This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Curvature and quantized Arnold strangeness

Noboru Ito National Institute of Technology, Ibaraki College, 312-8508, Japan [email protected]
(Date: November 11, 2022)
Abstract.

By integrating curvatures multiplied non-trivial densities, we introduce an integral expression of the Arnold strangeness that is a celebrated plane curve invariant. The key is a partition function by Shumakovitch to reformulate Arnold strangeness. Our integrating curvatures suggests a quantized Arnold strangeness which Taylor expansion includes the rotation number and the original Arnold strangeness, and also higher terms are invariants of Tabachnikov. It is an analogue of the quantization by Viro for Arnold JJ^{-} and by Lanzat-Polyak for J+J^{+}.

Key words and phrases:
curvature; quantization; plane curve; Arnold basic invariants; Arnold strangeness

1. Introduction

Let CC be an oriented generic immersion S12S^{1}\to\mathbb{R}^{2}, i.e. immersions with a finite set of transversal double points as the only singularities. Let κ(t)\kappa(t) the curvature of C(t)C(t). The following is well-known.

Fact 1 (Hopf’s Umlaufsatz).

Let tS1t\in S^{1} of a plane curve C:S12C:S^{1}\to\mathbb{R}^{2}. Then the rotation number of CC is expressed by

12πS1κ(t)𝑑t.\frac{1}{2\pi}\int_{S^{1}}\kappa(t)dt.

Let p2Cp\in\mathbb{R}^{2}\setminus C and indC(p)\operatorname{ind}_{C}(p) the number of turns made by the vector pointing from pp to C(t)C(t) (tS1t\in S^{1}) if we follow CC along the orientation of CC, i.e.

(1) indC(p):=degφpwhereφp:tC(t)p|C(t)p|.\operatorname{ind}_{C}(p):=\deg\varphi_{p}~{}{\text{where}}~{}\varphi_{p}:t\mapsto\frac{C(t)-p}{|C(t)-p|}.

We extend indC(p)\operatorname{ind}_{C}(p) to that of pCp\in C [Shumakovitch1995, LanzatPolyak2013]. If pp is a regular point on an edge, indC(p)\operatorname{ind}_{C}(p) is the average of values on two regions adjacent to pp. If pp is a double point, indC(p)\operatorname{ind}_{C}(p) is the average of values on the four regions adjacent to pp. This number indC\operatorname{ind}_{C} is called the index as Viro [Viro1996] does.

The extension of indC\operatorname{ind}_{C} to multi-component curves is straightforward. Therefore, by using the function indC\operatorname{ind}_{C}, Viro [Viro1996] reformulated Arnold JJ^{-} [Arnold1994, Arnold1994book] as follows. Let C~\widetilde{C} be disjoint circles given by smoothing the double points along the orientation of CC; let Σ2\Sigma_{2} be the set of regions of 2C~\mathbb{R}^{2}\setminus\widetilde{C}; and let fσf_{\sigma} be the restriction of indC~|σ\operatorname{ind}_{\widetilde{C}}|_{\sigma} to σΣ2\sigma\in\Sigma_{2}. Clearly, fσf_{\sigma} is a constant map and indC~=σfσ\operatorname{ind}_{\widetilde{C}}=\sum_{\sigma}f_{\sigma}. Let χ(σ)\chi(\sigma) be the Euler characteristic of σ\sigma and let 2C~indC~dχ\int_{\mathbb{R}^{2}\setminus\widetilde{C}}\operatorname{ind}_{\widetilde{C}}d\chi == σfσ(σ)χ(σ)\sum_{\sigma}f_{\sigma}(\sigma)\chi(\sigma).

Fact 2 (Viro (1996) [Viro1996]).
The rotation number ofC\displaystyle{\text{The rotation number of}}~{}C =2C~indC~(x)𝑑χ(x),J(C)=12C~(indC~(x))2𝑑χ(x).\displaystyle=\int_{\mathbb{R}^{2}\setminus\widetilde{C}}\operatorname{ind}_{\widetilde{C}}(x)d\chi(x),\qquad J^{-}(C)=1-\int_{\mathbb{R}^{2}\setminus\widetilde{C}}(\operatorname{ind}_{\widetilde{C}}(x))^{2}d\chi(x).

