This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Critical quantum geometric tensors of parametrically-driven nonlinear resonators

Hao-Long Zhang    Jia-Hao Lu¨{\rm\ddot{u}}    Ken Chen    Xue-Jia Yu [email protected]    Fan Wu [email protected]    Zhen-Biao Yang [email protected]    Shi-Biao Zheng Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
Abstract

Parametrically driven nonlinear resonators represent a building block for realizing fault-tolerant quantum computation and are useful for critical quantum sensing. From a fundamental viewpoint, the most intriguing feature of such a system is perhaps the critical phenomena, which can occur without interaction with any other quantum system. The non-analytic behaviors of its eigenspectrum have been substantially investigated, but those associated with the ground state wavefunction have largely remained unexplored. Using the quantum ground state geometric tensor as an indicator, we comprehensively establish a phase diagram involving the driving parameter ε\varepsilon and phase ϕ\phi. The results reveal that with the increase in ε\varepsilon, the system undergoes a quantum phase transition from the normal to the superradiant phase, with the critical point unaffected by ϕ\phi. Furthermore, the critical exponent and scaling dimension are obtained by an exact numerical method, which is consistent with previous works. Our numerical results show that the phase transition falls within the universality class of the quantum Rabi model. This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.

I Introduction

Physical systems can change between two distinct phases, exemplified by the ice-water transformation. Classical phase transitions are incurred by thermal fluctuations, while the quantum counterparts are triggered by quantum fluctuations, even at zero temperature, giving rise to quantum phase transitions (QPTs) [1, 2, 3, 4]. There exist different types of QPTs [5, 6, 7, 8, 9], among which of special interest are equilibrium ones. These phase transitions are manifested by the non-analytic behaviors of the ground state of the Hamiltonian at a critical point, around which a tiny change of the driving parameter would lead to a dramatic response. Such consequences are referred to as the critical phenomena [10, 11], which usually occurs in the thermodynamic limit.

Conventionally, the system size regarding thermodynamic limit refers to the number of the interacting constituents in the entire system, e.g., the number of spins that are coupled to a bosonic mode in the Dicke model [12, 13, 14], which can exhibit a superradiant phase transition at the critical point where the spin-boson coupling strength is comparable to the system frequencies. One decade ago, it was realized that the superradiant phase transition can also occur in the Rabi model [15, 16], which comprises only a single spin coupled to a bosonic mode. With this model, the thermodynamic limit is replaced by the scaling limit, where the ratio between the frequency of the qubit and the bosonic mode tends to infinity. The past few years have seen several impressive experimental demonstrations of such phase transitions [12, 13, 17, 18].

More recently, QPTs were revealed with an even simpler system, which involves a single resonator, featuring a competition between the Kerr nonlinearity and parametric drive [19, 20, 21, 22, 23, 24]. Such a system can be employed to construct a Kerr cat qubit with biased noises that are useful for realizing fault-tolerant quantum computation [25, 26, 27, 28, 29, 30, 31, 32], quantum transducer [33] and offers a possibility for criticality-enhanced quantum sensing [34, 35]. Physically, the infinity of the dimension of the Hilbert space plays the role of the thermodynamic limit. In such a space, the photons interact with each other through the Kerr effect. This interaction, together with the driving, can lead to a superradiant phase transition in the equilibrium state, like the Dicke or Rabi model, but without the participation of any spin. The associated critical phenomena are useful in sensitivity enhancement. The previous investigations of the phase transition in such a system primarily focused on the non-analytic behaviors of the ground state energy and the excitation energy [19], leaving the geometric aspects of wavefunction properties across parameter variations largely unexplored.

In this work, we explore the critical phenomena associated with the ground state wavefunction across the equilibrium phase transition of a single parametrically-driven Kerr resonator. Specifically, we quantify non-analytic behaviors using the quantum geometric tensor (QGT) [36, 37], consisting of the quantum metric [38, 39, 40, 41, 42] and the Berry curvature [43, 44, 45]. Employing an exact numerical diagonalization method, we systematically delineate a phase diagram with the driving parameter ε\varepsilon and phase ϕ\phi. The results reveal that a QPT from the normal phase to the superradiant phase occurs as ε\varepsilon increases, with the critical point unaffected by ϕ\phi. Additionally, the critical exponent and scaling dimension are determined using finite-size scaling analysis, consistent with previous results [46, 16]. Our findings demonstrate that the phase transition falls within the universality class of the quantum Rabi model.

The rest of this paper is organized as follows: Sec. II contains the model of a single parametrically-driven Kerr resonator, the numerical method employed, and the global phase diagram. Sec. III shows the scaling relations of QGT. Sec. IV presents the finite-size scaling of critical behavior, followed by a brief comparison with the two-photon driving bosonic model without Kerr nonlinearity. The conclusion is presented in Sec. V. Additional data for our numerical calculations are provided in the Appendixes.

Refer to caption
Figure 1: (a) The ground-state phase diagram of parametrically-driven nonlinear resonator with respect to control parameter ε\varepsilon and ϕ\phi characterized by the rescaled average photon number ρ=aa/L\rho=\langle a^{\dagger}a\rangle/L, which plays the role of order parameter in the description of phase transition. The phase boundary is close to ε=1\varepsilon=1, which coincides with the theoretical expectation. (b) The rescaled average photon number as a function of ε\varepsilon with L=104L=10^{4} and different ϕ=0,π/4,π/2,π\phi=0,\pi/4,\pi/2,\pi. All curves coincide together, indicating that the process of phase transition is independent of ϕ\phi.

