This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Criteria of the existence of global solutions to semilinear wave equations with first-order derivatives on exterior domains

Kerun Shao School of Mathematical Sciences
Zhejiang University
Hangzhou 310058
P. R. China
[email protected]
Abstract.

We study the existence of global solutions to semilinear wave equations on exterior domains n𝒦\mathbb{R}^{n}\setminus\mathcal{K}, n2n\geq 2, with small initial data and nonlinear terms F(u)F(\partial u) where FCκF\in C^{\kappa} and κF(0)=0\partial^{\leq\kappa}F(0)=0. If n2n\geq 2 and κ>n/2\kappa>n/2, criteria of the existence of a global solution for general initial data are provided, except for non-empty obstacles 𝒦\mathcal{K} when n=2n=2. For n3n\geq 3 and 1κn/21\leq\kappa\leq n/2, we verify the criteria for radial solutions provided obstacles 𝒦\mathcal{K} are closed balls centered at origin. These criteria are established by local energy estimates and the weighted Sobolev embedding including trace estimates. Meanwhile, for the sample choice of the nonlinear term and initial data, sharp estimates of lifespan are obtained.

Key words and phrases:
Glassey conjecture, Semilinear wave equation, Blow-up, Lifespan, Exterior domain
1991 Mathematics Subject Classification:
35L05, 35L71, 35B30, 35B33, 35B44

1. Introduction

Let n2n\geq 2 and 𝒦n\mathcal{K}\subset\mathbb{R}^{n} be a smooth, compact and nontrapping obstacle. We denote M=n𝒦M=\mathbb{R}^{n}\setminus\mathcal{K}, hence M=nM=\mathbb{R}^{n} when 𝒦=\mathcal{K}=\emptyset, and consider the following semilinear wave equation

(1) {u(t,x):-t2uΔu=F(u),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM.\left\{\begin{aligned} &\Box u(t,x)\coloneq\partial_{t}^{2}u-\Delta u=F(\partial u)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M.\end{aligned}\right.

Here, u=(tu,1u,,nu)\partial u=(\partial_{t}u,\partial_{1}u,\cdots,\partial_{n}u), the real-valued function

FCκ({𝐪n+1:|𝐪|1}),κ1,𝐪κF(0)=0,F\in C^{\kappa}(\{\mathbf{q}\in\mathbb{R}^{n+1}:|\mathbf{q}|\leq 1\}),\ \kappa\geq 1,\ \partial_{\mathbf{q}}^{\leq\kappa}F(0)=0,

and real-valued initial data (f,g)(f,g) satisfy some compatibility conditions when 𝒦\mathcal{K} is non-empty. By translation and scaling, when 𝒦\mathcal{K} is non-empty, we can assume that the origin is in the interior of 𝒦\mathcal{K} and 𝒦B1¯\mathcal{K}\subset\overline{B_{1}}. Here, B1nB_{1}\subset\mathbb{R}^{n} is the unit open ball center at the origin. Denote ρ(τ)=sup|𝐪|τ|𝐪κF(𝐪)|\rho(\tau)=\sup_{|\mathbf{q}|\leq\tau}|\partial_{\mathbf{q}}^{\kappa}F(\mathbf{q})|, 0τ10\leq\tau\leq 1. When there is no danger of misunderstanding, we will omit 𝐪\mathbf{q} in 𝐪\partial_{\mathbf{q}} hereby.

The purpose of this paper is to show how the combination of local energy estimates and the control of the u\|\partial u\|_{\infty} leads to the criterion of global existence theorems for small amplitude initial data and nonlinear terms only involving first-order derivatives. The problem (1) is a generalized version of Glassey conjecture in the exterior domain; see Hidano-Wang-Yokoyama [5] and the references therein. For spatial dimension n3n\geq 3, we prove the global existence of any small amplitude solutions to (1), if 01ρ(τ)τκ3<\int_{0}^{1}\rho(\tau)\tau^{\kappa-3}<\infty for n=3n=3 and κ>n2\kappa>\frac{n}{2} for n4n\geq 4. Also, for sample choices of the initial data and nonlinear terms, the solutions will blow up at finite time, when n=3n=3, κ=2\kappa=2, and 01ρ(τ)τ1𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{-1}d\tau=\infty. When 1κn21\leq\kappa\leq\frac{n}{2}, for spatial dimension n3n\geq 3, the current technology can only be applied for the radial cases and non-empty obstacles 𝒦\mathcal{K}, that is, as long as 𝒦\mathcal{K} is a closed ball centered at origin, we can obtain the global existence of any small amplitude radial solution for any nonlinear term F(tu,ru)F(\partial_{t}u,\partial_{r}u) satisfying κ=1\kappa=1 and 01ρ(τ)τ2n11𝑑τ<\int_{0}^{1}\rho(\tau)\tau^{-\frac{2}{n-1}-1}d\tau<\infty, or κ2\kappa\geq 2. Again, for sample choices of initial data and nonlinear terms, the solutions cannot extend to infinity, when κ=1\kappa=1 and 01ρ(τ)τ2n11𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{-\frac{2}{n-1}-1}d\tau=\infty. For spatial dimension 22, due to the lack of local energy estimates, similar results are only established for M=2M=\mathbb{R}^{2} and κ2\kappa\geq 2. Given any small amplitude initial data, global solutions exist when 01ρ(τ)τκ4𝑑τ<\int_{0}^{1}\rho(\tau)\tau^{\kappa-4}d\tau<\infty. For sample choices of initial data and nonlinear terms, the solutions will blow up in finite time, when 01ρ(τ)τκ4𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{\kappa-4}d\tau=\infty. On the whole, the existence of a global solution to (1) with small initial data basically depends on whether the integral 01ρ(τ)τκpc(n)1𝑑τ\int_{0}^{1}\rho(\tau)\tau^{\kappa-p_{c}(n)-1}d\tau, pc(n)=1+2/(n1)p_{c}(n)=1+2/(n-1), converges or not. Meanwhile, the sharp estimates of the lifespan, the maximal existence time of the solution to (1), are also provided for the blow-up solutions for sample choices of the initial data and nonlinear terms.

Let us recall the history of the Glassey conjecture. For Cauchy problem

(2) {u(t,x)=a|tu|p+b|u|p,(t,x)(0,T)×n,u(0,x)=εϕ(x),ut(0,x)=εψ(x),xn,\left\{\begin{aligned} &\Box u(t,x)=a|\partial_{t}u|^{p}+b|\nabla u|^{p}&&,\ (t,x)\in(0,T)\times\mathbb{R}^{n},\ \\ &u(0,x)=\varepsilon\phi(x),\ u_{t}(0,x)=\varepsilon\psi(x)&&,\ x\in\mathbb{R}^{n},\end{aligned}\right.

with p>1p>1 and a,ba,b\in\mathbb{R}, it is conjectured that the critical power for the global existence v.s. blow-up is pc(n)p_{c}(n) in Glassey’s mathematical review [3]; see also Schaeffer [13] and Rammaha [10]. For a0a\neq 0, b=0b=0, the global existence part of the conjecture is verified for general initial data in dimension 2,32,3 by Hidano-Tsutaya [4] and Tzvetkov [18], independently. For n4n\geq 4, the conjecture is only demonstrated for radial initial data and p(pc(n),1+2/(n2))p\in(p_{c}(n),1+2/(n-2)); see Hidano-Wang-Yokoyama [5]. For a>0a>0 and sample choices of the initial data, the blow-up result is verified by Rammaha [10] for all spatial dimension n2n\geq 2 expect for critical cases, p=pc(n)p=p_{c}(n), in the even dimension. Later, Zhou [21] shows the blow-up for all dimension n1n\geq 1 with p(1,pc(n)]p\in(1,p_{c}(n)] where pc(1)=p_{c}(1)=\infty, together with upper bound estimate on the lifespan for p(1,pc(n)]p\in(1,p_{c}(n)], which is

(3) lim¯ε0+0T[(1+t)(n1)/2ε]p1𝑑t<,p(1,pc(n)].\varlimsup_{\varepsilon\rightarrow 0^{+}}\int_{0}^{T}[(1+t)^{-(n-1)/2}\varepsilon]^{p-1}dt<\infty,\ \forall p\in(1,p_{c}(n)].

On the other hand, deduced from the well-posed theory for p(1,pc(n)]p\in(1,p_{c}(n)], the lower bound on the lifespan is also obtained for all spatial dimensions, that is,

(4) lim¯ε0+0T[(1+t)(n1)/2ε]p1𝑑t>0,p(1,pc(n)];\varliminf_{\varepsilon\rightarrow 0^{+}}\int_{0}^{T}[(1+t)^{-(n-1)/2}\varepsilon]^{p-1}dt>0,\forall p\in(1,p_{c}(n)];

see Hidano-Wang-Yokoyama [5] for n2n\geq 2 (see also Fang-Wang [2] for the critical case in dimension two) and Kitamura-Morisawa-Takamura [8] for dimension one. Hence, for nonlinear terms F(u)=|tu|pF(\partial u)=|\partial_{t}u|^{p}, the estimates of the lifespan (3) and (4) are sharp.

As for a=0,b0a=0,b\neq 0, the results for the global existence are the same as above, as well as the lower bound estimates for p(1,pc(n)]p\in(1,p_{c}(n)]. Hence, when b>0b>0, one may expect the powers for blow-up results are also (1,pc(n)](1,p_{c}(n)] and the lifespan estimates (3) and (4) are sharp. For dimension one, the sharp lifespan estimates are verified in Sasaki-Takamatsu-Takamura [12]. For dimension n=3n=3, the blow-up result is first established in Sideris [16] for p=pc(3)=2p=p_{c}(3)=2, as well as the upper bound estimate lim¯ε0+ln(T(ε))ε2<\varlimsup_{\varepsilon\rightarrow 0^{+}}\ln(T(\varepsilon))\varepsilon^{2}<\infty, which does not match the well-known lower bound verified in John-Klainerman [7], lim¯ε0+ln(T(ε))ε>0\varliminf_{\varepsilon\rightarrow 0^{+}}\ln(T(\varepsilon))\varepsilon>0. For n=2n=2, Schaeffer [13] obtains the blow-up result for p=pc(2)=3p=p_{c}(2)=3. For n4n\geq 4, Rammaha shows the blow-up result in [10] for all of the critical and subcritical powers excluding the critical cases for even dimensions and studies the upper bound for n=2,3n=2,3 and p=2p=2 in [11]. In Takamura, Wang and the author’s recent work [14], we provide a uniform way to deduce the sharp upper bound estimates of the lifespan for all dimension n2n\geq 2 and p(1,pc(n)]p\in(1,p_{c}(n)], that is,

{lim¯ε0+ln(T(ε))εp1<,p=pc(n);lim¯ε0+T(ε)ε2(p1)2(n1)(p1)<,p(1,pc(n)).\left\{\begin{aligned} &\varlimsup_{\varepsilon\rightarrow 0^{+}}\ln(T(\varepsilon))\varepsilon^{p-1}<\infty,\ p=p_{c}(n);\\ &\varlimsup_{\varepsilon\rightarrow 0^{+}}T(\varepsilon)\varepsilon^{\frac{2(p-1)}{2-(n-1)(p-1)}}<\infty,\ p\in(1,p_{c}(n)).\end{aligned}\right.

There are also similar results when the problem (2) is considered on the asymptotically flat Lorentzian manifolds or the exterior domain; see Wang [20, 19].

Since the critical power pc(n)p_{c}(n) is the borderline of the existence of the global solution with power-type nonlinearities. To determine the threshold nature of the nonlinear term, one may study the problem

(5) {u(t,x)=|tu|pc(n)μ(|tu|),(t,x)(0,T)×n,u(0,x)=εϕ(x),ut(0,x)=εψ(x),xn,\left\{\begin{aligned} &\Box u(t,x)=|\partial_{t}u|^{p_{c}(n)}\mu(|\partial_{t}u|)&&,\ (t,x)\in(0,T)\times\mathbb{R}^{n},\ \\ &u(0,x)=\varepsilon\phi(x),\ u_{t}(0,x)=\varepsilon\psi(x)&&,\ x\in\mathbb{R}^{n},\end{aligned}\right.

where the function μ:[0,)[0,)\mu:[0,\infty)\rightarrow[0,\infty) is a non-decreasing sufficiently smooth function with μ(0)=0\mu(0)=0. The blow-up is established by Chen-Palmieri [1, Theorem 2.1] for all classical solutions to (5) under the assumptions that the function F~:s|s|pc(n)μ(|s|)\tilde{F}:s\in\mathbb{R}\rightarrow|s|^{p_{c}(n)}\mu(|s|) is convex, that 01μ(s)s1𝑑s=\int_{0}^{1}\mu(s)s^{-1}ds=\infty, and that initial data ϕ,ψCc\phi,\psi\in C_{c}^{\infty} with nψ(x)>0\int_{\mathbb{R}^{n}}\psi(x)>0. Also, they provide the upper bound estimates for the lifespan, that is, for all sufficiently small ε\varepsilon, there exist constants K1K_{1}, K2K_{2}, and K3K_{3} such that the lifespan T(ε)T(\varepsilon) of the solution to (5) satisfies

T(ε)K3ε2n1[inv(K1ε2n1+(K2ε))]2n1,T(\varepsilon)\leq K_{3}\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}^{inv}(K_{1}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}(K_{2}\varepsilon))\right]^{-\frac{2}{n-1}},

where the function :s(0,1]s1μ(τ)τ1dτ\mathcal{H}:s\in(0,1]\in\rightarrow\int_{s}^{1}\mu(\tau)\tau^{-1}d\tau and inv\mathcal{H}^{inv} is the inverse function of \mathcal{H}. They also obtain results for the existence part when n=3n=3 and initial data ϕ,ψCc\phi,\psi\in C_{c}^{\infty} are radial. If 01μ(s)s1𝑑s<\int_{0}^{1}\mu(s)s^{-1}ds<\infty, there exists a unique radial global classical solution uu to (5) for all sufficiently small ε\varepsilon, provided that μC2((0,))\mu\in C^{2}((0,\infty)) satisfying |μ(i)(τ)|τiμ(τ)|\mu^{(i)}(\tau)|\lesssim\tau^{-i}\mu(\tau), i=1,2i=1,2. When 01μ(s)s1𝑑s=\int_{0}^{1}\mu(s)s^{-1}ds=\infty, the lifespan of the radial classical solution to (5) has the lower bound

T(ε)K6ε[inv(K4ε1+(K5ε))]1,T(\varepsilon)\geq K_{6}\varepsilon\left[\mathcal{H}^{inv}(K_{4}\varepsilon^{-1}+\mathcal{H}(K_{5}\varepsilon))\right]^{-1},

where K4K_{4}, K5K_{5}, and K6K_{6} are some positive constants; see [1, Theorem 2.2 and Propsition 2.2].

With these results in hand, it is natural to ask what is the criterion for general non-linear terms F(u)F(\partial u). Since κF(0)=0\partial^{\leq\kappa}F(0)=0, it follows that in some neighborhood of the origin |F(𝐪)||𝐪|κρ(|𝐪|)|F(\mathbf{q})|\lesssim|\mathbf{q}|^{\kappa}\rho(|\mathbf{q}|). Heuristically, if the obstacle KK is empty, the solutions to (1) could behave like free waves with energy of size ε\varepsilon and decay rate (n1)/2(n-1)/2, for the time interval [0,T)[0,T), when

(6) 0T[tn12ε]κ1ρ(K7tn12ε)𝑑t1.\int_{0}^{T}[\langle t\rangle^{-\frac{n-1}{2}}\varepsilon]^{\kappa-1}\rho\left(K_{7}\langle t\rangle^{-\frac{n-1}{2}}\varepsilon\right)dt\ll 1.

Here, K7K_{7} is some positive constant from the weighted Sobolev embedding and t=1+t2\langle t\rangle=\sqrt{1+t^{2}}. With simple calculation, the main term of the left hand side of (6) is

εκ1Tn121ρ(K7ετ)ττκpc(n)𝑑τ=K7pc(n)κε2n1K7εTn12K7ερ(τ)ττκpc(n)𝑑τ,\varepsilon^{\kappa-1}\int_{\langle T\rangle^{-\frac{n-1}{2}}}^{1}\frac{\rho(K_{7}\varepsilon\tau)}{\tau}\tau^{\kappa-p_{c}(n)}d\tau=K_{7}^{p_{c}(n)-\kappa}\varepsilon^{\frac{2}{n-1}}\int_{K_{7}\varepsilon\langle T\rangle^{-\frac{n-1}{2}}}^{K_{7}\varepsilon}\frac{\rho(\tau)}{\tau}\tau^{\kappa-p_{c}(n)}d\tau,

which gives rise to the following expected sharp estimate for the lifespan, provided 01ρ(τ)τκpc(n)1𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{\kappa-p_{c}(n)-1}d\tau=\infty,

Tε2n1[κ,ninv(K8ε2n1+κ,n(K7ε))]2n11,T\varepsilon^{-\frac{2}{n-1}}\left[\mathcal{H}_{\kappa,n}^{inv}(K_{8}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{\kappa,n}(K_{7}\varepsilon))\right]^{\frac{2}{n-1}}\sim 1,

where K8K_{8} is some positive constant and κ,n\mathcal{H}_{\kappa,n} is

κ,n:s(0,1]s1ρ(τ)ττκpc(n)𝑑τ\mathcal{H}_{\kappa,n}:s\in(0,1]\rightarrow\int_{s}^{1}\frac{\rho(\tau)}{\tau}\tau^{\kappa-p_{c}(n)}d\tau

and κ,ninv\mathcal{H}_{\kappa,n}^{inv} is the inverse function of κ,n\mathcal{H}_{\kappa,n}.

Now, we can state our results.

Theorem 1.1.

Let n=3n=3, κ=2\kappa=2, and 𝒦\mathcal{K} be smooth, compact and nontrapping obstacles. Provided 01ρ(τ)τ1𝑑τ<\int_{0}^{1}\rho(\tau)\tau^{-1}d\tau<\infty, there exists a small positive constant ε1\varepsilon_{1}, such that, the problem (1) has a unique global solution satisfying

tiuC([0,);HD3i(M)), 0i2,\partial_{t}^{i}u\in C([0,\infty);H_{D}^{3-i}(M)),\ 0\leq i\leq 2,

whenever the initial data satisfying the compatibility of order 33, and

|α|2(,Ω)α(f,g)L2(M)=εε1,fL2(M)<.\sum_{|\alpha|\leq 2}\|(\nabla,\Omega)^{\alpha}(\nabla f,g)\|_{L^{2}(M)}=\varepsilon\leq\varepsilon_{1},\ \|f\|_{L^{2}(M)}<\infty.