Viro extends the above formulation to higher terms as 2C~(indC~(x))r𝑑χ(x)\int_{\mathbb{R}^{2}\setminus\widetilde{C}}(\operatorname{ind}_{\widetilde{C}}(x))^{r}d\chi(x), and define their quantized polynomial PC(q)P_{C}(q) by

PC(q)=r=0hrr!2C~(indC~(x))r𝑑χ(x)=2C~qindC~(x)𝑑χ(x).P_{C}(q)=\sum_{r=0}^{\infty}\frac{h^{r}}{r!}\int_{\mathbb{R}^{2}\setminus\widetilde{C}}(\operatorname{ind}_{\widetilde{C}}(x))^{r}d\chi(x)=\int_{\mathbb{R}^{2}\setminus\widetilde{C}}q^{\operatorname{ind}_{\widetilde{C}}(x)}d\chi(x).

After the work [Viro1996] (1996) was known, Lanzat-Polyak [LanzatPolyak2013] introduced a quantized polynomial Iq(C)I_{q}(C).

Fact 3 (Lanzat-Polyak (2013) [LanzatPolyak2013]).

For each double point of CC == C(t1)C(t_{1}) == C(t2)C(t_{2}), letting θd(0,π)\theta_{d}\in(0,\pi) be the non-oriented angle between two tangent vectors C(t1)C^{\prime}(t_{1}) and C(t2)-C^{\prime}(t_{2}), define Iq(C)I_{q}(C) by

Iq(C)=12π(𝕊1κ(t)qindC(C(t))𝑑tdθdqindC(d)(q12q12)).I_{q}(C)=\frac{1}{2\pi}\left(\int_{\mathbb{S}^{1}}\kappa(t)\cdot q^{\operatorname{ind}_{C}}(C(t))dt-\sum_{d}\theta_{d}\cdot q^{\operatorname{ind}_{C}(d)}(q^{\frac{1}{2}}-q^{-\frac{1}{2}})\right).

Then its Taylor expansion at q=1q=1 satisfies that the first term is the rotation number of CC and the second term I1I^{\prime}_{1} satisfies I1(C)=12(1J+(C))I^{\prime}_{1}(C)=\frac{1}{2}(1-J^{+}(C)).

Since the Arnold basic invariants consist of J+J^{+}, JJ^{-}, and StSt [Arnold1994book], it is natural to request an integral expression by the curvature and its quantization also for StSt. We discuss this issue here.

Let α(t)\alpha(t) (tCt\in C) and α±(d)\alpha_{\pm}(d) (dd : a double point) be sums of signs defined as in Section 2. In the rest of this paper, we suppose that every plane curve CC has the base point lies on an exterior edge, which fixes the long curve on 2{}\mathbb{R}^{2}\cup\{\infty\} putting the base point on {}\{\infty\}. Let rot(C)\operatorname{rot}(C) be the rotation number of the corresponding long curve.

Theorem 1.

Define Stq(C)St_{q}(C) by

12π(q12+q12)(𝕊1κ(t)α(t)qindC(t)𝑑t+d(πθd)(α+(d)qindC(d)+12α(d)qindC(d)12)),\frac{1}{2\pi(q^{\frac{1}{2}}+q^{-\frac{1}{2}})}\left(\int_{\mathbb{S}^{1}}\kappa(t)\alpha(t)q^{\operatorname{ind}_{C}(t)}dt+\sum_{d}(\pi-\theta_{d})(\alpha_{+}(d)q^{\operatorname{ind}_{C}(d)+\frac{1}{2}}-\alpha_{-}(d)q^{\operatorname{ind}_{C}(d)-\frac{1}{2}})\right),

which becomes a Laurent polynomial in [q,q1]\mathbb{Z}[q,q^{-1}]. Substituting q=ehq=e^{h} == r=0hrr!\sum_{r=0}^{\infty}\frac{h^{r}}{r!}, the rrth coefficient is an invariant Str(C)r!\frac{St^{r}(C)}{r!} of Tabachnikov. Taylor expansion of Stq(C)St_{q}(C) at q=1q=1 satisfies that the first term St1St_{1} == rot(C)\operatorname{rot}(C) and the second term St1(C)St^{\prime}_{1}(C) == St(C)St(C); St(C)St(C) is expressed by

