This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

CP violation in BsB_{s} decays mediated by two nearly-degenerate Majorana neutrinos111Phys.Rev.D 105 (2022) 073001, https://link.aps.org/doi/10.1103/PhysRevD.105.073001

Guangshuai Zhang1    Bo-Qiang Ma1,2,3 [email protected] 1 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2Center for High Energy Physics, Peking University, Beijing 100871, China
3Collaborative Innovation Center of Quantum Matter, Beijing, China
Abstract

We study the CP violation in the lepton-number-violating process Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} and its CP-conjugate process Bs0¯Ds+μμπ+\bar{B_{s}^{0}}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+} that are induced by two GeV-scale Majorana neutrinos with nearly-degenerate masses. Our result shows that the size of the CP violation could become considerable if the mass difference between the two Majorana neutrinos is around the decay width of the neutrinos. We perform experimental analysis on the CP-violating processes at LHCb within its upgrade II. The analysis shows that under current constraint on the heavy-light neutrino mixing parameter, it is possible that such CP violation is observed with the LHCb experimental ability. We also give the upper bound on the heavy-light mixing parameter |UμN|2|U_{\mu N}|^{2} under the assumption that no positive signal of the process is observed. The result shows that such modes can give complementary constraint compared with previous experiments such as NuTeV, BEBC, etc. in the mass region 1 GeV <mN<<m_{N}< 3 GeV.

Majorana neutrino; CP violation; BsB_{s} decay; lepton-number-violating process

I Introduction

The neutrino oscillation experiments have confirmed that at least two of the three generations of neutrinos have nonzero masses Super-Kamiokande:1998kpq ; Super-Kamiokande:2010orq . The relation between the flavor eigenstates and mass eigenstates of three generations of neutrinos is described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Thus, two questions about the nature of the neutrino arise. The first is the origin of the neutrino mass. As a well-known approach for the generation of neutrino mass, the seesaw mechanism offers a natural explanation for the tininess of the neutrino mass, for which the introduction of one or more generations of heavy Majorana neutrinos is necessary Minkowski:1977sc ; GellMann:1980vs ; Mohapatra:1979ia ; Yanagida:1980xy . Studies on the cosmological effect of the heavy neutrinos have shown that these heavy neutrinos can generate the observed baryon asymmetry of the Universe through leptogenesis Canetti:2012kh , and such heavy neutrinos can also serve as natural candidates for dark matter Dodelson:1993je ; Shi:1998km ; Asaka:2005pn ; Canetti:2012vf .

Another question is whether a neutrino is a Majorana particle, i.e., its antiparticle is identical to itself, or not. If the neutrino is a Dirac particle, then the lepton number is conserved (ΔL=0\Delta L=0). While if it is a Majorana particle, then the conservation of the lepton number can be violated by 2 units (ΔL=2\Delta L=2). Thus, the most important approach to establish the Majorana nature of the neutrino is to search for the lepton-number-violating (LNV) processes. Up to now, the neutrinoless double beta (0νββ0\nu\beta\beta) decay is the most explored LNV channel DellOro:2016tmg ; Dolinski:2019nrj ; Engel:2016xgb . Another way is to look for LNV processes that are induced by Majorana neutrino in the hardron or τ\tau lepton decays. In literature, the LNV processes in the decays of mesons (K,D,Ds,B,BcK,D,D_{s},B,B_{c}Abad:1984gh ; Littenberg:1991ek ; Littenberg:2000fg ; Ali:2001gsa ; Ivanov:2004ch ; Dib:2000wm ; Atre:2005eb ; Atre:2009rg ; Helo:2010cw ; Cvetic:2010rw ; Cvetic:2016fbv ; Cvetic:2017vwl ; Cvetic:2019shl ; Milanes:2016rzr ; Mejia-Guisao:2017gqp ; Milanes:2018aku ; Asaka:2016rwd ; Chun:2019nwi ; Quintero:2011yh , baryons (Σ,Ξ,Λb\Sigma^{-},\Xi^{-},\Lambda_{b}Barbero:2002wm ; Barbero:2007zm ; Barbero:2013fc ; Mejia-Guisao:2017nzx ; Zhang:2021wjj , and τ\tau lepton Castro:2012gi ; Gribanov:2001vv ; Cvetic:2002jy ; Atre:2005eb were extensively investigated. If the mass of the hypothetical Majorana neutrino lies in the range from hundreds of keV to several GeV, the decay widths of the corresponding LNV hadron/τ\tau decays can be resonantly enhanced due to the on shellness of the intermediate Majorana neutrino. Thus, it is possible for these LNV decays to be observed by current or future hardron collider experiments. On the other hand, the nonobservation of these LNV hadron or τ\tau decays can set strong constraints on the heavy-light neutrino mixing parameters in the resonant range.

