This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cross sections for 2-to-1 meson-meson scattering

Wan-Xia Li1, Xiao-Ming Xu1, and H. J. Weber2
Abstract

We study the processes KK¯ϕK\bar{K}\to\phi, πDD\pi D\to D^{\ast}, πD¯D¯\pi\bar{D}\to\bar{D}^{\ast}, and the production of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons in collisions of charmed mesons or charmed strange mesons. The process of 2-to-1 meson-meson scattering involves a quark and an antiquark from the two initial mesons annihilating into a gluon and subsequently the gluon being absorbed by the spectator quark or antiquark. Transition amplitudes for the scattering process derive from the transition potential in conjunction with mesonic quark-antiquark wave functions and the relative-motion wave function of the two initial mesons. We derive these transition amplitudes in the partial wave expansion of the relative-motion wave function of the two initial mesons so that parity and total-angular-momentum conservation are maintained. We calculate flavor and spin matrix elements in accordance with the transition potential and unpolarized cross sections for the reactions using the transition amplitudes. Cross sections for the production of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) relate to nodes in their radial wave functions. We suggest the production of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) as probes of hadronic matter that results from the quark-gluon plasma created in ultrarelativistic heavy-ion collisions.

1Department of Physics, Shanghai University, Baoshan, Shanghai 200444, China

2Department of Physics, University of Virginia, Charlottesville, VA 22904, USA

Keywords: Inelastic meson-meson scattering, quark-antiquark annihilation, relativistic constituent quark potential model.

PACS: 13.75.Lb; 12.39.Jh; 12.39.Pn

I. INTRODUCTION

Elastic meson-meson scattering produces many resonances. Starting from meson-meson scattering amplitudes obtained in chiral perturbation theory [1], elastic scattering has been studied within nonperturbative schemes, for example, the inverse amplitude method [2] and the coupled-channel unitary approaches [3]. Elastic meson-meson scattering has also been studied with quark interchange in the first Born approximation in Ref. [4] and with quark-antiquark annihilation and creation in Ref. [5]. Elastic scattering reported in the literature includes ππ\pi\pi [1, 2, 3], πK\pi K [1, 2, 3], KK¯K\bar{K} [6, 7, 8, 9], πη\pi\eta [6, 7, 10, 11, 12, 13], KηK\eta [6], ηη\eta\eta [8], πρ\pi\rho [14, 15], πD\pi D [16], K¯D\bar{K}D [17, 18], K¯D\bar{K}D^{\ast} [17], and DDDD^{\ast} [17]. We know that resonances observed in the elastic scattering are usually produced by a process where two mesons scatter into one meson. The 2-to-1 meson-meson scattering includes ππρ\pi\pi\to\rho, ππf0(980)\pi\pi\to f_{0}(980), πKK\pi K\to K^{\ast}, KK¯ϕK\bar{K}\to\phi, πηa0(980)\pi\eta\to a_{0}(980), πρa1(1260)\pi\rho\to a_{1}(1260), πDD\pi D\to D^{\ast}, and so on. Since some resonances like f0(980)f_{0}(980), a0(980)a_{0}(980), and a1(1260)a_{1}(1260) are not quark-antiquark states, we do not study ππf0(980)\pi\pi\to f_{0}(980), πηa0(980)\pi\eta\to a_{0}(980), πρa1(1260)\pi\rho\to a_{1}(1260), etc. in the present work. The reactions ππρ\pi\pi\to\rho and πKK\pi K\to K^{\ast} have been studied in Ref. [19] via a process where a quark in an initial meson and an antiquark in another initial meson annihilate into a gluon and subsequently the gluon is absorbed by the other antiquark or quark. The resulting cross sections in vacuum agree with the empirical data. Since these two reactions also take place in hadronic matter that is created in ultrarelativistic heavy-ion collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider, the dependence of cross sections for the two reactions on the temperature of hadronic matter has also been investigated. With increasing temperature the cross sections decrease. In the present work we consider the reactions: KK¯ϕK\bar{K}\to\phi, πDD\pi D\to D^{*}, πD¯D¯\pi\bar{D}\to\bar{D}^{*}, DD¯ψ(3770)D\bar{D}\to\psi(3770), DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040), DD¯ψ(4040)D\bar{D}^{*}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}^{*}\to\psi(4040), Ds+Dsψ(4040)D_{s}^{+}D_{s}^{-}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160), DD¯ψ(4160)D\bar{D}^{*}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}^{*}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{*+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{+}D_{s}^{*-}\to\psi(4160), DD¯ψ(4415)D\bar{D}\to\psi(4415), DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415), DD¯ψ(4415)D\bar{D}^{*}\to\psi(4415), DD¯ψ(4415)D^{*}\bar{D}^{*}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{*-}\to\psi(4415), and Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{*-}\to\psi(4415). The ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons consist of a quark and an antiquark [20, 21, 22, 23]. All these reactions are governed by the strong interaction. The reaction KK¯ϕK\bar{K}\to\phi was studied in Ref. [24] in a mesonic model. The twenty-one reactions that lead to ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415) as a final state have not been studied theoretically. We now study KK¯ϕK\bar{K}\to\phi, πDD\pi D\to D^{*}, πD¯D¯\pi\bar{D}\to\bar{D}^{*}, and the twenty-one reactions using quark degrees of freedom. The production of J/ψJ/\psi is a subject intensively studied in relativistic heavy-ion collisions. The ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons may decay into the J/ψJ/\psi meson. Through this decay the twenty-one reactions add a contribution to the J/ψJ/\psi production in relativistic heavy-ion collisions. This is another reason why we study the twenty-one reactions here.

This paper is organized as follows. In Sect. II we consider four Feynman diagrams and the SS-matrix element for 2-to-1 meson-meson scattering, derive transition amplitudes and provide cross-section formulas. In Sect. III we present transition potentials corresponding to the Feynman diagrams and calculate flavor matrix elements and spin matrix elements. In Sect. IV we calculate cross sections, present numerical results and give relevant discussions. In Sect. V we summarize the present work. In an appendix we study decays of the ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons to charmed mesons or charmed strange mesons.

II. FORMALISM

Lowest-order Feynman diagrams are shown in Fig. 1 for the reaction A(q1q¯1)+B(q2q¯2)H(q2q¯1orq1q¯2)A(q_{1}\bar{q}_{1})+B(q_{2}\bar{q}_{2})\to H(q_{2}\bar{q}_{1}~{}{\rm or}~{}q_{1}\bar{q}_{2}). A quark in an initial meson and an antiquark in the other initial meson annihilate into a gluon, and the gluon is then absorbed by a spectator quark or antiquark. The four processes q1+q¯2+q¯1q¯1q_{1}+\bar{q}_{2}+\bar{q}_{1}\to\bar{q}_{1}, q1+q¯2+q2q2q_{1}+\bar{q}_{2}+q_{2}\to q_{2}, q2+q¯1+q1q1q_{2}+\bar{q}_{1}+q_{1}\to q_{1}, and q2+q¯1+q¯2q¯2q_{2}+\bar{q}_{1}+\bar{q}_{2}\to\bar{q}_{2} in Fig. 1 give rise to the four transition potentials Vrq1q¯2q¯1V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}, Vrq1q¯2q2V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}, Vrq2q¯1q1V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}, and Vrq2q¯1q¯2V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}, respectively. Denote by EiE_{\rm i} and Pi\vec{P}_{\rm i} (EfE_{\rm f} and Pf\vec{P}_{\rm f}) the total energy and the total momentum of the two initial (final) mesons, respectively; let EAE_{A} (EBE_{B}, EHE_{H}) be the energy of meson AA (BB, HH), and VV the volume where every meson wave function is normalized. The SS-matrix element for A+BHA+B\to H is

Sfi\displaystyle S_{\rm fi} =\displaystyle= δfi2πiδ(EfEi)(<HVrq1q¯2q¯1A,B>+<HVrq1q¯2q2A,B>\displaystyle\delta_{\rm fi}-2\pi i\delta(E_{\rm f}-E_{\rm i})(<H\mid V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}\mid A,B>+<H\mid V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}\mid A,B> (1)
+<HVrq2q¯1q1A,B>+<HVrq2q¯1q¯2A,B>)\displaystyle+<H\mid V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}\mid A,B>+<H\mid V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}\mid A,B>)
=\displaystyle= δfi(2π)4iδ(EfEi)δ3(PfPi)rq1q¯2q¯1+rq1q¯2q2+rq2q¯1q1+rq2q¯1q¯2V322EA2EB2EH,\displaystyle\delta_{\rm fi}-(2\pi)^{4}i\delta(E_{\rm f}-E_{\rm i})\delta^{3}(\vec{P}_{\rm f}-\vec{P}_{\rm i})\frac{{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}+{\cal M}_{{\rm r}q_{1}\bar{q}_{2}q_{2}}+{\cal M}_{{\rm r}q_{2}\bar{q}_{1}q_{1}}+{\cal M}_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}}{V^{\frac{3}{2}}\sqrt{2E_{A}2E_{B}2E_{H}}},

where in the four processes mesons AA and BB go from the state vector A,B>\mid A,B> to the state vector H>\mid H> of meson HH, and rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}, rq1q¯2q2{\cal M}_{{\rm r}q_{1}\bar{q}_{2}q_{2}}, rq2q¯1q1{\cal M}_{{\rm r}q_{2}\bar{q}_{1}q_{1}}, and rq2q¯1q¯2{\cal M}_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}} are the transition amplitudes given by

rq1q¯2q¯1=2EA2EB2EH𝑑rq1q¯1𝑑rq2q¯2ψH+Vrq1q¯2q¯1ψABeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}=\sqrt{2E_{A}2E_{B}2E_{H}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{H}^{+}V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}\psi_{AB}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (2)
rq1q¯2q2=2EA2EB2EH𝑑rq1q¯1𝑑rq2q¯2ψH+Vrq1q¯2q2ψABeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm r}q_{1}\bar{q}_{2}q_{2}}=\sqrt{2E_{A}2E_{B}2E_{H}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{H}^{+}V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}\psi_{AB}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (3)
rq2q¯1q1=2EA2EB2EH𝑑rq1q¯1𝑑rq2q¯2ψH+Vrq2q¯1q1ψABeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm r}q_{2}\bar{q}_{1}q_{1}}=\sqrt{2E_{A}2E_{B}2E_{H}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{H}^{+}V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}\psi_{AB}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (4)
rq2q¯1q¯2=2EA2EB2EH𝑑rq1q¯1𝑑rq2q¯2ψH+Vrq2q¯1q¯2ψABeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}=\sqrt{2E_{A}2E_{B}2E_{H}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{H}^{+}V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}\psi_{AB}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (5)

where rab\vec{r}_{ab} is the relative coordinate of constituents aa and bb; rq1q¯1,q2q¯2\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}} the relative coordinate of q1q¯1q_{1}\bar{q}_{1} and q2q¯2q_{2}\bar{q}_{2}; pq1q¯1,q2q¯2\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}} the relative momentum of q1q¯1q_{1}\bar{q}_{1} and q2q¯2q_{2}\bar{q}_{2}; ψH+\psi_{H}^{+} the Hermitean conjugate of ψH\psi_{H}.

The wave function of mesons AA and BB is

ψAB=ϕArelϕBrelϕAcolorϕBcolorχSASAzχSBSBzφABflavor,\psi_{AB}=\phi_{A\rm rel}\phi_{B\rm rel}\phi_{A\rm color}\phi_{B\rm color}\chi_{S_{A}S_{Az}}\chi_{S_{B}S_{Bz}}\varphi_{AB\rm flavor}, (6)

and the wave function of meson HH is

ψH=ϕJHJHzϕHcolorϕHflavor,\psi_{H}=\phi_{J_{H}J_{Hz}}\phi_{H\rm color}\phi_{H\rm flavor}, (7)

where SAS_{A} (SBS_{B}) is the spin of meson AA (BB) with its magnetic projection quantum number SAzS_{Az} (SBzS_{Bz}); ϕArel\phi_{A\rm rel} (ϕBrel\phi_{B\rm rel}), ϕAcolor\phi_{A\rm color} (ϕBcolor\phi_{B\rm color}), and χSASAz\chi_{S_{A}S_{Az}} (χSBSBz\chi_{S_{B}S_{Bz}}) are the quark-antiquark relative-motion wave function, the color wave function, and the spin wave function of meson AA (BB), respectively; ϕHflavor\phi_{H\rm flavor} and φABflavor\varphi_{AB\rm flavor} are the flavor wave functions of meson HH and of mesons AA and BB, respectively; ϕHcolor\phi_{H\rm color} is the color wave function of meson HH; ϕJHJHz\phi_{J_{H}J_{Hz}} is the space-spin wave function of meson HH with the total angular momentum JHJ_{H} and its zz component JHzJ_{Hz}.

The development in spherical harmonics of the relative-motion wave function of mesons AA and BB (aside from a normalization constant) is given by

eipq1q¯1,q2q¯2rq1q¯1,q2q¯2\displaystyle e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}} =\displaystyle= 4πLi=0Mi=LiLiiLijLi(pq1q¯1,q2q¯2rq1q¯1,q2q¯2)\displaystyle 4\pi\sum\limits_{L_{\rm i}=0}^{\infty}\sum\limits_{M_{\rm i}=-L_{\rm i}}^{L_{\rm i}}i^{L_{\rm i}}j_{L_{\rm i}}(\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}) (8)
YLiMi(p^q1q¯1,q2q¯2)YLiMi(r^q1q¯1,q2q¯2),\displaystyle Y_{L_{\rm i}M_{\rm i}}^{\ast}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})Y_{L_{\rm i}M_{\rm i}}(\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}),

where YLiMiY_{L_{\rm i}M_{\rm i}} are the spherical harmonics with the orbital-angular-momentum quantum number LiL_{\rm i} and the magnetic projection quantum number MiM_{\rm i}, jLij_{L_{\rm i}} are the spherical Bessel functions, and p^q1q¯1,q2q¯2\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}} (r^q1q¯1,q2q¯2\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}) denote the polar angles of pq1q¯1,q2q¯2\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}} (rq1q¯1,q2q¯2\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}). Let χSSz\chi_{SS_{z}} stand for the spin wave function of mesons AA and BB, which has the total spin SS and its zz component SzS_{z}. The Clebsch-Gordan coefficients (SASAzSBSBz|SSz)(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z}) couple χSSz\chi_{SS_{z}} to χSASAzχSBSBz\chi_{S_{A}S_{Az}}\chi_{S_{B}S_{Bz}},

χSASAzχSBSBz=S=SminSmaxSz=SS(SASAzSBSBz|SSz)χSSz,\chi_{S_{A}S_{A_{z}}}\chi_{S_{B}S_{B_{z}}}=\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\chi_{SS_{z}}, (9)

where Smin=SASBS_{\rm min}=\mid S_{A}-S_{B}\mid and Smax=SA+SBS_{\rm max}=S_{A}+S_{B}. YLiMiY_{L_{\rm i}M_{\rm i}} and χSSz\chi_{SS_{z}} are coupled to the wave function ϕJJzin\phi^{\rm in}_{JJ_{z}} which has the total angular momentum JJ of mesons AA and BB and its zz component JzJ_{z},

