This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Current-induced forces in single-resonance systems.

Sebastián E. Deghi,1 Lucas J. Fernández-Alcázar,2 Horacio M. Pastawski,1 and Raúl A. Bustos-Marún1,3 1Instituto de Física Enrique Gaviola and Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
2Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, CT-06459, USA
3Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
Abstract

In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.

I INTRODUCTION

As it is nowadays clear, electric currents can induce mechanical forces in nanodevices. Such current-induced forces (CIFs), sometimes dubbed “electron wind forces”, have attracted increasing attention in many areas of Condensed Matter physics, including molecular electronics, Chiaravalloti et al. (2007); Dundas et al. (2009); Bode et al. (2011); Kudernac et al. (2011); Tierney et al. (2011); Bustos-Marún et al. (2013); Kim et al. (2014); Cunningham et al. (2014); Fernández-Alcázar et al. (2015); Lü et al. (2015); Ludovico et al. (2016a); Lü et al. (2016); Gu and Fu (2016); Celestino et al. (2016); Calvo et al. (2017); Fernández-Alcázar et al. (2017); Hopjan et al. (2018); Ludovico and Capone (2018); Fernández-Alcázar et al. (2019); Chen et al. (2019); Lin et al. (2019); Christopher McCooey and Dundas (2020) nanoelectromechanics,Naik et al. (2016); Stettenheim et al. (2010) electromigration,Hoffmann-Vogel (2017); Chatterjee et al. (2018) and quantum thermodynamics.Ludovico et al. (2016b); Benenti et al. (2017); Whitney et al. (2018); Bustos-Marún and Calvo (2019); Deghi and Bustos-Marún (2020); Zimbovskaya and Nitzan (2020) Among the most interesting examples are those where the forces are nonconservative. These types of forces may result in phenomena such as cooling, heating, or amplification of mechanical motions. Naik et al. (2016); Stettenheim et al. (2010); Lü et al. (2015, 2016) Furthermore, it is also the basis of exciting new proposals such as adiabatic quantum motors. Bustos-Marún et al. (2013) The most simplified description of a quantum motor consists of a system connected to leads and where a current of quantum particles drives some mechanical degrees of freedom. This is the reverse of what happens in a quantum pump, where the driving Hamiltonian’s parameters, which may arise from a mechanical or an external electrical manipulation, induces a current. Brouwer (1998); Bode et al. (2011); Bustos-Marún et al. (2013); Fernández-Alcázar et al. (2017); Ludovico et al. (2016b); Whitney et al. (2018); Bustos-Marún and Calvo (2019) Understanding the rules that dictate the interplay between the electronic and the mechanical degrees of freedom is crucial for the design of optimal electromechanical devices, and it can even contribute to the emergence of devices with novel features.

Aside from the potential applications, the type of devices discussed above may result particularly attractive from the theoretical point of view. This is so as quantum motors, quantum pumps, and some nanoelectromechanical devices can be interpreted as macroscopic manifestations of quantum behavior. Thus, these systems may provide new insights into the transition between the classical and quantum worlds, both from a dynamical  Fernández-Alcázar et al. (2015, 2017) and a thermodynamical  Zimbovskaya and Nitzan (2020); Whitney et al. (2018); Bustos-Marún and Calvo (2019); Deghi and Bustos-Marún (2020) perspective. Moreover, the effective Hamiltonian of open quantum systems turns out to be non-Hermitian, which adds an extra richness to the problem. For example, the non-Hermiticity makes the dynamics of electrons to be affected in a nontrivial way by the change of some parameters, especially close to the so-called quantum dynamical phase transitions (QDPTs). Pastawski (2007); Dente et al. (2008); Rotter (2010); Bustos-Marún et al. (2010); Garmon et al. (2012); Rotter and Bird (2015); Ruderman et al. (2016); Sánchez-Burillo et al. (2017); Gorbatsevich and Shubin (2017); Garmon et al. (2019)

Refer to caption
Figure 1: (a) - Schematic representation of a quantum dot coupled to two electronic reservoirs at different chemical potentials (μL\mu_{L} and μR\mu_{R}) and temperatures (TLT_{L} and TRT_{R}). The quantum dot also interacts with some mechanical degrees of freedoms (X\vec{X}) that change the energy of the dot or its coupling to the reservoirs. The mechanical degrees of freedom may include a motion of the quantum dot itself or the motion of some device capacitively coupled to it. (b) - Tight-binding model of the electronic Hamiltonian, see Sec.II.1.1. Site energies and hoppings are denoted by EE and VV, respectively. In blue, we highlight the sites that correspond to the system in our model.

In this work, we perform an in-depth study of the current-induced-forces (CIFs) and the electronic-friction tensor of devices where a single energy level is relevant and, hence, they can be described by one of the most common Hamiltonian models in quantum transport, Haug and Jauho (2008); Pastawski and Medina Dagger (2001); Zimbovskaya (2013) see Fig. 1. The main motivation behind that is to find the general conditions that lead to the improvement of the performance of different forms of nanoelectromechanical devices and quantum machines. Moreover, since CIFs may lead to the mechanical failure of conducting devices such as nanowires, the present work may also contribute to a better understanding of the circumstances that increase the chances of such failures.

The work is organized as follows. In Sec. II we discuss the main theoretical aspects of the studied system. These include, a brief introduction to the QDPTs and current-induced forces relevant to our problem, Secs. II.1 and II.2 respectively. In Sec. III we present the results of this work and in Sec. IV we highlight the main findings and discuss their importance.

To avoid overwhelming the readers with the derivations of the many analytic expressions, we put all the nonessential comments and mathematical details in the appendices from A to H.

II General theory.

As we will see, the understanding of CIFs and electronic friction requires the comprehension of the different quantum dynamical regimes of the electrons. These regimes are separated by QDPTs, abrupt change in the decay dynamics of particles. As we will also see, this is intimately related to the maximization of the work done by CIFs. For that reason, in the first part of this section, we briefly review the QDPTs that our model Hamiltonian may undergo, before going to the theoretical description of CIFs.

II.1 Quantum Dynamical Phase Transitions.

The intuitive idea of dynamical phase transitions is better understood by considering the classical problem of a damped harmonic oscillator in the absence of external forces. There, the oscillator presents two well defined dynamical regimes, damped and overdamped motions, which typically can be reached by moving a single parameter Calvo and Pastawski (2006); Pastawski (2007). In this case, there is an analytical discontinuity in the plot of some dynamical observables, like the oscillation frequency, versus the control parameter. Due to its similarity with thermodynamical phase transitions, the phenomenon is known as dynamical phase transitions Calvo and Pastawski (2006); Pastawski (2007).

In quantum mechanics, the same kind of phenomenon appears. There, the movement of a single parameter of the Hamiltonian may produce abrupt changes (non-analytical) in the decay dynamics of quantum particles or in their spectra.Álvarez et al. (2006); Dente et al. (2008); Rotter (2010); Garmon et al. (2012); Rotter and Bird (2015); Ruderman et al. (2016); Garmon et al. (2019)

For time-independent Hamiltonians, QDPTs are usually analyzed through the poles of the retarded (or advanced) Green function Gr(ε)G^{r}\left(\varepsilon\right) (or Ga(ε)G^{a}\left(\varepsilon\right)), Dente et al. (2008)

𝑮r/a(ε)=limη0+((ε±iη)𝑰𝑯)1,\boldsymbol{G}^{r/a}\left(\varepsilon\right)=\underset{\eta\rightarrow 0^{+}}{\lim}\left(\left(\varepsilon\pm i\eta\right)\boldsymbol{I}-\boldsymbol{H}\right)^{-1}, (1)

This is natural as all spectral and dynamical properties of the system can be obtained from the elements of 𝑮r\boldsymbol{G}^{r}. For instance, the local density of states (LDOS) at a site nn of a tight-binging Hamiltonian is given by:

Nn(ε)=limη0+1πIm{Gnnr(ε+iη)}.\begin{array}[]{ccc}N_{n}\left(\varepsilon\right)&=&\underset{\eta\rightarrow 0^{+}}{\lim}-\frac{1}{\pi}\mathrm{Im}\left\{G_{nn}^{r}\left(\varepsilon+i\eta\right)\right\}\end{array}. (2)

On the other hand, the survival probability of a particle in the nn-th site, Pn(t)=|ψn(t)|ψn(0)|2P_{n}\left(t\right)=\left|\left\langle\psi_{n}\left(t\right)\right|\left.\psi_{n}\left(0\right)\right\rangle\right|^{2}, can be expressed as Dente et al. (2008)

Pn(t)=|Θ(t)[]dεNn(ε)eiεt|2,\begin{array}[]{ccc}P_{n}\left(t\right)&=&\left|\Theta\left(t\right)\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}d\varepsilon N_{n}\left(\varepsilon\right)e^{-i\frac{\varepsilon t}{\hbar}}\right|^{2}\end{array}, (3)

where Θ(t)\Theta(t) is the Heaviside step function.

II.1.1 Tight-binding Model.

In this paper, we will consider the tight-binding system depicted in Fig. 1. It consists of a single energy level with energy EdE_{d} coupled, with hopping constants VLV_{L} and VRV_{R}, to two semi-infinite tight-binding chains, with site energy E0E_{0} and hopping V0V_{0}. This Hamiltonian represents a minimum model for a quantum dot coupled to two reservoirs and is widely used in the context of quantum transport. The total Hamiltonian reads

H^\displaystyle\hat{H} =\displaystyle= n[=]E(n)|nn|\displaystyle\stackrel{{\scriptstyle[}}{{n}}=-\infty]{\infty}{\sum}E^{(n)}\left|\mathit{n}\right\rangle\left\langle n\right| (4)
V(n)(|nn+1|+|n+1n|),\displaystyle-V^{(n)}\left(\left|\mathit{n}\right\rangle\left\langle n+1\right|+\left|\mathit{n+1}\right\rangle\left\langle n\right|\right),

where E(0)=EdE^{(0)}=E_{d} and E(n)=E0E^{(n)}=E_{0} for n0n\neq 0, and the hopping constants V(1)=VLV^{(-1)}=V_{L}, V(0)=VRV^{(0)}=V_{R}, and V(n)=V0V^{(n)}=V_{0} for n{1,0}n\neq\left\{-1,0\right\}.

For convenience, we will define H^S\hat{H}_{S} as the Hamiltonian of the system which includes the first sites of each semi-infinite chain representing the leads. Then, the three by three matrix 𝑯S\boldsymbol{H}_{S} contains the site energies E(1)=E0E^{(-1)}=E_{0}, E(0)=EdE^{(0)}=E_{d}, and E(1)=E0E^{(1)}=E_{0}, as well the couplings VLV_{L} and VRV_{R}.

The matrix representation of the eigenvalue equation H^|ψ=ε|ψ\hat{H}\left|\psi\right\rangle=\varepsilon\left|\psi\right\rangle, which in principle is of infinite dimension, can be reduced to an effective system of finite dimension by using the decimation technique Pastawski and Medina Dagger (2001); Cattena et al. (2014). There, the sites connected to leads are corrected by a self-energy associated to the 𝑮r(ε)\boldsymbol{G}^{r}(\varepsilon)

Σ0r(ε)=Δ(ε)iΓ(ε).\Sigma_{0}^{r}\left(\varepsilon\right)=\Delta\left(\varepsilon\right)-i\Gamma\left(\varepsilon\right). (5)

The real (Δ\Delta) and imaginary (Γ\Gamma) parts of Σ\Sigma are

Δ(ε)={εE02(εE02)2V02(caseA)εE02(caseB)εE02+(εE02)2V02(caseC),\begin{array}[]{ccc}\Delta\left(\varepsilon\right)&=&\begin{cases}\frac{\varepsilon-E_{0}}{2}-\sqrt{\left(\frac{\varepsilon-E_{0}}{2}\right)^{2}-V_{0}^{2}}&(\mathrm{case\ A})\\ \frac{\varepsilon-E_{0}}{2}&(\mathrm{case\ B})\\ \frac{\varepsilon-E_{0}}{2}+\sqrt{\left(\frac{\varepsilon-E_{0}}{2}\right)^{2}-V_{0}^{2}}&(\mathrm{case\ C})\end{cases}\end{array}, (6)
Γ(ε)={0(caseA)V02(εE02)2(caseB)0(caseC),\begin{array}[]{ccc}\Gamma\left(\varepsilon\right)&=&\begin{cases}0&(\mathrm{case\ A})\\ \sqrt{V_{0}^{2}-\left(\frac{\varepsilon-E_{0}}{2}\right)^{2}}&(\mathrm{case\ B})\\ 0&(\mathrm{case\ C})\end{cases}\end{array}, (7)

where εE02V0\varepsilon-E_{0}\geq 2V_{0} for case A, εE0[2V0,2V0]\varepsilon-E_{0}\in[-2V_{0},2V_{0}] for case B, and εE02V0\varepsilon-E_{0}\leq-2V_{0} for case C. The region where Γ0\Gamma\neq 0 (case B), the band, corresponds to the energy regions where excitations propagate freely inside the leads. Using the above self-energy we can define the effective Hamiltonian H^effr(ε)=H^S+Σ^r(ε)\hat{H}^{r}_{\rm eff}\left(\varepsilon\right)=\hat{H}_{S}+\hat{\Sigma}^{r}\left(\varepsilon\right), where Σ^r(ε)\hat{\Sigma}^{r}\left(\varepsilon\right) is given by Σ^r(ε)=Σ0r(ε)(|11|+|11|)\hat{\Sigma}^{r}\left(\varepsilon\right)=\Sigma_{0}^{r}\left(\varepsilon\right)\left(\left|-1\right\rangle\left\langle-1\right|+\left|1\right\rangle\left\langle 1\right|\right). In matrix form H^effr\hat{H}^{r}_{\rm eff} is

𝑯effr(ε)=(E0+Σ0r(ε)VL0VLEdiΓηVR0VRE0+Σ0r(ε)).\begin{array}[]{ccc}\boldsymbol{H}^{r}_{\rm eff}(\varepsilon)&=&\begin{pmatrix}E_{0}+\Sigma_{0}^{r}\left(\varepsilon\right)&-V_{L}&0\\ -V_{L}&E_{d}-i\Gamma_{\eta}&-V_{R}\\ 0&-V_{R}&E_{0}+\Sigma_{0}^{r}\left(\varepsilon\right)\end{pmatrix}\end{array}. (8)

By means of Eq. 1, 𝑯effr(ε)\boldsymbol{H}^{r}_{\rm eff}(\varepsilon) can be used to calculate 𝑮r\boldsymbol{G}^{r}, while 𝑮a=[𝑮r]\boldsymbol{G}^{a}=\left[\boldsymbol{G}^{r}\right]^{\dagger}. The resulting eigenvalue equation (ε𝑰𝑯effr(ε))|ψ=0\left(\varepsilon\boldsymbol{I}-\boldsymbol{H}^{r}_{\rm eff}\left(\varepsilon\right)\right)\left|\psi\right\rangle=0 is now finite and exact. The price to be paid is that now the coefficients of 𝑯effr\boldsymbol{H}^{r}_{\rm eff} are energy-dependent. Notice that, because Σr\Sigma^{r}\in\mathbb{C}, the effective Hamiltonian becomes non-Hermitian, and thus, its eigenvalues, or equivalently, the poles of the associated Green’s function 𝑮r\boldsymbol{G}^{r} are not necessarily real. Importantly, these poles can change abruptly with the parameters of the Hamiltonian and, in consequence, also the LDOS [see panels from (c) to (e) in Fig. 2 ] and the dynamics of the system [see panels from (f) to (h) in Fig. 2 ].

Finally, one last detail. Due to technical reasons, we perturbatively couple a third lead to the system, see Γη\Gamma_{\eta} in Eq. 8. This reservoir is modeled by a self-energy in the wideband approximation Ση=iΓη\Sigma_{\eta}=-i\Gamma_{\eta} with Γη\Gamma_{\eta} positive. The purpose of this extra reservoir is to add a small broadening to the LDOS and to guarantee an occupation to the system. Both effects are particularly important when the eigenenergies of the effective Hamiltonian lay outside the band or when VL=VR=0V_{L}=V_{R}=0. Despite this, in all calculations, we take the limit Γη0\Gamma_{\eta}\rightarrow 0, and thus its effects on the poles structure is negligible.

II.1.2 Poles and Dynamical Phase Transitions.

