}
gchΓ(𝐐G(w),\displaystyle\mathrm{gch}\,\Gamma(\mathbf{Q}_{G}(w), 𝒪𝐐G(w)(λ+ϖi))=vWafavwgchΓ(𝐐G(v),𝒪𝐐G(v)(λ))\displaystyle{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda+\varpi_{i}))=\sum_{v\in W_{\mathrm{af}}}a_{v}^{w}\mathrm{gch}\,\Gamma(\mathbf{Q}_{G}(v),{\mathcal{O}}_{\mathbf{Q}_{G}(v)}(\lambda))

for each λΛ+\lambda\in\Lambda_{+}. Since we have

gchΓ(𝐐G(wtγ),𝒪𝐐G(wtγ)(λ))=qγ,λgchΓ(𝐐G(w),𝒪𝐐G(w)(λ))\mathrm{gch}\,\Gamma(\mathbf{Q}_{G}(wt_{\gamma}),{\mathcal{O}}_{\mathbf{Q}_{G}(wt_{\gamma})}(\lambda))=q^{-\left<\gamma,\lambda\right>}\mathrm{gch}\,\Gamma(\mathbf{Q}_{G}(w),{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda))

for each γQ\gamma\in Q^{\vee} and λΛ\lambda\in\Lambda by [25, Corollary A.4], we deduce that

Ξ(ϖi)Qαj([𝒪𝐐G(w)])=qαj,ϖiQαjΞ(ϖi)([𝒪𝐐G(w)]).\Xi(\varpi_{i})\circ Q^{\alpha^{\vee}_{j}}([{\mathcal{O}}_{\mathbf{Q}_{G}(w)}])=q^{-\left<\alpha^{\vee}_{j},\varpi_{i}\right>}Q^{\alpha^{\vee}_{j}}\circ\Xi(\varpi_{i})([{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]).

Thus, the [𝐇]{\mathbb{C}}[\mathbf{H}]-linearity of the composition maps implies the result. ∎

The following result is a version of the Demazure character formula for semi-infinite flag manifolds [24, Theorem A]:

Theorem 2.12.

Let wWw\in W and λΛ\lambda\in\Lambda. We have

Dtwβ[𝒪𝐐G(w)(λ)]=[𝒪𝐐G(wtβ)(λ)]=qβ,λQβ[𝒪𝐐G(w)(λ)]D_{t_{w\beta}}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda)]=[{\mathcal{O}}_{\mathbf{Q}_{G}(wt_{\beta})}(\lambda)]=q^{-\left<\beta,\lambda\right>}Q^{\beta}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}(\lambda)]

for every βQ<\beta\in Q^{\vee}_{<}. Moreover, {𝒪𝐐G(e)(λ)}λΛ\{{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(\lambda)\}_{\lambda\in\Lambda} is a q((Q)){\mathbb{C}}_{q}(\!(Q^{\vee})\!)-free basis of K𝐆(𝐐Grat)K_{\mathbf{G}}(\mathbf{Q}^{\mathrm{rat}}_{G}).

Proof.

The first assertion for λΛ+\lambda\in\Lambda_{+} is [24, Theorem 4.13] (it lifts to the formal version by [28]). In view of Theorem 2.9, it prolongs to all λΛ\lambda\in\Lambda. This proves the first assertion.

We prove the second assertion. Note that uW[𝐇][𝒪𝐐G(u)]K𝐇(𝐐Grat)\bigoplus_{u\in W}{\mathbb{C}}[\mathbf{H}][{\mathcal{O}}_{\mathbf{Q}_{G}(u)}]\subset K_{\mathbf{H}}(\mathbf{Q}^{\mathrm{rat}}_{G}) is stable by the q(𝙸)\mathscr{H}_{q}(\mathtt{I})-action, and it is isomorphic to K𝐇()K_{\mathbf{H}}(\mathscr{B}) as q(𝙸)\mathscr{H}_{q}(\mathtt{I})-modules by the comparison of the actions. In view of Theorem 2.9 2) and 4), it follows that the coefficient of [𝒪𝐐G(e)][{\mathcal{O}}_{\mathbf{Q}_{G}(e)}] distinguishes two elements in the Dw0D_{w_{0}}-invariants of uW[𝐇][𝒪𝐐G(u)]\bigoplus_{u\in W}{\mathbb{C}}[\mathbf{H}][{\mathcal{O}}_{\mathbf{Q}_{G}(u)}]. Since we allow formal sums with respect to Q+Q^{\vee}_{+}, we conclude that {𝒪𝐐G(e)(λ)}λΛ\{{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(\lambda)\}_{\lambda\in\Lambda} defines a q[[Q]]{\mathbb{C}}_{q}[\![Q^{\vee}]\!]-free basis of K𝐆(𝐐G(e))K_{\mathbf{G}}(\mathbf{Q}_{G}(e)). Now the assertion follows by the QQ^{\vee}-translations.∎

Lemma 2.13.

For each i𝙸afi\in\mathtt{I}_{\mathrm{af}}, λ𝕏\lambda\in\mathbb{X}^{*}, and wWafw\in W_{\mathrm{af}}, we have

Di(eλ[𝒪𝐐G(w)]){eλ[𝒪𝐐G(w)]+esiλ[𝒪𝐐G(siw)]αi,λ<0,siw>2weλ[𝒪𝐐G(siw)]αi,λ=0,siw>2wesiλ[𝒪𝐐G(w)]+esiλ[𝒪𝐐G(siw)]αi,λ>0,siw>2w(eλ+esiλ)[𝒪𝐐G(w)]αi,λ<0,siw<2weλ[𝒪𝐐G(w)]αi,λ=0,siw<2w0αi,λ>0,siw<2wD_{i}(e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}])\equiv\begin{cases}e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]+e^{s_{i}\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(s_{i}w)}]&\left<\alpha_{i}^{\vee},\lambda\right><0,s_{i}w>_{\frac{\infty}{2}}w\\ e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(s_{i}w)}]&\left<\alpha_{i}^{\vee},\lambda\right>=0,s_{i}w>_{\frac{\infty}{2}}w\\ -e^{s_{i}\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]+e^{s_{i}\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(s_{i}w)}]&\left<\alpha_{i}^{\vee},\lambda\right>>0,s_{i}w>_{\frac{\infty}{2}}w\\ (e^{\lambda}+e^{s_{i}\lambda})[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]&\left<\alpha_{i}^{\vee},\lambda\right><0,s_{i}w<_{\frac{\infty}{2}}w\\ e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]&\left<\alpha_{i}^{\vee},\lambda\right>=0,s_{i}w<_{\frac{\infty}{2}}w\\ 0&\left<\alpha_{i}^{\vee},\lambda\right>>0,s_{i}w<_{\frac{\infty}{2}}w\end{cases}

modulo the q{\mathbb{C}}_{q}-span of {eμ[𝒪𝐐G(v)]μΣ(λ),vWaf}\{e^{\mu}[{\mathcal{O}}_{\mathbf{Q}_{G}(v)}]\mid\mu\in\Sigma_{*}(\lambda),v\in W_{\mathrm{af}}\}.

Proof.

The assertion follows from the behavior of the Hecke operators (i.e. Di1D_{i}-1) seen in (the t=0t=0 version of the t1/2t^{1/2}-twist of) [12, Proposition 3.3]. One can also directly prove using Corollary 1.5 and the convexity results in [12, §1]. ∎

Let λΛ\lambda\in\Lambda. We consider two subspaces

Kλ:=\displaystyle K_{\preceq\lambda}:= Spanq{eμ[𝒪𝐐G(w)]wWaf,μΣ(λ)}K𝐇(𝐐Grat)\displaystyle\,\mbox{\rm Span}_{{\mathbb{C}}_{q}}\{e^{\mu}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mid w\in W_{\mathrm{af}},\mu\in\Sigma(\lambda)\}\subset K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}})
Kλ:=\displaystyle K_{\prec\lambda}:= Spanq{eμ[𝒪𝐐G(w)]wWaf,μΣ(λ)}K𝐇(𝐐Grat).\displaystyle\,\mbox{\rm Span}_{{\mathbb{C}}_{q}}\{e^{\mu}[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\mid w\in W_{\mathrm{af}},\mu\in\Sigma_{*}(\lambda)\}\subset K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}).

Here we stress that our span consists of finite sums.

Corollary 2.14.

For each λΛ\lambda\in\Lambda, the spaces KλKλK_{\prec\lambda}\subset K_{\preceq\lambda} are q0\mathscr{H}_{q}^{0}-submodules of K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}}).

Proof.

Combine Theorem 2.8, Corollary 1.5, and Lemma 2.13. ∎

Theorem 2.15.

For each λΛ\lambda\in\Lambda, we have a unique element C(λ)KλC(\lambda)\in K_{\preceq\lambda} with the following properties:

  1. 1.

    We have C(λ)Dw0(ew0λ[𝒪𝐐G(w0)])modKλC(\lambda)\equiv D_{w_{0}}(e^{w_{0}\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w_{0})}])\mod K_{\prec\lambda};

  2. 2.

    For each βQ<\beta\in Q^{\vee}_{<}, we have DtβC(λ)=qβ,λC(λ)QβD_{t_{\beta}}C(\lambda)=q^{-\left<\beta,\lambda\right>}C(\lambda)Q^{\beta}.

Proof of Theorem 2.15.

We prove the assertion by induction on the inclusion relation between Σ(λ)\Sigma(\lambda). We assume that Dw0KλD_{w_{0}}K_{\prec\lambda} is spanned by the joint eigenvectors with respect to the action of {Dtβ}βQ<\{D_{t_{\beta}}\}_{\beta\in Q^{\vee}_{<}}, and construct C(λ)Dw0KλC(\lambda)\in D_{w_{0}}K_{\preceq\lambda}. Thanks to Theorem 2.12 and Theorem 2.9, the element C(λ)C(\lambda) exists (in fact uniquely) as an element in K𝐇(𝐐Grat)K_{\mathbf{H}}(\mathbf{Q}^{\mathrm{rat}}_{G}).

The case λ=0\lambda=0 is clear by setting C(0):=Dw0([𝒪𝐐G(w0)])=[𝒪𝐐G(e)]C(0):=D_{w_{0}}([{\mathcal{O}}_{\mathbf{Q}_{G}(w_{0})}])=[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}] thanks to Lemma 2.13.

We consider the general case by induction. Write e>2w=utγe>_{\frac{\infty}{2}}w=ut_{\gamma} for uWu\in W and γQ+\gamma\in Q^{\vee}_{+}. Let βQ<\beta^{\prime}\in Q^{\vee}_{<} be such that γ+βQ<\gamma+\beta^{\prime}\in Q^{\vee}_{<}. We have

(wtβ)=(tβ)(u)2γ,ρand hence (wtβ)<(tβ)\ell(wt_{\beta^{\prime}})=\ell(t_{\beta^{\prime}})-\ell(u)-2\left<\gamma,\rho\right>\hskip 14.22636pt\text{and hence}\hskip 14.22636pt\ell(wt_{\beta^{\prime}})<\ell(t_{\beta^{\prime}})

by Theorem 1.2. It follows that

(tβ+β)>(wtβ)+(tβ)βQ<.\ell(t_{\beta+\beta^{\prime}})>\ell(wt_{\beta^{\prime}})+\ell(t_{\beta})\hskip 28.45274pt\beta\in Q^{\vee}_{<}.

Consequently, the coefficient of [𝒪𝐐G(tβ)][{\mathcal{O}}_{\mathbf{Q}_{G}(t_{\beta})}] of Dtβ(C(λ))D_{t_{\beta}}(C(\lambda)) modulo KλK_{\prec\lambda} must be determined by the coefficient of [𝒪𝐐G(e)][{\mathcal{O}}_{\mathbf{Q}_{G}(e)}] in C(λ)C(\lambda) by Lemma 2.13, that is etβ(λ)=qβ,λeλe^{t_{\beta}(\lambda)}=q^{-\left<\beta,\lambda\right>}e^{\lambda}. We set

C(λ):=Dw0(ew0λ[𝒪𝐐G(w0)]).C^{\prime}(\lambda):=D_{w_{0}}(e^{w_{0}\lambda}[{\mathcal{O}}_{\mathbf{Q}_{G}(w_{0})}]).

Since Dtβ(C(λ))D_{t_{\beta}}(C^{\prime}(\lambda)) is Dw0D_{w_{0}}-invariant, we conclude that

Dtβ(C(λ))=qβ,λC(λ)QβmodKλD_{t_{\beta}}(C^{\prime}(\lambda))=q^{-\left<\beta,\lambda\right>}C^{\prime}(\lambda)Q^{\beta}\mod K_{\prec\lambda}

by Theorem 2.12. In particular, we find that

Dtβ(C(λ))qβ,λC(λ)QβKλ.D_{t_{\beta}}(C^{\prime}(\lambda))-q^{-\left<\beta,\lambda\right>}C^{\prime}(\lambda)Q^{\beta}\in K_{\prec\lambda}. (2.1)

By the first condition of our assertion and the induction hypothesis, we find that Dw0KλD_{w_{0}}K_{\prec\lambda} is spanned by {C(μ)}μΣ(λ)\{C(\mu)\}_{\mu\in\Sigma_{*}(\lambda)} as a qQ{\mathbb{C}}_{q}Q^{\vee}-module. These are the DtβD_{t_{\beta}}-eigenvectors for each βQ<\beta\in Q^{\vee}_{<}. We expand the LHS of (2.1) as

μΣ(λ)C(μ)bλμbλμqQ+.\sum_{\mu\in\Sigma_{*}(\lambda)}C(\mu)b_{\lambda}^{\mu}\hskip 14.22636ptb_{\lambda}^{\mu}\in{\mathbb{C}}_{q}Q^{\vee}_{+}.

Here we remark that this sum must be finite.

For any choices of cλμ(q)[[Q+]]c_{\lambda}^{\mu}\in{\mathbb{C}}(q)[\![Q^{\vee}_{+}]\!] (μΛ\mu\in\Lambda), we have

Dtβ(C(λ)\displaystyle D_{t_{\beta}}(C^{\prime}(\lambda)- μΣ(λ)C(μ)cλμ)qβ,λ(C(λ)μΣ(λ)C(μ)cλμ)\displaystyle\,\sum_{\mu\in\Sigma_{*}(\lambda)}C(\mu)c_{\lambda}^{\mu})-q^{-\left<\beta,\lambda\right>}(C^{\prime}(\lambda)-\sum_{\mu\in\Sigma_{*}(\lambda)}C(\mu)c_{\lambda}^{\mu})
=μΣ(λ)C(μ)(bλμqβ,μcλμ+qβ,λcλμ).\displaystyle=\sum_{\mu\in\Sigma_{*}(\lambda)}C(\mu)(b_{\lambda}^{\mu}-q^{-\left<\beta,\mu\right>}c_{\lambda}^{\mu}+q^{-\left<\beta,\lambda\right>}c_{\lambda}^{\mu}).

It follows that the element

C(λ)μΣ(λ)cλμC(μ)cλμ:=qβ,μ1qβ,μλbλμ11qβ,μλqQ+C^{\prime}(\lambda)-\sum_{\mu\in\Sigma_{*}(\lambda)}c_{\lambda}^{\mu}C(\mu)\hskip 14.22636ptc_{\lambda}^{\mu}:=\frac{q^{\left<\beta,\mu\right>}}{1-q^{\left<\beta,\mu-\lambda\right>}}b_{\lambda}^{\mu}\in\frac{1}{1-q^{\left<\beta,\mu-\lambda\right>}}{\mathbb{C}}_{q}Q^{\vee}_{+} (2.2)

satisfies the desired properties in (q)qKλ{\mathbb{C}}(q)\otimes_{{\mathbb{C}}_{q}}K_{\preceq\lambda} (note that we have β,μλ0\left<\beta,\mu-\lambda\right>\neq 0 for every μΣ(λ)\mu\in\Sigma_{*}(\lambda) for some choice of β\beta). Here we remark that the coefficients {cλμ}μ\{c_{\lambda}^{\mu}\}_{\mu} does not depend on the choice of βQ<\beta\in Q^{\vee}_{<} by the characterization in (q)qK𝐇(𝐐Grat){\mathbb{C}}(q)\otimes_{{\mathbb{C}}_{q}}K_{\mathbf{H}}(\mathbf{Q}^{\mathrm{rat}}_{G}) coming from Theorem 2.12. Thus, we conclude that (2.2) belongs to

Kλ=(C(q)qKλ)K𝐇(𝐐Grat)(q)qK𝐇(𝐐Grat).K_{\preceq\lambda}=\left(C(q)\otimes_{{\mathbb{C}}_{q}}K_{\preceq\lambda}\right)\cap K_{\mathbf{H}}(\mathbf{Q}^{\mathrm{rat}}_{G})\subset{\mathbb{C}}(q)\otimes_{{\mathbb{C}}_{q}}K_{\mathbf{H}}(\mathbf{Q}^{\mathrm{rat}}_{G}).