YLiMiχSSz=J=JminJmaxJz=JJ(LiMiSSz|JJz)ϕJJzin,Y_{L_{\rm{i}}M_{\rm{i}}}\chi_{SS_{z}}=\sum^{J_{\rm max}}_{J=J_{\rm min}}\sum^{J}_{J_{z}=-J}(L_{\rm{i}}M_{\rm{i}}SS_{z}|JJ_{z})\phi^{\rm{in}}_{JJ_{z}}, (10)

where Jmin=LiSJ_{\rm min}=\mid L_{\rm i}-S\mid, Jmax=Li+SJ_{\rm max}=L_{\rm i}+S, and (LiMiSSz|JJz)(L_{\rm{i}}M_{\rm{i}}SS_{z}|JJ_{z}) are the Clebsch-Gordan coefficients. It follows from Eqs. (8)-(10) that the transition amplitude given in Eq. (2) becomes

rq1q¯2q¯1\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}\bar{q}_{1}} =\displaystyle= 2EA2EB2EH4πLi=0Mi=LiLiiLiYLiMi(p^q1q¯1,q2q¯2)ϕHcolor+ϕHflavor+\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}4\pi\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}}i^{L_{\rm{i}}}Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}} (11)
d3rq1q¯1d3rq2q¯2ϕJHJHz+Vrq1q¯2q¯1S=SminSmaxSz=SS(SASAzSBSBz|SSz)\displaystyle\int{d^{3}r_{q_{1}\bar{q}_{1}}d^{3}r_{q_{2}\bar{q}_{2}}}\phi^{+}_{J_{H}J_{Hz}}V_{rq_{1}\bar{q}_{2}\bar{q}_{1}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})
J=JminJmaxJz=JJ(LiMiSSz|JJz)ϕJJzinjLi(|pq1q¯1,q2q¯2|rq1q¯1,q2q¯2)\displaystyle\sum^{J_{\rm max}}_{J=J_{\rm min}}\sum^{J}_{J_{z}=-J}(L_{\rm{i}}M_{\rm{i}}SS_{z}|JJ_{z})\phi^{\rm{in}}_{JJ_{z}}j_{L_{\rm{i}}}(|\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}|r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})
ϕArelϕBrelϕAcolorϕBcolorφABflavor,\displaystyle\phi_{A\rm{rel}}\phi_{B\rm{rel}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}},

Denote by LHL_{H} and SHS_{H} the orbital angular momentum and the spin of meson HH, respectively, and by MHM_{H} and SHzS_{Hz} the magnetic projection quantum number of LHL_{H} and SHS_{H}. In Eq. (11) ϕJHJHz=RLH(rq2q¯1)\phi_{J_{H}J_{Hz}}=R_{L_{H}}(r_{q_{2}\bar{q}_{1}}) MH=LHLHSHz=SHSH(LHMHSHSHzJHJHz)YLHMHχSHSHz\sum^{L_{H}}_{M_{H}=-L_{H}}\sum^{S_{H}}_{S_{Hz}=-S_{H}}(L_{H}M_{H}S_{H}S_{Hz}\mid J_{H}J_{Hz})Y_{L_{H}M_{H}}\chi_{S_{H}S_{Hz}} where RLH(rq2q¯1)R_{L_{H}}(r_{q_{2}\bar{q}_{1}}) is the radial wave function of the relative motion of q2q_{2} and q¯1\bar{q}_{1}, and (LHMHSHSHzJHJHz)(L_{H}M_{H}S_{H}S_{Hz}\mid J_{H}J_{Hz}) are the Clebsch-Gordan coefficients. Conservation of total angular momentum implies that JJ equals JHJ_{H} and JzJ_{z} equals JHzJ_{Hz}. This leads to

rq1q¯2q¯1\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}\bar{q}_{1}} =\displaystyle= 2EA2EB2EH4πLi=0Mi=LiLiiLiYLiMi(p^q1q¯1,q2q¯2)ϕHcolor+ϕHflavor+\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}4\pi\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}}i^{L_{\rm{i}}}Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}} (12)
d3rq1q¯1d3rq2q¯2ϕJHJHz+Vrq1q¯2q¯1S=SminSmaxSz=SS(SASAzSBSBz|SSz)\displaystyle\int{d^{3}r_{q_{1}\bar{q}_{1}}d^{3}r_{q_{2}\bar{q}_{2}}}\phi^{+}_{J_{H}J_{Hz}}V_{rq_{1}\bar{q}_{2}\bar{q}_{1}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})
(LiMiSSz|JHJHz)ϕJHJHzinjLi(|pq1q¯1,q2q¯2|rq1q¯1,q2q¯2)\displaystyle(L_{\rm i}M_{\rm i}SS_{z}|J_{H}J_{H_{z}})\phi^{\rm{in}}_{J_{H}J_{Hz}}j_{L_{\rm{i}}}(|\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}|r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})
ϕArelϕBrelϕAcolorϕBcolorφABflavor.\displaystyle\phi_{A\rm{rel}}\phi_{B\rm{rel}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}}.

Using the relation

ϕJHJHzin=M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)YLiM¯iχSS¯z,\phi^{\rm{in}}_{J_{H}J_{Hz}}=\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}\chi_{S\bar{S}_{z}}, (13)

where (LiM¯iSS¯z|JHJHz)(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz}) are the Clebsch-Gordan coefficients, we get

rq1q¯2q¯1\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}\bar{q}_{1}} =\displaystyle= 2EA2EB2EH4πS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLiiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}4\pi\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}}i^{L_{\rm{i}}} (14)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+d3rq1q¯1d3rq2q¯2ϕJHJHz+Vrq1q¯2q¯1jLi(|pq1q¯1,q2q¯2|rq1q¯1,q2q¯2)\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{d^{3}r_{q_{1}\bar{q}_{1}}d^{3}r_{q_{2}\bar{q}_{2}}}\phi^{+}_{J_{H}J_{Hz}}V_{rq_{1}\bar{q}_{2}\bar{q}_{1}}j_{L_{\rm{i}}}(|\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}|r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})
YLiM¯i(r^q1q¯1,q2q¯2)ϕArelϕBrelχSS¯zϕAcolorϕBcolorφABflavor.\displaystyle Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\phi_{A\rm{rel}}\phi_{B\rm{rel}}\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}}.

Furthermore, we need the identity

jl(pr)Ylm(r^)=d3p(2π)32π2p2δ(pp)il(1)lYlm(p^)eipr,j_{l}(pr)Y_{lm}(\hat{r})=\int\frac{d^{3}p^{\prime}}{(2\pi)^{3}}\frac{2\pi^{2}}{p^{2}}\delta(p-p^{\prime})i^{l}(-1)^{l}Y_{lm}(\hat{p}^{\prime})e^{i\vec{p}^{~{}\prime}\cdot\vec{r}}, (15)

which is obtained with the help of 0jl(pr)jl(pr)r2𝑑r=π2p2δ(pp)\int_{0}^{\infty}j_{l}(pr)j_{l}(p^{\prime}r)r^{2}dr=\frac{\pi}{2p^{2}}\delta(p-p^{\prime}) [25, 26]. Substituting Eq. (15) in Eq. (14), we get

rq1q¯2q¯1\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}\bar{q}_{1}} =\displaystyle= 2EA2EB2EH4πS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLiiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}4\pi\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}}i^{L_{\rm{i}}} (16)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+d3pirm(2π)32π2pq1q¯1,q2q¯22δ(|pq1q¯1,q2q¯2||pirm|)iLi(1)Li\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{\frac{d^{3}p_{\rm{irm}}}{(2\pi)^{3}}}\frac{2\pi^{2}}{\vec{p}^{~{}2}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}\delta(|\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}|-|\vec{p}_{\rm{irm}}|)i^{L_{\rm{i}}}(-1)^{L_{\rm{i}}}
YLiM¯i(p^irm)d3rq1q¯1d3rq2q¯2ϕJHJHz+Vrq1q¯2q¯1eipirmrq1q¯1,q2q¯2\displaystyle Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{p}_{\rm{irm}})\int{d^{3}r_{q_{1}\bar{q}_{1}}d^{3}r_{q_{2}\bar{q}_{2}}}\phi^{+}_{J_{H}J_{Hz}}V_{rq_{1}\bar{q}_{2}\bar{q}_{1}}e^{i\vec{p}_{\rm{irm}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}
ϕArelϕBrelχSS¯zϕAcolorϕBcolorφABflavor.\displaystyle\phi_{A\rm{rel}}\phi_{B\rm{rel}}\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}}.

Let rc\vec{r}_{c} and mcm_{c} be the position vector and the mass of constituent cc, respectively. Then ϕArel\phi_{A\rm{rel}}, ϕBrel\phi_{B\rm{rel}}, and RLHR_{L_{H}} are functions of the relative coordinate of the quark and the antiquark. We take the Fourier transform of Vrq1q¯2q¯1V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} and the mesonic quark-antiquark relative-motion wave functions:

Vrq1q¯2q¯1(rq¯1rq1)=d3k(2π)3Vrq1q¯2q¯1(k)eik(rq¯1rq1),V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}(\vec{r}_{\bar{q}_{1}}-\vec{r}_{q_{1}})=\int\frac{d^{3}k}{(2\pi)^{3}}V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}(\vec{k})e^{i\vec{k}\cdot(\vec{r}_{\bar{q}_{1}}-\vec{r}_{q_{1}})}, (17)
ϕArel(rq1q¯1)=d3pq1q¯1(2π)3ϕArel(pq1q¯1)eipq1q¯1rq1q¯1,\phi_{A\rm rel}(\vec{r}_{q_{1}\bar{q}_{1}})=\int\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}\phi_{A\rm rel}(\vec{p}_{q_{1}\bar{q}_{1}})e^{i\vec{p}_{q_{1}\bar{q}_{1}}\cdot\vec{r}_{q_{1}\bar{q}_{1}}}, (18)
ϕBrel(rq2q¯2)=d3pq2q¯2(2π)3ϕBrel(pq2q¯2)eipq2q¯2rq2q¯2,\phi_{B\rm rel}(\vec{r}_{q_{2}\bar{q}_{2}})=\int\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}\phi_{B\rm rel}(\vec{p}_{q_{2}\bar{q}_{2}})e^{i\vec{p}_{q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{2}\bar{q}_{2}}}, (19)
ϕJHJHz(rq2q¯1)=d3pq2q¯1(2π)3ϕJHJHz(pq2q¯1)eipq2q¯1rq2q¯1,\phi_{J_{H}J_{Hz}}(\vec{r}_{q_{2}\bar{q}_{1}})=\int\frac{d^{3}p_{q_{2}\bar{q}_{1}}}{(2\pi)^{3}}\phi_{J_{H}J_{Hz}}(\vec{p}_{q_{2}\bar{q}_{1}})e^{i\vec{p}_{q_{2}\bar{q}_{1}}\cdot\vec{r}_{q_{2}\bar{q}_{1}}}, (20)

for the two upper diagrams in Fig. 1, and

ϕJHJHz(rq1q¯2)=d3pq1q¯2(2π)3ϕJHJHz(pq1q¯2)eipq1q¯2rq1q¯2,\phi_{J_{H}J_{Hz}}(\vec{r}_{q_{1}\bar{q}_{2}})=\int\frac{d^{3}p_{q_{1}\bar{q}_{2}}}{(2\pi)^{3}}\phi_{J_{H}J_{Hz}}(\vec{p}_{q_{1}\bar{q}_{2}})e^{i\vec{p}_{q_{1}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{2}}}, (21)

for the two lower diagrams. In Eq. (17) k\vec{k} is the gluon momentum, and in Eqs. (18)-(21) pab\vec{p}_{ab} is the relative momentum of constituents aa and bb. The spherical polar coordinates of pirm\vec{p}_{\rm irm} are expressed as (pirm,θirm,ϕirm)(\mid\vec{p}_{\rm irm}\mid,\theta_{\rm irm},\phi_{\rm irm}). In momentum space the normalizations are

d3pq1q¯1(2π)3ϕArel+(pq1q¯1)ϕArel(pq1q¯1)=1,\int\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}\phi_{A\rm rel}^{+}(\vec{p}_{q_{1}\bar{q}_{1}})\phi_{A\rm rel}(\vec{p}_{q_{1}\bar{q}_{1}})=1,
d3pq2q¯2(2π)3ϕBrel+(pq2q¯2)ϕBrel(pq2q¯2)=1,\int\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}\phi_{B\rm rel}^{+}(\vec{p}_{q_{2}\bar{q}_{2}})\phi_{B\rm rel}(\vec{p}_{q_{2}\bar{q}_{2}})=1,
d3pq2q¯1(2π)3ϕJHJHz+(pq2q¯1)ϕJHJHz(pq2q¯1)=1,\int\frac{d^{3}p_{q_{2}\bar{q}_{1}}}{(2\pi)^{3}}\phi_{J_{H}J_{Hz}}^{+}(\vec{p}_{q_{2}\bar{q}_{1}})\phi_{J_{H}J_{Hz}}(\vec{p}_{q_{2}\bar{q}_{1}})=1,
d3pq1q¯2(2π)3ϕJHJHz+(pq1q¯2)ϕJHJHz(pq1q¯2)=1.\int\frac{d^{3}p_{q_{1}\bar{q}_{2}}}{(2\pi)^{3}}\phi_{J_{H}J_{Hz}}^{+}(\vec{p}_{q_{1}\bar{q}_{2}})\phi_{J_{H}J_{Hz}}(\vec{p}_{q_{1}\bar{q}_{2}})=1.

Integration over pirm\mid\vec{p}_{\rm irm}\mid, rq1q¯1\vec{r}_{q_{1}\bar{q}_{1}}, and rq2q¯2\vec{r}_{q_{2}\bar{q}_{2}} yields

rq1q¯2q¯1\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}\bar{q}_{1}} =\displaystyle= 2EA2EB2EHS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}} (22)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+𝑑θirm𝑑ϕirmsinθirmYLiM¯i(p^irm)\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{d\theta_{\rm{irm}}d\phi_{\rm{irm}}\sin\theta_{\rm{irm}}}Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{p}_{\rm{irm}})
d3pq1q¯1(2π)3d3pq2q¯2(2π)3ϕJHJHz+(pq2q¯2mq2mq2+mq¯2pirm)Vrq1q¯2q¯1\displaystyle\int{\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}}\int{\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}}\phi^{+}_{J_{H}J_{Hz}}(\vec{p}_{q_{2}\bar{q}_{2}}-\frac{m_{q_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}\vec{p}_{\rm{irm}})V_{rq_{1}\bar{q}_{2}\bar{q}_{1}}
[pq1q¯1pq2q¯2+(mq2mq2+mq¯2mq¯1mq1+mq¯1)pirm]\displaystyle[\vec{p}_{q_{1}\bar{q}_{1}}-\vec{p}_{q_{2}\bar{q}_{2}}+(\frac{m_{q_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}-\frac{m_{\bar{q}_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}})\vec{p}_{\rm{irm}}]
ϕArel(pq1q¯1)ϕBrel(pq2q¯2)χSS¯zϕAcolorϕBcolorφABflavor,\displaystyle\phi_{A\rm{rel}}(\vec{p}_{q_{1}\bar{q}_{1}})\phi_{B\rm{rel}}(\vec{p}_{q_{2}\bar{q}_{2}})\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}},

in which pirm=pq1q¯1,q2q¯2\mid\vec{p}_{\rm irm}\mid=\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid. So far, we have obtained a new expression of the transition amplitude from Eq. (2).