II Quantum phase diagram of parametrically-driven nonlinear resonator

II.1 Model and method

The system under investigation is a parametrically-driven Kerr resonator, described by the following Hamiltonian (=1\hbar=1 is set)

Hdriven=δaaPa2Pa2+Ka2a2,H_{\rm{driven}}=\delta a^{\dagger}a-Pa^{\dagger 2}-P^{*}a^{2}+Ka^{\dagger 2}a^{2}, (1)

where aa and aa^{\dagger} represent the photon annihilation and creation operators, respectively, with the canonical commutation relation [a,a]=1[a,a^{\dagger}]=1. The Kerr nonlinearity is denoted by KK, and PP is the amplitude of the two-photon drive with detuning δ\delta. Notably, this Hamiltonian exhibits a discrete 2\mathbb{Z}_{2} symmetry, being invariant under the parity transformation U=eiπaaU=e^{i\pi a^{\dagger}a}. To analyze how the QPT is influenced by a finite value of δ/K\delta/K, we perform a finite-size scaling analysis, based on the effective “system size” defined as L=δ/KL=\delta/K, with LL governing the proximity to the thermodynamic limit. To investigate the geometric properties of the model, we can parametrize P=δεexp(iϕ)/2P=\delta\varepsilon\exp(-i\phi)/2, and study QPTs in terms of two-photon drive amplitude ε\varepsilon and phase ϕ\phi. Then the Hamiltonian can be rewritten as

Hdriven=Ka2a2+δaaδε2(eiϕa2+eiϕa2).{\rm{H}}^{\prime}_{\rm{driven}}=Ka^{\dagger 2}a^{2}+\delta a^{\dagger}a-\frac{\delta\varepsilon}{2}(e^{-i\phi}a^{\dagger 2}+e^{i\phi}a^{2}). (2)

Before delving into QPTs, it is pertinent to discuss the existing phases in the model. As a first step, we can analytically obtain quantum phases under different limits when K0K\rightarrow 0. On the one hand, for ε<1\varepsilon<1, the first term can be neglected, and a squeezing transformation S(rn)=e(rna2rna2)/2S(r_{\rm n})=e^{(r_{\rm n}^{*}a^{2}-r_{\rm n}a^{\dagger 2})/2} is applied, with rn=14ln1ε1+εeiϕr_{\rm n}=\frac{1}{4}\ln\frac{1-\varepsilon}{1+\varepsilon}e^{-i\phi}. This transforms the Hamiltonian to the normal phase Hamiltonian:

Hn=ωneaa+ωng,{\rm{H}}_{\rm n}=\omega_{\rm n}^{e}a^{\dagger}a+\omega_{\rm n}^{g}, (3)

where ωne=δ1ε2\omega_{\rm n}^{e}=\delta\sqrt{1-\varepsilon^{2}} and ωng=δ(1ε21)/2\omega_{\rm n}^{g}=\delta(\sqrt{1-\varepsilon^{2}}-1)/2 are the excitation and ground-state energies in the normal phase, respectively. Therefore, the system ground state is given by:

|ψng=S(rn)|0.\ket{\psi_{\rm n}^{g}}=S(r_{\rm n})\ket{0}. (4)

It is worth noting that this wavefunction is a squeezed vacuum state, which preserves the 2\mathbb{Z}_{2} symmetry. The squeezing parameter is dependent on ε\varepsilon and ϕ\phi.

The energy gap vanishes and the squeezing parameter tends to infinity at the critical point εc=1\varepsilon_{c}=1. To reveal the ground state in the regime ε>1\varepsilon>1, a displacement transformation D(±α)D(\pm\alpha) is performed, with α=L(ε1)/2exp(iϕ/2)\alpha=\sqrt{L(\varepsilon-1)/2}\exp(-i\phi/2). Discarding higher-order terms due to the large LL, the original Hamiltonian becomes:

HDδaaΩ(eiϕa2+eiϕa2)Lδ2(ε1)2/4,H_{\rm{D}}\approx\delta a^{\dagger}a-\Omega(e^{i\phi}a^{2}+e^{-i\phi}a^{\dagger 2})-L\delta^{2}(\varepsilon-1)^{2}/4, (5)

where δ=δ(2ε1)\delta=\delta(2\varepsilon-1) and Ω=δ/2\Omega=\delta/2. Then we perform the squeezing transformation S(rs)=e(rsa2rsa2)/2S(r_{\rm s})=e^{(r_{\rm s}^{*}a^{2}-r_{\rm s}a^{\dagger 2})/2} and set rs=14lnε1εeiϕr_{\rm s}=\frac{1}{4}\ln\frac{\varepsilon-1}{\varepsilon}e^{-i\phi}, transforming the Hamiltonian to the superradiant phase Hamiltonian:

Hs=ωseaa+ωsg,H_{\rm s}=\omega_{\rm s}^{e}a^{\dagger}a+\omega_{\rm s}^{g}, (6)

where ωse=2δε(ε1)\omega_{\rm s}^{e}=2\delta\sqrt{\varepsilon(\varepsilon-1)} and ωsg=δ(ε(ε1)ε+1/2)Lδ2(ε1)2/4\omega_{\rm s}^{g}=\delta(\sqrt{\varepsilon(\varepsilon-1)}-\varepsilon+1/2)-L\delta^{2}(\varepsilon-1)^{2}/4. Consequently, the system has two degenerate ground states, given by

|ψs(±)g=D(±α)S(rs)|0,\ket{\psi_{\rm s(\pm)}^{g}}=D(\pm\alpha)S(r_{\rm{s}})\ket{0}, (7)

both breaking the 2\mathbb{Z}_{2} parity symmetry.

The above results indicate that the system undergoes a transition from the normal phase to the superradiant phase at the critical point εc=1\varepsilon_{c}=1. In general, when KK takes a finite value, obtaining the ground state analytically becomes challenging. However, we can numerically diagonalize the Hamiltonian in the representation of the Fock basis and obtain the corresponding eigenstates by solving the secular equation. This method requires the photon number cut-off much larger than the average photon number of the system so that all the information on the quantum state can be included. In this work, unless explicitly stated otherwise, we set the cut-off to Ncut=800N_{\text{cut}}=800.

II.2 Quantum phase diagram

To explore the global phase diagram of the model, we numerically calculate the average photon density ρ=aa/L\rho=\langle a^{\dagger}a\rangle/L as a function of the two-photon drive amplitude ε\varepsilon and phase ϕ\phi. This average photon density serves as the order parameter in the theory of QPT. As depicted in Fig. 1(a), for a specific ϕ\phi, when ε<1\varepsilon\textless 1, the average photon density remains at 0, indicating the stability of the normal phase even with finite KK. Conversely, when ε>1\varepsilon\textgreater 1, the average photon density abruptly increases [see Fig. 1(b)], signifying that, photons spontaneously condense, breaking the 2\mathbb{Z}_{2} parity symmetry and exhibiting the superradiant phase. Moreover, it is observed that the normal-to-superradiant phase transition point is unaffected by the two-photon driving phase ϕ\phi, which will be discussed in the context of the QGT below.