Therefore, we obtain the desired element C(λ)C(\lambda) inside KλK_{\preceq\lambda} by induction. Hence, the induction proceeds and we conclude the result. ∎

Corollary 2.16.

For each i𝙸i\in\mathtt{I}, we have

[𝒪𝐐G(e)(ϖi)]=C(ϖi)11Qαi:=m0C(ϖi)Qmαi.[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(\varpi_{i})]=C(\varpi_{i})\frac{1}{1-Q^{\alpha_{i}^{\vee}}}:=\sum_{m\geq 0}C(\varpi_{i})Q^{m\alpha_{i}^{\vee}}.
Proof.

Compare C(ϖi)C(\varpi_{i}) with the Pieri-Chevalley rule in [28, Theorem 5.10] through Theorem 2.12. ∎

Theorem 2.17 ([26] Theorem 3.11 and Remark 3.12).

There exists a R(𝐆)R(\mathbf{G})-linear embedding

ΨG:qK𝐆()K𝐆(𝐐Grat)\Psi_{G}:qK_{\mathbf{G}}(\mathscr{B})\hookrightarrow K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}})

such that:

  1. 1.

    ΨG(Qβ)=[𝒪𝐐G(tβ)]\Psi_{G}(Q^{\beta})=[{\mathcal{O}}_{\mathbf{Q}_{G}(t_{\beta})}] for each βQ+\beta\in Q^{\vee}_{+};

  2. 2.

    ΨG(Aλ())=Ξ(λ)(ΨG())\Psi_{G}(A^{\lambda}(\bullet))=\Xi(\lambda)(\Psi_{G}(\bullet)) for each λΛ+-\lambda\in\Lambda_{+}. \Box

3 Darboux coordinates of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}

We work in the same settings as in §1.1.

3.1 Non-commutative KK-theoretic Peterson isomorphism

Theorem 3.1.

Assume that GG is simple. We have a qsph\mathscr{H}_{q}^{\mathrm{sph}}-module embedding

ΦG:K𝐆(GrG)locK𝐆(𝐐Grat)\Phi_{G}:K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}})

that sends [𝒪GrG(0)][{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}] to [𝒪𝐐G(e)][{\mathcal{O}}_{\mathbf{Q}_{G}(e)}], intertwines the right product q\odot_{q} on the LHS to the tensor product on the RHS. More precisely, we have: For each i𝙸i\in\mathtt{I} and ξK𝐆(GrG)\xi\in K_{\mathbf{G}}(\mathrm{Gr}_{G}), it holds

Φ(ξq(eϖieϖi𝐡i))=Ξ(ϖi)(ξ).\Phi(\xi\odot_{q}(e^{-\varpi_{i}}-e^{-\varpi_{i}}{\mathbf{h}}_{i}))=\Xi(-\varpi_{i})(\xi).

To prove Theorem 3.1, we need:

Lemma 3.2.

We have an isomorphism

Endqsph(K𝐆(GrG)loc)K𝐆(GrG)loc\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}})\cong K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}

determined by the image of [𝒪GrG(0)][{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}]. In particular, every qsph\mathscr{H}_{q}^{\mathrm{sph}}-endomorphism of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} is obtained by the composition of the right multiplication of K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) followed by the application of 𝚝γ{\mathtt{t}}_{\gamma} for some γ𝕏\gamma\in\mathbb{X}_{*}.

Proof.

As the torus factor HH^{\prime} of GG produces K𝐇(GrH)=K𝐇(GrH)locK_{\mathbf{H}^{\prime}}(\mathrm{Gr}_{H^{\prime}})=K_{\mathbf{H}^{\prime}}(\mathrm{Gr}_{H^{\prime}})_{\mathrm{loc}} as a (q{\mathbb{C}}_{q}-)tensor factors of K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) and K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} that are isomorphic to a Heisenberg algebra, we can factor out such a factor to assume that GG is simple.

Since K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) affords a regular representation of qsph\mathscr{H}_{q}^{\mathrm{sph}}, we see that

Endqsph(K𝐆(GrG))K𝐆(GrG).\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G}))\cong K_{\mathbf{G}}(\mathrm{Gr}_{G}).

Here the isomorphism is obtained by the right multiplication and hence fEndqsph(K𝐆(GrG))f\in\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})) is determined by f(1)f(1).

Let fEndqsph(K𝐆(GrG))f\in\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})). By construction of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}, we can take β𝕏\beta\in\mathbb{X}_{*}^{-} such that f(1)q𝚝βK𝐆(GrG)f(1)\odot_{q}{\mathtt{t}}_{\beta}\in K_{\mathbf{G}}(\mathrm{Gr}_{G}). It follows that 1f(1)q𝚝β1\mapsto f(1)\odot_{q}{\mathtt{t}}_{\beta} uniquely gives rise to an element of Endqsph(K𝐆(GrG))\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})). Since the right action of 𝚝β{\mathtt{t}}_{\beta} is invertible, we conclude that f(1)K𝐆(GrG)locf(1)\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} already defines an element of Endqsph(K𝐆(GrG)loc)\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}) uniquely as required. ∎

Proof of Theorem 3.1.

Thanks to [26, Proposition 2.13 and Remark 2.14], we have a qsph\mathscr{H}_{q}^{\mathrm{sph}}-module embedding

ΦG:K𝐆(GrG)locK𝐆(𝐐Grat)\Phi_{G}:K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}})

that sends 𝚝β{\mathtt{t}}_{\beta} to [𝒪𝐐G(tβ)][{\mathcal{O}}_{\mathbf{Q}_{G}(t_{\beta})}] as the (left) Dw0D_{w_{0}}-invariant part of the corresponding embedding of 𝐇\mathbf{H}-equivariant KK-groups (cf. Corollary 3.3).

From the construction of the map ΦG\Phi_{G} through its 𝐇\mathbf{H}-equivariant variants, we see that K𝐆(𝐐Grat)K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}}) is the completion of the image of ΦG\Phi_{G} with respect to the topology given in §2.2. In view of Lemma 3.2, we find that Ξ(λ)\Xi(\lambda) defines an element of Endqsph(K𝐆(GrG)loc)\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}) if and only if Ξ(λ)([𝒪𝐐G(e)])\Xi(\lambda)([{\mathcal{O}}_{\mathbf{Q}_{G}(e)}]) is a finite linear combination of {[𝒪𝐐G(w)]}wWaf\{[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\}_{w\in W_{\mathrm{af}}}. This happens for λ=ϖi\lambda=-\varpi_{i} by Lemma 2.10. Namely, we have Ξ(ϖi)=eϖi(idHi)\Xi(-\varpi_{i})=e^{-\varpi_{i}}(\mathrm{id}-H_{i}). Again by [26, Proposition 2.13 and Remark 2.14], we conclude that Ξ(ϖi)\Xi(-\varpi_{i}) induces a(n left qsph\mathscr{H}_{q}^{\mathrm{sph}}-module) endomorphism of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} that sends [𝒪GrG(0)][{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}] to eϖi(id𝐡i)e^{-\varpi_{i}}(\mathrm{id}-{\mathbf{h}}_{i}). Therefore, we conclude that the equality in the assertion. ∎

Corollary 3.3.

Assume that GG is simple. We have a q\mathscr{H}_{q}-module embedding

Φ:K𝐇(GrG)locK𝐇(𝐐Grat)\Phi:K_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}})

extending ΦG\Phi_{G} with the following properties:

  1. 1.

    we have Φ([𝒪GrG(utβ)])=[𝒪𝐐G(utβ)]\Phi([{\mathcal{O}}_{\mathrm{Gr}_{G}(ut_{\beta})}])=[{\mathcal{O}}_{\mathbf{Q}_{G}(ut_{\beta})}] for uWu\in W and βQ<\beta\in Q^{\vee}_{<};

  2. 2.

    the right multiplication by 𝚝γ{\mathtt{t}}_{\gamma} corresponds to the right translation by γQγ\gamma\in Q^{\gamma} for each γQ\gamma\in Q^{\vee};

  3. 3.

    For each i𝙸i\in\mathtt{I} and ξK𝐇(GrG)loc\xi\in K_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}}, it holds

    Φ(ξq𝐡i)=Hi(ξ).\Phi(\xi\odot_{q}{\mathbf{h}}_{i})=H_{i}(\xi).
Proof.

Notice that we have [𝒪]K𝐆()[{\mathcal{O}}_{\mathscr{B}}]\in K_{\mathbf{G}}(\mathscr{B}) in Theorem 1.6, that results in q(𝙸)K𝐆()=K𝐇()\mathscr{H}_{q}(\mathtt{I})K_{\mathbf{G}}(\mathscr{B})=K_{\mathbf{H}}(\mathscr{B}) by Theorem 1.6 5). The comparison of Theorem 1.6 with Theorem 2.2 yields

qK𝐆(GrG)loc=q[H]K𝐆(GrG)loc=K𝐇(GrG)loc,\mathscr{H}_{q}K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}={\mathbb{C}}_{q}[H]K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}=K_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}},

while the comparison of Theorem 1.6 with Theorem 2.8 yields

qK𝐆(𝐐Grat)=q[H]K𝐆(𝐐Grat)=K𝐇(𝐐Grat)\mathscr{H}_{q}K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}})={\mathbb{C}}_{q}[H]K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}})=K_{\mathbf{H}}(\mathbf{Q}_{G}^{\mathrm{rat}})

as q\mathscr{H}_{q}-modules with the desired properties except for the first item. The first item follows from [26, Proposition 2.13 and Remark 2.14]. ∎

Corollary 3.4.

Keep the setting of Lemma 3.2. Each qsph\mathscr{H}_{q}^{\mathrm{sph}}-module endomorphism of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} is continuous with respect to the the topology induced from the topology of K𝐇(𝐐[G,G]rat)K_{\mathbf{H}}(\mathbf{Q}_{[G,G]}^{\mathrm{rat}}) ((defined in §2.2)\S\ref{sif}) under Φ[G,G]\Phi_{[G,G]} ((by extending the scalar from q{\mathbb{C}}_{q} to K𝐇(GrH))K_{\mathbf{H}^{\prime}}(\mathrm{Gr}_{H^{\prime}})). \Box

3.2 Darboux generators of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}

For each i𝙸i\in\mathtt{I}, we set

ϕi:=eϖi(idq𝐡i)K𝐆(GrG)locEndqsph(K𝐆(GrG)loc).\phi_{i}:=e^{-\varpi_{i}}(\mathrm{id}-\odot_{q}{\mathbf{h}}_{i})\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\cong\mathrm{End}_{\mathscr{H}_{q}^{\mathrm{sph}}}(K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}).
Lemma 3.5.

Assume that GG is simple. There exists a unique qsph\mathscr{H}_{q}^{\mathrm{sph}}-module endomorphism ξi\xi_{i} on K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} for each i𝙸i\in\mathtt{I} such that

ξiϕi=(id𝚝αi)and ϕiξi=(idq𝚝αi).\xi_{i}\circ\phi_{i}=(\mathrm{id}-{\mathtt{t}}_{\alpha^{\vee}_{i}})\hskip 8.53581pt\text{and}\hskip 8.53581pt\phi_{i}\circ\xi_{i}=(\mathrm{id}-q{\mathtt{t}}_{\alpha^{\vee}_{i}}).

In addition, we have

ξiξj=ξjξi,ξiϕj=ϕjξi,and ϕiϕj=ϕjϕiij.\xi_{i}\circ\xi_{j}=\xi_{j}\circ\xi_{i},\hskip 8.53581pt\xi_{i}\circ\phi_{j}=\phi_{j}\circ\xi_{i},\hskip 8.53581pt\text{and}\hskip 8.53581pt\phi_{i}\circ\phi_{j}=\phi_{j}\circ\phi_{i}\hskip 14.22636pti\neq j.
Proof.

We transplant these endomorphisms to K𝐆(𝐐Grat)K_{\mathbf{G}}(\mathbf{Q}_{G}^{\mathrm{rat}}). We set ϕi\phi_{i} to be the endomorphism Ξ(ϖi)\Xi(-\varpi_{i}), and ξi\xi_{i} to be the endomorphism (1Qαi)Ξ(ϖi)(1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}) for each i𝙸i\in\mathtt{I}. A priori, ξi\xi_{i} only defines a qsph\mathscr{H}_{q}^{\mathrm{sph}}-endomorphism of the completion of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} that is isomorphic to K𝐆(𝐐rat)K_{\mathbf{G}}(\mathbf{Q}^{\mathrm{rat}}) via (the natural extension of) ΦG\Phi_{G}. To see that ξi\xi_{i} defines an endomorphism of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}, it suffices to see that whether (1Qαi)Ξ(ϖi)(1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}) defines an endomorphism of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}. By Corollary 3.4, it suffices to see that

(1Qαi)Ξ(ϖi)([𝒪𝐐G(e)])=[𝒪𝐐G(e)(ϖi)][𝒪𝐐G(tαi)(ϖi)](1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i})([{\mathcal{O}}_{\mathbf{Q}_{G}(e)}])=[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}(\varpi_{i})]-[{\mathcal{O}}_{\mathbf{Q}_{G}(t_{\alpha_{i}^{\vee}})}(\varpi_{i})]

is a finite linear combination of {[𝒪𝐐G(w)]}wWaf\{[{\mathcal{O}}_{\mathbf{Q}_{G}(w)}]\}_{w\in W_{\mathrm{af}}}, that is the content of Corollary 2.16. Now the commutation relation between them follow from Lemma 2.11. ∎

Corollary 3.6.

Keep the setting of Lemma 3.5. Then, the elements

ΦG((i𝙸,αi,λ<0ξiαi,λ)(i𝙸,αi,λ>0ϕiαi,λ)[𝒪GrG(0)])λΛ\Phi_{G}(\left(\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right><0}\xi_{i}^{-\left<\alpha_{i}^{\vee},\lambda\right>}\right)\left(\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right>>0}\phi_{i}^{\left<\alpha_{i}^{\vee},\lambda\right>}\right)[{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}])\hskip 14.22636pt\lambda\in\Lambda (3.1)

are qQ{\mathbb{C}}_{q}Q^{\vee}-linearly independent in K𝐆(𝐐rat)K_{\mathbf{G}}(\mathbf{Q}^{\mathrm{rat}}). In particular, there is no additional relations among {ξi,ϕi}i𝙸\{\xi_{i},\phi_{i}\}_{i\in\mathtt{I}} ((to those presented in Lemma 3.5)\ref{Heis-comp}).

Proof.

The elements in (3.1) are non-zero since ϕi\phi_{i} and ξi\xi_{i} defines Ξ(ϖi)\Xi(-\varpi_{i}) and (1Qαi)Ξ(ϖi)(1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}) for each i𝙸i\in\mathtt{I}, that are invertible in K𝐆(𝐐rat)K_{\mathbf{G}}(\mathbf{Q}^{\mathrm{rat}}). In view of Theorem 2.12, these elements belong to different (joint) eigenspaces with respect to the action of DtβD_{t_{\beta}} (βQ<\beta\in Q^{\vee}_{<}), and hence they are qQ{\mathbb{C}}_{q}Q^{\vee}-linearly independent. If we have an additional relation among {ξi,ϕi}i𝙸\{\xi_{i},\phi_{i}\}_{i\in\mathtt{I}}, then it violates the linear independence of (3.1). Consequently, it is impossible and hence the relations presented in Lemma 3.5 is optimal. ∎

We set qK𝐇()loc:=QQ+qK𝐇()qK_{\mathbf{H}}(\mathscr{B})_{\mathrm{loc}}:={\mathbb{C}}Q^{\vee}\otimes_{{\mathbb{C}}Q^{\vee}_{+}}qK_{\mathbf{H}}(\mathscr{B}).

Theorem 3.7.

Assume that GG is simple. We have a q\mathscr{H}_{q}-module isomorphism

Ψ1Φ:K𝐇(GrG)locqK𝐇()loc\Psi^{-1}\circ\Phi:K_{\mathbf{H}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow qK_{\mathbf{H}}(\mathscr{B})_{\mathrm{loc}}

with the following properties:

  1. 1.