Making use of the Fourier transform of Vrq1q¯2q2V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}, Vrq2q¯1q1V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}, and Vrq2q¯1q¯2V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}},

Vrq1q¯2q2(rq2rq¯2)=d3k(2π)3Vrq1q¯2q2(k)eik(rq2rq¯2),V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}(\vec{r}_{q_{2}}-\vec{r}_{\bar{q}_{2}})=\int\frac{d^{3}k}{(2\pi)^{3}}V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}(\vec{k})e^{i\vec{k}\cdot(\vec{r}_{q_{2}}-\vec{r}_{\bar{q}_{2}})}, (23)
Vrq2q¯1q1(rq1rq¯1)=d3k(2π)3Vrq2q¯1q1(k)eik(rq1rq¯1),V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}(\vec{r}_{q_{1}}-\vec{r}_{\bar{q}_{1}})=\int\frac{d^{3}k}{(2\pi)^{3}}V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}(\vec{k})e^{i\vec{k}\cdot(\vec{r}_{q_{1}}-\vec{r}_{\bar{q}_{1}})}, (24)
Vrq2q¯1q¯2(rq¯2rq2)=d3k(2π)3Vrq2q¯1q¯2(k)eik(rq¯2rq2),V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}(\vec{r}_{\bar{q}_{2}}-\vec{r}_{q_{2}})=\int\frac{d^{3}k}{(2\pi)^{3}}V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}(\vec{k})e^{i\vec{k}\cdot(\vec{r}_{\bar{q}_{2}}-\vec{r}_{q_{2}})}, (25)

from Eqs. (3)-(5) we obtain

rq1q¯2q2\displaystyle{\cal{M}}_{rq_{1}\bar{q}_{2}q_{2}} =\displaystyle= 2EA2EB2EHS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}} (26)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+𝑑θirm𝑑ϕirmsinθirmYLiM¯i(p^irm)\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{d\theta_{\rm{irm}}d\phi_{\rm{irm}}\sin\theta_{\rm{irm}}}Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{p}_{\rm{irm}})
d3pq1q¯1(2π)3d3pq2q¯2(2π)3ϕJHJHz+(pq1q¯1mq¯1mq1+mq¯1pirm)Vrq1q¯2q2\displaystyle\int{\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}}\int{\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}}\phi^{+}_{J_{H}J_{Hz}}(\vec{p}_{q_{1}\bar{q}_{1}}-\frac{m_{\bar{q}_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}}\vec{p}_{\rm{irm}})V_{rq_{1}\bar{q}_{2}q_{2}}
[pq1q¯1pq2q¯2+(mq2mq2+mq¯2mq¯1mq1+mq¯1)pirm]\displaystyle[\vec{p}_{q_{1}\bar{q}_{1}}-\vec{p}_{q_{2}\bar{q}_{2}}+(\frac{m_{q_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}-\frac{m_{\bar{q}_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}})\vec{p}_{\rm{irm}}]
ϕArel(pq1q¯1)ϕBrel(pq2q¯2)χSS¯zϕAcolorϕBcolorφABflavor,\displaystyle\phi_{A\rm{rel}}(\vec{p}_{q_{1}\bar{q}_{1}})\phi_{B\rm{rel}}(\vec{p}_{q_{2}\bar{q}_{2}})\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}},
rq2q¯1q1\displaystyle{\cal{M}}_{rq_{2}\bar{q}_{1}q_{1}} =\displaystyle= 2EA2EB2EHS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}} (27)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+𝑑θirm𝑑ϕirmsinθirmYLiM¯i(p^irm)\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{d\theta_{\rm{irm}}d\phi_{\rm{irm}}\sin\theta_{\rm{irm}}}Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{p}_{\rm{irm}})
d3pq1q¯1(2π)3d3pq2q¯2(2π)3ϕJHJHz+(pq2q¯2+mq¯2mq2+mq¯2pirm)Vrq2q¯1q1\displaystyle\int{\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}}\int{\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}}\phi^{+}_{J_{H}J_{Hz}}(\vec{p}_{q_{2}\bar{q}_{2}}+\frac{m_{\bar{q}_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}\vec{p}_{\rm{irm}})V_{rq_{2}\bar{q}_{1}q_{1}}
[pq1q¯1+pq2q¯2+(mq¯2mq2+mq¯2mq1mq1+mq¯1)pirm]\displaystyle[-\vec{p}_{q_{1}\bar{q}_{1}}+\vec{p}_{q_{2}\bar{q}_{2}}+(\frac{m_{\bar{q}_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}-\frac{m_{q_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}})\vec{p}_{\rm{irm}}]
ϕArel(pq1q¯1)ϕBrel(pq2q¯2)χSS¯zϕAcolorϕBcolorφABflavor,\displaystyle\phi_{A\rm{rel}}(\vec{p}_{q_{1}\bar{q}_{1}})\phi_{B\rm{rel}}(\vec{p}_{q_{2}\bar{q}_{2}})\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}},
rq2q¯1q¯2\displaystyle{\cal{M}}_{rq_{2}\bar{q}_{1}\bar{q}_{2}} =\displaystyle= 2EA2EB2EHS=SminSmaxSz=SS(SASAzSBSBz|SSz)Li=0Mi=LiLi\displaystyle\sqrt{2E_{A}2E_{B}2E_{H}}\sum^{S_{\rm max}}_{S=S_{\rm min}}\sum^{S}_{S_{z}=-S}(S_{A}S_{Az}S_{B}S_{Bz}|SS_{z})\sum^{\infty}_{L_{\rm{i}}=0}\sum^{L_{\rm{i}}}_{M_{\rm{i}}=-L_{\rm{i}}} (28)
YLiMi(p^q1q¯1,q2q¯2)(LiMiSSz|JHJHz)M¯i=LiLiS¯z=SS(LiM¯iSS¯z|JHJHz)\displaystyle Y^{*}_{L_{\rm{i}}M_{\rm{i}}}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})(L_{\rm{i}}M_{\rm{i}}SS_{z}|J_{H}J_{Hz})\sum^{L_{\rm i}}_{\bar{M}_{\rm i}=-L_{\rm i}}\sum^{S}_{\bar{S}_{z}=-S}(L_{\rm{i}}\bar{M}_{\rm{i}}S\bar{S}_{z}|J_{H}J_{Hz})
ϕHcolor+ϕHflavor+𝑑θirm𝑑ϕirmsinθirmYLiM¯i(p^irm)\displaystyle\phi^{+}_{H\rm{color}}\phi^{+}_{H\rm{flavor}}\int{d\theta_{\rm{irm}}d\phi_{\rm{irm}}\sin\theta_{\rm{irm}}}Y_{L_{\rm{i}}\bar{M}_{\rm{i}}}(\hat{p}_{\rm{irm}})
d3pq1q¯1(2π)3d3pq2q¯2(2π)3ϕJHJHz+(pq1q¯1+mq1mq1+mq¯1pirm)Vrq2q¯1q¯2\displaystyle\int{\frac{d^{3}p_{q_{1}\bar{q}_{1}}}{(2\pi)^{3}}}\int{\frac{d^{3}p_{q_{2}\bar{q}_{2}}}{(2\pi)^{3}}}\phi^{+}_{J_{H}J_{Hz}}(\vec{p}_{q_{1}\bar{q}_{1}}+\frac{m_{q_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}}\vec{p}_{\rm{irm}})V_{rq_{2}\bar{q}_{1}\bar{q}_{2}}
[pq1q¯1+pq2q¯2+(mq¯2mq2+mq¯2mq1mq1+mq¯1)pirm]\displaystyle[-\vec{p}_{q_{1}\bar{q}_{1}}+\vec{p}_{q_{2}\bar{q}_{2}}+(\frac{m_{\bar{q}_{2}}}{m_{q_{2}}+m_{\bar{q}_{2}}}-\frac{m_{q_{1}}}{m_{q_{1}}+m_{\bar{q}_{1}}})\vec{p}_{\rm{irm}}]
ϕArel(pq1q¯1)ϕBrel(pq2q¯2)χSS¯zϕAcolorϕBcolorφABflavor.\displaystyle\phi_{A\rm{rel}}(\vec{p}_{q_{1}\bar{q}_{1}})\phi_{B\rm{rel}}(\vec{p}_{q_{2}\bar{q}_{2}})\chi_{S\bar{S}_{z}}\phi_{A\rm{color}}\phi_{B\rm{color}}\varphi_{AB\rm{flavor}}.

With these transition amplitudes the unpolarized cross section for A+BHA+B\to H is

σunpol\displaystyle\sigma^{\rm unpol} =\displaystyle= πδ(EfEi)4(PAPB)2mA2mB2EH1(2JA+1)(2JB+1)\displaystyle\frac{\pi\delta(E_{\rm f}-E_{\rm i})}{4\sqrt{(P_{A}\cdot P_{B})^{2}-m_{A}^{2}m_{B}^{2}}E_{H}}\frac{1}{(2J_{A}+1)(2J_{B}+1)} (29)
JAzJBzJHzrq1q¯2q¯1+rq1q¯2q2+rq2q¯1q1+rq2q¯1q¯22,\displaystyle\sum\limits_{J_{Az}J_{Bz}J_{Hz}}\mid{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}+{\cal M}_{{\rm r}q_{1}\bar{q}_{2}q_{2}}+{\cal M}_{{\rm r}q_{2}\bar{q}_{1}q_{1}}+{{\cal M}_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}}\mid^{2},

where PAP_{A}, mAm_{A}, JAJ_{A}, and JAzJ_{Az} (PBP_{B}, mBm_{B}, JBJ_{B}, and JBzJ_{Bz}) of meson AA (BB) are the four-momentum, the mass, the total angular momentum, and its zz component, respectively. We calculate the cross section in the center-of-mass frame of the two initial mesons, i.e., with meson HH at rest.

III. FLAVOR AND SPIN MATRIX ELEMENTS

Let pcp_{c} be the four-momentum of constituent cc. The two upper diagrams give q1(pq1)+q¯1(pq¯1)+q2(pq2)+q¯2(pq¯2)q¯1(pq¯1)+q2(pq2)q_{1}(p_{q_{1}})+\bar{q}_{1}(p_{\bar{q}_{1}})+q_{2}(p_{q_{2}})+\bar{q}_{2}(p_{\bar{q}_{2}})\to\bar{q}_{1}(p_{\bar{q}_{1}}^{\prime})+q_{2}(p_{q_{2}}^{\prime}), and the two lower diagrams q1(pq1)+q¯1(pq¯1)+q2(pq2)+q¯2(pq¯2)q1(pq1)+q¯2(pq¯2)q_{1}(p_{q_{1}})+\bar{q}_{1}(p_{\bar{q}_{1}})+q_{2}(p_{q_{2}})+\bar{q}_{2}(p_{\bar{q}_{2}})\to q_{1}(p_{q_{1}}^{\prime})+\bar{q}_{2}(p_{\bar{q}_{2}}^{\prime}). The transition potentials Vrq1q¯2q¯1V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}, Vrq1q¯2q2V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}, Vrq2q¯1q1V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}, and Vrq2q¯1q¯2V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}} are expressed as

Vrq1q¯2q¯1(k)\displaystyle V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}(\vec{k}) =\displaystyle= λ(1)2λ(21)2gs2k2(σ(21)k2mq1\displaystyle-\frac{\vec{\lambda}(1)}{2}\cdot\frac{\vec{\lambda}(21)}{2}\frac{g_{\rm s}^{2}}{k^{2}}\left(\frac{\vec{\sigma}(21)\cdot\vec{k}}{2m_{q_{1}}}\right. (30)
σ(1)pq¯1σ(1)σ(21)+σ(1)σ(21)σ(1)pq¯12mq¯1),\displaystyle\left.-\frac{\vec{\sigma}(1)\cdot\vec{p}_{\bar{q}_{1}}\vec{\sigma}(1)\cdot\vec{\sigma}(21)+\vec{\sigma}(1)\cdot\vec{\sigma}(21)\vec{\sigma}(1)\cdot\vec{p}_{\bar{q}_{1}}^{~{}\prime}}{2m_{\bar{q}_{1}}}\right),
Vrq1q¯2q2(k)\displaystyle V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}(\vec{k}) =\displaystyle= λ(2)2λ(21)2gs2k2(σ(21)k2mq1\displaystyle\frac{\vec{\lambda}(2)}{2}\cdot\frac{\vec{\lambda}(21)}{2}\frac{g_{\rm s}^{2}}{k^{2}}\left(\frac{\vec{\sigma}(21)\cdot\vec{k}}{2m_{q_{1}}}\right. (31)
σ(2)σ(21)σ(2)pq2+σ(2)pq2σ(2)σ(21)2mq2),\displaystyle\left.-\frac{\vec{\sigma}(2)\cdot\vec{\sigma}(21)\vec{\sigma}(2)\cdot\vec{p}_{q_{2}}+\vec{\sigma}(2)\cdot\vec{p}_{q_{2}}^{~{}\prime}\vec{\sigma}(2)\cdot\vec{\sigma}(21)}{2m_{q_{2}}}\right),
Vrq2q¯1q1(k)\displaystyle V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}(\vec{k}) =\displaystyle= λ(1)2λ(12)2gs2k2(σ(12)k2mq2\displaystyle\frac{\vec{\lambda}(1)}{2}\cdot\frac{\vec{\lambda}(12)}{2}\frac{g_{\rm s}^{2}}{k^{2}}\left(\frac{\vec{\sigma}(12)\cdot\vec{k}}{2m_{q_{2}}}\right. (32)
σ(1)σ(12)σ(1)pq1+σ(1)pq1σ(1)σ(12)2mq1),\displaystyle\left.-\frac{\vec{\sigma}(1)\cdot\vec{\sigma}(12)\vec{\sigma}(1)\cdot\vec{p}_{q_{1}}+\vec{\sigma}(1)\cdot\vec{p}_{q_{1}}^{~{}\prime}\vec{\sigma}(1)\cdot\vec{\sigma}(12)}{2m_{q_{1}}}\right),
Vrq2q¯1q¯2(k)\displaystyle V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}(\vec{k}) =\displaystyle= λ(2)2λ(12)2gs2k2(σ(12)k2mq2\displaystyle-\frac{\vec{\lambda}(2)}{2}\cdot\frac{\vec{\lambda}(12)}{2}\frac{g_{\rm s}^{2}}{k^{2}}\left(\frac{\vec{\sigma}(12)\cdot\vec{k}}{2m_{q_{2}}}\right. (33)
σ(2)pq¯2σ(2)σ(12)+σ(2)σ(12)σ(2)pq¯22mq¯2),\displaystyle\left.-\frac{\vec{\sigma}(2)\cdot\vec{p}_{\bar{q}_{2}}\vec{\sigma}(2)\cdot\vec{\sigma}(12)+\vec{\sigma}(2)\cdot\vec{\sigma}(12)\vec{\sigma}(2)\cdot\vec{p}_{\bar{q}_{2}}^{~{}\prime}}{2m_{\bar{q}_{2}}}\right),

where gsg_{\rm s} is the gauge coupling constant, kk the gluon four-momentum, λ\vec{\lambda} the Gell-Mann matrices, and σ\vec{\sigma} the Pauli matrices. In Eqs. (30) and (31), λ(21)\vec{\lambda}(21) (σ(21)\vec{\sigma}(21)) mean that they have matrix elements between the color (spin) wave functions of initial antiquark q¯2\bar{q}_{2} and initial quark q1q_{1}. In Eqs. (32) and (33), λ(12)\vec{\lambda}(12) (σ(12)\vec{\sigma}(12)) mean that they have matrix elements between the color (spin) wave functions of initial antiquark q¯1\bar{q}_{1} and initial quark q2q_{2}. In Eqs. (30) and (33), λ(1)\vec{\lambda}(1) and λ(2)\vec{\lambda}(2) (σ(1)\vec{\sigma}(1) and σ(2)\vec{\sigma}(2)) mean that they have matrix elements between the color (spin) wave functions of the initial antiquark and the final antiquark. In Eqs. (31) and (32), λ(2)\vec{\lambda}(2) and λ(1)\vec{\lambda}(1) (σ(2)\vec{\sigma}(2) and σ(1)\vec{\sigma}(1)) mean that they have matrix elements between the color (spin) wave functions of the final quark and the initial quark.

It is shown in Refs. [21, 22, 23] that ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) can be individually interpreted as the 13D11^{3}D_{1}, 33S13^{3}S_{1}, 23D12^{3}D_{1}, and 43S14^{3}S_{1} quark-antiquark states. We use the notation K=(K+K0)K=\left(\begin{array}[]{c}K^{+}\\ K^{0}\end{array}\right), K¯=(K¯0K)\bar{K}=\left(\begin{array}[]{c}\bar{K}^{0}\\ K^{-}\end{array}\right), K=(K+K0)K^{*}=\left(\begin{array}[]{c}K^{*+}\\ K^{*0}\end{array}\right), K¯=(K¯0K)\bar{K}^{*}=\left(\begin{array}[]{c}\bar{K}^{*0}\\ K^{*-}\end{array}\right), D=(D+D0)D=\left(\begin{array}[]{c}D^{+}\\ D^{0}\end{array}\right), D¯=(D¯0D)\bar{D}=\left(\begin{array}[]{c}\bar{D}^{0}\\ D^{-}\end{array}\right), D=(D+D0)D^{*}=\left(\begin{array}[]{c}D^{*+}\\ D^{*0}\end{array}\right), and D¯=(D¯0D)\bar{D}^{*}=\left(\begin{array}[]{c}\bar{D}^{*0}\\ D^{*-}\end{array}\right). Based on the formulas in Sect. II, we study the following reactions:

KK¯ϕ,πDD,πD¯D¯,K\bar{K}\to\phi,~{}\pi D\to D^{*},~{}\pi\bar{D}\to\bar{D}^{*},
DD¯ψ(3770),DD¯ψ(4040),D\bar{D}\to\psi(3770),~{}D\bar{D}\to\psi(4040),
DD¯ψ(4040),DD¯ψ(4040),DD¯ψ(4040),Ds+Dsψ(4040),D^{*}\bar{D}\to\psi(4040),~{}D\bar{D}^{*}\to\psi(4040),~{}D^{*}\bar{D}^{*}\to\psi(4040),~{}D_{s}^{+}D_{s}^{-}\to\psi(4040),
DD¯ψ(4160),DD¯ψ(4160),DD¯ψ(4160),DD¯ψ(4160),D\bar{D}\to\psi(4160),~{}D^{*}\bar{D}\to\psi(4160),~{}D\bar{D}^{*}\to\psi(4160),~{}D^{*}\bar{D}^{*}\to\psi(4160),
Ds+Dsψ(4160),Ds+Dsψ(4160),Ds+Dsψ(4160),D_{s}^{+}D_{s}^{-}\to\psi(4160),~{}D_{s}^{*+}D_{s}^{-}\to\psi(4160),~{}D_{s}^{+}D_{s}^{*-}\to\psi(4160),
DD¯ψ(4415),DD¯ψ(4415),DD¯ψ(4415),DD¯ψ(4415),D\bar{D}\to\psi(4415),~{}D^{*}\bar{D}\to\psi(4415),~{}D\bar{D}^{*}\to\psi(4415),~{}D^{*}\bar{D}^{*}\to\psi(4415),
Ds+Dsψ(4415),Ds+Dsψ(4415),Ds+Dsψ(4415),Ds+Dsψ(4415).D_{s}^{+}D_{s}^{-}\to\psi(4415),~{}D_{s}^{*+}D_{s}^{-}\to\psi(4415),~{}D_{s}^{+}D_{s}^{*-}\to\psi(4415),~{}D_{s}^{*+}D_{s}^{*-}\to\psi(4415).

