This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Critical Sets of Elliptic Equations with Rapidly Oscillating Coefficients in Two Dimensions

Fanghua Lin   Zhongwei Shen Supported in part by NSF grant DMS-1955249.Supported in part by NSF grant DMS-1856235 and by Simons Fellowship
Abstract

In this paper we continue the study of critical sets of solutions uεu_{\varepsilon} of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. In [18], by controling the ”turning” of approximate tangent planes, we show that the (d2)(d-2)-dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period ε\varepsilon, provided that doubling indices for solutions are bounded. In this paper we use a different approach, based on the reduction of the doubling indices of uεu_{\varepsilon}, to study the two-dimensional case. The proof relies on the fact that the critical set of a homogeneous harmonic polynomial of degree two or higher in dimension two contains only one point.

Keywords: Critical Set; Homogenization; Doubling Index.

MR (2010) Subject Classification: 35J15, 35B27.

1 Introduction

In this paper we continue the study of critical points of solutions of elliptic equations in homogenization. More precisely, we consider a family of second-order elliptic operators in divergence form,

ε=div(A(x/ε)),\mathcal{L}_{\varepsilon}=-\text{\rm div}(A(x/\varepsilon)\nabla), (1.1)

where 0<ε10<\varepsilon\leq 1 and A(y)=(aij(y))A(y)=(a_{ij}(y)) is a d×dd\times d matrix-valued function in d\mathbb{R}^{d}. Throughout the paper, unless indicated otherwise, we shall assume that

  • (ellipticity) there exists some λ(0,1]\lambda\in(0,1] such that

    λ|ξ|2A(y)ξ,ξ and |A(y)ξ,ζ|λ1|ξ||ζ| for any y,ξ,ζd;\lambda|\xi|^{2}\leq\langle A(y)\xi,\xi\rangle\quad\text{ and }\quad|\langle A(y)\xi,\zeta\rangle|\leq\lambda^{-1}|\xi||\zeta|\quad\text{ for any }y,\xi,\zeta\in\mathbb{R}^{d}; (1.2)
  • (periodicity) AA is periodic with respect to some lattice Γ\Gamma of d\mathbb{R}^{d},

    A(y+z)=A(y) for any yd and zΓ;A(y+z)=A(y)\quad\text{ for any }y\in\mathbb{R}^{d}\text{ and }z\in\Gamma; (1.3)
  • (smoothness) there exists some M>0M>0 such that

    |A(x)A(y)|M|xy| for any x,yd.|A(x)-A(y)|\leq M|x-y|\quad\text{ for any }x,y\in\mathbb{R}^{d}. (1.4)

We will use the notation,

Er={xd: 2(A^+(A^)T)1x,x<r2}E_{r}=\big{\{}x\in\mathbb{R}^{d}:\ 2\langle(\widehat{A}+(\widehat{A})^{T})^{-1}x,x\rangle<r^{2}\big{\}} (1.5)

for r>0r>0, where A^\widehat{A} denotes the homogenized matrix for AA. If A^+(A^)T=2I\widehat{A}+(\widehat{A})^{T}=2I, then Er=B(0,r)E_{r}=B(0,r).

Let χ(y)=(χj(y))\chi(y)=(\chi_{j}(y)) denote the first-order corrector for ε\mathcal{L}_{\varepsilon}. We will also assume that the periodic matrix I+χI+\nabla\chi is nonsingular and that

det(I+χ)μ\text{det}(I+\nabla\chi)\geq\mu (1.6)

for some μ>0\mu>0. Let uεu_{\varepsilon} be a non-constant weak solution of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in E2E_{2} and

𝒞(uε)={x:|uε(x)|=0},\mathcal{C}(u_{\varepsilon})=\big{\{}x:\ |\nabla u_{\varepsilon}(x)|=0\big{\}}, (1.7)

the critical set of uεu_{\varepsilon}. Suppose that uε(0)=0u_{\varepsilon}(0)=0 and

E2uε24NE1uε2\fint_{E_{2}}u_{\varepsilon}^{2}\leq 4^{N}\fint_{E_{1}}u_{\varepsilon}^{2} (1.8)

for some N1N\geq 1. Under the conditions (1.2), (1.3), (1.4) and (1.6), it is proved in [18] by the present authors that

|{x:dist(x,𝒞(uε)E1/2)<r}|C(N)r2|\big{\{}x:\text{\rm dist}(x,\mathcal{C}(u_{\varepsilon})\cap E_{1/2})<r\big{\}}|\leq C(N)r^{2} (1.9)

for 0<r<10<r<1, and consequently,

d2{xE1/2:|uε(x)|=0}C(N),\mathcal{H}^{d-2}\big{\{}x\in E_{1/2}:\ |\nabla u_{\varepsilon}(x)|=0\big{\}}\leq C(N), (1.10)

where C(N)C(N) depends at most on dd, λ\lambda, Γ\Gamma, MM, μ\mu, and NN. This is the first result on geometric measure estimates, that are uniform in ε>0\varepsilon>0, for critical sets of solutions of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0. We mention that in [17], the following uniform bound of the nodal sets,

d1{xE1/2:uε(x)=0}C(N),\mathcal{H}^{d-1}\big{\{}x\in E_{1/2}:\ u_{\varepsilon}(x)=0\big{\}}\leq C(N), (1.11)

was established by the present authors, under the conditions (1.2), (1.3) and (1.4). Classical results in the study of nodal, singular, and critical sets for solutions and eigenfunctions of elliptic operators may be found in [10, 15, 16, 11, 13, 12, 14]. We refer the reader to [9, 21, 5, 19, 20] and their references for more recent work in this area. Since the bounding constants C(N)C(N) depend on the smoothness of coefficients, the quantitative results for 1\mathcal{L}_{1} in the references mentioned above do not extend to the operator ε\mathcal{L}_{\varepsilon}.