The poles of the system correspond to the singular points of the Green’s function. The specific tight-binding model described in the previous section has two poles {εp,+,εp,}\left\{\varepsilon_{p,+},\varepsilon_{p,-}\right\} given by the solutions of the secular equation det(ε𝑰𝑯eff)=0\det\left(\varepsilon\boldsymbol{I}-\boldsymbol{H}_{\rm eff}\right)=0. Only three variables are really necessary to describe such poles, EdE_{d}, VLV_{L}, and VRV_{R}. The effect of E0E_{0} is only to shift the poles’ position while V0V_{0} gives the energy scale. For that reason, we define the dimensionless parameters

ϵp,±=εp,±E0V0,ϵd=EdE0V0\displaystyle\epsilon_{p,\pm}=\frac{\varepsilon_{p,\pm}-E_{0}}{V_{0}},\quad\epsilon_{d}=\frac{E_{d}-E_{0}}{V_{0}}
andv2=vL2+vR2.\displaystyle\mathrm{and}\quad v^{2}=v_{L}^{2}+v_{R}^{2}. (9)

where vL=VLV0v_{L}=\frac{V_{L}}{V_{0}} and vR=VRV0v_{R}=\frac{V_{R}}{V_{0}}. The real and imaginary part of the dimensionless poles are, respectively,Bustos-Marún et al. (2010); Garmon et al. (2012)

Re(ϵp,±)\displaystyle\mathrm{Re}\left(\epsilon_{p,\pm}\right) =\displaystyle= {ϵd+v2(1v2)[ϵd2±(ϵd2)2+v21]ϵd+v2(1v2)ϵd2\displaystyle\begin{cases}\epsilon_{d}+\frac{v^{2}}{\left(1-v^{2}\right)}\left[\frac{\epsilon_{d}}{2}\pm\sqrt{\left(\frac{\epsilon_{d}}{2}\right)^{2}+v^{2}-1}\right]\\ \epsilon_{d}+\frac{v^{2}}{\left(1-v^{2}\right)}\frac{\epsilon_{d}}{2}\end{cases}
Im(ϵp,±)\displaystyle\mathrm{Im}\left(\epsilon_{p,\pm}\right) =\displaystyle= {0±v2(1v2)1[(ϵd2)2+v2],\displaystyle\begin{cases}0\\ \pm\frac{v^{2}}{\left(1-v^{2}\right)}\sqrt{1-\left[\left(\frac{\epsilon_{d}}{2}\right)^{2}+v^{2}\right]}\end{cases}, (10)

for v21v^{2}\neq 1. The first case of Re(ϵp,±)\mathrm{Re}\left(\epsilon_{p,\pm}\right) and Im(ϵp,±)\mathrm{Im}\left(\epsilon_{p,\pm}\right) corresponds to the condition (ϵd2)2+v21\left(\frac{\epsilon_{d}}{2}\right)^{2}+v^{2}\geq 1, while the other one corresponds to the condition (ϵd2)2+v21\left(\frac{\epsilon_{d}}{2}\right)^{2}+v^{2}\leq 1

In Fig. 2-(a) and (b) we show the real and imaginary part of the poles, ϵp,±\epsilon_{p,\pm}, as a function of the dimensionless parameter ϵd\epsilon_{d}. In the lower panels of the figure, see panels (c)-(h), we show the typical spectral and dynamical characteristic of three types of poles defining the resonant state, the virtual state, and the localized state.

Refer to caption
Figure 2: (a) - Real [Re(ϵp,±)\mathrm{Re}(\epsilon_{p,\pm})] and imaginary [Im(ϵp,±)\mathrm{Im}(\epsilon_{p,\pm})] parts of the poles of the system as function of the dot’s energy ϵd\epsilon_{d}. Black dashed lines show the band edges. The green dots mark three examples of poles. Dot (1) corresponds to a resonant state, (2) to a virtual state, and (3) to a localized state. (b) - Detail of panel (a). (c), (d), and (e) - LDOS for cases (1), (2), and (3) respectively. Black lines in this case correspond to the real part of the poles for each case. (f), (g), and (h) - Survival probability for cases (1), (2) y (3) respectively. In all plots we used vL=vR=0.35v_{L}=v_{R}=0.35.

Resonant states. They correspond to poles with a nonzero imaginary part. See the green dot marked as (1) in Fig. 2-(a). When the system presents such a pole, the LDOS is typically a Lorentzian peak centered at approximately Re(ϵp)\mathrm{Re}(\epsilon_{p}) and whose width is given by Im(ϵp)\mathrm{Im}(\epsilon_{p}). This description is particularly accurate when Re(ϵp)\mathrm{Re}(\epsilon_{p}) is close to the center of the band. However, when Re(ϵp)\mathrm{Re}(\epsilon_{p}) approaches one of the band edges the maximum of the LDOS is shifted toward the closest band edge and its shape deviated from a perfect Lorentzian function. After a short quadratic decay, the dynamics of such systems typically shows an exponential decay. Rufeil-Fiori and Pastawski (2006)

Localized states. They correspond to poles with Im(ϵp)=0\mathrm{Im}(\epsilon_{p})=0 and where the Re(ϵp)\mathrm{Re}(\epsilon_{p}) lays outside the band (|Re(ϵp)|>2|\mathrm{Re}(\epsilon_{p})|>2). For instance, see the green dot marked as (3) in Fig. 2-(b). When the system presents such a pole, its LDOS typically shows a very narrow peak outside the band (a Dirac’s delta in the limit Γη0\Gamma_{\eta}\rightarrow 0). The survival probability may show a small decay at short times but then it remains constant with time.

Virtual states. They also correspond to poles with Im(ϵp)=0\mathrm{Im}(\epsilon_{p})=0 and |Re(ϵp)|>2|\mathrm{Re}(\epsilon_{p})|>2, see the green dot marked as (2) in Fig. 2-(b). However, they are poles of the nonphysical Riemann sheet of Σr\Sigma^{r}, see Refs. Dente et al., 2008 and Bustos-Marún et al., 2010. for more details. Due to this, there is not a peak in the LDOS at Re(ϵp)\mathrm{Re}(\epsilon_{p}). However, the effect of these poles on the LDOS within the band is the same as that of localized states. There is an accumulation of states near the closest band edge, which grows as the pole approaches this band edge. See the examples shown in panels (d) and (e).

The three type of poles described above determine two QDPT namely the resonant-virtual and the virtual-localized transitions. The Resonant-virtual QDPT is given by Bustos-Marún et al. (2010); Garmon et al. (2012)

(ϵd2)2+v2=1,\left(\frac{\epsilon_{d}}{2}\right)^{2}+v^{2}=1, (11)

while the Virtual-localized QDPT is given by Bustos-Marún et al. (2010); Garmon et al. (2012)

v2=2ϵd.v^{2}=2\mp\epsilon_{d}. (12)

A more detailed classification may lead to another QDPT as resonant states can be subdivided into two additional type of poles, see Ref. Dente et al., 2008; Bustos-Marún et al., 2010. However, for the purpose of this work this subclassification is irrelevant and will be ignored.

One final remark is still in order. In more general scenarios of a quantum dot coupled to mm identical semi-infinite chains with coupling ViV_{i}, the corresponding poles are still given by Eq. 10, but the quadratic coupling v2v^{2} should be replaced by

v2=(V1V0)2+(V2V0)2++(VmV0)2.\begin{array}[]{ccc}v^{2}&=&\left(\frac{V_{1}}{V_{0}}\right)^{2}+\left(\frac{V_{2}}{V_{0}}\right)^{2}+\cdots+\left(\frac{V_{m}}{V_{0}}\right)^{2}\end{array}. (13)

II.2 Current-induced forces.

When a current of quantum particles is coupled to a mesoscopic mechanical device, the classical dynamics of the mechanical part can be described by an effective Langevin equation  Bode et al. (2011); Bustos-Marún and Calvo (2019):

MνX¨ν+UXν=ν+ξν.\begin{array}[]{ccc}M_{\nu}\ddot{X}_{\nu}+\frac{\partial U}{\partial X_{\nu}}&=&\mathcal{F}_{\nu}+\xi_{\nu}\end{array}. (14)

Here, on the left-hand side we have the terms corresponding to the classical degrees of freedom, where the coordinates {Xν}\left\{X_{\nu}\right\} are associated with masses MνM_{\nu}, and UXν\frac{\partial U}{\partial X_{\nu}} accounts for any external forces. The terms on the right-hand side of Eq. (14) give the CIFs, or the forces arising from the interaction between the mechanical device and the quantum particles (electrons in our case). The term ξν\xi_{\nu} describes the quantum fluctuations of the CIFs while ν\mathcal{F}_{\nu} is the mean value of the force operator

ν=H^Xν,\begin{array}[]{ccc}\mathcal{F}_{\nu}&=&\left\langle-\frac{\partial\hat{H}}{\partial X_{\nu}}\right\rangle\end{array}, (15)

where H^\hat{H} is the electronic Hamiltonian.

II.2.1 CIFs in the Keldysh Formalism.

The mean value of the force operator can be calculated in terms of Green’s functions by

ν=dε2πiTr[𝚲ν𝓖<],\begin{array}[]{ccc}\mathcal{F}_{\nu}&=&\int\frac{d\varepsilon}{2\pi i}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{\mathcal{G}}^{<}\right]\end{array}, (16)

where 𝚲ν=𝑯Xν\boldsymbol{\Lambda}_{\nu}=-\frac{\partial\boldsymbol{H}}{\partial X_{\nu}} and 𝓖<\boldsymbol{\mathcal{G}}^{<} is the lesser Green’s function. This function, which for shortness we omitted its energy and time dependence (𝓖<𝓖<(ε,τ)\boldsymbol{\mathcal{G}}^{<}\equiv\boldsymbol{\mathcal{G}}^{<}(\varepsilon,\tau)), is indeed the Wigner transform of what generalizes the density matrix and is called the particle propagator 𝒢<(x,t;x,t)=(i/)ψ(x,t)ψ(x,t)\mathcal{G}^{<}(x,t;x^{\prime},t^{\prime})=(i/\hbar)\left<\psi^{\dagger}(x^{\prime},t^{\prime})\psi(x,t)\right>.Haug and Jauho (2008); Bode et al. (2011) The closely related Green function 𝒢>(x,t;x,t)=(i/)ψ(x,t)ψ(x,t)\mathcal{G}^{>}(x,t;x^{\prime},t^{\prime})=-(i/\hbar)\left<\psi(x,t)\psi^{\dagger}(x^{\prime},t^{\prime})\right> is dubbed the hole propagator, since the order of the creation and annihilation operators are reversed. Both functions are directly linked to observables and kinetic properties, such as particle densities and currents. Pastawski (1992); Haug and Jauho (2008)

In complex scenarios like the one treated here, where the time-dependent Hamiltonians are slowly varying functions of some parameters, the function 𝓖<\boldsymbol{\mathcal{G}}^{<} can be calculated by resorting to an adiabatic expansion in terms of the time-dependent parameters. Haug and Jauho (2008); Pastawski (1992) There, 𝓖<\boldsymbol{\mathcal{G}}^{<} is given, up to first order, by, Bode et al. (2011)

𝓖<\displaystyle\boldsymbol{\mathcal{G}}^{<} \displaystyle\simeq 𝑮<i2𝜈Xν˙[(ε𝑮<)𝚲νGaGr𝚲ν(ε𝑮<)\displaystyle\boldsymbol{G}^{<}-\frac{i\hbar}{2}\underset{\nu}{\sum}\dot{X_{\nu}}\left[\left(\partial_{\varepsilon}\boldsymbol{G}^{<}\right)\boldsymbol{\Lambda}_{\nu}G^{a}-G^{r}\boldsymbol{\Lambda}_{\nu}\left(\partial_{\varepsilon}\boldsymbol{G}^{<}\right)\right. (17)
+(εGr)𝚲ν𝑮<𝑮<𝚲ν(εGa)]\displaystyle\left.+\left(\partial_{\varepsilon}G^{r}\right)\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}-\boldsymbol{G}^{<}\boldsymbol{\Lambda}_{\nu}\left(\partial_{\varepsilon}G^{a}\right)\right]

where 𝑮<\boldsymbol{G}^{<} is the frozen lesser Green’s function, given by

𝑮<\displaystyle\boldsymbol{G}^{<} =\displaystyle= 𝑮r𝚺<𝑮a.\displaystyle\boldsymbol{G}^{r}\boldsymbol{\Sigma}^{<}\boldsymbol{G}^{a}. (18)

Here, 𝑮r/a\boldsymbol{G}^{r/a} are given by Eq. 1 and 𝚺<\boldsymbol{\Sigma}^{<} is the lesser self-energy, 𝚺<=2i𝛼fα𝚪α\boldsymbol{\Sigma}^{<}=2i\underset{\alpha}{\sum}f_{\alpha}\boldsymbol{\Gamma}_{\alpha}. The latter contains the information of the reservoirs, where fαf_{\alpha} is the Fermi-Dirac distribution function of reservoir α\alpha with chemical potential μα\mu_{\alpha} and temperature TαT_{\alpha}. The function Γα\Gamma_{\alpha} is the imaginary part of the self-energy of the reservoir α\alpha, and describes the escape rate from the region of the contact in units of \hbar. Importantly, in deriving Eq. 17 it was assumed that the self-energies 𝚺<\boldsymbol{\Sigma}^{<} and 𝚺r/a\boldsymbol{\Sigma}^{r/a} are time-independent. However, as we included the first sites of the leads into the effective Hamiltonian, Eq. 8, a variation of the couplings VLV_{L} and VRV_{R} does not change the self-energies.

Then, under the adiabatic approximation, ν\mathcal{F}_{\nu} is

νFννγννX˙ν,\begin{array}[]{ccc}\mathcal{F}_{\nu}&\simeq&F_{\nu}-\underset{\nu^{\prime}}{\sum}\gamma_{\nu\nu^{\prime}}\dot{X}_{\nu^{\prime}}\end{array}, (19)

where the “frozen” force or, from now on, simply the force, is

Fν=dε2πiTr[𝚲ν𝑮<].\begin{array}[]{ccc}F_{\nu}&=&\int\frac{d\varepsilon}{2\pi i}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}\right]\end{array}. (20)

The terms γνν\gamma_{\nu\nu^{\prime}} are the components of the electronic-friction tensor 𝜸\boldsymbol{\gamma}. The diagonal elements of 𝜸\boldsymbol{\gamma} provide the mechanical dissipation while the nondiagonal components are Lorentz-like terms which allow energy transfer between modes. This tensor can be linearly decomposed into a symmetric and an antisymmetric contribution 𝜸=𝜸s+𝜸a\boldsymbol{\gamma}=\boldsymbol{\gamma}^{s}+\boldsymbol{\gamma}^{a}. The antisymmetric component is finite only for nonzero voltage biases or temperature gradients between the reservoirs. Thus, close to equilibrium conditions only the symmetric contribution of the electronic-friction tensor needs to be taken into account.

II.2.2 Expansion of the CIFs.

In this work, we are interested only on the leading orders of the expansion of \mathcal{F} in terms of the different nonequilibrium sources δμ\delta\mu, δT\delta T, and X˙\dot{\overrightarrow{X}},

ν\displaystyle\mathcal{F}_{\nu} \displaystyle\approx ν|eq+ννX˙ν|eqX˙ν\displaystyle\left.\mathcal{F}_{\nu}\right|_{\mathrm{eq}}+\sum_{\nu^{\prime}}\left.\frac{\partial\mathcal{F}_{\nu}}{\partial\dot{X}_{\nu^{\prime}}}\right|_{\mathrm{eq}}\dot{X}_{\nu^{\prime}} (21)
+ανμα|eqδμα+ανTα|eqδTα.\displaystyle+\sum_{\alpha}\left.\frac{\partial\mathcal{F}_{\nu}}{\partial\mu_{\alpha}}\right|_{\mathrm{eq}}\delta\mu_{\alpha}+\sum_{\alpha}\left.\frac{\partial\mathcal{F}_{\nu}}{\partial T_{\alpha}}\right|_{\mathrm{eq}}\delta T_{\alpha}.