From the Gell-Mann matrices and the Pauli matrices in the transition potentials, the expressions of the transition amplitudes in Eqs. (22) and (26)-(28) involve color matrix elements, flavor matrix elements, and spin matrix elements for the above reactions. The color matrix elements in rq1q¯2q¯1{\cal M}_{rq_{1}\bar{q}_{2}\bar{q}_{1}}, rq1q¯2q2{\cal M}_{rq_{1}\bar{q}_{2}q_{2}}, rq2q¯1q1{\cal M}_{rq_{2}\bar{q}_{1}q_{1}}, and rq2q¯1q¯2{\cal M}_{rq_{2}\bar{q}_{1}\bar{q}_{2}} are -433\frac{4}{3\sqrt{3}}, 433\frac{4}{3\sqrt{3}}, 433\frac{4}{3\sqrt{3}}, and -433\frac{4}{3\sqrt{3}}, respectively. While we calculate the flavor matrix elements, we keep the total isospin of the two initial mesons the same as the isospin of the final meson. The flavor wave functions of charmed mesons and charmed strange mesons are D+>=cd¯>\mid D^{+}>=-\mid c\bar{d}>, D0>=cu¯>\mid D^{0}>=\mid c\bar{u}>, D¯0>=uc¯>\mid\bar{D}^{0}>=\mid u\bar{c}>, D>=dc¯>\mid D^{-}>=\mid d\bar{c}>, D+>=cd¯>\mid D^{*+}>=-\mid c\bar{d}>, D0>=cu¯>\mid D^{*0}>=\mid c\bar{u}>, D¯0>=uc¯>\mid\bar{D}^{*0}>=\mid u\bar{c}>, and D>=dc¯>\mid D^{*-}>=\mid d\bar{c}>. The flavor matrix element fKK¯ϕ{\cal M}_{{\rm f}K\bar{K}\to\phi} (fπDD{\cal M}_{{\rm f}\pi D\to D^{*}}, fDD¯ψ(3770){\cal M}_{{\rm f}D\bar{D}\to\psi(3770)}, fDs+Dsψ(4040){\cal M}_{{\rm f}D_{s}^{+}D_{s}^{-}\to\psi(4040)}) for KK¯ϕK\bar{K}\to\phi (πDD\pi D\to D^{*}, DD¯ψ(3770)D\bar{D}\to\psi(3770), Ds+Dsψ(4040)D_{s}^{+}D_{s}^{-}\to\psi(4040)) is shown in Table 1. The flavor matrix element for πD¯D¯\pi\bar{D}\to\bar{D}^{*} equals fπDD{\cal M}_{{\rm f}\pi D\to D^{*}}. The flavor matrix elements for DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040), DD¯ψ(4040)D\bar{D}^{*}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}^{*}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160), DD¯ψ(4160)D\bar{D}^{*}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}^{*}\to\psi(4160), DD¯ψ(4415)D\bar{D}\to\psi(4415), DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415), DD¯ψ(4415)D\bar{D}^{*}\to\psi(4415), and DD¯ψ(4415)D^{*}\bar{D}^{*}\to\psi(4415) are the same as fDD¯ψ(3770){\cal M}_{{\rm f}D\bar{D}\to\psi(3770)}. The flavor matrix elements for Ds+Dsψ(4160)D_{s}^{+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{*+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{+}D_{s}^{*-}\to\psi(4160), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{*-}\to\psi(4415), and Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{*-}\to\psi(4415) equal fDs+Dsψ(4040){\cal M}_{{\rm f}D_{s}^{+}D_{s}^{-}\to\psi(4040)}. The flavor matrix elements for KK¯ϕK\bar{K}\to\phi, πDD\pi D\to D^{*}, and πD¯D¯\pi\bar{D}\to\bar{D}^{*} are zero for the two lower diagrams, and those for the production of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) are zero for the two upper diagrams. Hence, every reaction receives contributions only from two Feynman diagrams.

Now we give the spin matrix elements. Let Prq1q¯2q¯1iP_{rq_{1}\bar{q}_{2}\bar{q}_{1}i} with i=0i=0, \cdot\cdot\cdot, and 15 stand for 1, σ1(21)\sigma_{1}(21), σ2(21)\sigma_{2}(21), σ3(21)\sigma_{3}(21), σ1(1)\sigma_{1}(1), σ2(1)\sigma_{2}(1), σ3(1)\sigma_{3}(1), σ1(21)σ1(1)\sigma_{1}(21)\sigma_{1}(1), σ1(21)σ2(1)\sigma_{1}(21)\sigma_{2}(1), σ1(21)σ3(1)\sigma_{1}(21)\sigma_{3}(1), σ2(21)σ1(1)\sigma_{2}(21)\sigma_{1}(1), σ2(21)σ2(1)\sigma_{2}(21)\sigma_{2}(1), σ2(21)σ3(1)\sigma_{2}(21)\sigma_{3}(1), σ3(21)σ1(1)\sigma_{3}(21)\sigma_{1}(1), σ3(21)σ2(1)\sigma_{3}(21)\sigma_{2}(1), and σ3(21)σ3(1)\sigma_{3}(21)\sigma_{3}(1), respectively. Let Prq1q¯2q2iP_{rq_{1}\bar{q}_{2}q_{2}i} with i=0i=0, \cdot\cdot\cdot, and 15 correspond to 1, σ1(21)\sigma_{1}(21), σ2(21)\sigma_{2}(21), σ3(21)\sigma_{3}(21), σ1(2)\sigma_{1}(2), σ2(2)\sigma_{2}(2), σ3(2)\sigma_{3}(2), σ1(21)σ1(2)\sigma_{1}(21)\sigma_{1}(2), σ1(21)σ2(2)\sigma_{1}(21)\sigma_{2}(2), σ1(21)σ3(2)\sigma_{1}(21)\sigma_{3}(2), σ2(21)σ1(2)\sigma_{2}(21)\sigma_{1}(2), σ2(21)σ2(2)\sigma_{2}(21)\sigma_{2}(2), σ2(21)σ3(2)\sigma_{2}(21)\sigma_{3}(2), σ3(21)σ1(2)\sigma_{3}(21)\sigma_{1}(2), σ3(21)σ2(2)\sigma_{3}(21)\sigma_{2}(2), and σ3(21)σ3(2)\sigma_{3}(21)\sigma_{3}(2), respectively. Let Prq2q¯1q1iP_{rq_{2}\bar{q}_{1}q_{1}i} with i=0i=0, \cdot\cdot\cdot, and 15 represent 1, σ1(12)\sigma_{1}(12), σ2(12)\sigma_{2}(12), σ3(12)\sigma_{3}(12), σ1(1)\sigma_{1}(1), σ2(1)\sigma_{2}(1), σ3(1)\sigma_{3}(1), σ1(12)σ1(1)\sigma_{1}(12)\sigma_{1}(1), σ1(12)σ2(1)\sigma_{1}(12)\sigma_{2}(1), σ1(12)σ3(1)\sigma_{1}(12)\sigma_{3}(1), σ2(12)σ1(1)\sigma_{2}(12)\sigma_{1}(1), σ2(12)σ2(1)\sigma_{2}(12)\sigma_{2}(1), σ2(12)σ3(1)\sigma_{2}(12)\sigma_{3}(1), σ3(12)σ1(1)\sigma_{3}(12)\sigma_{1}(1), σ3(12)σ2(1)\sigma_{3}(12)\sigma_{2}(1), and σ3(12)\sigma_{3}(12) σ3(1)\sigma_{3}(1), respectively. Let Prq2q¯1q¯2iP_{rq_{2}\bar{q}_{1}\bar{q}_{2}i} with i=0i=0, \cdot\cdot\cdot, and 15 denote 1, σ1(12)\sigma_{1}(12), σ2(12)\sigma_{2}(12), σ3(12)\sigma_{3}(12), σ1(2)\sigma_{1}(2), σ2(2)\sigma_{2}(2), σ3(2)\sigma_{3}(2), σ1(12)σ1(2)\sigma_{1}(12)\sigma_{1}(2), σ1(12)σ2(2)\sigma_{1}(12)\sigma_{2}(2), σ1(12)σ3(2)\sigma_{1}(12)\sigma_{3}(2), σ2(12)σ1(2)\sigma_{2}(12)\sigma_{1}(2), σ2(12)σ2(2)\sigma_{2}(12)\sigma_{2}(2), σ2(12)\sigma_{2}(12) σ3(2)\sigma_{3}(2), σ3(12)σ1(2)\sigma_{3}(12)\sigma_{1}(2), σ3(12)σ2(2)\sigma_{3}(12)\sigma_{2}(2), and σ3(12)σ3(2)\sigma_{3}(12)\sigma_{3}(2), respectively. Set nAn_{A} as -1, 0, or 1, and nBn_{B} as -1, 0, or 1. In order to easily tabulate values of the spin matrix elements, we define ϕiss(SA,SAz;SB,SBz)χSASAzχSBSBz\phi_{\rm iss}(S_{A},S_{Az};S_{B},S_{Bz})\equiv\chi_{S_{A}S_{Az}}\chi_{S_{B}S_{Bz}} and ϕfss(SH,SHz)χSHSHz\phi_{\rm fss}(S_{H},S_{Hz})\equiv\chi_{S_{H}S_{Hz}}. The spin matrix elements ϕfss+(SH,SHz)Prq1q¯2q¯1iϕiss(SA,SAz;SB,SBz)\phi^{+}_{\rm fss}(S_{H},S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A},S_{Az};S_{B},S_{Bz}) are shown in Tables 2-6. Other spin matrix elements, ϕfss+(SH,SHz)Prq1q¯2q2iϕiss(SA,SAz;SB,\phi^{+}_{\rm fss}(S_{H},S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A},S_{Az};S_{B}, SBz)S_{Bz}), ϕfss+(SH,SHz)\phi^{+}_{\rm fss}(S_{H},S_{Hz}) Prq2q¯1q1iP_{rq_{2}\bar{q}_{1}q_{1}i} ϕiss(SA,SAz;SB,SBz)\phi_{\rm iss}(S_{A},S_{Az};S_{B},S_{Bz}), and ϕfss+(SH,SHz)\phi^{+}_{\rm fss}(S_{H},S_{Hz}) Prq2q¯1q¯2iP_{rq_{2}\bar{q}_{1}\bar{q}_{2}i} ϕiss(SA,SAz;\phi_{\rm iss}(S_{A},S_{Az}; SB,SBz)S_{B},S_{Bz}), are related to ϕfss+(SH,SHz)Prq1q¯2q¯1iϕiss(SA,SAz;SB,SBz)\phi^{+}_{\rm fss}(S_{H},S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A},S_{Az};S_{B},S_{Bz}) by the following equations:

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=1,SAz=nA;SB=0,SBz=0)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0) (34)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=0,SAz=0;SB=1,SBz=nA),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{A}),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=1,SAz=nA;SB=0,SBz=0)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0) (35)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=0,SAz=0;SB=1,SBz=nA),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{A}),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=0,SAz=0;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}) (36)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=0,SBz=0),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=0,S_{Bz}=0),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=0,SAz=0;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}) (37)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=0,SBz=0),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=0,S_{Bz}=0),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=1,SAz=nA;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}) (38)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=1,SBz=nA),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=1,S_{Bz}=n_{A}),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq1q¯2q2iϕiss(SA=1,SAz=nA;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}q_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}) (39)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=1,SBz=nA),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=1,S_{Bz}=n_{A}),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=1,SAz=nA;SB=0,SBz=0)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0) (40)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nA;SB=0,SBz=0),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=1,SAz=nA;SB=0,SBz=0)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0) (41)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nA;SB=0,SBz=0),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=0,SAz=0;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}) (42)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=0,SAz=0;SB=1,SBz=nB),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=0,SAz=0;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}) (43)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=0,SAz=0;SB=1,SBz=nB),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=1,SAz=nA;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}) (44)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nA;SB=1,SBz=nB),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}),

with i=0i=0, 1, 3, 4, 6, 7, 9, 11, 13, and 15;

ϕfss+(SH=1,SHz)Prq2q¯1q1iϕiss(SA=1,SAz=nA;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}q_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}) (45)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nA;SB=1,SBz=nB),\displaystyle-\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}),

with i=2i=2, 5, 8, 10, 12, and 14;

ϕfss+(SH=1,SHz)Prq2q¯1q¯2iϕiss(SA=1,SAz=nA;SB=0,SBz=0)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}\bar{q}_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=0,S_{Bz}=0) (46)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=0,SAz=0;SB=1,SBz=nA),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{A}),

with i=0i=0, \cdot\cdot\cdot, and 15;

ϕfss+(SH=1,SHz)Prq2q¯1q¯2iϕiss(SA=0,SAz=0;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}\bar{q}_{2}i}\phi_{\rm iss}(S_{A}=0,S_{Az}=0;S_{B}=1,S_{Bz}=n_{B}) (47)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=0,SBz=0),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=0,S_{Bz}=0),

with i=0i=0, \cdot\cdot\cdot, and 15;

ϕfss+(SH=1,SHz)Prq2q¯1q¯2iϕiss(SA=1,SAz=nA;SB=1,SBz=nB)\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{2}\bar{q}_{1}\bar{q}_{2}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{A};S_{B}=1,S_{Bz}=n_{B}) (48)
=\displaystyle= ϕfss+(SH=1,SHz)Prq1q¯2q¯1iϕiss(SA=1,SAz=nB;SB=1,SBz=nA),\displaystyle\phi^{+}_{\rm fss}(S_{H}=1,S_{Hz})P_{rq_{1}\bar{q}_{2}\bar{q}_{1}i}\phi_{\rm iss}(S_{A}=1,S_{Az}=n_{B};S_{B}=1,S_{Bz}=n_{A}),

with i=0i=0, \cdot\cdot\cdot, and 15.