The proof of (1.9) in [18] is based on an estimate of ”turning” for the projection of a non-constant solution uεu_{\varepsilon} onto the subspace of spherical harmonic order \ell, when the doubling index for uεu_{\varepsilon} on a sphere B(0,r)\partial B(0,r) is trapped between δ\ell-\delta and +δ\ell+\delta, for rr between 11 and a minimal radius rC0εr^{*}\geq C_{0}\varepsilon. In this paper we provide a different and much simpler proof for the two-dimensional case. Our approach is based on the reduction of the doubling index and relies on the fact that the critical set of a homogeneous harmonic polynomial of degree 22 or higher in dimension two contains only one point. We note that the condition (1.6) holds in the case d=2d=2 if AA is periodic and Hölder continuous.

The following is the main result of the paper.

Theorem 1.1.

Let d=2d=2. Assume that A=A(y)A=A(y) satisfies the conditions (1.2), (1.3) and (1.4). Let uεH1(E2)u_{\varepsilon}\in H^{1}(E_{2}) be a non-constant weak solution of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in E22E_{2}\subset\mathbb{R}^{2}. Suppose that uε(0)=0u_{\varepsilon}(0)=0 and (1.8) holds for some N1N\geq 1. Then

#(E1/2𝒞(uε))C(N),\#(E_{1/2}\cap\mathcal{C}(u_{\varepsilon}))\leq C(N), (1.12)

where C(N)C(N) depends at most on λ\lambda, Γ\Gamma, MM, and NN.

Throughout the paper we will use CC and cc to denote constants that may depend on dd, λ\lambda in (1.2), Γ\Gamma in (1.3), MM in (1.4), and μ\mu in (1.6). If a constant also depends on other parameters, such as the doubling index of a solution, it will be stated explicitly.

2 Homogenization

Let d2d\geq 2 and A=A(y)A=A(y) be a d×dd\times d matrix satisfying (1.2) and (1.3). The first-order corrector χ=χ(y)=(χj(y))\chi=\chi(y)=(\chi_{j}(y)) is defined by the cell problem,

{1(χj)=yi(aij) in Y,Yχj=0 and χj is Y-periodic,\left\{\begin{aligned} &\mathcal{L}_{1}(\chi_{j})=-\frac{\partial}{\partial y_{i}}\big{(}a_{ij}\big{)}\quad\text{ in }Y,\\ &\fint_{Y}\chi_{j}=0\quad\text{ and }\quad\chi_{j}\text{ is Y-periodic},\end{aligned}\right. (2.1)

for 1jd1\leq j\leq d (the index ii is summed from 11 to dd), where YY is the elementary cell for the lattice Γ\Gamma. The homogenized operator 0\mathcal{L}_{0} is given by

0=div(A^),\mathcal{L}_{0}=-\text{\rm div}(\widehat{A}\nabla), (2.2)

where, for ξd\xi\in\mathbb{R}^{d},

A^ξ,ξ=YAvξ,vξ\langle\widehat{A}\xi,\xi\rangle=\fint_{Y}\langle A\nabla v_{\xi},\nabla v_{\xi}\rangle (2.3)

and vξ(y)=ξ,y+χ(y)v_{\xi}(y)=\langle\xi,y+\chi(y)\rangle. It follows from (2.1) that 1(yj+χj)=0\mathcal{L}_{1}(y_{j}+\chi_{j})=0 in d\mathbb{R}^{d}. Thus, by De Giorgi - Nash estimates, χj\chi_{j} is Hölder continuous. Furthermore, if AA is Hölder continuous, i.e., there exist α(0,1]\alpha\in(0,1] and Mα>0M_{\alpha}>0 such that

|A(x)A(y)|Mα|xy|α for any x,yd,|A(x)-A(y)|\leq M_{\alpha}|x-y|^{\alpha}\quad\text{ for any }x,y\in\mathbb{R}^{d}, (2.4)

so is χj\nabla\chi_{j}.

Theorem 2.1.

Let d=2d=2. Suppose AA satisfies (1.2), (1.3) and (2.4). Then

det(I+χ)(x)μ\text{\rm det}(I+\nabla\chi)(x)\geq\mu (2.5)

for any x2x\in\mathbb{R}^{2}, where μ>0\mu>0 depends only on λ\lambda, Γ\Gamma and (α,Mα)(\alpha,M_{\alpha}).

Proof.

This theorem was more or less proved in [2, 3], although it is not stated explicitly. Also see related work in [1, 6, 4] and the references therein. We give an outline of the proof here.

Step 1. Let ui=xi+χi(x)u_{i}=x_{i}+\chi_{i}(x) for i=1,2i=1,2, and U=(u1,u2)U=(u_{1},u_{2}). Use the continuity and boundedness of χi\chi_{i} to show that U:22U:\mathbb{R}^{2}\to\mathbb{R}^{2} is onto.

Step 2. Show that U:22U:\mathbb{R}^{2}\to\mathbb{R}^{2} is one-to-one and U1U^{-1} is continuous. As a result, U:22U:\mathbb{R}^{2}\to\mathbb{R}^{2} is a homeomorphism. The smoothness condition (2.4) is not needed. See [2] for details.

Step 3. Let ξ2\xi\in\mathbb{R}^{2} with |ξ|=1|\xi|=1. Consider the function uξ=U,ξu_{\xi}=\langle U,\xi\rangle. Note that div(A(x)uξ)=0(A(x)\nabla u_{\xi})=0 in 2\mathbb{R}^{2}. To prove det(I+χ)>0\text{\rm det}(I+\nabla\chi)>0, it suffices to show that

|uξ(x)|>0|\nabla u_{\xi}(x)|>0

for any x2x\in\mathbb{R}^{2}. To this end, fix y02y_{0}\in\mathbb{R}^{2} and r0>0r_{0}>0. Let Ω=U1(B(y0,r0))\Omega=U^{-1}(B(y_{0},r_{0})). Note that div(Auξ)=0\text{\rm div}(A\nabla u_{\xi})=0 in Ω\Omega, and g=u|Ωg=u|_{\partial\Omega} is unimodal. This implies |uξ(x0)|>0|\nabla u_{\xi}(x_{0})|>0, where U(x0)=y0U(x_{0})=y_{0}. See [3] for details.

Step 4. Use det(I+χ)>0\text{\rm det}(I+\nabla\chi)>0 and a compactness argument to show that det(I+χ)μ\text{\rm det}(I+\nabla\chi)\geq\mu, where μ>0\mu>0 depends only on λ\lambda, Γ\Gamma and (α,Mα)(\alpha,M_{\alpha}). ∎

Remark 2.2.