    We have (Ψ1Φ)([𝒪GrG(u)]𝚝β)=[𝒪(u)]Qβ(\Psi^{-1}\circ\Phi)([{\mathcal{O}}_{\mathrm{Gr}_{G}(u)}]{\mathtt{t}}_{\beta})=[{\mathcal{O}}_{\mathscr{B}(u)}]Q^{\beta} for uWu\in W and βQ\beta\in Q^{\vee};

  2. 2.

    For each i𝙸i\in\mathtt{I} and ξK𝐆(GrG)loc\xi\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}, it holds

    (Ψ1Φ)(ϕi(ξ))=Aϖi((Ψ1Φ)(ξ)).(\Psi^{-1}\circ\Phi)(\phi_{i}(\xi))=A^{-\varpi_{i}}\left((\Psi^{-1}\circ\Phi)(\xi)\right).
Proof.

The existence of the isomorphism and the first item follows from Corollary 3.3 and [26, Theorem 4.1 and its proof]. The second item is a consequence of the identification of ϕi\phi_{i} with Ξ(ϖi)\Xi(-\varpi_{i}) under Φ\Phi. ∎

Proposition 3.8.

We have a q{\mathbb{C}}_{q}-algebra embedding

K𝐆(GrG)locK𝐇(GrH)K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H})

given by 𝚝γ𝚝γ{\mathtt{t}}_{\gamma}\mapsto{\mathtt{t}}_{\gamma} (γ𝕏)(\gamma\in\mathbb{X}_{*}), eλeλe^{\lambda}\mapsto e^{\lambda} (λ𝕏(G))(\lambda\in\mathbb{X}^{*}(G)), and

ϕieϖi,ξi(1𝚝αi)eϖi(i𝙸).\phi_{i}\mapsto e^{-\varpi_{i}},\xi_{i}\mapsto(1-{\mathtt{t}}_{\alpha_{i}^{\vee}})e^{\varpi_{i}}\hskip 5.69054pt(i\in\mathtt{I}).
Remark 3.9.

1) Taking Theorem 3.1 into account, Proposition 3.8 follows as the symmetrization of a result of Daniel Orr [43, (0.2) and Theorem 5.1] when GG is simple of types 𝖠𝖣𝖤\mathsf{ADE}; 2) By taking the q=1q=1 specialization, this embedding becomes an embedding of commutative algebras that gives rise to an isomorphism between their fraction fields.

Proof of Proposition 3.8.

The element eλe^{\lambda} (λ𝕏(G))(\lambda\in\mathbb{X}^{*}(G)) and tγt_{\gamma} (γ𝕏(G)\gamma\in\mathbb{X}_{*}(G)) generates a common subalgebras of the both sides. If we add these elements to the case of G=[G,G]G=[G,G], then we obtain the whole embedding. Thus, we can assume that GG is simple.

The commutation relation is preserved by a direct calculation. Thus, it remains to see that the elements in Proposition 3.8 generates the whole K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}. We have

(j=0m1(1qjQαi))Ξ(mϖi)\displaystyle\left(\prod_{j=0}^{m-1}(1-q^{-j}Q^{\alpha_{i}^{\vee}})\right)\Xi(m\varpi_{i}) =(j=0m1(1qjQαi))Ξ(ϖi)m\displaystyle=\left(\prod_{j=0}^{m-1}(1-q^{-j}Q^{\alpha_{i}^{\vee}})\right)\Xi(\varpi_{i})^{m}
=(1Qαi)Ξ(ϖi)\displaystyle=(1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}) (j=0m2(1qjQαi))Ξ(ϖi)m1\displaystyle\left(\prod_{j=0}^{m-2}(1-q^{-j}Q^{\alpha_{i}^{\vee}})\right)\Xi(\varpi_{i})^{m-1}
=\displaystyle=\cdots
=((1Qαi)Ξ(ϖi))m.\displaystyle=\left((1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i})\right)^{m}.

The Pieri-Chevalley rule [28, Theorem 5.13] is [𝐇]{\mathbb{C}}[\mathbf{H}]-linear, and the action of Ξ(ϖi)\Xi(\varpi_{i}) sends the Schubert class [𝒪𝐐(w)][{\mathcal{O}}_{\mathbf{Q}(w)}] (wWafw\in W_{\mathrm{af}}) to a possibly infinite sum

eμ[𝒪𝐐(v)]w2vWaf,μΣ(ϖi).e^{\mu}[{\mathcal{O}}_{\mathbf{Q}(v)}]\hskip 14.22636ptw\geq_{\frac{\infty}{2}}v\in W_{\mathrm{af}},\mu\in\Sigma(\varpi_{i}).

In view of Corollary 2.16, the action of (1Qαi)Ξ(ϖi)(1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}) sends the Schubert class 𝒪𝐐(e){\mathcal{O}}_{\mathbf{Q}(e)} to a linear combination of

evϖi[𝒪𝐐(v)]vWe^{v\varpi_{i}}[{\mathcal{O}}_{\mathbf{Q}(v)}]\hskip 14.22636ptv\in W

modulo the formal sum of eμ[𝒪𝐐(v)]e^{\mu}[{\mathcal{O}}_{\mathbf{Q}(v)}] for μΣ(ϖi)\mu\in\Sigma_{*}(\varpi_{i}) and vWafv\in W_{\mathrm{af}}. In addition, the term of the shape eϖi[𝒪𝐐(v)]e^{\varpi_{i}}[{\mathcal{O}}_{\mathbf{Q}(v)}] must be eϖi[𝒪𝐐(e)]e^{\varpi_{i}}[{\mathcal{O}}_{\mathbf{Q}(e)}] by inspection (using Lemma 2.13).

We have [Qαi,Ξ(±ϖj)]=0[Q^{\alpha^{\vee}_{i}},\Xi(\pm\varpi_{j})]=0 for iji\neq j (Lemma 2.11). In view of Theorem 2.12 and the fact that QβQ^{\beta} (βQ\beta\in Q^{\vee}) commutes with the q\mathscr{H}_{q}-action, we deduce that

(i𝙸,αi,λ<0Ξ(ϖi)αi,λ)i𝙸,αi,λ>0((1Qαi)Ξ(ϖi))αi,λ[𝒪𝐐(e)]\left(\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right><0}\Xi(-\varpi_{i})^{-\left<\alpha_{i}^{\vee},\lambda\right>}\right)\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right>>0}\left((1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i})\right)^{\left<\alpha_{i}^{\vee},\lambda\right>}[{\mathcal{O}}_{\mathbf{Q}(e)}] (3.2)

is a (joint) eigenfunctions of DtγD_{t_{\gamma}} (γQ<\gamma\in Q^{\vee}_{<}). By Theorem 2.15, we deduce that the q{\mathbb{C}}_{q}-coefficient of the term eμ[𝒪𝐐(w)]e^{\mu}[{\mathcal{O}}_{\mathbf{Q}(w)}] (wWafw\in W_{\mathrm{af}}) in (3.2) is non-zero only if μΣ(λ)\mu\in\Sigma(\lambda), and the class (3.2) is uniquely determined by the q{\mathbb{C}}_{q}-coefficients of eλ[𝒪𝐐(tβ)]e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}(t_{\beta})}] for all βQ\beta\in Q^{\vee}.

We first examine the case λΛ+\lambda\in\Lambda_{+}. Since λΣ(λ)\lambda\in\Sigma(\lambda) is an extremal point, we find that (λ+ϖi)Σ(λ+ϖi)(\lambda+\varpi_{i})\in\Sigma(\lambda+\varpi_{i}) is attained uniquely as the sum of elements from Σ(λ)\Sigma(\lambda) and Σ(ϖi)\Sigma(\varpi_{i}) whenever λΛ+\lambda\in\Lambda_{+} (namely the sum of λΣ(λ)\lambda\in\Sigma(\lambda) and ϖiΣ(ϖi)\varpi_{i}\in\Sigma(\varpi_{i})). From this, we find that the q{\mathbb{C}}_{q}-coefficient of the term eλ[𝒪𝐐(w)]e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}(w)}] (wWafw\in W_{\mathrm{af}}) is just one for w=ew=e and it is zero for wew\neq e by induction from the case λ=0Λ+\lambda=0\in\Lambda_{+}. Since the both sides are (joint) eigenfunctions of DtγD_{t_{\gamma}} (γQ<\gamma\in Q^{\vee}_{<}) with common (joint) eigenvalues whose coefficients of eλ[𝒪𝐐(tβ)]e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}(t_{\beta})}] (βQ\beta\in Q^{\vee}) are the same, we conclude

Cλ=(i𝙸((1Qαi)Ξ(ϖi))αi,λ)[𝒪𝐐G(e)]λΛ+\displaystyle C_{\lambda}=\left(\prod_{i\in\mathtt{I}}((1-Q^{\alpha_{i}^{\vee}})\Xi(\varpi_{i}))^{\left<\alpha_{i}^{\vee},\lambda\right>}\right)[{\mathcal{O}}_{\mathbf{Q}_{G}(e)}]\hskip 14.22636pt\lambda\in\Lambda_{+}

by Theorem 2.15.

Now we consider general λΛ\lambda\in\Lambda. Find 𝙹𝙸\mathtt{J}\subset\mathtt{I}, λ+Λ+(𝙸𝙹)\lambda_{+}\in\Lambda_{+}^{(\mathtt{I}\setminus\mathtt{J})}, and λΛ+𝙹\lambda_{-}\in\Lambda_{+}^{\mathtt{J}} such that λ=λ+λ\lambda=\lambda_{+}-\lambda_{-}. When λ=0\lambda_{-}=0, then the weight eλ+e^{\lambda_{+}} appears only as a coefficient of [𝒪𝐐(e)][{\mathcal{O}}_{\mathbf{Q}(e)}] in Cλ+C_{\lambda_{+}} by the previous paragraph. If we want to represent λΛ\lambda\in\Lambda by a sum of elements from Σ(λ+)\Sigma(\lambda_{+}) and Σ(λ)=Σ(w0𝙹λ)\Sigma(-\lambda_{-})=\Sigma(-w_{0}^{\mathtt{J}}\lambda_{-}), then we have necessarily λ=λ+λ\lambda=\lambda_{+}-\lambda_{-} since λ\lambda belongs to the same WW-orbit as λ+w0𝙹λΛ+\lambda_{+}-w_{0}^{\mathtt{J}}\lambda_{-}\in\Lambda_{+}. The coefficient of eλ[𝒪𝐐(tβ)]e^{-\lambda_{-}}[{\mathcal{O}}_{\mathbf{Q}(t_{\beta})}] in CλC_{-\lambda_{-}} is one if β=0\beta=0, and zero if β0\beta\neq 0 by [41, Corollary 3.15] (note that the set of paths QLS(λ)\mathrm{QLS}(\lambda_{-}) contains a unique path whose weight is of the form qeλq^{*}e^{\lambda_{-}} since it represents the character of a local Weyl module, and such a path contributes to [𝒪𝐐(e)][{\mathcal{O}}_{\mathbf{Q}(e)}] only once by the shape of the formula). It follows that the coefficient of eλ[𝒪𝐐(tβ)]e^{\lambda}[{\mathcal{O}}_{\mathbf{Q}(t_{\beta})}] in CλC_{\lambda} is one if β=0\beta=0, and zero if β0\beta\neq 0. Therefore, we conclude that (3.2) must be CλC_{\lambda} for every λΛ\lambda\in\Lambda.

It follows that

ΦG1(Cλ)=(i𝙸,αi,λ<0ξiαi,λ)(i𝙸,αi,λ>0ϕiαi,λ)[𝒪GrG(0)]K𝐆(GrG)loc.\Phi_{G}^{-1}(C_{\lambda})=\left(\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right><0}\xi_{i}^{-\left<\alpha_{i}^{\vee},\lambda\right>}\right)\left(\prod_{i\in\mathtt{I},\left<\alpha_{i}^{\vee},\lambda\right>>0}\phi_{i}^{\left<\alpha_{i}^{\vee},\lambda\right>}\right)[{\mathcal{O}}_{\mathrm{Gr}_{G}(0)}]\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}.

By Theorem 2.15 and Theorem 3.1 (cf. Corollary 3.3), one sees that {ΦG1(Cλ)}λP\{\Phi_{G}^{-1}(C_{\lambda})\}_{\lambda\in P} forms a qQ{\mathbb{C}}_{q}Q^{\vee}-basis of K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}. Thus, the elements in the assertion generates the whole K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}, and we have the desired inclusion. ∎

Corollary 3.10.

The q{\mathbb{C}}_{q}-algebra K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} is generated by 𝚝γ{\mathtt{t}}_{\gamma} (γ𝕏)(\gamma\in\mathbb{X}_{*}), eλe^{\lambda} (λ𝕏(G))(\lambda\in\mathbb{X}^{*}(G)), and ϕi,ξi\phi_{i},\xi_{i} (i𝙸)(i\in\mathtt{I}). \Box

Corollary 3.11.

We have a q{\mathbb{C}}_{q}-algebra embedding

K𝐆(GrG)K𝐇(GrH)K_{\mathbf{G}}(\mathrm{Gr}_{G})\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H})

obtained by the restriction of the domain in Proposition 3.8. \Box

4 Induction equivalence for flag varieties

We work under the setting of §2.2. In particular, GG is simple. The goal of this section is to present the following:

Theorem 4.1.

Let L=L𝙹L=L^{\mathtt{J}} be the standard Levi subgroup corresponding to 𝙹𝙸\mathtt{J}\subset\mathtt{I}. There is a q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-linear surjective map

qK𝐆()qK𝐋(𝙹)qK_{\mathbf{G}}(\mathscr{B})^{\wedge}\longrightarrow qK_{\mathbf{L}}(\mathscr{B}^{\mathtt{J}})^{\wedge}

sending [𝒪][{\mathcal{O}}_{\mathscr{B}}] to [𝒪𝙹][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}], and it intertwines the action of A±ϖiA^{\pm\varpi_{i}} to the action of A±ϖiA^{\pm\varpi_{i}} for each i𝙸i\in\mathtt{I}. In addition, the kernel of this map is generated by Qw0αiQ^{-w_{0}\alpha_{i}^{\vee}} for i(𝙸𝙹)i\in(\mathtt{I}\setminus\mathtt{J}).

Theorem 4.1 is proved in subsection §4.2 via explicit calculation. We record more general result as Theorem A.1.

4.1 Reductions of quasi-map spaces

Lemma 4.2.

Let βw0Q𝙹,+\beta\in-w_{0}Q^{\vee}_{\mathtt{J},+}. We have an isomorphism

𝒬G(β)G×P𝙹𝒬L𝙹(β),\mathscr{Q}_{G}(\beta)\cong G\times_{P^{\mathtt{J}}}\mathscr{Q}_{L^{\mathtt{J}}}(\beta),

where the the unipotent radical of P𝙹P^{\mathtt{J}} acts on 𝒬L𝙹(β)\mathscr{Q}_{L^{\mathtt{J}}}(\beta) trivially.

Proof.

