This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Criterion for fingering instabilities in colloidal gels

Thibaut Divoux MultiScale Material Science for Energy and Environment, UMI 3466, CNRS–MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139    Asheesh Shukla MultiScale Material Science for Energy and Environment, UMI 3466, CNRS–MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA    Badis Marsit Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139    Yacouba Kaloga MultiScale Material Science for Energy and Environment, UMI 3466, CNRS–MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA    Irmgard Bischofberger Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
(December 30, 2024)
Abstract

We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: (ii) stable flows during which the gel undergoes a tensile deformation without yielding, and (iiii) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gel’s macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.

The displacement of a more viscous fluid by a less viscous one in a confined geometry can induce the formation of complex patterns Saffman and Taylor (1958); Paterson (1981); Chen (1987). Even in the simplest case of two Newtonian fluids, this viscous fingering instability keeps yielding new discoveries Pihler-Puzović et al. (2012); Bischofberger et al. (2014); Bihi et al. (2016); Rabbani et al. (2018); Alert et al. (2019); Escala et al. (2019); Videbæk and Nagel (2019). When the displaced fluid is replaced with a non-Newtonian one, the finger growth dynamics can be significantly altered Bohr et al. (1994); McCloud and Maher (1995); Kondic et al. (1998); Lindner et al. (2002); Puff et al. (2002); Shaukat et al. (2009); Mohammed Abdelhaye et al. (2012); Van Damme et al. (2002). For instance, in the displacement of a viscoelastic fluid by a Newtonian one, a transition from viscous fingering to fracture occurs above a critical Deborah number, driven by the release of elastic stresses Lemaire and Van Damme (1989); Lemaire et al. (1991); Zhao and Maher (1993); Mora and Manna (2010); Foyart et al. (2013); Ligoure and Mora (2013). While a consensus has been reached for the mechanism responsible for this transition in viscoelastic fluids with a finite relaxation timescale, we are far from a comprehensive description of fingering instabilities in another class of complex materials, yield stress fluids, which exhibit a solid-like behavior at rest and a solid-to-liquid transition beyond a critical stress σc\sigma_{c} Coussot (2014); Bonn et al. (2017); Coussot (2018). In dense foams and emulsions displaced by air, for example, the pattern morphology associated with fingering instabilities is strongly rate-dependent Park and Durian (1994); Lindner et al. (2000). In tensile tests of dense microgels, where the samples are sandwiched between two parallel plates that get separated at a constant velocity, the yield stress can suppress the instability Barral et al. (2010). The transition between stable and unstable displacement currently lacks a theoretical explanation Coussot (1999); Barral et al. (2010). Moreover, the most unstable wavelength of the pattern has been alternatively reported as being set by the yield stress, or being independent of the yield stress Lindner et al. (2000); Derks et al. (2003); Maleki-Jirsaraei et al. (2005), which calls for further experimental investigations.

In this Letter, we report a comprehensive description of both the criterion for stabilization and the characteristics of the most unstable wavelength for a colloidal gel displaced by air. We show that the onset of the viscous fingering instability occurs at a critical energy input that is independent of the gel’s yield stress, implying that the mechanism inducing unstable growth is determined locally at the particle scale. Remarkably, the most unstable wavelength λc\lambda_{\rm c} obeys the scaling of a Newtonian fluid, which indicates a complete fluidization of the gel at the locus of finger growth. This observation, in agreement with a local yielding criterion, is further confirmed by the power-law scaling of the normal force relaxation occurring during the tensile test. Our results provide a comprehensive framework for fingering instabilities in colloidal gels based on a mechanism that is specific to attractive systems, which suggests that there will not be a universal framework accounting for viscous fingering instabilities in all yield stress fluids.

Refer to caption
Figure 1: (a)–(d) Patterns obtained at a lift velocity vl=200μv_{l}=200\leavevmode\nobreak\ \mum/s for increasing initial gap thicknesses h0h_{0}= 100, 300, 500 and 900 μ\mum in tensile tests performed with a 8% wt. carbon black gel placed between two parallel plates of radius R=20R=20 mm. (e) Stability diagram: radial velocity vrv_{r} versus initial gap thickness h0h_{0}. Closed symbols denote stable conical patterns, open symbols denote unstable fingering patterns. The data points corresponding to the four images are indicated as triangles. The red line denotes the critical velocity vrv_{r}^{*} separating the stable from the unstable regime. Inset: vr/h0v_{r}^{*}/h_{0} versus the inverse of the yield stress σc1\sigma_{c}^{-1} for carbon black gels at 4%, 6%, 8% and 10% wt. σc\sigma_{c} is determined as the crossover of GG^{\prime} and G′′G^{\prime\prime} during a stress sweep from 1 Pa to 100 Pa (frequency f=1f=1 Hz, waiting time of 5 s per point).