Having established the global phase diagram, the subsequent crucial task is to investigate the QPT between different phases and determine the universality class to which it belongs. Various methods exist for detecting quantum critical points and determining their universality class[47, 3]. In the following sections, we introduce the basic concept of the critical QGT and employ it to examine QPT within the phase diagram.

III Basic notion for critical QGT

The system undergoes a continuous phase transition from an ordered to a disordered phase when tuning the external field λ\lambda to a critical value λc\lambda_{c}^{*}, at which the structure of the ground-state wavefunction changes significantly. More generally, if we consider a non-degenerate quantum system H(𝝀)H(\bm{\lambda}) that depends smoothly on a set of MM real adiabatic parameters denoted as 𝝀=(λ1,λ2,,λM)\bm{\lambda}=(\lambda_{1},\lambda_{2},...,\lambda_{M}), for the ground-state eigenvector |u0(𝝀)\ket{u_{0}(\bm{\lambda})} with the energy E0E_{0}, the QGT is defined by

Qjk=ju0(𝝀)|(1|u0(𝝀)u0(𝝀)|)|ku0(𝝀),Q_{jk}=\bra{\partial_{j}u_{\rm 0}(\bm{\lambda})}(1-\ket{u_{\rm 0}(\bm{\lambda})}\bra{u_{\rm 0}(\bm{\lambda})})\ket{\partial_{k}u_{\rm 0}(\bm{\lambda})}, (8)

where j=/λj\partial_{j}=\partial/\partial{\lambda_{j}}. The (symmetric) real part of the QGT yields the quantum metric tensor gjk=Re{Qjk}g_{jk}=\Re{Q_{jk}} [38, 39, 40, 48], which is a Riemannian metric providing the distance ds2=gjkdλjdλkds^{2}=g_{jk}d\lambda_{j}d\lambda_{k} between the quantum states |u0(λ)\ket{u_{0}(\lambda)} and |u0(λ+dλ)\ket{u_{0}(\lambda+d\lambda)}, corresponding to infinitesimally different parameters. The (antisymmetric) imaginary part of the QGT encodes the Berry curvature jk=2Im{Qjk}\mathcal{F}_{jk}=-2\Im{Q_{jk}} [43, 49, 50], which, when integrated over a surface subtended by a closed path in the parameter space, gives rise to the geometric Berry phase.

Refer to caption
Figure 2: (a) The rescaled quantum metric gεε/Lg_{\varepsilon\varepsilon}/L for L=300,400,500,600,700L=300,400,500,600,700 sites as a function of the control parameter ε\varepsilon. The inset is the extrapolation of the critical point εc\varepsilon_{\rm c}, symbols denote the finite-size result for L=300,400,500,600,700L=300,400,500,600,700 sites. We use polynomial fitting εc(L)=εc+aLb\varepsilon_{\rm c}(L)=\varepsilon^{*}_{\rm c}+aL^{-b} and extrapolate the critical point εc1.008\varepsilon^{*}_{\rm c}\approx 1.008. (b) Data collapse of gεεL2/νg_{\varepsilon\varepsilon}L^{-2/\nu} as a function of L1/ν(εεc)L^{1/\nu}(\varepsilon-\varepsilon_{c}^{*}). The results show the quantum metric gεεg_{\varepsilon\varepsilon} for different LL collapsing perfectly only when ν=1.510\nu=1.510.

An important aspect of the QGT is that its singularities are associated with QPTs. To gain a better understanding of this aspect, we rewrite Eq. (8) as

Qjk=n0un|jH|u0u0|kH|un(EnE0)2,Q_{jk}=\sum_{{\rm n}\neq 0}\frac{\bra{u_{\rm n}}\partial_{j}H\ket{u_{\rm 0}}\bra{u_{\rm 0}}\partial_{k}H\ket{u_{\rm n}}}{(E_{\rm n}-E_{\rm 0})^{2}}, (9)

where |un\ket{u_{\rm n}} is the eigenstate with eigenenergy EnE_{\rm n}. This expression clearly suggests that at the critical points, where the energy gap between the ground state and the nearest excited state vanishes in the thermodynamic limit, the QGT might show a singular behavior. If there is a local perturbation operator in the Hamiltonian, then under the scaling transformation [51], in the vicinity of the critical point λc\lambda_{c}^{*}, both the perturbation operator and the rescaled QGT Qjk/LdQ_{jk}/L^{d} have well-defined scaling dimensions Δμ\Delta_{\mu} (μ=ε,ϕ\mu=\varepsilon,\phi in our case, see the next section) and Δjk=Δj+Δk2zd\Delta_{jk}=\Delta_{j}+\Delta_{k}-2z-d, respectively, where zz is the dynamical exponent, and dd is spatial dimension of the system.

For a continuous QPT of a finite system with size LL, the QGT exhibits a peak at the pseudo-critical point λc(L)\lambda_{c}(L), and the value of the quantum critical point λc\lambda_{c}^{*} can be estimated by polynomial fitting λc(L)=λc+aLb\lambda_{c}(L)=\lambda_{c}^{*}+aL^{-b} [52]. In the vicinity of λc(L)=λc\lambda_{c}(L)=\lambda_{c}, previous studies [51] have shown that the finite-size scaling behaviors of the QGT follow

Qjk(λ=λc)LΔjk,Q_{jk}(\lambda=\lambda_{\rm c})\propto L^{\Delta_{jk}}, (10)

and [53, 54, 55]

|Qjk|LΔjk=fQGT((λλc)L1/ν),\absolutevalue{Q_{jk}}L^{-\Delta_{jk}}=f_{\text{QGT}}((\lambda-\lambda_{\rm c}^{*})L^{1/\nu}), (11)

where LL is the effective system size, ν\nu is the correlation length exponent, and fQGTf_{\text{QGT}} is an unknown scaling function.