The definition of 𝒬G(β)\mathscr{Q}_{G}(\beta) is to consider a collection of {\mathbb{C}}-lines λ\ell_{\lambda} in V(λ)[z]V(\lambda)\otimes{\mathbb{C}}[z] for each λΛ+\lambda\in\Lambda_{+} (cf. [25, Lemma 3.28 and Theorem 3.30]). In particular, such collections must satisfy the same relation as ((z)){\mathbb{C}}(\!(z)\!)-lines if we extend the scalar. By (1.4), we have ϖiV(ϖi)V(ϖi)((z))\ell_{\varpi_{i}}\in V(\varpi_{i})\subset V(\varpi_{i})\otimes{\mathbb{C}}(\!(z)\!) for i𝙹i\not\in\mathtt{J}. Thanks to the Plücker relations (see e.g. [7, Theorem 1.1.2]), we know that ϖiG𝐯ϖi\ell_{\varpi_{i}}\in G\mathbf{v}_{\varpi_{i}} for i𝙹i\not\in\mathtt{J}. Therefore, a point of 𝒬G(β)\mathscr{Q}_{G}(\beta) is GG-conjugate to a point represented as a collection of {\mathbb{C}}-lines {λ}λΛ+\{\ell^{\prime}_{\lambda}\}_{\lambda\in\Lambda_{+}} such that ϖi=𝐯ϖi\ell^{\prime}_{\varpi_{i}}={\mathbb{C}}\mathbf{v}_{\varpi_{i}} for i𝙹i\not\in\mathtt{J}. By the Plücker relation (considered over the field ((z)){\mathbb{C}}(\!(z)\!)), it follows that ϖjL𝙹((z))𝐯ϖj\ell^{\prime}_{\varpi_{j}}\in L^{\mathtt{J}}(\!(z)\!)\mathbf{v}_{\varpi_{j}} for j𝙹j\in\mathtt{J} in this case. This forces our point to belong to 𝒬L𝙹(β)\mathscr{Q}_{L^{\mathtt{J}}}(\beta), with the trivial action of the unipotent radical of P𝙹P^{\mathtt{J}}. From these, we deduce a surjective homomorphism G×P𝙹𝒬L𝙹(β)𝒬G(β)G\times_{P^{\mathtt{J}}}\mathscr{Q}_{L^{\mathtt{J}}}(\beta)\rightarrow\mathscr{Q}_{G}(\beta). Since the GG-orbit of {𝐯ϖi}i𝙹\{{\mathbb{C}}\mathbf{v}_{\varpi_{i}}\}_{i\not\in\mathtt{J}} is 𝙹\mathscr{B}_{\mathtt{J}}, this map is a homeomorphism between projective normal varieties. It must be an isomorphism by the Zariski main theorem. ∎

Corollary 4.3.

Keep the setting of Lemma 4.2. For each λΛ+\lambda\in\Lambda_{+}, we have a surjective (P𝙹(P^{\mathtt{J}}-module)) map

H0(𝒬G(β),𝒪𝒬G(β)(λ))H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(λ)).H^{0}(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(\lambda))\longrightarrow\!\!\!\!\!\rightarrow H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(\lambda)).
Proof.

In view of [25, Theorem 3.33], we have a surjection

H0(𝐐L𝙹(e),𝒪𝐐L𝙹(e)(λ))H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(λ)).H^{0}(\mathbf{Q}_{L^{\mathtt{J}}}(e),{\mathcal{O}}_{\mathbf{Q}_{L^{\mathtt{J}}}(e)}(\lambda))\longrightarrow\!\!\!\!\!\rightarrow H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(\lambda)).

In view of [25, Theorem 1.2], the HH-weight of H0(𝐐L𝙹(e),𝒪𝐐L𝙹(e)(λ))H^{0}(\mathbf{Q}_{L^{\mathtt{J}}}(e),{\mathcal{O}}_{\mathbf{Q}_{L^{\mathtt{J}}}(e)}(\lambda)) is concentrated in w0λ+Q𝙹,+w_{0}\lambda+Q^{\vee}_{\mathtt{J},+}. Since 𝒬L𝙹(β)\mathscr{Q}_{L^{\mathtt{J}}}(\beta) is stable under the L𝙹L^{\mathtt{J}}-action, it follows that H0(𝐐L𝙹(e),𝒪𝐐L𝙹(e)(λ))H^{0}(\mathbf{Q}_{L^{\mathtt{J}}}(e),{\mathcal{O}}_{\mathbf{Q}_{L^{\mathtt{J}}}(e)}(\lambda)) is a direct sum of finite-dimensional irreducible L𝙹L^{\mathtt{J}}-module. Since αi,αj0\left<\alpha_{i}^{\vee},\alpha_{j}\right>\leq 0 for every i𝙸𝙹i\in\mathtt{I}\setminus\mathtt{J} and j𝙹j\in\mathtt{J} (and λΛ+\lambda\in\Lambda_{+}), every finite-dimensional irreducible L𝙹L^{\mathtt{J}}-submodule in H0(𝐐L𝙹(e),𝒪𝐐L𝙹(e)(λ))H^{0}(\mathbf{Q}_{L^{\mathtt{J}}}(e),{\mathcal{O}}_{\mathbf{Q}_{L^{\mathtt{J}}}(e)}(\lambda)) is an irreducible [L𝙹,L𝙹][L^{\mathtt{J}},L^{\mathtt{J}}]-module twisted by a weight μ\mu such that αi,μ0\left<\alpha_{i}^{\vee},\mu\right>\leq 0 for every i(𝙸𝙹)i\in(\mathtt{I}\setminus\mathtt{J}). It follows that

H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(λ))H0(G/P𝙹,𝒱),H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(\lambda))^{*}\hookrightarrow H^{0}(G/P^{\mathtt{J}},\mathcal{V})^{*},

where 𝒱\mathcal{V} is the GG-equivariant vector bundle obtained by inflating the P𝙹P^{\mathtt{J}}-module H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(λ))H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(\lambda)). By the Leray spectral sequence, we have

H0(G/P𝙹,𝒱)H0(𝒬G(β),𝒪𝒬G(β)(λ)).H^{0}(G/P^{\mathtt{J}},\mathcal{V})\cong H^{0}(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(\lambda)).

Therefore, we conclude

H0(𝒬G(β),𝒪𝒬G(β)(λ))H0(G/P𝙹,𝒱)H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(λ))H^{0}(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(\lambda))\cong H^{0}(G/P^{\mathtt{J}},\mathcal{V})\longrightarrow\!\!\!\!\!\rightarrow H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(\lambda))

as desired. ∎

Let 𝔤[z]:=𝔤[z]\mathfrak{g}[z]:=\mathfrak{g}\otimes{\mathbb{C}}[z] be the Lie algebra obtained by scalar extension. Each λΛ+\lambda\in\Lambda_{+} defines a 𝔤[z]\mathfrak{g}[z]-module 𝕎G(λ){\mathbb{W}}_{G}(\lambda) that is the global Weyl module in the sense of [11]. By expressing λΛ+\lambda\in\Lambda_{+} as the sum λ=λ(1)+λ(2)\lambda=\lambda^{(1)}+\lambda^{(2)} of λ(1)Λ+𝙹\lambda^{(1)}\in\Lambda_{+}^{\mathtt{J}} and λ(2)Λ𝙸𝙹\lambda^{(2)}\in\Lambda^{\mathtt{I}\setminus\mathtt{J}}, we have the corresponding global Weyl module 𝕎[L𝙹,L𝙹](λ(1)){\mathbb{W}}_{[L^{\mathtt{J}},L^{\mathtt{J}}]}(\lambda^{(1)}) of [𝔩𝙹,𝔩𝙹][z][\mathfrak{l}^{\mathtt{J}},\mathfrak{l}^{\mathtt{J}}][z] (by taking the external tensor product of the global Weyl modules for all simple factors of [L𝙹,L𝙹][L^{\mathtt{J}},L^{\mathtt{J}}]). We define

𝕎L𝙹(λ):=𝕎[L𝙹,L𝙹](λ(1))λ(2),{\mathbb{W}}_{L^{\mathtt{J}}}(\lambda):={\mathbb{W}}_{[L^{\mathtt{J}},L^{\mathtt{J}}]}(\lambda^{(1)})\otimes{\mathbb{C}}_{\lambda^{(2)}},

that is a ([𝔩𝙹,𝔩𝙹][z]+𝔥)([\mathfrak{l}^{\mathtt{J}},\mathfrak{l}^{\mathtt{J}}][z]+\mathfrak{h})-module.

Corollary 4.4.

For each λΛ+\lambda\in\Lambda_{+}, we have an inclusion 𝕎L𝙹(λ)𝕎G(λ){\mathbb{W}}_{L^{\mathtt{J}}}(\lambda)\subset{\mathbb{W}}_{G}(\lambda) between global Weyl modules.

Proof.

In view of [8, Proposition 5.1] (cf. [25, Theorem 3.33]), we have

βw0Q𝙹,+H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(w0λ))=𝕎L𝙹(λ).\bigcup_{\beta\in-w_{0}Q^{\vee}_{\mathtt{J},+}}H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(-w_{0}\lambda))^{*}={\mathbb{W}}_{L^{\mathtt{J}}}(\lambda). (4.1)

By Corollary 4.3, we have

H0(𝒬L𝙹(β),𝒪𝒬L𝙹(β)(w0λ))H0(𝒬G(β),𝒪𝒬G(β)(w0λ))𝕎G(λ).H^{0}(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(-w_{0}\lambda))^{*}\hookrightarrow H^{0}(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(-w_{0}\lambda))^{*}\hookrightarrow{\mathbb{W}}_{G}(\lambda).

Combined with (4.1), we conclude the result. ∎

Proposition 4.5.

Let i𝙸i\in\mathtt{I}. Find i𝙸i^{\prime}\in\mathtt{I} such that αi=w0αi\alpha_{i^{\prime}}=w_{0}\alpha_{i}. The A±ϖiA^{\pm\varpi_{i}}-action on qK𝐆()qK_{\mathbf{G}}(\mathscr{B}) is the same as the tensor product of 𝒪(±ϖi){\mathcal{O}}_{\mathscr{B}}(\pm\varpi_{i}) on K𝐆()K_{\mathbf{G}}(\mathscr{B})^{\wedge} modulo QiQ_{i^{\prime}}.

Proof.

Let 𝙹:=𝙸{i}\mathtt{J}^{\prime}:=\mathtt{I}\setminus\{i^{\prime}\}. By our definition of A±ϖiA^{\pm\varpi_{i}}, it suffices to see

A±ϖia,bG𝙶𝚆𝒪(±ϖi)a,bG𝙶𝚆modQi\left<A^{\pm\varpi_{i}}a,b\right>_{G}^{\mathtt{GW}}\equiv\left<{\mathcal{O}}_{\mathscr{B}}(\pm\varpi_{i})\otimes a,b\right>_{G}^{\mathtt{GW}}\mod Q_{i^{\prime}} (4.2)

for every a,bK𝐆()a,b\in K_{\mathbf{G}}(\mathscr{B}). Since K𝐆()K_{\mathbf{G}}(\mathscr{B}) is generated by AλA^{\lambda} for λΛ+-\lambda\in\Lambda_{+} and QβQ^{\beta} (βQ+\beta\in Q^{\vee}_{+}) as q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-algebra, we can take a=Aμa=A^{\mu} and b=[𝒪]b=[{\mathcal{O}}_{\mathscr{B}}]. Since 𝒬G(β)\mathscr{Q}_{G}(\beta) has rational singularities for every βQ+\beta\in Q^{\vee}_{+} (Theorem 1.11), we have

A±ϖi+λ[𝒪],[𝒪]G𝙶𝚆=βQ+Qβχ(𝒬G(β),𝒪𝒬G(β)(±ϖi+λ)))λ𝕏.\left<A^{\pm\varpi_{i}+\lambda}[{\mathcal{O}}_{\mathscr{B}}],[{\mathcal{O}}_{\mathscr{B}}]\right>_{G}^{\mathtt{GW}}=\sum_{\beta\in Q^{\vee}_{+}}Q^{\beta}\chi(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(\pm\varpi_{i}+\lambda)))\hskip 14.22636pt\lambda\in\mathbb{X}^{*}.

In case β,ϖi=0\left<\beta,\varpi_{i^{\prime}}\right>=0, the structure map 𝒬L𝙹(β)pt\mathscr{Q}_{L^{\mathtt{J}^{\prime}}}(\beta)\to\mathrm{pt} and Lemma 4.2 yield a projection map η:𝒬G(β)G/P𝙹=𝙹\eta:\mathscr{Q}_{G}(\beta)\rightarrow G/P^{\mathtt{J}^{\prime}}=\mathscr{B}_{\mathtt{J}^{\prime}}, that is GG-equivariant. This implies

χ(𝒬G(β),𝒪𝒬G(β)(λ)))=Dw0(eαi,λϖiχ(𝒬L(β),𝒪𝒬L(β)(λαi,λϖi)))\chi(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(\lambda)))=D_{w_{0}}(e^{-\left<\alpha_{i}^{\vee},\lambda\right>\varpi_{i^{\prime}}}\chi(\mathscr{Q}_{L}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L}(\beta)}(\lambda-\left<\alpha_{i}^{\vee},\lambda\right>\varpi_{i}))) (4.3)

for each λ𝕏\lambda\in\mathbb{X}^{*}. The twist by eϖie^{-\varpi_{i^{\prime}}} in the RHS of (4.3) is just a 𝒪(1){\mathcal{O}}(1)-line bundle twist of 𝙹\mathscr{B}_{\mathtt{J}^{\prime}} pulled back by η\eta. Thus, it arises from the line bundle twist of 𝒪(ϖi){\mathcal{O}}_{\mathscr{B}}(\varpi_{i}) through 𝖾𝗏1\mathsf{ev}_{1}. Therefore, we conclude (4.2) as required. ∎

4.2 Proof of Theorem 4.1

This subsection is entirely devoted to the proof of Theorem 4.1. We set 𝙹#:={i𝙸αi=w0αj,j𝙸𝙹}\mathtt{J}^{\#}:=\{i\in\mathtt{I}\mid\alpha_{i}=-w_{0}\alpha_{j},\,j\in\mathtt{I}\setminus\mathtt{J}\} and 𝙹:={i𝙸αi=w0αj,j𝙹}\mathtt{J}^{\prime}:=\{i\in\mathtt{I}\mid\alpha_{i}=-w_{0}\alpha_{j},\,j\in\mathtt{J}\}.

By Theorem 1.12, we know that qK𝐋𝙹(𝙹)qK_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}}) is generated from [𝒪𝙹][{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}] by A±w0ϖiA^{\pm w_{0}\varpi_{i}} (i𝙹i\in\mathtt{J}), QiQ_{i} (i𝙹i\in\mathtt{J}^{\prime}), and 𝕏0(𝙹)\mathbb{X}^{*}_{0}(\mathtt{J}) as an algebra. Suppose that

f(eμ,xi,Q)=mr,μ𝕏0(𝙹),γQ𝙹,+fm,μ,βeμxmQγq𝕏0(𝙹)[x1±1,,xr±1][[Q𝙹,+]],f(e^{\mu},x_{i},Q)=\sum_{\vec{m}\in\mathbb{Z}^{r},\mu\in\mathbb{X}^{*}_{0}(\mathtt{J}),\gamma\in Q^{\vee}_{\mathtt{J},+}}f_{\vec{m},\mu,\beta}e^{\mu}x^{\vec{m}}Q^{\gamma}\in{\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})[x_{1}^{\pm 1},\ldots,x_{r}^{\pm 1}][\![Q^{\vee}_{\mathtt{J},+}]\!],

where xm:=x1m1xrmrx^{\vec{m}}:=x^{m_{1}}_{1}\cdots x^{m_{r}}_{r} for m=(m1,,mr)\vec{m}=(m_{1},\ldots,m_{r}), satisfies

f(eμ,Aϖi,Q)[𝒪𝙹]=0qK𝐋𝙹(𝙹),f(e^{\mu},A^{\varpi_{i}},Q)[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}]=0\in qK_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}}),

where A±w0ϖiA^{\pm w_{0}\varpi_{i}} is interpreted as eϖie^{\mp\varpi_{i}} for i𝙹i\not\in\mathtt{J}. The line bundle μ𝒪𝒬L𝙹(β)(w0λ){\mathbb{C}}_{\mu}\otimes{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}(\beta)}(-w_{0}\lambda) for βQ𝙹,+\beta\in Q^{\vee}_{\mathtt{J}^{\prime},+}, μ𝕏0(𝙹)\mu\in\mathbb{X}^{*}_{0}(\mathtt{J}), and λΛ𝙹\lambda\in\Lambda^{\mathtt{J}} inflates to 𝒪𝒬G(β)(w0(λ+μ)){\mathcal{O}}_{\mathscr{Q}_{G}(\beta)}(-w_{0}(\lambda+\mu)) by Lemma 4.2 and (1.4). Let

f~(eμ,Aϖi,Q)=mr,ν𝕏(G),βQ𝙹,+f~m,ν,βeνxmQβq𝕏(G)[x1±1,,xr±1][[Q+]]\tilde{f}(e^{\mu},A^{\varpi_{i}},Q)=\sum_{\vec{m}\in\mathbb{Z}^{r},\nu\in\mathbb{X}^{*}(G),\beta\in Q^{\vee}_{\mathtt{J},+}}\tilde{f}_{\vec{m},\nu,\beta}e^{\nu}x^{\vec{m}}Q^{\beta}\in{\mathbb{C}}_{q}\mathbb{X}^{*}(G)[x_{1}^{\pm 1},\ldots,x_{r}^{\pm 1}][\![Q^{\vee}_{+}]\!]