IV. NUMERICAL CROSS SECTIONS AND DISCUSSIONS

The mesonic quark-antiquark relative-motion wave functions ϕArel\phi_{A\rm rel}, ϕBrel\phi_{B\rm rel}, and ϕJHJHz\phi_{J_{H}J_{Hz}} in Eqs. (6) and (7) are solutions of the Schrödinger equation with the potential between constituents aa and bb in coordinate space [27],

Vab(rab)\displaystyle V_{ab}(\vec{r}_{ab}) =\displaystyle= λa2λb2ξ1[1.3(TTc)4]tanh(ξ2rab)+λa2λb26π25v(λrab)rabexp(ξ3rab)\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\xi_{1}\left[1.3-\left(\frac{T}{T_{\rm c}}\right)^{4}\right]\tanh(\xi_{2}r_{ab})+\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{6\pi}{25}\frac{v(\lambda r_{ab})}{r_{ab}}\exp(-\xi_{3}r_{ab}) (49)
λa2λb216π225d3π3/2exp(d2rab2)sasbmamb+λa2λb24π251rabd2v(λrab)drab2sasbmamb\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{16\pi^{2}}{25}\frac{d^{3}}{\pi^{3/2}}\exp(-d^{2}r^{2}_{ab})\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{m_{a}m_{b}}+\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{4\pi}{25}\frac{1}{r_{ab}}\frac{d^{2}v(\lambda r_{ab})}{dr_{ab}^{2}}\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{m_{a}m_{b}}
λa2λb26π25mamb[v(λrab)rabdv(λrab)drab+rab23d2v(λrab)drab2]\displaystyle-\frac{\vec{\lambda}_{a}}{2}\cdot\frac{\vec{\lambda}_{b}}{2}\frac{6\pi}{25m_{a}m_{b}}\left[v(\lambda r_{ab})-r_{ab}\frac{dv(\lambda r_{ab})}{dr_{ab}}+\frac{r_{ab}^{2}}{3}\frac{d^{2}v(\lambda r_{ab})}{dr_{ab}^{2}}\right]
(3sarabsbrabrab5sasbrab3),\displaystyle\left(\frac{3\vec{s}_{a}\cdot\vec{r}_{ab}\vec{s}_{b}\cdot\vec{r}_{ab}}{r_{ab}^{5}}-\frac{\vec{s}_{a}\cdot\vec{s}_{b}}{r_{ab}^{3}}\right),

where ξ1=0.525\xi_{1}=0.525 GeV, ξ3=0.6\xi_{3}=0.6 GeV, Tc=0.175T_{\rm c}=0.175 GeV, ξ2=1.5[0.75+0.25(T/Tc)10]6\xi_{2}=1.5[0.75+0.25(T/{T_{\rm c}})^{10}]^{6} GeV, and λ=25/16π2α\lambda=\sqrt{25/16\pi^{2}\alpha^{\prime}} with α=1.04\alpha^{\prime}=1.04 GeV-2; TT is the temperature; sa\vec{s}_{a} is the spin of constituent aa; the quantity dd is given in Ref. [27]; the function vv is given by Buchmüller and Tye in Ref. [20]. The potential is obtained from perturbative QCD [20] and lattice QCD [28]. The masses of the up quark, the down quark, the strange quark, and the charm quark are 0.32 GeV, 0.32 GeV, 0.5 GeV, and 1.51 GeV, respectively. Solving the Schrödinger equation with the potential at zero temperature, we obtain meson masses that are close to the experimental masses of π\pi, ρ\rho, KK, KK^{*}, J/ψJ/\psi, χc\chi_{c}, ψ\psi^{\prime}, ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), ψ(4415)\psi(4415), DD, DD^{*}, DsD_{s}, and DsD^{*}_{s} mesons [29]. Moreover, the experimental data of SS-wave and PP-wave elastic phase shifts for ππ\pi\pi scattering in vacuum [30, 31] are reproduced in the Born approximation [27, 5].

Gluon, quark, and antiquark fields in the thermal medium depend on its temperature. The interaction between two constituents is influenced by gluons, quarks, and antiquarks in the thermal medium, and thus depends on the temperature. The quark-antiquark potential is related to the Polyakov loop correlation function defined from the gluon field, the quark field, and the antiquark field, and has been obtained in lattice gauge calculations. When the temperature is low, the potential at large distances is modified by the medium. When the temperature is near the critical temperature TcT_{\rm c}, the potential at intermediate distances is also modified. The lattice gauge calculations [28] only provide a numerical spin-independent and temperature-dependent potential at intermediate and large distances. When the distance increases from zero, the numerical potential increases, and obviously becomes a distance-independent value (exhibits a plateau) at large distances at T>0.55TcT>0.55T_{\rm c}. The plateau height decreases with increasing temperature. This means that confinement becomes weaker and weaker. The short-distance part of the first two terms in Eq. (49) originates from one-gluon exchange plus perturbative one- and two-loop corrections, and the intermediate-distance and large-distance part fits well the numerical potential. The third and fourth terms indicate the spin-spin interaction with relativistic effects, and the fifth term is the tensor interaction, which are obtained from an application of the Foldy-Wouthuysen canonical transformation to the gluon propagator with perturbative one- and two-loop corrections [32]. The potential in Eq. (49) is valid when the temperature is below the critical temperature.

In Eq. (49) ξ1\xi_{1} is fixed, but the values of ξ2\xi_{2} and ξ3\xi_{3} are not unique; ξ2\xi_{2} is allowed to change by at most 5%, and ξ3\xi_{3} by at most 10% while the numerical potential obtained in the lattice gauge calculations can be well fitted. However, an increase (decrease) of ξ2\xi_{2} must be accompanied by a decrease (increase) of ξ3\xi_{3}. The uncertainties of ξ2\xi_{2} and ξ3\xi_{3} cause a change less than 2.7% in meson mass, a change less than 3.6% in cross section, and a change less than 4.3% in decay width.

From the transition potentials, the color matrix elements, the flavor matrix elements, the spin matrix elements, and the mesonic quark-antiquark relative-motion wave functions, we calculate the transition amplitudes. As seen in Eq. (8), the development in spherical harmonics contains the summation over the orbital-angular-momentum quantum number LiL_{\rm i} that labels the relative motion between mesons AA and BB. However, not all orbital-angular-momentum quantum numbers are allowed. The orbital-angular-momentum quantum numbers are selected to satisfy parity conservation and J=JHJ=J_{H}, i.e., the total angular momentum of the two initial mesons equals the total angular momentum of meson HH. The choice of LiL_{\rm i} thus depends on the total spin SS of the two initial mesons. From the transition amplitudes we get unpolarized cross sections at zero temperature. The selected orbital-angular-momentum quantum numbers and the cross sections are shown in Tables 7 and 8. The processes DD¯ψ(4040)D^{\ast}\bar{D}^{\ast}\to\psi(4040), DD¯ψ(4160)D^{\ast}\bar{D}^{\ast}\to\psi(4160), DD¯ψ(4415)D^{\ast}\bar{D}^{\ast}\to\psi(4415), and Ds+Dsψ(4415)D^{\ast+}_{s}D^{\ast-}_{s}\to\psi(4415) allow S=0S=0, S=1S=1, and S=2S=2. Including contributions from S=0S=0, S=1S=1, and S=2S=2, the cross sections for the four reactions are 0.42 mb, 0.57 mb, 1.39 mb, and 0.11 mb, respectively. When Li=1L_{\rm i}=1 is selected, the partial wave for Li=1L_{\rm i}=1 in Eq. (8) is normalized as

4πpq1q¯1,q2q¯2ij1(pq1q¯1,q2q¯2rq1q¯1,q2q¯2)Y1Mi(r^q1q¯1,q2q¯2).4\pi\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid ij_{1}(\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})Y_{1M_{\rm i}}(\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}).

When Li=1L_{\rm i}=1 and Li=3L_{\rm i}=3 are selected together, the partial waves for Li=1L_{\rm i}=1 and Li=3L_{\rm i}=3 are normalized as

4πpq1q¯1,q2q¯2ij1(pq1q¯1,q2q¯2rq1q¯1,q2q¯2)Mi=11Y1Mi(r^q1q¯1,q2q¯2)4π10Y1Mi(p^q1q¯1,q2q¯2)4\pi\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid ij_{1}(\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\sum\limits_{M_{\rm i}=-1}^{1}Y_{1M_{\rm i}}(\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\sqrt{\frac{4\pi}{10}}Y_{1M_{\rm i}}^{\ast}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})
+4πpq1q¯1,q2q¯2i3j3(pq1q¯1,q2q¯2rq1q¯1,q2q¯2)Mi=33Y3Mi(r^q1q¯1,q2q¯2)4π10Y3Mi(p^q1q¯1,q2q¯2).+4\pi\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid i^{3}j_{3}(\mid\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\mid r_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\sum\limits_{M_{\rm i}=-3}^{3}Y_{3M_{\rm i}}(\hat{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}})\sqrt{\frac{4\pi}{10}}Y_{3M_{\rm i}}^{\ast}(\hat{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}).

In Table 7 the cross section for KK¯ϕK\bar{K}\to\phi equals 8.05 mb. The magnitude 8.05 mb is larger than the peak cross section of KK¯KK¯K\bar{K}\to K^{*}\bar{K}^{*} for total isospin I=0I=0 at zero temperature, and is roughly 8 times the peak cross section of KK¯KK¯K\bar{K}\to K^{*}\bar{K}^{*} for I=1I=1 in Ref. [5]. The case KK¯KK¯K\bar{K}\to K^{*}\bar{K}^{*} may be caused by a process where a quark in an initial meson and an antiquark in another initial meson annihilate into a gluon and subsequently the gluon creates another quark-antiquark pair. The magnitude is much larger than the peak cross sections of KK¯πKK¯K\bar{K}\to\pi K\bar{K} for I=1 and IπK¯f=3/2I_{\pi\bar{K}}^{\rm f}=3/2 and for I=1 and IπK¯f=1/2I_{\pi\bar{K}}^{\rm f}=1/2 at zero temperature in Refs. [33, 34], where IπK¯fI_{\pi\bar{K}}^{\rm f} is the total isospin of the final π\pi and K¯\bar{K} mesons. The case KK¯πKK¯K\bar{K}\to\pi K\bar{K} is governed by a process where a gluon is emitted by a constituent quark or antiquark in the initial mesons and subsequently the gluon creates a quark-antiquark pair. The magnitude is also much larger than the peak cross section of KKKKKK\to K^{\ast}K^{\ast} for I=1I=1 at zero temperature in Ref. [35]. The case KKKKKK\to K^{\ast}K^{\ast} for I=1I=1 can be caused by quark interchange between the two colliding mesons. The cross section for πDD\pi D\to D^{*} is particularly large. This means that the reaction easily happens. The large cross section is caused by the very small difference between the DD^{*} mass and the sum of the π\pi and DD masses.

The transition potentials involve quark masses. The charm-quark mass is larger than the strange-quark mass, and the transition potentials with the charm quark are smaller than the ones with the strange quark. The cross sections for DD¯ψ(3770)D\bar{D}\to\psi(3770), DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), and DD¯ψ(4415)D\bar{D}\to\psi(4415) are thus smaller than the one for KK¯ϕK\bar{K}\to\phi. Because the DD^{*} radius is larger than the DD radius, the cross sections for DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040), DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160), and DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415) are larger than those for DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), and DD¯ψ(4415)D\bar{D}\to\psi(4415), respectively. However, the cross sections for DD¯ψ(4040)D^{*}\bar{D}^{*}\to\psi(4040), DD¯ψ(4160)D^{*}\bar{D}^{*}\to\psi(4160), and DD¯ψ(4415)D^{*}\bar{D}^{*}\to\psi(4415) are smaller than those for DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040), DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160), and DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415), respectively. This is caused by the two nodes of ψ(4040)\psi(4040), the node of ψ(4160)\psi(4160), and the three nodes of ψ(4415)\psi(4415) in the radial part of the quark-antiquark relative-motion wave function. The radial wave function on the left of a node has a sign different from the one on the right of the node. The nodes lead to cancellation between the positive radial wave function and the negative radial wave function in the integration involved in the transition amplitudes. Since Ds+D^{+}_{s} (the antiparticle of DsD^{-}_{s}) consists of a charm quark and a strange antiquark, the cross sections for Ds+Dsψ(4040)D^{+}_{s}D^{-}_{s}\to\psi(4040), Ds+Dsψ(4160)D^{+}_{s}D^{-}_{s}\to\psi(4160), and Ds+Dsψ(4415)D^{+}_{s}D^{-}_{s}\to\psi(4415) are smaller than the ones for DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), and DD¯ψ(4415)D\bar{D}\to\psi(4415), respectively.

In the present work the ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons come from fusion of DD, D¯\bar{D}, DD^{*}, D¯\bar{D}^{*}, DsD_{s}, and DsD^{*}_{s} mesons. The reason why we are interested in these reactions is that ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) may decay into J/ψ,J/\psi, which is an important probe of the quark-gluon plasma produced in ultrarelativistic heavy-ion collisions. We do not investigate the χc0(2P)\chi_{c0}(2P) and χc2(2P)\chi_{c2}(2P) mesons because they cannot decay into the J/ψJ/\psi meson. The χc1(2P)\chi_{c1}(2P) meson may decay into the J/ψJ/\psi meson, but DD¯χc1(2P)D\bar{D}\to\chi_{c1}(2P) allowed by energy conservation does not simultaneously satisfy the parity conservation and the conservation of the total angular momentum. Therefore, we do not consider DD¯χc1(2P)D\bar{D}\to\chi_{c1}(2P). The production of χc1(2P)\chi_{c1}(2P) from fusion of other charmed mesons is forbidden by energy conservation. Also πDs±Ds±\pi D^{\pm}_{s}\to D^{*\pm}_{s} is not allowed because of violation of isospin conservation, and KDDs+KD\to D^{*+}_{s} and K¯D¯Ds\bar{K}\bar{D}\to D^{*-}_{s} because of violation of energy conservation.

As seen in Eq. (49), the potential between two constituents depends on temperature. The meson mass obtained from the Schrödinger equation with the potential thus depends on temperature. The temperature dependence of meson masses is shown in Figs. 2-5. In vacuum the ϕ\phi mass is larger than two times the kaon mass, and so the reaction KK¯ϕK\bar{K}\to\phi takes place. Since the ϕ\phi mass in Fig. 2 decreases faster than the kaon mass with increasing temperature, the ϕ\phi mass turns smaller than two times the kaon mass. The reaction thus no longer occurs in the temperature region 0.6TcT<Tc0.6T_{\rm c}\leq T<T_{\rm c}. In Fig. 3 the DD^{*} mass decreases faster than the pion and DD masses, and the DD^{*} mass is smaller than the sum of the pion mass and the DD mass. The processes πDD\pi D\to D^{*} and πD¯D¯\pi\bar{D}\to\bar{D}^{*} also do not occur for 0.6TcT<Tc0.6T_{\rm c}\leq T<T_{\rm c}. The mesons ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) are dissolved in hadronic matter when the temperature is larger than 0.97Tc0.97T_{\rm c}, 0.95Tc0.95T_{\rm c}, and 0.87Tc0.87T_{\rm c}, respectively [36]. Their masses are thus plotted only for 0.6TcT<0.97Tc0.6T_{\rm c}\leq T<0.97T_{\rm c}, for 0.6TcT<0.95Tc0.6T_{\rm c}\leq T<0.95T_{\rm c}, and for 0.6TcT<0.87Tc0.6T_{\rm c}\leq T<0.87T_{\rm c} in Figs. 4 and 5, and are smaller than the sum of the masses of the two initial mesons that yield them. Therefore, in hadronic matter where the temperature is constrained by 0.6TcT<Tc0.6T_{\rm c}\leq T<T_{\rm c}, we cannot see the production of ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) from the fusion of two charmed mesons and of two charmed strange mesons. Here TcT_{\rm c} is the critical temperature at which the phase transition between the quark-gluon plasma and hadronic matter takes place. Since ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) are dissolved in hadronic matter when the temperature is larger than 0.97Tc0.97T_{\rm c}, 0.95Tc0.95T_{\rm c}, and 0.87Tc0.87T_{\rm c}, respectively, they cannot be produced in the phase transition, but they can be produced in the following reactions in hadronic matter:

DD¯ρR;DD¯πR,ρR,ηR;DD¯πR,ρR,ηR;DD¯πR,ρR,ηR;D\bar{D}\to\rho R;~{}D\bar{D}^{*}\to\pi R,~{}\rho R,\eta R;~{}D^{*}\bar{D}\to\pi R,\rho R,\eta R;~{}D^{*}\bar{D}^{*}\to\pi R,\rho R,\eta R;
Ds+D¯KR;DsDK¯R;Ds+D¯KR,KR;DsDK¯R,K¯R;D_{s}^{+}\bar{D}\to K^{\ast}R;~{}D_{s}^{-}D\to\bar{K}^{\ast}R;~{}D_{s}^{+}\bar{D}^{*}\to KR,K^{\ast}R;~{}D_{s}^{-}D^{*}\to\bar{K}R,\bar{K}^{\ast}R;
Ds+D¯KR,KR;DsDK¯R,K¯R;Ds+D¯KR,KR;DsDK¯R,K¯R;D_{s}^{*+}\bar{D}\to KR,K^{\ast}R;~{}D_{s}^{*-}D\to\bar{K}R,\bar{K}^{\ast}R;~{}D_{s}^{*+}\bar{D}^{*}\to KR,K^{\ast}R;~{}D_{s}^{*-}D^{*}\to\bar{K}R,\bar{K}^{\ast}R;
Ds+DsϕR;Ds+DsηR,ϕR;Ds+DsηR,ϕR;Ds+DsηR,ϕR.D_{s}^{+}D_{s}^{-}\to\phi R;~{}D_{s}^{+}D_{s}^{*-}\to\eta R,\phi R;~{}D_{s}^{*+}D_{s}^{-}\to\eta R,\phi R;~{}D_{s}^{*+}D_{s}^{*-}\to\eta R,\phi R.