The colloidal gel consists of carbon black particles (Vulcan XC72R, Cabot) of typical diameter a=0.5a=0.5 μ\mum suspended at weight fractions ranging from 4% to 10% wt. in light mineral oil (Sigma Aldrich; viscosity ηs=20\eta_{s}=20 mPa.s, density ρs=0.838\rho_{s}=0.838 g/ml). Due to attractive van der Waals forces van der Waarden (1950); Hartley and Parfitt (1985), carbon black particles form a space-spanning gel network of fractal dimension df2.2d_{f}\simeq 2.2, whose linear viscoelastic properties are characterized by a frequency-independent elastic response Trappe and Weitz (2000); Prasad et al. (2003); Gibaud et al. (2010); Grenard et al. (2014). Under external stresses lower than the yield stress σc\sigma_{c}, the gel behaves as a solid. For σ>σc\sigma>\sigma_{c}, the gel flows. This shear-induced yielding transition is time-dependent, spatially heterogeneous and characterized by activated dynamics Gibaud et al. (2010); Sprakel et al. (2011); Grenard et al. (2014); Perge et al. (2014); Gibaud et al. (2016). Here, we place a carbon black gel between a stainless steel parallel-plate geometry of radius R=20R=20 mm, whose upper plate is connected to a stress-controlled rheometer (DHR-3, TA Instruments). The temperature of the lower plate is fixed to 25C by Peltier elements. To account for the sensitivity of carbon black gels on shear history Ovarlez et al. (2013); Helal et al. (2016); Narayanan et al. (2017); Hipp et al. (2019), the sample is fully fluidized prior to each test by applying a large shear stress σ=100\sigma=100 Pa for 30 s. The stress is subsequently swept down to σ=0\sigma=0 Pa at a rate of 1 Pa/s, while the gel reforms. This protocol yields a reproducible initial state Helal et al. (2016). The resulting viscoelastic moduli G0G^{\prime}_{0} and G0′′G^{\prime\prime}_{0} of the gel are determined during 1 min by small amplitude oscillations (strain amplitude γ=0.1\gamma=0.1%, frequency f=1f=1 Hz) [Fig. S1 in Supplemental Material]. We then perform a tensile test at a constant lift velocity vlv_{l} during which we record the normal force FNF_{N}. The plate separation yields a roughly symmetric pattern on both plates, which is photographed.