be the polynomial obtained from ff by replacing eϖie^{-\varpi_{i}} with xix_{i^{\prime}} (for each i𝙸𝙹i\in\mathtt{I}\setminus\mathtt{J} and i𝙸i^{\prime}\in\mathtt{I} such that ϖi=w0ϖi\varpi_{i}=-w_{0}\varpi_{i^{\prime}}). For each λΛ\lambda\in\Lambda, we have

Aλf~(eμ,Aϖi,Q)[𝒪],[𝒪]G𝙶𝚆\displaystyle\left<A^{\lambda}\tilde{f}(e^{\mu},A^{\varpi_{i}},Q)[{\mathcal{O}}_{\mathscr{B}}],[{\mathcal{O}}_{\mathscr{B}}]\right>^{\mathtt{GW}}_{G}
=βQ+m,ν,γ\displaystyle=\sum_{\beta\in Q^{\vee}_{+}}\sum_{\vec{m},\nu,\gamma} f~m,ν,γQβ+γeνχ(𝒳G(β),𝒪𝒳G(λ+i𝙸miϖi))\displaystyle\tilde{f}_{\vec{m},\nu,\gamma}Q^{\beta+\gamma}e^{\nu}\chi(\mathscr{X}_{G}(\beta),{\mathcal{O}}_{\mathscr{X}_{G}}(\lambda+\sum_{i\in\mathtt{I}}m_{i}\varpi_{i}))
=βQ+m,ν,γ\displaystyle=\sum_{\beta\in Q^{\vee}_{+}}\sum_{\vec{m},\nu,\gamma} f~m,ν,γQβ+γeνχ(𝒬G(β),𝒪𝒬G(λ+i𝙸miϖi))\displaystyle\tilde{f}_{\vec{m},\nu,\gamma}Q^{\beta+\gamma}e^{\nu}\chi(\mathscr{Q}_{G}(\beta),{\mathcal{O}}_{\mathscr{Q}_{G}}(\lambda+\sum_{i\in\mathtt{I}}m_{i}\varpi_{i}))
βQ𝙹,+m,ν,γeνDw0(f~m,ν,γQβ+γ\displaystyle\equiv\sum_{\beta\in Q^{\vee}_{\mathtt{J}^{\prime},+}}\sum_{\vec{m},\nu,\gamma}e^{\nu}D_{w_{0}}(\tilde{f}_{\vec{m},\nu,\gamma}Q^{\beta+\gamma} χ(𝒬L𝙹(β),𝒪𝒬L𝙹(λ+i𝙸miϖi)))\displaystyle\,\chi(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}}(\lambda+\sum_{i\in\mathtt{I}}m_{i}\varpi_{i})))
mod(Qii𝙹#),\displaystyle\hskip 99.58464pt\mod(Q_{i}\mid i\in\mathtt{J}^{\#}),

where the first equality is the the definition, the second equality follows from Theorem 1.11, and the third equality follows from Lemma 4.2 and the fact that 𝒪𝒬L𝙹(λ){\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}}(\lambda) is the restriction of 𝒪𝒬G(λ){\mathcal{O}}_{\mathscr{Q}_{G}}(\lambda). Similarly, we have

0=Aλf(eμ,Aϖi,Q)[𝒪𝙹],[𝒪𝙹]L𝙹𝙶𝚆\displaystyle 0=\left<A^{\lambda}f(e^{\mu},A^{\varpi_{i}},Q)[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}],[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}]\right>^{\mathtt{GW}}_{L^{\mathtt{J}}}
=βQ+m,μ,γfm,μ,γ\displaystyle=\sum_{\beta\in Q^{\vee}_{+}}\sum_{\vec{m},\mu,\gamma}f_{\vec{m},\mu,\gamma}\, Qβ+γeμχ(𝒬L𝙹(β),𝒪𝒬L𝙹(λ+i𝙸miϖi))\displaystyle Q^{\beta+\gamma}e^{\mu}\chi(\mathscr{Q}_{L^{\mathtt{J}}}(\beta),{\mathcal{O}}_{\mathscr{Q}_{L^{\mathtt{J}}}}(\lambda+\sum_{i\in\mathtt{I}}m_{i}\varpi_{i}))

for λΛ\lambda\in\Lambda. By examining the relation between ff and f~\widetilde{f}, we conclude

Aλf~(eμ,Aϖi,Q)[𝒪],[𝒪]G𝙶𝚆0mod(Qii𝙹#)\left<A^{\lambda}\tilde{f}(e^{\mu},A^{\varpi_{i}},Q)[{\mathcal{O}}_{\mathscr{B}}],[{\mathcal{O}}_{\mathscr{B}}]\right>^{\mathtt{GW}}_{G}\equiv 0\mod(Q_{i}\mid i\in\mathtt{J}^{\#})

for λΛ\lambda\in\Lambda. In view of Theorem 1.12, this is equivalent to

f~(eμ,Aϖi,Q)[𝒪]0mod(Qii𝙹#).\tilde{f}(e^{\mu},A^{\varpi_{i}},Q)[{\mathcal{O}}_{\mathscr{B}}]\equiv 0\mod(Q_{i}\mid i\in\mathtt{J}^{\#}).

This yields a map qK𝐆()qK𝐋𝙹(𝙹)qK_{\mathbf{G}}(\mathscr{B})\rightarrow qK_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}}) that intertwines AλA^{\lambda} (λΛ\lambda\in\Lambda), QiQ_{i} (i𝙸i\in\mathtt{I}), and q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-actions. The Qi0Q_{i}\equiv 0 (i𝙸i\in\mathtt{I}) specialization of this map is the restriction map, that is an isomorphism (as a consequence of the bijection between equivariant line bundles through the restriction; cf. Corollary 1.7). Since the Q𝙹,+{\mathbb{C}}Q^{\vee}_{\mathtt{J}^{\prime},+}-actions are free on the both of qK𝐆()/(Qii𝙹#)qK_{\mathbf{G}}(\mathscr{B})/(Q_{i}\mid i\in\mathtt{J}^{\#}) and qK𝐋𝙹(𝙹)qK_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}}), we conclude that

qK𝐆()/(Qii𝙹#)qK𝐋𝙹(𝙹)qK_{\mathbf{G}}(\mathscr{B})/(Q_{i}\mid i\in\mathtt{J}^{\#})\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}qK_{\mathbf{L}^{\mathtt{J}}}(\mathscr{B}^{\mathtt{J}})

as required.

5 Finkelberg-Tsymbaliuk’s conjecture

We work in the settings of §1.1. The goal of this section is to prove the following main theorem of this paper, originally conjectured by Finkelberg-Tsymbaliuk [17]:

Theorem 5.1.

Let GG be a connected reductive algebraic group over {\mathbb{C}} such that [G,G][G,G] is simply connected and G[G,G]×HG\cong[G,G]\times H^{\prime} for a subtorus HHH^{\prime}\subset H. Let LL be a reductive subgroup that contains HH. The embedding of Corollary 3.11 induces algebra embeddings

K𝐆(GrG)K𝐋(GrL)K𝐇(GrH).K_{\mathbf{G}}(\mathrm{Gr}_{G})\hookrightarrow K_{\mathbf{L}}(\mathrm{Gr}_{L})\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H}).

Theorem 5.1 is proved in §5.2. From Theorem 5.1, we conclude the following enhancement:

Corollary 5.2.

Let GG be a connected reductive algebraic group over {\mathbb{C}} such that [G,G][G,G] is simply connected and [G,G]×H[G,G]\times H^{\prime} for a subtorus HHH^{\prime}\subset H. Let LL be a connected reductive subgroup of GG that contains HH. Let ZHZ(G)Z\subset H\cap Z(G) be a finite subgroup. Theorem 5.1 induces embeddings

K𝐆(GrG/Z)K𝐋(GrL/Z)K𝐇(GrH/Z)K_{\mathbf{G}}(\mathrm{Gr}_{G/Z})\hookrightarrow K_{\mathbf{L}}(\mathrm{Gr}_{L/Z})\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H/Z})

of algebras.

Proof.

We set G:=G/Z,L:=L/ZG^{\prime}:=G/Z,L^{\prime}:=L/Z. Note that the quotient HH/ZH\to H/Z induces an injective map

𝕏GrHGrH/Z\mathbb{X}_{*}\cong\mathrm{Gr}_{H}\longrightarrow\mathrm{Gr}_{H/Z}

that identifies 𝕏\mathbb{X}_{*} with a subset of the group of cocharacters 𝕏\mathbb{X}_{*}^{\prime} of H/ZH/Z via the quotient map. This gives rise to an isomorphism

K𝐇(GrH/Z)χ𝖨𝗋𝗋ZK𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H/Z})\cong\bigoplus_{\chi\in\mathsf{Irr}\,Z}K_{\mathbf{H}}(\mathrm{Gr}_{H})

of algebras. In particular, the connected components of GrH/Z\mathrm{Gr}_{H/Z} is the union of the contributions

GrH/Z=χ𝖨𝗋𝗋ZGrH/Zχ.\mathrm{Gr}_{H/Z}=\bigsqcup_{\chi\in\mathsf{Irr}\,Z}\mathrm{Gr}_{H/Z}^{\chi}.

The same is true for GrG\mathrm{Gr}_{G^{\prime}} and GrL\mathrm{Gr}_{L^{\prime}}, that we denote by

GrG=χ𝖨𝗋𝗋ZGrGχand GrLχ=χ𝖨𝗋𝗋ZGrLχ.\mathrm{Gr}_{G^{\prime}}=\bigsqcup_{\chi\in\mathsf{Irr}\,Z}\mathrm{Gr}_{G^{\prime}}^{\chi}\hskip 14.22636pt\text{and}\hskip 14.22636pt\mathrm{Gr}_{L^{\prime}}^{\chi}=\bigsqcup_{\chi\in\mathsf{Irr}\,Z}\mathrm{Gr}_{L^{\prime}}^{\chi}.

Note that the content of Theorem 5.1 under this setup is the algebra embeddings:

K𝐆(GrG1)K𝐋(GrL1)K𝐇(GrH/Z1),K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}}^{1})\hookrightarrow K_{\mathbf{L}}(\mathrm{Gr}_{L^{\prime}}^{1})\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}^{1}), (5.1)

where 1𝖨𝗋𝗋Z1\in\mathsf{Irr}\,Z is the trivial representation.

The action of 𝕏/𝕏\mathbb{X}_{*}^{\prime}/\mathbb{X}_{*} induces outer automorphisms of the affine Dynkin diagram of GG. This twists the embedding K𝐆(GrGχ)K𝐇(GrGχ)K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}}^{\chi})\subset K_{\mathbf{H}}(\mathrm{Gr}_{G^{\prime}}^{\chi}) into K𝐆(GrG1)K𝐇(GrG1)K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}}^{1})\subset K_{\mathbf{H}}(\mathrm{Gr}_{G^{\prime}}^{1}) by the Dynkin diagram automorphisms. These outer automorphisms induce automorphisms of q\mathscr{H}_{q}, and hence gives rise to an algebra structure of K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}}) induced from K𝐇(GrG)K_{\mathbf{H}}(\mathrm{Gr}_{G^{\prime}}). If we employ these twists of R(𝐇)R(\mathbf{H}) also to the coefficients of K𝐇(GrH/Zχ)K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}^{\chi}), we obtain embeddings

K𝐆(GrGχ)K𝐇(GrH/Zχ)χIrrZ.K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}}^{\chi})\longrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}^{\chi})\hskip 14.22636pt\chi\in\mathrm{Irr}\,Z. (5.2)

Such twists, altogether along 𝖨𝗋𝗋Z\mathsf{Irr}\,Z, give rise to a twist of the algebra structure of K𝐇(GrH/Z)K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}) (that prolongs K𝐇(GrH/Z1)K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}^{1})\cong K_{\mathbf{H}}(\mathrm{Gr}_{H})). With these twisted algebra structures, we obtain a morphism

K𝐆(GrG)K𝐇(GrH/Z)K_{\mathbf{G}}(\mathrm{Gr}_{G^{\prime}})\longrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H/Z})

of algebras that prolongs (5.1) and (5.2).

It remains to find that such a twisting can be taken to be compatible with the analogously defined embedding K𝐋(GrL)K𝐇(GrH/Z)K_{\mathbf{L}}(\mathrm{Gr}_{L^{\prime}})\subset K_{\mathbf{H}}(\mathrm{Gr}_{H/Z}). To see this, it is enough to mind that the twisting by χ𝖨𝗋𝗋Z\chi\in\mathsf{Irr}\,Z gives a twisting of G[[z]]G((z))G^{\prime}[\![z]\!]\subset G^{\prime}(\!(z)\!) by a lift of χ\chi in 𝕏\mathbb{X}_{*}^{\prime} (up to internal automorphism), and it naturally induce a twisting of L[[z]]G((z))L^{\prime}[\![z]\!]\subset G^{\prime}(\!(z)\!). ∎

Example 5.3.

We assume that G=SL(2)G=\mathop{SL}(2) and L=HL=H is its maximal torus. We have Q=𝕏=αQ^{\vee}=\mathbb{X}_{*}=\mathbb{Z}\alpha^{\vee}, where α\alpha^{\vee} is the positive simple coroot of GG. Let ϖ\varpi be the fundamental weight. We have

R(G)=[e±ϖ]𝔖2[e±ϖ]=R(H).R(G)={\mathbb{C}}[e^{\pm\varpi}]^{\mathfrak{S}_{2}}\subset{\mathbb{C}}[e^{\pm\varpi}]=R(H).

Theorem 5.1 yields an algebra map

R(G)R(G)[𝒪GrG(0)]KG(GrG)KH(GrH)=γQR(H)𝚝γ,R(G)\equiv R(G)[\mathcal{O}_{\mathrm{Gr}_{G}(0)}]\hookrightarrow K_{G}(\mathrm{Gr}_{G})\longrightarrow K_{H}(\mathrm{Gr}_{H})=\bigoplus_{\gamma\in Q^{\vee}}R(H){\mathtt{t}}_{\gamma},

where 𝚝γ{\mathtt{t}}_{\gamma} represents the class of the structure sheaf of GrH(γ)\mathrm{Gr}_{H}(\gamma), that is a point. In view of Proposition 3.8, we find that

[𝒪GrG(0)]𝚝0,(eϖ+eϖ)[𝒪GrG(0)]eϖ(𝚝0𝚝α)+eϖ𝚝0.[\mathcal{O}_{\mathrm{Gr}_{G}(0)}]\mapsto{\mathtt{t}}_{0},\hskip 14.22636pt(e^{\varpi}+e^{-\varpi})[\mathcal{O}_{\mathrm{Gr}_{G}(0)}]\mapsto e^{\varpi}({\mathtt{t}}_{0}-{\mathtt{t}}_{\alpha^{\vee}})+e^{-\varpi}{\mathtt{t}}_{0}.

We remark that Example 5.3 is obtained from the n=2n=2 case of Example D by applying Theorem 5.1 (and Theorem 3.7).

5.1 Classes E(β,λ)E(\beta,\lambda) and 𝒪(λ){\mathcal{O}}^{\star}(\lambda)

We find 𝙹𝙸\mathtt{J}\subset\mathtt{I} such that LL in Theorem 5.1 is written as L𝙹L^{\mathtt{J}}. For β𝕏(𝙹)\beta\in\mathbb{X}_{*}^{\leq}(\mathtt{J}), we set 𝙹(β)={j𝙹αj,β=0}𝙹\mathtt{J}(\beta)=\{j\in\mathtt{J}\mid\left<\alpha_{j}^{\vee},\beta\right>=0\}\subset\mathtt{J}. We set w(𝙹,β):=w0𝙹w0𝙹(β)w0𝙹w(\mathtt{J},\beta):=w_{0}^{\mathtt{J}}w_{0}^{\mathtt{J}(\beta)}w_{0}^{\mathtt{J}} and 𝙹(β)#:={j𝙹j𝙹(β) s.t. ϖj=w0𝙹ϖj}\mathtt{J}(\beta)^{\#}:=\{j\in\mathtt{J}\mid\exists j^{\prime}\in\mathtt{J}(\beta)\text{ s.t. }\varpi_{j}=-w_{0}^{\mathtt{J}}\varpi_{j^{\prime}}\} (i.e. w(𝙹,β)=w0𝙹(β)#w(\mathtt{J},\beta)=w_{0}^{\mathtt{J}(\beta)^{\#}}). We set Λ+𝙹(β):=Λ𝙹𝙹(β)+Λ+𝙹(β)\Lambda_{+}^{\mathtt{J}}(\beta):=\Lambda^{\mathtt{J}\setminus\mathtt{J}(\beta)}+\Lambda_{+}^{\mathtt{J}(\beta)}. For each λΛ+𝙹(β)\lambda\in\Lambda_{+}^{\mathtt{J}}(\beta), we define

E𝙹[β;λ]:=Dw0𝙹(ew0𝙹λ[𝒪GrL(uβ𝙹)])K𝐋(Gr𝐋),E^{\mathtt{J}}[\beta;\lambda]:=D_{w_{0}^{\mathtt{J}}}(e^{w_{0}^{\mathtt{J}}\lambda}[{\mathcal{O}}_{\mathrm{Gr}_{L}(u^{\mathtt{J}}_{\beta})}])\in K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}}),

where uβ𝙹W𝙹tβW𝙹u^{\mathtt{J}}_{\beta}\in W^{\mathtt{J}}t_{\beta}W^{\mathtt{J}} is the minimal length element inside the double coset.