14π(𝕊1κ(t)α(t)indC(t)dt+d(πθd)(α+(d)(indC(d)+12)α(d)(indC(d)12)).\frac{1}{4\pi}\left(\int_{\mathbb{S}^{1}}\kappa(t)\alpha(t)\operatorname{ind}_{C}(t)dt+\sum_{d}(\pi-\theta_{d})(\alpha_{+}(d)\left(\operatorname{ind}_{C}(d)+\frac{1}{2}\right)-\alpha_{-}(d)\left(\operatorname{ind}_{C}(d)-\frac{1}{2}\right)\right).

Further, by Table 1, the comparison is given for three quantizations PC(q)P_{C}(q), Iq(C)I_{q}(C), and Stq(C)St_{q}(C) corresponding to JJ^{-}, J+J^{+}, and StSt, respectively.

Table 1. Differences of PC(q),Iq(C),Stq(C)P_{C}(q),I_{q}(C),St_{q}(C) by positive modifications (Figure 1)
PC(q)P_{C}(q) Iq(C)I_{q}(C) Stq(C)St_{q}(C)
direct self-tangency modification 0 qind(q12q12)-q^{\operatorname{ind}}(q^{\frac{1}{2}}-q^{-\frac{1}{2}}) 0
opposite self-tangency modification qind1(q1)2q^{\operatorname{ind}-1}(q-1)^{2} 0 0
weak triple-point modification 0 12qind+12(q12q12)2\frac{1}{2}q^{\operatorname{ind}+\frac{1}{2}}(q^{\frac{1}{2}}-q^{-\frac{1}{2}})^{2} qind(q1)q^{\operatorname{ind}}(q-1)
strong triple-point modification qind1(q1)3-q^{\operatorname{ind}-1}(q-1)^{3} 12qind+12(q12q12)2\frac{1}{2}q^{\operatorname{ind}+\frac{1}{2}}(q^{\frac{1}{2}}-q^{-\frac{1}{2}})^{2} qind(q1)q^{\operatorname{ind}}(q-1)
Refer to caption
Figure 1. Modifications with positive/negative directions. Direct/opposite self-tangency modification (upper left/right) and weak/strong triple-point modification (lower left/right) where the case with reversed orientations of the curve is omitted. Dotted curves indicate connections of curves.

The locally constant function α\alpha of curves is originated in a weight ww of Shumakovitch [Shumakovitch1995], which is related to gleams of Turaev [Turaev1994]. Using the common weight ww, higher Arnold strangeness StrSt^{r} is given by Tabachnikov [Tabachnikov1996] for long curves. Tabachnikov invariant StrSt^{r} is extended to closed curves by Arakawa-Ozawa [ArakawaOzawa1999], independently, to closed curves and fronts by Shumakovitch [Shumakovitch1996].

2. A sum α\alpha of signs

Definition 1 (The weight ww of a double point dd (Shumakovitch [Shumakovitch1995])).

For a plane curve CC, we choose a base point and we fix an ascending diagram DCD_{C} from the base point. Let w(d)w(d) be a local writhe for an ascending diagram.

Remark 1.

Alternatively, the weight is defined by tangent vectors of a double point. See Figure 2.

Refer to caption
Figure 2. Weights of double points. Crossings’ signs correspond to weights of double points (left); the two edges which go into a double point dd (center); the double point is negative (positive, resp.) if the two (the first and second) edges which go into the double point give a positive (negative, resp.) orientation (right).
Notation 1 (d~+\widetilde{d}_{+} and d~\widetilde{d}_{-}).