Based on Eq. (10) and (11), the values of critical exponents ν\nu and the scaling dimension of different perturbations can be determined. However, as shown in the preceding section, the driving parameter for the QPT is ε\varepsilon instead of ϕ\phi. In this work, we mainly focus on the scaling behavior of QεεQ_{\varepsilon\varepsilon}, QεϕQ_{\varepsilon\phi}, and QεϕQ_{\varepsilon\phi}.

IV Finite size scaling and critical exponents

IV.1 Quantum critical behavior with Kerr nonlinearity

The next question is what is the critical behavior of the parametrically-driven nonlinear resonator with finite Kerr nonlinearity and to which universality class it belongs. To this end, we perform a numerical diagonalization of the Hamiltonian in the Fock basis and subsequently evaluate the components of the QGT using Eq. (9). The numerical results depend on the dimensions of the Hilbert space, and convergence is observed as the photon number cut-off increases. We extract the convergent results as a function of the driving parameter ε\varepsilon for different LL. Subsequently, we conduct fits to obtain the corresponding scaling dimension Δjk\Delta_{jk} and correlation length exponent ν\nu.

An interesting finding is that the first diagonal component of the QGT, denoted as gεεg_{\varepsilon\varepsilon}, is equivalent to the fidelity susceptibility [56, 57, 41, 42, 53, 58, 59, 58, 60, 57] (see Appendix A). The corresponding scaling dimension is related to the correlation length exponent as Δεε=2/ν\Delta_{\varepsilon\varepsilon}=2/\nu. Illustrated in Fig. 2(a), the rescaled quantum metric tensor gεε/Lg_{\varepsilon\varepsilon}/L exhibits a peak that becomes sharper with increasing size at the pseudo-critical point εc(L)\varepsilon_{c}(L). This implies that LL plays a role analogous to the system size in an ordinary phase transition. In the inset of Fig. 2(a), we perform finite-size scaling of the pseudo-critical point εc(L)\varepsilon_{c}(L) as a function of inverse effective system sizes 1/L1/L. The quantum critical point εc\varepsilon_{c}^{*} is estimated by polynomial fitting: εc(L)=εc+aLb\varepsilon_{c}(L)=\varepsilon_{c}^{*}+aL^{-b}. Consequently, at the critical point εc\varepsilon_{c}, the corresponding scaling dimension Δεε\Delta_{\varepsilon\varepsilon} is obtained by fitting the function in Eq.(10), and the correlation length exponent ν\nu is calculated. As shown in Fig. LABEL:fig3(a), we find that the scaling dimension Δεε1.325\Delta_{\varepsilon\varepsilon}\approx 1.325 and correlation length exponent ν\nu converges to 1.5101.510 as the thermodynamic limit is reached, closely matching the result 1.51.5 for quantum Rabi models in the infinite qubit-field frequency ratio limit [16].

Refer to caption
Figure 4: (a) The rescaled Berry curvature εϕ\mathcal{F}_{\varepsilon\phi} as a function of control parameter ε\varepsilon. The inset displays the finite size scaling of εϕ\mathcal{F}_{\varepsilon\phi} at the quasi-critical point as a function of ln(L)\ln(L). The solid circles denote the exact numerical results and the black dashed line is the linear fit, which yields a scaling dimension Δεϕ1.0\Delta_{\varepsilon\phi}\approx 1.0. (b) Data collapse of the |εϕ|LΔεϕ|\mathcal{F}_{\varepsilon\phi}|L^{-\Delta_{\varepsilon\phi}}, which is a function of L1/ν(εεc)L^{1/\nu^{\prime}}(\varepsilon-\varepsilon_{c}^{*}) only with ν=1.5\nu^{\prime}=1.5 so that for different LL all the lines collapse perfectly.

To verify the universal scaling behavior of the QGT, according to Eq.(11), the tensor can be scaled by LΔjkgεεL^{-\Delta_{jk}}g_{\varepsilon\varepsilon} as a function of L1/ν|εεc|L^{1/\nu}|\varepsilon-\varepsilon_{c}^{*}| in the vicinity of the quantum critical point εc\varepsilon_{c}^{*}. Upon inserting the obtained critical point εc\varepsilon_{c}^{*} and correlation length exponent ν\nu into Eq.(11), all metric tensors for different LL collapse into a single one [Fig. 2(b)], indicating that gεεg_{\varepsilon\varepsilon} is a universal function of L1/ν|εεc|L^{1/\nu}|\varepsilon-\varepsilon_{c}^{*}|, and the estimated critical point and critical exponent ν1.510\nu\approx 1.510 are accurate.

Refer to caption
Figure 5: (a) Finite size scaling of gεεg_{\varepsilon\varepsilon} at critical point with respect to the photon cut-off NcutN_{cut} without nonlinearity K=0K=0. The fitted critical exponent is γ13.996\gamma_{1}\approx 3.996. (b) Finite-size scaling of εϕ\mathcal{F}_{\varepsilon\phi} at critical point with respect to the photon cut-off NcutN_{cut} without nonlinearity K=0K=0. The fitted scaling dimension is γ22.997\gamma_{2}\approx 2.997. (c) Finite-size scaling of average photon number N¯=aa\bar{N}=\langle a^{\dagger}a\rangle for the photon number cut-off NcutN_{cut} without nonlinearity. The fitted scaling dimension approximates α0.998\alpha\approx 0.998. (d) The critical exponent of the average photon number as a function 1/L1/L. The fitted scaling dimension ΔN¯\Delta_{\bar{N}} converges to 0.3300.330. The hollow circles are the exact numerical results, and the black solid line is the linear fit of the numerical data.

Furthermore, we observe that the second diagonal component of the QGT gϕϕg_{\phi\phi} also diverges at the critical point εc\varepsilon_{c}^{*} due to gaplessness in the limit LL\rightarrow\infty. As shown in Fig. LABEL:fig3(b), the values of gϕϕg_{\phi\phi} at the critical point diverge as LL increases, with a scaling dimension Δϕϕ0.643\Delta_{\phi\phi}\approx 0.643.