Lemma 5.4.

The q(𝙹)\mathscr{H}_{q}(\mathtt{J})-module K𝐋(GrL)K_{\mathbf{L}}(\mathrm{Gr}_{L}) admits a direct sum decomposition whose associated graded pieces are parametrized by 𝕏(𝙹)\mathbb{X}_{*}^{\leq}(\mathtt{J}). The associated graded piece corresponding to β\beta is isomorphic to K𝐋(𝙹(β)#𝙹)K_{\mathbf{L}}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}(\beta)^{\#}}) and the correspondence is given by

E𝙹[β;λ]Dw0𝙹(ew0𝙹λDw(𝙹,β)[𝒪𝙹(w0𝙹)])λΛ+𝙹(β).E^{\mathtt{J}}[\beta;\lambda]\mapsto D_{w_{0}^{\mathtt{J}}}(e^{w_{0}^{\mathtt{J}}\lambda}D_{w(\mathtt{J},\beta)}[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}(w_{0}^{\mathtt{J}})}])\hskip 14.22636pt\lambda\in\Lambda_{+}^{\mathtt{J}}(\beta).

In particular, the set {E𝙹[β;λ]}β𝕏(𝙹),λΛ+𝙹(β)\{E^{\mathtt{J}}[\beta;\lambda]\}_{\beta\in\mathbb{X}_{*}^{\leq}(\mathtt{J}),\lambda\in\Lambda^{\mathtt{J}}_{+}(\beta)} forms a q𝕏0(𝙹){\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})-basis of K𝐋(Gr𝐋)K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}}).

Proof.

By definition, we have a [𝐇]{\mathbb{C}}[\mathbf{H}]-basis of K𝐇(Gr𝐋)K_{\mathbf{H}}(\mathrm{Gr}_{\mathbf{L}}) offered by [𝒪Gr𝐋(wtβ)][{\mathcal{O}}_{\mathrm{Gr}_{\mathbf{L}}(wt_{\beta})}] for β𝕏(𝙹)\beta\in\mathbb{X}^{\leq}_{*}(\mathtt{J}) and wW𝙹/W𝙹(β)w\in W^{\mathtt{J}}/W^{\mathtt{J}(\beta)}. We have K𝐋(Gr𝐋)=Dw0𝙹(K𝐇(Gr𝐋))K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}})=D_{w_{0}^{\mathtt{J}}}(K_{\mathbf{H}}(\mathrm{Gr}_{\mathbf{L}})). By the Leibniz rule of DiD_{i} for each i𝙸i\in\mathtt{I} (Lemma 1.5), we conclude that the space of Dw0𝙹D_{w_{0}^{\mathtt{J}}}-invariants in K𝐇(Gr𝐋)K_{\mathbf{H}}(\mathrm{Gr}_{\mathbf{L}}) is the direct sum of the Dw0𝙹D_{w_{0}^{\mathtt{J}}}-invariants in

wW𝙹/W𝙹(β)[𝐇][𝒪Gr𝐋(wtβ)]\bigoplus_{w\in W^{\mathtt{J}}/W^{\mathtt{J}(\beta)}}{\mathbb{C}}[\mathbf{H}][{\mathcal{O}}_{\mathrm{Gr}_{\mathbf{L}}(wt_{\beta})}] (5.3)

for all β𝕏(𝙹)\beta\in\mathbb{X}_{*}^{\leq}(\mathtt{J}). The space (5.3) is stable under the action of DjD_{j} (j𝙹j\in\mathtt{J}) again by the Leibniz rule. In addition, it is generated from [𝒪GrL(uβ𝙹)][{\mathcal{O}}_{\mathrm{Gr}_{L}(u^{\mathtt{J}}_{\beta})}], that is Dw(𝙹,β)D_{w(\mathtt{J},\beta)}-invariant as siβ=βs_{i}\beta=\beta for i𝙹(β)i\in\mathtt{J}(\beta). By Corollary 1.8 (and Theorem 1.6), we deduce that (5.3) is isomorphic to K𝐇(𝙹(β)#𝙹)K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}(\beta)^{\#}}) as q(𝙹)\mathscr{H}_{q}(\mathtt{J})-module via the assignment

[𝒪GrL(uβ𝙹)]Dw(𝙹,β)([𝒪𝙹(w0𝙹)]).[{\mathcal{O}}_{\mathrm{Gr}_{L}(u^{\mathtt{J}}_{\beta})}]\mapsto D_{w(\mathtt{J},\beta)}([{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}(w_{0}^{\mathtt{J}})}]).

This yields the desired correspondence between elements. Note that we have some uW𝙹u\in W^{\mathtt{J}} such that w0𝙹=uw(𝙹,β)w_{0}^{\mathtt{J}}=uw(\mathtt{J},\beta) and (w0𝙹)=(u)+(w(𝙹,β))\ell(w_{0}^{\mathtt{J}})=\ell(u)+\ell(w(\mathtt{J},\beta)). It follows that

Dw0𝙹(ew0𝙹λDw(𝙹,β)[𝒪𝙹(w0𝙹)])=Du(Dw(𝙹,β)(ew0𝙹λDw(𝙹,β)[𝒪𝙹(w0𝙹)])),D_{w_{0}^{\mathtt{J}}}(e^{w_{0}^{\mathtt{J}}\lambda}D_{w(\mathtt{J},\beta)}[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}(w_{0}^{\mathtt{J}})}])=D_{u}\left(D_{w(\mathtt{J},\beta)}(e^{w_{0}^{\mathtt{J}}\lambda}D_{w(\mathtt{J},\beta)}[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}(w_{0}^{\mathtt{J}})}])\right),

represents a 𝐋\mathbf{L}-equivariant vector bundle whose fiber is a L𝙹(β)#L^{\mathtt{J}(\beta)^{\#}}-module with its character Dw(𝙹,β)(ew0𝙹λ)D_{w(\mathtt{J},\beta)}(e^{w_{0}^{\mathtt{J}}\lambda}). The latter is chV𝙹(β)#(w(𝙹,β)w0𝙹λ)\mathrm{ch}\,V^{\mathtt{J}(\beta)^{\#}}(w(\mathtt{J},\beta)w_{0}^{\mathtt{J}}\lambda) by the Weyl character formula. We have

K𝐋(𝙹(β)#𝙹)R(𝐏𝙹(β)#)=R(𝐋𝙹(β)#),K_{\mathbf{L}}(\mathscr{B}^{\mathtt{J}}_{\mathtt{J}(\beta)^{\#}})\cong R(\mathbf{P}^{\mathtt{J}(\beta)^{\#}})=R(\mathbf{L}^{\mathtt{J}(\beta)^{\#}}),

and the set of characters chV𝙹(β)#(w(𝙹,β)w0𝙹λ)\mathrm{ch}\,V^{\mathtt{J}(\beta)^{\#}}(w(\mathtt{J},\beta)w_{0}^{\mathtt{J}}\lambda) for λΛ+𝙹(β)\lambda\in\Lambda_{+}^{\mathtt{J}}(\beta) is a q𝕏0(𝙹){\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})-basis of R(𝐋𝙹(β)#)R(\mathbf{L}^{\mathtt{J}(\beta)^{\#}}). Therefore, we conclude that {E𝙹[β;λ]}λΛ+𝙹(β)\{E^{\mathtt{J}}[\beta;\lambda]\}_{\lambda\in\Lambda^{\mathtt{J}}_{+}(\beta)} is the q𝕏0(𝙹){\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})-basis of the Dw0𝙹D_{w_{0}^{\mathtt{J}}}-invariant part of (5.3). Since K𝐋(Gr𝐋)K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}}) is the direct sum of Dw0𝙹D_{w_{0}^{\mathtt{J}}}-invariant parts of (5.3), we conclude the result. ∎

We set Est𝙹[γ;λ]:=E𝙹[γ+β;λ]q𝚝βE^{\mathtt{J}}_{\mathrm{st}}[\gamma;\lambda]:=E^{\mathtt{J}}[\gamma+\beta;\lambda]\odot_{q}{\mathtt{t}}_{-\beta} for λΛ𝙹,γ𝕏,β,β+γ𝕏(𝙹)\lambda\in\Lambda^{\mathtt{J}},\gamma\in\mathbb{X}_{*},\beta,\beta+\gamma\in\mathbb{X}_{*}^{-}(\mathtt{J}).

Corollary 5.5.

The element Est𝙹[γ;λ]E^{\mathtt{J}}_{\mathrm{st}}[\gamma;\lambda] does not depend on the choice ((of β)\beta).

Proof.

The assertion follows from the fact that the right action of 𝚝β{\mathtt{t}}_{\beta} commutes with the left action of DiD_{i} (i𝙹)(i\in\mathtt{J}). ∎

By construction, we have LH′′×[L,L]L\cong H^{\prime\prime}\times[L,L] for a connected subtorus H′′HH^{\prime\prime}\subset H. In particular, we have

LH′′×k=1nLkL\cong H^{\prime\prime}\times\prod_{k=1}^{n}L_{k}

where each LkL_{k} is a simply connected simple algebraic group. Let QkQQ^{\vee}_{k}\subset Q^{\vee} be the span of simple coroots corresponding to (co-)roots in LkL_{k}. We have

K𝐋(Gr𝐋)K𝐇′′(GrH′′)qk=1nK𝐋k(GrLk),K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}})\cong K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}})\otimes_{{\mathbb{C}}_{q}}\bigotimes_{k=1}^{n}K_{\mathbf{L}_{k}}(\mathrm{Gr}_{L_{k}}), (5.4)

where the big tensor product is also taken over q{\mathbb{C}}_{q}. On K𝐋(Gr𝐋)K_{\mathbf{L}}(\mathrm{Gr}_{\mathbf{L}}), we have the translation elements 𝚝β{\mathtt{t}}_{\beta} for each β𝕏\beta\in\mathbb{X}_{*} obtained as the product of 𝚝γ{\mathtt{t}}_{\gamma}’s that act on one of the tensor factors. This makes (5.4) into the isomorphism between their localized versions.

Using this, we consider the maps Ψ𝙹\Psi_{\mathtt{J}} and Φ𝙹\Phi_{\mathtt{J}}^{\prime} obtained from these of Theorem 3.1 and Theorem 2.17 by employing the following spaces:

K𝐋(𝐐𝙹rat):=k=1nK𝐋k(𝐐Lkrat)K𝐇′′(GrH′′)and qK𝐋(𝙹)locK𝐇′′(GrH′′),K_{\mathbf{L}}(\mathbf{Q}_{\mathtt{J}}^{\mathrm{rat}}):=\bigotimes_{k=1}^{n}K_{\mathbf{L}_{k}}(\mathbf{Q}_{L_{k}}^{\mathrm{rat}})\otimes K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}})\hskip 14.22636pt\text{and}\hskip 14.22636ptqK_{\mathbf{L}}(\mathscr{B}^{\mathtt{J}})_{\mathrm{loc}}\otimes K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}}),

where all the tensor products are taken over q{\mathbb{C}}_{q}, the Φ𝙹\Phi_{\mathtt{J}} is K𝐇′′(GrH′′)K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}})-linear, and the map Ψ𝙹\Psi_{\mathtt{J}}^{\prime} is also K𝐇′′(GrH′′)K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}})-linear, though the Novikov variables and line bundles (including the Heisenberg generators of K𝐇′′(GrH′′)K_{\mathbf{H}^{\prime\prime}}(\mathrm{Gr}_{H^{\prime\prime}})) are twisted by w0-w_{0} from its naive definition. Note that the multiplication by 𝚝β{\mathtt{t}}_{\beta} (β𝕏\beta\in\mathbb{X}_{*}) corresponds to Qw0βQ^{-w_{0}\beta} only if βQ𝙹\beta\in Q^{\vee}_{\mathtt{J}}, and the multiplication by QβQ^{\beta} for 𝕏\mathbb{X}_{*} is extended formally.

Lemma 5.6.

For β𝕏\beta\in\mathbb{X}_{*} and λΛ𝙹\lambda\in\Lambda^{\mathtt{J}}, we have

Est𝙹[β;λ]=Φ𝙹1Ψ𝙹([𝒪𝙹(w0λ)]Qw0β).E^{\mathtt{J}}_{\mathrm{st}}[\beta;\lambda]=\Phi^{-1}_{\mathtt{J}}\circ\Psi^{\prime}_{\mathtt{J}}([{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}(-w_{0}\lambda)]Q^{-w_{0}\beta}).

In particular, the set {Est𝙹[β;λ]}β𝕏,λΛ𝙹\{E^{\mathtt{J}}_{\mathrm{st}}[\beta;\lambda]\}_{\beta\in\mathbb{X}_{*},\lambda\in\Lambda^{\mathtt{J}}} is a q𝕏0(𝙹){\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})-basis of K𝐋𝙹(Gr𝐋𝙹)locK_{\mathbf{L}^{\mathtt{J}}}(\mathrm{Gr}_{\mathbf{L}^{\mathtt{J}}})_{\mathrm{loc}}.

Proof.

We have [𝒪𝙹(λ)]=Dw0𝙹(ew0𝙹λ[𝒪𝙹(w0𝙹)])K𝐇(𝙹)[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}}(\lambda)]=D_{w_{0}^{\mathtt{J}}}(e^{w_{0}^{\mathtt{J}}\lambda}[{\mathcal{O}}_{\mathscr{B}^{\mathtt{J}}(w_{0}^{\mathtt{J}})}])\in K_{\mathbf{H}}(\mathscr{B}^{\mathtt{J}}). In view of the correspondence between Schubert classes under the maps Ψ\Psi [26, Theorem 4.1 and its proof] and Φ\Phi [26, Proposition 2.13 and Remark 2.14], we deduce the first assertion. Taking into account of the first assertion and Theorem 3.1, the second assertion follows from Theorem 2.12 and Theorem 2.15. ∎

Lemma 5.7.

The embedding of Proposition 3.8 induces algebra embeddings

K𝐆(GrG)locK𝐋(GrL)locK𝐇(GrH).K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{L}}(\mathrm{Gr}_{L})_{\mathrm{loc}}\hookrightarrow K_{\mathbf{H}}(\mathrm{Gr}_{H}).
Proof.

In view of Corollary 3.10 and Proposition 3.8, we find that K𝐆(GrG)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}} and K𝐋(GrL)locK_{\mathbf{L}}(\mathrm{Gr}_{L})_{\mathrm{loc}} are obtained by replacing the generator eϖie^{\varpi_{i}} (i𝙸)(i\in\mathtt{I}) in K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H}) to ξi\xi_{i} for i𝙹i\in\mathtt{J} (eϖie^{-\varpi_{i}} and ϕi\phi_{i} are the same for every i𝙸i\in\mathtt{I}). The commutation relation in Proposition 3.8 implies K𝐆(GrG)locK𝐋(GrL)locK_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}\subset K_{\mathbf{L}}(\mathrm{Gr}_{L})_{\mathrm{loc}} inside K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H}). ∎

For λΛ\lambda\in\Lambda, we write λ=j𝙸mjϖj\lambda=\sum_{j\in\mathtt{I}}m_{j}\varpi_{j} for some mjm_{j}\in\mathbb{Z}. For each β𝕏\beta\in\mathbb{X}_{*}, we define

[𝒪β(λ)]:=(j𝙸,mj<0ϕimj)(j𝙸,mj>0ξimj)(𝚝β)K𝐆(GrG)loc.[{\mathcal{O}}_{\beta}^{\star}(\lambda)]:=\left(\prod_{j\in\mathtt{I},m_{j}<0}\phi_{i}^{-m_{j}}\right)\left(\prod_{j\in\mathtt{I},m_{j}>0}\xi_{i}^{m_{j}}\right)({\mathtt{t}}_{\beta})\in K_{\mathbf{G}}(\mathrm{Gr}_{G})_{\mathrm{loc}}.