Two main types of patterns occur in the tensile tests for a 8% wt. carbon black gel, depending on the lift velocity vlv_{l} and the initial gap thickness h0h_{0}: (ii) unstable patterns characterized by highly branched structures [Fig. 1(a)-(c)], and (iiii) stable patterns characterized by conical piles of carbon black gel at the center of the plates [Fig. 1(d)]. Unstable patterns result from instabilities at the air/gel interface at the periphery of the parallel plate geometry and are observed for high lift velocities and small initial gap thicknesses. Small perturbations here have a positive growth rate and grow into large-scale air fingers along the radial direction, leaving behind regions depleted in gel. Stable patterns result from a stable displacement of the gel under the tensile flow generated by the plate separation, where perturbations at the interface get damped out. They are observed for low lift velocities and large initial gap thicknesses. Such stable patterns do not occur in Newtonian fluids, but were reported in soft glassy materials such as dense microgels and mortar pastes Barral et al. (2010); Mohammed Abdelhaye et al. (2012). Our observations are summarized in a stability diagram, where we report the radial velocity vr=vl(R/2h0)v_{r}=v_{l}(R/2h_{0}), which is the velocity for radial air invasion, and the initial gap thickness h0h_{0} [Fig. 1(e)]. The transition from unstable to stable displacement occurs at a critical radial velocity vrv_{r}^{*}, which increases linearly with increasing h0h_{0}. Such a scaling is robustly observed for different concentrations of carbon black ranging from 4% to 10% wt. [Fig. S2 in Supplemental Material]. Remarkably, the stability boundary vr(h0)v_{r}^{*}(h_{0}) shifts towards lower values of velocity for carbon black gels with increasing particle concentration; stronger gels exhibit unstable patterns over a larger range of vrv_{r} and h0h_{0}. From our additional experiments on gels with 4%, 6% and 10% wt. we find vr/h0σc1v_{r}^{*}/h_{0}\propto\sigma_{c}^{-1}, as shown in the inset of Fig. 1(e). This scaling suggests a criterion for fingering instabilities governed by a critical energy provided to the material during the tensile test. Indeed, integrating Darcy’s law to compute the pressure field between the plates, which is in turn integrated twice over the area occupied by the material yields the expression for the energy input: E(h)vrσcR3(h03/h4)E(h)\propto v_{r}\sigma_{c}R^{3}(h_{0}^{3}/h^{4}) for plates separated by a distance hh [see Supplemental Material]. Assuming that the flow is unstable above a critical energy EE^{*} at the start of the tensile test leads to a critical radial velocity vr(E/σc)(h0/R3)v_{r}^{*}\propto(E^{*}/\sigma_{c})(h_{0}/R^{3}), consistent with our experimental scaling.
This energy criterion is confirmed by our measured input energies calculated from the normal force recorded during the tensile test. Unstable patterns form above a critical energy EE^{*}, which increases as a power-law with h0h_{0}, as shown in Fig. 2. The h0h_{0} dependence accounts for the fractal nature of the gel, which implies that the number of particles within the gap h0h_{0} scales as (h0/a)df/3(h_{0}/a)^{d_{f}/3} (red line in Fig. 2). The criterion for fingering instabilities is thus a critical local energy input per carbon black particle, which is independent of the yield stress of the gel and the concentration of particles, as shown in the inset of Fig. 2. Note that EE^{*} is equivalent to a characteristic stress σ10\sigma^{\star}\simeq 10 Pa, a value comparable with the activation stress identified in delayed yielding experiments corresponding to the mean elastic barrier that needs to be overcome for a gel strand to break Sprakel et al. (2011); Lindström et al. (2012); Gibaud et al. (2016).

Refer to caption
Figure 2: Energy input EE associated with the separation of two plates sandwiching a 8% carbon black gel initially separated by h0h_{0}. Closed symbols denote stable patterns, open symbols denote unstable patterns. The red line defines the critical energy EE^{*} beyond which fingers grow. EE^{*} exhibits a power law with h0h_{0}, with an exponent df/3d_{f}/3, where df=2.1d_{f}=2.1. Inset: critical energy per particle E/(h0/a)df/3E^{*}/(h_{0}/a)^{d_{f}/3} versus yield stress for carbon black gels at 4%, 6%, 8% and 10% wt.
Refer to caption
Figure 3: (a) Normal force FNF_{N} versus gap thickness hh during a tensile test (vl=200μv_{l}=200\leavevmode\nobreak\ \mum). The two curves correspond to h0=200μh_{0}=200\leavevmode\nobreak\ \mum resulting in viscous fingering (open symbols) and h0=1000μh_{0}=1000\leavevmode\nobreak\ \mum resulting in a stable conical deposit (closed symbols). The blue lines denote the power-law exponents of the first relaxation step: α=5\alpha=5 for h0=200h_{0}=200 μ\mum and α=2.5\alpha=2.5 for h0=1000h_{0}=1000 μ\mum. The green lines denote the power-law exponents of the second relaxation step: β2\beta\simeq 2 for both experiments. (b) Exponents α\alpha and β\beta versus h0h_{0}. With increasing gap thickness, α\alpha transitions from a Newtonian-like response (α=5\alpha=5 – blue line) to a yield stress dominated behavior (α=2.5\alpha=2.5 – blue line). β\beta is roughly constant over the range of gap thickness explored (β2\beta\simeq 2 – green line). (c) The relative extent Rp/RR_{p}/R of the pattern versus h0h_{0}. Inset: definition of RR and RpR_{p}. The vertical lines in (b) and (c) denote the boundary between the stable and the unstable regime.