In these reactions RR stands for ψ(4040)\psi(4040), ψ(4160)\psi(4160), or ψ(4415)\psi(4415). Hadronic matter undergoes expansion, and its temperature decreases until kinetic freeze-out occurs. Every kind of hadron in hadronic matter satisfies a momentum distribution function. The temperature, the expansion, and the momentum distribution functions are needed for a full description of hadronic matter. The ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons produced from hadronic matter depend on the temperature, the expansion, and the distribution functions. Inversely, from the production we know the temperature, the expansion, and the distribution functions. Therefore, ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) may provide us with information on hadronic matter, and are a probe of hadronic matter that results from the quark-gluon plasma.

No experimental data on KK¯ϕK\bar{K}\to\phi are available. Our cross section for KK¯ϕK\bar{K}\to\phi is about 8 mb, which is smaller than the experimental cross section 80 mb for ππρ\pi\pi\to\rho [37]. Assuming pointlike hadron vertices, the mesonic model in Ref. [24] leads to a large value of 260 mb.

From Tables 7 and 8 we get ratios of the cross sections,

σDD¯ψ(4040):σDD¯+DD¯ψ(4040):σDD¯ψ(4040):σDs+Dsψ(4040)\displaystyle\sigma_{D\bar{D}\to\psi(4040)}:\sigma_{D^{*}\bar{D}+D\bar{D}^{*}\to\psi(4040)}:\sigma_{D^{*}\bar{D}^{*}\to\psi(4040)}:\sigma_{D_{s}^{+}D_{s}^{-}\to\psi(4040)} (50)
=\displaystyle= 1:4.6:0.12:0.33,\displaystyle 1:4.6:0.12:0.33,
σDD¯ψ(4160):σDD¯+DD¯ψ(4160):σDD¯ψ(4160):\displaystyle\sigma_{D\bar{D}\to\psi(4160)}:\sigma_{D^{*}\bar{D}+D\bar{D}^{*}\to\psi(4160)}:\sigma_{D^{*}\bar{D}^{*}\to\psi(4160)}: (51)
σDs+Dsψ(4160):σDs+Ds+Ds+Dsψ(4160)\displaystyle\sigma_{D_{s}^{+}D_{s}^{-}\to\psi(4160)}:\sigma_{D_{s}^{*+}D_{s}^{-}+D_{s}^{+}D_{s}^{*-}\to\psi(4160)}
=\displaystyle= 1:4.2:0.17:0.15:0.14.\displaystyle 1:4.2:0.17:0.15:0.14.

In an analysis of the production of charmed mesons and charmed strange mesons in the region of ψ(4040)\psi(4040) and ψ(4160)\psi(4160) resonances in e+ee^{+}e^{-} collisions in Ref. [38], the couplings of ψ(4040)\psi(4040) and ψ(4160)\psi(4160) to two charmed mesons and charmed strange mesons are factorized. The couplings are assumed to be proportional to a coefficient (denoted as gRi{\rm g}_{Ri} in the reference), the values of which are listed in Table 1 of the reference. If it is assumed that cross sections for the production of ψ(4040)\psi(4040) and ψ(4160)\psi(4160) from DD¯D\bar{D}, DD¯D^{*}\bar{D}, DD¯D\bar{D}^{*}, DD¯D^{*}\bar{D}^{*}, Ds+DsD_{s}^{+}D_{s}^{-}, Ds+DsD_{s}^{*+}D_{s}^{-}, Ds+DsD_{s}^{+}D_{s}^{*-}, and Ds+DsD_{s}^{*+}D_{s}^{*-} differ from each other only by the coefficient, then ratios of the cross sections are,

σDD¯ψ(4040):σDD¯+DD¯ψ(4040):σDD¯ψ(4040):σDs+Dsψ(4040)\displaystyle\sigma_{D\bar{D}\to\psi(4040)}:\sigma_{D^{*}\bar{D}+D\bar{D}^{*}\to\psi(4040)}:\sigma_{D^{*}\bar{D}^{*}\to\psi(4040)}:\sigma_{D_{s}^{+}D_{s}^{-}\to\psi(4040)} (52)
=\displaystyle= 1:4:7:1,\displaystyle 1:4:7:1,
σDD¯ψ(4160):σDD¯+DD¯ψ(4160):σDD¯ψ(4160):\displaystyle\sigma_{D\bar{D}\to\psi(4160)}:\sigma_{D^{*}\bar{D}+D\bar{D}^{*}\to\psi(4160)}:\sigma_{D^{*}\bar{D}^{*}\to\psi(4160)}: (53)
σDs+Dsψ(4160):σDs+Ds+Ds+Dsψ(4160)\displaystyle\sigma_{D_{s}^{+}D_{s}^{-}\to\psi(4160)}:\sigma_{D_{s}^{*+}D_{s}^{-}+D_{s}^{+}D_{s}^{*-}\to\psi(4160)}
=\displaystyle= 1:1:7.7:1:1.\displaystyle 1:1:7.7:1:1.

This assumption is correct when the DD^{*} (D¯\bar{D}^{*}, Ds+D_{s}^{*+}, DsD_{s}^{*-}) mass equals the DD (D¯\bar{D}, Ds+D_{s}^{+}, DsD_{s}^{-}) mass. Regarding the ratios given in Eq. (52) we mention a study of production of charmed mesons in e+ee^{+}e^{-} collisions in Ref. [39]. An electron and a positron annihilate into a photon. The photon directly produces a pair of charmed quarks, each of which becomes a charmed meson in combination with a subsequently produced uu or dd quark. Neglecting the difference between the DD and DD^{*} masses and the spin-spin interaction between the charmed quark and the light quark, the final states DD¯D\bar{D}, DD¯+DD¯D^{*}\bar{D}+D\bar{D}^{*}, and DD¯D^{*}\bar{D}^{*} are populated in ratios 1:4:7, which agree with those given in Eq. (52). Nevertheless, the agreement does not surprise us in view of heavy quark symmetry [39, 40, 41, 42]. Heavy quark symmetry is that, in the limit of very large quark mass, strong interactions of the heavy quark become independent of its mass and spin. A consequence of heavy quark symmetry is that mD=mDm_{D^{*}}=m_{D}, mD¯=mD¯m_{\bar{D}^{*}}=m_{\bar{D}}, and mDs±=mDs±m_{D_{s}^{*\pm}}=m_{D_{s}^{\pm}}. Therefore, heavy quark symmetry is assumed in obtaining the ratios in Eq. (52) and in Ref. [39], and the ratios 1:4:7 are general in the transition between charmed mesons and cc¯c\bar{c} in heavy quark symmetry.

Cross sections for the production of ψ(4040)\psi(4040) from the fusion of two charmed mesons are proportional to not only the couplings squared but also the factor 1(PAPB)2mA2mB2\frac{1}{\sqrt{(P_{A}\cdot P_{B})^{2}-m_{A}^{2}m_{B}^{2}}} as seen in Eq. (29). When the colliding mesons go through the cases of DD¯D\bar{D}, DD¯D^{*}\bar{D}, and DD¯D^{*}\bar{D}^{*}, the factor does not change in heavy quark symmetry, but changes if the DD^{*} mass is not the same as the DD mass. The latter causes σDD¯ψ(4040):σDD¯+DD¯ψ(4040):σDD¯ψ(4040)\sigma_{D\bar{D}\to\psi(4040)}:\sigma_{D^{*}\bar{D}+D\bar{D}^{*}\to\psi(4040)}:\sigma_{D^{*}\bar{D}^{*}\to\psi(4040)} to deviate from the general ratios 1:4:7.

We have obtained cross sections for the production of ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) from the fusion of two charmed mesons and of two charmed strange mesons. As seen from the Review of Particle Physics in Ref. [29], time reversal of these reactions dominate decays of the four cc¯c\bar{c} mesons. We study the decays in terms of the process where a gluon is emitted by a constituent quark or antiquark in the initial mesons and subsequently the gluon creates a quark-antiquark pair. This part is given in the appendix.

V. SUMMARY

Using the process where one quark annihilates with one antiquark to create a gluon and subsequently the gluon is absorbed by a spectator quark or antiquark, we have studied 2-to-1 meson-meson scattering. In the partial wave expansion of the relative-motion wave function of the two initial mesons, we have obtained the new expressions of the transition amplitudes. The orbital-angular-momentum quantum number corresponding to the total spin of the two initial mesons is selected to satisfy parity conservation and conservation of the total angular momentum. The flavor and spin matrix elements have been calculated. The spin matrix elements corresponding to the four transition potentials are presented. The mesonic quark-antiquark relative-motion wave functions are given by the Schrödinger equation with the temperature-dependent potential. From the transition amplitudes we have obtained the cross sections for the reactions: KK¯ϕK\bar{K}\to\phi, πDD\pi D\to D^{*}, πD¯D¯\pi\bar{D}\to\bar{D}^{*}, DD¯ψ(3770)D\bar{D}\to\psi(3770), DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040), DD¯ψ(4040)D\bar{D}^{*}\to\psi(4040), DD¯ψ(4040)D^{*}\bar{D}^{*}\to\psi(4040), Ds+Dsψ(4040)D_{s}^{+}D_{s}^{-}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160), DD¯ψ(4160)D\bar{D}^{*}\to\psi(4160), DD¯ψ(4160)D^{*}\bar{D}^{*}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{*+}D_{s}^{-}\to\psi(4160), Ds+Dsψ(4160)D_{s}^{+}D_{s}^{*-}\to\psi(4160), DD¯ψ(4415)D\bar{D}\to\psi(4415), DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415), DD¯ψ(4415)D\bar{D}^{*}\to\psi(4415), DD¯ψ(4415)D^{*}\bar{D}^{*}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{-}\to\psi(4415), Ds+Dsψ(4415)D_{s}^{+}D_{s}^{*-}\to\psi(4415), and Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{*-}\to\psi(4415). The cross sections are affected by radii of initial mesons and quark masses that enter the transition potentials. The cross section for KK¯ϕK\bar{K}\to\phi is larger than the ones for DD¯ψ(3770)D\bar{D}\to\psi(3770), DD¯ψ(4040)D\bar{D}\to\psi(4040), DD¯ψ(4160)D\bar{D}\to\psi(4160), and DD¯ψ(4415)D\bar{D}\to\psi(4415), but smaller than the one for πDD\pi D\to D^{*}. The ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) mesons resulting from ultrarelativistic heavy-ion collisions have been shown to be a probe of hadronic matter that is produced in the phase transition of the quark-gluon plasma.

APPENDIX

We calculate widths of the ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays, which produce two charmed mesons or two charmed strange mesons. Four Feynman diagrams at tree level are involved in ZX+YZ\to X+Y, and are shown in Fig. 6. The two upper diagrams correspond to Z(q2q¯1)X(q1q¯1)+Y(q2q¯2)Z(q_{2}\bar{q}_{1})\to X(q_{1}\bar{q}_{1})+Y(q_{2}\bar{q}_{2}), and the two lower diagrams Z(q1q¯2)X(q1q¯1)+Y(q2q¯2)Z(q_{1}\bar{q}_{2})\to X(q_{1}\bar{q}_{1})+Y(q_{2}\bar{q}_{2}). Denote by ψZ\psi_{Z} and ψXY\psi_{XY} the mesonic quark-antiquark wave functions of meson ZZ and of mesons XX and YY, respectively. Let (EX,pX)(E_{X},\vec{p}_{X}), (EY,pY)(E_{Y},\vec{p}_{Y}), and (EZ,pZ)(E_{Z},\vec{p}_{Z}) be the four-momenta of mesons XX, YY, and ZZ, respectively. The transition amplitudes corresponding to the left upper diagram, the right upper diagram, the left lower diagram, and the right lower diagram are given by

cq¯1=2EZ2EX2EY𝑑rq1q¯1𝑑rq2q¯2ψXY+Vcq¯1ψZeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm c}\bar{q}_{1}}=\sqrt{2E_{Z}2E_{X}2E_{Y}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{XY}^{+}V_{{\rm c}\bar{q}_{1}}\psi_{Z}e^{-i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (54)
cq2=2EZ2EX2EY𝑑rq1q¯1𝑑rq2q¯2ψXY+Vcq2ψZeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm c}q_{2}}=\sqrt{2E_{Z}2E_{X}2E_{Y}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{XY}^{+}V_{{\rm c}q_{2}}\psi_{Z}e^{-i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (55)
cq1=2EZ2EX2EY𝑑rq1q¯1𝑑rq2q¯2ψXY+Vcq1ψZeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm c}q_{1}}=\sqrt{2E_{Z}2E_{X}2E_{Y}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{XY}^{+}V_{{\rm c}q_{1}}\psi_{Z}e^{-i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (56)
cq¯2=2EZ2EX2EY𝑑rq1q¯1𝑑rq2q¯2ψXY+Vcq¯2ψZeipq1q¯1,q2q¯2rq1q¯1,q2q¯2,{\cal M}_{{\rm c}\bar{q}_{2}}=\sqrt{2E_{Z}2E_{X}2E_{Y}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{XY}^{+}V_{{\rm c}\bar{q}_{2}}\psi_{Z}e^{-i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}, (57)

where Vcq¯1V_{{\rm c}\bar{q}_{1}}, Vcq2V_{{\rm c}q_{2}}, Vcq1V_{{\rm c}q_{1}}, and Vcq¯2V_{{\rm c}\bar{q}_{2}} are the transition potentials for the processes where a gluon is emitted by a constiutent quark or antiquark in the initial mesons and subsequently the gluon creates a quark-antiquark pair, and are given in Eqs. (51) and (52) of Ref. [33]. The two upper diagrams give q¯1(pq¯1)+q2(pq2)q1(pq1)+q¯1(pq¯1)+q2(pq2)+q¯2(pq¯2)\bar{q}_{1}(p_{\bar{q}_{1}}^{\prime})+q_{2}(p_{q_{2}}^{\prime})\to q_{1}(p_{q_{1}})+\bar{q}_{1}(p_{\bar{q}_{1}})+q_{2}(p_{q_{2}})+\bar{q}_{2}(p_{\bar{q}_{2}}), and the two lower diagrams q1(pq1)+q¯2(pq¯2)q1(pq1)+q¯1(pq¯1)+q2(pq2)+q¯2(pq¯2)q_{1}(p_{q_{1}}^{\prime})+\bar{q}_{2}(p_{\bar{q}_{2}}^{\prime})\to q_{1}(p_{q_{1}})+\bar{q}_{1}(p_{\bar{q}_{1}})+q_{2}(p_{q_{2}})+\bar{q}_{2}(p_{\bar{q}_{2}}). We have Vcq¯1=Vrq1q¯2q¯1V_{{\rm c}\bar{q}_{1}}=V_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}, Vcq2=Vrq1q¯2q2V_{{\rm c}q_{2}}=V_{{\rm r}q_{1}\bar{q}_{2}q_{2}}, Vcq1=Vrq2q¯1q1V_{{\rm c}q_{1}}=V_{{\rm r}q_{2}\bar{q}_{1}q_{1}}, and Vcq¯2=Vrq2q¯1q¯2V_{{\rm c}\bar{q}_{2}}=V_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}.