Similarly, for each λΛ\lambda\in\Lambda, we write λ=μ+j𝙹mjϖj\lambda=\mu+\sum_{j\in\mathtt{J}}m_{j}\varpi_{j} for some μΛ𝙸𝙹\mu\in\Lambda^{\mathtt{I}\setminus\mathtt{J}} and mjm_{j}\in\mathbb{Z}, and we define

[𝒪𝙹,β(λ)]:=eμ(j𝙹,mj<0ϕimj)(j𝙹,mj>0ξimj)(𝚝β)K𝐋(GrL)loc.[{\mathcal{O}}_{\mathtt{J},\beta}^{\star}(\lambda)]:=e^{\mu}\left(\prod_{j\in\mathtt{J},m_{j}<0}\phi_{i}^{-m_{j}}\right)\left(\prod_{j\in\mathtt{J},m_{j}>0}\xi_{i}^{m_{j}}\right)({\mathtt{t}}_{\beta})\in K_{\mathbf{L}}(\mathrm{Gr}_{L})_{\mathrm{loc}}.
Lemma 5.8.

For λΛ𝙹\lambda\in\Lambda^{\mathtt{J}}, we have

[𝒪𝙹,0(λ)]=Est𝙹[0;λ]mod(𝚝αjj𝙹).[{\mathcal{O}}_{\mathtt{J},0}^{\star}(\lambda)]=E^{\mathtt{J}}_{\mathrm{st}}[0;\lambda]\mod({\mathtt{t}}_{\alpha_{j}^{\vee}}\mid j\in\mathtt{J}).
Proof.

In view of Theorem 1.1 and Theorem 3.1, the assertion follows from Theorem 2.9 4) and the definitions of ϕi\phi_{i}’s and ξi\xi_{i}’s. ∎

By the comparison of Lemma 5.4 and Lemma 5.8, we have a transition matrix (that is a finite sum in view of Corollary 3.10)

E𝙹[β;λ]=γ𝕏,μΛ𝙹aβ,λγ,μ(𝙹)[𝒪𝙹,γ(μ)]E^{\mathtt{J}}[\beta;\lambda]=\sum_{\gamma\in\mathbb{X}_{*},\mu\in\Lambda^{\mathtt{J}}}a_{\beta,\lambda}^{\gamma,\mu}(\mathtt{J})[{\mathcal{O}}_{\mathtt{J},\gamma}^{\star}(\mu)]

for aβ,λγ,μ(𝙹)q𝕏0(𝙹)a_{\beta,\lambda}^{\gamma,\mu}(\mathtt{J})\in{\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J}). Moreover, we have:

Lemma 5.9.

We have aβ,λβ,λ(𝙹)=1a_{\beta,\lambda}^{\beta,\lambda}(\mathtt{J})=1, and

aβ,λγ,μ(𝙹)=0for every γβ+Q𝙹,+.a_{\beta,\lambda}^{\gamma,\mu}(\mathtt{J})=0\hskip 14.22636pt\text{for every}\hskip 14.22636pt\gamma\not\in\beta+Q^{\vee}_{\mathtt{J},+}.
Proof.

The assertion follows by Lemma 5.8 and the fact that the effect of line bundle twists of 𝐐Lk\mathbf{Q}_{L_{k}} raises the translation parts by Q𝙹,+Q^{\vee}_{\mathtt{J},+}. ∎

Proposition 5.10.

For each λΛ𝙹\lambda\in\Lambda^{\mathtt{J}} and β𝕏\beta\in\mathbb{X}_{*}^{-}, we have

aβ,λγ,μ(𝙹)=aβ,λγ,μγβ+Q𝙹,+.a_{\beta,\lambda}^{\gamma,\mu}(\mathtt{J})=a_{\beta,\lambda}^{\gamma,\mu}\hskip 14.22636pt\gamma\in\beta+Q^{\vee}_{\mathtt{J},+}.
Proof.

By assumption, we have E[β;λ]=Est[β;λ]E[\beta;\lambda]=E_{\mathrm{st}}[\beta;\lambda] and E𝙹[β;λ]=Est𝙹[β;λ]E^{\mathtt{J}}[\beta;\lambda]=E^{\mathtt{J}}_{\mathrm{st}}[\beta;\lambda]. Thanks to Theorem 3.1 and Theorem 2.17, we transplant the problem to the quantum KK-groups via (Ψ𝙹)1Φ𝙹(\Psi_{\mathtt{J}}^{\prime})^{-1}\circ\Phi_{\mathtt{J}}. In view of Corollary 1.7, the assertion follows by Theorem 4.1 and Lemma 5.6. ∎

Proposition 5.11.

For each β𝕏\beta\in\mathbb{X}_{*}^{\leq} and λΛ+(β)\lambda\in\Lambda_{+}(\beta), we have

aβ,λγ,μ=λcλaβ,λγ,μ(𝙹)γβ+Q𝙹,+,a_{\beta,\lambda}^{\gamma,\mu}=\sum_{\lambda^{\prime}}c_{\lambda^{\prime}}a_{\beta,\lambda^{\prime}}^{\gamma,\mu}(\mathtt{J})\hskip 14.22636pt\gamma\in\beta+Q^{\vee}_{\mathtt{J},+},

where λΛ+𝙹(β)\lambda^{\prime}\in\Lambda^{\mathtt{J}}_{+}(\beta) and cλq𝕏0(𝙹)c_{\lambda^{\prime}}\in{\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J}).

Proof.

We borrow the setting in the proof of Lemma 5.4. The element E[β;λ]E[\beta;\lambda] corresponds a GG-equivariant vector bundle over 𝙸(β)#\mathscr{B}_{\mathtt{I}(\beta)^{\#}} inflated from a L𝙸(β)L^{\mathtt{I}(\beta)}-module V𝙸(β)(λ)V^{\mathtt{I}(\beta)}(\lambda), while the element E𝙹[β;λ]E^{\mathtt{J}}[\beta;\lambda^{\prime}] corresponding to a L𝙹L^{\mathtt{J}}-equivariant vector bundle over 𝙹(β)#𝙹\mathscr{B}^{\mathtt{J}}_{\mathtt{J}(\beta)^{\#}} inflated from a L𝙹(β)L^{\mathtt{J}(\beta)}-module V𝙹(β)(λ)V^{\mathtt{J}(\beta)}(\lambda^{\prime}). These are parametrized by Λ+(β)\Lambda_{+}(\beta) and Λ+𝙹(β)\Lambda^{\mathtt{J}}_{+}(\beta), respectively. In particular, we have

V𝙸(β)(λ)λΛ+𝙹(β)V𝙹(β)(λ)cλ,V^{\mathtt{I}(\beta)}(\lambda)\cong\bigoplus_{\lambda^{\prime}\in\Lambda^{\mathtt{J}}_{+}(\beta)}V^{\mathtt{J}(\beta)}(\lambda^{\prime})^{\oplus c_{\lambda^{\prime}}}, (5.5)

where cλq𝕏0(𝙹)q𝕏c_{\lambda^{\prime}}\in{\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J})\subset{\mathbb{C}}_{q}\mathbb{X}^{*} is understood to be the multiplicity space that carries the information of character twists.

Consider the expansions

E𝙹[β;λ]=μdμλEst𝙹[β;μ](λΛ+𝙹(β))and E[β;λ]=μeμλEst[β;μ](λΛ+𝙸(β))E^{\mathtt{J}}[\beta;\lambda]=\sum_{\mu}d_{\mu}^{\lambda}E^{\mathtt{J}}_{\mathrm{st}}[\beta;\mu]\hskip 5.69054pt(\lambda\in\Lambda^{\mathtt{J}(\beta)}_{+})\hskip 5.69054pt\text{and}\hskip 5.69054ptE[\beta;\lambda]=\sum_{\mu}e_{\mu}^{\lambda}E_{\mathrm{st}}[\beta;\mu]\hskip 5.69054pt(\lambda\in\Lambda^{\mathtt{I}(\beta)}_{+})

with dμλq𝕏0(𝙹),eμλq𝕏(G)d_{\mu}^{\lambda}\in{\mathbb{C}}_{q}\mathbb{X}^{*}_{0}(\mathtt{J}),e_{\mu}^{\lambda}\in{\mathbb{C}}_{q}\mathbb{X}^{*}(G). These correspond to the expansions of the pullbacks of the class of vector bundles on 𝙹(β)#𝙹\mathscr{B}^{\mathtt{J}}_{\mathtt{J}(\beta)^{\#}} and 𝙸(β)#\mathscr{B}_{\mathtt{I}(\beta)^{\#}} to 𝙹\mathscr{B}^{\mathtt{J}} and \mathscr{B} in terms of line bundles by Corollary 1.8, respectively. It respects the decomposition through the comparison given by Corollary 1.7, that sends Est[β;λ]E_{\mathrm{st}}[\beta;\lambda] (λΛ\lambda\in\Lambda) to eλλEst𝙹[β;λ]e^{\lambda-\lambda^{\prime}}E^{\mathtt{J}}_{\mathrm{st}}[\beta;\lambda^{\prime}] for λΛ𝙹\lambda^{\prime}\in\Lambda^{\mathtt{J}} such that λλΛ𝙸𝙹\lambda-\lambda^{\prime}\in\Lambda^{\mathtt{I}\setminus\mathtt{J}}.

It follows that

dμλ=λcλeμλ.d_{\mu}^{\lambda}=\sum_{\lambda^{\prime}}c_{\lambda^{\prime}}e_{\mu}^{\lambda^{\prime}}.

Now the assertion follows by transplanting the problem to the quantum KK-groups via (Ψ𝙹)1Φ𝙹(\Psi_{\mathtt{J}}^{\prime})^{-1}\circ\Phi_{\mathtt{J}} thanks to Proposition 4.1. ∎

5.2 Proof of Theorem 5.1

This subsection is totally devoted to the proof of Theorem 5.1. We consider elements of K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) and K𝐋(GrL)K_{\mathbf{L}}(\mathrm{Gr}_{L}) as elements of K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H}) via Corollary 3.11. Since we have ϕi,ξi,𝚝±αiK𝐋(GrL)\phi_{i},\xi_{i},{\mathtt{t}}_{\pm\alpha_{i}^{\vee}}\in K_{\mathbf{L}}(\mathrm{Gr}_{L}) for i𝙹i\not\in\mathtt{J}, we have

K𝐆(GrG)K𝐋(GrL)K_{\mathbf{G}}(\mathrm{Gr}_{G})\subset K_{\mathbf{L}}(\mathrm{Gr}_{L}) (5.6)

if and only if

K𝐆(GrG)[ϕi,ξi,𝚝±αii𝙹]K𝐋(GrL),K_{\mathbf{G}}(\mathrm{Gr}_{G})[\phi_{i},\xi_{i},{\mathtt{t}}_{\pm\alpha_{i}^{\vee}}\mid i\not\in\mathtt{J}]\subset K_{\mathbf{L}}(\mathrm{Gr}_{L}), (5.7)

where the LHS exist as a subalgebra of K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H}). We consider the completions of the both sides of (5.7) using the variables {𝚝β}β𝕏\{{\mathtt{t}}_{\beta}\}_{\beta\in\mathbb{X}_{*}} with respect to the direction β,ϖi\left<\beta,\varpi_{i}\right>\to\infty for i𝙹i\not\in\mathtt{J}. We denote the completion of the LHS of (5.7) by 𝐊G\mathbf{K}_{G}^{\wedge} and the completion of the RHS of (5.7) by 𝐊L\mathbf{K}_{L}^{\wedge}. We have (k=0𝚝kαi)ξi𝐊G(\sum_{k=0}^{\infty}{\mathtt{t}}_{k\alpha_{i}^{\vee}})\xi_{i}\in\mathbf{K}_{G}^{\wedge} for i𝙹i\not\in\mathtt{J}, that is an inverse of ϕi\phi_{i}. We have (5.6) if and only if 𝐊G𝐊L\mathbf{K}_{G}^{\wedge}\subset\mathbf{K}_{L}^{\wedge}.

For a collection m:={mi}i(𝙸𝙹)(𝙸𝙹)\vec{m}:=\{m_{i}\}_{i\in(\mathtt{I}\setminus\mathtt{J})}\in\mathbb{Z}^{(\mathtt{I}\setminus\mathtt{J})}, we set Λ(m):={λΛαi,λ=mi,i(𝙸𝙹)}\Lambda(\vec{m}):=\{\lambda\in\Lambda\mid\left<\alpha_{i}^{\vee},\lambda\right>=m_{i},i\in(\mathtt{I}\setminus\mathtt{J})\}. Assume that

λΛ,βγ+Q+cλ,β[𝒪β(λ)]K𝐆(GrG)cλ,βq𝕏(G).\sum_{\lambda\in\Lambda,\beta\in\gamma+Q_{+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\beta}^{\star}(\lambda)]\in K_{\mathbf{G}}(\mathrm{Gr}_{G})\hskip 14.22636ptc_{\lambda,\beta}\in{\mathbb{C}}_{q}\mathbb{X}^{*}(G).

By taking the conjugations by 𝚝αi{\mathtt{t}}_{\alpha_{i}^{\vee}} for each i(𝙸𝙹)i\in(\mathtt{I}\setminus\mathtt{J}) and separate out the eigenvectors, we conclude that

λΛ(m),βγ+Q+cλ,β[𝒪β(λ)]K𝐆(GrG)[ϕi,ξi,𝚝±αii𝙹].\sum_{\lambda\in\Lambda(\vec{m}),\beta\in\gamma+Q_{+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\beta}^{\star}(\lambda)]\in K_{\mathbf{G}}(\mathrm{Gr}_{G})[\phi_{i},\xi_{i},{\mathtt{t}}_{\pm\alpha_{i}^{\vee}}\mid i\not\in\mathtt{J}].

Inside 𝐊G\mathbf{K}_{G}^{\wedge}, we can take conjugation by ϕi\phi_{i} for each i𝙹i\not\in\mathtt{J}. By examining their eigenvalues, we have

λΛ(m),βγ+Q𝙹,+cλ,β[𝒪β(λ)]𝐊G.\sum_{\lambda\in\Lambda(\vec{m}),\beta\in\gamma+Q_{\mathtt{J},+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\beta}^{\star}(\lambda)]\in\mathbf{K}_{G}^{\wedge}.

Summing them up with respect to m\vec{m}, we find that

λΛ,βγ+Q𝙹,+cλ,β[𝒪β(λ)]𝐊G.\sum_{\lambda\in\Lambda,\beta\in\gamma+Q_{\mathtt{J},+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\beta}^{\star}(\lambda)]\in\mathbf{K}_{G}^{\wedge}.

Recall that we have 𝕏𝕏(𝙹)\mathbb{X}^{\leq}_{*}\subset\mathbb{X}_{*}^{\leq}(\mathtt{J}) and Λ+(β)Λ+𝙹(β)+Λ𝙸𝙹\Lambda_{+}(\beta)\subset\Lambda^{\mathtt{J}}_{+}(\beta)+\Lambda^{\mathtt{I}\setminus\mathtt{J}}, and hence there is a natural inclusion between the (labels of the) q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-basis

{E(β,λ)}β𝕏,λΛ+(β)K𝐆(GrG)\{E(\beta,\lambda)\}_{\beta\in\mathbb{X}^{\leq}_{*},\lambda\in\Lambda_{+}(\beta)}\subset K_{\mathbf{G}}(\mathrm{Gr}_{G}) (5.8)

into the (labels of the) q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-basis

{E𝙹(β,λ1)eλ2}β𝕏(𝙹),λ1Λ+𝙹(β),λ2Λ𝙸𝙹K𝐋(GrL).\{E^{\mathtt{J}}(\beta,\lambda_{1})e^{\lambda_{2}}\}_{\beta\in\mathbb{X}_{*}^{\leq}(\mathtt{J}),\lambda_{1}\in\Lambda^{\mathtt{J}}_{+}(\beta),\lambda_{2}\in\Lambda^{\mathtt{I}\setminus\mathtt{J}}}\subset K_{\mathbf{L}}(\mathrm{Gr}_{L}). (5.9)

If a (formal) linear combination

λΛ,βγ+Q+cλ,β[𝒪β(λ)]cλ,βq𝕏(G)\sum_{\lambda\in\Lambda,\beta\in\gamma+Q_{+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\beta}^{\star}(\lambda)]\hskip 14.22636ptc_{\lambda,\beta}\in{\mathbb{C}}_{q}\mathbb{X}^{*}(G) (5.10)

belongs to K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}), then it represents a q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-linear combination of (5.8). In view of Proposition 5.11, the partial sum corresponding to (γ+Q𝙹,+)(γ+Q+)(\gamma+Q_{\mathtt{J},+}^{\vee})\subset(\gamma+Q_{+}^{\vee}) yields the q𝕏(G){\mathbb{C}}_{q}\mathbb{X}^{*}(G)-linear combination of (5.9) through K𝐇(GrH)K_{\mathbf{H}}(\mathrm{Gr}_{H}). Therefore, (5.10) belongs to K𝐆(GrG)K_{\mathbf{G}}(\mathrm{Gr}_{G}) only if

λΛ,βγ+Q𝙹,+cλ,β[𝒪𝙹,β(λ)]K𝐋(GrL).\sum_{\lambda\in\Lambda,\beta\in\gamma+Q_{\mathtt{J},+}^{\vee}}c_{\lambda,\beta}[{\mathcal{O}}_{\mathtt{J},\beta}^{\star}(\lambda)]\in K_{\mathbf{L}}(\mathrm{Gr}_{L}).