This scenario suggests that the gel fully yields in the unstable regime, but not in the stable regime. This is further evidenced by considering the evolution of the normal force FN(h)F_{N}(h) during plate separation for a stable and an unstable pattern. In both cases, FNF_{N} exhibits a sharp increase up to a maximum followed by a two-step relaxation characterized by two power laws with respective exponents α\alpha and β\beta, as shown in Fig. 3(a). For the unstable pattern, the first relaxation exhibits an exponent α5\alpha\simeq 5 that is characteristic of a purely Newtonian response Bikerman (1947); Maugis (1991); Lindner et al. (2005). Indeed, assuming a constant viscosity η\eta yields FN(h)=3πηR4h02vl/2h5F_{N}(h)=3\pi\eta R^{4}h_{0}^{2}v_{l}/2h^{5} Bikerman (1947); Derks et al. (2003). The air fingers invade the gap radially into the locally fluidized gel. The second relaxation exhibits a power-law exponent β2\beta\simeq 2, which is characteristic of the necking of a viscous liquid Bikerman (1947) and corresponds to the extensional flow of the gel threads linking the crest of the branched pattern formed on the upper and lower plates.
By contrast, the early growth of the stable pattern is characterized by a power-law relaxation step with an exponent α2.5\alpha\simeq 2.5, characteristic of a yield stress fluid Coussot (1999); Derks et al. (2003). Indeed, assuming that the pressure gradient is balanced by the yield stress σc\sigma_{c} yields FN(h)=2πR3h03/2σc/3h5/2F_{N}(h)=2\pi R^{3}h_{0}^{3/2}\sigma_{c}/3h^{5/2}. While being dragged towards the center of the plates, the carbon black gel thus behaves predominantly as an elastic soft solid. The gel may rearrange to accommodate the extensional flow, but over timescales that are large compared to the gel’s “healing timescale” denoting the re-formation of the network, such that G>G′′G^{\prime}>G^{\prime\prime} at all times. The second relaxation step exhibits a power law with an exponent β2\beta\simeq 2, as for the unstable case. Note that the transition from the first to the second relaxation regime occurs at a critical gap hc2600μh_{c}\simeq 2600\leavevmode\nobreak\ \mum that coincides with reaching the final diameter of the deposit, as determined from mass conservation arguments, further confirming that the second relaxation step denotes the thinning of the gel thread connecting the two cones of gel located on the lower and upper plates.
More generally, for tensile tests performed at a constant lift velocity, the first relaxation step of the normal force displays a Newtonian behavior characterized by α5\alpha\simeq 5 at small h0h_{0}. For increasing initial gap thicknesses approaching the boundary to the stable regime, α\alpha decreases monotonically until reaching α2.5\alpha\simeq 2.5, the value expected for a yield stress fluid, at the onset of stable displacement, as shown in Fig. 3(b). Concomitantly, the pattern transitions from a highly branched structure that extends over the entire radius RR of the plate, to an unstable pattern of reduced size RpR_{p} within a transitional range of h0h_{0} to finally a stable conical shape, as shown in Fig. 3(c). The second relaxation step of the normal force displays a power-law exponent β2\beta\simeq 2 for all initial gap thicknesses, whether or not the flow is unstable. These observations are robust and also observed in experiments at fixed h0h_{0} performed at various lift velocities [Fig. S3 in Supplemental Material].

As a consequence of the gel’s full fluidization locally at the tip of the fingers, the most unstable wavelength characterizing the onset of the instability λc\lambda_{c} CBf (a) scales as λch03/2\lambda_{c}\propto h_{0}^{3/2} with the initial gap thickness for h0>200μh_{0}>200\leavevmode\nobreak\ \mum, and as λcvr1/2\lambda_{c}\propto v_{r}^{-1/2} with the radial velocity, as shown in Fig. 4. These two scaling laws are in agreement with the predictions from a linear stability analysis for a Newtonian fluid with viscosity η\eta and surface tension Γ\Gamma Paterson (1981); Shelley et al. (1997):