The transition amplitudes squared are given by

cq¯12=2EX2EY2EZ𝑑rq1q¯1𝑑rq2q¯2ψZ+Vcq¯1ψXYeipq1q¯1,q2q¯2rq1q¯1,q2q¯22,\mid{\cal M}_{{\rm c}\bar{q}_{1}}\mid^{2}=\mid\sqrt{2E_{X}2E_{Y}2E_{Z}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{Z}^{+}V_{{\rm c}\bar{q}_{1}}\psi_{XY}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}\mid^{2}, (58)
cq22=2EX2EY2EZ𝑑rq1q¯1𝑑rq2q¯2ψZ+Vcq2ψXYeipq1q¯1,q2q¯2rq1q¯1,q2q¯22,\mid{\cal M}_{{\rm c}q_{2}}\mid^{2}=\mid\sqrt{2E_{X}2E_{Y}2E_{Z}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{Z}^{+}V_{{\rm c}q_{2}}\psi_{XY}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}\mid^{2}, (59)
cq12=2EX2EY2EZ𝑑rq1q¯1𝑑rq2q¯2ψZ+Vcq1ψXYeipq1q¯1,q2q¯2rq1q¯1,q2q¯22,\mid{\cal M}_{{\rm c}q_{1}}\mid^{2}=\mid\sqrt{2E_{X}2E_{Y}2E_{Z}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{Z}^{+}V_{{\rm c}q_{1}}\psi_{XY}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}\mid^{2}, (60)
cq¯22=2EX2EY2EZ𝑑rq1q¯1𝑑rq2q¯2ψZ+Vcq¯2ψXYeipq1q¯1,q2q¯2rq1q¯1,q2q¯22.\mid{\cal M}_{{\rm c}\bar{q}_{2}}\mid^{2}=\mid\sqrt{2E_{X}2E_{Y}2E_{Z}}\int d\vec{r}_{q_{1}\bar{q}_{1}}d\vec{r}_{q_{2}\bar{q}_{2}}\psi_{Z}^{+}V_{{\rm c}\bar{q}_{2}}\psi_{XY}e^{i\vec{p}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}\cdot\vec{r}_{q_{1}\bar{q}_{1},q_{2}\bar{q}_{2}}}\mid^{2}. (61)

It is obvious that cq¯12\mid{\cal M}_{{\rm c}\bar{q}_{1}}\mid^{2}, cq22\mid{\cal M}_{{\rm c}q_{2}}\mid^{2}, cq12\mid{\cal M}_{{\rm c}q_{1}}\mid^{2}, and cq¯22\mid{\cal M}_{{\rm c}\bar{q}_{2}}\mid^{2} equal rq1q¯2q¯12\mid{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}}\mid^{2}, rq1q¯2q22\mid{\cal M}_{{\rm r}q_{1}\bar{q}_{2}q_{2}}\mid^{2}, rq2q¯1q12\mid{\cal M}_{{\rm r}q_{2}\bar{q}_{1}q_{1}}\mid^{2}, and rq2q¯1q¯22\mid{\cal M}_{{\rm r}q_{2}\bar{q}_{1}\bar{q}_{2}}\mid^{2}, respectively. Therefore, Eqs. (22) and (26)-(28) can be used to calculate cq¯12\mid{\cal M}_{{\rm c}\bar{q}_{1}}\mid^{2}, cq22\mid{\cal M}_{{\rm c}q_{2}}\mid^{2}, cq12\mid{\cal M}_{{\rm c}q_{1}}\mid^{2}, and cq¯22\mid{\cal M}_{{\rm c}\bar{q}_{2}}\mid^{2}.

The transition amplitudes lead to the decay width for ZX+YZ\to X+Y:

W\displaystyle W =\displaystyle= 12JZ+1d3pX(2π)3d3pY(2π)3(2π)4δ(EX+EYEZ)δ3(pX+pYpZ)2EX2EY2EZ\displaystyle\frac{1}{2J_{Z}+1}\int\frac{d^{3}p_{X}}{(2\pi)^{3}}\frac{d^{3}p_{Y}}{(2\pi)^{3}}\frac{(2\pi)^{4}\delta(E_{X}+E_{Y}-E_{Z})\delta^{3}(\vec{p}_{X}+\vec{p}_{Y}-\vec{p}_{Z})}{2E_{X}2E_{Y}2E_{Z}} (62)
JZzJXzJYzcq¯1+cq2+cq1+cq¯22.\displaystyle\sum\limits_{J_{Zz}J_{Xz}J_{Yz}}\mid{\cal M}_{{\rm c}\bar{q}_{1}}+{\cal M}_{{\rm c}q_{2}}+{\cal M}_{{\rm c}q_{1}}+{\cal M}_{{\rm c}\bar{q}_{2}}\mid^{2}.

where JiJ_{i} (i=Zi=Z, XX, YY) is the total angular momentum of meson ii with its magnetic projection quantum number JizJ_{iz}. In Table 9 decay widths are shown for the ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays that produce charmed mesons or charmed strange mesons. The decay width for ψ(3770)DD¯\psi(3770)\to D\bar{D} is 18 MeV compared to the experimental value 25.3±0.0925.3\pm 0.09 MeV. The total widths of the ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays listed in the Review of Particle Physics [29] are 80±1080\pm 10 MeV, 70±1070\pm 10 MeV, and 62±2062\pm 20 MeV, respectively, but the partial widths for the ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays to charmed mesons or charmed strange mesons have not been given. However, since the ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays mainly produce charmed mesons and charmed strange mesons, the measured total widths of the ψ(4040)\psi(4040), ψ(4160)\psi(4160), and ψ(4415)\psi(4415) decays may be compared to 70.2 MeV as the sum of the five ψ(4040)\psi(4040) partial widths, 63.3 MeV as the sum of the seven ψ(4160)\psi(4160) partial widths, and 61.1 MeV as the sum of the eight ψ(4415)\psi(4415) partial widths. We note that our partial widths differ from those obtained in the P03{}^{3}P_{0} model in Ref. [22].

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant No. 11175111.