The equilibrium contribution of the force,

Fνeq=ν|eq,F_{\nu}^{\mathrm{eq}}=\left.\mathcal{F}_{\nu}\right|_{\mathrm{eq}}, (22)

is conservative and thus can be written as the gradient of a potential, Feq=Ueq\overrightarrow{F}^{\mathrm{eq}}=-\nabla U^{\mathrm{eq}}. As we show in appendix A, the equilibrium potential UeqU^{\mathrm{eq}} is

Ueq=dε2πif0(ε)ln[det(𝑮a)det(𝑮r)],\begin{array}[]{ccc}U^{\mathrm{eq}}&=&-\int\frac{d\varepsilon}{2\pi i}f_{0}\left(\varepsilon\right)\ln\left[\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)}\right]\end{array}, (23)

where f0f_{0} is the equilibrium Fermi-Dirac distribution function given by μ0\mu_{0} and T0T_{0}, the equilibrium chemical potential and temperature respectively.

Comparing Eqs. 21 and 19, it is obvious that νX˙ν|eq=γν,ν|eq\left.\frac{\partial\mathcal{F}_{\nu}}{\partial\dot{X}_{\nu^{\prime}}}\right|_{\mathrm{eq}}=\gamma_{\nu,\nu^{\prime}}|_{\mathrm{eq}}. Therefore, only the equilibrium contribution of the symmetric component of 𝜸\boldsymbol{\gamma} is relevant for the present work, where γννs,eqγννeq\gamma_{\nu\nu^{\prime}}^{s,\mathrm{eq}}\equiv\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}} and

γννeq=dε4πTr[(𝚲ν𝑮eq<𝚲ν+𝚲ν𝑮eq<𝚲ν)ε𝑮eq>].\begin{array}[]{ccc}\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}}&=&\int\frac{\hbar d\varepsilon}{4\pi}\mathbf{\textrm{Tr}}\left[\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}_{\mathrm{eq}}\boldsymbol{\Lambda}_{\nu^{\prime}}+\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{<}_{\mathrm{eq}}\boldsymbol{\Lambda}_{\nu}\right)\partial_{\varepsilon}\boldsymbol{G}^{>}_{\mathrm{eq}}\right]\end{array}. (24)

Here, 𝑮eq\boldsymbol{G}^{\lessgtr}_{\mathrm{eq}} are the equilibrium greater (>>) and lesser (<<) Green’s functions. The above equation can be rewritten, see appendix B, in a simpler form,

γννeq=dε4π(εf0)Tr[𝚲ν𝑨𝚲ν𝑨],\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}}=\int\frac{\hbar d\varepsilon}{4\pi}\left(-\partial_{\varepsilon}f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right], (25)

where 𝑨\boldsymbol{A} is the spectral function, 𝑨=i(𝑮r𝑮a)\boldsymbol{A}=i\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right). This equation shows that only states with energies close to the Fermi energy contribute to the equilibrium electronic-friction tensor. Those states are also responsible for the electric current Pastawski and Medina Dagger (2001) and the nonequilibrium contribution of the CIFs, as we will see afterward. Therefore, Eq. 25 highlights a fundamental physical connection between these quantities. In the low temperature limit, Eq. 25 becomes

limkBT00+γννeq\displaystyle\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}} =\displaystyle= 4πTr[𝚲ν𝑨𝚲ν𝑨]ε=μ0.\displaystyle\frac{\hbar}{4\pi}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]_{\varepsilon=\mu_{0}}. (26)

Stochastic forces, in Eq. 14, can be obtained by using the above equations and the fluctuation-dissipation relation, Bode et al. (2011) given by

Dννeq=2kBT0γννeq,D_{\nu\nu^{\prime}}^{\mathrm{eq}}=2k_{B}T_{0}\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}}, (27)

where kBk_{B} is the Boltzmann constant and it is assumed that stochastic forces are described by ξν(t)ξν(t)=Dννeqδ(tt)\left\langle\xi_{\nu}\left(t\right)\xi_{\nu^{\prime}}\left(t^{\prime}\right)\right\rangle=D_{\nu\nu^{\prime}}^{\mathrm{eq}}\delta\left(t-t^{\prime}\right).

At low voltage biases and temperature gradients, the nonequilibrium forces are given by

Fνne=ανTα|eqδTα+νμα|eqδμα,F_{\nu}^{\mathrm{ne}}=\sum_{\alpha}\left.\frac{\partial\mathcal{F}_{\nu}}{\partial T_{\alpha}}\right|_{\mathrm{eq}}\delta T_{\alpha}+\left.\frac{\partial\mathcal{F}_{\nu}}{\partial\mu_{\alpha}}\right|_{\mathrm{eq}}\delta\mu_{\alpha}, (28)

which in the low-temperature limit (see appendix C) gives

Fνne\displaystyle F_{\nu}^{\mathrm{ne}} =\displaystyle= απ3(kBT0)2Tr[𝚲ν(𝑮rΓα𝑮a)ε|ε=μ0]δTαT0\displaystyle\sum_{\alpha}\frac{\pi}{3}\left(k_{B}T_{0}\right)^{2}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\left.\frac{\partial\left(\boldsymbol{G}^{r}\Gamma_{\alpha}\boldsymbol{G}^{a}\right)}{\partial\varepsilon}\right|_{\varepsilon=\mu_{0}}\right]\frac{\delta T_{\alpha}}{T_{0}} (29)
+1πTr[𝚲ν(𝑮rΓα𝑮a)ε=μ0]δμα.\displaystyle+\frac{1}{\pi}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\left(\boldsymbol{G}^{r}\Gamma_{\alpha}\boldsymbol{G}^{a}\right)_{\varepsilon=\mu_{0}}\right]\delta\mu_{\alpha}.

Here, δμα=μαμ0\delta\mu_{\alpha}=\mu_{\alpha}-\mu_{0}, δTα=TαT0\delta T_{\alpha}=T_{\alpha}-T_{0}, and the expression is only valid for δTαT0\delta T_{\alpha}\leq T_{0}.

II.2.3 Work

One of the main motivations of this work is to study the general conditions that maximize the performance of different nanoelectromechanical devices and quantum machines. In this respect, one of the central quantities to evaluate is the work WW done by CIFs during cyclic motions. If one is dealing with systems where only two or three parameters are required to describe their motion, then it is useful to study the curl of the CIFs, defined as

(×F)ρ\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{\rho} =\displaystyle= νFννFν,\displaystyle\partial_{\nu}F_{\nu^{\prime}}-\partial_{\nu^{\prime}}F_{\nu}, (30)

where ρ\rho, ν\nu, and ν\nu^{\prime} are the indexes of the coordinates and ν<ν\nu<\nu^{\prime}. Now, the work can be obtained from

W=𝑆(×F)dS,\begin{array}[]{ccc}W&=&\underset{S}{\iint}\left(\nabla\times\overrightarrow{F}\right)\cdotp d\overrightarrow{S}\end{array}, (31)

where the integration is done on the surface SS enclosed by the closed curve CC that describes the cyclic motion.

Now inserting Eq. 29 into Eq. 30, gives

(×F)ρ\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{\rho} =\displaystyle= αδμαπiTr[{𝚲ν𝑨𝚲ν𝑮r𝚪α𝑮a}a]ε=μ0\displaystyle\sum_{\alpha}\frac{\delta\mu_{\alpha}}{\pi i}\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{r}\boldsymbol{\Gamma}_{\alpha}\boldsymbol{G}^{a}\right\}_{a}\right]_{\varepsilon=\mu_{0}} (32)
+π3i(kBT0)2δTαT0\displaystyle+\frac{\pi}{3i}\left(k_{B}T_{0}\right)^{2}\frac{\delta T_{\alpha}}{T_{0}}
×εTr[{𝚲ν𝑨𝚲ν𝑮r𝚪α𝑮a}a]ε=μ0\displaystyle\times\frac{\partial}{\partial\varepsilon}\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{r}\boldsymbol{\Gamma}_{\alpha}\boldsymbol{G}^{a}\right\}_{a}\right]_{\varepsilon=\mu_{0}}

where we used 𝑮r/a𝚲ν𝑮r/a=ν(𝑮r/a)\boldsymbol{G}^{r/a}\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r/a}=\partial_{\nu}\left(\boldsymbol{G}^{r/a}\right), ν𝚲ν=ν𝚲ν\partial_{\nu^{\prime}}\boldsymbol{\Lambda}_{\nu}=\partial_{\nu}\boldsymbol{\Lambda}_{\nu^{\prime}}, and {𝚲ν..𝚲ν..}a=(𝚲ν..𝚲ν..𝚲ν..𝚲ν..)\left\{\boldsymbol{\Lambda}_{\nu}..\boldsymbol{\Lambda}_{\nu^{\prime}}..\right\}_{a}=\left(\boldsymbol{\Lambda}_{\nu}..\boldsymbol{\Lambda}_{\nu^{\prime}}..-\boldsymbol{\Lambda}_{\nu^{\prime}}..\boldsymbol{\Lambda}_{\nu}..\right). Eq. 32 gives the work done per unit area in the low temperatures limit and for small bias voltages or temperature gradients.

II.2.4 CIFs in our model Hamiltonian

Refer to caption
Figure 3: Equilibrium potential UeqU^{\rm eq} at T0=0T_{0}=0 in units of V0V_{0}, Eq. 34, for (a)(a) ϵF=1.5\epsilon_{F}=-1.5, (b)(b) ϵF=0.75\epsilon_{F}=-0.75, (c)(c) ϵF=0.75\epsilon_{F}=0.75, and (d)(d) ϵF=1.5\epsilon_{F}=1.5. Green solid lines indicate the virtual-localized QDPT (Eq. 12) and cyan dotted lines show the resonant-virtual QDPT (Eq. 11).

Let us return to the tight-binding model described in Sec. II.1.1. For the analysis of the forces, especially for the equilibrium forces, it is crucial to have a definite occupation of the system, even for localized states or when VL=VR=0V_{L}=V_{R}=0. As discussed in section II.1.2, when the system is at the localized state, the poles of 𝑮r\boldsymbol{G}^{r}, or the eigenenergies of 𝑯eff\boldsymbol{H}_{\mathrm{eff}}, lay outside the band. At this condition, the imaginary part of the self-energies, Γ\Gamma, is zero. The same happens for VL=VR=0V_{L}=V_{R}=0. This implies the nonphysical condition that localized states do not contribute to the forces, or even worse, that isolated systems do not have forces at all. To solve this problem, we added the third reservoir (η\eta) to the model, assuming its occupation is given by the equilibrium Fermi function f0=(fL+fR)/2f_{0}=(f_{L}+f_{R})/2, and taking the limit Γη0\Gamma_{\eta}\rightarrow 0 in all calculations.

Given the Hamiltonian of Eq. 8 and the definition of 𝑮r/a\boldsymbol{G}^{r/a} (Eq. 1) and 𝑮<\boldsymbol{G}^{<} (Eq. 18), we obtain a closed-form expression for the Green functions, (see appendix D). As can be seen from the expressions of the appendix, the third reservoir does not affect the calculations for energies within the band, provided Γη\Gamma_{\eta} is small. However, it allows the calculation of equilibrium 𝑮<\boldsymbol{G}^{<} (and thus equilibrium forces) at all conditions. Then, all occupied states, independently if they are inside or outside the band, contribute to the equilibrium forces. One important point to emphasize is that the nonequilibrium contribution of 𝑮<\boldsymbol{G}^{<} (and thus F(ne)\overrightarrow{F}^{(\mathrm{ne})}) is always zero for states outside the band (localized states), or for VL=VR=0V_{L}=V_{R}=0. This will have important consequences when studying the maximization of the curl of the forces.

According to Eq. 16, the forces depend on how the elements of the electronic Hamiltonian are affected by the movement of the mechanical degrees of freedom, but this is system-dependent. Therefore, to gain generality, we take as “mechanical” variables the same parameters of the Hamiltonian (Ed,VL,VRE_{d},V_{L},V_{R}), which leads to dimensionless forces FνF_{\nu}, see appendix E. One can readily calculate the forces in terms of “physical” variables qiq_{i} by

Fi\displaystyle F_{i} =\displaystyle= νFνXνqi,\displaystyle\sum_{\nu}F_{\nu}\frac{\partial X_{\nu}}{\partial q_{i}}, (33)

where Xν={Ed,VL,VR}X_{\nu}=\left\{E_{d},V_{L},V_{R}\right\}. Notice that while forces may depend on the chosen variables, the work in Eq. 31 is independent of them, as long as the curve CC remains the same, see appendix E. Therefore, using our atypical choice of “mechanical” variables in Eq. 32 provides a useful tool to analyze in a general way the performance of nanoelectromechanical devices or quantum machines without having to specify the details of their physical implementation.

III Results

III.1 Equilibrium Potential

Using Eq. 23 and the expression for Gr/aG^{r/a} obtained in appendix D, we calculate the equilibrium potential

Ueq\displaystyle U^{\mathrm{eq}} =\displaystyle= dε2πif0ln[det(𝑮a)det(𝑮r)],\displaystyle-\int\frac{\mathrm{d}\varepsilon}{2\pi i}f_{0}\ln\left[\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)}\right], (34)

where

det(𝑮a)det(𝑮r)\displaystyle\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)} =\displaystyle= (ϵΣ~0r)2[ϵϵd+iΓ~ηv2Σ~0r](ϵΣ~0a)2[ϵϵdiΓ~ηv2Σ~0a].\displaystyle\frac{\left(\epsilon-\widetilde{\Sigma}_{0}^{r}\right)^{2}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-v^{2}\widetilde{\Sigma}_{0}^{r}\right]}{\left(\epsilon-\widetilde{\Sigma}_{0}^{a}\right)^{2}\left[\epsilon-\epsilon_{d}-i\widetilde{\Gamma}_{\eta}-v^{2}\widetilde{\Sigma}_{0}^{a}\right]}. (35)

Here, we used det(𝑮r)1=det(ε𝑰𝑯eff)\mathrm{det}(\boldsymbol{G}^{r})^{-1}=\mathrm{det}(\varepsilon\boldsymbol{I}-\boldsymbol{H}_{\mathrm{eff}}) and ϵ=(εE0)/V0\epsilon=(\varepsilon-E_{0})/V_{0}. It is worth mentioning that Eq. 34 is also valid for systems coupled to more than two reservoirs where v2v^{2} is given by Eq. 13.

In Fig. (3) we show the potential energy for some representative values of the normalized Fermi energy ϵF=(μ0E0)V0\epsilon_{F}=\frac{(\mu_{0}-E_{0})}{V_{0}}. The green and cyan lines superimposed to the plot show the different QDPTs. As can be seen, there is not a clear correlation between them and the equilibrium potential. However, the figures show a strong dependence of UeqU^{\mathrm{eq}} with the Fermi energy. This is important since then, e.g., gate voltages can be used to control the equilibrium position of the system or, even up to some extent, its dynamics. In this regard, having a simple but general expression for UeqU^{\mathrm{eq}} may result particularly useful.

III.2 Curl and electronic friction

Refer to caption
Figure 4: Coefficients of the expansion of the curl in terms of δT\delta T and δμ\delta\mu, W(δμ)W^{(\delta\mu)} and W(δT)W^{(\delta T)} (Eq. 39), in units of 1/V021/V_{0}^{2} and 1/V031/V_{0}^{3}, respectively. In all cases, ϵF=0.75\epsilon_{F}=0.75, while in (a)(a) and (c)(c), ϵd=0.5\epsilon_{d}=0.5, and in (b)(b) and (d)(d), vL=0.5v_{L}=0.5 The green solid lines correspond to the virtual-localized QDPTs, the cyan dotted lines show the resonant-virtual QDPTs, and the violet dashed lines indicate the expected condition that should maximize the WW coefficients. See the discussion in the main text.

The matrices 𝚲ν\boldsymbol{\Lambda}_{\nu}, with our choice of mechanical coordinates, see section II.2.4, are

𝚲VL\displaystyle\boldsymbol{\Lambda}_{V_{L}} =\displaystyle= (010100000),𝚲VR=(000001010)\displaystyle\begin{pmatrix}0&1&0\\ 1&0&0\\ 0&0&0\end{pmatrix},\qquad\boldsymbol{\Lambda}_{V_{R}}=\begin{pmatrix}0&0&0\\ 0&0&1\\ 0&1&0\end{pmatrix}
and\displaystyle\mathrm{and} 𝚲Ep=(000010000).\displaystyle\boldsymbol{\Lambda}_{E_{p}}=-\begin{pmatrix}0&0&0\\ 0&1&0\\ 0&0&0\end{pmatrix}. (36)

The spectral function can be calculated from 𝑨=2Im(𝑮r)\boldsymbol{A}=2\textrm{Im}\left(\boldsymbol{G}^{r}\right). Using this in Eq. 32, it is possible to obtain a simple expression for the elements of the curl of the forces (see appendixes F and G)

(×F)\displaystyle\left(\nabla\right.\times\overrightarrow{F}\left.\right) \displaystyle\simeq g(ϵF)T~(ϵF)Nd(ϵF)δμ\displaystyle\overrightarrow{g}\left(\epsilon_{F}\right)\widetilde{T}\left(\epsilon_{F}\right)N_{d}\left(\epsilon_{F}\right)\delta\mu (37)
+\displaystyle+ π23(gT~Nd)ϵ|ϵ=ϵF(kBT0)2δTT0.\displaystyle\frac{\pi^{2}}{3}\left.\frac{\partial\left(\overrightarrow{g}\widetilde{T}N_{d}\right)}{\partial\epsilon}\right|_{\epsilon=\epsilon_{F}}\left(k_{B}T_{0}\right)^{2}\frac{\delta T}{T_{0}}.