Otherwise, if 01ρ(τ)τ1𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{-1}d\tau=\infty, when ε\varepsilon is small enough, there exist some positive constants c1c_{1}, c2c_{2}, and c3c_{3} such that we have a unique solution satisfying

tiuC([0,Tε];HD3i(M)), 0i2,\partial_{t}^{i}u\in C([0,T_{\varepsilon}];H_{D}^{3-i}(M)),\ 0\leq i\leq 2,

with

Tε=c3ε[2,3inv(c1ε1+2,3(c2ε))]1.T_{\varepsilon}=c_{3}\varepsilon\left[\mathcal{H}_{2,3}^{inv}(c_{1}\varepsilon^{-1}+\mathcal{H}_{2,3}(c_{2}\varepsilon))\right]^{-1}.

Theorem 1.1 is mainly established by local energy estimates and Sobolev embedding. Here, we give the definition of the compatibility of order κ+1\kappa+1.

Definition 1.2 (The compatibility of order κ+1\kappa+1).

For equation (1), note that there exist, formally, functions {Ψj}0jκ+1\{\Psi_{j}\}_{0\leq j\leq\kappa+1} such that

tju(0,x)=Ψj(jf,j1g)(x),xM, 0jκ+1.\partial_{t}^{j}u(0,x)=\Psi_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g)(x),\ x\in M,\ 0\leq j\leq\kappa+1.

A priori, the initial data (f,g)(f,g) should fulfill

Ψj(jf,j1g)|M=0, 0jκ.\Psi_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g)|_{\partial M}=0,\ 0\leq j\leq\kappa.

Since the estimate of κ\kappath-order energy needs tju(0,)H˙1<\|\partial_{t}^{j}u(0,\cdot)\|_{\dot{H}^{1}}<\infty, 0jκ0\leq j\leq\kappa and tju(0,x)L2\partial_{t}^{j}u(0,x)\in L^{2}, 1jκ+11\leq j\leq\kappa+1, by the compatibility of order κ+1\kappa+1, we mean that

fH˙D1(M),Ψj(jf,j1g)(x)HD1(M), 1jκ,\displaystyle f\in\dot{H}_{D}^{1}(M),\ \Psi_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g)(x)\in H_{D}^{1}(M),\ 1\leq j\leq\kappa,
Ψκ+1(κ+1f,κg)(x)L2(M).\displaystyle\Psi_{\kappa+1}(\nabla^{\leq\kappa+1}f,\nabla^{\leq\kappa}g)(x)\in L^{2}(M).

Similarly, for Dirichlet-wave equations

(7) {u(t,x)=G(t,x),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM,\left\{\begin{aligned} &\Box u(t,x)=G(t,x)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M,\end{aligned}\right.

there exist, formally, functions Ψ~j\tilde{\Psi}_{j} such that

tju(0,x)=Ψ~j(jf,j1g,j2G),xM.\partial_{t}^{j}u(0,x)=\tilde{\Psi}_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g,\partial^{\leq j-2}G),\ x\in M.

Then, the compatibility condition of order k+1k+1 for the equation (7) is

fH˙D1(M),Ψ~j(jf,j1g,j2G)HD1(M), 1jk,Ψ~k+1(k+1f,kg,k1G)(x)L2(M).\begin{gathered}f\in\dot{H}_{D}^{1}(M),\ \tilde{\Psi}_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g,\partial^{\leq j-2}G)\in H_{D}^{1}(M),\ 1\leq j\leq k,\\ \tilde{\Psi}_{k+1}(\nabla^{\leq k+1}f,\nabla^{\leq k}g,\partial^{\leq k-1}G)(x)\in L^{2}(M).\end{gathered}

Using the argument in the proof of Theorem 1.1, we can obtain the following result for n3n\geq 3 and κ>max{n/2,2}\kappa>\max\{n/2,2\}.

Remark 1.3.

Let n3n\geq 3, κ>max{n/2,2}\kappa>\max\{n/2,2\}, and 𝒦\mathcal{K} be smooth, compact and nontrapping obstacles. There is a unique global solution to (1) satisfying

tiuC([0,);HDκ+1i(M)), 0iκ,\partial_{t}^{i}u\in C([0,\infty);H_{D}^{\kappa+1-i}(M)),\ 0\leq i\leq\kappa,

whenever the initial data satisfying the compatibility of order κ+1\kappa+1, and

|α|κ(,Ω)α(f,g)L2(M)=ε1,fL2(M)<.\sum_{|\alpha|\leq\kappa}\|(\nabla,\Omega)^{\alpha}(\nabla f,g)\|_{L^{2}(M)}=\varepsilon\ll 1,\ \|f\|_{L^{2}(M)}<\infty.

Due to the lack of local energy estimates in dimension 2, the problem (1) for non-empty obstacles is still unsettled. However, for 𝒦=\mathcal{K}=\emptyset, we will have the following theorem by standard energy estimates, Klainerman-Sobolev inequalities, and trace estimates.

Theorem 1.4.

Let n=2n=2, 𝒦=\mathcal{K}=\emptyset, and κ2\kappa\geq 2. If 01ρ(τ)τκ4𝑑τ<\int_{0}^{1}\rho(\tau)\tau^{\kappa-4}d\tau<\infty, there exists a small positive constant ε2\varepsilon_{2}, such that, the problem has a unique global solution to (1) satisfying

tiuC([0,);Hκ+1i(2)), 0iκ,\partial_{t}^{i}u\in C([0,\infty);H^{\kappa+1-i}(\mathbb{R}^{2})),\ 0\leq i\leq\kappa,

whenever the initial data satisfying

|α||β|κxαβfH˙1(2)+xαβgL2(2)=εε2,fL2(2)<.\sum_{|\alpha|\leq|\beta|\leq\kappa}\|x^{\alpha}\nabla^{\beta}f\|_{\dot{H}^{1}(\mathbb{R}^{2})}+\|x^{\alpha}\nabla^{\beta}g\|_{L^{2}(\mathbb{R}^{2})}=\varepsilon\leq\varepsilon_{2},\ \|f\|_{L^{2}(\mathbb{R}^{2})}<\infty.

Otherwise, if 01ρ(τ)τκ4𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{\kappa-4}d\tau=\infty, there exist some positive c4c_{4}, c5c_{5}, and c6c_{6} such that we have a unique solution satisfying

iuC([0,Tε];Hκ+1i(2)), 0iκ,\partial^{i}u\in C([0,T_{\varepsilon}];H^{\kappa+1-i}(\mathbb{R}^{2})),\ 0\leq i\leq\kappa,

with

(8) Tε=c6ε2[κ,2inv(c4ε2+κ,2(c5ε))]2.T_{\varepsilon}=c_{6}\varepsilon^{2}\left[\mathcal{H}_{\kappa,2}^{inv}(c_{4}\varepsilon^{-2}+\mathcal{H}_{\kappa,2}(c_{5}\varepsilon))\right]^{-2}.

According to Theorem 1.1, Remark 1.3, and Theorem 1.4, as long as κ>n2\kappa>\frac{n}{2}, the convergence of the integral

(9) 01ρ(τ)ττκpc(n)𝑑τ\int_{0}^{1}\frac{\rho(\tau)}{\tau}\tau^{\kappa-p_{c}(n)}d\tau

foreshadows the existence of the global solution. And the divergence of the integral of (9) implies a lower bound of the lifespan. For n3n\geq 3, 𝒦=B1¯\mathcal{K}=\overline{B_{1}}, and κ=1\kappa=1, this criterion is still available for the radial solution and we should consider the following nonlinear problem

(10) {u(t,x)=F(tu,ru),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM.\left\{\begin{aligned} &\Box u(t,x)=F(\partial_{t}u,\partial_{r}u)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M.\end{aligned}\right.

Here, FCκ({𝐪2:|𝐪|1}),κ1,𝐪κF(0)=0F\in C^{\kappa}(\{\mathbf{q}\in\mathbb{R}^{2}:|\mathbf{q}|\leq 1\}),\ \kappa\geq 1,\ \partial_{\mathbf{q}}^{\leq\kappa}F(0)=0.

Theorem 1.5.

Let n3n\geq 3, κ=1\kappa=1, 𝒦=B1¯\mathcal{K}=\overline{B_{1}} and (f,g)(f,g) be radial functions. If 01ρ(τ)τ2n11𝑑τ<\int_{0}^{1}\rho(\tau)\tau^{-\frac{2}{n-1}-1}d\tau<\infty, there exists a small positive constant ε3\varepsilon_{3} such that the problem (10) has a unique radial global solution satisfying

tiuC([0,);HD2i(M)), 0i1,\partial_{t}^{i}u\in C([0,\infty);H_{D}^{2-i}(M)),\ 0\leq i\leq 1,

whenever the initial data satisfying the compatibility of order 22, and

|α|1α(f,g)L2(M)=εε3,fL2(M)<.\sum_{|\alpha|\leq 1}\|\nabla^{\alpha}(\nabla f,g)\|_{L^{2}(M)}=\varepsilon\leq\varepsilon_{3},\ \|f\|_{L^{2}(M)}<\infty.

Otherwise, if 01ρ(τ)τ2n11𝑑τ=\int_{0}^{1}\rho(\tau)\tau^{-\frac{2}{n-1}-1}d\tau=\infty, there exist positive constants c7c_{7}, c8c_{8}, and c9c_{9} such that we have a unique radial solution satisfying

tiuC([0,Tε];HD2i(M)), 0i1,\partial_{t}^{i}u\in C([0,T_{\varepsilon}];H_{D}^{2-i}(M)),\ 0\leq i\leq 1,

with

(11) Tε=c9ε2n1[1,ninv(c7ε2n1+1,n(c8ε))]2n1.T_{\varepsilon}=c_{9}\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}_{1,n}^{inv}(c_{7}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(c_{8}\varepsilon))\right]^{-\frac{2}{n-1}}.
Remark 1.6.

Let n4n\geq 4, 𝒦=B1¯\mathcal{K}=\overline{B_{1}}, and 2κn/22\leq\kappa\leq n/2. There is a unique radial global solution to (10) satisfying

tiuC([0,);HDκ+1i(M)), 0iκ,\partial_{t}^{i}u\in C([0,\infty);H_{D}^{\kappa+1-i}(M)),\ 0\leq i\leq\kappa,

whenever the radial initial data satisfying the compatibility of order κ+1\kappa+1, and

|α|κα(f,g)L2(M)=ε1,fL2(M)<.\sum_{|\alpha|\leq\kappa}\|\nabla^{\alpha}(\nabla f,g)\|_{L^{2}(M)}=\varepsilon\ll 1,\ \|f\|_{L^{2}(M)}<\infty.

Following the argument in [1], we can show that the lower bound estimates of the lifespan are sharp for sample choices of the nonlinear terms and initial data. Before the statement, we give a rigorous definition of the lifespan.

Definition 1.7 (Lifespan).

The lifespan of the equation (1) is the supremum of the set consisting of T>0T>0 such that there exists a unique solution

tiuC([0,T];HD2i(M)), 0i1.\partial_{t}^{i}u\in C([0,T];H_{D}^{2-i}(M)),\ 0\leq i\leq 1.

Assume ε\varepsilon is sufficiently small. For fixed ϕ,ψCc(M)\phi,\ \psi\in C_{c}^{\infty}(M), let T(ε)T(\varepsilon) denote the lifespan of the equations (1) with initial data f=εϕ,g=εψf=\varepsilon\phi,\ g=\varepsilon\psi.

Theorem 1.8 (Sharpness of the lifespan estimates).

Let n3n\geq 3, a(0,2n1]a\in(0,\frac{2}{n-1}], and M={x:|x|>1}M=\{x:|x|>1\}. Consider the following equation,

(12) {u(t,x)=|tu|1+aμ(|tu|)(t,x):-Fa(tu),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=εϕ(x),tu(0,x)=0,xM.\left\{\begin{aligned} &\Box u(t,x)=|\partial_{t}u|^{1+a}\mu(|\partial_{t}u|)(t,x)\coloneq F_{a}(\partial_{t}u)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=\varepsilon\phi(x),\ \partial_{t}u(0,x)=0&&,\ x\in M.\end{aligned}\right.

Here, the initial datum ϕCc(M)\phi\in C_{c}^{\infty}(M) is non-negative and radial with suppϕ={x:2|x|3}\mathrm{supp}\ \phi=\{x:2\leq|x|\leq 3\}. The function μC([0,1])C1((0,1])\mu\in C([0,1])\cap C^{1}((0,1]) such that

(13) μ(0)=0, 0τμ(τ)μ(τ),01μ(τ)τapc(n)=,\mu(0)=0,\ 0\leq\tau\mu(\tau)\lesssim\mu(\tau),\ \int_{0}^{1}\mu(\tau)\tau^{a-p_{c}(n)}=\infty,

and Fa(τ)F_{a}(\tau) is a convex function on [1,1][-1,1]. There exist positive constants k1k_{1}, k2k_{2}, and k3k_{3} such that, when ε\varepsilon is sufficiently small, the lifespan T(ε)T(\varepsilon) of the solution to (12) has the upper bound,

(14) T(ε)k3ε2n1[1,ninv(k1ε2n1+1,n(k2ε))]2n1.T(\varepsilon)\leq k_{3}\varepsilon^{\frac{2}{n-1}}[\mathcal{H}_{1,n}^{inv}(k_{1}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(k_{2}\varepsilon))]^{-\frac{2}{n-1}}.

Furthermore, estimates (14) with 1,n\mathcal{H}_{1,n} replaced by 2,2\mathcal{H}_{2,2} is still hold when n=2n=2, a[1,2]a\in[1,2], M=2M=\mathbb{R}^{2} and μC([0,1])C2((0,1])\mu\in C([0,1])\cap C^{2}((0,1]) satisfying

(15) μ(0)=0,μ(τ)0,01μ(τ)τa3=,and|τiμ(i)(τ)|μ(τ), 1i2.\mu(0)=0,\ \mu^{\prime}(\tau)\geq 0,\ \int_{0}^{1}\mu(\tau)\tau^{a-3}=\infty,\ \text{and}\ |\tau^{i}\mu^{(i)}(\tau)|\lesssim\mu(\tau),\ 1\leq i\leq 2.
Remark 1.9.

The requirements (13) and (15) for μ\mu are to insure the local existence of the solution tiuCHD2i, 0i1\partial_{t}^{i}u\in CH_{D}^{2-i},\ 0\leq i\leq 1.

To conclude this section, we give some typical examples of F(u)F(\partial u).

  • Example 1: F(u)=|u|pF(\partial u)=|\partial u|^{p}, p>1p>1 for n3n\geq 3 and p>2p>2 for n2n\geq 2. We can choose

    κ={the integer part ofp,pis not an integerp1,pis an integer.\kappa=\left\{\begin{aligned} &\text{the integer part of}\ p,\ p\ \text{is not an integer}\\ &p-1,\ p\ \text{is an integer}.\end{aligned}\right.

    Then, the criterion is whether 01τppc(n)1\int_{0}^{1}\tau^{p-p_{c}(n)-1} is infinity or not, which coincides with the classical results. For p<pc(n)p<p_{c}(n), Hκ,n(s)sppc(n)1H_{\kappa,n}(s)\sim s^{p-p_{c}(n)}-1, hence, for ε1\varepsilon\ll 1,

    ε2n1[κ,ninv(K9ε2n1+κ,n(K10ε))]2n1ε2(p1)2(n1)(p1),\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}_{\kappa,n}^{inv}(K_{9}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{\kappa,n}(K_{10}\varepsilon))\right]^{-\frac{2}{n-1}}\sim\varepsilon^{\frac{2(p-1)}{2-(n-1)(p-1)}},

    where K9,K10K_{9},K_{10} are positive constants given in the lifespan estimates above; for p=pc(n)p=p_{c}(n),

    Hκ,n(s)ln(s1),H_{\kappa,n}(s)\sim\ln(s^{-1}),

    and then, for ε1\varepsilon\ll 1

    ln(ε2n1[κ,ninv(K9ε2n1+κ,n(K10ε))]2n1)ε2n1.\ln\left(\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}_{\kappa,n}^{inv}(K_{9}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{\kappa,n}(K_{10}\varepsilon))\right]^{-\frac{2}{n-1}}\right)\sim\varepsilon^{-\frac{2}{n-1}}.
  • Example 2: F(u)=|u|pc(n)μ(|u|)F(\partial u)=|\partial u|^{p_{c}(n)}\mu(|\partial u|) with μ\mu satisfying (13) or (15). We can select κ\kappa to be the integer part of pc(n)p_{c}(n). Then, the criterion is whether 01μ(τ)τ1\int_{0}^{1}\mu(\tau)\tau^{-1} is infinity or not, which coincides with the blow-up results in [1]. By direct calculations,

    Hκ,n(s)s1μ(τ)τ1𝑑τ,H_{\kappa,n}(s)\sim\int_{s}^{1}\mu(\tau)\tau^{-1}d\tau,

    hence we extend the existence results in [1].

  • Example 3: F(u)=|u|1log(|u|1)F(\partial u)=|\partial u|\frac{1}{\log(|\partial u|^{-1})} with n3n\geq 3 and M={x:|x|>1}M=\{x:|x|>1\}. By Theorem 1.5, given radial initial data, we can obtain a unique radial solution locally and provide the lower bound estimate of the lifespan. However, the sharp upper bound estimate is still open.

2. Preliminary

2.1. Notations

In this subsection, we list the notations used in this paper.

  • Besides (t,x)=(x0,x1,x2,,xn)1+n(t,x)=(x_{0},x_{1},x_{2},\dots,x_{n})\in\mathbb{R}^{1+n}, we will use polar coordinates (t,r,ω)×[0,)×𝕊n1(t,r,\omega)\in\mathbb{R}\times[0,\infty)\times\mathbb{S}^{n-1}.

  • Denote i=/xi\partial_{i}=\partial/\partial x_{i}, 0in0\leq i\leq n, with the abbreviation =(0,1,,n)=(t,)\partial=(\partial_{0},\partial_{1},\dots,\partial_{n})=(\partial_{t},\nabla). We will also need r=xr\partial_{r}=\frac{x}{r}\cdot\nabla and

    Lj=tj+xj0 1jn,\displaystyle L_{j}=t\partial_{j}+x_{j}\partial_{0}\ 1\leq j\leq n,
    Ωij=xijxji 1i<jkn,\displaystyle\Omega_{ij}=x_{i}\partial_{j}-x_{j}\partial_{i}\ 1\leq i<jk\leq n,
    S=t0+x.\displaystyle S=t\partial_{0}+x\cdot\nabla.

    We denote

    L=(L1,,Ln),Ω=(Ω1,,Ωn(n1)/2),\displaystyle L=(L_{1},\dots,L_{n}),\ \Omega=(\Omega_{1},\dots,\Omega_{n(n-1)/2}),
    Γ=(,Ω,L,S),Y=(,Ω),Z=(,Ω).\displaystyle\Gamma=(\partial,\Omega,L,S),\ Y=(\nabla,\Omega),\ Z=(\partial,\Omega).