Finally, we delve into the imaginary part of the off-diagonal component of the QGT, denoted as the Berry curvature εϕ\mathcal{F}_{\varepsilon\phi}. As illustrated in Fig. 4(a), the corresponding scaling dimension is Δεϕ1.0\Delta_{\varepsilon\phi}\approx 1.0. We obtatin the correlation length exponent and critical point by fitting the metric tensor into Eq. (11). Similarity, all Berry curvatures for different LL collapse into a single one in Fig. 4(b), which also suggests εϕ\mathcal{F}_{\varepsilon\phi} is a universal function of L1/ν|εεc|L^{1/\nu}|\varepsilon-\varepsilon_{c}^{*}|.

To summarize, our numerical findings collectively affirm that the critical point of the parametrically-driven Kerr resonator aligns with the same universality class as the Rabi model [16].

As an additional note, combined with the previous scaling analysis, we have determined the scaling dimensions Δjk\Delta_{jk} of the geometric tensor QjkQ_{jk}. Referring to Eq.(6) in Ref. [51], we can derive the scaling dimensions for ε\varepsilon and ϕ\phi perturbations, respectively. The results reveal that Δε=0.3375\Delta_{\varepsilon}=0.3375 and Δϕ=0.6785\Delta_{\phi}=0.6785. Additionally, the scaling dimension of the Berry curvature is 2ΔεΔϕ=0.9842-\Delta_{\varepsilon}-\Delta_{\phi}=0.984, closely matching the result obtained from the finite-size scaling Δεϕ1.0\Delta_{\varepsilon\phi}\approx 1.0. Crucially, as Δε<Δϕ\Delta_{\varepsilon}\textless\Delta_{\phi}, this implies that in the renormalization group sense, ε\varepsilon perturbation is more relevant than ϕ\phi perturbation. In other words, the driving parameter for the QPT is the ε\varepsilon perturbation, consistent with the findings illustrated in our phase diagram.

IV.2 Quantum critical behavior without Kerr nonlinearity

When K=0K=0, the model reduces to a two-photon driven bosonic mode [35]. A natural question is whether the inclusion of finite Kerr nonlinearity alters the universality class of the phase transitions. For this purpose, we specifically examine the case without Kerr nonlinearity. Diverging from the previous situation, the photon number cut-off NcutN_{{\rm{cut}}} serves as the effective system size to quantify the approach to the thermodynamic limit. At this time, the finite-size scaling relation of the first diagonal component of the QGT at the quantum critical point εc=1\varepsilon^{*}_{c}=1 can be written as gεε(εc)Ncutγ1g_{\varepsilon\varepsilon}(\varepsilon^{*}_{\rm c})\propto N_{{\rm{cut}}}^{\gamma_{1}}, where γ1\gamma_{1} signifies the scaling dimension of gεεg_{\varepsilon\varepsilon} concerning the photon number cut-off. The numerical result is depicted in Fig. 5(a), revealing a fitted scaling dimension of approximately γ13.996\gamma_{1}\approx 3.996. Similarly, the finite-size scaling relation of the Berry curvature is given by εϕ(εc)Ncutγ2\mathcal{F}_{\varepsilon\phi}(\varepsilon^{*}_{\rm c})\propto N_{cut}^{\gamma_{2}}, where γ2\gamma_{2} represents the scaling dimension of εϕ\mathcal{F}_{\varepsilon\phi} with respect to the photon number cut-off. As illustrated in Fig. 5(b), the fitted scaling dimension is approximately γ22.997\gamma_{2}\approx 2.997. For easier comparison, we write gεεg_{\varepsilon\varepsilon} and εϕ\mathcal{F}_{\varepsilon\phi} as scaling relations for the average number of photons N¯\bar{N} for both KK\neq and K=0K=0. Intuitively, when the photon number cutoff NcutN_{{\rm{cut}}} is increased, the average photon number of the system N¯=aa\bar{N}=\langle a^{\dagger}a\rangle becomes larger, that is, N¯Ncutα\bar{N}\propto N_{{\rm{cut}}}^{\alpha}, as shown in the Fig. 5(c), where we find α0.998\alpha\approx 0.998. Then the finite-size relation in terms of average photon number N¯\bar{N} can be expressed as (K=0K=0)

gεε(εc)N¯αγ1=N¯β1,εϕ(εc)N¯αγ2=N¯β2.\begin{split}&g_{\varepsilon\varepsilon}(\varepsilon^{*}_{\rm c})\propto\bar{N}^{\alpha\gamma_{1}}=\bar{N}^{\beta_{1}},\\ &\mathcal{F}_{\varepsilon\phi}(\varepsilon^{*}_{\rm c})\propto\bar{N}^{\alpha\gamma_{2}}=\bar{N}^{\beta_{2}}.\end{split} (12)

On the other hand, in the previous section IV.1, the scaling relation of gεεg_{\varepsilon\varepsilon} and εϕ\mathcal{F}_{\varepsilon\phi} concerning effective system size L=δ/KL=\delta/K are expressed as gεεLΔεεg_{\varepsilon\varepsilon}\propto L^{\Delta_{\varepsilon\varepsilon}} and εϕLΔεϕ\mathcal{F}_{\varepsilon\phi}\propto L^{\Delta_{\varepsilon\phi}}, respectively. Moreover, the scaling relation between the average number of photons and the effective system size is N¯(εc)LΔN¯\bar{N}(\varepsilon^{*}_{\rm c})\propto L^{\Delta_{\bar{N}}}. As shown in Fig. 5(d), ΔN¯0.33\Delta_{\bar{N}}\approx 0.33. Combining the aforementioned scaling formulas, the finite-size scaling of gεεg_{\varepsilon\varepsilon} concerning the average photon number is determined as (K0K\neq 0)

gεε(εc)N¯Δεε/ΔN¯=N¯β1,εϕ(εc)N¯Δεϕ/ΔN¯=N¯β2.\begin{split}&g_{\varepsilon\varepsilon}(\varepsilon^{*}_{c})\propto\bar{N}^{\Delta_{\varepsilon\varepsilon}/\Delta_{\bar{N}}}=\bar{N}^{\beta_{1}^{\prime}},\\ &\mathcal{F}_{\varepsilon\phi}(\varepsilon^{*}_{c})\propto\bar{N}^{\Delta_{\varepsilon\phi}/\Delta_{\bar{N}}}=\bar{N}^{\beta_{2}^{\prime}}.\end{split} (13)