References

  • [1] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984); J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985); J. Gasser and U. G. Meissner, Phys. Lett. B 258, 219 (1991); J. Gasser and U. G. Meissner, Nucl. Phys. B 357, 90 (1991); I. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Nucl. Phys. B 508, 263 (1997); F. Guerrero and J. A. Oller, Nucl. Phys. B 537, 459 (1999); A. G. Nicola and J. Peláez, Phys. Rev. D 65, 054009 (2002).
  • [2] T. N. Truong, Phys. Rev. Lett. 67, 2260 (1991); T. Hannah, Phys. Rev. D 55, 5613 (1997); A. Dobado and J. R. Peláez, Phys. Rev. D 56, 3057 (1997); M. Boglione and M. R. Pennington, Z. Phys. C 75, 113 (1997); J. A. Oller, E. Oset, and J. R. Peláez, Phys. Rev. D 59, 074001 (1999); J. Nieves, M. P. Valderrama, and E. R. Arriola, Phys. Rev. D 65, 036002 (2002); J. Nebreda and J. R. Peláez, Phys. Rev. D 81, 054035 (2010); M. Döring and U.-G. Meißner, JHEP 01, 009 (2012).
  • [3] J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997); F.-K. Guo, R.-G. Ping, P.-N. Shen, H.-C. Chiang, and B. S. Zou, Nucl. Phys. A 773, 78 (2006); I. V. Danilkin, L. I. R. Gil, and M. F. M. Lutz, Phys. Lett. B 703, 504 (2011); Z.-H. Guo, L. Liu, U.-G. Meißner, J. A. Oller, and A. Rusetsky, Phys. Rev. D 95, 054004 (2017); I. V. Danilkin and M. Vanderhaeghen, Phys. Lett. B 789, 366 (2019).
  • [4] T. Barnes and E. S. Swanson, Phys. Rev. D 46, 131 (1992); E. S. Swanson, Ann. Phys. (N.Y.) 220, 73 (1992); T. Barnes, E. S. Swanson, and J. Weinstein, Phys. Rev. D 46, 4868 (1992); T. Barnes, N. Black, and E. S. Swanson, Phys. Rev. C 63, 025204 (2001).
  • [5] Z.-Y. Shen, X.-M. Xu, and H. J. Weber, Phys. Rev. D 94, 034030 (2016).
  • [6] J. A. Oller, E. Oset, and J. R. Peláez, Phys. Rev. D 59, 074001 (1999).
  • [7] J. J. Dudek, R. G. Edwards, and D. J. Wilson, Phys. Rev. D 93, 094506 (2016).
  • [8] Y. S. Surovtsev, P. Bydzˇ\check{\rm z}ovsky´\acute{\rm y}, T. Gutsche, R. Kamin´\acute{\rm n}ski, V. E. Lyubovitskij, and M. Nagy, Phys. Rev. D 97, 014009 (2018).
  • [9] A. T. Aoude, P. C. Magalha~\tilde{\rm a}es, A. C. dos Reis, and M. R. Robilotta, Phys. Rev. D 98, 056021 (2018).
  • [10] D. Black, A. H. Fariborz, and J. Schechter, Phys. Rev. D 61, 074030 (2000).
  • [11] Z.-H. Guo, L. Liu, U.-G. Meißner, J. A. Oller, and A. Rusetsky, Phys. Rev. D 95, 054004 (2017).
  • [12] V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, and U.-G. Meißner, Eur. Phys. J. A 23, 523 (2005).
  • [13] B. Borasoy and R. Nißler, Eur. Phys. J. A 26, 383 (2005).
  • [14] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, JHEP 04, 162 (2014).
  • [15] L. Roca and E. Oset, Phys. Rev. D 85, 054507 (2012).
  • [16] J. M. Flynn and J. Nieves, Phys. Rev. D 75, 074024 (2007).
  • [17] Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, K. Murano, H. Nemura, and K. Sasaki, Phys. Lett. B 729, 85 (2014).
  • [18] A. M. Torres, L. R. Dai, C. Koren, D. Jido, and E. Oset, Phys. Rev. D 85, 014027 (2012).
  • [19] K. Yang, X.-M. Xu, and H. J. Weber, Phys. Rev. D 96, 114025 (2017).
  • [20] W. Buchmüller and S.-H. H. Tye, Phys. Rev. D 24, 132 (1981).
  • [21] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
  • [22] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2005).
  • [23] J. Vijande, F. Ferna´\acute{\rm a}ndez, and A. Valcarce, J. Phys. G 31, 481 (2005); P. G. Ortega, J. Segovia, D. R. Entem, F. Ferna´\acute{\rm a}ndez, Phys. Lett. B 778, 1 (2018).
  • [24] G. Q. Li and C. M. Ko, Nucl. Phys. A 582, 731 (1995); W. S. Chung, G. Q. Li, and C. M. Ko, Nucl. Phys. A 625, 347 (1997).
  • [25] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Elsevier, Amsterdam, 2006).
  • [26] C. J. Joachain, Quantum Collision Theory (North-Holland Publishing Company, Amsterdam, 1983).
  • [27] S.-T. Ji, Z.-Y. Shen, and X.-M. Xu, J. Phys. G 42, 095110 (2015).
  • [28] F. Karsch, E. Laermann, and A. Peikert, Nucl. Phys. B 605, 579 (2001).
  • [29] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update.
  • [30] E. Colton et al., Phys. Rev. D 3, 2028 (1971); N. B. Durusoy et al., Phys. Lett. B 45, 517 (1973); M. J. Losty et al., Nucl. Phys. B 69, 185 (1974); W. Hoogland et al., Nucl. Phys. B 126, 109 (1977).
  • [31] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973); B. Hyams et al., Nucl. Phys. B 64, 134 (1973); P. Estabrooks and A. D. Martin, Nucl. Phys. B 79, 301 (1974); V. Srinivasan et al., Phys. Rev. D 12, 681 (1975); L. Rosselet et al., Phys. Rev. D 15, 574 (1977); C. D. Froggatt and J. L. Petersen, Nucl. Phys. B 129, 89 (1977); A. A. Bel’kov et al., JETP Lett. 29, 597 (1979); E. A. Alekseeva et al., Sov. Phys. JETP 55, 591 (1982); R. Garci´\acute{\rm i}a-Marti´\acute{\rm i}n, R. Kamin´\acute{\rm n}ski, J. R. Pela´\acute{\rm a}ez, J. R. de Elvira, and F. J. Yndura´\acute{\rm a}in, Phys. Rev. D 83, 074004 (2011).
  • [32] X.-M. Xu, Nucl. Phys. A 697, 825 (2002).
  • [33] W.-X. Li, X.-M. Xu, and H. J. Weber, Phys. Rev. D 101, 014025 (2020).
  • [34] X.-M. Xu and H. J. Weber, Mod. Phys. Lett. A 35, 2030016 (2020).
  • [35] Z.-Y. Shen and X.-M. Xu, J. Korean Phys. Soc. 66, 754 (2015).
  • [36] S.-T. Ji, X.-M. Xu, and H. J. Weber, Nucl. Phys. A 966, 224 (2017).
  • [37] V. Flaminio, W. G. Moorhead, D. R. O. Morrison, N. Rivoire, CERN, Geneva Report No. CERN-HERA-84-01, 1984.
  • [38] M. Bayar, N. Ikeno, and E. Oset, Eur. Phys. J. C 80, 222 (2020).
  • [39] A. De Ru´\acute{\rm u}jula, H. Georgi, and S. L. Glashow, Phys. Rev. Lett. 37, 398 (1976).
  • [40] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989); 237, 527 (1990).
  • [41] H. Georgi, Phys. Lett. B 240, 447 (1990).
  • [42] M. Neubert, Phys. Rep. 245, 259 (1994).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Reaction A+BHA+B\to H. Solid lines with right (left) triangles stand for quarks (antiquarks). Wavy lines stand for gluons.
Refer to caption
Figure 2: KK and ϕ\phi masses as functions of T/TcT/T_{\rm c}.
Refer to caption
Figure 3: π\pi, DD, and DD^{\ast} masses as functions of T/TcT/T_{\rm c}.
Refer to caption
Figure 4: DD, DD^{\ast}, DsD_{s}, DsD_{s}^{\ast}, ψ(3770)\psi(3770), and ψ(4160)\psi(4160) masses as functions of T/TcT/T_{\rm c}.
Refer to caption
Figure 5: DD, DD^{\ast}, DsD_{s}, DsD_{s}^{\ast}, ψ(4040)\psi(4040), and ψ(4415)\psi(4415) masses as functions of T/TcT/T_{\rm c}.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Decay ZX+YZ\to X+Y. Solid lines with right (left) triangles stand for quarks (antiquarks). Wavy lines stand for gluons.
Table 1: Flavor matrix elements.
diagram in Fig. 1 left upper right upper left lower right lower
fKK¯ϕ{\cal M}_{{\rm f}K\bar{K}\to\phi} 2\sqrt{2} 2\sqrt{2} 0 0
fπDD{\cal M}_{{\rm f}\pi D\to D^{\ast}} 36\frac{3}{\sqrt{6}} 36\frac{3}{\sqrt{6}} 0 0
fDD¯ψ(3770){\cal M}_{{\rm f}D\bar{D}\to\psi(3770)} 0 0 -2\sqrt{2} -2\sqrt{2}
fDs+Dsψ(4040){\cal M}_{{\rm f}D_{s}^{+}D_{s}^{-}\to\psi(4040)} 0 0 1 1
Table 2: Spin matrix elements in rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} for A(SA=1)+B(SB=0)H(SH=1)A(S_{A}=1)+B(S_{B}=0)\to H(S_{H}=1).
SHzS_{Hz} -1 -1 -1 0 0 0 1 1 1
SAzS_{Az} -1 0 1 -1 0 1 -1 0 1
SBzS_{Bz} 0 0 0 0 0 0 0 0 0
ϕfss+ϕiss\phi_{\rm fss}^{+}\phi_{\rm iss} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\phi_{\rm iss} 12-\frac{1}{\sqrt{2}} 0 0 0 0 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ2(21)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\phi_{\rm iss} i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\phi_{\rm iss} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0
ϕfss+σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(1)\phi_{\rm iss} 0 0 12-\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0
ϕfss+σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(1)\phi_{\rm iss} 0 0 i2\frac{i}{\sqrt{2}} 0 i2-\frac{i}{\sqrt{2}} 0 i2\frac{i}{\sqrt{2}} 0 0
ϕfss+σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{1}(1)\phi_{\rm iss} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{2}(1)\phi_{\rm iss} 0 i2\frac{i}{2} 0 i2-\frac{i}{2} 0 i2-\frac{i}{2} 0 i2\frac{i}{2} 0
ϕfss+σ1(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{3}(1)\phi_{\rm iss} 12\frac{1}{\sqrt{2}} 0 0 0 12-\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ2(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{1}(1)\phi_{\rm iss} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0
ϕfss+σ2(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{2}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0
ϕfss+σ2(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{3}(1)\phi_{\rm iss} -i2\frac{i}{\sqrt{2}} 0 0 0 0 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 12-\frac{1}{\sqrt{2}} 0 12-\frac{1}{\sqrt{2}} 0 12-\frac{1}{\sqrt{2}} 0 0
ϕfss+σ3(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 -i2\frac{i}{\sqrt{2}} 0 0
ϕfss+σ3(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{3}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 -12\frac{1}{2} 0
Table 3: Spin matrix elements in rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} for A(SA=0)+B(SB=1)H(SH=1)A(S_{A}=0)+B(S_{B}=1)\to H(S_{H}=1).
SHzS_{Hz} -1 -1 -1 0 0 0 1 1 1
SAzS_{Az} 0 0 0 0 0 0 0 0 0
SBzS_{Bz} -1 0 1 -1 0 1 -1 0 1
ϕfss+ϕiss\phi_{\rm fss}^{+}\phi_{\rm iss} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0
ϕfss+σ1(21)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\phi_{\rm iss} 12\frac{1}{\sqrt{2}} 0 0 0 0 0 0 0 -12\frac{1}{\sqrt{2}}
ϕfss+σ2(21)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\phi_{\rm iss} i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\phi_{\rm iss} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(1)\phi_{\rm iss} 12-\frac{1}{\sqrt{2}} 0 0 0 0 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(1)\phi_{\rm iss} i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(1)\phi_{\rm iss} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0
ϕfss+σ1(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{1}(1)\phi_{\rm iss} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{2}(1)\phi_{\rm iss} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0
ϕfss+σ1(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{3}(1)\phi_{\rm iss} -12\frac{1}{\sqrt{2}} 0 0 0 12-\frac{1}{\sqrt{2}} 0 0 0 -12\frac{1}{\sqrt{2}}
ϕfss+σ2(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{1}(1)\phi_{\rm iss} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0
ϕfss+σ2(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{2}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0
ϕfss+σ2(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{3}(1)\phi_{\rm iss} -i2\frac{i}{\sqrt{2}} 0 0 0 0 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{1}(1)\phi_{\rm iss} 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ3(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{2}(1)\phi_{\rm iss} -i2\frac{i}{\sqrt{2}} 0 0 0 0 0 0 0 i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{3}(1)\phi_{\rm iss} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0
Table 4: Spin matrix elements in rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} for A(SA=1)+B(SB=1)H(SH=1)A(S_{A}=1)+B(S_{B}=1)\to H(S_{H}=1) with SHz=1S_{Hz}=-1.
SHzS_{Hz} -1 -1 -1 -1 -1 -1 -1 -1 -1
SAzS_{Az} -1 -1 -1 0 0 0 1 1 1
SBzS_{Bz} -1 0 1 -1 0 1 -1 0 1
ϕfss+ϕiss\phi_{\rm fss}^{+}\phi_{\rm iss} 1 0 0 0 12\frac{1}{2} 0 0 0 0
ϕfss+σ1(21)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\phi_{\rm iss} 0 12\frac{1}{\sqrt{2}} 0 12\frac{1}{\sqrt{2}} 0 0 0 0 0
ϕfss+σ2(21)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\phi_{\rm iss} 0 -i2\frac{i}{\sqrt{2}} 0 i2\frac{i}{\sqrt{2}} 0 0 0 0 0
ϕfss+σ3(21)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\phi_{\rm iss} -1 0 0 0 12\frac{1}{2} 0 0 0 0
ϕfss+σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(1)\phi_{\rm iss} 0 0 0 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0
ϕfss+σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(1)\phi_{\rm iss} 0 0 0 -i2\frac{i}{\sqrt{2}} 0 0 0 i2-\frac{i}{\sqrt{2}} 0
ϕfss+σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(1)\phi_{\rm iss} -1 0 0 0 -12\frac{1}{2} 0 0 0 0
ϕfss+σ1(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 0 0 12\frac{1}{2} 0 1 0 0
ϕfss+σ1(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 0 0 -i2\frac{i}{2} 0 i-i 0 0
ϕfss+σ1(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{3}(1)\phi_{\rm iss} 0 -12\frac{1}{\sqrt{2}} 0 12-\frac{1}{\sqrt{2}} 0 0 0 0 0
ϕfss+σ2(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 0 0 -i2\frac{i}{2} 0 ii 0 0
ϕfss+σ2(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 0 0 -12\frac{1}{2} 0 1 0 0
ϕfss+σ2(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{3}(1)\phi_{\rm iss} 0 i2\frac{i}{\sqrt{2}} 0 -i2\frac{i}{\sqrt{2}} 0 0 0 0 0
ϕfss+σ3(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 0 12-\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0
ϕfss+σ3(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 -i2\frac{i}{\sqrt{2}} 0
ϕfss+σ3(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{3}(1)\phi_{\rm iss} 1 0 0 0 -12\frac{1}{2} 0 0 0 0
Table 5: Spin matrix elements in rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} for A(SA=1)+B(SB=1)H(SH=1)A(S_{A}=1)+B(S_{B}=1)\to H(S_{H}=1) with SHz=0S_{Hz}=0.
SHzS_{Hz} 0 0 0 0 0 0 0 0 0
SAzS_{Az} -1 -1 -1 0 0 0 1 1 1
SBzS_{Bz} -1 0 1 -1 0 1 -1 0 1
ϕfss+ϕiss\phi_{\rm fss}^{+}\phi_{\rm iss} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\phi_{\rm iss} 0 0 12\frac{1}{\sqrt{2}} 0 12\frac{1}{\sqrt{2}} 0 12\frac{1}{\sqrt{2}} 0 0
ϕfss+σ2(21)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\phi_{\rm iss} 0 0 -i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0
ϕfss+σ3(21)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\phi_{\rm iss} 0 12-\frac{1}{2} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(1)\phi_{\rm iss} 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(1)\phi_{\rm iss} i2\frac{i}{\sqrt{2}} 0 0 0 0 0 0 0 -i2\frac{i}{\sqrt{2}}
ϕfss+σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(1)\phi_{\rm iss} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0 12-\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{1}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ1(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{2}(1)\phi_{\rm iss} 0 i2\frac{i}{2} 0 i2\frac{i}{2} 0 i2-\frac{i}{2} 0 -i2\frac{i}{2} 0
ϕfss+σ1(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{3}(1)\phi_{\rm iss} 0 0 -12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0
ϕfss+σ2(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{1}(1)\phi_{\rm iss} 0 -i2\frac{i}{2} 0 i2\frac{i}{2} 0 -i2\frac{i}{2} 0 i2\frac{i}{2} 0
ϕfss+σ2(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{2}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0
ϕfss+σ2(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{3}(1)\phi_{\rm iss} 0 0 i2\frac{i}{\sqrt{2}} 0 -i2\frac{i}{\sqrt{2}} 0 i2\frac{i}{\sqrt{2}} 0 0
ϕfss+σ3(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{1}(1)\phi_{\rm iss} 12-\frac{1}{\sqrt{2}} 0 0 0 0 0 0 0 12\frac{1}{\sqrt{2}}
ϕfss+σ3(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{2}(1)\phi_{\rm iss} -i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0 -i2\frac{i}{\sqrt{2}}
ϕfss+σ3(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{3}(1)\phi_{\rm iss} 0 12\frac{1}{2} 0 -12\frac{1}{2} 0 -12\frac{1}{2} 0 12\frac{1}{2} 0
Table 6: Spin matrix elements in rq1q¯2q¯1{\cal M}_{{\rm r}q_{1}\bar{q}_{2}\bar{q}_{1}} for A(SA=1)+B(SB=1)H(SH=1)A(S_{A}=1)+B(S_{B}=1)\to H(S_{H}=1) with SHz=1S_{Hz}=1.
SHzS_{Hz} 1 1 1 1 1 1 1 1 1
SAzS_{Az} -1 -1 -1 0 0 0 1 1 1
SBzS_{Bz} -1 0 1 -1 0 1 -1 0 1
ϕfss+ϕiss\phi_{\rm fss}^{+}\phi_{\rm iss} 0 0 0 0 12\frac{1}{2} 0 0 0 1
ϕfss+σ1(21)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\phi_{\rm iss} 0 0 0 0 0 12\frac{1}{\sqrt{2}} 0 12\frac{1}{\sqrt{2}} 0
ϕfss+σ2(21)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\phi_{\rm iss} 0 0 0 0 0 -i2\frac{i}{\sqrt{2}} 0 i2\frac{i}{\sqrt{2}} 0
ϕfss+σ3(21)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\phi_{\rm iss} 0 0 0 0 12-\frac{1}{2} 0 0 0 1
ϕfss+σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(1)\phi_{\rm iss} 0 12\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0 0
ϕfss+σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(1)\phi_{\rm iss} 0 i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0
ϕfss+σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(1)\phi_{\rm iss} 0 0 0 0 12\frac{1}{2} 0 0 0 1
ϕfss+σ1(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 1 0 12\frac{1}{2} 0 0 0 0
ϕfss+σ1(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 ii 0 i2\frac{i}{2} 0 0 0 0
ϕfss+σ1(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{1}(21)\sigma_{3}(1)\phi_{\rm iss} 0 0 0 0 0 12\frac{1}{\sqrt{2}} 0 12\frac{1}{\sqrt{2}} 0
ϕfss+σ2(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{1}(1)\phi_{\rm iss} 0 0 -ii 0 i2\frac{i}{2} 0 0 0 0
ϕfss+σ2(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{2}(1)\phi_{\rm iss} 0 0 1 0 -12\frac{1}{2} 0 0 0 0
ϕfss+σ2(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{2}(21)\sigma_{3}(1)\phi_{\rm iss} 0 0 0 0 0 -i2\frac{i}{\sqrt{2}} 0 i2\frac{i}{\sqrt{2}} 0
ϕfss+σ3(21)σ1(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{1}(1)\phi_{\rm iss} 0 12-\frac{1}{\sqrt{2}} 0 0 0 12\frac{1}{\sqrt{2}} 0 0 0
ϕfss+σ3(21)σ2(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{2}(1)\phi_{\rm iss} 0 -i2\frac{i}{\sqrt{2}} 0 0 0 i2\frac{i}{\sqrt{2}} 0 0 0
ϕfss+σ3(21)σ3(1)ϕiss\phi_{\rm fss}^{+}\sigma_{3}(21)\sigma_{3}(1)\phi_{\rm iss} 0 0 0 0 -12\frac{1}{2} 0 0 0 1
Table 7: Total spin, orbital-angular-momentum quantum number, and cross section.
reaction SS LiL_{\rm i} σunpol\sigma^{\rm unpol} (mb)
KK¯ϕK\bar{K}\to\phi 0 1 8.05
πDD\pi D\to D^{\ast} 0 1 40.21
πD¯D¯\pi\bar{D}\to\bar{D}^{\ast} 0 1 40.21
DD¯ψ(3770)D\bar{D}\to\psi(3770) 0 1 4.28
DD¯ψ(4040)D\bar{D}\to\psi(4040) 0 1 3.45
DD¯ψ(4040)D^{*}\bar{D}\to\psi(4040) 1 1 7.9
DD¯ψ(4040)D\bar{D}^{*}\to\psi(4040) 1 1 7.9
DD¯ψ(4040)D^{*}\bar{D}^{*}\to\psi(4040) 0 1 0.42
1 1
2 1,3
Ds+Dsψ(4040)D_{s}^{+}D_{s}^{-}\to\psi(4040) 0 1 1.13
Table 8: The same as Table 7.
reaction SS LiL_{\rm i} σunpol\sigma^{\rm unpol} (mb)
DD¯ψ(4160)D\bar{D}\to\psi(4160) 0 1 3.35
DD¯ψ(4160)D^{*}\bar{D}\to\psi(4160) 1 1 7.06
DD¯ψ(4160)D\bar{D}^{*}\to\psi(4160) 1 1 7.06
DD¯ψ(4160)D^{*}\bar{D}^{*}\to\psi(4160) 0 1 0.57
1 1
2 1,3
Ds+Dsψ(4160)D_{s}^{+}D_{s}^{-}\to\psi(4160) 0 1 0.5
Ds+Dsψ(4160)D_{s}^{*+}D_{s}^{-}\to\psi(4160) 1 1 0.23
Ds+Dsψ(4160)D_{s}^{+}D_{s}^{*-}\to\psi(4160) 1 1 0.23
DD¯ψ(4415)D\bar{D}\to\psi(4415) 0 1 0.35
DD¯ψ(4415)D^{*}\bar{D}\to\psi(4415) 1 1 5.46
DD¯ψ(4415)D\bar{D}^{*}\to\psi(4415) 1 1 5.46
DD¯ψ(4415)D^{*}\bar{D}^{*}\to\psi(4415) 0 1 1.39
1 1
2 1,3
Ds+Dsψ(4415)D_{s}^{+}D_{s}^{-}\to\psi(4415) 0 1 0.13
Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{-}\to\psi(4415) 1 1 0.75
Ds+Dsψ(4415)D_{s}^{+}D_{s}^{*-}\to\psi(4415) 1 1 0.75
Ds+Dsψ(4415)D_{s}^{*+}D_{s}^{*-}\to\psi(4415) 0 1 0.11
1 1
2 1,3
Table 9: Decay modes and decay widths of ψ(3770)\psi(3770), ψ(4040)\psi(4040), and ψ(4160)\psi(4160).
decay mode decay width (MeV) decay mode decay width (MeV)
ψ(3770)DD¯\psi(3770)\to D\bar{D} 18 ψ(4160)DD¯\psi(4160)\to D\bar{D} 22.5
ψ(4040)DD¯\psi(4040)\to D\bar{D} 21.7 ψ(4160)DD¯\psi(4160)\to D^{*}\bar{D} 4.4
ψ(4040)DD¯\psi(4040)\to D^{*}\bar{D} 22.8 ψ(4160)DD¯\psi(4160)\to D\bar{D}^{*} 4.4
ψ(4040)DD¯\psi(4040)\to D\bar{D}^{*} 22.8 ψ(4160)DD¯\psi(4160)\to D^{*}\bar{D}^{*} 29.4
ψ(4040)DD¯\psi(4040)\to D^{*}\bar{D}^{*} 0.52 ψ(4160)Ds+Ds\psi(4160)\to D_{s}^{+}D_{s}^{-} 2.2
ψ(4040)Ds+Ds\psi(4040)\to D_{s}^{+}D_{s}^{-} 2.4 ψ(4160)Ds+Ds\psi(4160)\to D_{s}^{*+}D_{s}^{-} 0.22
five ψ(4040)\psi(4040) modes 70.2 ψ(4160)Ds+Ds\psi(4160)\to D_{s}^{+}D_{s}^{*-} 0.22
seven ψ(4160)\psi(4160) modes 63.3
Table 10: ψ(4415)\psi(4415) decay modes and decay widths.
decay mode decay width (MeV)
ψ(4415)DD¯\psi(4415)\to D\bar{D} 20.4
ψ(4415)DD¯\psi(4415)\to D^{*}\bar{D} 10.9
ψ(4415)DD¯\psi(4415)\to D\bar{D}^{*} 10.9
ψ(4415)DD¯\psi(4415)\to D^{*}\bar{D}^{*} 2.4
ψ(4415)Ds+Ds\psi(4415)\to D_{s}^{+}D_{s}^{-} 2.4
ψ(4415)Ds+Ds\psi(4415)\to D_{s}^{*+}D_{s}^{-} 3.5
ψ(4415)Ds+Ds\psi(4415)\to D_{s}^{+}D_{s}^{*-} 3.5
ψ(4415)Ds+Ds\psi(4415)\to D_{s}^{*+}D_{s}^{*-} 7
eight ψ(4415)\psi(4415) modes 61