λc2πh03ΓηvlR=πh0ηvr/Γ\lambda_{c}\simeq\sqrt{\frac{2\pi h_{0}^{3}\Gamma}{\eta v_{l}R}}=\frac{\pi h_{0}}{\sqrt{\eta v_{r}/\Gamma}} (1)

for plates with large aspect ratio R/h01R/h_{0}\gg 1. This confirms that the yield stress plays a negligible role in the formation of the fingering patterns. Moreover, if we take for Γ\Gamma the surface tension of the light mineral oil Γs\Gamma_{s}, we obtain η=0.18\eta=0.18 Pa.s, which is compatible with the viscosity of a fully fluidized carbon black gel measured at high shear rate γ˙=1000\dot{\gamma}=1000 s-1 Grenard et al. (2014); CBf (b). Remarkably, the most unstable wavelength saturates at a constant value λc=1.76±\lambda_{c}^{*}=1.76\pm0.10 mm for h0<200μh_{0}<200\leavevmode\nobreak\ \mum, as shown in Fig. 4(a). Such saturation is unexpected. We note, however, that this value is compatible with the capillary length c=Γs/(ρsg)1.8\ell_{c}=\sqrt{\Gamma_{s}/(\rho_{s}g)}\simeq 1.8 mm of the mineral oil, which suggests that the thinnest fingers that form during a tensile experiment are limited by capillary effects.

Refer to caption
Figure 4: Most unstable wavelength λc\lambda_{c} of the fingering patterns versus (a) the initial gap thickness h0h_{0} and (b) the radial velocity vrv_{r}. In (a), the solid line corresponds to a power-law exponent of 3/23/2, the dashed line to λc=1.76\lambda_{c}^{*}=1.76 mm. In (b), the line corresponds to a power-law exponent of 1/2-1/2. Data obtained with a 8% wt. carbon black gel and two different plate radii R=20R=20 mm (\circ) and 3030 mm (\triangle).

In summary, we show that the presence of attractive colloidal particles suspended in a Newtonian liquid can suppress the viscous fingering instability. We provide the criterion for the onset of the instability as a critical energy input needed to break bonds between particles allowing for the local fluidization of the gel and the invasion of fingers. These air fingers invade the gap producing highly branched patterns that exhibit wavelengths and normal-force responses characteristic of Newtonian fluids. This scenario should apply to clays and other attractive suspensions, where the normal-force response associated with unstable patterns is reported to be viscous dominated Mohammed Abdelhaye et al. (2008). Moreover, the observation that the fingering characteristics are set solely by the properties of the fully fluidized state of the sample might shed light on discrepancies pointed out in Derks et al. (2003), where the finger width observed in hair gel solutions is independent of their yield stress. More generally, the local fluidization scenario described here is in line with recent rheological work on stress-induced failure in gels van Doorn et al. (2018), suggesting that our critical energy criterion could be relevant for predicting the outcome of delayed failure in colloidal gels Cipelletti et al. (2020); Gibaud et al. (2020). However, our results strongly contrast with experiments on jammed assemblies of soft particles such as dense microgels for which the wavelength of the pattern is set by the yield stress of the material Lindner et al. (2000). Indeed, the mechanism of viscous fingering instabilities described here is unique to yield stress fluids composed of attractive particles at low volume fractions, and we expect different scenarios to govern unstable growth in soft repulsive glasses; our work indicates that one should not look for a universal scenario describing viscous fingering in all yield stress fluids.

Acknowledgements.
We thank S. Manneville, J.A. Dijksman, A. Helal, and G.H. McKinley for fruitful discussions. T.D. acknowledges support from the National Science Foundation under Grant No. NSF PHY 17-48958 through the KITP program on the Physics of Dense Suspensions. B.M. and I.B. acknowledge support from MIT MISTI-France.