For a double point dd, let e+(d)e_{+}(d) and e(d)e_{-}(d) be the two edges as in Figure 3 (center). If we smooth the double points of CC, there exists a canonical map ff sending each edge ee of CC to a 11-simplex of C~n\widetilde{C}_{n} of an nn as in Figure 3 (center). Then let d~+\widetilde{d}_{+} (d~\widetilde{d}_{-}, resp.) be the vertex where the edge f(e+(d))f(e_{+}(d)) (f(e(d))f(e_{-}(d)), resp.) goes into it. There is also the canonical map gg sending two verticies d~+\widetilde{d}_{+} and d~\widetilde{d}_{-} to the double point dd. The symbol d~ϵ\widetilde{d}_{\epsilon} (ϵ=+,\epsilon=+,-) is often denoted by d~\widetilde{d} simply.

Refer to caption
Figure 3. Indices of points. The index ii of a double point dd is enclosed by the square; indices i12i-\frac{1}{2}, i+12i+\frac{1}{2} are of edges; indices i1,i,i+1i-1,i,i+1 are of regions. Smoothing a double point and its angle θd\theta_{d}.
Definition 2 (α(C~n)\alpha(\widetilde{C}_{n}); α(p)\alpha(p) (a point pp on a curve C(𝕊1)C(\mathbb{S}^{1})); α±(d)\alpha_{\pm}(d) (a double point dd on the curve)).

If we smooth the double points of CC, we have multi-component disjoint simple closed curves C~\widetilde{C} == nC~n\sqcup_{n}\widetilde{C}_{n} on the plane. Then an integer α(C~n)\alpha(\widetilde{C}_{n}) is defined by

α(C~n)=rot(C~n)d~C~nw(d~),\alpha(\widetilde{C}_{n})=\operatorname{rot}(\widetilde{C}_{n})\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d}),

where w(d~)w(\widetilde{d}) :=:= w(d)w(d) (Definition 1) and where d~\widetilde{d} is as in Notation 1. Functions α(p)\alpha(p) (for any point pC(𝕊1)p\in C(\mathbb{S}^{1})) and α±(d)\alpha_{\pm}(d) (for a double point dC(𝕊1d\in C(\mathbb{S}^{1})) are defined as follows.

\bullet If pp is not a double point of C(𝕊1)C(\mathbb{S}^{1}), let α(p)\alpha(p) == α(C~n)\alpha(\widetilde{C}_{n}).

\bullet If pp is a double point dd, let α(p)\alpha(p) (=α(d)=\alpha(d)) == 12(α(C~i)+α(C~j))\frac{1}{2}(\alpha(\widetilde{C}_{i})+\alpha(\widetilde{C}_{j})) where d~+C~i\widetilde{d}_{+}\in\widetilde{C}_{i} and d~C~j\widetilde{d}_{-}\in\widetilde{C}_{j}.

\bullet Let α+(d)\alpha_{+}(d) == α(C~i)\alpha(\widetilde{C}_{i}) and α(d)\alpha_{-}(d) == α(C~j)\alpha(\widetilde{C}_{j}) where d~+C~i\widetilde{d}_{+}\in\widetilde{C}_{i} and d~C~j\widetilde{d}_{-}\in\widetilde{C}_{j}.

3. Examples of α\alpha

Figures 4 and 5 give examples of computations of α\alpha.

  1. (a)

    For a given plane curve CC (Figures 4, 5 (a)), we choose a base point.

  2. (b)

    We assign symbols d1,d2,,d2d_{1},d_{2},\dots,d_{2\ell} to the double points whose order is derived from a base point (Figures 4, 5 (b)).

  3. (c)

    We consider the ascending diagram (Figures 4), 5 (c)) from the base point; it gives the signs of crossings.

  4. (d)

    For each double point, we assign the sign of dd to d~+\widetilde{d}_{+} and d~\widetilde{d}_{-}. For nn, an integer α(C~n)\alpha(\widetilde{C}_{n}) is given by the sum of signs of d~C~n\widetilde{d}\in\widetilde{C}_{n} and rot(C~n)\operatorname{rot}(\widetilde{C}_{n}).