The estimate (2.5) fails if d3d\geq 3. See [7, 8] for a counter-example.

By a change of variables we may assume that

A^+(A^)T=2I.\widehat{A}+(\widehat{A})^{T}=2I. (2.6)

See Remark 2.3 in [18]. This ensures that solutions of the homogenized equation 0(u0)=0\mathcal{L}_{0}(u_{0})=0 are harmonic. The following compactness theorem will be used in the next section.

Theorem 2.3.

Let uju_{j} be a solution of div(Aj(x/εj)uj)=0\text{\rm div}(A^{j}(x/\varepsilon_{j})\nabla u_{j})=0 in B(0,r0)B(0,r_{0}), where εj0\varepsilon_{j}\to 0 and AjA^{j} satisfies (1.2), (1.3), (2.4) and (2.6). Suppose that {uj}\{u_{j}\} is bounded in L2(B(0,r0))L^{2}(B(0,r_{0})). Then there exists a subsequence, still denoted by {uj}\{u_{j}\} and a harmonic function u0u_{0} in B(0,r0)B(0,r_{0}), such that uju0u_{j}\to u_{0} weakly in L2(B(0,r0))L^{2}(B(0,r_{0})) and weakly in H1(B(0,r))H^{1}(B(0,r)) for any 0<r<r00<r<r_{0}. Moreover,

uju0L(B(0,r))0,\|u_{j}-u_{0}\|_{L^{\infty}(B(0,r))}\to 0, (2.7)
uj(I+χj(x/εj))u0L(B(0,r))0,\|\nabla u_{j}-(I+\nabla\chi^{j}(x/\varepsilon_{j}))\nabla u_{0}\|_{L^{\infty}(B(0,r))}\to 0, (2.8)

for any 0<r<r00<r<r_{0}, where χj\chi^{j} denotes the first-order correctors for the matrix AjA^{j}.

Proof.

See Theorem 2.7 and Remark 2.8 in [18]. ∎

3 Doubling indices and critical sets

Let d2d\geq 2. As in [18], we introduce a doubling index for a continuous function uu on a ball B(x0,r)B(x_{0},r), defined by

N(u,x0,r)=log4B(x0,r)(uu(x0))2B(x0,r/2)(uu(x0))2,N^{*}(u,x_{0},r)=\log_{4}\frac{\fint_{\partial B(x_{0},r)}(u-u(x_{0}))^{2}}{\fint_{\partial B(x_{0},r/2)}(u-u(x_{0}))^{2}}, (3.1)

assuming uu(x0)L2(B(x0,t))0\|u-u(x_{0})\|_{L^{2}(\partial B(x_{0},t))}\neq 0 for 0<tr0<t\leq r. Define

(λ,Γ,M)={A=A(y):A satisfies (1.2), (1.3), (1.4), and (2.6)}.\mathcal{M}(\lambda,\Gamma,M)=\Big{\{}A=A(y):\ A\text{ satisfies \eqref{ellipticity}, \eqref{periodicity}, \eqref{smoothness}, and }\eqref{h0}\Big{\}}. (3.2)
Theorem 3.1.

Let L2L\geq 2 and δ0(0,1/2]\delta_{0}\in(0,1/2]. Assume that A(λ,Γ,M)A\in\mathcal{M}(\lambda,\Gamma,M). There exists ε0=ε0(L,δ0)>0\varepsilon_{0}=\varepsilon_{0}(L,\delta_{0})>0 such that if 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r and uεH1(B(x0,r))u_{\varepsilon}\in H^{1}(B(x_{0},r)) is a non-constant solution of div(A(x/ε)uε)=0\text{\rm div}(A(x/\varepsilon)\nabla u_{\varepsilon})=0 in B(x0,r)B(x_{0},r) for some r>0r>0 and x0dx_{0}\in\mathbb{R}^{d}, with the properties that,

N(uε,x0,r)L+1 and N(uε,x0,r/2)+δ0,N^{*}(u_{\varepsilon},x_{0},r)\leq L+1\quad\text{ and }\quad N^{*}(u_{\varepsilon},x_{0},r/2)\leq\ell+\delta_{0}, (3.3)

where \ell\in\mathbb{N} and 1L1\leq\ell\leq L, then

N(uε,x0,r/4)+δ0.N^{*}(u_{\varepsilon},x_{0},r/4)\leq\ell+\delta_{0}. (3.4)

If, in addition, 2Jε<ε0r2^{J}\varepsilon<\varepsilon_{0}r for some integer J0J\geq 0, then

N(uε,x0,r/2j)+δ0 for j=2,,J+2.N^{*}(u_{\varepsilon},x_{0},r/2^{j})\leq\ell+\delta_{0}\quad\text{ for }j=2,\dots,J+2. (3.5)
Proof.

This is proved in [18, Theorem 3.1]. ∎

Theorem 3.2.

Let L2L\geq 2 and δ1(0,1/2]\delta_{1}\in(0,1/2]. Assume that A(λ,Γ,M)A\in\mathcal{M}(\lambda,\Gamma,M). There exists ε1=ε1(L,δ1)>0\varepsilon_{1}=\varepsilon_{1}(L,\delta_{1})>0 such that if 0<ε<ε1r0<\varepsilon<\varepsilon_{1}r, uεH1(B(x0,r))u_{\varepsilon}\in H^{1}(B(x_{0},r)), div(A(x/ε)uε)=0\text{\rm div}(A(x/\varepsilon)\nabla u_{\varepsilon})=0 in B(x0,r)B(x_{0},r) for some x0dx_{0}\in\mathbb{R}^{d} and r>0r>0,

N(uε,x0,r)L+1 and N(uε,x0,r/2)δ1,N^{*}(u_{\varepsilon},x_{0},r)\leq L+1\quad\text{ and }\quad N^{*}(u_{\varepsilon},x_{0},r/2)\leq\ell-\delta_{1}, (3.6)

where \ell\in\mathbb{N} and 1L1\leq\ell\leq L, then

N(uε,x0,δ1r/(8))1+δ1.N^{*}(u_{\varepsilon},x_{0},\delta_{1}r/(8\ell))\leq\ell-1+\delta_{1}. (3.7)
Proof.