References

  • Saffman and Taylor (1958) P. G. Saffman and G. Taylor, Proc. R. Soc. Lond. A 245, 312 (1958).
  • Paterson (1981) L. Paterson, J. Fluid Mech. 113, 513 (1981).
  • Chen (1987) J. D. Chen, Exp. Fluids 5, 363 (1987).
  • Pihler-Puzović et al. (2012) D. Pihler-Puzović, P. Illien, M. Heil,  and A. Juel, Phys. Rev. Lett. 108, 074502 (2012).
  • Bischofberger et al. (2014) I. Bischofberger, R. Ramachandran,  and S. Nagel, Nat. Commun. 5, 5265 (2014).
  • Bihi et al. (2016) I. Bihi, M. Baudoin, J. E. Butler, C. Faille,  and F. Zoueshtiagh, Phys. Rev. Lett. 117, 034501 (2016).
  • Rabbani et al. (2018) H. S. Rabbani, D. Or, Y. Liu, C.-Y. Lai, N. B. Lu, S. S. Datta, H. A. Stone,  and N. Shokri, Proc. Natl. Acad. Sci. U.S.A. 115, 4833 (2018).
  • Alert et al. (2019) R. Alert, C. Blanch-Mercader,  and J. Casademunt, Phys. Rev. Lett. 122, 088104 (2019).
  • Escala et al. (2019) D. M. Escala, A. De Wit, J. Carballido-Landeira,  and A. P. Muñuzuri, Langmuir 35, 4182 (2019).
  • Videbæk and Nagel (2019) T. E. Videbæk and S. R. Nagel, Phys. Rev. Fluids 4, 033902 (2019).
  • Bohr et al. (1994) J. Bohr, S. Brunak,  and T. Noretranders, Europhys. Lett. 25, 245 (1994).
  • McCloud and Maher (1995) K. V. McCloud and J. V. Maher, Phys. Rep. 260, 139 (1995).
  • Kondic et al. (1998) L. Kondic, M. J. Shelley,  and P. Palffy-Muhoray, Phys. Rev. Lett. 80, 1433 (1998).
  • Lindner et al. (2002) A. Lindner, D. Bonn, E. C. Poiré, M. Ben Amar,  and J. Meunier, J. Fluid Mech. 469, 237–256 (2002).
  • Puff et al. (2002) N. Puff, G. Debrégeas, J.-M. di Meglio, D. Higgins, D. Bonn,  and C. Wagner, Europhys. Lett. 58, 524 (2002).
  • Shaukat et al. (2009) A. Shaukat, Y. M. Joshi,  and A. Sharma, Ind. Eng. Chem. Res. 48, 8211 (2009).
  • Mohammed Abdelhaye et al. (2012) Y. O. Mohammed Abdelhaye, M. Chaouche, J. Chapuis, E. Charlaix, J. Hinch, S. Roux,  and H. Van Damme, Eur. Phys. J. E 35, 45 (2012).
  • Van Damme et al. (2002) H. Van Damme, S. Mansoutre, P. Colombet, C. Lesaffre,  and D. Picart, C. R. Physique 3, 229 (2002).
  • Lemaire and Van Damme (1989) E. Lemaire and H. Van Damme, C.R. Acad. Sci. Paris 309, 859 (1989).
  • Lemaire et al. (1991) E. Lemaire, P. Levitz, G. Daccord,  and H. Van Damme, Phys. Rev. Lett. 67, 2009 (1991).
  • Zhao and Maher (1993) H. Zhao and J. V. Maher, Phys. Rev. E 47, 4278 (1993).
  • Mora and Manna (2010) S. Mora and M. Manna, Phys. Rev. E 81, 026305 (2010).
  • Foyart et al. (2013) G. Foyart, L. Ramos, S. Mora,  and C. Ligoure, Soft Matter 9, 7775 (2013).
  • Ligoure and Mora (2013) C. Ligoure and S. Mora, Rheol. Acta 52, 91 (2013).
  • Coussot (2014) P. Coussot, J. Non-Newt. Fluid Mech. 211, 31 (2014).
  • Bonn et al. (2017) D. Bonn, M. M. Denn, L. Berthier, T. Divoux,  and S. Manneville, Rev. Mod. Phys. 89, 035005 (2017).
  • Coussot (2018) P. Coussot, Rheol. Acta 57, 1 (2018).
  • Park and Durian (1994) S. S. Park and D. J. Durian, Phys. Rev. Lett. 72, 3347 (1994).
  • Lindner et al. (2000) A. Lindner, P. Coussot,  and D. Bonn, Phys. Rev. Lett. 314–317 (2000).
  • Barral et al. (2010) Q. Barral, G. Ovarlez, X. Chateau, J. Boujlel, B. Rabideau,  and P. Coussot, Soft Matter 6, 1343 (2010).
  • Coussot (1999) P. Coussot, J. Fluid Mech. 380, 363 (1999).
  • Derks et al. (2003) D. Derks, A. Lindner, C. Creton,  and D. Bonn, J. Appl. Phys. 93, 1557 (2003).
  • Maleki-Jirsaraei et al. (2005) N. Maleki-Jirsaraei, A. Lindner, S. Rouhani,  and D. Bonn, J. Phys. Condens. Matter 17, S1219 (2005).