    Hereby in this notation list, X=(X1,X2,,Xν)X=(X_{1},X_{2},\dots,X_{\nu}) will be one of the collections of vector fields, t\partial_{t}, \nabla, \partial, Γ\Gamma, Ω\Omega, and ZZ.

  • For multi-indices, αν\alpha\in\mathbb{N}^{\nu}, Xα=X1α1X2α2XνανX^{\alpha}=X_{1}^{\alpha_{1}}X_{2}^{\alpha_{2}}\cdots X_{\nu}^{\alpha_{\nu}} and |α|=1ναi|\alpha|=\sum_{1}^{\nu}\alpha_{i}. For any kk\in\mathbb{N}, XkX^{\leq k} and XkX^{k} mean the collection of the vector fields (Xα)|α|k(X^{\alpha})_{|\alpha|\leq k} and (Xα)|α|=k(X^{\alpha})_{|\alpha|=k}.

  • With the Dirichlet boundary condition, we define H˙D1(M)\dot{H}_{D}^{1}(M) as the closure of fCc(M)f\in C_{c}^{\infty}(M), with respect to the norm

    fH˙D1(M)=fL2(M).\|f\|_{\dot{H}_{D}^{1}(M)}=\|\nabla f\|_{L^{2}(M)}.

    If M=nM=\mathbb{R}^{n}, H˙D1=H˙1\dot{H}_{D}^{1}=\dot{H}^{1} is the closure of Cc(n)C_{c}^{\infty}(\mathbb{R}^{n}) with respect to the H˙1\dot{H}^{1} norm. Also, we denote HDi(M)=H˙D1(M)Hi(M)H_{D}^{i}(M)=\dot{H}_{D}^{1}(M)\cap H^{i}(M) for i1i\geq 1 and HD0(M)=L2(M)H_{D}^{0}(M)=L^{2}(M). Space H01(M)H_{0}^{1}(M) is the closure of Cc(M)C_{c}^{\infty}(M) with respect to the H1H^{1} norm. Space (H1(M))w(H^{-1}(M))_{w*} is the dual space of H01(M)H_{0}^{1}(M) equipped with weak* topology .

  • A function u(t,x)u(t,x) belonging to Ct(Lx,loc2(M))C_{t}(L_{x,loc}^{2}(M)) means that for any σCc(n)\sigma\in C_{c}^{\infty}(\mathbb{R}^{n}), σuCt(Lx2(M))\sigma u\in C_{t}(L_{x}^{2}(M)). We denote Cti((H1(M))w)C_{t}^{i}((H^{-1}(M))_{w*}) the ii-times continuous differentiable (H1(M))w(H^{-1}(M))_{w*}-valued function space.

  • For a Banach space FF, Cb([0,);F):-CL([0,);F)C_{b}([0,\infty);F)\coloneq C\cap L^{\infty}([0,\infty);F).

  • The space lqs(F)(1q)l^{s}_{q}(F)(1\leq q\leq\infty) means

    ulqs(F)=(2jsΦj(x)u(t,x)F)lj0q,\|u\|_{l^{s}_{q}(F)}=\|(\|2^{js}\Phi_{j}(x)u(t,x)\|_{F})\|_{l_{j\geq 0}^{q}},

    for a partition of unity subordinate to the (inhomogeneous) dyadic (spatial) annuli, j0Φj(x)=1\sum_{j\geq 0}\Phi_{j}(x)=1. A typical choice could be a radial, non-negative Φ0(x)C0\Phi_{0}(x)\in C_{0}^{\infty} with value 1 for |x|1|x|\leq 1 and 0 for |x|2|x|\geq 2, and Φj(x)=Φ0(2jx)Φ0(21jx)\Phi_{j}(x)=\Phi_{0}(2^{-j}x)-\Phi_{0}(2^{1-j}x) for j1j\geq 1. Take Φ1=0\Phi_{-1}=0 and then Φj(Φj1+Φj+Φj+1)=Φj\Phi_{j}(\Phi_{j-1}+\Phi_{j}+\Phi_{j+1})=\Phi_{j}, j0j\geq 0.

  • We will use the norm in polar coordinates (r,ω)(r,\omega),

    fLtq1Lrq2Lωq3=(0f(t,rω)Lωq3q2rn1𝑑r)1q2Lq1(t>0),\|f\|_{L_{t}^{q_{1}}L_{r}^{q_{2}}L_{\omega}^{q_{3}}}=\left\|\left(\int_{0}^{\infty}\|f(t,r\omega)\|_{L_{\omega}^{q_{3}}}^{q_{2}}r^{n-1}dr\right)^{\frac{1}{q_{2}}}\right\|_{L^{q_{1}}(t>0)},

    with trivial modification for the case q2=q_{2}=\infty, where Lωq3L_{\omega}^{q_{3}} is the standard Lebesgue space on the sphere 𝕊n1\mathbb{S}^{n-1}.

  • The energy norm is

    uE=uE0=uLtLx2((0,T)×M).\|u\|_{E}=\|u\|_{E_{0}}=\|\partial u\|_{L_{t}^{\infty}L_{x}^{2}((0,T)\times M)}.

    For a collection of vector fields XX, the energy norm of order mm is

    uEm,X=|α|mXαuE-:XmuE.\|u\|_{E_{m,X}}=\sum_{|\alpha|\leq m}\|X^{\alpha}u\|_{E}\eqcolon\|X^{\leq m}u\|_{E}.

    Also, we use LE\|\cdot\|_{LE} to denote the local energy norm

    uLE=ul12Lt2Lx2((0,T)×M)+u/rl12Lt2Lx2((0,T)×M).\|u\|_{LE}=\|\partial u\|_{l_{\infty}^{-\frac{1}{2}}L_{t}^{2}L_{x}^{2}((0,T)\times M)}+\|u/r\|_{l_{\infty}^{-\frac{1}{2}}L_{t}^{2}L_{x}^{2}((0,T)\times M)}.

    and the dual norm LE=l112Lt2Lx2((0,T)×M)LE^{*}=l_{1}^{\frac{1}{2}}L_{t}^{2}L_{x}^{2}((0,T)\times M). Similarly, for a collection of vector fields XX, the local energy norm of order mm is

    uLEm,X=|α|mXαuLE-:XmuLE.\|u\|_{LE_{m,X}}=\sum_{|\alpha|\leq m}\|X^{\alpha}u\|_{LE}\eqcolon\|X^{\leq m}u\|_{LE}.
  • uF1+F2=infu=u1+u2(u1F1+u2F2)\|u\|_{F_{1}+F_{2}}=\inf_{u=u_{1}+u_{2}}(\|u_{1}\|_{F_{1}}+\|u_{2}\|_{F_{2}}), uF1F2=max{uF1,uF2}\|u\|_{F_{1}\cap F_{2}}=\max\{\|u\|_{F_{1}},\|u\|_{F_{2}}\}.

  • For a subset LnL\subset\mathbb{R}^{n}, χL\chi_{L} is the characteristic function of LL and χ¯L=1χL\bar{\chi}_{L}=1-\chi_{L}. For s0s\geq 0, denote BsnB_{s}\subset\mathbb{R}^{n} the open ball centered at the origin with a radius ss, χs\chi_{s} the characteristic function of the set BsB_{\langle s\rangle} and χ¯s=1χs\bar{\chi}_{s}=1-\chi_{s}.

  • We will use ABA\lesssim B to stand for ACBA\leq CB where the constant CC may change line to line. Then, ABA\sim B stands for ABAA\lesssim B\lesssim A. In addition, when denoting by (a)+(a)_{+} for aa\in\mathbb{R}, we mean the relevant estimate holds for a+δa+\delta for sufficiently small δ>0\delta>0.

2.2. Estimates

In this subsection, we give some estimates.

Proposition 2.1 (Klainerman-Sobolev Inequality).

If 1p<1\leq p<\infty and s>n/ps>n/p, then the inequality

(1+|t|+|x|)n1p(1+||t||x||)1p|v(t,x)|CKSΓsv(t,)Lxp(1+|t|+|x|)^{\frac{n-1}{p}}(1+||t|-|x||)^{\frac{1}{p}}|v(t,x)|\leq C_{KS}\|\Gamma^{\leq s}v(t,\cdot)\|_{L_{x}^{p}}

holds. If 1p<q<1\leq p<q<\infty and 1q1psn\frac{1}{q}\geq\frac{1}{p}-\frac{s}{n}, then

χtv(t,)Lxq(1+|t|)n(1p1q)Γsv(t,)Lxp.\|\chi_{t}v(t,\cdot)\|_{L_{x}^{q}}\lesssim(1+|t|)^{-n(\frac{1}{p}-\frac{1}{q})}\|\Gamma^{\leq s}v(t,\cdot)\|_{L_{x}^{p}}.

See [17, Chapter II] and [9, Theorem 3.4.1, Theorem 3.4.2] for the proof.

We will need the variant of the Sobolev embedding.

Lemma 2.2 (Sobolev embedding).

Let n2n\geq 2. For kn2nqk\geq\frac{n}{2}-\frac{n}{q} with q[2,)q\in[2,\infty), we have

r(n1)(121q)uLq(M)|α|kYαuL2(M).\|\langle r\rangle^{(n-1)(\frac{1}{2}-\frac{1}{q})}u\|_{L^{q}(M)}\lesssim\sum_{|\alpha|\leq k}\|Y^{\alpha}u\|_{L^{2}(M)}.

Moreover, we have

rn12uL(M)CS|α|n+22YαuL2(M).\|\langle r\rangle^{\frac{n-1}{2}}u\|_{L^{\infty}(M)}\leq C_{S}\sum_{|\alpha|\leq\frac{n+2}{2}}\|Y^{\alpha}u\|_{L^{2}(M)}.

See [19, Lemma 2.2] for the proof.

We need the following trace estimates.

Proposition 2.3.

If p[2,4]p\in[2,4] and n=2n=2, we have

supr>0r12v(r)LωprvL2(2)12Ω1vL2(2)12.\sup_{r>0}r^{\frac{1}{2}}\|v(r\cdot)\|_{L_{\omega}^{p}}\lesssim\|\partial_{r}v\|_{L^{2}(\mathbb{R}^{2})}^{\frac{1}{2}}\|\Omega^{\leq 1}v\|_{L^{2}(\mathbb{R}^{2})}^{\frac{1}{2}}.

See [6, Proposition 2.4] for the proof.

Proposition 2.4.

Let n2n\geq 2, then

rn12u(rω)Lω2uL2(|x|r)+uL2(|x|r).\|r^{\frac{n-1}{2}}u(r\omega)\|_{L_{\omega}^{2}}\lesssim\|u\|_{L^{2}(|x|\geq r)}+\|\nabla u\|_{L^{2}(|x|\geq r)}.

See [5, Lemma 2.2] for the proof.

Proposition 2.5 (Local energy estimates).

Consider the Dirichlet-wave equations (7). Let n3n\geq 3. For (f,g,G)H˙D1×Lx2×(LE+Lt1Lx2)(f,g,G)\in\dot{H}_{D}^{1}\times L_{x}^{2}\times(LE^{*}+L_{t}^{1}L_{x}^{2}), we have uCb([0,);H˙D1(M)u\in C_{b}([0,\infty);\dot{H}_{D}^{1}(M), tuCb([0,);Lx2(M))\partial_{t}u\in C_{b}([0,\infty);L_{x}^{2}(M)), and

uLEEfH˙D1(M)+gLx2+GLE+Lt1Lx2.\|u\|_{LE\cap E}\lesssim\|f\|_{\dot{H}_{D}^{1}(M)}+\|g\|_{L_{x}^{2}}+\|G\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}.

In addition, we have higher order (kkth-order) local energy estimates. Provided that (f,g)HDk+1×HDk(f,g)\in H_{D}^{k+1}\times H_{D}^{k}, that GCtk1((H1(M))w)G\in C_{t}^{k-1}((H^{-1}(M))_{w*}) with ZkGLE+Lt1Lx2Z^{\leq k}G\in LE^{*}+L_{t}^{1}L_{x}^{2} and k1GCb(Lx,loc2(M))\partial^{\leq k-1}G\in C_{b}(L_{x,loc}^{2}(M)), and that (f,g,G)(f,g,G) fulfill the compatibility condition of order k+1k+1, there exists some R>4R>4 such that we have a solution uC([0,);HDk+1(M))u\in C([0,\infty);H_{D}^{k+1}(M)) and

tiuCb([0,);HDk+1i(M)), 1ik+1,\displaystyle\partial_{t}^{i}u\in C_{b}([0,\infty);H_{D}^{k+1-i}(M)),\ 1\leq i\leq k+1,
tjYαuCb([0,);Hk+1j|α|(M)), 1|α|min{k+1j,k},\displaystyle\partial_{t}^{j}Y^{\alpha}u\in C_{b}([0,\infty);H^{k+1-j-|\alpha|}(M)),\ 1\leq|\alpha|\leq\min\{k+1-j,k\},

with the estimates

(16) uLEk,ZEk,Z\displaystyle\|u\|_{LE_{k,Z}\cap E_{k,Z}} |α|k(,Ω)α(f,g)Lx2+ZαGLE+Lt1Lx2\displaystyle\lesssim\sum_{|\alpha|\leq k}\|(\nabla,\Omega)^{\alpha}(\nabla f,g)\|_{L_{x}^{2}}+\|Z^{\alpha}G\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}
+|γ|k1ZγG(0,x)Lx2+γG(LtLt2)Lx2(B2R).\displaystyle\quad+\sum_{|\gamma|\leq k-1}\|Z^{\gamma}G(0,x)\|_{L_{x}^{2}}+\|\partial^{\gamma}G\|_{(L_{t}^{\infty}\cap L_{t}^{2})L_{x}^{2}(B_{2R})}.

See [19, Proposition 1.4] for the proof of estimate and Appendix 7 for the explanation of regularity.

Lemma 2.6.

Let bb\in\mathbb{R} and s>1s>1. For any non-decreasing function hh defined on [0,1][0,1] with h(0)0h(0)\geq 0, we have the following inequality

j=02j<sh(2jn12)2j(b+1)h(1)+2(b+1)(n1)(2b+11)sn121h(τ)ττ(b+1)2n1𝑑τ.\sum_{j=0}^{2^{j}<s}h(2^{-j\frac{n-1}{2}})2^{-j(b+1)}\leq h(1)+\frac{2(b+1)}{(n-1)(2^{b+1}-1)}\int_{s^{-\frac{n-1}{2}}}^{1}\frac{h(\tau)}{\tau}\tau^{(b+1)\frac{2}{n-1}}d\tau.
Proof.

Note that

2j2j+1τb𝑑τ=2b+11b+12j(b+1).\int_{2^{-j}}^{2^{-j+1}}\tau^{b}d\tau=\frac{2^{b+1}-1}{b+1}2^{-j(b+1)}.

Thus,

j=12j<sh(2jn12)2j(b+1)\displaystyle\sum_{j=1}^{2^{j}<s}h(2^{-j\frac{n-1}{2}})2^{-j(b+1)} j=12j<sb+12b+11h(2jn12)2j2j+1τb𝑑τ\displaystyle\leq\sum_{j=1}^{2^{j}<s}\frac{b+1}{2^{b+1}-1}h(2^{-j\frac{n-1}{2}})\int_{2^{-j}}^{2^{-j+1}}\tau^{b}d\tau
b+12b+11s11h(τn12)τb𝑑τ\displaystyle\leq\frac{b+1}{2^{b+1}-1}\int_{s^{-1}}^{1}h(\tau^{\frac{n-1}{2}})\tau^{b}d\tau
=2(b+1)(n1)(2b+11)sn121h(τ)ττ(b+1)2n1𝑑τ.\displaystyle=\frac{2(b+1)}{(n-1)(2^{b+1}-1)}\int_{s^{-\frac{n-1}{2}}}^{1}\frac{h(\tau)}{\tau}\tau^{(b+1)\frac{2}{n-1}}d\tau.\qed

2.3. Solution spaces

The solution will be obtain by iteration in some suitable function space.

Let (X,X~)(X,\tilde{X}) be (,)(\partial,\nabla) or (Z,Y)(Z,Y). For initial data (f,g)HDκ+1×HDκ(f,g)\in H_{D}^{\kappa+1}\times H_{D}^{\kappa} satisfying the compatibility of order κ+1\kappa+1, denote Sκ,X,T(T(0,))S_{\kappa,X,T}(T\in(0,\infty)) the space consisting of functions

tiuC([0,T];HDκ+1i(M)), 0iκ+1,tiX~αuC([0,T];Hκ+1i|α|(M)), 1|α|min{κ+1i,κ},XκuLE<,tiu(0,x)=Ψi(if,i1g)(x), 0iκ+1,\begin{gathered}\partial_{t}^{i}u\in C([0,T];H_{D}^{\kappa+1-i}(M)),\ 0\leq i\leq\kappa+1,\\ \partial_{t}^{i}\tilde{X}^{\alpha}u\in C([0,T];H^{\kappa+1-i-|\alpha|}(M)),\ 1\leq|\alpha|\leq\min\{\kappa+1-i,\kappa\},\\ \|X^{\leq\kappa}u\|_{LE}<\infty,\\ \partial_{t}^{i}u(0,x)=\Psi_{i}(\nabla^{\leq i}f,\nabla^{\leq i-1}g)(x),\ 0\leq i\leq\kappa+1,\end{gathered}

and equipped with the norm LEκ,XEκ,X\|\cdot\|_{LE_{\kappa,X}\cap E_{\kappa,X}}. Also, we define Sκ,X,S_{\kappa,X,\infty} as the space consisting of functions uC([0,);HDκ+1(M))u\in C([0,\infty);H_{D}^{\kappa+1}(M)) and

tiuCb([0,);HDκ+1i(M)), 1iκ+1,\displaystyle\partial_{t}^{i}u\in C_{b}([0,\infty);H_{D}^{\kappa+1-i}(M)),\ 1\leq i\leq\kappa+1,
tiX~αuCb([0,);Hκ+1i|α|(M)), 1|α|min{κ+1i,κ},\displaystyle\partial_{t}^{i}\tilde{X}^{\alpha}u\in C_{b}([0,\infty);H^{\kappa+1-i-|\alpha|}(M)),\ 1\leq|\alpha|\leq\min\{\kappa+1-i,\kappa\},
ZκuLE<,\displaystyle\|Z^{\leq\kappa}u\|_{LE}<\infty,
tiu(0,x)=Ψi(if,i1g)(x), 0iκ+1,\displaystyle\partial_{t}^{i}u(0,x)=\Psi_{i}(\nabla^{\leq i}f,\nabla^{\leq i-1}g)(x),\ 0\leq i\leq\kappa+1,

and equipped with the norm LEκ,XEκ,X\|\cdot\|_{LE_{\kappa,X}\cap E_{\kappa,X}}. Denote

Sκ,X,T(δ)={uSκ,X,T:uLEκ,XEκ,Xδ},T(0,],δ>0.S_{\kappa,X,T}(\delta)=\{u\in S_{\kappa,X,T}:\|u\|_{LE_{\kappa,X}\cap E_{\kappa,X}}\leq\delta\},\ T\in(0,\infty],\ \delta>0.