Here β1\beta_{1}^{\prime} and β2\beta_{2}^{\prime} indicate the scaling dimension of gεεg_{\varepsilon\varepsilon} and εϕ\mathcal{F}_{\varepsilon\phi} concerning the average photon number, respectively. With all the numerical results obtained, we ascertain the scaling dimension of the quantum metric tensor concerning the average number of photons β1=Δεε/ΔN¯4.04\beta_{1}^{\prime}=\Delta_{\varepsilon\varepsilon}/\Delta_{\bar{N}}\approx 4.04, which is approximately equal to β1=αγ13.99\beta_{1}=\alpha\gamma_{1}\approx 3.99. Similarly, the Berry curvature with respect to the average photon number yields β2=Δεϕ/ΔN¯3.03\beta_{2}^{\prime}=\Delta_{\varepsilon\phi}/\Delta_{\bar{N}}\approx 3.03, roughly equal to β2=αγ22.99\beta_{2}=\alpha\gamma_{2}\approx 2.99. These results indicate that finite Kerr nonlinearity does not alter quantum critical behavior and always belongs to the same universality class as the quantum Rabi model.

V Conclusion

In summary, we have studied the properties of the ground state wavefunction and critical behavior of the parametrical-driven Kerr resonator through numerical simulations. Specifically, using critical QGT as a diagnostic, we characterize the critical behaviors with both the quantum metric and Berry curvature, which quantifies the response of the system to a variation of the governing Hamiltonian in the Hilbert space, and obtain a ground-state phase diagram between normal and superradiation phases. The numerical results demonstrate that the quantum metric and Berry curvature are dramatically changed even for a tiny variation of the control parameter near the critical point, serving as good signatures for the QPT. Notably, the location of the quantum critical point remains unchanged with an increase in the two-photon driving phase ϕ\phi. The finite-size scaling of the geometric tensor, critical exponent, and scaling dimension is obtained by an exact numerical method, which is consistent with previous works [19]. Our numerical results pinpoint that the phase transition falls within the universality class of the quantum Rabi model. The revealed divergent behaviors and universal scaling shed new light on the critical phenomena of the nonlinear resonator. Interesting future questions include the exotic phase and phase transitions in parametrical-driven Kerr resonators with dissipation.

Acknowledgements.
This work was supported by the National Natural Science Foundation of China (Grants No. 12274080, No. 11875108), National Youth Science Foundation of China (No. 12204105), the Educational Research Project for Young and Middle-aged Teachers of Fujian Province (Grant No. JAT210041) and the Natural Science Foundation of Fujian Province (Grants No. 2022J05116). X.-J.Yu acknowledges support from the start-up grant XRC-23102 of Fuzhou University.

Appendix A Equivalence of the quantum metric and the fidelity susceptibility

In this section, we provide detailed proof of the equivalence between the quantum metric tensor and the fidelity susceptibility. The Hamiltonian in Eq. (2) can be expressed as follows:

H(ε)=H0+εH1,H(\varepsilon)=H_{0}+\varepsilon H_{1}, (14)

where H0H_{0} is the Hamiltonian of the nonlinear oscillator and H1H_{1} is the perturbation inducing QPTs from the normal to the superradiant phase with the driving parameter ε\varepsilon. The quantum ground-state fidelity F(ε,ε+δε)F(\varepsilon,\varepsilon+\delta_{\varepsilon}), defined as the overlapping amplitude of the ground state wavefunction with the driving parameter ε\varepsilon and the ground state wavefunction with the driving parameter ε+δε\varepsilon+\delta_{\varepsilon}, is given by:

F(ε,ε+δε)=|u0(ε)|u0(ε+δε)|.F(\varepsilon,\varepsilon+\delta_{\varepsilon})=|\bra{u_{0}(\varepsilon)}\ket{u_{0}(\varepsilon+\delta_{\varepsilon})}|. (15)

Its value is almost zero near εc\varepsilon_{c}^{*}, i.e., F(εc,εc+δε)0F(\varepsilon_{c}^{*},\varepsilon_{c}^{*}+\delta_{\varepsilon})\sim 0. The ground states exhibit substantial differences on each side of a quantum critical point, leading to a pronounced dip in the vicinity of this critical point.

In practice, a more convenient quantity to characterize QPTs is the fidelity susceptibility, defined by the leading term of the fidelity [57]:

χF(ε)=limδε02lnF(δε)2.\chi_{F}(\varepsilon)=\lim_{\delta_{\varepsilon}\rightarrow 0}\frac{-2\ln F}{(\delta_{\varepsilon})^{2}}. (16)

To directly show the equivalence between the two physical quantities, expressed in terms of the eigenstates of the Hamiltonian, the fidelity susceptibility is represented as:

χF(ε)=n=1|un(ε)|H1|u0(ε)|2[En(ε)E0(ε)]2,\chi_{F}(\varepsilon)=\sum_{n=1}\frac{|\bra{u_{\rm n}(\varepsilon)}H_{1}\ket{u_{0}(\varepsilon)}|^{2}}{[E_{\rm n}(\varepsilon)-E_{0}(\varepsilon)]^{2}}, (17)

where |un(ε)\ket{u_{\rm n}(\varepsilon)} is the eigenstate of H(ε)H(\varepsilon) with the corresponding eigenenergy En(ε)E_{\rm n}(\varepsilon). Additionally, we observe that H1=εHH_{1}=\partial_{\varepsilon}H. Therefore, by comparing the expression of Eq. (9), we have proven that the fidelity susceptibility is indeed the quantum metric tensor, i.e., Re{Qεε}=gεε\Re{Q_{\varepsilon\varepsilon}}=g_{\varepsilon\varepsilon}.