The neutrino oscillation experiments also showed that the θ13\theta_{13} angle in the PMNS matrix has a nonzero value T2K:2011ypd ; DayaBay:2012fng ; RENO:2012mkc ; thus, the CP violation in the neutrino sector is still possible. Moreover, the introduction of one or more generations of heavy neutrinos brings in more CP-violating phases in the extended PMNS matrix, which describes the mixing between the flavor eigenstates and mass eigenstates of three normal neutrinos as well as the hypothetical sterile ones. Suppose there only exists one generation of sterile neutrino, the CP-violating phases cause no observable effect in the sterile-neutrino-induced LNV processes. However, if there exist two generations of GeV-scale sterile neutrinos that have nearly-degenerate masses, the CP-violating phases in the extended-PMNS matrix could cause observable CP violation in the sterile-neutrino-induced LNV meson decay. The idea was first pointed out in Ref. Cvetic:2013eza . The CP violation in such Majorana-neutrino-induced LNV processes arises through two different mechanisms. The first is the interference between the amplitudes contributed by the two generations of sterile neutrinos. And the second is the neutrino oscillation during the propagation of the two on shell sterile neutrinos, which was first investigated in Ref. Cvetic:2015ura in LNV BB meson decays. CP-violating LNV processes induced by similar mechanisms in the decays of other mesons Cvetic:2014nla ; Dib:2014pga ; Cvetic:2015naa ; Cvetic:2015ura ; Cvetic:2020lyh ; Zhang:2020hwj and τ\tau leptons Zamora-Saa:2016ito ; Tapia:2019coy as well as WW boson Najafi:2020dkp were also studied in detail in the literature. Besides, the existence of two nearly-degenerate Majorana neutrinos together with the CP violating phases can lead to a significant difference between the decay widths of the LNV meson decays and those of the lepton-number-conserving ones Abada:2019bac ; Das:2017hmg , which is contrary to the common hypothesis. A remarkable conclusion about the CP violation in LNV meson decays due to intermediate sterile neutrino interference is that the relative size of the CP violation is independent of the neutrino mass while the parameter ΔmN/ΓN\Delta m_{N}/\Gamma_{N} remains unchanged, where ΔmN\Delta m_{N} is the masses difference and ΓN\Gamma_{N} the decay width of the neutrino. It is still unclear whether the conclusion holds true for four-body decays. Thus in this paper, we would apply the mechanism to four-body decays of BsB_{s} mesons, of which the Feynman diagram is shown in Fig. 1. To our knowledge, no previous studies have explored the Majorana-neutrino-induced LNV decays of BsB_{s} meson except Ref. Mejia-Guisao:2017gqp . Neither has any experimental research about the process been done. The mass difference between BsB_{s} and DsD_{s} reaches 3.4 GeV, which may extend the constraining mass region provided by previous channels such as three-body DD and BB meson decays. On the other hand, the branching fraction of BsDslνB_{s}\rightarrow D_{s}l\nu in BsB_{s} decay reaches 8.1%8.1\%, which means the branching fraction of the related LNV processes may be considerable since the latter is proportional to the former in case that mNm_{N} equals zero.

The motivation for the existence of two heavy neutrinos with nearly-degenerate masses comes from the ν\nuMSM model Asaka:2005pn ; Gorbunov:2007ak , which proposes the existence of two generations of Majorana neutrinos with almost degenerate masses between 100 MeV and a few GeV as well as a light Majorana neutrino of mass \sim 10 keV. The ν\nuMSM allows one to explain simultaneously neutrino oscillations, dark matter and baryon asymmetry of the Universe Gorbunov:2007ak .

In this work we study the CP violation between the Majorana-neutrino-mediated LNV process Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} and its CP-conjugate process Bs0¯Ds+μμπ+\bar{B_{s}^{0}}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+}. These processes are induced by two Majorana neutrinos that have nearly degenerate but not equal masses. We focus on the neutrino mass region between 0.5 and 3.5 GeV where the resonant enhancement appears. We deal with the CP violation that arises from the interference between the amplitudes contributed by the two Majorana neutrinos. Moreover, we investigate the possibility of the detection of CP asymmetries in such decays during the LHCb upgrade II LHCb:2018roe .

The structure of this paper is as follows. In Sec. II, we introduce the formalism we used for calculation and give the expression for the size of CP violation. In Sec. III, we perform an experimental analysis on the processes under the experimental ability of LHCb during its upgrade II and give the upper bounds on |UμN|2|U_{\mu N}|^{2} under the assumption that such modes were not observed in experiments. Sec. IV gives the summary and the conclusion of our work.