We choose XX to be ZZ in the proofs of Theorem 1.1 and Remark 1.3 and to be \partial in the proofs of Theorem 1.5 and Remark 1.6.

For Theorem 1.4, we will use Sκ,Γ,T(T(0,))S_{\kappa,\Gamma,T}(T\in(0,\infty)) the space consisting of function

uC([0,T];Hκ+1(2)),ΓαuC([0,T];Hκ|α|(2)), 0|α|κ,tiu(0,x)=Ψi(if,i1g)(x), 0iκ+1,\begin{gathered}u\in C([0,T];H^{\kappa+1}(\mathbb{R}^{2})),\\ \partial\Gamma^{\alpha}u\in C([0,T];H^{\kappa-|\alpha|}(\mathbb{R}^{2})),\ 0\leq|\alpha|\leq\kappa,\\ \partial_{t}^{i}u(0,x)=\Psi_{i}(\nabla^{\leq i}f,\nabla^{\leq i-1}g)(x),\ 0\leq i\leq\kappa+1,\end{gathered}

and equipped with the norm Eκ,Γ\|\cdot\|_{E_{\kappa,\Gamma}}. Also, we define Sκ,Γ,S_{\kappa,\Gamma,\infty} as the space consisting of functions uC([0,);Hκ+1(2))u\in C([0,\infty);H^{\kappa+1}(\mathbb{R}^{2})) and

ΓαuCb([0,);Hκ|α|(2)), 0|α|κ,tiu(0,x)=Ψi(if,i1g)(x), 0iκ+1,\begin{gathered}\partial\Gamma^{\alpha}u\in C_{b}([0,\infty);H^{\kappa-|\alpha|}(\mathbb{R}^{2})),\ 0\leq|\alpha|\leq\kappa,\\ \partial_{t}^{i}u(0,x)=\Psi_{i}(\nabla^{\leq i}f,\nabla^{\leq i-1}g)(x),\ 0\leq i\leq\kappa+1,\end{gathered}

and equipped with the norm Eκ,Γ\|\cdot\|_{E_{\kappa,\Gamma}}. Again, denote

Sκ,Γ,T(δ)={uSκ,Γ,T:uEκ,Γδ},T(0,],δ>0.S_{\kappa,\Gamma,T}(\delta)=\{u\in S_{\kappa,\Gamma,T}:\|u\|_{E_{\kappa,\Gamma}}\leq\delta\},\ T\in(0,\infty],\ \delta>0.

3. Proof of Theorem 1.1

In this section, EiE_{i}, LEiLE_{i}, and STS_{T} stand for Ei,ZE_{i,Z}, LEi,ZLE_{i,Z}, and S2,Z,TS_{2,Z,T}. Theorem 1.1 will be established by iteration argument in some suitable function space STS_{T}.

Proposition 3.1.

Let T(0,]T\in(0,\infty] and (f,g,F)(f,g,F) satisfy the conditions in Theorem 1.1. When T=T=\infty, further require that 01ρ(τ)τ𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}d\tau<\infty. Temporarily assume that ST(1/(2CS))S_{T}(1/(2C_{S})) are non-empty. For all u~ST(1/(2CS))\tilde{u}\in S_{T}(1/(2C_{S})), let I[u~]I[\tilde{u}] be the solution to the problem

(17) {u(t,x)=F(u~),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM,\left\{\begin{aligned} &\Box u(t,x)=F(\partial\tilde{u})&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M,\end{aligned}\right.

and fulfill the estimates (16). Then, there exists constants C1C_{1} and C2C_{2}, such that, u~,v~ST(1/(2CS))\tilde{u},\tilde{v}\in S_{T}(1/(2C_{S})), implies

(18) I[u~]LE2E2C1ε+C1Λ(T,u~E2)u~E2u~LE2E2,\displaystyle\|I[\tilde{u}]\|_{LE_{2}\cap E_{2}}\leq C_{1}\varepsilon+C_{1}\Lambda(T,\|\tilde{u}\|_{E_{2}})\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}\cap E_{2}},
(19) I[u~]I[v~]LE1E1C2Λ(T,P(u~,v~))P(u~,v~)u~v~LE1E1,\displaystyle\|I[\tilde{u}]-I[\tilde{v}]\|_{LE_{1}\cap E_{1}}\leq C_{2}\Lambda(T,P(\tilde{u},\tilde{v}))P(\tilde{u},\tilde{v})\|\tilde{u}-\tilde{v}\|_{LE_{1}\cap E_{1}},

where

Λ(T,ζ)=ρ(CSζ)+T11ρ(CSζτ)τ𝑑τ,\Lambda(T,\zeta)=\rho(C_{S}\zeta)+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}\zeta\tau)}{\tau}d\tau,

and P(u~,v~)=max{u~LE2E2,v~LE2E2}P(\tilde{u},\tilde{v})=\max\{\|\tilde{u}\|_{LE_{2}\cap E_{2}},\|\tilde{v}\|_{LE_{2}\cap E_{2}}\}.

Proof of Proposition 3.1.

According to Lemma 2.2, we have

u~CSr1u~E2<12.\|\partial\tilde{u}\|_{\infty}\leq C_{S}{\langle r\rangle}^{-1}\|\tilde{u}\|_{E_{2}}<\frac{1}{2}.

Because u~CtH2(M)Ct2Lx2(M)\partial\tilde{u}\in C_{t}H^{2}(M)\cap C_{t}^{2}L_{x}^{2}(M), it follows that, by the chain rule, F(u~)Ct2((H1(M))w)F(\partial\tilde{u})\in C_{t}^{2}((H^{-1}(M))_{w*}), 1[F(u~)]CbLx,loc2\partial^{\leq 1}[F(\partial\tilde{u})]\in C_{b}L_{x,loc}^{2}, and

|F(u~)|ρ(CSu~E2r1)|u~|2,|Z[F(u~)]|ρ(CSu~E2r1)|u~||Zu~|,|Z2[F(u~)]|ρ(CSu~E2r1)(|u~||Z2u~|+|Zu~|2).\begin{gathered}|F(\partial\tilde{u})|\lesssim\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})|\partial\tilde{u}|^{2},\\ |Z[F(\partial\tilde{u})]|\lesssim\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})|\partial\tilde{u}||Z\partial\tilde{u}|,\\ |Z^{2}[F(\partial\tilde{u})]|\lesssim\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})\left(|\partial\tilde{u}||Z^{2}\partial\tilde{u}|+|Z\partial\tilde{u}|^{2}\right).\end{gathered}

Also, the compatibility condition of the problem (17) coincides with that of the problem (1). Thus, by Proposition 2.5, as long as Z2[F(u~)]LE+Lt1Lx2Z^{\leq 2}[F(\partial\tilde{u})]\in LE^{*}+L_{t}^{1}L_{x}^{2}, it follows

(20) I[u~]LE2E2\displaystyle\|I[\tilde{u}]\|_{LE_{2}\cap E_{2}} |α|2(,Ω)α(f,g)Lx2+Zα[F(u~)]LE+Lt1Lx2\displaystyle\lesssim\sum_{|\alpha|\leq 2}\|(\nabla,\Omega)^{\alpha}(\nabla f,g)\|_{L_{x}^{2}}+\|Z^{\alpha}[F(\partial\tilde{u})]\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}
+|γ|1Zγ[F(u~)](0,x)Lx2+γ[F(u~)](LtLt2)Lx2(B2R)\displaystyle\quad+\sum_{|\gamma|\leq 1}\|Z^{\gamma}[F(\partial\tilde{u})](0,x)\|_{L_{x}^{2}}+\|\partial^{\gamma}[F(\partial\tilde{u})]\|_{(L_{t}^{\infty}\cap L_{t}^{2})L_{x}^{2}(B_{2R})}
ε+ρ(CSu~E2)u~E2u~LE1E1+|α|2Zα[F(u~)]LE+Lt1Lx2.\displaystyle\lesssim\varepsilon+\rho(C_{S}\|\tilde{u}\|_{E_{2}})\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{1}\cap E_{1}}+\sum_{|\alpha|\leq 2}\|Z^{\alpha}[F(\partial\tilde{u})]\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}.

According to the definition of LE+Lt1Lx2\|\cdot\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}, we have

(21) Zα[F(u~)]LE+Lt1Lx2χTZα[F(u~)]LE+χ¯TZα[F(u~)]Lt1Lx2.\|Z^{\alpha}[F(\partial\tilde{u})]\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}\leq\|\chi_{T}Z^{\alpha}[F(\partial\tilde{u})]\|_{LE^{*}}+\|\bar{\chi}_{T}Z^{\alpha}[F(\partial\tilde{u})]\|_{L_{t}^{1}L_{x}^{2}}.

Noting that suppΦj{x:2j1|x|2j+1}\mathrm{supp}\ \Phi_{j}\subset\{x:2^{j-1}\leq|x|\leq 2^{j+1}\}, j1j\geq 1, we obtain that

χTZ2[F(u~)]LE\displaystyle\quad\|\chi_{T}Z^{\leq 2}[F(\partial\tilde{u})]\|_{LE^{*}}
j=02j1<T2j12Φj(x)ρ(CSu~E2r1)(|u~||Z2u~|+|Zu~|2)Lt2Lx2.\displaystyle\lesssim\sum_{j=0}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\|\Phi_{j}(x)\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})\left(|\partial\tilde{u}||Z^{\leq 2}\partial\tilde{u}|+|Z\partial\tilde{u}|^{2}\right)\|_{L_{t}^{2}L_{x}^{2}}.

By Lemma 2.2 and 2.6, we deduce that

j=12j1<T2j12Φj(x)ρ(CSu~E2r1)|u~||Z2u~|Lt2Lx2\displaystyle\quad\sum_{j=1}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\|\Phi_{j}(x)\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})|\partial\tilde{u}||Z^{\leq 2}\partial\tilde{u}|\|_{L_{t}^{2}L_{x}^{2}}
j=12j1<T2j12ρ(CSu~E22(j1))2(j1)Φj(x)|Z2u~|Lt2Lx2u~E2\displaystyle\lesssim\sum_{j=1}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\rho(C_{S}\|\tilde{u}\|_{E_{2}}2^{-(j-1)})2^{-(j-1)}\|\Phi_{j}(x)|Z^{\leq 2}\partial\tilde{u}|\|_{L_{t}^{2}L_{x}^{2}}\|\tilde{u}\|_{E_{2}}
(j=12j1<Tρ(CSu~E22(j1)))u~E2u~LE2\displaystyle\lesssim{\left(\sum_{j=1}^{2^{j-1}<\langle T\rangle}\rho(C_{S}\|\tilde{u}\|_{E_{2}}2^{-(j-1)})\right)}\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}}
(ρ(CSu~E2)+T11ρ(CSu~E2τ)τ𝑑τ)u~E2u~LE2,\displaystyle\lesssim\left(\rho(C_{S}\|\tilde{u}\|_{E_{2}})+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}\|\tilde{u}\|_{E_{2}}\tau)}{\tau}d\tau\right)\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}},

and

j=12j1<T2j12Φj(x)ρ(CSu~E2r1)|Zu~|2Lt2Lx2\displaystyle\quad\sum_{j=1}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\|\Phi_{j}(x)\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle r\rangle}^{-1})|Z\partial\tilde{u}|^{2}\|_{L_{t}^{2}L_{x}^{2}}
j=12j1<T2j12ρ(CSu~E22(j1))2(j1)r12Zu~Lx4r12Φj(x)Zu~Lx4Lt2\displaystyle\lesssim\sum_{j=1}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\rho(C_{S}\|\tilde{u}\|_{E_{2}}2^{-(j-1)})2^{-(j-1)}\|\|{\langle r\rangle}^{\frac{1}{2}}Z\partial\tilde{u}\|_{L_{x}^{4}}\cdot\|{\langle r\rangle}^{\frac{1}{2}}\Phi_{j}(x)Z\partial\tilde{u}\|_{L_{x}^{4}}\|_{L_{t}^{2}}
j=12j1<T2j12ρ(CSu~E22(j1))u~E2Φj(x)Y1Zu~+[1Φj(x)]Zu~Lt2Lx2\displaystyle\lesssim\sum_{j=1}^{2^{j-1}<\langle T\rangle}2^{-j\frac{1}{2}}\rho(C_{S}\|\tilde{u}\|_{E_{2}}2^{-(j-1)})\|\tilde{u}\|_{E_{2}}\|\Phi_{j}(x)Y^{\leq 1}Z\partial\tilde{u}+[\partial^{\leq 1}\Phi_{j}(x)]Z\partial\tilde{u}\|_{L_{t}^{2}L_{x}^{2}}
(ρ(CSu~E2)+T11ρ(CSu~E2τ)τ𝑑τ)u~E2u~LE2\displaystyle\lesssim\left(\rho(C_{S}\|\tilde{u}\|_{E_{2}})+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}\|\tilde{u}\|_{E_{2}}\tau)}{\tau}d\tau\right)\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}}
+j=12j1<Ti=112j12ρ(CSu~E22(j1))u~E2Φj+i(x)Zu~Lt2Lx2\displaystyle\quad+\sum_{j=1}^{2^{j-1}<\langle T\rangle}\sum_{i=-1}^{1}2^{-j\frac{1}{2}}\rho(C_{S}\|\tilde{u}\|_{E_{2}}2^{-(j-1)})\|\tilde{u}\|_{E_{2}}\|\Phi_{j+i}(x)Z\partial\tilde{u}\|_{L_{t}^{2}L_{x}^{2}}
(ρ(CSu~E2)+T11ρ(CSu~E2τ)τ𝑑τ)u~E2u~LE2.\displaystyle\lesssim\left(\rho(C_{S}\|\tilde{u}\|_{E_{2}})+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}\|\tilde{u}\|_{E_{2}}\tau)}{\tau}d\tau\right)\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}}.

Therefore, it follows

(22) χTZ2[F(u~)]LE\displaystyle\quad\|\chi_{T}Z^{\leq 2}[F(\partial\tilde{u})]\|_{LE^{*}}
(ρ(CSu~E2)+T11ρ(CSu~E2τ)τ𝑑τ)u~E2u~LE2,\displaystyle\lesssim{\left(\rho(C_{S}\|\tilde{u}\|_{E_{2}})+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}\|\tilde{u}\|_{E_{2}}\tau)}{\tau}d\tau\right)}\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}},

and, if 01ρ(τ)τ𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}d\tau<\infty,

(23) Z2[F(u~)]LE(ρ(CSu~E2)+01ρ(CSu~E2τ)τ𝑑τ)u~E2u~LE2.\|Z^{\leq 2}[F(\partial\tilde{u})]\|_{LE^{*}}\lesssim{\left(\rho(C_{S}\|\tilde{u}\|_{E_{2}})+\int_{0}^{1}\frac{\rho(C_{S}\|\tilde{u}\|_{E_{2}}\tau)}{\tau}d\tau\right)}\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{LE_{2}}.

If TT is finite, due to u~ST(1/(2CS))\tilde{u}\in S_{T}(1/(2C_{S})), we have

(24) χ¯TZ2[F(u~)]Lt1Lx2\displaystyle\|\bar{\chi}_{T}Z^{\leq 2}[F(\partial\tilde{u})]\|_{L_{t}^{1}L_{x}^{2}} Tχ¯TZ2[F(u~)]LtLx2\displaystyle\lesssim T\|\bar{\chi}_{T}Z^{\leq 2}[F(\partial\tilde{u})]\|_{L_{t}^{\infty}L_{x}^{2}}
Tρ(CSu~E2T1)T1u~E22\displaystyle\lesssim T\rho(C_{S}\|\tilde{u}\|_{E_{2}}{\langle T\rangle}^{-1}){\langle T\rangle}^{-1}\|\tilde{u}\|_{E_{2}}^{2}
ρ(CSu~E2)u~E22.\displaystyle\lesssim\rho(C_{S}\|\tilde{u}\|_{E_{2}})\|\tilde{u}\|_{E_{2}}^{2}.

Combining (21), (22), (23), and (24), we deduce that

(25) Zα[F(u~)]LE+Lt1Lx2Λ(T,u~E2)u~E2u~E2LE2.\|Z^{\alpha}[F(\partial\tilde{u})]\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}\lesssim\Lambda(T,\|\tilde{u}\|_{E_{2}})\|\tilde{u}\|_{E_{2}}\|\tilde{u}\|_{E_{2}\cap LE_{2}}.

Finally, using (20) and (25), we obtain the estimates (18).

As for the estimate (19),

(26) I[u~]I[v~]LE1E1\displaystyle\|I[\tilde{u}]-I[\tilde{v}]\|_{LE_{1}\cap E_{1}} Z1[F(u~)F(v~)]LE+Lt1Lx2\displaystyle\lesssim\|Z^{\leq 1}[F(\partial\tilde{u})-F(\partial\tilde{v})]\|_{LE^{*}+L_{t}^{1}L_{x}^{2}}
+F(u~)F(v~)(LtLt2)Lx2(B2R).\displaystyle\quad+\|F(\partial\tilde{u})-F(\partial\tilde{v})\|_{(L_{t}^{\infty}\cap L_{t}^{2})L_{x}^{2}(B_{2R})}.