Refer to caption
Figure 4. A computing process to obtain signs, which contributes α(C~n)\alpha(\widetilde{C}_{n}) for C~\widetilde{C} == nC~n\sqcup_{n}\widetilde{C}_{n}. In this figure, α(C~n)\alpha(\widetilde{C}_{n}) == 0 for every nn.
Refer to caption
Figure 5. Another example. Letting C~1\widetilde{C}_{1} (C~2\widetilde{C}_{2}, resp.) be the inner (outer, resp.) circle, rot(C~n)α(C~n)\operatorname{rot}(\widetilde{C}_{n})\alpha(\widetilde{C}_{n}) == 1+11=1-1+1-1=-1, i.e. α(C~n)\alpha(\widetilde{C}_{n}) == 11, for each nn.

4. Proof of the formula of the first coefficient in Theorem 1

Before we start proving the general case of Theorem 1, we prove St1(C)St^{\prime}_{1}(C) == St(C)St(C) since this case is essential.

Let C~=nC~n(2)\widetilde{C}=\sqcup_{n}\widetilde{C}_{n}(\subset\mathbb{R}^{2}), which are disjoint simple closed curves given by smoothing the double points along the orientation of CC. Let UdU_{d} be a sufficient small neighborhood of a double point dd of index ii as in Figure 3 (left). By smoothing dCd\in C, the integral S1κ(t)α(t)indC(t)𝑑t\int_{S^{1}}\kappa(t)\alpha(t)\operatorname{ind}_{C}(t)dt of C~Ud\widetilde{C}\cap U_{d} differs from that of CUdC\cap U_{d} by πθd\pi-\theta_{d} for the fragment with index i±12i\pm\frac{1}{2} as in Figure 3 (right). Thus this integral part increases by (πθd)(α+(d)(indC(d)+12)α(d)(indC(d)12))(\pi-\theta_{d})(\alpha_{+}(d)(\operatorname{ind}_{C}(d)+\frac{1}{2})-\alpha_{-}(d)(\operatorname{ind}_{C}(d)-\frac{1}{2})). Note that the function α\alpha and indC~\operatorname{ind}_{\widetilde{C}} are locally constant; in particular, indC~n(t)\operatorname{ind}_{\widetilde{C}_{n}}(t) is constant on C~n\widetilde{C}_{n}; and thus we use the symbol ind(C~n)\operatorname{ind}({\widetilde{C}_{n}}) that indicates indC~n(t)\operatorname{ind}_{\widetilde{C}_{n}}(t). Let Dom(C~n)\operatorname{Dom}(\widetilde{C}_{n}) be the domain of C~n\widetilde{C}_{n}. Then

12π(𝕊1κ(t)α(t)indC(t)dt+d(πθd)(α+(d)(indC(d)+12)α(d)(indC(d)12))\displaystyle\frac{1}{2\pi}\left(\int_{\mathbb{S}^{1}}\kappa(t)\alpha(t)\operatorname{ind}_{C}(t)dt+\sum_{d}(\pi-\theta_{d})(\alpha_{+}(d)\left(\operatorname{ind}_{C}(d)+\frac{1}{2}\right)-\alpha_{-}(d)\left(\operatorname{ind}_{C}(d)-\frac{1}{2}\right)\right)
=12πnDom(C~n)κ(t)α(t)indC~(t)𝑑t\displaystyle=\frac{1}{2\pi}\sum_{n}\int_{\operatorname{Dom}(\widetilde{C}_{n})}\kappa(t)\alpha(t)\operatorname{ind}_{\widetilde{C}}(t)dt
=nα(C~n)ind(C~n)12πDom(C~n)κ(t)𝑑t\displaystyle=\sum_{n}\alpha(\widetilde{C}_{n})\operatorname{ind}(\widetilde{C}_{n})\frac{1}{2\pi}\int_{\operatorname{Dom}(\widetilde{C}_{n})}\kappa(t)dt
=nα(C~n)ind(C~n)rot(C~n)(Fact1)\displaystyle=\sum_{n}\alpha(\widetilde{C}_{n})\operatorname{ind}(\widetilde{C}_{n})\operatorname{rot}(\widetilde{C}_{n})\qquad(\because{\textrm{Fact}}~{}\ref{fact:hopf})
=nind(C~n)rot2(C~n)d~C~nw(d~)(α(C~n)=rot(C~n)d~C~nw(d~)(Definition2))\displaystyle=\sum_{n}\operatorname{ind}(\widetilde{C}_{n})\operatorname{rot}^{2}(\widetilde{C}_{n})\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})\qquad(\because\alpha(\widetilde{C}_{n})=\operatorname{rot}(\widetilde{C}_{n})\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})\quad({\rm Definition}~{}\ref{def:alpha}))
=nd~C~nw(d~)ind(C~n)(rot2(C~n)=1)\displaystyle=\sum_{n}\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})\operatorname{ind}(\widetilde{C}_{n})\qquad(\because\operatorname{rot}^{2}(\widetilde{C}_{n})=1)
=dCw(d)(indC(d)+12+indC(d)12)\displaystyle=\sum_{d\in C}w(d)\left(\operatorname{ind}_{C}(d)+\frac{1}{2}+\operatorname{ind}_{C}(d)-\frac{1}{2}\right)
=2dCw(d)indC(d)\displaystyle=2\sum_{d\in C}w(d)\operatorname{ind}_{C}(d)
=2St(C).\displaystyle=2St(C).