  • van der Waarden (1950) M. van der Waarden, J. Colloid Sci. 5, 317 (1950).
  • Hartley and Parfitt (1985) P. A. Hartley and G. D. Parfitt, Langmuir 1, 651 (1985).
  • Trappe and Weitz (2000) V. Trappe and D. A. Weitz, Phys. Rev. Lett. 85, 449 (2000).
  • Prasad et al. (2003) V. Prasad, V. Trappe, A. D. Dinsmore, P. N. Segre, L. Cipelletti,  and D. A. Weitz, Faraday Discuss. 123, 1 (2003).
  • Gibaud et al. (2010) T. Gibaud, D. Frelat,  and S. Manneville, Soft Matter 6, 3482 (2010).
  • Grenard et al. (2014) V. Grenard, T. Divoux, N. Taberlet,  and S. Manneville, Soft Matter 10, 1555 (2014).
  • Sprakel et al. (2011) J. Sprakel, S. Lindström, T. Kodger,  and D. Weitz, Phys. Rev. Lett. 106, 248303 (2011).
  • Perge et al. (2014) C. Perge, N. Taberlet, T. Gibaud,  and S. Manneville, J. Rheol. 58, 1331 (2014).
  • Gibaud et al. (2016) T. Gibaud, C. Perge, S. B. Lindström, N. Taberlet,  and S. Manneville, Soft Matter 12, 1701 (2016).
  • Ovarlez et al. (2013) G. Ovarlez, L. Tocquer, F. Bertrand,  and P. Coussot, Soft Matter 9, 5540 (2013).
  • Helal et al. (2016) A. Helal, T. Divoux,  and G. H. McKinley, Phys. Rev. Applied 6, 064004 (2016).
  • Narayanan et al. (2017) A. Narayanan, F. Mugele,  and M. H. G. Duits, Langmuir 33, 1629 (2017).
  • Hipp et al. (2019) J. B. Hipp, J. J. Richards,  and N. J. W. Wagner, J. Rheol. 63, 423 (2019).
  • Lindström et al. (2012) S. Lindström, T. Kodger, J. Sprakel,  and D. Weitz, Soft Matter 8, 3657 (2012).
  • Bikerman (1947) J. J. Bikerman, J. Colloid Sci. 2, 163 (1947).
  • Maugis (1991) D. Maugis, “Adherence and fracture mechanics,”  (1991) Chap. 11, pp. 303–335.
  • Lindner et al. (2005) A. Lindner, D. Derks,  and M. J. Shelley, Phys. Fluids 17, 072107 (2005).
  • CBf (a) The most unstable wavelength λc\lambda_{\rm c} is determined by counting the number of fingers along the periphery of the plate. The underlying assumption that the pattern at the plate periphery is representative of the early stage of the experiment is justified as the short healing time of the gel, and the gel’s solid-like behavior at rest, allow for the early-stage pattern to be frozen in and to remain unchanged from the time of formation. Note that a direct visualization of the early stage is not possible because carbon black gels are optically opaque and leave a thin layer of gel adhered to the plates.
  • Shelley et al. (1997) M. J. Shelley, F.-R. Tian,  and K. Wlodarski, Nonlinearity 10, 1471 (1997).
  • CBf (b) This viscosity is about a factor of 4 lower than the one extracted from the first relaxation step of the normal force. This is because the viscosity extracted from λc\lambda_{c} corresponds to the state of the gel at the very tip of the finger, whereas that extracted from the force relaxation is an average all along the length of the fingers.
  • Mohammed Abdelhaye et al. (2008) Y. O. Mohammed Abdelhaye, M. Chaouche,  and H. van Damme, App. Clay Sci. 42, 163 (2008).
  • van Doorn et al. (2018) J. M. van Doorn, J. E. Verweij, J. Sprakel,  and J. van der Gucht, Phys. Rev. Lett. 120, 208005 (2018).
  • Cipelletti et al. (2020) L. Cipelletti, K. Martens,  and L. Ramos, Soft Matter 16, 82 (2020).
  • Gibaud et al. (2020) T. Gibaud, N. Dagès, P. Lidon, L. C. A. G. Jung, M. Sztucki, A. Poulesquen, N. Hengl, F. Pignon,  and S. Manneville, Phys. Rev. X 10, 011028 (2020).