Here we take μ0=(μL+μR)/2\mu_{0}=(\mu_{L}+\mu_{R})/2, T0=(TL+TR)/2T_{0}=(T_{L}+T_{R})/2, δμ=μLμR\delta\mu=\mu_{L}-\mu_{R}, and δT=TLTR\delta T=T_{L}-T_{R}. The transmittance between reservoirs LL and RR is T~(ε)\widetilde{T}\left(\varepsilon\right), Nd(ε)N_{d}\left(\varepsilon\right) is the LDOS of the dot, and

g=1V0(2(ϵϵd)vLvR,1vR,1vL).\displaystyle\overrightarrow{g}=\frac{1}{V_{0}}\left(2\frac{\left(\epsilon-\epsilon_{d}\right)}{v_{L}v_{R}},\frac{1}{v_{R}},\frac{1}{v_{L}}\right). (38)

The curl of the force represents the work per unit area where, in our case, the unit area is given in units of energy and therefore the curl has units of one over energy.

Refer to caption
Figure 5: Same as Fig. 4 but for ϵF=1.99\epsilon_{F}=1.99.

As there are three components of the curl (Eq. 37) and two coefficients of the expansion (one for δT\delta T and one for δμ\delta\mu), there are a total of six components of the expansion of the curls. However, due to the symmetry of the problem, the coefficients of the expansion of (×F)VL(\nabla\times F)_{V_{L}} are equivalent to the coefficients of the expansion of (×F)VR(\nabla\times F)_{V_{R}} with vLv_{L} and vRv_{R} interchanged. Therefore, we are going to consider only four coefficients namely WEd(δμ)W^{(\delta\mu)}_{E_{d}}, WEd(δT)W^{(\delta T)}_{E_{d}}, WVL(δμ)W^{(\delta\mu)}_{V_{L}}, and WVL(δT)W^{(\delta T)}_{V_{L}}, where

(×F)VL\displaystyle(\nabla\times F)_{V_{L}} =\displaystyle= (δμ)WVL(δμ)+(kBT0)2δTT0WVL(δT)\displaystyle\left(\delta\mu\right)W^{(\delta\mu)}_{V_{L}}+\left(k_{B}T_{0}\right)^{2}\frac{\delta T}{T_{0}}W^{(\delta T)}_{V_{L}}
(×F)Ed\displaystyle(\nabla\times F)_{E_{d}} =\displaystyle= (δμ)WEd(δμ)+(kBT0)2δTT0WEd(δT).\displaystyle\left(\delta\mu\right)W^{(\delta\mu)}_{E_{d}}+\left(k_{B}T_{0}\right)^{2}\frac{\delta T}{T_{0}}W^{(\delta T)}_{E_{d}}. (39)

When one multiplies the coefficients Wρ(δμ)W^{(\delta\mu)}_{\rho} or Wρ(δT)W^{(\delta T)}_{\rho} (where ρ=Ed\rho=E_{d}, VLV_{L}, or VRV_{R}) by δμ\delta\mu or (kBT0)2δTT0\left(k_{B}T_{0}\right)^{2}\frac{\delta T}{T_{0}} respectively, the result gives the low temperature limit of the work done per unit area for a cyclic movement of the other two variables.

Refer to caption
Figure 6: Elements of the electronic-friction tensor 𝜸\boldsymbol{\gamma} in units of /V02\hbar/V_{0}^{2} for the same condition used in Fig. 4. Panels (a)(a), (c)(c), and (e)(e) are the elements of the tensor relevant for the movement of parameters VLV_{L} and VRV_{R}. Thus, they should be compared with the coefficients WEd(δμ)W_{E_{d}}^{(\delta\mu)} and WEd(δT)W_{E_{d}}^{(\delta T)} of Fig 4. Similarly panels (b)(b), (d)(d), and (f)(f) should be compared with the coefficients WVL(δμ)W_{V_{L}}^{(\delta\mu)} and WVL(δT)W_{V_{L}}^{(\delta T)} of Fig 4. In (a)(a), (c)(c), and (e)(e), we used ϵd=0.5\epsilon_{d}=0.5, while in (b)(b), (d)(d), and (f)(f), vL=0.5v_{L}=0.5.

Having a simple expression for the coefficients Wρ(δμ)W^{(\delta\mu)}_{\rho} or Wρ(δT)W^{(\delta T)}_{\rho} may be important when studying different forms of nanoelectromechanical devices, adiabatic quantum motors, or quantum heat engines. Let us recall that due to Onsager’s reciprocal relations, the coefficients of the expansion of the work in terms of δμ\delta\mu and δT\delta T gives, respectively, the charge pumped by adiabatic quantum pumps and the heat pumped by adiabatic quantum heat pumps Bustos-Marún et al. (2013); Ludovico et al. (2016a). Therefore, the expressions found for the coefficients and the conclusions regarding their general behavior are also valid for such systems.

In Fig. 4 we show some examples of the behavior of the coefficients of the expansion of the curl. In general, their behavior is highly dependent on the Fermi energy, just as with the case of UeqU^{\mathrm{eq}}. This feature may be useful, e.g., to control the dynamics of a system by using a gate voltage as a knob. Indeed, it is possible to change, in a given region of the parameter’s space, the sign of the coefficients, and thus the preferred direction of motion of the system by changing ϵF\epsilon_{F}.

The green solid lines and the cyan dashed lines indicate the QDPTs in Fig. 4. Although not obvious at first glance, we find that the behavior of the WW coefficients is related to the type of poles of the Green’s function describing the effective Hamiltonian, Eq. 37. This is so as the shape of the LDOS is determined by the type of pole, which, in turn, depends on the parameters of the Hamiltonian.

The WVLW_{V_{L}} coefficients depend on the square of the LDOS (or its derivative). Note that, in our system the transmittance T~(ε)\widetilde{T}\left(\varepsilon\right) is proportional to the LDOS within a wide band approximation.Haug and Jauho (2008) Therefore it is expected a coincidence between the regions with the maximum value of the coefficients and the regions with a maximum value of the LDOS, see Eq. 37. According to the discussions of Sec. II.1, for resonant states (see the region enclosed by the cyan dashed line in Fig. 4), the maximum of the LDOS approximately coincides (for poles not too close to the band edges) with the real part of the pole, see Fig. 2-(c). In such a case it is expected a maximum of the WVLW_{V_{L}} coefficients for ϵF=Re(ϵp)\epsilon_{F}=\mathrm{Re}(\epsilon_{p}), or

vR2=11+12(ϵFEd1)vL2,v_{R}^{2}=\frac{1}{1+\frac{1}{2\left(\frac{\epsilon_{F}}{E_{d}}-1\right)}}-v_{L}^{2}, (40)

where we used Eq. 10. The above equation is plotted in Figs. 4-(b) and (d) as violet dashed lines. As can be seen, the regions with a maximum value of the WVLW_{V_{L}} coefficients are close to the line given by Eq. 40.

For the WEdW_{E_{d}} coefficients the same analysis can be done except that they depend on the square of the LDOS multiplied by the term (ϵϵd(\epsilon-\epsilon_{d}), which shifts the maximum of the function from Re(ϵp)\mathrm{Re}(\epsilon_{p}). In this case, the maximum value of the coefficients should be close to the regions where the following function is maximum

(ϵFϵd)(Im(ϵp)[ϵFRe(ϵp)]2+Im(ϵp)2)2.\left(\epsilon_{F}-\epsilon_{d}\right)\left(\frac{\mathrm{Im}\left(\epsilon_{p}\right)}{\left[\epsilon_{F}-\mathrm{Re}\left(\epsilon_{p}\right)\right]^{2}+\mathrm{Im}\left(\epsilon_{p}\right)^{2}}\right)^{2}. (41)

Here, we used the fact that in our system the transmittance is proportional to the LDOS. We assumed the pole is close to the center of the band, and thus Γ\Gamma can be taken in a wide band approximation and the LDOS has a Lorentzian shape centered around Re(ϵp)\mathrm{Re}(\epsilon_{p}) and with a width given by Im(ϵp)\mathrm{Im}(\epsilon_{p}). And we applied all this to Eq. 37. Note that ϵp\epsilon_{p} is a function of ϵd\epsilon_{d}, vLv_{L}, and vRv_{R}, see Eq. 10. The above condition, numerically found, is plotted in Figs. 4-(a) and (c) as violet dashed lines. As can be seen, the regions with a maximum value of the WEdW_{E_{d}} coefficients are close to this line.

Refer to caption
Figure 7: (a) - Maximum value of the coefficient WEd(δμ)W_{E_{d}}^{(\delta\mu)} obtained by a variation of the Fermi energy ϵF\epsilon_{F} at every point of the parameter space. Green solid lines show the virtual localized QDPTs and the cyan dotted line indicates the resonant-virtual QDPT. (b) - Value of ϵF\epsilon_{F} that maximized WEd(δμ)W_{E_{d}}^{(\delta\mu)} (ϵF(Max)\epsilon_{F}^{\mathrm{(Max)}}). (c) and (d) - Example of some of the elements of the electronic-friction tensor calculated using ϵF(Max)\epsilon_{F}^{\mathrm{(Max)}}.

All the above discussions are valid as long as |ϵF|2|\epsilon_{F}|\ll 2. Let us recall that only when ϵp\epsilon_{p} is far from the band edges, the LDOS can be described by a Lorentzian function centered around Re(ϵp)\mathrm{Re}(\epsilon_{p}). When Re(ϵp)\mathrm{Re}(\epsilon_{p}) approaches one of the band edges (|Re(ϵp)|2|\mathrm{Re}(\epsilon_{p})|\approx 2), the LDOS is largely distorted exhibiting a peak with a maximum shifted towards the closest band edge. If we move the pole even further, it will correspond to a virtual state (see Fig. 2-(a)). For virtual states (|Re(ϵp)|2|\mathrm{Re}(\epsilon_{p})|\geq 2 and Im(ϵp)=0\mathrm{Im}(\epsilon_{p})=0), the LDOS shows a maximum almost at the band edges ϵ±2\epsilon\approx\pm 2, see Fig. 2-(d). The height of this maximum grows until the virtual-localized QDPT is reached (where the maximum is exactly at ϵ=±2\epsilon=\pm 2) and then it decreases. Therefore, in all these cases the maximum of the LDOS is expected to approximately coincide with one of the band edges. This is the reason why for |ϵF|2|\epsilon_{F}|\approx 2 the maximum value of the curl coincide approximately with the virtual-localized QDPT, see Fig. 5. For localized states, obviously there is also a maximum outside the band, see Fig. 2-(e). However, as discussed in section Sec. II.2.4, states with energies outside the band do not contribute to nonequilibrium forces. Note also that the transmittance T~(ε)\widetilde{T}\left(\varepsilon\right) is zero outside the band and thus (×F)=0(\nabla\times\overrightarrow{F})=0 according to Eq. 37.

In summary, as a rule of thumb when |ϵF|2|\epsilon_{F}|\ll 2, the regions of the parameter space with maximum values of the WVLW_{V_{L}} coefficients are given by Eq. 40, while for the WEdW_{E_{d}} coefficients, these regions are shifted and given by the maximum of Eq. 41. On the other hand, when |ϵF|2|\epsilon_{F}|\approx 2, the regions of the parameter space with the maximum values of both coefficients (WVLW_{V_{L}} and WEdW_{E_{d}}) approximately coincide with the virtual-localized QDPT, Eq. 12.

Here, we also obtained closed-form expressions for the elements of the electronic-friction tensor 𝜸\boldsymbol{\gamma}, see appendix H. Fig. 6 shows some elements of 𝜸\boldsymbol{\gamma} for the same conditions used in Fig. 4. As can be seen, in general, the regions in the parameter space that maximize the WW coefficients roughly coincide with the regions that maximize the elements of 𝜸\boldsymbol{\gamma}. This is reasonable since 𝜸\boldsymbol{\gamma} and WW show a similar, although not exactly the same, dependence with the LDOS and the transmittance, see appendix H. Therefore, one can use much the same arguments to explain why some regions of the parameter space present a maximum.

One may wonder, what are the regions in the parameter space that maximizes the WW coefficients independently of ϵF\epsilon_{F}, i.e., if one could move ϵF\epsilon_{F} at will. This is shown in Figs. 7 and 8. We do not show the W(δT)W^{(\delta T)} coefficients as their behavior is approximately the same as that of the W(δμ)W^{(\delta\mu)} coefficients. As can be seen, the regions that maximize the WW coefficients coincide in general with the virtual-localized QDPT. Note however that in Fig. 7 the region vLvR0v_{L}\approx v_{R}\approx 0 presents values of WEd(δμ)W_{E_{d}}^{(\delta\mu)} similar to those of the virtual-localized QDPT. Regarding the elements of the electronic-friction tensor, they roughly follow the behavior of the WW coefficients.

Refer to caption
Figure 8: Same as Fig 7 but for WVL(δμ)W_{V_{L}}^{(\delta\mu)}.

IV Conclusions

When designing or studying a nanoelectromechanical device or a quantum machine, it is crucial to understand the effect of the system’s parameters on their performance. Here, we carry out a thorough study of the CIF and the electronic-friction tensor within one of the most common Hamiltonian model in quantum transport. Haug and Jauho (2008); Pastawski and Medina Dagger (2001); Zimbovskaya (2013) It is important to point out that any single-particle Hamiltonian, where there is only one relevant state, can be reduced to the model used here by means of a decimation procedure, see, e.g. Ref. Pastawski and Medina Dagger, 2001.

We derived analytic formulas for the equilibrium potential (Eqs. 23 and 35), the low-temperature limit of the electronic-friction tensor (Eq. 26), and the low-temperature limit of the curl of the CIFs up to leading order in δT\delta T and δμ\delta\mu (Eqs. 37 and 32). We showed the connection between QDPTs, the curl of the CIFs, and the electronic-friction tensor. Using this as a guide, we found some rule of thumbs that can be useful to quickly identify the regions of the parameters space that should be enclosed to maximize the work done by the device. Moreover, because of the strategy we used to carry out the analysis, our results are independent of the details of how the mechanical and electronic degrees of freedom are coupled.

Again, we want to emphasize that, due to Onsager’s reciprocal relations, our analysis of the coefficients of the expansion of the curl (Wρ(δμ)W^{(\delta\mu)}_{\rho} and Wρ(δT)W^{(\delta T)}_{\rho}) and the formulas shown in Eqs. 32 and 37, are also valid for adiabatic quantum pumps and quantum heat pumps Bustos-Marún et al. (2013); Ludovico et al. (2016a).

The present work may also help to connect the configuration of conducting devices with current-induced structural-failures. Basically, our simple Hamiltonian also represents a minimal model of an impurity in a one-dimensional conductor. Therefore, according to our results, some particular values of the parameters of the system should dramatically increase nonconservative forces and the curl of the force, which should ultimately lead to a mechanical failure. That reasoning, of course, depends on the vibrational modes involved and the dynamical feedback between them and the electronic currents.Lü et al. (2010) However, it is an interesting direction for further research.

Other appealing directions of extending this work include analyzing other common Hamiltonian models, such as double quantum dots, and studying systems within the Coulomb blockade regime of quantum transport.

V Acknowledgements

We acknowledge financial support by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (SECYT-UNC); and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2018-03587).

Appendix A Equilibrium potential.