We denote w~=u~v~\tilde{w}=\tilde{u}-\tilde{v} and use PP to stand for P(u~,v~)P(\tilde{u},\tilde{v}). Noting that

|F(u~)F(v~)|ρ(CSPr1)r1P|w~|,|Z[F(u~)F(v~)]|ρ(CSPr1)r1(P|Zw~|+r|Zv~||w~|),\begin{gathered}|F(\partial\tilde{u})-F(\partial\tilde{v})|\lesssim\rho(C_{S}P{\langle r\rangle}^{-1}){\langle r\rangle}^{-1}P|\partial\tilde{w}|,\\ |Z[F(\partial\tilde{u})-F(\partial\tilde{v})]|\lesssim\rho(C_{S}P{\langle r\rangle}^{-1}){\langle r\rangle}^{-1}(P|Z\partial\tilde{w}|+\langle r\rangle|Z\partial\tilde{v}||\partial\tilde{w}|),\\ \end{gathered}

we have

(27) F(u~)F(v~)(LtLt2)Lx2(B2R)ρ(CSP)Pw~LEE,\displaystyle\|F(\partial\tilde{u})-F(\partial\tilde{v})\|_{(L_{t}^{\infty}\cap L_{t}^{2})L_{x}^{2}(B_{2R})}\lesssim\rho(C_{S}P)P\|\tilde{w}\|_{LE\cap E},
(28) χ¯TZ1[F(u~)F(v~)]Lt1Lx2Tχ¯TZ1[F(u~)F(v~)]LtLx2Tρ(CSPT1)T1Pw~E1ρ(CSP)Pw~E1.\displaystyle\begin{aligned} \|\bar{\chi}_{T}Z^{\leq 1}[F(\partial\tilde{u})-F(\partial\tilde{v})]\|_{L_{t}^{1}L_{x}^{2}}&\lesssim T\|\bar{\chi}_{T}Z^{\leq 1}[F(\partial\tilde{u})-F(\partial\tilde{v})]\|_{L_{t}^{\infty}L_{x}^{2}}\\ &\lesssim T\rho(C_{S}P{\langle T\rangle}^{-1}){\langle T\rangle}^{-1}P\|\tilde{w}\|_{E_{1}}\\ &\lesssim\rho(C_{S}P)P\|\tilde{w}\|_{E_{1}}.\end{aligned}

Also,

(29) χTZ1[F(u~)F(v~)]LE\displaystyle\quad\|\chi_{T}Z^{\leq 1}[F(\partial\tilde{u})-F(\partial\tilde{v})]\|_{LE^{*}}
j=02j1<T2j12Φj(x)ρ(CSPr1)(r1P|Z1w~|+|Zv~||w~|)Lt2Lx2\displaystyle\lesssim\sum_{j=0}^{2^{j-1}<\langle T\rangle}2^{j\frac{1}{2}}\|\Phi_{j}(x)\rho(C_{S}P{\langle r\rangle}^{-1})\left({\langle r\rangle}^{-1}P|Z^{\leq 1}\partial\tilde{w}|+|Z\partial\tilde{v}||\partial\tilde{w}|\right)\|_{L_{t}^{2}L_{x}^{2}}
(ρ(CSP)+T11ρ(CSPτ)τ𝑑τ)Pw~LE1E1\displaystyle\lesssim{\left(\rho(C_{S}P)+\int_{{\langle T\rangle}^{-1}}^{1}\frac{\rho(C_{S}P\tau)}{\tau}d\tau\right)}P\|\tilde{w}\|_{LE_{1}\cap E_{1}}

and, if 01ρ(τ)τ𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}d\tau<\infty,

(30) χTZ1[F(u~)F(v~)]LE(ρ(CSP)+01ρ(CSPτ)τ𝑑τ)Pw~LE1E1.\|\chi_{T}Z^{\leq 1}[F(\partial\tilde{u})-F(\partial\tilde{v})]\|_{LE^{*}}\lesssim{\left(\rho(C_{S}P)+\int_{0}^{1}\frac{\rho(C_{S}P\tau)}{\tau}d\tau\right)}P\|\tilde{w}\|_{LE_{1}\cap E_{1}}.

Hence, combining (26), (27), (29), (30), and (28), we obtain the estimates (19). ∎

Using Proposition 3.1, we can finish the proof of Theorem 1.1.

Proof of Theorem 1.1.

The uniqueness is obvious. We just focus on the existence and the lower bound of the lifespan.

Consider the following Dirichlet-wave equation

(31) {u(t,x)=[P0(x)+P1(x)t]θ(t),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM,\left\{\begin{aligned} &\Box u(t,x)=[P_{0}(x)+P_{1}(x)t]\theta(t)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M,\end{aligned}\right.

where

Pj(x)=Δ[Ψj(jf,j1g)](x)+Ψj+2(j+2f,j+1g)(x),j=0,1,\displaystyle P_{j}(x)=-\Delta[\Psi_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g)](x)+\Psi_{j+2}(\nabla^{\leq j+2}f,\nabla^{\leq j+1}g)(x),\ j=0,1,

and θ(t)\theta(t) is a cut-off function such that θ(0)1\theta(0)\equiv 1 in some neighborhood of 0. By a direct calculation, we find that the equation (31) has the same compatibility condition as that of the equation (1). By Proposition 2.5, there exists a constant C0>1C_{0}>1 such that the solution u0u_{0} to the equation (31) satisfying

u0LE2E2C0C1ε.\|u_{0}\|_{LE_{2}\cap E_{2}}\leq C_{0}C_{1}\varepsilon.

As long as we choose ε\varepsilon and TT such that

(32) {C0C1ε12CS,(C0C1)2εΛ(T,C0C1ε)C01,C0C1C2εΛ(T,C0C1ε)12,\left\{\begin{gathered}C_{0}C_{1}\varepsilon\leq\frac{1}{2C_{S}},\\ (C_{0}C_{1})^{2}\varepsilon\Lambda(T,C_{0}C_{1}\varepsilon)\leq C_{0}-1,\\ C_{0}C_{1}C_{2}\varepsilon\Lambda(T,C_{0}C_{1}\varepsilon)\leq\frac{1}{2},\end{gathered}\right.

we can take uj=I[uj1]u_{j}=I[u_{j-1}], j+j\in\mathbb{N}^{+}, and deduce that, by (18) and (19), for all j+j\in\mathbb{N}^{+},

ujLE2E2C0C1ε,\displaystyle\|u_{j}\|_{LE_{2}\cap E_{2}}\leq C_{0}C_{1}\varepsilon,
uj+1ujLE1E112ujuj1LE1E1.\displaystyle\|u_{j+1}-u_{j}\|_{LE_{1}\cap E_{1}}\leq\frac{1}{2}\|u_{j}-u_{j-1}\|_{LE_{1}\cap E_{1}}.

Thus, we find a unique solution

uLt,locH3,iuLtH3iCbH2i, 1i2,u\in L_{t,loc}^{\infty}H^{3},\ \partial^{i}u\in L_{t}^{\infty}H^{3-i}\cap C_{b}H^{2-i},\ 1\leq i\leq 2,

with uLE2E2C0C1ε\|u\|_{LE_{2}\cap E_{2}}\leq C_{0}C_{1}\varepsilon. Strictly speaking, to complete the proof, we need also to prove the regularity of the solution, that is, iuCtH3i\partial^{i}u\in C_{t}H^{3-i}, 0i20\leq i\leq 2. As this is standard, we omit details here and refer the reader to the end of Section 4 in [20] or [5, P533].

To conclude this subsection, we discuss the global existence and the lower bound estimate of the lifespan. Obviously, if 01ρ(τ)τ𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}d\tau<\infty, we can choose T=T=\infty in (32), that is,

{C0C1ε12CS,(C0C1)2εΛ(,C0C1ε)C01,C0C1C2εΛ(,C0C1ε)12.\left\{\begin{gathered}C_{0}C_{1}\varepsilon\leq\frac{1}{2C_{S}},\\ (C_{0}C_{1})^{2}\varepsilon\Lambda(\infty,C_{0}C_{1}\varepsilon)\leq C_{0}-1,\\ C_{0}C_{1}C_{2}\varepsilon\Lambda(\infty,C_{0}C_{1}\varepsilon)\leq\frac{1}{2}.\end{gathered}\right.

Due to limt0ρ(τ)=0\lim_{t\rightarrow 0}\rho(\tau)=0, there exists an ε1\varepsilon_{1} such that for all ε(0,ε1)\varepsilon\in(0,\varepsilon_{1}), the problem (1) has a unique global solution. Otherwise, we choose ε\varepsilon satisfying

{C0C1ε12CS,(C0C1)2ερ(CSC0C1ε)C012,C0C1C2ερ(CSC0C1ε)14.\left\{\begin{gathered}C_{0}C_{1}\varepsilon\leq\frac{1}{2C_{S}},\\ (C_{0}C_{1})^{2}\varepsilon\rho(C_{S}C_{0}C_{1}\varepsilon)\leq\frac{C_{0}-1}{2},\\ C_{0}C_{1}C_{2}\varepsilon\rho(C_{S}C_{0}C_{1}\varepsilon)\leq\frac{1}{4}.\end{gathered}\right.

Denote

c~1=min{C012(C0C1)2,14C0C1C2},c~2=CSC0C1,\tilde{c}_{1}=\min\left\{\frac{C_{0}-1}{2(C_{0}C_{1})^{2}},\frac{1}{4C_{0}C_{1}C_{2}}\right\},\ \tilde{c}_{2}=C_{S}C_{0}C_{1},

and, to fulfill the requirement (32), take TεT_{\varepsilon} such that

c~1ε1=Tε11ρ(c~2ετ)τ𝑑τ=2,3(c~2εTε1)2,3(c~2ε),\tilde{c}_{1}\varepsilon^{-1}=\int_{{\langle T_{\varepsilon}\rangle}^{-1}}^{1}\frac{\rho(\tilde{c}_{2}\varepsilon\tau)}{\tau}d\tau=\mathcal{H}_{2,3}(\tilde{c}_{2}\varepsilon{\langle T_{\varepsilon}\rangle}^{-1})-\mathcal{H}_{2,3}(\tilde{c}_{2}\varepsilon),

that is,

Tε=c~2ε[2,3inv(c~1ε1+2,3(c~2ε))]1.\langle T_{\varepsilon}\rangle=\tilde{c}_{2}\varepsilon[\mathcal{H}_{2,3}^{inv}(\tilde{c}_{1}\varepsilon^{-1}+\mathcal{H}_{2,3}(\tilde{c}_{2}\varepsilon))]^{-1}.\qed

4. Proofs of Remark 1.3 and Theorem 1.4

The proofs of Remark 1.3 and Theorem 1.4 are established by (local) energy estimates and the control of the LL^{\infty} norm of u\partial u. In this section, we give sketches of the proofs.

4.1. Proof of Remark 1.3

In this subsection, EiE_{i} and LEiLE_{i} stand for Ei,ZE_{i,Z} and LEi,ZLE_{i,Z}. This time the solution will be obtained by iteration in space Sκ,Z,S_{\kappa,Z,\infty}.

To obtain the κ\kappath-order version estimates of (18) and (19), that is, there exists constants C3C_{3} and C4C_{4} such that, for all u~,v~S(1/(2CS))\tilde{u},\tilde{v}\in S_{\infty}(1/(2C_{S})),

I[u~]LEκEκC3ε+C3u~Eκκ1u~LEκEκ,\displaystyle\|I[\tilde{u}]\|_{LE_{\kappa}\cap E_{\kappa}}\leq C_{3}\varepsilon+C_{3}\|\tilde{u}\|_{E_{\kappa}}^{\kappa-1}\|\tilde{u}\|_{LE_{\kappa}\cap E_{\kappa}},
I[u~]I[v~]LEκ1Eκ1C4Pκ(u~,v~)κ1u~v~LEκ1Eκ1,\displaystyle\|I[\tilde{u}]-I[\tilde{v}]\|_{LE_{\kappa-1}\cap E_{\kappa-1}}\leq C_{4}P_{\kappa}(\tilde{u},\tilde{v})^{\kappa-1}\|\tilde{u}-\tilde{v}\|_{LE_{\kappa-1}\cap E_{\kappa-1}},

where Pκ(u~,v~)=max{u~LEκEκ,v~LEκEκ}P_{\kappa}(\tilde{u},\tilde{v})=\max\{\|\tilde{u}\|_{LE_{\kappa}\cap E_{\kappa}},\|\tilde{v}\|_{LE_{\kappa}\cap E_{\kappa}}\}, we only need to verify

(33) Zκ[F(u~)]LEu~Eκκ1u~LEκEκ.\|Z^{\leq\kappa}[F(\partial\tilde{u})]\|_{LE^{*}}\lesssim\|\tilde{u}\|_{E_{\kappa}}^{\kappa-1}\|\tilde{u}\|_{LE_{\kappa}\cap E_{\kappa}}.

By the chain rule, for u~CtHκ(M)CtκLx2(M)\partial\tilde{u}\in C_{t}H^{\kappa}(M)\cap C_{t}^{\kappa}L_{x}^{2}(M),

(34) Zκ[F(u~)]LE\displaystyle\quad\|Z^{\leq\kappa}[F(\partial\tilde{u})]\|_{LE^{*}}
F(u~)LE+\displaystyle\lesssim\|F(\partial\tilde{u})\|_{LE^{*}}+
ρ(CSu~Eκ)j=02j121μκ1b1++bμκΦj(x)(|u~|κμ|Zb1u~||Zbμu~|)Lt2Lx2\displaystyle\quad\rho(C_{S}\|\tilde{u}\|_{E_{\kappa}})\sum_{j=0}^{\infty}2^{j\frac{1}{2}}\sum_{\begin{subarray}{c}1\leq\mu\leq\kappa\\ 1\leq b_{1}+\dots+b_{\mu}\leq\kappa\end{subarray}}\|\Phi_{j}(x)\left(|\partial\tilde{u}|^{\kappa-\mu}|Z^{b_{1}}\partial\tilde{u}|\cdots|Z^{b_{\mu}}\partial\tilde{u}|\right)\|_{L_{t}^{2}L_{x}^{2}}
F(u~)LE+\displaystyle\lesssim\|F(\partial\tilde{u})\|_{LE^{*}}+
j=01μκ1b1++bμκ2j(n1)(κμ)12u~EκκμΦj(x)(|Zb1u~||Zbμu~|)Lt2Lx2\displaystyle\quad\sum_{j=0}^{\infty}\sum_{\begin{subarray}{c}1\leq\mu\leq\kappa\\ 1\leq b_{1}+\dots+b_{\mu}\leq\kappa\end{subarray}}2^{-j\frac{(n-1)(\kappa-\mu)-1}{2}}\|\tilde{u}\|_{E_{\kappa}}^{\kappa-\mu}\|\Phi_{j}(x)\left(|Z^{b_{1}}\partial\tilde{u}|\cdots|Z^{b_{\mu}}\partial\tilde{u}|\right)\|_{L_{t}^{2}L_{x}^{2}}

Noticing that

(35) |Zbiu~|rn12u~Eκ,ifbi+n2<κ,|Z^{b_{i}}\partial\tilde{u}|\lesssim\langle r\rangle^{-\frac{n-1}{2}}\|\tilde{u}\|_{E_{\kappa}},\ \text{if}\ b_{i}+\frac{n}{2}<\kappa,

we can focus on the terms in the last line of (34) where μ2\mu\geq 2 and bi+n2κb_{i}+\frac{n}{2}\geq\kappa, 1iμ\forall 1\leq i\leq\mu. Because

μ12(μ1)κ1μ1bin<12,forμ2,κ>n2,\frac{\mu-1}{2}-\frac{(\mu-1)\kappa-\sum_{1}^{\mu-1}b_{i}}{n}<\frac{1}{2},\ \text{for}\ \mu\geq 2,\ \kappa>\frac{n}{2},

it is always possible for us to choose {qi}1iμ\{q_{i}\}_{1\leq i\leq\mu} such that

{1qi=(12κbin)+, 1iμ1,1qμ=12i=1μ11qi,\left\{\begin{aligned} &\frac{1}{q_{i}}=\left(\frac{1}{2}-\frac{\kappa-b_{i}}{n}\right)_{+},\ 1\leq i\leq\mu-1,\\ &\frac{1}{q_{\mu}}=\frac{1}{2}-\sum_{i=1}^{\mu-1}\frac{1}{q_{i}},\end{aligned}\right.

Then, it follows that, by Lemma 2.2,

(36) Φj(x)(|Zb1u~||Zbμu~|)Lt2Lx2\displaystyle\quad\|\Phi_{j}(x)\left(|Z^{b_{1}}\partial\tilde{u}|\cdots|Z^{b_{\mu}}\partial\tilde{u}|\right)\|_{L_{t}^{2}L_{x}^{2}}
=Φj(x)r(n1)(μ1)2i=1μ(r(n1)(121qi)|Zbiu~|)Lt2Lx2\displaystyle=\|\Phi_{j}(x)\langle r\rangle^{-\frac{(n-1)(\mu-1)}{2}}\prod_{i=1}^{\mu}\left(\langle r\rangle^{(n-1)(\frac{1}{2}-\frac{1}{q_{i}})}|Z^{b_{i}}\partial\tilde{u}|\right)\|_{L_{t}^{2}L_{x}^{2}}
2j(n1)(μ1)2u~Eκκ1Yκbμ[Φj(x)Zbμu~]Lt2Lx2\displaystyle\lesssim 2^{-j\frac{(n-1)(\mu-1)}{2}}\|\tilde{u}\|_{E_{\kappa}}^{\kappa-1}\|Y^{\leq\kappa-b_{\mu}}[\Phi_{j}(x)Z^{b_{\mu}}\partial\tilde{u}]\|_{L_{t}^{2}L_{x}^{2}}
2j(n1)(μ1)2u~Eκκ1[Φj1(x)+Φj(x)+Φj+1(x)]Zκu~Lt2Lx2.\displaystyle\lesssim 2^{-j\frac{(n-1)(\mu-1)}{2}}\|\tilde{u}\|_{E_{\kappa}}^{\kappa-1}\|[\Phi_{j-1}(x)+\Phi_{j}(x)+\Phi_{j+1}(x)]Z^{\leq\kappa}\partial\tilde{u}\|_{L_{t}^{2}L_{x}^{2}}.

Hence, combining (34), (35), and (36), we establish the desired inequality (33).

Let u0u_{0} be the solution to the following Dirichlet-wave equation

(37) {u(t,x)=[j=0κ1tjj!Pj(x)]θ(t),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f(x),ut(0,x)=g(x),xM,\left\{\begin{aligned} &\Box u(t,x)=\left[\sum_{j=0}^{\kappa-1}\frac{t^{j}}{j!}P_{j}(x)\right]\theta(t)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f(x),\ u_{t}(0,x)=g(x)&&,\ x\in M,\end{aligned}\right.

where

Pj(x)=Δ[Ψj(jf,j1g)](x)+Ψj+2(j+2f,j+1g)(x), 0jκ1,\displaystyle P_{j}(x)=-\Delta[\Psi_{j}(\nabla^{\leq j}f,\nabla^{\leq j-1}g)](x)+\Psi_{j+2}(\nabla^{\leq j+2}f,\nabla^{\leq j+1}g)(x),\ 0\leq j\leq\kappa-1,

and θ(t)\theta(t) is a cut-off function such that θ(0)1\theta(0)\equiv 1 in some neighborhood of 0. By a direct calculation, we find that the equation (37) has the same compatibility condition as that of the equation (1). As long as ε\varepsilon is small enough, the iteration sequence, uj=I[uj1]u_{j}=I[u_{j-1}], j+j\in\mathbb{N}^{+}, will converge to the unique global solution to the problem (1).

4.2. Proof of Theorem 1.4

In this subsection, EiE_{i} and STS_{T} stand for Ei,ΓE_{i,\Gamma} and Sκ,Γ,TS_{\kappa,\Gamma,T}.

When n=2n=2, due to the lack of local energy estimate, the problem (1) is suspended for non-empty obstacles. For M=2M=\mathbb{R}^{2} and κ2\kappa\geq 2, standard energy estimates and Klainerman-Sobolev inequalities are enough to bring out the expected results.