Here we put an explanation for the last two equalities. The contribution from each double point dd into the sum is w(d){(indC(d)+12)+(indC(d)12)}w(d)\{(\operatorname{ind}_{C}(d)+\frac{1}{2})+(\operatorname{ind}_{C}(d)-\frac{1}{2})\} == 2w(d)indC(d)2w(d)\operatorname{ind}_{C}(d), and then we have 2dw(d)indC(d)2\sum_{d}w(d)\operatorname{ind}_{C}(d). The last equality is a known formula by Shumakovitch [Shumakovitch1995, Section 1.5] because, throughout of this paper, we suppose that the base point lies on an exterior edge. \hfill\Box

5. Proof of the general formula of Theorem 1

Recall Tabachnikov function [Tabachnikov1996]. Let CC be a generic long curve and dd a double point. For any k0k\geq 0, define Stk(C)St^{k}(C) by the formula:

(2) Stk(C)=dw(d)(indC(d))k,St^{k}(C)=\sum_{d}w(d)(\operatorname{ind}_{C}(d))^{k},

where w(d)w(d) is as in Definition 1.

Note that every generic long curve is regarded as a plane curve CC with a base point that lies on an exterior edge of CC and thus CC of Stk(C)St^{k}(C) is also. Using the same notations of Section 4, we will show the general formula. (q12+q12)Stq(C)(q^{\frac{1}{2}}+q^{-\frac{1}{2}})St_{q}(C) is as follows.

12π(𝕊1κ(t)α(t)qindC(t)𝑑t+d(πθd)(α+(d)qindC(d)+12α(d)qindC(d)12))\displaystyle\frac{1}{2\pi}\left(\int_{\mathbb{S}^{1}}\kappa(t)\alpha(t)q^{\operatorname{ind}_{C}(t)}dt+\sum_{d}(\pi-\theta_{d})\left(\alpha_{+}(d)q^{\operatorname{ind}_{C}(d)+\frac{1}{2}}-\alpha_{-}(d)q^{\operatorname{ind}_{C}(d)-\frac{1}{2}}\right)\right)
=\displaystyle= 12πnDom(C~n)κ(t)α(t)qindC~(t)𝑑t\displaystyle\frac{1}{2\pi}\sum_{n}\int_{\operatorname{Dom}(\widetilde{C}_{n})}\kappa(t)\alpha(t)q^{\operatorname{ind}_{\widetilde{C}}(t)}dt
=\displaystyle= nα(C~n)qind(C~n)12πDom(C~n)κ(t)𝑑t\displaystyle\sum_{n}\alpha(\widetilde{C}_{n})q^{\operatorname{ind}(\widetilde{C}_{n})}\frac{1}{2\pi}\int_{\operatorname{Dom}(\widetilde{C}_{n})}\kappa(t)dt
=\displaystyle= nα(C~n)qind(C~n)rot(C~n)(Fact1)\displaystyle\sum_{n}\alpha(\widetilde{C}_{n})q^{\operatorname{ind}(\widetilde{C}_{n})}\operatorname{rot}(\widetilde{C}_{n})\qquad(\because{\textrm{Fact}}~{}\ref{fact:hopf})
=\displaystyle= nqind(C~n)rot2(C~n)d~C~nw(d~)(α(C~n)=rot(C~n)d~C~nw(d~)(Definition2))\displaystyle\sum_{n}q^{\operatorname{ind}(\widetilde{C}_{n})}\operatorname{rot}^{2}(\widetilde{C}_{n})\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})\qquad(\because\alpha(\widetilde{C}_{n})=\operatorname{rot}(\widetilde{C}_{n})\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})\quad({\rm Definition}~{}\ref{def:alpha}))
=\displaystyle= nd~C~nw(d~)qind(C~n)(rot2(C~n)=1)\displaystyle\sum_{n}\sum_{\widetilde{d}\in\widetilde{C}_{n}}w(\widetilde{d})q^{\operatorname{ind}(\widetilde{C}_{n})}\qquad(\because\operatorname{rot}^{2}(\widetilde{C}_{n})=1)
(3) =\displaystyle= dCw(d)qindC(d)(q12+q12).\displaystyle\sum_{d\in C}w(d)q^{\operatorname{ind}_{C}(d)}\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right).