This is proved in [18, Theorem 3.4]. ∎

Define

𝒜(λ,Γ,M,μ)={A=A(y):A satisfies (1.2), (1.3), (1.4), (1.6) and (2.6)}.\mathcal{A}(\lambda,\Gamma,M,\mu)=\Big{\{}A=A(y):A\text{ satisfies \eqref{ellipticity}, \eqref{periodicity}, \eqref{smoothness}, \eqref{inv-0} and }\eqref{h0}\Big{\}}. (3.8)
Theorem 3.3.

Let L2L\geq 2 and A𝒜(λ,Γ,M,μ)A\in\mathcal{A}(\lambda,\Gamma,M,\mu). There exists ε0=ε0(L)>0\varepsilon_{0}=\varepsilon_{0}(L)>0 such that if uεH1(B(0,1))u_{\varepsilon}\in H^{1}(B(0,1)) is a non-constant solution of ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B(0,1)B(0,1) for some 0<ε<ε00<\varepsilon<\varepsilon_{0}, N(uε,0,1)LN^{*}(u_{\varepsilon},0,1)\leq L, and

N(uε,0,1/2)3/2,N^{*}(u_{\varepsilon},0,1/2)\leq 3/2, (3.9)

then |uε(0)|0|\nabla u_{\varepsilon}(0)|\neq 0.

Proof.

This is proved in [18, Theorem 3.5]. ∎

Fix L1L\geq 1, ε>0\varepsilon>0, r>0r>0, and x0dx_{0}\in\mathbb{R}^{d}. Define

(L,ε,r,x0)={\displaystyle\mathcal{F}(L,\varepsilon,r,x_{0})=\Bigg{\{} uH1(B(x0,2r)):u is not constant, u(x0)=0,\displaystyle u\in H^{1}(B(x_{0},2r)):\ \ u\text{ is not constant, }u(x_{0})=0, (3.10)
div(A(x/ε)u)=0 in B(x0,2r) for some A𝒜(λ,Γ,M,μ),\displaystyle\text{\rm div}(A(x/\varepsilon)\nabla u)=0\text{ in }B(x_{0},2r)\text{ for some }A\in\mathcal{A}(\lambda,\Gamma,M,\mu),
and N(u,x,r)2L,N(u,x,r/2)L for all xB(x0,r/2)},\displaystyle\text{and }N^{*}(u,x,r)\leq 2L,\ N^{*}(u,x,r/2)\leq L\ \text{ for all }x\in B(x_{0},r/2)\Bigg{\}},

and

(L,ε,r)=\displaystyle\mathcal{E}(L,\varepsilon,r)= (3.11)
sup{d2(𝒞(u)B(x0,r/4))rd2:u(L,ε,r,x0) for some x0d},\displaystyle\sup\left\{\frac{\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B(x_{0},r/4))}{r^{d-2}}:\ u\in\mathcal{F}(L,\varepsilon,r,x_{0})\ \ \text{ for some }x_{0}\in\mathbb{R}^{d}\right\},

where 𝒞(u)\mathcal{C}(u) denotes the critical set of uu,

𝒞(u)={x:|u(x)|=0}.\mathcal{C}(u)=\big{\{}x:\ |\nabla u(x)|=0\big{\}}.

Since u(L,ε,r,x0)u\in\mathcal{F}(L,\varepsilon,r,x_{0}) implies u(+x0)(L,ε,r,0)u(\cdot+x_{0})\in\mathcal{F}(L,\varepsilon,r,0), it follows that

(L,ε,r)=sup{d2(𝒞(u)B(0,r/4))rd2:u(L,ε,r,0)}.\mathcal{E}(L,\varepsilon,r)=\sup\left\{\frac{\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B(0,r/4))}{r^{d-2}}:\ \ u\in\mathcal{F}(L,\varepsilon,r,0)\right\}. (3.12)

By a simple covering argument, it is not hard to see that if 0<r1r2/20<r_{1}\leq r_{2}/2, then

(L,ε,r2)C(r2r1)2(L,ε,r1),\mathcal{E}(L,\varepsilon,r_{2})\leq C\left(\frac{r_{2}}{r_{1}}\right)^{2}\mathcal{E}(L,\varepsilon,r_{1}), (3.13)

where CC depends only on dd.

Lemma 3.4.

For any θ>0\theta>0,

(L,ε,r)=(L,θ1ε,θ1r).\mathcal{E}(L,\varepsilon,r)=\mathcal{E}(L,\theta^{-1}\varepsilon,\theta^{-1}r). (3.14)
Proof.

This follows from the observation that if u(L,ε,r,0)u\in\mathcal{F}(L,\varepsilon,r,0) and v(x)=u(θx),v(x)=u(\theta x), then v(L,θ1ε,θ1r,0)v\in\mathcal{F}(L,\theta^{-1}\varepsilon,\theta^{-1}r,0) and

d2(𝒞(u)B(0,r/4))=θd2d2(𝒞(v)B(0,θ1r/4)).\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B(0,r/4))=\theta^{d-2}\mathcal{H}^{d-2}(\mathcal{C}(v)\cap B(0,\theta^{-1}r/4)).

Theorem 3.5.

If 0<rε01ε0<r\leq\varepsilon_{0}^{-1}\varepsilon for some ε0>0\varepsilon_{0}>0, then

(L,ε,r)C(L,ε0),\mathcal{E}(L,\varepsilon,r)\leq C(L,\varepsilon_{0}), (3.15)

where C(L,ε0)C(L,\varepsilon_{0}) depends on ε0\varepsilon_{0} and LL.

Proof.

Note that by (3.14),

(L,ε,r)=(L,r1ε,1).\mathcal{E}(L,\varepsilon,r)=\mathcal{E}(L,r^{-1}\varepsilon,1).