By energy estimates, for all u~ST(1/(2CKS)\tilde{u}\in S_{T}(1/(2C_{KS}), it follows

(38) I[u~]Eκ\displaystyle\quad\|I[\tilde{u}]\|_{E_{\kappa}}
ε+Γκ[F(u~)]Lt1Lx2\displaystyle\lesssim\varepsilon+\|\Gamma^{\leq\kappa}[F(\partial\tilde{u})]\|_{L_{t}^{1}L_{x}^{2}}
ε+F(u~)Lt1Lx2+1μκ1b1++bμκ|μF(u~)||Γb1u~||Γbμu~|Lt1Lx2.\displaystyle\lesssim\varepsilon+\|F(\partial\tilde{u})\|_{L_{t}^{1}L_{x}^{2}}+\sum_{\begin{subarray}{c}1\leq\mu\leq\kappa\\ 1\leq b_{1}+\dots+b_{\mu}\leq\kappa\end{subarray}}\||\partial^{\mu}F(\partial\tilde{u})||\Gamma^{b_{1}}\partial\tilde{u}|\cdot\cdots\cdot|\Gamma^{b_{\mu}}\partial\tilde{u}|\|_{L_{t}^{1}L_{x}^{2}}.

Just as in the poof of Remark 1.3, we only need to focus on terms where μ2\mu\geq 2 and bi+1κb_{i}+1\geq\kappa, 1iμ\forall 1\leq i\leq\mu. Then, we have i=1μbi+μκμμκκ1\sum_{i=1}^{\mu}b_{i}+\mu\geq\kappa\mu\Rightarrow\mu\leq\frac{\kappa}{\kappa-1}. Due to κ2\kappa\geq 2, we only need to investigate terms with κ=μ=2\kappa=\mu=2, that is,

(39) |2F(u~)||Γu~|2Lx2\displaystyle\quad\||\partial^{2}F(\partial\tilde{u})||\Gamma\partial\tilde{u}|^{2}\|_{L_{x}^{2}}
χt|2F(u~)||Γu~|2Lx2+χ¯t|2F(u~)||Γu~|2Lx2\displaystyle\leq\|\chi_{t}|\partial^{2}F(\partial\tilde{u})||\Gamma\partial\tilde{u}|^{2}\|_{L_{x}^{2}}+\|\bar{\chi}_{t}|\partial^{2}F(\partial\tilde{u})||\Gamma\partial\tilde{u}|^{2}\|_{L_{x}^{2}}
ρ(CKSt12u~E2)(χtΓu~Lx42+t12(|x|12|Γu~|)|Γu~|Lx2)\displaystyle\lesssim\rho(C_{KS}\langle t\rangle^{-\frac{1}{2}}\|\tilde{u}\|_{E_{2}})\Big{(}\|\chi_{t}\Gamma\partial\tilde{u}\|_{{L_{x}^{4}}}^{2}+\langle t\rangle^{-\frac{1}{2}}\|(|x|^{\frac{1}{2}}|\Gamma\partial\tilde{u}|)|\Gamma\partial\tilde{u}|\|_{L_{x}^{2}}\Big{)}
ρ(CKSt12u~E2)(t1u~E22+t12(|x|12|Γu~|)LrLω4Γu~Lr2Lω4)\displaystyle\lesssim\rho(C_{KS}\langle t\rangle^{-\frac{1}{2}}\|\tilde{u}\|_{E_{2}})\Big{(}\langle t\rangle^{-1}\|\tilde{u}\|_{E_{2}}^{2}+\langle t\rangle^{-\frac{1}{2}}\|(|x|^{\frac{1}{2}}|\Gamma\partial\tilde{u}|)\|_{L_{r}^{\infty}L_{\omega}^{4}}\|\Gamma\partial\tilde{u}\|_{L_{r}^{2}L_{\omega}^{4}}\Big{)}
ρ(CKSt12u~E2)t12u~E22,\displaystyle\lesssim\rho(C_{KS}\langle t\rangle^{-\frac{1}{2}}\|\tilde{u}\|_{E_{2}})\langle t\rangle^{-\frac{1}{2}}\|\tilde{u}\|_{E_{2}}^{2},

where we used the Proposition 2.1, Proposition 2.3, and Sobolev embedding on 𝕊1\mathbb{S}^{1}. Combining (38) and (39), one deduces that

I[u~]Eκε+0Tρ(CKSu~Eκt12)tκ12𝑑tu~Eκκ.\|I[\tilde{u}]\|_{E_{\kappa}}\lesssim\varepsilon+\int_{0}^{T}\rho(C_{KS}\|\tilde{u}\|_{E_{\kappa}}\langle t\rangle^{-\frac{1}{2}})\langle t\rangle^{-\frac{\kappa-1}{2}}dt\cdot\|\tilde{u}\|_{E_{\kappa}}^{\kappa}.

Also, for all u~,v~ST(1/(2CKS)\tilde{u},\tilde{v}\in S_{T}(1/(2C_{KS}) , one has

I[u~]I[v~]Eκ10Tρ(CKSWκ(u~,v~)t12)tκ12𝑑tWκ(u~,v~)κ1u~v~Eκ1,\|I[\tilde{u}]-I[\tilde{v}]\|_{E_{\kappa-1}}\lesssim\int_{0}^{T}\rho(C_{KS}W_{\kappa}(\tilde{u},\tilde{v})\langle t\rangle^{-\frac{1}{2}})\langle t\rangle^{-\frac{\kappa-1}{2}}dt\cdot W_{\kappa}(\tilde{u},\tilde{v})^{\kappa-1}\|\tilde{u}-\tilde{v}\|_{E_{\kappa-1}},

where Wκ(u~,v~)=max{u~Eκ,v~Eκ}W_{\kappa}(\tilde{u},\tilde{v})=\max\{\|\tilde{u}\|_{E_{\kappa}},\|\tilde{v}\|_{E_{\kappa}}\}. Thus, if 01ρ(τ)ττκ3𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}\tau^{\kappa-3}d\tau<\infty, there exists a unique global solution to the problem (1). When 01ρ(τ)ττκ3𝑑τ=\int_{0}^{1}\frac{\rho(\tau)}{\tau}\tau^{\kappa-3}d\tau=\infty, due to

s1ρ(CKSετ)ττκ31τ4𝑑τρ(CKSε)+s1ρ(CKSετ)ττκ3𝑑τ,\int_{s}^{1}\frac{\rho(C_{KS}\varepsilon\tau)}{\tau}\frac{\tau^{\kappa-3}}{\sqrt{1-\tau^{4}}}d\tau\sim\rho(C_{KS}\varepsilon)+\int_{s}^{1}\frac{\rho(C_{KS}\varepsilon\tau)}{\tau}\tau^{\kappa-3}d\tau,

there exist positive constants c~3\tilde{c}_{3}, c~4\tilde{c}_{4} such that we have a unique solution on [0,Tε][0,T_{\varepsilon}] with TεT_{\varepsilon} satisfying

c~3=εκ1Tε121ρ(c~4ετ)ττκ3𝑑τ=c~43κε2c~4εTε12c~4ερ(τ)ττκ3𝑑τ,\tilde{c}_{3}=\varepsilon^{\kappa-1}\int_{\langle T_{\varepsilon}\rangle^{-\frac{1}{2}}}^{1}\frac{\rho(\tilde{c}_{4}\varepsilon\tau)}{\tau}\tau^{\kappa-3}d\tau=\tilde{c}_{4}^{3-\kappa}\varepsilon^{2}\int_{\tilde{c}_{4}\varepsilon\langle T_{\varepsilon}\rangle^{-\frac{1}{2}}}^{\tilde{c}_{4}\varepsilon}\frac{\rho(\tau)}{\tau}\tau^{\kappa-3}d\tau,

that is,

Tε=c~42ε2[κ,2inv(c~3c~4κ3ε2+κ,2(c~4ε))]2.\langle T_{\varepsilon}\rangle=\tilde{c}_{4}^{2}\varepsilon^{2}[\mathcal{H}_{\kappa,2}^{inv}(\tilde{c}_{3}\tilde{c}_{4}^{\kappa-3}\varepsilon^{-2}+\mathcal{H}_{\kappa,2}(\tilde{c}_{4}\varepsilon))]^{-2}.

5. Proofs of Theorem 1.5 and Remark 1.6

In this section, EiE_{i}, LEiLE_{i}, and STS_{T} stand for Ei,E_{i,\partial}, LEi,LE_{i,\partial}, and Sκ,,TS_{\kappa,\partial,T}.

5.1. Proof of Theorem 1.5

Recall Proposition 2.4 and M={x:|x|>1}M=\{x:|x|>1\}. For a radial function uH1(M)u\in H^{1}(M), there exists a constant CTRC_{TR} such that

|u(x)|CTR|x|(n1)2uH1,|x|>1.|u(x)|\leq C_{TR}|x|^{-\frac{(n-1)}{2}}\|u\|_{H^{1}},\ |x|>1.

Thus, following the proof of Proposition 3.1, we have, for u~,v~ST(1/(2CTR))\tilde{u},\tilde{v}\in S_{T}(1/(2C_{TR})),

I[u~]LE1E1C5ε+C5Λ(T,u~E1)u~LE1E1,\displaystyle\|I[\tilde{u}]\|_{LE_{1}\cap E_{1}}\leq C_{5}\varepsilon+C_{5}\Lambda(T,\|\tilde{u}\|_{E_{1}})\|\tilde{u}\|_{LE_{1}\cap E_{1}},
I[u~]I[v~]LEEC6Λ(T,P(u~,v~))u~v~LEE,\displaystyle\|I[\tilde{u}]-I[\tilde{v}]\|_{LE\cap E}\leq C_{6}\Lambda(T,P(\tilde{u},\tilde{v}))\|\tilde{u}-\tilde{v}\|_{LE\cap E},

where

Λ(T,ζ)\displaystyle\quad\Lambda(T,\zeta)
={ρ(CTRζ)+infλ>1{λn121ρ(CTRζτ)τpc(n)𝑑τ+Tρ(CTRζλn12)}, 0<T<,ρ(CTRζ)+01ρ(CTRζτ)τpc(n)𝑑τ,T=,\displaystyle=\left\{\begin{aligned} &\rho(C_{TR}\zeta)+\inf_{\lambda>1}\left\{\int_{\lambda^{-\frac{n-1}{2}}}^{1}\frac{\rho(C_{TR}\zeta\tau)}{\tau^{p_{c}(n)}}d\tau+T\rho(C_{TR}\zeta\lambda^{-\frac{n-1}{2}})\right\}&&,\ 0<T<\infty,\\ &\rho(C_{TR}\zeta)+\int_{0}^{1}\frac{\rho(C_{TR}\zeta\tau)}{\tau^{p_{c}(n)}}d\tau&&,\ T=\infty,\end{aligned}\right.

and P(u~,v~)=max{u~LE1E1,v~LE1E1}P(\tilde{u},\tilde{v})=\max\{\|\tilde{u}\|_{LE_{1}\cap E_{1}},\|\tilde{v}\|_{LE_{1}\cap E_{1}}\}. Once again, let u0u_{0} be the solution to the following Dirichlet-wave equation

{u(t,x)=P0(x)θ(t),(t,x)(0,T)×M,u(t,x)=0,xM,t>0,u(0,x)=f,ut(0,x)=g,xM,\left\{\begin{aligned} &\Box u(t,x)=P_{0}(x)\theta(t)&&,\ (t,x)\in(0,T)\times M,\ \\ &u(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &u(0,x)=f,\ u_{t}(0,x)=g&&,\ x\in M,\end{aligned}\right.

where

P0(x)=F(g,rf)(x),P_{0}(x)=F(g,\partial_{r}f)(x),

and θ(t)\theta(t) is a cut-off function such that θ(0)1\theta(0)\equiv 1 in some neighborhood of 0. Then, there exists a constant C~0>1\tilde{C}_{0}>1 such that

uLE1E1C~0C5ε.\|u\|_{LE_{1}\cap E_{1}}\leq\tilde{C}_{0}C_{5}\varepsilon.

As long as ε\varepsilon is small enough, the iteration sequence, uj=I[uj1]u_{j}=I[u_{j-1}], j+j\in\mathbb{N}^{+}, will converge to the unique radial solution to the problem (10).

We should select ε\varepsilon and TεT_{\varepsilon} such that

(40) {C~0C5ε12CTR,C~0C5Λ(Tε,C~0C5ε)C~01,C6Λ(Tε,C~0C5ε)12.\left\{\begin{gathered}\tilde{C}_{0}C_{5}\varepsilon\leq\frac{1}{2C_{TR}},\\ \tilde{C}_{0}C_{5}\Lambda(T_{\varepsilon},\tilde{C}_{0}C_{5}\varepsilon)\leq\tilde{C}_{0}-1,\\ C_{6}\Lambda(T_{\varepsilon},\tilde{C}_{0}C_{5}\varepsilon)\leq\frac{1}{2}.\end{gathered}\right.

If 01ρ(τ)ττ2n1𝑑τ<\int_{0}^{1}\frac{\rho(\tau)}{\tau}\tau^{-\frac{2}{n-1}}d\tau<\infty, there exists a unique radial global solution to the problem (10), as long as ε\varepsilon fulfills

{C~0C5ε12CTR,C~0C5Λ(,C~0C5ε)C~01,C6Λ(,C~0C5ε)12.\left\{\begin{gathered}\tilde{C}_{0}C_{5}\varepsilon\leq\frac{1}{2C_{TR}},\\ \tilde{C}_{0}C_{5}\Lambda(\infty,\tilde{C}_{0}C_{5}\varepsilon)\leq\tilde{C}_{0}-1,\\ C_{6}\Lambda(\infty,\tilde{C}_{0}C_{5}\varepsilon)\leq\frac{1}{2}.\end{gathered}\right.

When 01ρ(τ)ττ2n1𝑑τ=\int_{0}^{1}\frac{\rho(\tau)}{\tau}\tau^{-\frac{2}{n-1}}d\tau=\infty, we choose ε\varepsilon satisfying

{C~0C5ε12CTR,C~0C5ρ(CTRC~0C5ε)C~013,C6ρ(CTRC~0C5ε)16.\left\{\begin{gathered}\tilde{C}_{0}C_{5}\varepsilon\leq\frac{1}{2C_{TR}},\\ \tilde{C}_{0}C_{5}\rho(C_{TR}\tilde{C}_{0}C_{5}\varepsilon)\leq\frac{\tilde{C}_{0}-1}{3},\\ C_{6}\rho(C_{TR}\tilde{C}_{0}C_{5}\varepsilon)\leq\frac{1}{6}.\end{gathered}\right.

Recall that

1,n(s)=s1ρ(τ)ττ2n1𝑑τ.\mathcal{H}_{1,n}(s)=\int_{s}^{1}\frac{\rho(\tau)}{\tau}\tau^{-\frac{2}{n-1}}d\tau.

This time, we have

1,n(s)n12ρ(s)[s2n11]n14ρ(s)s2n1,for 0<s2n12,\mathcal{H}_{1,n}(s)\geq\frac{n-1}{2}\rho(s)[s^{-\frac{2}{n-1}}-1]\geq\frac{n-1}{4}\rho(s)s^{-\frac{2}{n-1}},\ \text{for}\ 0<s\leq 2^{-\frac{n-1}{2}},

and

1,n(s)n12ρ[s2n11].\mathcal{H}_{1,n}(s)\leq\frac{n-1}{2}\|\rho\|_{\infty}[s^{-\frac{2}{n-1}}-1].

Denote

c~5=min{C~013C~0C5,16C6},c~6=CTRC~0C5.\tilde{c}_{5}=\min\{\frac{\tilde{C}_{0}-1}{3\tilde{C}_{0}C_{5}},\frac{1}{6C_{6}}\},\ \tilde{c}_{6}=C_{TR}\tilde{C}_{0}C_{5}.

Notice that 1,n\mathcal{H}_{1,n} is decreasing and lims01,n=\lim_{s\rightarrow 0}\mathcal{H}_{1,n}=\infty, we can take λε\lambda_{\varepsilon} such that

c~5=λεn121ρ(c~6ετ)ττ2n1𝑑τ=(c~6ε)2n1[1,n(c~6ελεn12)1,n(c~6ε)].\tilde{c}_{5}=\int_{\lambda_{\varepsilon}^{-\frac{n-1}{2}}}^{1}\frac{\rho(\tilde{c}_{6}\varepsilon\tau)}{\tau}\tau^{-\frac{2}{n-1}}d\tau=(\tilde{c}_{6}\varepsilon)^{\frac{2}{n-1}}[\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon\lambda_{\varepsilon}^{-\frac{n-1}{2}})-\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon)].

Further require that

εc~5n12c~61[1,n(2n12)]n12,\varepsilon\leq\tilde{c}_{5}^{\frac{n-1}{2}}\tilde{c}_{6}^{-1}[\mathcal{H}_{1,n}(2^{-\frac{n-1}{2}})]^{-\frac{n-1}{2}},

and then c~6ελεn122n12\tilde{c}_{6}\varepsilon\lambda_{\varepsilon}^{-\frac{n-1}{2}}\leq 2^{-\frac{n-1}{2}}. Thus, it follows that

ρ(c~6ελεn12)\displaystyle\quad\rho\left(\tilde{c}_{6}\varepsilon\lambda_{\varepsilon}^{-\frac{n-1}{2}}\right)
ρ(1,ninv(c~5c~62n1ε2n1+1,n(c~6ε)))\displaystyle\leq\rho\left(\mathcal{H}_{1,n}^{inv}(\tilde{c}_{5}\tilde{c}_{6}^{-\frac{2}{n-1}}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon))\right)
4n1(c~5c~62n1ε2n1+1,n(c~6ε))[1,ninv(c~5c~62n1ε2n1+1,n(c~6ε))]2n1\displaystyle\leq\frac{4}{n-1}\left(\tilde{c}_{5}\tilde{c}_{6}^{-\frac{2}{n-1}}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon)\right)\left[\mathcal{H}_{1,n}^{inv}(\tilde{c}_{5}\tilde{c}_{6}^{-\frac{2}{n-1}}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon))\right]^{\frac{2}{n-1}}
2(2c~5+(n1)ρ)c~62n1n1ε2n1[1,ninv(c~5c~62n1ε2n1+1,n(c~6ε))]2n1.\displaystyle\leq\frac{2(2\tilde{c}_{5}+(n-1)\|\rho\|_{\infty})\tilde{c}_{6}^{-\frac{2}{n-1}}}{n-1}\varepsilon^{-\frac{2}{n-1}}\left[\mathcal{H}_{1,n}^{inv}(\tilde{c}_{5}\tilde{c}_{6}^{-\frac{2}{n-1}}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon))\right]^{\frac{2}{n-1}}.

Then, to fulfill the requirement (40), we choose TεT_{\varepsilon} to be

Tε=(n1)c~5c~62n12(2c~5+(n1)ρ)ε2n1[1,ninv(c~5c~62n1ε2n1+1,n(c~6ε))]2n1,T_{\varepsilon}=\frac{(n-1)\tilde{c}_{5}\tilde{c}_{6}^{\frac{2}{n-1}}}{2(2\tilde{c}_{5}+(n-1)\|\rho\|_{\infty})}\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}_{1,n}^{inv}(\tilde{c}_{5}\tilde{c}_{6}^{-\frac{2}{n-1}}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{6}\varepsilon))\right]^{-\frac{2}{n-1}},

and then there exists a unique radial solution on [0,Tε][0,T_{\varepsilon}].