Then

Stq(C)=(3)dCw(d)qindC(d)=q=ehr=0hrr!dCw(d)indCr(d)=(2)r=0hrr!Str(C).St_{q}(C)\stackrel{{\scriptstyle(\ref{higherQ})}}{{=}}\sum_{d\in C}w(d)q^{\operatorname{ind}_{C}(d)}\stackrel{{\scriptstyle q=e^{h}}}{{=}}\sum_{r=0}^{\infty}\frac{h^{r}}{r!}\sum_{d\in C}w(d)\operatorname{ind}_{C}^{r}(d)\stackrel{{\scriptstyle(\ref{FTabachnikov})}}{{=}}\sum_{r=0}^{\infty}\frac{h^{r}}{r!}St^{r}(C).

Further, by (3), substituting q=1q=1, St1(C)St_{1}(C) == dCw(d)\sum_{d\in C}w(d), which is is the rotation number rot(C)\operatorname{rot}(C) of the long curve corresponding to CC. It is also elementary to see that

St1(C)=d(Stq(C))dq|q=1=dCw(d)ind(d)=St(C),St^{\prime}_{1}(C)=\frac{d(St_{q}(C))}{dq}|_{q=1}=\sum_{d\in C}w(d)\operatorname{ind}(d)=St(C),

where the last equality is given by Shumakovitch [Shumakovitch1995, Section 1.5].

Finally, we show Table 1. Since the differences of PC(q)P_{C}(q) and Iq(C)I_{q}(C) are proved in [Viro1996] and [LanzatPolyak2013] respectively, we will check those of Stq(C)St_{q}(C) for each modification. Recall that Stq(C)=dCw(d)qindC(d)St_{q}(C)=\sum_{d\in C}w(d)q^{\operatorname{ind}_{C}(d)} (3). Using Figure 1, direct computation implies the list:

  • (direct/opposite self-tangency modification) Let d,dd,d^{\prime} be two increased double points. Clearly, w(d)+w(d)=0w(d)+w(d^{\prime})=0, which implies the difference is 0.

  • (weak/strong triple-point modification) Seeing the weights of three double points in 3×23\times 2 cases corresponding to the possibilities of positions of the base point and curve orientations, it is elementary to check that the difference is qi+1qiq^{i+1}-q^{i} (ii : a value of indC\operatorname{ind}_{C} of a double point) in each case.

\hfill\Box

Remark 2.

In [LanzatPolyak2013], they compute the case with ind=i\operatorname{ind}=i corresponding to Table 1.

Acknowledgements

The author would like to thank Professor Tomonori Fukunaga for informing the author about [LanzatPolyak2013]. The author also thank Professors Mitsuhiro Imada and Yumiko Takei for fruitful discussions. The work was partially supported by JSPS KAKENHI Grant Numbers JP20K03604 and JP22K03603.

References