References

  • Sachdev [2011] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 2011).
  • Zurek et al. [2005] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95, 105701 (2005).
  • Cardy [1996] J. Cardy, Scaling and renormalization in statistical physics, Vol. 5 (Cambridge university press, 1996).
  • Sachdev [2023] S. Sachdev, Quantum Phases of Matter (Cambridge University Press, 2023).
  • Sondhi et al. [1997] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous quantum phase transitions, Rev. Mod. Phys. 69, 315 (1997).
  • Xu [2012] C. Xu, Unconventional quantum critical points, International Journal of Modern Physics B 26, 1230007 (2012).
  • Yu et al. [2022a] X.-J. Yu, P.-L. Zhao, S.-K. Jian, and Z. Pan, Emergent space-time supersymmetry at disordered quantum critical points, Phys. Rev. B 105, 205140 (2022a).
  • Yu et al. [2022b] X.-J. Yu, R.-Z. Huang, H.-H. Song, L. Xu, C. Ding, and L. Zhang, Conformal boundary conditions of symmetry-enriched quantum critical spin chains, Phys. Rev. Lett. 129, 210601 (2022b).
  • Yang et al. [2023] S. Yang, Z. Pan, D.-C. Lu, and X.-J. Yu, Emergent self-duality in a long-range critical spin chain: From deconfined criticality to first-order transition, Phys. Rev. B 108, 245152 (2023).
  • Hertz [1976] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165 (1976).
  • Coleman and Schofield [2005] P. Coleman and A. J. Schofield, Quantum criticality, Nature 433, 226 (2005).
  • Baumann et al. [2010] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature 464, 1301 (2010).
  • Zhang et al. [2021] X. Zhang, Y. Chen, Z. Wu, J. Wang, J. Fan, S. Deng, and H. Wu, Observation of a superradiant quantum phase transition in an intracavity degenerate fermi gas, Science 373, 1359 (2021).
  • Kirton et al. [2019] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre, Introduction to the dicke model: From equilibrium to nonequilibrium, and vice versa, Adv. Quantum Technol. 2, 1800043 (2019).
  • Ashhab [2013] S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator, Phys. Rev. A 87, 013826 (2013).
  • Hwang et al. [2015] M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase transition and universal dynamics in the rabi model, Phys. Rev. Lett. 115, 180404 (2015).
  • Cai et al. [2021] M. L. Cai, Z. D. Liu, W. D. Zhao, Y. K. Wu, Q. X. Mei, Y. Jiang, L. He, X. Zhang, Z. C. Zhou, and L. M. Duan, Observation of a quantum phase transition in the quantum rabi model with a single trapped ion, Nat. Commun. 12, 1126 (2021).
  • Zheng et al. [2023] R.-H. Zheng, W. Ning, Y.-H. Chen, J.-H. Lü, L.-T. Shen, K. Xu, Y.-R. Zhang, D. Xu, H. Li, Y. Xia, F. Wu, Z.-B. Yang, A. Miranowicz, N. Lambert, D. Zheng, H. Fan, F. Nori, and S.-B. Zheng, Observation of a superradiant phase transition with emergent cat states, Phys. Rev. Lett. 131, 113601 (2023).
  • Grigoriou and Navarrete-Benlloch [2023] E. Grigoriou and C. Navarrete-Benlloch, Signatures of a quantum phase transition on a single-mode bosonic model (2023), arXiv:2303.12894 .
  • Beaulieu et al. [2023] G. Beaulieu, F. Minganti, S. Frasca, V. Savona, S. Felicetti, R. D. Candia, and P. Scarlino, Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator (2023), arxiv:2310.13636 .
  • Wang and Wu [2020] Q.-W. Wang and S. Wu, Excited-state quantum phase transitions in kerr nonlinear oscillators, Phys. Rev. A 102, 063531 (2020).
  • Chávez-Carlos et al. [2023] J. Chávez-Carlos, T. L. M. Lezama, R. G. Cortiñas, J. Venkatraman, M. H. Devoret, V. S. Batista, F. Pérez-Bernal, and L. F. Santos, Spectral kissing and its dynamical consequences in the squeeze-driven Kerr oscillator, npj Quantum Information 9, 76 (2023).
  • Bartolo et al. [2016] N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Exact steady state of a kerr resonator with one- and two-photon driving and dissipation: Controllable wigner-function multimodality and dissipative phase transitions, Phys. Rev. A 94, 033841 (2016).
  • Zhang and Baranger [2021] X. H. H. Zhang and H. U. Baranger, Driven-dissipative phase transition in a kerr oscillator: From semiclassical PT symmetry to quantum fluctuations, Physical Review A: Atomic, Molecular, and Optical Physics 103, 033711 (2021).
  • Goto [2016] H. Goto, Universal quantum computation with a nonlinear oscillator network, Phys. Rev. A 93, 050301 (2016).
  • Puri et al. [2017] S. Puri, S. Boutin, and A. Blais, Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving, npj Quantum Inf 3, 18 (2017).
  • Puri et al. [2019] S. Puri, A. Grimm, P. Campagne-Ibarcq, A. Eickbusch, K. Noh, G. Roberts, L. Jiang, M. Mirrahimi, M. H. Devoret, and S.  . Girvin, Stabilized cat in a driven nonlinear cavity: A fault-tolerant error syndrome detector, Phys. Rev. X 9, 041009 (2019).
  • Puri et al. [2020] S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini, P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais, S. T. Flammia, and S. M. Girvin, Bias-preserving gates with stabilized cat qubits, Sci. Adv. 6, eaay5901 (2020).
  • Grimm et al. [2020] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret, Stabilization and operation of a kerr-cat qubit, Nature 584, 205 (2020).
  • Kanao et al. [2022] T. Kanao, S. Masuda, S. Kawabata, and H. Goto, Quantum gate for a kerr nonlinear parametric oscillator using effective excited states, Phys. Rev. Appl. 18, 014019 (2022).