5.2. Proof of Remark 1.6

The proof is similar to that of Remark 1.3. One just need to establish the inequality for u~S(1/(2CTR))\tilde{u}\in S_{\infty}(1/(2C_{TR}))

(41) κ[F(tu~,ru~)]LEu~Eκκ1u~LEκEκ.\|\partial^{\leq\kappa}[F(\partial_{t}\tilde{u},\partial_{r}\tilde{u})]\|_{LE^{*}}\lesssim\|\tilde{u}\|_{E_{\kappa}}^{\kappa-1}\|\tilde{u}\|_{LE_{\kappa}\cap E_{\kappa}}.

Notice that for a radial function wHκ(M)w\in H^{\kappa}(M),

|xαw||r|α|w||x|n12r|α|wH1|x|n12|α|wH1,|x|>1,|α|κ;|\partial_{x}^{\alpha}w|\lesssim|\partial_{r}^{\leq|\alpha|}w|\lesssim|x|^{-\frac{n-1}{2}}\|\partial_{r}^{\leq|\alpha|}w\|_{H^{1}}\lesssim|x|^{-\frac{n-1}{2}}\|\partial^{\leq|\alpha|}w\|_{H^{1}},\ |x|>1,\ |\alpha|\leq\kappa;

see Li-Zhou [9, Lemma 3.1.7 and Lemma 3.4.2]. Therefore, following the calculation in (34), we obtain the estimate (41).

6. Proof of Theorem 1.8

Due to the finite speed of propagation, the semilinear wave equation (1) can be localized. Since, for the problem posed on n\mathbb{R}^{n}, blow-up can be showed by constructing an integral near the wave front and derive an ordinary differential inequality, we can use this argument to deduce the blow-up result and provide the upper bound estimates of the lifespan. This argument appears in many former works, e.g., [10, 21, 1].

Proof of Theorem 1.8.

According Theorem 1.5 and Theorem 1.4, for sufficiently small ε\varepsilon, the lifespan T(ε)T(\varepsilon) of the problem (12) has the lower bound (11) or (8) with τ1+aκμ(τ)\tau^{1+a-\kappa}\mu(\tau) replacing the ρ(τ)\rho(\tau) in κ,n\mathcal{H}_{\kappa,n}. For each T~(0,T(ε))\tilde{T}\in(0,T(\varepsilon)), the solution uC([0,T~];H2(M))C1([0,T~];H1(M))u\in C([0,\tilde{T}];H^{2}(M))\cap C^{1}([0,\tilde{T}];H^{1}(M)) is radial, hence tu\partial_{t}u is radial and continuous, and tu1\|\partial_{t}u\|_{\infty}\leq 1 on [0,T~][0,\tilde{T}]. By finite speed of propagation, we deduce that for all t>0t>0, suppu(t,){xn:|x|t+3}\mathrm{supp}\ u(t,\cdot)\subset\{x\in\mathbb{R}^{n}:|x|\leq t+3\}; see the argument in [15, Lemma 2.11].

Let a linear operator :A(t,x)A(t,x1)*:A(t,x)\mapsto A^{*}(t,x_{1}) be

A(t,x1)=n1A(t,x1,x~)𝑑x~.A^{*}(t,x_{1})=\int_{\mathbb{R}^{n-1}}A(t,x_{1},\tilde{x})d\tilde{x}.

The operator * is defined for all admissible functions. Therefore, uu^{*} is the weak solution to

{(t2x12)u(t,x1)=Fa(tu)(t,x1),(t,x1)(0,T(ε))×(1.5,),u(0,x1)=εϕ(x1),tu(0,x1)=0,x1(1.5,).\left\{\begin{aligned} &(\partial_{t}^{2}-\partial_{x_{1}}^{2})u^{*}(t,x_{1})=F_{a}(\partial_{t}u)^{*}(t,x_{1})&&,\ (t,x_{1})\in(0,T(\varepsilon))\times(1.5,\infty),\ \\ &u^{*}(0,x_{1})=\varepsilon\phi^{*}(x_{1}),\ \partial_{t}u^{*}(0,x_{1})=0&&,\ x_{1}\in(1.5,\infty).\end{aligned}\right.

Noticing that Fa(tu)F_{a}(\partial_{t}u) is continuous, we can use d’Alembert’s formula and obtain that, for z2z\geq 2

u(z2,z)=ε(ϕ(2z2)+ϕ(2))2+120z2𝑑s2+s2z2sFa(tu)(s,x1)𝑑x1,u^{*}(z-2,z)=\frac{\varepsilon(\phi^{*}(2z-2)+\phi^{*}(2))}{2}+\frac{1}{2}\int_{0}^{z-2}ds\int_{2+s}^{2z-2-s}F_{a}(\partial_{t}u)^{*}(s,x_{1})dx_{1},

which implies u(z2,z)0u^{*}(z-2,z)\geq 0; see the argument and details in [14, Section 4]. Let 𝒰(z)=u(z2,z)\mathcal{U}(z)=u^{*}(z-2,z). Recall that suppu(t,){xn:|x|t+3}\mathrm{supp}\ u(t,\cdot)\subset\{x\in\mathbb{R}^{n}:|x|\leq t+3\}. It follows that, for z3z\geq 3,

(42) 𝒰(z)Cϕε+123z𝑑yy3y2|x~|(s+3)2y2Fa(tu(s,y,x~))𝑑x~𝑑s,\mathcal{U}(z)\geq C_{\phi}\varepsilon+\frac{1}{2}\int_{3}^{z}dy\int_{y-3}^{y-2}\int_{|\tilde{x}|\leq\sqrt{(s+3)^{2}-y^{2}}}F_{a}(\partial_{t}u(s,y,\tilde{x}))d\tilde{x}ds,

where Cϕ=12n1ϕ(2,x~)𝑑x~C_{\phi}=\frac{1}{2}\int_{\mathbb{R}^{n-1}}\phi(2,\tilde{x})d\tilde{x}. Noting that tu1\|\partial_{t}u\|_{\infty}\leq 1 on [0,T~][0,\tilde{T}], we obtain that

𝒰(z)\displaystyle\mathcal{U}(z) =u(z3,z)+z3z2|x~|(s+3)2z2tu(s,z,x~)dx~ds\displaystyle=u^{*}(z-3,z)+\int_{z-3}^{z-2}\int_{|\tilde{x}|\leq\sqrt{(s+3)^{2}-z^{2}}}\partial_{t}u(s,z,\tilde{x})d\tilde{x}ds
z3z2((s+3)2z2)n12𝑑s\displaystyle\leq\int_{z-3}^{z-2}((s+3)^{2}-z^{2})^{\frac{n-1}{2}}ds
=01[(s+2z)s]n12𝑑s:-M(z),\displaystyle=\int_{0}^{1}[(s+2z)s]^{\frac{n-1}{2}}ds\coloneq M(z),

and, by Jensen’s inequality and the convexity of Fa()F_{a}(\cdot),

(43) 1M(y)y3y2|x~|(s+3)2y2Fa(tu(s,y,x~))𝑑x~𝑑s\displaystyle\quad\frac{1}{M(y)}\int_{y-3}^{y-2}\int_{|\tilde{x}|\leq\sqrt{(s+3)^{2}-y^{2}}}F_{a}(\partial_{t}u(s,y,\tilde{x}))d\tilde{x}ds
Fa(1M(y)y3y2|x~|(s+3)2y2tu(s,y,x~)dx~ds)\displaystyle\geq F_{a}\left(\frac{1}{M(y)}\int_{y-3}^{y-2}\int_{|\tilde{x}|\leq\sqrt{(s+3)^{2}-y^{2}}}\partial_{t}u(s,y,\tilde{x})d\tilde{x}ds\right)
=Fa(1M(y)𝒰(y)).\displaystyle=F_{a}\left(\frac{1}{M(y)}\mathcal{U}(y)\right).

Combining (42) and (43), we have

𝒰(z)\displaystyle\mathcal{U}(z) Cϕε+123zM(y)Fa(1M(y)𝒰(y))𝑑y\displaystyle\geq C_{\phi}\varepsilon+\frac{1}{2}\int_{3}^{z}M(y)F_{a}\left(\frac{1}{M(y)}\mathcal{U}(y)\right)dy
Cϕε+123zMa(y)𝒰1+a(y)μ(1M(y)𝒰(y))𝑑y\displaystyle\geq C_{\phi}\varepsilon+\frac{1}{2}\int_{3}^{z}M^{-a}(y)\mathcal{U}^{1+a}(y)\mu\left(\frac{1}{M(y)}\mathcal{U}(y)\right)dy
Cϕε+123z3an12yan12𝒰1+a(y)μ(3n12yn12𝒰(y))𝑑y,\displaystyle\geq C_{\phi}\varepsilon+\frac{1}{2}\int_{3}^{z}3^{-a\frac{n-1}{2}}y^{-a\frac{n-1}{2}}\mathcal{U}^{1+a}(y)\mu\left(3^{-\frac{n-1}{2}}y^{-\frac{n-1}{2}}\mathcal{U}(y)\right)dy,

where m=3n12m=3^{\frac{n-1}{2}}. Following the argument in [1, Subsection 3.2], we deduce that

(44) T~c~9ε2n1[1,ninv(c~7ε2n1+1,n(c~8ε))]2n1,\tilde{T}\leq\tilde{c}_{9}\varepsilon^{\frac{2}{n-1}}\left[\mathcal{H}_{1,n}^{inv}(\tilde{c}_{7}\varepsilon^{-\frac{2}{n-1}}+\mathcal{H}_{1,n}(\tilde{c}_{8}\varepsilon))\right]^{-\frac{2}{n-1}},

with

c~7=3(n1)aCϕ2n1,c~8=Cϕ3(n1),c~9=31Cϕ2n1.\tilde{c}_{7}=\frac{3(n-1)}{aC_{\phi}^{\frac{2}{n-1}}},\ \tilde{c}_{8}=C_{\phi}3^{-(n-1)},\ \tilde{c}_{9}=3^{-1}C_{\phi}^{\frac{2}{n-1}}.

Since (44) is valid for any T~(0,T(ε))\tilde{T}\in(0,T(\varepsilon)), we obtain the sharp upper bound estimates for the lifespan T(ε)T(\varepsilon). ∎

7. Appendix: Regularity in Proposition 2.5

When 𝒦=\mathcal{K}=\emptyset, the result is standard by dense argument for (f,g,F)(f,g,F). Hereby, the obstacle 𝒦\mathcal{K} will be non-empty.

Once we obtain the solution uu to (7), the derivatives of uu exist in the distributional sense, belonging to D((0,)×M)D^{\prime}((0,\infty)\times M). In this appendix, we give the proof for the regularity result of first-order local energy estimates. For higher order estimates, one can use induction to verify the results.

Proposition 7.1.

Let (f,g)HD2×HD1(f,g)\in H_{D}^{2}\times H_{D}^{1}, GCt((H1(M))w)Cb(Lloc2(M))G\in C_{t}((H^{-1}(M))_{w*})\cap C_{b}(L_{loc}^{2}(M)) with Z1GLE+Lt1Lx2Z^{\leq 1}G\in LE^{*}+L_{t}^{1}L_{x}^{2}, and (f,g,G)(f,g,G) fulfill the compatibility condition of order 22. Then, tiuCb(HD2i)\partial_{t}^{i}u\in C_{b}(H_{D}^{2-i}), 1i21\leq i\leq 2, and YuCb(H1)Yu\in C_{b}(H^{1}), tYuCb(Lx2)\partial_{t}Yu\in C_{b}(L_{x}^{2}).

Proof.

Let wCc((0,)×M¯)w\in C_{c}^{\infty}(\overline{(0,\infty)\times M}) and w(t,)|M=0w(t,\cdot)|_{\partial M}=0, t0\forall t\geq 0. Recall that uCb([0,);H˙D1(M))u\in C_{b}([0,\infty);\dot{H}_{D}^{1}(M)), tuCb([0,);Lx2(M))\partial_{t}u\in C_{b}([0,\infty);L_{x}^{2}(M)). Then, we have

(45) 0u(t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle u(t),\Box w(t)\rangle_{x}dt
=f,tw(0)x0tu(t),tw(t)x𝑑t+0u(t)w(t)x𝑑t.\displaystyle=-\langle f,\partial_{t}w(0)\rangle_{x}-\int_{0}^{\infty}\langle\partial_{t}u(t),\partial_{t}w(t)\rangle_{x}dt+\int_{0}^{\infty}\langle\nabla u(t)\cdot\nabla w(t)\rangle_{x}dt.

Fix a function η(s)Cc()\eta(s)\in C_{c}^{\infty}(\mathbb{R}) with η1\eta\equiv 1 on |s|12|s|\leq\frac{1}{2} and η0\eta\equiv 0 on |s|1|s|\geq 1. We denote ηδ=η(s/δ)\eta_{\delta}=\eta(s/\delta), δ>0\delta>0 and denote

η~δ(x)=[χ{y:dist(y,𝒦)32δ}()][ηδ2(||)](x).\tilde{\eta}_{\delta}(x)=\left[\chi_{\{y:\text{dist}(y,\mathcal{K})\leq\frac{3}{2}\delta\}}(\cdot)\right]\ast\left[\eta_{\frac{\delta}{2}}(|\cdot|)\right](x).

Due to the continuity, it follows that

(46) 0tu(t),tw(t)x𝑑t+0(u(t),w(t))x𝑑t\displaystyle\quad-\int_{0}^{\infty}\langle\partial_{t}u(t),\partial_{t}w(t)\rangle_{x}dt+\int_{0}^{\infty}\langle(\nabla u(t),\nabla w(t))\rangle_{x}dt
=limδ20limδ100ηδ1,δ2(t)tu(t),tw(t)x𝑑t+0ηδ1,δ2(t)u(t)w(t)x𝑑t,\displaystyle=\lim_{\delta_{2}\rightarrow 0}\lim_{\delta_{1}\rightarrow 0}-\int_{0}^{\infty}\langle\eta_{\delta_{1},\delta_{2}}(t)\partial_{t}u(t),\partial_{t}w(t)\rangle_{x}dt+\int_{0}^{\infty}\langle\eta_{\delta_{1},\delta_{2}}(t)\nabla u(t)\cdot\nabla w(t)\rangle_{x}dt,

where ηδ1,δ2(t,x)=(1ηδ1(t))(1η~δ2(x))\eta_{\delta_{1},\delta_{2}}(t,x)=(1-\eta_{\delta_{1}}(t))(1-\tilde{\eta}_{\delta_{2}}(x)). Hence,

(47) 0ηδ1,δ2(t)tu(t),tw(t)x𝑑t+0ηδ1,δ2(t)u(t)w(t)x𝑑t\displaystyle\quad-\int_{0}^{\infty}\langle\eta_{\delta_{1},\delta_{2}}(t)\partial_{t}u(t),\partial_{t}w(t)\rangle_{x}dt+\int_{0}^{\infty}\langle\eta_{\delta_{1},\delta_{2}}(t)\nabla u(t)\cdot\nabla w(t)\rangle_{x}dt
=ηδ1,δ2G,wt,x0ηδ1(t)(1η~δ2)tu(t),w(t)x𝑑t\displaystyle=\langle\eta_{\delta_{1},\delta_{2}}G,w\rangle_{t,x}-\int_{0}^{\infty}\eta_{\delta_{1}}^{\prime}(t)\langle(1-\tilde{\eta}_{\delta_{2}})\partial_{t}u(t),w(t)\rangle_{x}dt
+0(1ηδ1(t))η~δ2u(t)w(t)x𝑑t\displaystyle\quad+\int_{0}^{\infty}(1-\eta_{\delta_{1}}(t))\langle\nabla\tilde{\eta}_{\delta_{2}}\cdot\nabla u(t)w(t)\rangle_{x}dt
=ηδ1,δ2G,wt,x+(1η~δ2)g,w(0)x\displaystyle=\langle\eta_{\delta_{1},\delta_{2}}G,w\rangle_{t,x}+\langle(1-\tilde{\eta}_{\delta_{2}})g,w(0)\rangle_{x}
+0δ1(ηδ1(t))[(1η~δ2)tu(t),w(t)x(1η~δ2)g,w(0)x]𝑑t\displaystyle\quad+\int_{0}^{\delta_{1}}(-\eta_{\delta_{1}}^{\prime}(t))\left[\langle(1-\tilde{\eta}_{\delta_{2}})\partial_{t}u(t),w(t)\rangle_{x}-\langle(1-\tilde{\eta}_{\delta_{2}})g,w(0)\rangle_{x}\right]dt
+0(1ηδ1(t))η~δ2u(t),w(t)x𝑑t\displaystyle\quad+\int_{0}^{\infty}(1-\eta_{\delta_{1}}(t))\langle\nabla\tilde{\eta}_{\delta_{2}}\cdot\nabla u(t),w(t)\rangle_{x}dt

By wCc((0,)×M¯)w\in C_{c}^{\infty}(\overline{(0,\infty)\times M}) and GLE+Lt1Lx2G\in LE^{*}+L_{t}^{1}L_{x}^{2}, GCt((H1(M))w)G\in C_{t}((H^{-1}(M))_{w*}), we have

(48) limδ20limδ10ηδ1,δ2G,wt,x=0MG(t,x)w(t,x)𝑑x𝑑t=0G(t),w(t)x𝑑t.\lim_{\delta_{2}\rightarrow 0}\lim_{\delta_{1}\rightarrow 0}\langle\eta_{\delta_{1},\delta_{2}}G,w\rangle_{t,x}=\int_{0}^{\infty}\int_{M}G(t,x)w(t,x)dxdt=\int_{0}^{\infty}\langle G(t),w(t)\rangle_{x}dt.

Noticing that 0δ1|ηδ1(t)|1\int_{0}^{\delta_{1}}|\eta_{\delta_{1}}^{\prime}(t)|\lesssim 1 and the continuity of ηδ2u(t),w(t)x\langle\nabla\eta_{\delta_{2}}\cdot\nabla u(t),w(t)\rangle_{x} and (1η~δ2)tu(t),w(t)x\langle(1-\tilde{\eta}_{\delta_{2}})\partial_{t}u(t),w(t)\rangle_{x}, we obtain that

(49) limδ10[0δ1(ηδ1(t))[(1η~δ2)tu(t),w(t)x(1η~δ2)g,w(0)x]dt\displaystyle\quad\lim_{\delta_{1}\rightarrow 0}\left[\int_{0}^{\delta_{1}}(-\eta_{\delta_{1}}^{\prime}(t))[\langle(1-\tilde{\eta}_{\delta_{2}})\partial_{t}u(t),w(t)\rangle_{x}-\langle(1-\tilde{\eta}_{\delta_{2}})g,w(0)\rangle_{x}]dt\right.
+0(1ηδ1(t))η~δ2u(t),w(t)xdt]\displaystyle\quad\quad\left.+\int_{0}^{\infty}(1-\eta_{\delta_{1}}(t))\langle\nabla\tilde{\eta}_{\delta_{2}}\cdot\nabla u(t),w(t)\rangle_{x}dt\right]
=0η~δ2u(t),w(t)x𝑑t.\displaystyle=\int_{0}^{\infty}\langle\nabla\tilde{\eta}_{\delta_{2}}\cdot\nabla u(t),w(t)\rangle_{x}dt.