Since r1εε0r^{-1}\varepsilon\geq\varepsilon_{0} and AA satisfies (1.2) and (1.4), the estimate (3.15) follows readily from [21] for the operator 1\mathcal{L}_{1} (see [16, 11] for the case d=2d=2 and [12] for the case of smooth coefficients). Indeed, the coefficient matrix A~(x)=A(x/(r1ε))\widetilde{A}(x)=A(x/(r^{-1}\varepsilon)) satisfies the Lipschitz condition (1.4)\eqref{smoothness} with Mε01M\varepsilon_{0}^{-1} in the place of MM. Moreover, the conditions N(u,x,1)2LN^{*}(u,x,1)\leq 2L and N(u,x,1/2)LN^{*}(u,x,1/2)\leq L for xB(0,1/2)x\in B(0,1/2) implies that

B(0,1)|u|2CB(0,1)u2CB(0,1)u2,\int_{B(0,1)}|\nabla u|^{2}\leq C\int_{B(0,1)}u^{2}\leq C\int_{\partial B(0,1)}u^{2},

where CC depends on LL. The periodicity condition is not needed. ∎

Theorem 3.6.

Fix L2L\geq 2 and δ0(0,1/2]\delta_{0}\in(0,1/2]. There exists ε0>0\varepsilon_{0}>0, depending on LL and δ0\delta_{0}, such that if 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r, \ell\in\mathbb{N} and 2L2\leq\ell\leq L, then

(δ0,ε,r)C0(1+δ0,ε,c0r),\mathcal{E}(\ell-\delta_{0},\varepsilon,r)\leq C_{0}\mathcal{E}(\ell-1+\delta_{0},\varepsilon,c_{0}r), (3.16)

where c0=δ0/(8)c_{0}=\delta_{0}/(8\ell) and C0C_{0} depends on LL and δ0\delta_{0}.

Proof.

In view of Lemma 3.4 we may assume r=1r=1. By the definition of (1+δ0,ε,c0)\mathcal{E}(\ell-1+\delta_{0},\varepsilon,c_{0}), it suffices to show that if u(δ0,ε,1,0)u\in\mathcal{F}(\ell-\delta_{0},\varepsilon,1,0), then

N(u,x0,c0)1+δ0 and N(u,x0,c0/2)1+δ0,N^{*}(u,x_{0},c_{0})\leq\ell-1+\delta_{0}\quad\text{ and }\quad N^{*}(u,x_{0},c_{0}/2)\leq\ell-1+\delta_{0}, (3.17)

for any x0B(0,1/2)x_{0}\in B(0,1/2), provided that 0<ε<ε00<\varepsilon<\varepsilon_{0}. By covering B(0,1/4)B(0,1/4) with a finite number of balls {B(yj,c0/4):j=1,2,,k0}\{B(y_{j},c_{0}/4):j=1,2,\dots,k_{0}\}, where k0C(d)/(c0)dk_{0}\leq C(d)/(c_{0})^{d} and yjB(0,1/4)y_{j}\in B(0,1/4), this would imply that u(1+δ0,ε,c0,yj)u\in\mathcal{F}(\ell-1+\delta_{0},\varepsilon,c_{0},y_{j}) for 1jk01\leq j\leq k_{0}. As a result,

d2(𝒞(u)B(0,1/4))\displaystyle\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B(0,1/4)) jd2(𝒞(u)B(yj,c0/4))\displaystyle\leq\sum_{j}\mathcal{H}^{d-2}(\mathcal{C}(u)\cap B(y_{j},c_{0}/4))
k0c0d2(1+δ0,ε,c0),\displaystyle\leq k_{0}c_{0}^{d-2}\mathcal{E}(\ell-1+\delta_{0},\varepsilon,c_{0}),

from which the estimate (3.16) with r=1r=1 follows.

To see (3.17), we note that N(u,x0,1)2(δ0)N^{*}(u,x_{0},1)\leq 2(\ell-\delta_{0}) and N(u,x0,1/2)δ0N^{*}(u,x_{0},1/2)\leq\ell-\delta_{0} for any x0B(0,1/2)x_{0}\in B(0,1/2). By Theorem 3.2 we have N(u,x0,c0)1+δ0N^{*}(u,x_{0},c_{0})\leq\ell-1+\delta_{0}, where c0=δ0/(8)c_{0}=\delta_{0}/(8\ell). Observe that if ε\varepsilon is sufficiently small, we may use Theorem 3.1 to obtain N(u,x0,2c0)C(L)N^{*}(u,x_{0},2c_{0})\leq C(L). Applying Theorem 3.1 again gives N(u,x0,c0/2)1+δ0N^{*}(u,x_{0},c_{0}/2)\leq\ell-1+\delta_{0}. ∎

Theorem 3.7.

There exists ε0>0\varepsilon_{0}>0 such that

(3/2,ε,r)=0\mathcal{E}(3/2,\varepsilon,r)=0 (3.18)

for any 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r.

Proof.

By Lemma 3.4 we may assume r=1r=1. Let u(3/2,ε,1,0)u\in\mathcal{F}(3/2,\varepsilon,1,0). Then N(u,x0,1)3N^{*}(u,x_{0},1)\leq 3 and N(u,x0,1/2)3/2N^{*}(u,x_{0},1/2)\leq 3/2 for any x0B(0,1/2)x_{0}\in B(0,1/2). By Theorem 3.3 we obtain |u(x0)|0|\nabla u(x_{0})|\neq 0, if 0<ε<ε00<\varepsilon<\varepsilon_{0}. Thus 𝒞(u)B(0,1/4)=\mathcal{C}(u)\cap B(0,1/4)=\emptyset and consequently, (3/2,ε,1)=0\mathcal{E}(3/2,\varepsilon,1)=0. ∎

4 Proof of Theorem 1.1

Throughout this section we assume d=2d=2 and AA satisfies (1.2), (1.3), (1.4) and (2.6). Note that by Theorem 2.1, the matrix AA satisfies the invertibility condition (1.6).

Lemma 4.1.

Let d=2d=2 and fix L2L\geq 2. There exist ε0,δ0(0,1/4)\varepsilon_{0},\delta_{0}\in(0,1/4), depending on LL, such that if 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r, ε(uε)=0\mathcal{L}_{\varepsilon}(u_{\varepsilon})=0 in B(x0,r)B(x_{0},r), uεu_{\varepsilon} is not constant,

N(uε,x0,r)2(+δ0),N(uε,x0,r/2)+δ0,N^{*}(u_{\varepsilon},x_{0},r)\leq 2(\ell+\delta_{0}),\ \ \ N^{*}(u_{\varepsilon},x_{0},r/2)\leq\ell+\delta_{0}, (4.1)

and uεu_{\varepsilon} has a critical point in B(x0,3r/4)B(x0,r/128)B(x_{0},3r/4)\setminus B(x_{0},r/128), where \ell\in\mathbb{N} and 2L2\leq\ell\leq L, then

N(uε,x0,r/4)δ0.N^{*}(u_{\varepsilon},x_{0},r/4)\leq\ell-\delta_{0}. (4.2)
Proof.