By writing the Fermi functions as fL/R=f0+ΔfL/Rf_{L/R}=f_{0}+\Delta f_{L/R}, one can split the zero order term of the adiabatic expansion of the CIFs FνF_{\nu} into the equilibrium (FνeqF_{\nu}^{\mathrm{eq}}) and nonequilibrium (FνneF_{\nu}^{\mathrm{ne}}) contributions

Fν\displaystyle F_{\nu} =\displaystyle= dεπf0𝛼Tr[𝚲ν𝑮r𝚪α𝑮a]\displaystyle\int\frac{\mathrm{d}\varepsilon}{\pi}f_{0}\underset{\alpha}{\sum}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Gamma}_{\alpha}\boldsymbol{G}^{a}\right]
+dεπ𝛼ΔfαTr[𝚲ν𝑮r𝚪α𝑮a]\displaystyle+\int\frac{\mathrm{d}\varepsilon}{\pi}\underset{\alpha}{\sum}\Delta f_{\alpha}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Gamma}_{\alpha}\boldsymbol{G}^{a}\right]
=\displaystyle= Fνeq+Fνne.\displaystyle F_{\nu}^{\mathrm{eq}}+F_{\nu}^{\mathrm{ne}}.

Given their definition, the following relation holds for the Green functions

(𝑮r)1(𝑮a)1=2i𝛼𝚪α.\displaystyle\left(\boldsymbol{G}^{r}\right)^{-1}-\left(\boldsymbol{G}^{a}\right)^{-1}=2i\underset{\alpha}{\sum}\boldsymbol{\Gamma}_{\alpha}.

Therefore, equilibrium force can be written as

Fνeq\displaystyle F_{\nu}^{\mathrm{eq}} =\displaystyle= dε2πif0Tr[𝚲ν(𝑮a𝑮a)]\displaystyle\int\frac{\mathrm{d}\varepsilon}{2\pi i}f_{0}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\left(\boldsymbol{G}^{a}-\boldsymbol{G}^{a}\right)\right]

Now, let us take a matrix 𝑼\boldsymbol{U} which diagonalize 𝑮r\boldsymbol{G}^{r},

𝑼1𝑮r𝑼\displaystyle\boldsymbol{U}^{-1}\boldsymbol{G}^{r}\boldsymbol{U} =\displaystyle= 𝑫r.\displaystyle\boldsymbol{D}^{r}.

Obviously, 𝑼\boldsymbol{U} also diagonalize (𝑮r)1\left(\boldsymbol{G}^{r}\right)^{-1}. Then, using 𝑯Xν=(𝑮r)1Xν=(𝑮r)1𝑮rXν(𝑮r)1\frac{\partial\boldsymbol{H}}{\partial X_{\nu}}=\frac{\partial\left(\boldsymbol{G}^{r}\right)^{-1}}{\partial X_{\nu}}=\left(\boldsymbol{G}^{r}\right)^{-1}\frac{\partial\boldsymbol{G}^{r}}{\partial X_{\nu}}\left(\boldsymbol{G}^{r}\right)^{-1}, one finds

Tr[𝚲ν𝑮r]=Tr[(𝑫r)1Xν𝑫r].\displaystyle\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\right]=\mathbf{\textrm{Tr}}\left[-\frac{\partial\left(\boldsymbol{D}^{r}\right)^{-1}}{\partial X_{\nu}}\boldsymbol{D}^{r}\right].

The elements of 𝑫r\boldsymbol{D}^{r} are the eigenvalues of 𝑮r\boldsymbol{G}^{r}, thus

Tr[(𝑫r)1Xν𝑫r]\displaystyle\mathbf{\textrm{Tr}}\left[-\frac{\partial\left(\boldsymbol{D}^{r}\right)^{-1}}{\partial X_{\nu}}\boldsymbol{D}^{r}\right] =\displaystyle= ln(det(𝑮r))Xν.\displaystyle-\frac{\partial\ln\left(\det\left(\boldsymbol{G}^{r}\right)\right)}{\partial X_{\nu}}.

A similar argument can be used for 𝑮a\boldsymbol{G}^{a}. The equilibrium force results in

Fνeq\displaystyle F_{\nu}^{\mathrm{eq}} =\displaystyle= Xν[dε2πif0ln(det(𝑮a)det(𝑮r))],\displaystyle\frac{\partial}{\partial X_{\nu}}\left[\int\frac{\mathrm{d}\varepsilon}{2\pi i}f_{0}\ln\left(\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)}\right)\right],

where one can identify the equilibrium potential UeqU^{\mathrm{eq}} as

Ueq\displaystyle U^{\mathrm{eq}} =\displaystyle=- dε2πif0ln(det(𝑮a)det(𝑮r)).\displaystyle\int\frac{\mathrm{d}\varepsilon}{2\pi i}f_{0}\ln\left(\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)}\right).

Note that |det(𝑮a)det(𝑮r)|=1\left|\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)}\right|=1, and then one can write

det(𝑮a)det(𝑮r)\displaystyle\frac{\det\left(\boldsymbol{G}^{a}\right)}{\det\left(\boldsymbol{G}^{r}\right)} =\displaystyle= exp(iχ).\displaystyle\exp\left(-i\chi\right).

Taking z=det(𝑮r)z=\det\left(\boldsymbol{G}^{r}\right) and considering χ\chi as the principal value of the logarithm, gives

χ\displaystyle\chi =\displaystyle= arctan(2Re(z)Im(z)(Re(z))2(Im(z))2).\displaystyle\arctan\left(\frac{2\textrm{Re$\left(z\right)$}\textrm{Im}\left(z\right)}{\left(\textrm{Re$\left(z\right)$}\right)^{2}-\left(\textrm{Im$\left(z\right)$}\right)^{2}}\right).

Using this, the equilibrium potential can be written as

Ueq\displaystyle U^{\mathrm{eq}} =\displaystyle= dε2πf0χ(ε).\displaystyle\int\frac{\mathrm{d}\varepsilon}{2\pi}f_{0}\chi\left(\varepsilon\right).

Note that it is not necessary to integrate from -\infty to \infty but only over energies where Im(𝑮r)0\mathrm{Im}(\boldsymbol{G}^{r})\neq 0 (where χ(ε)0\chi(\varepsilon)\neq 0). As the function “arctan\arctan” is bounded and monotonically increasing, the following inequalities hold

π\displaystyle\pi χ\displaystyle\geq\chi\geq π\displaystyle-\pi
12dεf0\displaystyle\frac{1}{2}\int_{*}\mathrm{d}\varepsilon f_{0} Ueq\displaystyle\geq U^{\mathrm{eq}}\geq 12dεf0.\displaystyle-\frac{1}{2}\int_{*}\mathrm{d}\varepsilon f_{0}.

where the symbol * means that the integrals only cover the energy ranges where Im(𝑮r)0\mathrm{Im}(\boldsymbol{G}^{r})\neq 0, or, in other words, the integrals only run over energy ranges where the leads support propagating states, or the system presents localized states. Then, the above equation shows that the equilibrium potential is bounded by the occupation of the reservoirs and the system.

Appendix B Equilibrium friction tensor.

As mentioned, here we are interested only in the symmetric component of the electronic-friction tensor at equilibrium, Eq. 24. Under this condition, the lesser and greater Green’s functions are given by Haug and Jauho (2008); Bode et al. (2011):

𝑮eq<\displaystyle\boldsymbol{G}_{\mathrm{eq}}^{<} =\displaystyle= if0𝑨\displaystyle if_{0}\boldsymbol{A}
𝑮eq>\displaystyle\boldsymbol{G}_{\mathrm{eq}}^{>} =\displaystyle= i[1f0]𝑨\displaystyle-i\left[1-f_{0}\right]\boldsymbol{A}

where 𝑨\boldsymbol{A} is the spectral function, 𝑨=i(𝑮r𝑮a)\boldsymbol{A}=i\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right). Using this we can write Eq. 24 as

γννeq=dε4πf0(ε(1f0)Tr[{𝚲ν𝑨𝚲ν𝑨}s]\displaystyle\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}}=\int\frac{\hbar d\varepsilon}{4\pi}f_{0}\left(\partial_{\varepsilon}\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right\}_{s}\right]\right.
+(1f0)Tr[{𝚲ν𝑨𝚲ν𝑨}sε𝑨])\displaystyle\left.+\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right\}_{s}\partial_{\varepsilon}\boldsymbol{A}\right]\right)\qquad (42)

where we used the notation {𝚲ν𝑨𝚲ν𝑨}s=(𝚲ν𝑨𝚲ν𝑨+𝚲ν𝑨𝚲ν𝑨)\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right\}_{s}=\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}+\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\right).

Employing the cyclic property of the trace of matrix multiplications, one can readily show

Tr[{𝚲ν𝑨𝚲ν𝑨}s]\displaystyle\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right\}_{s}\right] =\displaystyle= 2Tr[𝚲ν𝑨𝚲ν𝑨].\displaystyle 2\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]. (43)

The above equation can be used to further prove

εTr[𝚲ν𝑨𝚲ν𝑨]\displaystyle\partial_{\varepsilon}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right] =\displaystyle= Tr[{𝚲ν𝑨𝚲ν}sε𝑨].\displaystyle\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\right\}_{s}\partial_{\varepsilon}\boldsymbol{A}\right]. (44)

Combining Eqs. 43 and 44 we find

2ε((1f0)Tr[𝚲ν𝑨𝚲ν𝑨])=\displaystyle 2\partial_{\varepsilon}\left(\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]\right)=
(1f0)εTr[𝚲ν𝑨𝚲ν𝑨]\displaystyle\left(1-f_{0}\right)\partial_{\varepsilon}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]
+Tr[{𝚲ν𝑨𝚲ν}sε((1f0)𝑨)].\displaystyle+\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\right\}_{s}\partial_{\varepsilon}\left(\left(1-f_{0}\right)\boldsymbol{A}\right)\right]. (45)

Now, after some algebra and using Eqs. 43 and 45 the following relation is obtained

f0Tr[{𝚲ν𝑨𝚲ν}sε((1f0)𝑨)]=\displaystyle f_{0}\mathbf{\textrm{Tr}}\left[\left\{\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\right\}_{s}\partial_{\varepsilon}\left(\left(1-f_{0}\right)\boldsymbol{A}\right)\right]=
2ε(f0(1f0)Tr[𝚲ν𝑨𝚲ν𝑨])\displaystyle 2\partial_{\varepsilon}\left(f_{0}\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]\right)
2(εf0)(1f0)Tr[𝚲ν𝑨𝚲ν𝑨]\displaystyle-2\left(\partial_{\varepsilon}f_{0}\right)\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]
f0(1f0)εTr[𝚲ν𝑨𝚲ν𝑨].\displaystyle-f_{0}\left(1-f_{0}\right)\partial_{\varepsilon}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]. (46)

Inserting Eq. 46 into Eq. 42 yields

γννeq\displaystyle\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}} =\displaystyle= 2πf0(1f0)Tr[𝚲ν𝑨𝚲ν𝑨]|\displaystyle\left.\frac{\hbar}{2\pi}f_{0}\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]\right|_{-\infty}^{\infty} (47)
dε2π(εf0)(1f0)Tr[𝚲ν𝑨𝚲ν𝑨]\displaystyle-\int\frac{\hbar d\varepsilon}{2\pi}\left(\partial_{\varepsilon}f_{0}\right)\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]
dε4πf0(1f0)εTr[𝚲ν𝑨𝚲ν𝑨]\displaystyle-\int\frac{\hbar d\varepsilon}{4\pi}f_{0}\left(1-f_{0}\right)\partial_{\varepsilon}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]

As Tr[𝚲ν𝑨𝚲ν𝑨]\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right] is bounded, and limε±f0(1f0)=0\lim_{\varepsilon\rightarrow\pm\infty}f_{0}\left(1-f_{0}\right)=0, then

12πf0(1f0)Tr[𝚲ν𝑨𝚲ν𝑨]|\displaystyle\left.\frac{1}{2\pi}f_{0}\left(1-f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right]\right|_{-\infty}^{\infty} =\displaystyle= 0\displaystyle 0 (48)

Using this in Eq. 47 and after some algebra we finally find

γννeq\displaystyle\gamma_{\nu\nu^{\prime}}^{\mathrm{eq}} =\displaystyle= dε4π(εf0)Tr[𝚲ν𝑨𝚲ν𝑨].\displaystyle\int\frac{\hbar d\varepsilon}{4\pi}\left(-\partial_{\varepsilon}f_{0}\right)\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{A}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{A}\right].

Appendix C Expansion of FneF^{\mathrm{ne}}.

Let us consider the contribution of the α\alpha lead to the CIF (FαF_{\alpha}),

F=αFα,\displaystyle F=\sum_{\alpha}F_{\alpha},

and define the compact support function φα(ε)\varphi_{\alpha}\left(\varepsilon\right) such that

Fα\displaystyle F_{\alpha} =\displaystyle= φα(ε)fαdε,\displaystyle\underset{\mathbb{R}}{\int}\varphi_{\alpha}\left(\varepsilon\right)f_{\alpha}\mathrm{d}\varepsilon,

where fαf_{\alpha} is the Fermi distribution function of reservoir α\alpha and

φα=1πTr[𝚲α𝑮r𝚪α𝑮a]\displaystyle\varphi_{\alpha}=\frac{1}{\pi}\mathrm{Tr}\left[\boldsymbol{\Lambda}_{\alpha}\boldsymbol{G}^{r}\boldsymbol{\Gamma}_{\alpha}\boldsymbol{G}^{a}\right] (49)

Expanding FαF_{\alpha} up to second order in μα\mu_{\alpha} and TαT_{\alpha} and taking the small temperature limit of TαT_{\alpha} yields

Fα\displaystyle F_{\alpha} =[]μ0φα(ε)dε+π26φαε|ε=μα(kBT0)2\displaystyle=\stackrel{{\scriptstyle[}}{{\infty}}]{\mu_{0}}{\int}\varphi_{\alpha}\left(\varepsilon\right)\mathrm{d}\varepsilon+\frac{\pi^{2}}{6}\left.\frac{\partial\varphi_{\alpha}}{\partial\varepsilon}\right|_{\varepsilon=\mu_{\alpha}}\left(k_{B}T_{0}\right)^{2} (50)
+\displaystyle+ φα|ε=μ0δμα+π23φαε|ε=μ0(kBT0)2δTαT0\displaystyle\left.\varphi_{\alpha}\right|_{\varepsilon=\mu_{0}}\delta\mu_{\alpha}+\frac{\pi^{2}}{3}\left.\frac{\partial\varphi_{\alpha}}{\partial\varepsilon}\right|_{\varepsilon=\mu_{0}}\left(k_{B}T_{0}\right)^{2}\frac{\delta T_{\alpha}}{T_{0}}
+\displaystyle+ 12φαε|ε=μ0δμα2+π26φαε|ε=μ0kB2δTα2.\displaystyle\frac{1}{2}\left.\frac{\partial\varphi_{\alpha}}{\partial\varepsilon}\right|_{\varepsilon=\mu_{0}}\delta\mu_{\alpha}^{2}+\frac{\pi^{2}}{6}\left.\frac{\partial\varphi_{\alpha}}{\partial\varepsilon}\right|_{\varepsilon=\mu_{0}}k_{B}^{2}\delta T_{\alpha}^{2}.

As in the main text, here we used δTα=TαT0\delta T_{\alpha}=T_{\alpha}-T_{0} and δμα=μαμ0\delta\mu_{\alpha}=\mu_{\alpha}-\mu_{0}, where T0T_{0} and μ0\mu_{0} are the average temperature and chemical potential of the reservoirs connected to the system. Note that the first two terms of the right-hand side of Eq. 50 will contribute to the equilibrium force while the last two terms are second order in an expansion in terms of δμα\delta\mu_{\alpha} and δTα\delta T_{\alpha}. Therefore, by inserting Eq. 49 into the above equation, taking only the first-order terms and summing up all FαF_{\alpha} contributions, one readily arrives at Eq. 29.

Appendix D Green Functions in our system.

The determinant of the effective Hamiltonian given in Eq. 8 is

det(ε𝑰𝑯eff)=V03(ϵΣ0rV0)2×\displaystyle\det\left(\varepsilon\boldsymbol{I}-\boldsymbol{H}_{\mathrm{eff}}\right)=V_{0}^{3}\left(\epsilon-\frac{\Sigma_{0}^{r}}{V_{0}}\right)^{2}\times
[ϵϵd+iΓηrV0(vR2+vL2)Σ0rV0].\displaystyle\left[\epsilon-\epsilon_{d}+i\frac{\Gamma_{\eta}^{r}}{V_{0}}-\left(v_{R}^{2}+v_{L}^{2}\right)\frac{\Sigma_{0}^{r}}{V_{0}}\right]. (51)

The retarded Green function is

𝑮r(ε)\displaystyle\boldsymbol{G}^{r}\left(\varepsilon\right) =(G11rG12rG13rG21rG22rG23rG31rG32rG33r)\displaystyle=\begin{pmatrix}G_{11}^{r}&G_{12}^{r}&G_{13}^{r}\\ G_{21}^{r}&G_{22}^{r}&G_{23}^{r}\\ G_{31}^{r}&G_{32}^{r}&G_{33}^{r}\end{pmatrix} =[ϵ𝑰𝑯eff]1.\displaystyle=\left[\epsilon\boldsymbol{I}-\boldsymbol{H}_{\mathrm{eff}}\right]^{-1}.