  • Kang et al. [2022] Y.-H. Kang, Y.-H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S.-B. Zheng, and F. Nori, Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering, Phys. Rev. Res. 4, 013233 (2022).
  • Gravina et al. [2023] L. Gravina, F. Minganti, and V. Savona, Critical schrödinger cat qubit, PRX Quantum 4, 020337 (2023).
  • Heugel et al. [2019] T. L. Heugel, M. Biondi, O. Zilberberg, and R. Chitra, Quantum transducer using a parametric driven-dissipative phase transition, Phys. Rev. Lett. 123, 173601 (2019).
  • Di Candia et al. [2023] R. Di Candia, F. Minganti, K. V. Petrovnin, G. S. Paraoanu, and S. Felicetti, Critical parametric quantum sensing, npj Quantum Inf. 9, 23 (2023).
  • Chen et al. [2023] K. Chen, J.-H. Lü, X. Zhu, H.-L. Zhang, W. Ning, Z.-B. Yang, and S.-B. Zheng, Critical sensing with a single bosonic mode without boson-boson interactions (2023), arXiv:2305.17656 .
  • Tan et al. [2019] X. Tan, D.-W. Zhang, Z. Yang, J. Chu, Y.-Q. Zhu, D. Li, X. Yang, S. Song, Z. Han, Z. Li, Y. Dong, H.-F. Yu, H. Yan, S.-L. Zhu, and Y. Yu, Experimental measurement of the quantum metric tensor and related topological phase transition with a superconducting qubit, Phys. Rev. Lett. 122, 210401 (2019).
  • Gutiérrez-Ruiz et al. [2021] D. Gutiérrez-Ruiz, D. Gonzalez, J. Chávez-Carlos, J. G. Hirsch, and J. D. Vergara, Quantum geometric tensor and quantum phase transitions in the lipkin-meshkov-glick model, Phys. Rev. B 103, 174104 (2021).
  • Zanardi et al. [2007] P. Zanardi, P. Giorda, and M. Cozzini, Information-theoretic differential geometry of quantum phase transitions, Phys. Rev. Lett. 99, 100603 (2007).
  • Rezakhani et al. [2010] A. T. Rezakhani, D. F. Abasto, D. A. Lidar, and P. Zanardi, Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions, Phys. Rev. A 82, 012321 (2010).
  • Lü et al. [2023] J.-H. Lü, P.-R. Han, W. Ning, X. Zhu, F. Wu, L.-T. Shen, Z.-B. Yang, and S.-B. Zheng, Quantum metric and metrology with parametrically-driven tavis-cummings models, Opt. Express 31, 41669 (2023).
  • Yu et al. [2022c] X.-J. Yu, S. Yang, J.-B. Xu, and L. Xu, Fidelity susceptibility as a diagnostic of the commensurate-incommensurate transition: A revisit of the programmable rydberg chain, Phys. Rev. B 106, 165124 (2022c).
  • Yu et al. [2023] X.-J. Yu, C. Ding, and L. Xu, Quantum criticality of a 𝕫3{\mathbb{z}}_{3}-symmetric spin chain with long-range interactions, Phys. Rev. E 107, 054122 (2023).
  • Berry [1984] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984).
  • Zhu [2006] S.-L. Zhu, Scaling of geometric phases close to the quantum phase transition in the xyxy spin chain, Phys. Rev. Lett. 96, 077206 (2006).
  • Hamma [2006] A. Hamma, Berry phases and quantum phase transitions (2006), arXiv:quant-ph/0602091 .
  • Wei and Lv [2018] B.-B. Wei and X.-C. Lv, Fidelity susceptibility in the quantum rabi model, Phys. Rev. A 97, 013845 (2018).
  • Coldenfeld [2018] N. Coldenfeld, Lectures on phase transitions and the renormalization group (Lectures on Phase Transitions and the Renormalization Group, 2018).
  • Lin et al. [2023] L.-S. Lin, H.-L. Zhang, and Z.-B. Yang, Method for the quantum metric tensor measurement in a continuous variable system, Photonics 10, 256 (2023).
  • Wang et al. [2023] B.-Y. Wang, H.-L. Zhang, S.-B. Yang, F. Wu, Z.-B. Yang, and S.-B. Zheng, Scheme for measuring topological transitions in a continuous variable system, Advanced Quantum Technologies 6, 2300068 (2023).
  • Zhang et al. [2017] Z.-L. Zhang, M.-F. Chen, H.-Z. Wu, and Z.-B. Yang, Quantum simulation of gravitational-like waves in minisuperspace with an artificial qubit, Phys. Rev. D 95, 046010 (2017).
  • Campos Venuti and Zanardi [2007] L. Campos Venuti and P. Zanardi, Quantum critical scaling of the geometric tensors, Phys. Rev. Lett. 99, 095701 (2007).
  • Sandvik [2010] A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 1297, 135 (2010).
  • Albuquerque et al. [2010] A. F. Albuquerque, F. Alet, C. Sire, and S. Capponi, Quantum critical scaling of fidelity susceptibility, Phys. Rev. B 81, 064418 (2010).
  • König et al. [2016] E. J. König, A. Levchenko, and N. Sedlmayr, Universal fidelity near quantum and topological phase transitions in finite one-dimensional systems, Phys. Rev. B 93, 235160 (2016).
  • Gu and Yu [2014] S.-J. Gu and W. C. Yu, Spectral function and fidelity susceptibility in quantum critical phenomena, Europhysics Letters 108, 20002 (2014).
  • Gu [2010] S.-J. Gu, Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24, 4371 (2010).
  • You et al. [2007] W.-L. You, Y.-W. Li, and S.-J. Gu, Fidelity, dynamic structure factor, and susceptibility in critical phenomena, Phys. Rev. E 76, 022101 (2007).
  • Gu et al. [2008] S.-J. Gu, H.-M. Kwok, W.-Q. Ning, and H.-Q. Lin, Fidelity susceptibility, scaling, and universality in quantum critical phenomena, Phys. Rev. B 77, 245109 (2008).
  • Gu and Lin [2009] S.-J. Gu and H.-Q. Lin, Scaling dimension of fidelity susceptibility in quantum phase transitions, Europhysics Letters 87, 10003 (2009).
  • Wang et al. [2015] L. Wang, Y.-H. Liu, J. Imriška, P. N. Ma, and M. Troyer, Fidelity susceptibility made simple: A unified quantum monte carlo approach, Phys. Rev. X 5, 031007 (2015).