By translation and dilation it suffices to consider the case x0=0x_{0}=0 and r=1r=1. To prove (4.2), we argue by contradiction. Suppose there exist sequences {εj}+\{\varepsilon_{j}\}\subset\mathbb{R}_{+} and {uj}H1(B(0,1))\{u_{j}\}\subset H^{1}(B(0,1)) such that εj0\varepsilon_{j}\to 0, div(Aj(x/εj)uj)=0\text{\rm div}(A^{j}(x/\varepsilon_{j})\nabla u_{j})=0 in B(0,1)B(0,1) for some AjA^{j} satisfying (1.2), (1.3), (1.4) and (2.6), uju_{j} is not constant, uj(yj)=0\nabla u_{j}(y_{j})=0 for some yjB(0,3/4)B(0,1/128)y_{j}\in B(0,3/4)\setminus B(0,1/128),

N(uj,0,1)2(+(1/j)),N(uj,0,1/2)+(1/j),N^{*}(u_{j},0,1)\leq 2(\ell+(1/j)),\ \ N^{*}(u_{j},0,1/2)\leq\ell+(1/j),

and that

N(uj,0,1/4)>(1/j).N^{*}(u_{j},0,1/4)>\ell-(1/j).

We may assume that uj(0)=0u_{j}(0)=0 and

B(0,1/2)uj2=1.\fint_{\partial B(0,1/2)}u_{j}^{2}=1.

Since N(uj,0,1)2+2N^{*}(u_{j},0,1)\leq 2\ell+2, this implies that {uj}\{u_{j}\} is bounded in L2(B(0,1))L^{2}(\partial B(0,1)). It follows that {uj}\{u_{j}\} is bounded in L2(B(0,1))L^{2}(B(0,1)). Thus, in view of Theorem 2.3, by passing to a subsequence, we may assume that uju0u_{j}\to u_{0} weakly in L2(B(0,1))L^{2}(B(0,1)) and strongly in L2(B(0,r))L^{2}(B(0,r)) for any 0<r<10<r<1, where u0u_{0} is harmonic in B(0,1)B(0,1). Moreover,

uju0L(B(0,3/4))0,\|u_{j}-u_{0}\|_{L^{\infty}(B(0,3/4))}\to 0, (4.3)

and

uj(I+χj(x/εj))u0L(B(0,3/4))0,\|\nabla u_{j}-(I+\nabla\chi^{j}(x/\varepsilon_{j}))\nabla u_{0}\|_{L^{\infty}(B(0,3/4))}\to 0, (4.4)

where χj\chi^{j} denotes the first-order correctors for the matrix AjA^{j}.

Next, by letting jj\to\infty, we obtain u0(0)=0u_{0}(0)=0 and

1=B(0,1/2)u02.1=\fint_{\partial B(0,1/2)}u_{0}^{2}.

Hence, u0u_{0} is not constant. Moreover,

N(u0,0,1/2) and N(u0,0,1/4).N^{*}(u_{0},0,1/2)\leq\ell\quad\text{ and }\quad N^{*}(u_{0},0,1/4)\geq\ell.

By the monotonicity of N(u0,0,r)N^{*}(u_{0},0,r) for harmonic functions, we obtain

N(u0,0,1/2)=N(u0,0,1/4)=.N^{*}(u_{0},0,1/2)=N^{*}(u_{0},0,1/4)=\ell.

It follows that u0u_{0} is a homogeneous harmonic polynomial of degree \ell. Since d=2d=2, this implies that |u0(x)|0|\nabla u_{0}(x)|\neq 0 for any x0x\neq 0. However, since |uj(yj)|=0|\nabla u_{j}(y_{j})|=0 and

det(I+χj(yj/εj))μ>0,\text{det}(I+\nabla\chi^{j}(y_{j}/\varepsilon_{j}))\geq\mu>0,

in view of (4.4), we conclude that |u0(yj)|0|\nabla u_{0}(y_{j})|\to 0 as jj\to\infty. Since 1|yj|(1/128)1\geq|y_{j}|\geq(1/128), we obtain a contradiction. ∎

Lemma 4.2.

Fix L2L\geq 2. There exist ε0,δ0,θ(0,1/4)\varepsilon_{0},\delta_{0},\theta\in(0,1/4), depending on LL, such that if ε01εr1\varepsilon_{0}^{-1}\varepsilon\leq r\leq 1, \ell\in\mathbb{N} and 2L2\leq\ell\leq L,

(+δ0,ε,r)max{(+δ0,ε,r/2),C0(1+δ0,ε,θr)},\mathcal{E}(\ell+\delta_{0},\varepsilon,r)\leq\max\big{\{}\mathcal{E}(\ell+\delta_{0},\varepsilon,r/2),C_{0}\mathcal{E}(\ell-1+\delta_{0},\varepsilon,\theta r)\big{\}}, (4.5)

where C0C_{0} depends on LL.

Proof.

By Lemma 3.4 we may assume r=1r=1. Let u(+δ0,ε,1,0)u\in\mathcal{F}(\ell+\delta_{0},\varepsilon,1,0), where δ0(0,1/4)\delta_{0}\in(0,1/4) is given by Lemma 4.1. Consider the cover

{B(x,1/40):x𝒞(u)B(0,1/4)}.\{B(x,1/40):x\in\mathcal{C}(u)\cap B(0,1/4)\}.