For convenience, we changed the notation for the indexes of the elements of 𝑮\boldsymbol{G}, with respect to that of Eq. 4 in the main text. Thus, e.g., (1/π)Im(G2,2r)-(1/\pi)\mathrm{Im}(G_{2,2}^{r}) is the LDOS of the dot (site "0" according to Eq. 4), while (1/π)Im(G1,1r)-(1/\pi)\mathrm{Im}(G_{1,1}^{r}) is the LDOS of the first site of the left chain (site "1-1" according to Eq. 4). In all the appendixes, we followed the present convention.

Using Eq. 51 one can readily calculate the elements of 𝑮r(ε)\boldsymbol{G}^{r}\left(\varepsilon\right). Written them in terms of the dimensionless quantities (ϵ\epsilon, ϵd\epsilon_{d}, vL/Rv_{L/R}, Γ~η=ΓηV0\widetilde{\Gamma}_{\eta}=\frac{\Gamma_{\eta}}{V_{0}}, and Σ~0r=Σ0r(ε)V0\widetilde{\Sigma}_{0}^{r}=\frac{\Sigma_{0}^{r}\left(\varepsilon\right)}{V_{0}}) they are

G11r\displaystyle G_{11}^{r} =\displaystyle= (ϵϵd+iΓ~ηvR2Σ~0r)V0[ϵϵd+iΓ~η(vR2+vL2)Σ~0r](ϵΣ~0r)\displaystyle\frac{\left(\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-v_{R}^{2}\widetilde{\Sigma}_{0}^{r}\right)}{V_{0}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]\left(\epsilon-\widetilde{\Sigma}_{0}^{r}\right)}
G22r\displaystyle G_{22}^{r} =\displaystyle= 1V0[ϵϵd+iΓ~η(vR2+vL2)Σ~0r]\displaystyle\frac{1}{V_{0}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]}
G33r\displaystyle G_{33}^{r} =\displaystyle= (ϵϵd+iΓ~ηvL2Σ~0r)V0[ϵϵd+Γ~η(vR2+vL2)Σ~0r](ϵΣ~0r)\displaystyle\frac{\left(\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-v_{L}^{2}\widetilde{\Sigma}_{0}^{r}\right)}{V_{0}\left[\epsilon-\epsilon_{d}+\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]\left(\epsilon-\widetilde{\Sigma}_{0}^{r}\right)}
G21r\displaystyle G_{21}^{r} =\displaystyle= G12r=vLΣ~0rV0[ϵϵd+iΓ~η(vR2+vL2)Σ~0r]\displaystyle G_{12}^{r}=\frac{-v_{L}\widetilde{\Sigma}_{0}^{r}}{V_{0}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]}
G32r\displaystyle G_{32}^{r} =\displaystyle= G23r=vRΣ~0rV0[ϵϵd+iΓ~η(vR2+vL2)Σ~0r]\displaystyle G_{23}^{r}=\frac{-v_{R}\widetilde{\Sigma}_{0}^{r}}{V_{0}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]}
G31r\displaystyle G_{31}^{r} =\displaystyle= G13r=vLvR(Σ~0r)2V0[ϵϵd+iΓ~η(vR2+vL2)Σ~0r]\displaystyle G_{13}^{r}=\frac{v_{L}v_{R}\left(\widetilde{\Sigma}_{0}^{r}\right)^{2}}{V_{0}\left[\epsilon-\epsilon_{d}+i\widetilde{\Gamma}_{\eta}-\left(v_{R}^{2}+v_{L}^{2}\right)\widetilde{\Sigma}_{0}^{r}\right]}

The advanced Green function is calculated from 𝑮a=[𝑮r]\boldsymbol{G}^{a}=\left[\boldsymbol{G}^{r}\right]^{\dagger}, while the lesser Green function is given by

𝑮<=𝑮r𝚺<𝑮a,\boldsymbol{G}^{<}=\boldsymbol{G}^{r}\boldsymbol{\Sigma}^{<}\boldsymbol{G}^{a},

where 𝚺<=𝚺L<+𝚺R<+𝚺η<\boldsymbol{\Sigma}^{<}=\boldsymbol{\Sigma}^{<}_{L}+\boldsymbol{\Sigma}^{<}_{R}+\boldsymbol{\Sigma}^{<}_{\eta}. We will split 𝑮<\boldsymbol{G}^{<} into two contributions (𝑮(L+R)<\boldsymbol{G}_{(L+R)}^{<} and 𝑮η\boldsymbol{G}_{\eta})

𝑮<\displaystyle\boldsymbol{G}^{<} =\displaystyle= 𝑮r(𝚺L<+𝚺R<)𝑮a𝑮(L+R)<+𝑮r𝚺η<𝑮a𝑮η<\displaystyle\underbrace{\boldsymbol{G}^{r}\left(\boldsymbol{\Sigma}_{L}^{<}+\boldsymbol{\Sigma}_{R}^{<}\right)\boldsymbol{G}^{a}}_{\boldsymbol{G}_{(L+R)}^{<}}+\underbrace{\boldsymbol{G}^{r}\boldsymbol{\Sigma}_{\eta}^{<}\boldsymbol{G}^{a}}_{\boldsymbol{G}_{\eta}^{<}}

where

(𝚺L<+𝚺R<)\displaystyle\left(\boldsymbol{\Sigma}_{L}^{<}+\boldsymbol{\Sigma}_{R}^{<}\right) =\displaystyle= 2i((f0+Δf2)ΓL0000000(f0Δf2)ΓR)\displaystyle 2i\begin{pmatrix}\left(f_{0}+\frac{\Delta f}{2}\right)\Gamma_{L}&0&0\\ 0&0&0\\ 0&0&\left(f_{0}-\frac{\Delta f}{2}\right)\Gamma_{R}\end{pmatrix}
𝚺η<\displaystyle\boldsymbol{\Sigma}_{\eta}^{<} =\displaystyle= 2i(0000f0Γη(0)0000).\displaystyle 2i\begin{pmatrix}0&0&0\\ 0&f_{0}\Gamma_{\eta}^{\left(0\right)}&0\\ 0&0&0\end{pmatrix}.

Here, fL/R=f0±Δff_{L/R}=f_{0}\pm\Delta f with f0=(fL+fR)/2f_{0}=(f_{L}+f_{R})/2 and Δf=fLfR\Delta f=f_{L}-f_{R}. We also assumed the third lead is at equilibrium with fη=f0f_{\eta}=f_{0}. Then, the elements of 𝑮(L+R)<\boldsymbol{G}_{(L+R)}^{<} and 𝑮η<\boldsymbol{G}_{\eta}^{<} are

[G(L+R)<]ij\displaystyle\left[G_{(L+R)}^{<}\right]_{ij} =\displaystyle= 2if0(Gi1rGj1rΓL+Gi3rGj3rΓR)[G(L+R)<]ij(eq)\displaystyle\underbrace{2if_{0}\left(G^{r}_{i1}G^{r*}_{j1}\Gamma_{L}+G^{r}_{i3}G^{r*}_{j3}\Gamma_{R}\right)}_{\left[G_{(L+R)}^{<}\right]_{ij}^{\mathrm{(eq)}}}
+2iΔf2(Gi1rGj1rΓLGi3rGj3rΓR)[G(L+R)<]ij(ne)\displaystyle+\underbrace{2i\frac{\Delta f}{2}\left(G^{r}_{i1}G^{r*}_{j1}\Gamma_{L}-G^{r}_{i3}G^{r*}_{j3}\Gamma_{R}\right)}_{\left[G_{(L+R)}^{<}\right]_{ij}^{\mathrm{(ne)}}}

and

[Gη<]ij\displaystyle\left[G_{\eta}^{<}\right]_{ij} =\displaystyle= 2if0(Gi2rGj2rΓη(0)).\displaystyle 2if_{0}\left(G^{r}_{i2}G^{r*}_{j2}\Gamma_{\eta}^{\left(0\right)}\right).

where we identified the equilibrium (eq) and nonequilibrium (ne) contributions to [𝑮(L+R)<]ij\left[\boldsymbol{G}_{(L+R)}^{<}\right]_{ij}. The equilibrium contributions only contains f0f_{0} terms while nonequilibrium contributions only contains Δf\Delta f terms.

Therefore, the nonequilibrium 𝑮<\boldsymbol{G}^{<} is given by

𝑮(ne)<\displaystyle\boldsymbol{G}_{(\mathrm{ne})}^{<} =\displaystyle= [𝑮(L+R)<]ij(ne),\displaystyle\left[\boldsymbol{G}_{(L+R)}^{<}\right]_{ij}^{\mathrm{(ne)}},

while the equilibrium contribution is

𝑮(eq)<\displaystyle\boldsymbol{G}_{(\mathrm{eq})}^{<} =\displaystyle= {[𝑮(L+R)<](eq)|ϵ|2limΓη0𝑮η<|ϵ|>2.\displaystyle\begin{cases}\left[\boldsymbol{G}_{(L+R)}^{<}\right]^{(\mathrm{eq})}&\left|\epsilon\right|\leq 2\\ \lim_{\Gamma_{\eta}\rightarrow 0}\boldsymbol{G}_{\eta}^{<}&\left|\epsilon\right|>2\end{cases}.

Appendix E Mechanical variables and CIFs.

Let {qj}\left\{q_{j}\right\} and {Xν}\left\{X_{\nu}\right\} be two sets of different mechanical variables related through the expression qj(Xν)q_{j}\left(X_{\nu}\right), which we assume continuous but not necessarily lineal. Then, CIFs can be written in terms of {Xν}\left\{X_{\nu}\right\} as F(Xν)F\left(X_{\nu}\right) or in terms of {qj}\left\{q_{j}\right\} as F(qj)F\left(q_{j}\right). Both descriptions are related through

F(Xν)\displaystyle F\left(X_{\nu}\right) =\displaystyle= dε2πiTr[𝚲ν𝑮<]\displaystyle\int\frac{\mathrm{d}\varepsilon}{2\pi i}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}\right]
=\displaystyle= 𝑗(dε2πiTr[𝚲j𝑮<])F(qj)qjXν.\displaystyle\underset{j}{\sum}\underbrace{\left(\int\frac{\mathrm{d}\varepsilon}{2\pi i}\mathbf{\textrm{Tr}}\left[\boldsymbol{\Lambda}_{j}\boldsymbol{G}^{<}\right]\right)}_{F\left(q_{j}\right)}\frac{\partial q_{j}}{\partial X_{\nu}}.

where qjXν\frac{\partial q_{j}}{\partial X_{\nu}} is the covariant derivative.

The work done by the forces over a closed loop CC in the space of the variables is independent of the choice of the sets of mechanical variables used to describe the system, as can be readily shown

W(X)\displaystyle W\left(\overrightarrow{X}\right) =\displaystyle= C(X)𝜈F(Xν)dXν\displaystyle\underset{C\left(\overrightarrow{X}\right)}{\int}\underset{\nu}{\sum}F\left(X_{\nu}\right)\mathrm{d}X_{\nu}
=\displaystyle= 𝜈𝑗C(q)F(qj)qjXνdXν\displaystyle\underset{\nu}{\sum}\underset{j}{\sum}\underset{C\left(\overrightarrow{q}\right)}{\int}F\left(q_{j}\right)\frac{\partial q_{j}}{\partial X_{\nu}}\mathrm{d}X_{\nu}
=\displaystyle= C(q)𝑗F(qj)dqj=W(q)\displaystyle\underset{C\left(\overrightarrow{q}\right)}{\int}\underset{j}{\sum}F\left(q_{j}\right)\mathrm{d}q_{j}=W\left(\overrightarrow{q}\right)

In the main text, we used this property to choose a set of convenient variables to become independent of the particular way in which mechanical variables affect the electronic Hamiltonian.

Appendix F General expression of the curl

Our goal here is to obtained a closed-form expression for (×F)ρ\left(\nabla\times F\right)_{\rho}. We start by evaluating the derivative of the force νFν=Fν/Xν\partial_{\nu^{\prime}}F_{\nu}=\partial F_{\nu}/\partial X_{\nu^{\prime}}

νFν\displaystyle\partial_{\nu^{\prime}}F_{\nu} =\displaystyle= 12πi[]ν{Tr(𝚲ν𝑮<)}dε.\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\partial_{\nu^{\prime}}\left\{\textrm{Tr}\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}\right)\right\}d\varepsilon.

The derivative of the lesser Green function is

ν𝑮<\displaystyle\partial_{\nu^{\prime}}\boldsymbol{G}^{<} =\displaystyle= 𝑮r𝚲ν𝑮<+𝑮<𝚲νGa\displaystyle\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{<}+\boldsymbol{G}^{<}\boldsymbol{\Lambda}_{\nu^{\prime}}G^{a}

where we assume ν𝚺<=0\partial_{\nu^{\prime}}\boldsymbol{\Sigma}^{<}=0 and used ν𝑮r/a=𝑮r/a𝚲ν𝑮r/a\partial_{\nu^{\prime}}\boldsymbol{G}^{r/a}=\boldsymbol{G}^{r/a}\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{r/a}. Then, the derivative of the trace is

νTr(𝚲ν𝑮<)=Tr([ν𝚲ν𝚲ν𝑮r𝚲ν(𝚲ν𝑮r𝚲ν)]𝑮<)\begin{array}[]{lcc}\partial_{\nu^{\prime}}\textrm{Tr}\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{<}\right)=&&\\ \textrm{Tr}\left(\left[\partial_{\nu^{\prime}}\boldsymbol{\Lambda}_{\nu}-\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}-\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}\right)^{\dagger}\right]\boldsymbol{G}^{<}\right)\end{array}

where we used 𝚲ν=𝚲ν\boldsymbol{\Lambda}_{\nu^{\prime}}^{\dagger}=\boldsymbol{\Lambda}_{\nu^{\prime}} and [𝑮r]=𝑮a\left[\boldsymbol{G}^{r}\right]^{\dagger}=\boldsymbol{G}^{a} to make 𝚲νGa𝚲ν=[𝚲ν𝑮r𝚲ν]\boldsymbol{\Lambda}_{\nu^{\prime}}G^{a}\boldsymbol{\Lambda}_{\nu}=\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}\right]^{\dagger}. Using this, the derivative of the force can be written as

νFν\displaystyle\partial_{\nu^{\prime}}F_{\nu} =\displaystyle= 12πi[]Tr([𝚲ν𝑮r𝚲ν\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\textrm{Tr}\left(\left[\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}\right.\right.
+(𝚲ν𝑮r𝚲ν)ν𝚲ν]𝑮<)dε.\displaystyle\left.\left.+\left(\boldsymbol{\Lambda}_{\nu}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu^{\prime}}\right)^{\dagger}-\partial_{\nu^{\prime}}\boldsymbol{\Lambda}_{\nu}\right]\boldsymbol{G}^{<}\right)d\varepsilon.

Now as ν𝚲ν=ν𝚲ν\partial_{\nu^{\prime}}\boldsymbol{\Lambda}_{\nu}=\partial_{\nu}\boldsymbol{\Lambda}_{\nu^{\prime}}, the following holds

νFννFν\displaystyle\partial_{\nu^{\prime}}F_{\nu}-\partial_{\nu}F_{\nu^{\prime}} =\displaystyle= 12πi[]Tr([𝚷νν𝚷νν]𝑮<)dε\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\textrm{Tr}\left(\left[\boldsymbol{\Pi}_{\nu^{\prime}\nu}-\boldsymbol{\Pi}_{\nu\nu^{\prime}}\right]\boldsymbol{G}^{<}\right)d\varepsilon

where, to compact the notation, we define

𝚷νν\displaystyle\boldsymbol{\Pi}_{\nu^{\prime}\nu} =\displaystyle= 𝚲ν𝑮r𝚲ν+(𝚲ν𝑮r𝚲ν).\displaystyle\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu}+\left(\boldsymbol{\Lambda}_{\nu^{\prime}}\boldsymbol{G}^{r}\boldsymbol{\Lambda}_{\nu}\right)^{\dagger}.