Since the corresponding leading term element belongs to K𝐆(GrG)𝐊GK_{\mathbf{G}}(\mathrm{Gr}_{G})\subset\mathbf{K}_{G}^{\wedge} as a linear combination of (5.8) thanks to Lemma 5.4, we conclude that 𝐊G𝐊L\mathbf{K}_{G}^{\wedge}\subset\mathbf{K}_{L}^{\wedge} by removing the leading terms inductively. This forces K𝐆(GrG)K𝐋(GrL)K_{\mathbf{G}}(\mathrm{Gr}_{G})\subset K_{\mathbf{L}}(\mathrm{Gr}_{L}) as required. Thus, we conclude Theorem 5.1.

Acknowledgement: The author would like thank Michael Finkelberg and Éric Vasserot for the discussions on the topic in this paper. He also thanks Joel Kamnitzer for some correspondences. Part of this work was done during his visit to the Higher School of Economics in December 2019, and the Institute Henri Poincaré during January–March 2020. This research was supported in part by JSPS KAKENHI Grant Number JP19H01782.

Appendix A   A quantum analogue of the induction equivalence

Let GG be a connected reductive semi-simple group over {\mathbb{C}}, with a Borel subgroup BB and a maximal torus HH. Let BPGB\subset P\subset G be a parabolic subgroup. Let Q+Q^{\vee}_{+} denote the span of positive coroots (inside the coroot lattice of GG) identified with the effective cone of G/BG/B. Let QP,+Q+Q^{\vee}_{P,+}\subset Q^{\vee}_{+} be the span of positive coroots of GG that does not belong to the standard Levi subgroup of PP (cf. §1.1). Let {(αiP)}i\{(\alpha^{P}_{i})^{\vee}\}_{i} be the set of positive simple coroots in QP,+Q^{\vee}_{P,+}.

For a smooth projective variety 𝔛\mathfrak{X} over {\mathbb{C}}, we have a subset H2(𝔛)+H2(𝔛,)H_{2}(\mathfrak{X})_{+}\subset H_{2}(\mathfrak{X},\mathbb{Z}) of the effective classes (that is a submonoid). Let g,n,β(𝔛)\mathcal{M}_{g,n,\beta}(\mathfrak{X}) be the moduli stack of genus gg stable maps with nn-marked points with degree βH2(𝔛)+\beta\in H_{2}(\mathfrak{X})_{+} (see [2, 36]).

Theorem A.1.

Let XX be a smooth projective algebraic variety over {\mathbb{C}} equipped with the PP-action. We assume H1(X,)={0}H_{1}(X,\mathbb{Z})=\{0\}. Then, we have a surjective map of algebras

QKG(G×PX)QKP(X),QK_{G}(G\times_{P}X)\longrightarrow QK_{P}(X),

where QKQK denotes the big quantum KK-group defined in Lee [36].

Proof.

Since XX is projective with PP-action, we can consider X(V)X\subset\mathbb{P}(V) for a finite-dimensional PP-module VV. We can twist by PP-character if necessary to assume that all the TT-weights λ\lambda appearing in VV satisfies (αiP),λ0\left<(\alpha^{P}_{i})^{\vee},\lambda\right>\geq 0 for all ii (with respect to the standard pairing, cf. §1.1). Then, we have an algebraic induction V#V^{\#} of VV, that is the maximal finite-dimensional GG-module that is generated by VV. We have G×PX(V#)G\times_{P}X\subset\mathbb{P}(V^{\#}), and hence G×PXG\times_{P}X is again projective. The variety G×PXG\times_{P}X is evidently smooth as XX is.

Since H1(X,)=0H_{1}(X,\mathbb{Z})=0, the Leray spectral sequence yields

H2(G×PX,)H2(X,)H2(G/P,).H_{2}(G\times_{P}X,\mathbb{Z})\cong H_{2}(X,\mathbb{Z})\oplus H_{2}(G/P,\mathbb{Z}).

The projection map yields

π:H2(G×PX,)+H2(G/P,)+{0},\pi:H_{2}(G\times_{P}X,\mathbb{Z})_{+}\longrightarrow H_{2}(G/P,\mathbb{Z})_{+}\cup\{0\},

and the preimage of 0 is H2(X,)+H_{2}(X,\mathbb{Z})_{+} by inspection. By the above identification of the effective classes, we find

g,n,β(G×PX)G×Pg,n,β(X)\mathcal{M}_{g,n,\beta}(G\times_{P}X)\cong G\times_{P}\mathcal{M}_{g,n,\beta}(X) (A.11)

whenever βπ1(0)H2(X,)+\beta\in\pi^{-1}(0)\cong H_{2}(X,\mathbb{Z})_{+}. In particular, we have an inflation map

infl:KP(g,n,β(X))KG(G×Pg,n,β(X)).\mathrm{infl}:K_{P}(\mathcal{M}_{g,n,\beta}(X))\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}K_{G}(G\times_{P}\mathcal{M}_{g,n,\beta}(X)).

By (A.11), the perfect obstruction theory of G×Pg,n,β(X)G\times_{P}\mathcal{M}_{g,n,\beta}(X) ([36, §2.3 (3)]) can be taken as the inflation of that of g,n,β(X)\mathcal{M}_{g,n,\beta}(X). It follows that

infl([𝒪g,n,β(X)vir])=[𝒪g,n,β(G×PX)vir].\mathrm{infl}([\mathcal{O}^{\mathrm{vir}}_{\mathcal{M}_{g,n,\beta}(X)}])=[\mathcal{O}^{\mathrm{vir}}_{\mathcal{M}_{g,n,\beta}(G\times_{P}X)}].

Note that the quantum KK-invariants of g,n,β(X)\mathcal{M}_{g,n,\beta}(X) ([36, §4.2]) with respect to the classes from KP(X)K_{P}(X) are PP-characters (corresponding to finite-dimensional virtual representations of PP). If βπ1(0)H2(X,)+\beta\in\pi^{-1}(0)\cong H_{2}(X,\mathbb{Z})_{+}, then we find that the inflation isomorphisms KP(X)KG(G×PX)K_{P}(X)\cong K_{G}(G\times_{P}X) and KP(g,n,β(X))KG(g,n,β(G×PX))K_{P}(\mathcal{M}_{g,n,\beta}(X))\cong K_{G}(\mathcal{M}_{g,n,\beta}(G\times_{P}X)) send the PP-equivariant Euler-Poincaré characteristic maps to GG-equivariant Euler-Poincaré characteristic maps through the algebraic (virtual) induction of the PP-characters to GG-characters. In particular, the quantum KK-potential ([36, (16)]) of G×PXG\times_{P}X is the inflation of that of XX (from PP-characters to GG-characters) modulo the Novikov monomial QβQ^{\beta} with π(β)0\pi(\beta)\neq 0. This induces an algebra map

QKG(G×PX)/(Qβπ(β)0)QKP(X)QK_{G}(G\times_{P}X)/(Q^{\beta}\mid\pi(\beta)\neq 0)\longrightarrow QK_{P}(X)

that is an isomorphism as being an isomorphism as vector spaces. ∎

References

  • [1] David Anderson, Linda Chen, Hsian-Hua Tseng, and Hiroshi Iritani. The quantum KK-theory of a homogeneous space is finite. International Mathematics Research Notices, published online https://doi.org/10.1093/imrn/rnaa108, 2020.
  • [2] Kai A. Behrend and Yuri I Manin. Stacks of stable maps and Gromov-Witten invariants. Duke Mathematical Journal, 85(1):1–60, 1996.
  • [3] Alexander Beilinson and Vladimir Drinfeld. Quantization of Hitchinn’s integrable system and Hecke eigensheaves. unpublished.
  • [4] Roman Bezrukavnikov, Michael Finkelberg, and Ivan Mirković. Equivariant homology and KK-theory of affine Grassmannians and Toda lattices. Compos. Math., 141(3):746–768, 2005.
  • [5] Anders Bjorner and Francesco Brenti. Combinatorics of Coxeter Groups, volume 231 of Graduate Text in Mathematics. Springer Science+Business Media, Inc., 2005.
  • [6] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the French, Reprint of the 1989 English translation.
  • [7] A. Braverman and D. Gaitsgory. Geometric Eisenstein series. Invent. Math., 150(2):287–384, 2002.
  • [8] Alexander Braverman and Michael Finkelberg. Weyl modules and qq-Whittaker functions. Math. Ann., 359(1-2):45–59, 2014.
  • [9] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima. Towards a mathematical definition of Coulomb branches of 3-dimensional N=4N=4 gauge theories, II. Adv. Theor. Math. Phys., 22(5):1071–1147, 2018.
  • [10] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima. Coulomb branches of 3d3d N=4N=4 quiver gauge theories and slices in the affine Grassmannian. Adv. Theor. Math. Phys., 23(1):75–166, 2019. With two appendices by Braverman, Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Nakajima, Ben Webster and Alex Weekes.
  • [11] Vyjayanthi Chari and Andrew Pressley. Weyl modules for classical and quantum affine algebras. Represent. Theory, 5:191–223 (electronic), 2001.
  • [12] Ivan Cherednik. Nonsymmetric Macdonald Polynomials. International Mathematics Research Notices, 2(10), 1995.
  • [13] Neil Chriss and Victor Ginzburg. Representation theory and complex geometry. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2010. Reprint of the 1997 edition.
  • [14] Boris Feigin, Michael Finkelberg, Alexander Kuznetsov, and Ivan Mirković. Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces. In Differential topology, infinite-dimensional Lie algebras, and applications, volume 194 of Amer. Math. Soc. Transl. Ser. 2, pages 113–148. Amer. Math. Soc., Providence, RI, 1999.
  • [15] Michael Finkelberg, Joel Kamnitzer, Khoa Pham, Leonid Rybnikov, and Alex Weekes. Comultiplication for shifted Yangians and quantum open Toda lattice. Adv. Math., 327:349–389, 2018.
  • [16] Michael Finkelberg and Ivan Mirković. Semi-infinite flags. I. Case of global curve 1\mathbb{P}^{1}. In Differential topology, infinite-dimensional Lie algebras, and applications, volume 194 of Amer. Math. Soc. Transl. Ser. 2, pages 81–112. Amer. Math. Soc., Providence, RI, 1999.
  • [17] Michael Finkelberg and Alexander Tsymbaliuk. Multiplicative slices, relativistic Toda and shifted quantum affine algebras. In Representations and Nilpotent Orbits of Lie Algebraic Systems, volume 330 of Progress in Mathematics, pages 133–304. Birkhäuser, 2019.
  • [18] William Fulton and Rahul Pandharipande. Notes on stable maps and quantum cohomology. In Robert Lazarsfeld János Kollár and David Morrison, editors, Algebraic Geometry: Santa Cruz 1995. Amer Mathematical Society, 1995.
  • [19] Alexander Givental. On the WDVV equation in quantum KK-theory. Michigan Math. J., 48:295–304, 2000.
  • [20] Alexander Givental and Yuan-Pin Lee. Quantum KK-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. Math., 151(1):193–219, 2003.
  • [21] Alexander B. Givental. Equivariant Gromov-Witten invariants. Internat. Math. Res. Notices, 13:613–663, 1996.
  • [22] Alexander B Givental and Bumsig Kim. Quantum Cohomology of Flag Manifolds and Toda Lattices. Communications in Mathematical Physics, 641:609–641, 1995.
  • [23] Hiroshi Iritani, Todor Milanov, and Valentin Tonita. Reconstruction and convergence in quantum K-Theory via Difference Equations. International Mathematics Research Notices, 2015(11):2887–2937, 2015, 1309.3750.
  • [24] Syu Kato. Demazure character formula for semi-infinite flag varieties. Math. Ann., 371(3):1769–1801, 2018, arXiv:1605.0279.
  • [25] Syu Kato. Frobenius splitting of Schubert varieties of semi-infinite flag manifolds. arXiv:1810.07106v4, 2018.
  • [26] Syu Kato. Loop structure on equivariant KK-theory of semi-infinite flag manifolds. arXiv:1805.01718v6, 2018.
  • [27] Syu Kato. On quantum KK-groups of partial flag manifolds. arXiv:1906.09343, 2019.
  • [28] Syu Kato, Satoshi Naito, and Daisuke Sagaki. Equivariant KK-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula. Duke Math. J., 169(13):2421–2500, 2020.
  • [29] B. Kim and R. Pandharipande. The connectedness of the moduli space of maps to homo- geneous spaces. In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 187–201. World Sci. Publ., River Edge, NJ, 2001.
  • [30] Bumsig Kim. Quantum cohomology of flag manifolds G/BG/B and quantum Toda lattices. Ann. of Math. (2), 149(1):129–148, 1999.
  • [31] M. Kontsevich and Yu. Manin. Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys., 164(3):525–562, 1994.
  • [32] Bertram Kostant and Shrawan Kumar. TT-equivariant KK-theory of generalized flag varieties. J. Differential Geom., 32(2):549–603, 1990.
  • [33] Shrawan Kumar. Kac-Moody groups, their flag varieties and representation theory, volume 204 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2002.
  • [34] Thomas Lam, Changzheng Li, Leonardo C. Mihalcea, and Mark Shimozono. A conjectural Peterson isomorphism in KK-theory. J. Algebra, 513:326–343, 2018.
  • [35] Thomas Lam, Anne Schilling, and Mark Shimozono. KK-theory Schubert calculus of the affine Grassmannian. Compositio Mathematica, 146(4):811–852, 2010, 0901.1506.
  • [36] Yuan-Pin Lee. Quantum KK-theory, I: Foundations. Duke Math. J., 121(3):389–424, 2004.
  • [37] Naichung Conan Leung and Changzheng Li. Functorial relationships between QH(G/B)QH^{*}(G/B) and QH(G/P)QH^{*}(G/P). Journal of Differential Geometry, 86:303–354, 2010.
  • [38] George Lusztig. Hecke algebras and Jantzen’s generic decomposition patterns. Adv. in Math., 37(2):121–164, 1980.
  • [39] I. G. Macdonald. Affine Hecke algebras and orthogonal polynomials, volume 157 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.
  • [40] I. Mirković and K. Vilonen. Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. of Math. (2), 166(1):95–143, 2007.
  • [41] Satoshi Naito, Daniel Orr, and Daisuke Sagaki. Pieri-Chevalley formula for anti-dominant weights in the equivariant KK-theory of semi-infinite flag manifolds. arXiv:1808.01468.
  • [42] Hiraku Nakajima. Towards a mathematical definition of Coulomb branches of 3-dimensional N=4N=4 gauge theories, I. Adv. Theor. Math. Phys., 20(3):595–669, 2016.
  • [43] Daniel Orr. Equivariant KK-theory of the semi-infinite flag manifold as a nil-DAHA module. arXiv:2001.03490, 2020.
  • [44] Dale Peterson. Quantum cohomology of G/PG/P. Lecture at MIT, 1997.
  • [45] Constantin Teleman. The role of Coulomb branches in 2D gauge theory. J. Eur. Math. Soc. (JEMS), to appear.