Let {B(yj,1/40):j=1,2,,k0}\{B(y_{j},1/40):j=1,2,\dots,k_{0}\} be a Vitali subcover; i.e., yj𝒞(u)B(0,1/4)y_{j}\in\mathcal{C}(u)\cap B(0,1/4),

𝒞(u)B(0,1/4)j=1k0B(yj,1/8),\mathcal{C}(u)\cap B(0,1/4)\subset\bigcup_{j=1}^{k_{0}}B(y_{j},1/8),

and B(yi,1/40)B(yj,1/40)=B(y_{i},1/40)\cap B(y_{j},1/40)=\emptyset for iji\neq j. We have two cases: k0=1k_{0}=1 and k02k_{0}\geq 2. Note that 1k0C01\leq k_{0}\leq C_{0} for some absolute constant C0C_{0}.

If k0=1k_{0}=1, then

𝒞(u)B(0,1/4)𝒞(u)B(y1,1/8).\mathcal{C}(u)\cap B(0,1/4)\subset\mathcal{C}(u)\cap B(y_{1},1/8).

Since u(+δ0,ε,1,0)u\in\mathcal{F}(\ell+\delta_{0},\varepsilon,1,0) and B(y1,1/4)B(0,1/2)B(y_{1},1/4)\subset B(0,1/2), we have u(+δ0,ε,y1,1/2)u\in\mathcal{F}(\ell+\delta_{0},\varepsilon,y_{1},1/2). It follows that

#(𝒞(u)B(0,1/4))(+δ0,ε,1/2).\#(\mathcal{C}(u)\cap B(0,1/4))\leq\mathcal{E}(\ell+\delta_{0},\varepsilon,1/2). (4.6)

Suppose k02k_{0}\geq 2. Then u(δ0,ε,yj,1/2)u\in\mathcal{F}(\ell-\delta_{0},\varepsilon,y_{j},1/2) for 1jk01\leq j\leq k_{0}. Indeed, let xB(yj,1/4)x\in B(y_{j},1/4). If |xyj|(1/128)|x-y_{j}|\geq(1/128), then yjB(x,1/2)B(x,1/128)y_{j}\in B(x,1/2)\setminus B(x,1/128). On the other hand, if |xyj|<(1/128)|x-y_{j}|<(1/128) and iji\neq j, then

|yix|\displaystyle|y_{i}-x| |yiyj||yjx|\displaystyle\geq|y_{i}-y_{j}|-|y_{j}-x|
(1/20)(1/128)(1/128),\displaystyle\geq(1/20)-(1/128)\geq(1/128),

and

|yix|\displaystyle|y_{i}-x| |yiyj|+|yjx|\displaystyle\leq|y_{i}-y_{j}|+|y_{j}-x|
<(1/2)+(1/128)<(3/4).\displaystyle<(1/2)+(1/128)<(3/4).

Hence, yiB(x,3/4)B(x,1/128)y_{i}\in B(x,3/4)\setminus B(x,1/128) for iji\neq j. In both cases, by Lemma 4.1, we obtain

N(u,x,1/2)+δ02(δ0) and N(u,x,1/4)δ0,N^{*}(u,x,1/2)\leq\ell+\delta_{0}\leq 2(\ell-\delta_{0})\quad\text{ and }\quad N^{*}(u,x,1/4)\leq\ell-\delta_{0},

for any xB(yj,1/4)x\in B(y_{j},1/4), provided that 0<ε<ε00<\varepsilon<\varepsilon_{0}. As a result, u(δ0,ε,yj,1/2)u\in\mathcal{F}(\ell-\delta_{0},\varepsilon,y_{j},1/2) for 1jk01\leq j\leq k_{0}. It follows that

#(𝒞(u)B(0,1/4))\displaystyle\#(\mathcal{C}(u)\cap B(0,1/4)) j=1k0#(𝒞(u)B(yj,1/8))\displaystyle\leq\sum_{j=1}^{k_{0}}\#(\mathcal{C}(u)\cap B(y_{j},1/8)) (4.7)
k0(δ0,ε,1/2)\displaystyle\leq k_{0}\mathcal{E}(\ell-\delta_{0},\varepsilon,1/2)
C0(1+δ0,ε,c0/2),\displaystyle\leq C_{0}\mathcal{E}(\ell-1+\delta_{0},\varepsilon,c_{0}/2),

where c0=δ0/(8)c_{0}=\delta_{0}/(8\ell) and we have used Theorem 3.6 for the last inequality. By (3.13) we may replace c0/2c_{0}/2 in (4.7) by θ=δ0/(32L)\theta=\delta_{0}/(32L). ∎

We are now in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1.

It suffices to consider the case 0<ε<ε00<\varepsilon<\varepsilon_{0}, where ε0=ε0(N)>0\varepsilon_{0}=\varepsilon_{0}(N)>0 is sufficiently small. The case εε0\varepsilon\geq\varepsilon_{0} is covered by [11, 21].

Let uεH1(E2)u_{\varepsilon}\in H^{1}(E_{2}) be a non-constant solution of div(A(x/ε)uε)=0\text{\rm div}(A(x/\varepsilon)\nabla u_{\varepsilon})=0 in E2E_{2}, where AA satisfies the conditions (1.2), (1.3) and (1.4). Suppose that uε(0)=0u_{\varepsilon}(0)=0 and the doubling condition (1.8) holds for some N1N\geq 1. Since d=2d=2, by Theorem 2.1, the invertibility condition (1.6) is satisfied. By a change of variables we may assume A^+(A^)T=2I\widehat{A}+(\widehat{A})^{T}=2I. As a result, Er=B(0,r)E_{r}=B(0,r) and uεu_{\varepsilon} satisfies the condition

B(0,2)uε24NB(0,1)uε2.\fint_{B(0,2)}u_{\varepsilon}^{2}\leq 4^{N}\fint_{B(0,1)}u_{\varepsilon}^{2}. (4.8)

By the doubling inequality for uεu_{\varepsilon} in [17, Theorem 1.2], this gives

B(x,r)uε2C(N)B(x,r/2)uε2,\fint_{B(x,r)}u_{\varepsilon}^{2}\leq C(N)\fint_{B(x,r/2)}u_{\varepsilon}^{2}, (4.9)

for any xB(0,3/4)x\in B(0,3/4) and 0<r<10<r<1. Hence, for xB(0,1/2)x\in B(0,1/2) and 1/2r11/2\leq r\leq 1,

B(x,r)uε2\displaystyle\fint_{\partial B(x,r)}u_{\varepsilon}^{2} CB(x,5r/4)uε2\displaystyle\leq C\fint_{B(x,5r/4)}u_{\varepsilon}^{2}
CB(x,r/2)uε2CB(x,r/2)uε2,\displaystyle\leq C\fint_{B(x,r/2)}u_{\varepsilon}^{2}\leq C\fint_{\partial B(x,r/2)}u_{\varepsilon}^{2},

where CC depends on NN. Consequently, N(uε,x,1)LN^{*}(u_{\varepsilon},x,1)\leq L and N(uε,x,1/2)LN^{*}(u_{\varepsilon},x,1/2)\leq L for any xB(0,1/2)x\in B(0,1/2), where LL depends on NN. This shows that uε(L,ε,1,0)u_{\varepsilon}\in\mathcal{F}(L,\varepsilon,1,0) for some integer L2L\geq 2.