Finally, the curl of the force yields

(×F)ρ\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{\rho} =\displaystyle= 12πi[]Tr(ϵρνν𝚷νν𝑮<)dε,\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\textrm{Tr}\left(\epsilon^{\rho\nu^{\prime}\nu}\boldsymbol{\Pi}_{\nu^{\prime}\nu}\boldsymbol{G}^{<}\right)d\varepsilon,

where ϵρμν\epsilon^{\rho\mu\nu} is the Levi-Civita symbol.

Appendix G Elements of the curl in the TB system.

We start by defining the index order of the variables

Ed\displaystyle E_{d} \displaystyle\rightarrow #1\displaystyle\#1
VL\displaystyle V_{L} \displaystyle\rightarrow #2\displaystyle\#2
VR\displaystyle V_{R} \displaystyle\rightarrow #3.\displaystyle\#3.

With this order, the following relations hold

ϵEdμν𝚷μν\displaystyle\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= {𝚲VR(𝑮r𝑮a)𝚲VL}a\displaystyle\left\{\boldsymbol{\Lambda}_{V_{R}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{L}}\right\}_{a}
ϵVLμν𝚷μν\displaystyle\epsilon^{V_{L}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= {𝚲Ed(𝑮r𝑮a)𝚲VR}a\displaystyle\left\{\boldsymbol{\Lambda}_{E_{d}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{R}}\right\}_{a}
ϵVRμν𝚷μν\displaystyle\epsilon^{V_{R}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= {𝚲VL(𝑮r𝑮a)𝚲Ed}a\displaystyle\left\{\boldsymbol{\Lambda}_{V_{L}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{E_{d}}\right\}_{a}

where {𝝀ν𝝀ν}a=(𝝀ν𝝀ν𝝀ν𝝀ν)\left\{\boldsymbol{\lambda}_{\nu}...\boldsymbol{\lambda}_{\nu^{\prime}}\right\}_{a}=\left(\boldsymbol{\lambda}_{\nu}...\boldsymbol{\lambda}_{\nu^{\prime}}-\boldsymbol{\lambda}_{\nu^{\prime}}...\boldsymbol{\lambda}_{\nu}\right).

Defining ΣL/R=vL/R2Σ0r\Sigma_{L/R}=v_{L/R}^{2}\Sigma_{0}^{r} and ΣL/R=ΔL/RiΓL/R\Sigma_{L/R}=\Delta_{L/R}-i\Gamma_{L/R}, one can deduce the following

1VL/R2|ΣL/R|2Γ0\displaystyle\frac{1}{V_{L/R}^{2}}\left|\Sigma_{L/R}\right|^{2}\Gamma_{0} =\displaystyle= VL/R2Γ0|ε(E0+Σ0r)|2\displaystyle\frac{V_{L/R}^{2}\Gamma_{0}}{\left|\varepsilon-\left(E_{0}+\Sigma_{0}^{r}\right)\right|^{2}} (52)
=\displaystyle= ΓL/R.\displaystyle\Gamma_{L/R}. (53)

This relation will be useful afterward. Another formula that will be useful is the expression for the elements of G<G^{<}. For simplicity, we will assume Γη=0\Gamma_{\eta}=0 from the beginning, as we are interested only in the nonequilirbium contribution of the force, see appendix D. Then, the lesser self-energy yields

𝚺<\displaystyle\boldsymbol{\Sigma}^{<} =\displaystyle= 2i(fLΓL0000000fRΓR).\displaystyle 2i\begin{pmatrix}f_{L}\Gamma_{L}&0&0\\ 0&0&0\\ 0&0&f_{R}\Gamma_{R}\end{pmatrix}.

It will be helpful to define 𝑮=12i𝑮<\boldsymbol{G}^{\lesssim}=\frac{1}{2i}\boldsymbol{G}^{<}. In our case, the elements of 𝑮\boldsymbol{G}^{\lesssim} are

Gij\displaystyle G_{ij}^{\lesssim} =\displaystyle= {Gi1rGj1rfLΓL+Gi3rGj3rfRΓR}\displaystyle\left\{G^{r}_{i1}G^{r*}_{j1}f_{L}\Gamma_{L}+G^{r}_{i3}G^{r*}_{j3}f_{R}\Gamma_{R}\right\} (54)

Note that Gij=GjiG_{ij}^{\lesssim*}=G_{ji}^{\lesssim}. In the following, we will use all the above properties and definitions to derive the expression for each of the elements of the curl.

G.1 Element ρ=Ed\rho=E_{d}.

This element of the curl is given by

(×F)Ed\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{E_{d}} =\displaystyle= 12πi[]Tr[(ϵEdμν𝚷μν)𝑮<]\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\mathbf{\textrm{Tr}}\left[\left(\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu}\right)\boldsymbol{G}^{<}\right]

where

ϵEdμν𝚷μν\displaystyle\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= {𝚲VR(𝑮r𝑮a)𝚲VL}a\displaystyle\left\{\boldsymbol{\Lambda}_{V_{R}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{L}}\right\}_{a}

Now, the terms of the right-hand side of the above equation are

𝚲VR(𝑮r𝑮a)𝚲VL\displaystyle\boldsymbol{\Lambda}_{V_{R}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{L}} =\displaystyle= (000a32a310a22a210)\displaystyle\begin{pmatrix}0&0&0\\ a_{32}&a_{31}&0\\ a_{22}&a_{21}&0\end{pmatrix}
𝚲VL(𝑮r𝑮a)𝚲VR\displaystyle\boldsymbol{\Lambda}_{V_{L}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{R}} =\displaystyle= (0a23a220a13a12000),\displaystyle\begin{pmatrix}0&a_{23}&a_{22}\\ 0&a_{13}&a_{12}\\ 0&0&0\end{pmatrix},

and therefore

ϵEdμν𝚷μν\displaystyle\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= (0a23a22a32a31a13a12a22a210).\displaystyle\begin{pmatrix}0&-a_{23}&-a_{22}\\ a_{32}&a_{31}-a_{13}&-a_{12}\\ a_{22}&a_{21}&0\end{pmatrix}.

Here, we define aij=(GijrGjir)a_{ij}=\left(G^{r}_{ij}-G^{r*}_{ji}\right) to compact the notation. As the retarded Green functions is symmetric in our case, the following relations holds aij=2iIm{Gijr}a_{ij}=2i\mathrm{Im}\{G^{r}_{ij}\}, a31=a13a_{31}=a_{13}, a32=a23a_{32}=a_{23}, and a21=a12a_{21}=a_{12}. Using this, we obtain

Tr[(ϵEdμν𝚷μν)𝑮<]=\displaystyle\mathbf{\textrm{Tr}}\left[\left(\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu}\right)\boldsymbol{G}^{<}\right]=
2i{a23b12+a22b13+a12b23}\displaystyle 2i\left\{a_{23}b_{12}+a_{22}b_{13}+a_{12}b_{23}\right\} (55)

where we defined bij=(GijGij)=2iIm{Gij}b_{ij}=\left(G_{ij}^{\lesssim}-G_{ij}^{\lesssim*}\right)=2i\mathrm{Im}\{G_{ij}^{\lesssim}\} with GijG_{ij}^{\lesssim} given by Eq. 54. After some algebra, the right-hand side terms of the above equation can be written as

a23b12=4Im{G23r}×\displaystyle a_{23}b_{12}=-4\textrm{Im}\left\{G^{r}_{23}\right\}\times
(Im{G11rG21r}fLΓL+Im{G13rG23r}fRΓR)\displaystyle\left(\textrm{Im}\left\{G^{r}_{11}G^{r*}_{21}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{13}G^{r*}_{23}\right\}f_{R}\Gamma_{R}\right)
a22b13=4Im{G22r}×\displaystyle a_{22}b_{13}=-4\textrm{Im}\left\{G^{r}_{22}\right\}\times
(Im{G11rG31r}fLΓL+Im{G13rG33r}fRΓR)\displaystyle\left(\textrm{Im}\left\{G^{r}_{11}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{13}G^{r*}_{33}\right\}f_{R}\Gamma_{R}\right)
a12b23=4Im{G12r}×\displaystyle a_{12}b_{23}=-4\textrm{Im}\left\{G^{r}_{12}\right\}\times
(Im{G21rG31r}fLΓL+Im{G23rG33r}fRΓR)\displaystyle\left(\textrm{Im}\left\{G^{r}_{21}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{23}G^{r*}_{33}\right\}f_{R}\Gamma_{R}\right)

Using the expression for 𝑮r\boldsymbol{G}^{r} given in appendix D and Eq. 52 we finds

Im{G11rG21r}fLΓL+Im{G13rG23r}fRΓR\displaystyle\textrm{Im}\left\{G^{r}_{11}G^{r*}_{21}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{13}G^{r*}_{23}\right\}f_{R}\Gamma_{R} =\displaystyle=
ΓLΓR|εEdΣLΣR|2[fRfL]VL,\displaystyle\frac{\Gamma_{L}\Gamma_{R}}{\left|\varepsilon-E_{d}-\Sigma_{L}-\Sigma_{R}\right|^{2}}\frac{\left[f_{R}-f_{L}\right]}{V_{L}}, (56)
Im{G11rG31r}fLΓL+Im{G13rG33r}fRΓR\displaystyle\textrm{Im}\left\{G^{r}_{11}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{13}G^{r*}_{33}\right\}f_{R}\Gamma_{R} =\displaystyle=
ΓLΓR|εEdΣLΣR|2(εEd)VLVR[fRfL]\displaystyle-\frac{\Gamma_{L}\Gamma_{R}}{\left|\varepsilon-E_{d}-\Sigma_{L}-\Sigma_{R}\right|^{2}}\frac{\left(\varepsilon-E_{d}\right)}{V_{L}V_{R}}\left[f_{R}-f_{L}\right] (57)

and

Im{G21rG31r}fLΓL+Im{G23rG33r}fRΓR\displaystyle\textrm{Im}\left\{G^{r}_{21}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{23}G^{r*}_{33}\right\}f_{R}\Gamma_{R} =\displaystyle=
ΓLΓR|εEdΣLΣR|2[fRfL]VR.\displaystyle\frac{\Gamma_{L}\Gamma_{R}}{\left|\varepsilon-E_{d}-\Sigma_{L}-\Sigma_{R}\right|^{2}}\frac{\left[f_{R}-f_{L}\right]}{V_{R}}. (58)

Now introducing the transmittance T~(ε)\widetilde{T}\left(\varepsilon\right)  Haug and Jauho (2008); Pastawski and Medina Dagger (2001)

T~(ε)=2ΓL|G22r|22ΓR=4ΓL1|εEdΣLΣR|2ΓR\begin{array}[]{ccc}\widetilde{T}\left(\varepsilon\right)&=&2\Gamma_{L}\left|G^{r}_{22}\right|^{2}2\Gamma_{R}\\ &=&4\Gamma_{L}\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{L}-\Sigma_{R}\right|^{2}}\Gamma_{R}\end{array} (59)

and using Eqs. 56, 57, and 58 into Eq. 55 gives

Tr[(ϵEdμν𝚷μν)𝑮<]=2i{Im{G23r}VL×\displaystyle\mathbf{\textrm{Tr}}\left[\left(\epsilon^{E_{d}\mu\nu}\boldsymbol{\Pi}_{\mu\nu}\right)\boldsymbol{G}^{<}\right]=-2i\left\{\frac{\textrm{Im}\left\{G^{r}_{23}\right\}}{V_{L}}\times\right.
Im{G22r}VLVR(εEd)+Im{G12r}VR}T~(ε)[fRfL]\displaystyle\left.-\frac{\textrm{Im}\left\{G^{r}_{22}\right\}}{V_{L}V_{R}}\left(\varepsilon-E_{d}\right)+\frac{\textrm{Im}\left\{G^{r}_{12}\right\}}{V_{R}}\right\}\widetilde{T}\left(\varepsilon\right)\left[f_{R}-f_{L}\right]

Using the expressions for the elements of 𝑮r\boldsymbol{G}^{r}, it is not difficult to prove:

Im{G23r}1VL+Im{G12r}1VR\displaystyle\textrm{Im}\left\{G^{r}_{23}\right\}\frac{1}{V_{L}}+\textrm{Im}\left\{G^{r}_{12}\right\}\frac{1}{V_{R}} =\displaystyle= (εEd)VLVRIm{G22r}\displaystyle-\frac{\left(\varepsilon-E_{d}\right)}{V_{L}V_{R}}\textrm{Im}\left\{G^{r}_{22}\right\}

Therefore, the element ρ=Ed\rho=E_{d} of the curl can be written as

(×F)Ed\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{E_{d}} =\displaystyle= 2[](εEd)VLVRNdT~(ε)[fRfL]dε\displaystyle-2\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\frac{\left(\varepsilon-E_{d}\right)}{V_{L}V_{R}}N_{d}\widetilde{T}\left(\varepsilon\right)\left[f_{R}-f_{L}\right]d\varepsilon

where NdN_{d} is the LDOS of the dot

Nd=1πlimη0+Im{G22r(ε+iη)}\begin{array}[]{ccc}N_{d}&=&-\frac{1}{\pi}\underset{\eta\rightarrow 0^{+}}{\lim}\textrm{Im}\left\{G^{r}_{22}\left(\varepsilon+i\eta\right)\right\}\end{array} (60)

G.2 Element ρ=VL\rho=V_{L}.

This element of the curl is given by

(X×F)VL\displaystyle\left(\nabla_{\overrightarrow{X}}\times\overrightarrow{F}\right)_{V_{L}} =\displaystyle= 12πi[]Tr[(ϵVLμν𝚷μν)𝑮<]\displaystyle\frac{1}{2\pi i}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\mathbf{\textrm{Tr}}\left[\left(\epsilon^{V_{L}\mu\nu}\boldsymbol{\Pi}_{\mu\nu}\right)\boldsymbol{G}^{<}\right]

where

ϵVLμν𝚷μν\displaystyle\epsilon^{V_{L}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= {𝚲Ed(𝑮r𝑮a)𝚲VR}a\displaystyle\left\{\boldsymbol{\Lambda}_{E_{d}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{R}}\right\}_{a}

Now, the terms of the right-hand side of the above equation are

𝚲Ed(𝑮r𝑮a)𝚲VR\displaystyle\boldsymbol{\Lambda}_{E_{d}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{V_{R}} =\displaystyle= (0000a23a22000)\displaystyle-\begin{pmatrix}0&0&0\\ 0&a_{23}&a_{22}\\ 0&0&0\end{pmatrix}
𝚲VR(𝑮r𝑮a)𝚲Ed\displaystyle\boldsymbol{\Lambda}_{V_{R}}\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right)\boldsymbol{\Lambda}_{E_{d}} =\displaystyle= (0000a3200a220)\displaystyle-\begin{pmatrix}0&0&0\\ 0&a_{32}&0\\ 0&a_{22}&0\end{pmatrix}

Therefore

ϵVLμν𝚷μν\displaystyle\epsilon^{V_{L}\mu\nu}\boldsymbol{\Pi}_{\mu\nu} =\displaystyle= (0000a32a23a220a220)\displaystyle\begin{pmatrix}0&0&0\\ 0&a_{32}-a_{23}&-a_{22}\\ 0&a_{22}&0\end{pmatrix}

Using this we obtain

Tr[(ϵVLμν𝚷μν)𝑮<]\displaystyle\mathbf{\textrm{Tr}}\left[\left(\epsilon^{V_{L}\mu\nu}\boldsymbol{\Pi}_{\mu\nu}\right)\boldsymbol{G}^{<}\right] =\displaystyle= 2ia22b23\displaystyle 2ia_{22}b_{23}

where the elements of the matrix GG^{\lesssim} are given in Eq. 54. After some algebra it is not difficult to show

a22b23=4Im{G22r}×(Im{G21rG31r}fLΓL+Im{G23rG33r}fRΓR)\begin{array}[]{lcc}a_{22}b_{23}=-4\textrm{Im}\left\{G^{r}_{22}\right\}\times\\ \left(\textrm{Im}\left\{G^{r}_{21}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{23}G^{r*}_{33}\right\}f_{R}\Gamma_{R}\right)\end{array}

Using the expression for 𝑮r\boldsymbol{G}^{r} given in appendix D and Eq. 52 one finds

Im{G21rG31r}fLΓL+Im{G23rG33r}fRΓR\displaystyle\textrm{Im}\left\{G^{r}_{21}G^{r*}_{31}\right\}f_{L}\Gamma_{L}+\textrm{Im}\left\{G^{r}_{23}G^{r*}_{33}\right\}f_{R}\Gamma_{R} =\displaystyle=
ΓLΓR|εEdΣLΣR|21VR[fRfL]\displaystyle\frac{\Gamma_{L}\Gamma_{R}}{\left|\varepsilon-E_{d}-\Sigma_{L}-\Sigma_{R}\right|^{2}}\frac{1}{V_{R}}\left[f_{R}-f_{L}\right] (61)

Using Eqs. 59, 60, 61 into Eq. G.2, we obtain

Tr[(ϵVLμνΠμν)G<]\displaystyle\mathbf{\textrm{Tr}}\left[\left(\epsilon^{V_{L}\mu\nu}\Pi_{\mu\nu}\right)G^{<}\right] =\displaystyle= 2πi1VRNdT~(ε)[fRfL].\displaystyle-2\pi i\frac{1}{V_{R}}N_{d}\widetilde{T}\left(\varepsilon\right)\left[f_{R}-f_{L}\right].