Since 𝒦\mathcal{K}\neq\emptyset, the measure of the support of η~δ2\nabla\tilde{\eta}_{\delta_{2}} is of the size δ2\delta_{2} and

η~δ2χ{y:dist(y,𝒦)32δ2}1ηδ221δ2.\|\nabla\tilde{\eta}_{\delta_{2}}\|_{\infty}\leq\|\chi_{\{y:\text{dist}(y,\mathcal{K})\leq\frac{3}{2}\delta_{2}\}}\|_{1}\|\nabla\eta_{\frac{\delta_{2}}{2}}\|_{\infty}\lesssim\frac{1}{\delta_{2}}.

Hence, by |w(t,x)|δ2|w(t,x)|\lesssim\delta_{2} for xsuppη~δ2x\in\mathrm{supp}\ \nabla\tilde{\eta}_{\delta_{2}},

(50) |η~δ2u(t),w(t)x|u(t)Lx2η~δ2w(t)Lx20,δ20,|\langle\nabla\tilde{\eta}_{\delta_{2}}\cdot\nabla u(t),w(t)\rangle_{x}|\leq\|\nabla u(t)\|_{L_{x}^{2}}\|\nabla\tilde{\eta}_{\delta_{2}}w(t)\|_{L_{x}^{2}}\rightarrow 0,\ \delta_{2}\rightarrow 0,

uniformly in tt. Combining (45), (46), (47), (48), (49), and (50), we obtain that

(51) 0u(t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle u(t),\Box w(t)\rangle_{x}dt
=f,tw(0)x+g,w(0)x+0G(t),w(t)x𝑑t.\displaystyle=-\langle f,\partial_{t}w(0)\rangle_{x}+\langle g,w(0)\rangle_{x}+\int_{0}^{\infty}\langle G(t),w(t)\rangle_{x}dt.

Next, we replace ww in (51) by tw\partial_{t}w and find that

0tu(t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle\partial_{t}u(t),\Box w(t)\rangle_{x}dt
=Δf,w(0)xg,tw(0)x0G(t),tw(t)x𝑑t.\displaystyle=\langle\Delta f,w(0)\rangle_{x}-\langle g,\partial_{t}w(0)\rangle_{x}-\int_{0}^{\infty}\langle G(t),\partial_{t}w(t)\rangle_{x}dt.

Using the limitation argument above, by GCt((H1(M))w)G\in C_{t}((H^{-1}(M))_{w*}) and tGLE+Lt1Lx2\partial_{t}G\in LE^{*}+L_{t}^{1}L_{x}^{2}, one has

0tu(t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle\partial_{t}u(t),\Box w(t)\rangle_{x}dt
=Δf+G(0),w(0)xg,tw(0)x+0MtG(t,x)w(t,x)dxdt.\displaystyle=\langle\Delta f+G(0),w(0)\rangle_{x}-\langle g,\partial_{t}w(0)\rangle_{x}+\int_{0}^{\infty}\int_{M}\partial_{t}G(t,x)w(t,x)dxdt.

According to the compatibility condition, gH˙D1g\in\dot{H}_{D}^{1} and Δf(x)+G(0,x)Lx2\Delta f(x)+G(0,x)\in L_{x}^{2}, there exists a solution vCb([0,);H˙D1(M)v\in C_{b}([0,\infty);\dot{H}_{D}^{1}(M), tvCb([0,);Lx2(M)\partial_{t}v\in C_{b}([0,\infty);L_{x}^{2}(M) to the equation

{v(t,x)=tG(t,x),(t,x)(0,T)×M,v(t,x)=0,xM,t>0,v(0,x)=g(x),tv(0,x)=Δf(x)+G(0,x),xM,\left\{\begin{aligned} &\Box v(t,x)=\partial_{t}G(t,x)&&,\ (t,x)\in(0,T)\times M,\ \\ &v(t,x)=0&&,\ x\in\partial M,\ t>0,\\ &v(0,x)=g(x),\ \partial_{t}v(0,x)=\Delta f(x)+G(0,x)&&,\ x\in M,\end{aligned}\right.

which implies

0v(t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle v(t),\Box w(t)\rangle_{x}dt
=Δf+G(0),w(0)xg,tw(0)x+0MtG(t,x)w(t,x)dxdt.\displaystyle=\langle\Delta f+G(0),w(0)\rangle_{x}-\langle g,\partial_{t}w(0)\rangle_{x}+\int_{0}^{\infty}\int_{M}\partial_{t}G(t,x)w(t,x)dxdt.

Therefore, for all wCc((0,)×M¯)w\in C_{c}^{\infty}(\overline{(0,\infty)\times M}),

(52) 0tu(t)v(t),w(t)x𝑑t=0.\int_{0}^{\infty}\langle\partial_{t}u(t)-v(t),\Box w(t)\rangle_{x}dt=0.

As long as for any hCc((0,)×M)h\in C_{c}^{\infty}((0,\infty)\times M) we can find a whCc((0,)×M¯)w_{h}\in C_{c}^{\infty}(\overline{(0,\infty)\times M}) such that wh=h\Box w_{h}=h, it can be deduce by (52) that tu=v\partial_{t}u=v. Because hh has compact support, we can choose T¯\bar{T} and R¯\bar{R} such that supph(0,T¯)×BR¯4T¯\mathrm{supp}\ h\subset(0,\bar{T})\times B_{\bar{R}-4\bar{T}} and 𝒦BR¯4T¯\mathcal{K}\subset B_{\bar{R}-4\bar{T}}. Consider the backward Dirichlet-wave equation on BR¯𝒦B_{\bar{R}}\setminus\mathcal{K}

(53) {w~(t,x)=h(t,x),(t,x)(0,T¯)×(BR¯𝒦),w~(t,x)=0,x(BR¯𝒦),t[0,T¯],w~(T¯,x)=0,tv(T¯,x)=0,xBR¯𝒦.\left\{\begin{aligned} &\Box\tilde{w}(t,x)=h(t,x)&&,\ (t,x)\in(0,\bar{T})\times(B_{\bar{R}}\setminus\mathcal{K}),\ \\ &\tilde{w}(t,x)=0&&,\ x\in\partial(B_{\bar{R}}\setminus\mathcal{K}),\ t\in[0,\bar{T}],\\ &\tilde{w}(\bar{T},x)=0,\ \partial_{t}v(\bar{T},x)=0&&,\ x\in B_{\bar{R}}\setminus\mathcal{K}.\end{aligned}\right.

Since we have assumed that the obstacle 𝒦\mathcal{K} is smooth, the problem (53) has a solution wC((0,T¯)×(BR¯𝒦)¯)w\in C^{\infty}(\overline{(0,\bar{T})\times(B_{\bar{R}}\setminus\mathcal{K})}). By finite speed of propagation, we deduce that w0w\equiv 0 near time T¯\bar{T} and w(t,x)=0w(t,x)=0, (t,x)[0,T¯]×{y:R¯2.5T¯|y|R¯1.5T¯}(t,x)\in[0,\bar{T}]\times\{y:\bar{R}-2.5\bar{T}\leq|y|\leq\bar{R}-1.5\bar{T}\}. Hence, let

wh(t,x)={w~(t,x),(t,x)[0,T¯]×BR¯1.5T¯,0,else,w_{h}(t,x)=\left\{\begin{aligned} &\tilde{w}(t,x)&&,\ (t,x)\in[0,\bar{T}]\times B_{\bar{R}-1.5\bar{T}},\\ &0&&,\ \text{else},\end{aligned}\right.

which satisfies the requirement wh=h\Box w_{h}=h.

Having tuCb([0,);HD1(M))\partial_{t}u\in C_{b}([0,\infty);H_{D}^{1}(M)), t2uCb([0,);Lx2(M))\partial_{t}^{2}u\in C_{b}([0,\infty);L_{x}^{2}(M)), we can estimate YuYu. For any smooth cut-off function σ\sigma of 𝒦\mathcal{K}, Yu=Y[σu]+Y[(1σ)u]Yu=Y[\sigma u]+Y[(1-\sigma)u]. As u,tuCb([0,);H˙D1(M))u,\partial_{t}u\in C_{b}([0,\infty);\dot{H}_{D}^{1}(M)), uLE<\|u\|_{LE}<\infty, and GCbLloc2G\in C_{b}L_{loc}^{2}, it follows that by Poincaré inequalities and Sobolev embedding

σuLx2σuLx2+σuLx2σLxnuLxq+uH˙1uH˙1,1q+1n=12,\|\sigma u\|_{L_{x}^{2}}\lesssim\|\nabla\sigma u\|_{L_{x}^{2}}+\|\sigma\nabla u\|_{L_{x}^{2}}\lesssim\|\nabla\sigma\|_{L_{x}^{n}}\|u\|_{L_{x}^{q}}+\|u\|_{\dot{H}^{1}}\lesssim\|u\|_{\dot{H}^{1}},\ \frac{1}{q}+\frac{1}{n}=\frac{1}{2},

and, then

Y[σu]=Y[σ]u+σYuCbLt2(Lx2),\displaystyle Y[\sigma u]=Y[\sigma]u+\sigma Yu\in C_{b}\cap L_{t}^{2}(L_{x}^{2}),
tY[σu]=Y[σ]tu+σYtuCbLt2(Lx2),\displaystyle\partial_{t}Y[\sigma u]=Y[\sigma]\partial_{t}u+\sigma Y\partial_{t}u\in C_{b}\cap L_{t}^{2}(L_{x}^{2}),
Δ[σu]=σ(t2uG)+2σu+[Δσ]uCbLx2.\displaystyle\Delta[\sigma u]=\sigma(\partial_{t}^{2}u-G)+2\nabla\sigma\cdot\nabla u+[\Delta\sigma]u\in C_{b}L_{x}^{2}.

Since σGCbLx2\sigma G\in C_{b}L_{x}^{2} and G=G1+G2G=G_{1}+G_{2} with G1LEG_{1}\in LE^{*} and G2Lt1Lx2G_{2}\in L_{t}^{1}L_{x}^{2}, one has σG1Lt2Lx2\sigma G_{1}\in L_{t}^{2}L_{x}^{2} and any bounded part of σG2(t)Lx2\|\sigma G_{2}(t)\|_{L_{x}^{2}} belongs to Lt2L_{t}^{2}. On the other hand, σG2=σGσG1\sigma G_{2}=\sigma G-\sigma G_{1} implies

{t:σG2(t)Lx2>2σGLtLx2}{t:σG1(t)Lx2>σGLtLx2}\{t:\|\sigma G_{2}(t)\|_{L_{x}^{2}}>2\|\sigma G\|_{L_{t}^{\infty}L_{x}^{2}}\}\subset\{t:\|\sigma G_{1}(t)\|_{L_{x}^{2}}>\|\sigma G\|_{L_{t}^{\infty}L_{x}^{2}}\}

and on the set {t:σG2(t)Lx2>2σGLtLx2}\{t:\|\sigma G_{2}(t)\|_{L_{x}^{2}}>2\|\sigma G\|_{L_{t}^{\infty}L_{x}^{2}}\}

σG2(t)Lx22σG1(t)Lx2Lt2.\|\sigma G_{2}(t)\|_{L_{x}^{2}}\leq 2\|\sigma G_{1}(t)\|_{L_{x}^{2}}\in L_{t}^{2}.

Thus, we deduce that GCbLt2(L2)G\in C_{b}\cap L_{t}^{2}(L^{2}) and Δ[σu]CbLt2(Lx2)\Delta[\sigma u]\in C_{b}\cap L_{t}^{2}(L_{x}^{2}). Further, by elliptic estimates, Y[σu]CbLt2(H1)Y[\sigma u]\in C_{b}\cap L_{t}^{2}(H^{1}). Meanwhile, modifying (1σ)u(1-\sigma)u by (1σ())u(t,)ηδ(||)(1-\sigma(\cdot))u(t,\cdot)\ast\eta_{\delta}(|\cdot|) and by Newton-Leibniz formula, one obtain that (1σ)uC(Lx2)(1-\sigma)u\in C(L_{x}^{2}), hence uC(HD1)u\in C(H_{D}^{1}).

Once again, using the above argument, we have

0Y[(1σ)u](t),w(t)x𝑑t\displaystyle\quad\int_{0}^{\infty}\langle Y[(1-\sigma)u](t),\Box w(t)\rangle_{x}dt
=Y[(1σ)f],tw(0)x+Y[(1σ)g],w(0)x\displaystyle=-\langle Y[(1-\sigma)f],\partial_{t}w(0)\rangle_{x}+\langle Y[(1-\sigma)g],w(0)\rangle_{x}
+0Y[(1σ)G](t)+2Y[σu](t)+Y[Δσu](t),w(t)x𝑑t.\displaystyle\quad+\int_{0}^{\infty}\langle Y[(1-\sigma)G](t)+2Y[\nabla\sigma\cdot\nabla u](t)+Y[\Delta\sigma u](t),w(t)\rangle_{x}dt.

Thus, the inhomogeneous term satisfies

Y[(1σ)G]+2Y[σu]+Y[Δσu]LE+Lt1Lx2,Y[(1-\sigma)G]+2Y[\nabla\sigma\cdot\nabla u]+Y[\Delta\sigma u]\in LE^{*}+L_{t}^{1}L_{x}^{2},

which demonstrates that Y[(1σ)u]Cb(H˙D1)Y[(1-\sigma)u]\in C_{b}(\dot{H}_{D}^{1}) and tY[(1σ)u]Cb(Lx2)\partial_{t}Y[(1-\sigma)u]\in C_{b}(L_{x}^{2}). In conclusion, we have uC([0,);HD2(M))u\in C([0,\infty);H_{D}^{2}(M)) and

tiuCb([0,);HD2i(M)), 1i2,\displaystyle\partial_{t}^{i}u\in C_{b}([0,\infty);H_{D}^{2-i}(M)),\ 1\leq i\leq 2,
tjYαuCb([0,);H2j|α|(M)), 1|α|min{2j,1}.\displaystyle\partial_{t}^{j}Y^{\alpha}u\in C_{b}([0,\infty);H^{2-j-|\alpha|}(M)),\ 1\leq|\alpha|\leq\min\{2-j,1\}.\qed

Acknowledgments

The author was supported by China Scholarship Council (No. 202406320284). The author thanks Professor Chengbo Wang (School of Mathematical Sciences, Zhejiang University) and Doctor Xiaoran Zhang (Beijing Institute of Mathematical Sciences and Applications) for some discussions in the preparation of the paper.

References

  • [1] Wenhui Chen and Alessandro Palmieri. On the threshold nature of the dini continuity for a glassey derivative-type nonlinearity in a critical semilinear wave equation. arXiv:2306.11478v4 [math.AP].
  • [2] Daoyuan Fang and Chengbo Wang. Almost global existence for some semilinear wave equations with almost critical regularity. Comm. Partial Differential Equations, 38(9):1467–1491, 2013.
  • [3] Robert T. Glassey. Mathreview to “global behavior of solutions to nonlinear wave equations in three dimensions” of sideris. Comm. Partial Differential Equations, 1983.
  • [4] Kunio Hidano and Kimitoshi Tsutaya. Global existence and asymptotic behavior of solutions for nonlinear wave equations. Indiana Univ. Math. J., 44(4):1273–1305, 1995.
  • [5] Kunio Hidano, Chengbo Wang, and Kazuyoshi Yokoyama. The Glassey conjecture with radially symmetric data. J. Math. Pures Appl. (9), 98(5):518–541, 2012.
  • [6] Kunio Hidano, Chengbo Wang, and Kazuyoshi Yokoyama. Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations. Math. Ann., 366(1-2):667–694, 2016.
  • [7] F. John and S. Klainerman. Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math., 37(4):443–455, 1984.
  • [8] Shunsuke Kitamura, Katsuaki Morisawa, and Hiroyuki Takamura. Semilinear wave equations of derivative type with spatial weights in one space dimension. Nonlinear Anal. Real World Appl., 72:Paper No. 103764, 12, 2023.
  • [9] Tatsien Li and Yi Zhou. Nonlinear wave equations. Vol. 2, volume 2 of Series in Contemporary Mathematics. Shanghai Science and Technical Publishers, Shanghai; Springer-Verlag, Berlin, 2017. Translated from the Chinese by Yachun Li.
  • [10] M. A. Rammaha. Finite-time blow-up for nonlinear wave equations in high dimensions. Comm. Partial Differential Equations, 12(6):677–700, 1987.
  • [11] M. A. Rammaha. Upper bounds for the life span of solutions to systems of nonlinear wave equations in two and three space dimensions. Nonlinear Anal., 25(6):639–654, 1995.
  • [12] Takiko Sasaki, Shu Takamatsu, and Hiroyuki Takamura. The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative. AIMS Math., 8(11):25477–25486, 2023.
  • [13] Jack Schaeffer. Finite-time blow-up for uttΔu=H(ur,ut)u_{tt}-\Delta u=H(u_{r},u_{t}) in two dimensions. Comm. Partial Differential Equations, 11(5):513–543, 1986.
  • [14] Kerun Shao, Hiroyuki Takamura, and Chengbo Wang. Blow-up of solutions to semilinear wave equations with spatial derivatives. Discrete Contin. Dyn. Syst., 45(2):410–424, 2025.
  • [15] Kerun Shao and Chengbo Wang. Global solutions with small initial data to semilinear wave equations with energy supercritical powers. Preprint, 2023, arXiv:2211.01594v2 [math.AP].
  • [16] Thomas C. Sideris. Global behavior of solutions to nonlinear wave equations in three dimensions. Comm. Partial Differential Equations, (12):1291–1323, 1983.
  • [17] Christopher D. Sogge. Lectures on non-linear wave equations. International Press, Boston, MA, second edition, 2008.
  • [18] Nickolay Tzvetkov. Existence of global solutions to nonlinear massless Dirac system and wave equation with small data. Tsukuba J. Math., 22(1):193–211, 1998.
  • [19] Chengbo Wang. The Glassey conjecture for nontrapping obstacles. J. Differential Equations, 259(2):510–530, 2015.
  • [20] Chengbo Wang. The Glassey conjecture on asymptotically flat manifolds. Trans. Amer. Math. Soc., 367(10):7429–7451, 2015.
  • [21] Yi Zhou. Blow up of solutions to the Cauchy problem for nonlinear wave equations. Chinese Ann. Math. Ser. B, 22(3):275–280, 2001.