Let ε0,δ0(0,1/4)\varepsilon_{0},\delta_{0}\in(0,1/4) be given by Lemma 4.2. We assume that ε0\varepsilon_{0} is so small that Theorem 3.7 holds. We will show that for any \ell\in\mathbb{N} and 1L1\leq\ell\leq L,

(+δ0,ε,r)C,\mathcal{E}(\ell+\delta_{0},\varepsilon,r)\leq C, (4.10)

where 0<r10<r\leq 1 and CC depends on LL. This yields

#(𝒞(uε)B(0,1/4))C(N).\#(\mathcal{C}(u_{\varepsilon})\cap B(0,1/4))\leq C(N). (4.11)

By a simple covering argument we replace B(0,1/4)B(0,1/4) in (4.11) by B(0,1/2)B(0,1/2).

To prove the estimate (4.10), we use an induction argument on \ell. To this end, we first note that (4.10) holds for =1\ell=1. Indeed, if 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r,

(1+δ0,ε,r)(3/2,ε,r)=0,\mathcal{E}(1+\delta_{0},\varepsilon,r)\leq\mathcal{E}(3/2,\varepsilon,r)=0,

by Theorem 3.7. If εε0r\varepsilon\geq\varepsilon_{0}r, we may use Theorem 3.5 to obtain

(1+δ0,ε,r)C(L,ε0).\mathcal{E}(1+\delta_{0},\varepsilon,r)\leq C(L,\varepsilon_{0}).

Next, suppose (4.10) holds for some <L\ell<L. If 0<ε<ε0r0<\varepsilon<\varepsilon_{0}r, we use Lemma 4.2 to obtain

(+1+δ0,ε,r)max{(+1+δ0,ε,r/2),C},\mathcal{E}(\ell+1+\delta_{0},\varepsilon,r)\leq\max\big{\{}\mathcal{E}(\ell+1+\delta_{0},\varepsilon,r/2),C\big{\}}, (4.12)

where CC depends on LL. By Theorem 3.5, the estimate above also holds for εε0r\varepsilon\geq\varepsilon_{0}r. By an induction argument on jj, this implies that

(+1+δ0,ε,r)max{(+1+δ0,ε,2jr),C}\mathcal{E}(\ell+1+\delta_{0},\varepsilon,r)\leq\max\big{\{}\mathcal{E}(\ell+1+\delta_{0},\varepsilon,2^{-j}r),C\big{\}} (4.13)

for any j1j\geq 1. Finally, we choose jj so large that 2jrε01ε2^{-j}r\leq\varepsilon_{0}^{-1}\varepsilon. By Theorem 3.5 we obtain

(+1+δ0,ε,r)C,\mathcal{E}(\ell+1+\delta_{0},\varepsilon,r)\leq C,

which completes the proof of (4.10).

References

  • [1] G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal. 25 (1994), no. 5, 1259–1268.
  • [2] G. Alessandrini and V. Nesi, Univalent σ\sigma-harmonic mappings, Arch. Ration. Mech. Anal. 158 (2001), no. 2, 155–171.
  • [3]  , Locally invertible σ\sigma-harmonic mappings, Rend. Mat. Appl. (7) 39 (2018), no. 2, 195–203.
  • [4]  , Globally diffeomorphic σ\sigma-harmonic mappings, Ann. Mat. Pura Appl. (4) 200 (2021), no. 4, 1625–1635.
  • [5] M. Badger, M. Engelstein, and T. Toro, Structure of sets which are well approximated by zero sets of harmonic polynomials, Anal. PDE 10 (2017), no. 6, 1455–1495.
  • [6] P. Bauman, A. Marini, and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J. 50 (2001), no. 2, 747–757.
  • [7] M. Briane, G. W. Milton, and V. Nesi, Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity, Arch. Ration. Mech. Anal. 173 (2004), no. 1, 133–150.
  • [8] Y. Capdeboscq, On a counter-example to quantitative Jacobian bounds, J. Éc. polytech. Math. 2 (2015), 171–178.
  • [9] J. Cheeger, A. Naber, and D. Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math. 68 (2015), no. 2, 173–209.
  • [10] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), no. 1, 161–183.
  • [11] Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J. 43 (1994), no. 3, 983–1002.
  • [12] Q. Han, R. Hardt, and F. Lin, Geometric measure of singular sets of elliptic equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1425–1443.
  • [13] Q. Han and F. Lin, On the geometric measure of nodal sets of solutions, J. Partial Differential Equations 7 (1994), no. 2, 111–131.
  • [14] R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili, Critical sets of solutions to elliptic equations, J. Differential Geom. 51 (1999), no. 2, 359–373.
  • [15] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), no. 2, 505–522.
  • [16] F. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure Appl. Math. 44 (1991), no. 3, 287–308.
  • [17] F. Lin and Z. Shen, Nodal sets and doubling conditions in elliptic homogenization, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 6, 815–831.
  • [18]  , Critical sets of solutions of elliptic equations in periodic homogenization, Preprint, arXiv:2203.13393v1 (2022).
  • [19] A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. of Math. (2) 187 (2018), no. 1, 221–239.
  • [20]  , Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. of Math. (2) 187 (2018), no. 1, 241–262.
  • [21] A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math. 70 (2017), no. 10, 1835–1897.

Fanghua Lin, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA.

Email: [email protected]


Zhongwei Shen, Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA.

E-mail: [email protected]