Therefore, the element ρ=VL\rho=V_{L} of the curl can be written as

(×F)VL\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{V_{L}} =\displaystyle= 1VR[]NdT~(ε)[fRfL]dε\displaystyle-\frac{1}{V_{R}}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}N_{d}\widetilde{T}\left(\varepsilon\right)\left[f_{R}-f_{L}\right]d\varepsilon

G.3 Element ρ=VR\rho=V_{R}.

The expression for the element ρ=VR\rho=V_{R} of the curl is obtained by following a similar procedure to that of (×F)VL\left(\nabla\times\overrightarrow{F}\right)_{V_{L}} but replacing VLV_{L} by VRV_{R}. The result is

(×F)VR\displaystyle\left(\nabla\times\overrightarrow{F}\right)_{V_{R}} =\displaystyle= 1VL[]NdT~(ε)[fRfL]dε.\displaystyle-\frac{1}{V_{L}}\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}N_{d}\widetilde{T}\left(\varepsilon\right)\left[f_{R}-f_{L}\right]d\varepsilon.

G.4 Final expression of the curl

The results of sections G.1, G.2 and G.3, can be written in the compact form

(×F)\displaystyle\left(\nabla\times\overrightarrow{F}\right) =\displaystyle= []g(Ed,VL,VR)NdT~(ε)[fLfR]dε,\displaystyle\stackrel{{\scriptstyle[}}{{-}}\infty]{\infty}{\int}\overrightarrow{g}\left(E_{d},V_{L},V_{R}\right)N_{d}\widetilde{T}\left(\varepsilon\right)\left[f_{L}-f_{R}\right]d\varepsilon,

where

g(Ed,VL,VR)\displaystyle\overrightarrow{g}\left(E_{d},V_{L},V_{R}\right) =\displaystyle= (2εEdVLVR,1VR,1VL).\displaystyle\left(2\frac{\varepsilon-E_{d}}{V_{L}V_{R}},\frac{1}{V_{R}},\frac{1}{V_{L}}\right).

Appendix H Elements of the electronic-friction tensor in the TB system.

The three by three equilibrium friction tensor is symmetric, thus only six elements are necessary to describe it. To derive the expression for the elements of 𝜸\boldsymbol{\gamma} we used the following relations

𝚲VL𝑨=2(ImG12rImG22rImG23rImG11rImG12rImG13r000),\begin{array}[]{ccc}\boldsymbol{\Lambda}_{V_{L}}\boldsymbol{A}&=&-2\begin{pmatrix}\textrm{Im}G_{12}^{r}&\textrm{Im}G_{22}^{r}&\textrm{Im}G_{23}^{r}\\ \textrm{Im}G_{11}^{r}&\textrm{Im}G_{12}^{r}&\textrm{Im}G_{13}^{r}\\ 0&0&0\end{pmatrix}\end{array},
𝚲VR𝑨=2(000ImG13rImG23rImG33rImG12rImG22rImG23r)\begin{array}[]{ccc}\boldsymbol{\Lambda}_{V_{R}}\boldsymbol{A}&=&-2\begin{pmatrix}0&0&0\\ \textrm{Im}G_{13}^{r}&\textrm{Im}G_{23}^{r}&\textrm{Im}G_{33}^{r}\\ \textrm{Im}G_{12}^{r}&\textrm{Im}G_{22}^{r}&\textrm{Im}G_{23}^{r}\end{pmatrix}\end{array}

and

𝚲Ed𝑨=2(000ImG12rImG22rImG23r000)\begin{array}[]{ccc}\boldsymbol{\Lambda}_{E_{d}}\boldsymbol{A}&=&2\begin{pmatrix}0&0&0\\ \textrm{Im}G_{12}^{r}&\textrm{Im}G_{22}^{r}&\textrm{Im}G_{23}^{r}\\ 0&0&0\end{pmatrix}\end{array}

The above come from the definition of the spectral function, 𝑨=i(𝑮r𝑮a)\boldsymbol{A}=i\left(\boldsymbol{G}^{r}-\boldsymbol{G}^{a}\right), and the matrices 𝚲ν\boldsymbol{\Lambda}_{\nu}, Eq. 36. To evaluate the elements of the above matrices one can use the explicit expressions for the elements of the retarded Green’s function given in appendix D. After some algebra we find

ImG11r\displaystyle\textrm{Im}G_{11}^{r} =\displaystyle= ΓRV021|εEdΣRΣL|2\displaystyle-\frac{\Gamma_{R}}{V_{0}^{2}}\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}} (62)
{(εEd)2(VRV0)22(εEd)Δ0\displaystyle\left\{\left(\varepsilon-E_{d}\right)^{2}\left(\frac{V_{R}}{V_{0}}\right)^{-2}-2\left(\varepsilon-E_{d}\right)\Delta_{0}\right.
+[(VRV0)2+(VLV0)2]|Σ0r|2}\displaystyle\left.+\left[\left(\frac{V_{R}}{V_{0}}\right)^{2}+\left(\frac{V_{L}}{V_{0}}\right)^{2}\right]\left|\Sigma_{0}^{r}\right|^{2}\right\}
ImG22r\displaystyle\textrm{Im}G_{22}^{r} =\displaystyle= 1|εEdΣRΣL|2[ΓL+ΓR]\displaystyle-\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\left[\Gamma_{L}+\Gamma_{R}\right] (63)
ImG12r\displaystyle\textrm{Im}G_{12}^{r} =\displaystyle= (εEd)VL1|εEdΣRΣL|2ΓL\displaystyle\frac{\left(\varepsilon-E_{d}\right)}{V_{L}}\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\Gamma_{L} (64)
ImG13r\displaystyle\textrm{Im}G_{13}^{r} =\displaystyle= 1VLVR(VLV0)2(VRV0)2Γ0|εEdΣRΣL|2{2(Edε)Δ0\displaystyle\frac{1}{V_{L}V_{R}}\frac{\left(\frac{V_{L}}{V_{0}}\right)^{2}\left(\frac{V_{R}}{V_{0}}\right)^{2}\Gamma_{0}}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\left\{2\left(E_{d}-\varepsilon\right)\Delta_{0}\right. (65)
+|Σ0r|2[(VRV0)2+(VLV0)2]}\displaystyle\left.+\left|\Sigma_{0}^{r}\right|^{2}\left[\left(\frac{V_{R}}{V_{0}}\right)^{2}+\left(\frac{V_{L}}{V_{0}}\right)^{2}\right]\right\}
ImG23r\displaystyle\textrm{Im}G_{23}^{r} =\displaystyle= (εEd)VR1|εEdΣRΣL|2ΓR\displaystyle\frac{\left(\varepsilon-E_{d}\right)}{V_{R}}\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\Gamma_{R} (66)

Using the above formulas, and the expressions for the transmitance T~(ε)\widetilde{T}\left(\varepsilon\right) and the local density of states Nd(ε)N_{d}\left(\varepsilon\right) (Eqs. 59 and 60 respectively), the elements of the electronic-friction tensor yield:

H.1 Element γEdEdeq\gamma_{E_{d}E_{d}}^{\mathrm{eq}}.

limkBT00+γEdEdeq=14πTr[ΛEdAΛEdA]ε=μ0=πNd(μ0)Nd(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{E_{d}E_{d}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{E_{d}}A\Lambda_{E_{d}}A\right]_{\varepsilon=\mu_{0}}\\ &=&\pi N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\end{array}

where we used Tr[ΛEdAΛEdA]=4ImG22rImG22r\begin{array}[]{ccc}\mathbf{\textrm{Tr}}\left[\Lambda_{E_{d}}A\Lambda_{E_{d}}A\right]&=&4\textrm{Im}G_{22}^{r}\textrm{Im}G_{22}^{r}\end{array}.

H.2 Element γVLVLeq\gamma_{V_{L}V_{L}}^{\mathrm{eq}}.

limkBT00+γVLVLeq=14πTr[ΛVLAΛVLA]ε=μ0=4π(μ0Ed)2VL2{VR2+VL2}2Nd(μ0)Nd(μ0)+12π1VL2T~(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{V_{L}V_{L}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{V_{L}}A\Lambda_{V_{L}}A\right]_{\varepsilon=\mu_{0}}\\ &=&4\pi\frac{\left(\mu_{0}-E_{d}\right)^{2}V_{L}^{2}}{\left\{V_{R}^{2}+V_{L}^{2}\right\}^{2}}N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\\ &&+\frac{1}{2\pi}\frac{1}{V_{L}^{2}}\widetilde{T}\left(\mu_{0}\right)\end{array}

Here we used

Tr[ΛVLAΛVLA]=8(ImG12rImG12r+ImG22rImG11r)\begin{array}[]{ccc}\mathbf{\textrm{Tr}}\left[\Lambda_{V_{L}}A\Lambda_{V_{L}}A\right]&=&8\left(\textrm{Im}G_{12}^{r}\textrm{Im}G_{12}^{r}+\textrm{Im}G_{22}^{r}\textrm{Im}G_{11}^{r}\right)\end{array}

and

ImG12rImG12r+ImG22rImG11r=\displaystyle\textrm{Im}G_{12}^{r}\textrm{Im}G_{12}^{r}+\textrm{Im}G_{22}^{r}\textrm{Im}G_{11}^{r}=
2π2(εEd)2VL2{VR2+VL2}2(1πImG22r)(1πImG22r)\displaystyle 2\pi^{2}\frac{\left(\varepsilon-E_{d}\right)^{2}V_{L}^{2}}{\left\{V_{R}^{2}+V_{L}^{2}\right\}^{2}}\left(-\frac{1}{\pi}\textrm{Im}G_{22}^{r}\right)\left(-\frac{1}{\pi}\textrm{Im}G_{22}^{r}\right)
+14VL241|εEdΣRΣL|2ΓRΓL\displaystyle+\frac{1}{4V_{L}^{2}}4\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\Gamma_{R}\Gamma_{L}

The latter expression requires some algebra but comes from Eqs. 62-66.

H.3 Element γVRVReq\gamma_{V_{R}V_{R}}^{\mathrm{eq}}.

limkBT00+γVRVReq=14πTr[ΛVRAΛVRA]ε=μ0=4π(μ0Ed)2VR2{VR2+VL2}2Nd(μ0)Nd(μ0)+12π1VR2T~(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{V_{R}V_{R}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{V_{R}}A\Lambda_{V_{R}}A\right]_{\varepsilon=\mu_{0}}\\ &=&4\pi\frac{\left(\mu_{0}-E_{d}\right)^{2}V_{R}^{2}}{\left\{V_{R}^{2}+V_{L}^{2}\right\}^{2}}N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\\ &&+\frac{1}{2\pi}\frac{1}{V_{R}^{2}}\widetilde{T}\left(\mu_{0}\right)\end{array}

Due to the symmetry of the problem, this element is equal to γVLVLeq\gamma_{V_{L}V_{L}}^{\mathrm{eq}} but replacing VLV_{L} by VRV_{R} in the formulas.

H.4 Element γEpVLeq\gamma_{E_{p}V_{L}}^{\mathrm{eq}}.

limkBT00+γEdVLeq=14πTr[ΛEdAΛVLA]ε=μ0=2π(μEd)VLVL2+VR2Nd(μ0)Nd(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{E_{d}V_{L}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{E_{d}}A\Lambda_{V_{L}}A\right]_{\varepsilon=\mu_{0}}\\ &=&2\pi\frac{\left(\mu-E_{d}\right)V_{L}}{V_{L}^{2}+V_{R}^{2}}N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\end{array}

where we used Tr[ΛEdAΛVLA]=8ImG22rImG12r\begin{array}[]{ccc}\mathbf{\textrm{Tr}}\left[\Lambda_{E_{d}}A\Lambda_{V_{L}}A\right]&=&-8\textrm{Im}G_{22}^{r}\textrm{Im}G_{12}^{r}\end{array}.

H.5 Element γEdVReq\gamma_{E_{d}V_{R}}^{\mathrm{eq}}.

limkBT00+γEdVReq=14πTr[ΛEPAΛVRA]ε=μ0=2π(μEd)VRVL2+VR2Nd(μ0)Nd(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{E_{d}V_{R}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{E_{P}}A\Lambda_{V_{R}}A\right]_{\varepsilon=\mu_{0}}\\ &=&2\pi\frac{\left(\mu-E_{d}\right)V_{R}}{V_{L}^{2}+V_{R}^{2}}N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\end{array}

Due to the symmetry of the problem, this element is equal to γEpVLeq\gamma_{E_{p}V_{L}}^{\mathrm{eq}} but replacing VLV_{L} by VRV_{R} in the formulas.

H.6 Element γVLVReq\gamma_{V_{L}V_{R}}^{\mathrm{eq}}.

limkBT00+γVLVReq=14πTr[ΛVLAΛVRA]ε=μ0=4π(μ0Ed)2VLVR{VR2+VL2}2Nd(μ0)Nd(μ0)12πVL1VRT~(μ0)\begin{array}[]{ccc}\underset{k_{B}T_{0}\rightarrow 0^{+}}{\lim}\gamma_{V_{L}V_{R}}^{\mathrm{eq}}&=&\frac{1}{4\pi}\mathbf{\textrm{Tr}}\left[\Lambda_{V_{L}}A\Lambda_{V_{R}}A\right]_{\varepsilon=\mu_{0}}\\ &=&4\pi\frac{\left(\mu_{0}-E_{d}\right)^{2}V_{L}V_{R}}{\left\{V_{R}^{2}+V_{L}^{2}\right\}^{2}}N_{d}\left(\mu_{0}\right)N_{d}\left(\mu_{0}\right)\\ &&-\frac{1}{2\pi V_{L}}\frac{1}{V_{R}}\widetilde{T}\left(\mu_{0}\right)\end{array}

Here we used

Tr[ΛVLAΛVRA]=8(ImG22rImG13r+ImG23rImG12r)\begin{array}[]{ccc}\mathbf{\textrm{Tr}}\left[\Lambda_{V_{L}}A\Lambda_{V_{R}}A\right]&=&8\left(\textrm{Im}G_{22}^{r}\textrm{Im}G_{13}^{r}+\textrm{Im}G_{23}^{r}\textrm{Im}G_{12}^{r}\right)\end{array}

and

ImG22rImG13r+ImG23rImG12r=\displaystyle\textrm{Im}G_{22}^{r}\textrm{Im}G_{13}^{r}+\textrm{Im}G_{23}^{r}\textrm{Im}G_{12}^{r}=
2π2(εEd)2VLVR{VR2+VL2}2(1πImG22r)(1πImG22r)\displaystyle 2\pi^{2}\frac{\left(\varepsilon-E_{d}\right)^{2}V_{L}V_{R}}{\left\{V_{R}^{2}+V_{L}^{2}\right\}^{2}}\left(-\frac{1}{\pi}\textrm{Im}G_{22}^{r}\right)\left(-\frac{1}{\pi}\textrm{Im}G_{22}^{r}\right)
14VL1VR41|εEdΣRΣL|2ΓLΓR\displaystyle-\frac{1}{4V_{L}}\frac{1}{V_{R}}4\frac{1}{\left|\varepsilon-E_{d}-\Sigma_{R}-\Sigma_{L}\right|^{2}}\Gamma_{L}\Gamma_{R}

The latter expression requires some algebra but comes from Eqs. 62-66.

References