Criterion for fingering instabilities in colloidal gels

Supplemental Material

I Energy input associated with the plate separation

At the onset of the instability the gel is fluidized locally at the locus of the growing fingers. The pressure gradient in the gel reads dp/dr=[1+f(γ˙)]σc/h{\rm d}p/{\rm d}r=[1+f(\dot{\gamma})]\sigma_{c}/h, where σc\sigma_{c} denotes the yield stress of the gel, hh the gap spacing, and ff represents a function such that f(γ˙)0f(\dot{\gamma})\rightarrow 0 in the limit of vanishing shear rate Coussot (1999). In the limit of high shear rate, the rheology of carbon black gels is dominated by the viscous term, such that dp/drf(γ˙)σc/h{\rm d}p/{\rm d}r\simeq f(\dot{\gamma})\sigma_{c}/h, with f(γ˙)vr/hf(\dot{\gamma})\propto v_{r}/h, since carbon black dispersions behave as a Bingham fluids in the limit of high shear rate Trappe and Weitz (2000). Substituting the radial velocity with the lift velocity, vr=vlr/hv_{r}=v_{l}\,r/h, and using volume conservation, hr2=h0R2hr^{2}=h_{0}R^{2}, we can integrate the pressure gradient to find p(r)p(r), which in turn can be integrated to determine the normal force FN(h)=2πrp(r)drF_{N}(h)=\int 2\pi rp(r){\rm d}r. The energy input is then E(h)FN(h)𝑑hvrσcR3(h03/h4)E(h)\propto\int F_{N}(h)dh\propto v_{r}\sigma_{c}R^{3}(h_{0}^{3}/h^{4}).

II Linear viscoelastic properties of carbon black gels

Refer to caption
Figure S1: Linear viscoelastic moduli G0G^{\prime}_{0} (\blacksquare) and G0′′G^{\prime\prime}_{0} (\square) versus the initial gap thickness h0h_{0} for carbon black gels of concentrations: 4%, 6%, 8% and 10% wt. from (a) to (d). Measurements are performed under an imposed shear strain γ0=\gamma_{0}=0.1% at a frequency f=1f=1 Hz. Prior to each measurement, the sample is fully fluidized by imposing a large preshear at a stress σ=100\sigma=100 Pa for 30 s. The gel reforms during a stress sweep from 100 Pa down to 0 Pa at constant rate of 1 Pa.s-1. The linear viscoelastic moduli are measured for 60 s and we report the average values over the last 30 s.

III Stability diagram for gels of different concentrations

Refer to caption
Figure S2: Stability diagram reporting vrv_{r} versus h0h_{0} for tensile tests performed with carbon black gels of concentrations 4%, 6% and 10% wt. from (a) to (c). The red line denotes the critical velocity vr(h0)v_{r}^{*}(h_{0}) separating the stable from the unstable regime. The boundary between stable and unstable flow shifts towards lower velocities with increasing carbon black concentration.

IV Normal force relaxation at different lift velocities

Refer to caption
Figure S3: (a) Normal force FNF_{N} versus gap thickness hh during a tensile test performed at lift velocities vl=20v_{l}=20 μ\mum/s (closed symbols) and 100 μ\mum/s (open symbols) in a parallel plate geometry of radius R=20R=20 mm. The blue lines denote the power-law exponents of the first relaxation step: α2.5\alpha\simeq 2.5 for vl=20v_{l}=20 μ\mum/s and α5\alpha\simeq 5 for vl=100v_{l}=100 μ\mum/s. The green lines denote the power-law exponents of the second relaxation step: β2\beta\simeq 2 for both experiments. (b) Exponents α\alpha and β\beta versus the lift velocity vlv_{l}. With increasing lift velocity, α\alpha transitions from a yield stress dominated behavior (α=2.5\alpha=2.5 – blue line) to a Newtonian-like response (α=5\alpha=5 – blue line). β\beta is roughly constant over the range of lift velocities explored (β2\beta\simeq 2 – green line). (c) The relative extent Rp/RR_{p}/R of the pattern versus vlv_{l}. The vertical lines in (b) and (c) denote the boundary between the stable and the unstable regime.