II Formalism

II.1 Decay widths for the two processes

We define the light neutrino flavor eigenstates as

νl=i=13Ulνiνi+UlN1N1+UlN2N2.\nu_{l}=\sum_{i=1}^{3}U_{l\nu_{i}}\nu_{i}+U_{lN_{1}}N_{1}+U_{lN_{2}}N_{2}. (1)

Here, νi(i=1,2,3)\nu_{i}~{}(i=1,2,3) and Nj(j=1,2)N_{j}~{}(j=1,2) represent the mass eigenstates of a light neutrino and heavy neutrino, respectively. UlNj(j=1,2)U_{lN_{j}}~{}(j=1,2) is the heavy-light neutrino mixing elements of the extended PMNS matrix (between ll lepton and the jjth heavy neutrino). We parametrize UlNiU_{lN_{i}} as

UlNi=|UlNi|eiϕlNi.U_{lN_{i}}=|U_{lN_{i}}|e^{i\phi_{lN_{i}}}. (2)

Here, ϕlNi\phi_{lN_{i}} is the CP-odd phase angle. We also require that the masses of N1N_{1} and N2N_{2} satisfy that

mμ+mπmN1\displaystyle m_{\mu}+m_{\pi}\leq m_{N_{1}} mBsmDsmμ,\displaystyle\leq m_{B_{s}}-m_{D_{s}}-m_{\mu}, (3)
mμ+mπmN2\displaystyle~{}m_{\mu}+m_{\pi}\leq m_{N_{2}} mBsmDsmμ,\displaystyle\leq m_{B_{s}}-m_{D_{s}}-m_{\mu},

so that the intermediate neutrinos are nearly on shell and thus, the resonant enhancement appears. Another assumption we make is that the masses of the two neutrinos are nearly degenerate (suppose mN1<mN2m_{N_{1}}<m_{N_{2}}),

ΔmN=mN2mN1mNi(i=1,2).\Delta m_{N}=m_{N_{2}}-m_{N_{1}}\ll m_{N_{i}}~{}(i=1,2). (4)
Refer to caption
Refer to caption
Figure 1: Feynman diagrams for Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} and B¯s0Ds+μμπ+\bar{B}_{s}^{0}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+}

The Feynman diagrams for the two processes are shown in Fig. 1.222There exists a “crossed” diagram where μ1\mu_{1} and μ2\mu_{2} are exchanged. Since when the lifetime of the intermediate heavy neutrino is long enough, the two leptons appear at displaced vertices and the corresponding processes of “direct” channel and “cross” channel can be distinguished from each other Dib:2014iga . Thus, there is no interference between them and the corresponding decay width can be added directly. This brings in a factor 2 in the final result, which cancels out with the factor 1/2! due to the indistinguishability between the two muons .. We denote the amplitude of Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} as +\mathcal{M}^{+} and that of its CP-conjugate process as \mathcal{M}^{-}. The amplitudes can be written explicitly from the Feynman diagram

i+=GF2VcbVudfπi=12UμNi2mNiPNiu¯(μ2)πγμ(1γ5)v(μ1)Ds|c(0)γμb(0)|Bs0,\displaystyle i\mathcal{M}^{+}=G_{F}^{2}V_{cb}^{*}V_{ud}^{*}f_{\pi}^{*}\sum_{i=1}^{2}U_{\mu N_{i}}^{*2}m_{N_{i}}P_{N_{i}}\bar{u}(\mu_{2})\not{p}_{\pi}\gamma_{\mu}(1-\gamma_{5})v(\mu_{1})\langle D_{s}^{-}|c(0)\gamma^{\mu}b(0)|B_{s}^{0}\rangle, (5)
i=GF2VcbVudfπi=12UμNi2mNiPNiu¯(μ2)πγν(1+γ5)v(μ1)Ds+|c¯(0)γνb¯(0)|B¯s0.\displaystyle i\mathcal{M}^{-}=G_{F}^{2}V_{cb}V_{ud}f_{\pi}\sum_{i=1}^{2}U_{\mu N_{i}}^{2}m_{N_{i}}P_{N_{i}}\bar{u}(\mu_{2})\not{p}_{\pi}\gamma_{\nu}(1+\gamma_{5})v(\mu_{1})\langle D_{s}^{+}|\bar{c}(0)\gamma^{\nu}\bar{b}(0)|\bar{B}_{s}^{0}\rangle.

Here, GF=1.1664×105GeV2G_{F}=1.1664\times 10^{-5}\mathrm{GeV}^{-2} is the Fermi coupling constant, and fπf_{\pi} = 0.1304 GeV is the pion decay constant Zyla:2020zbs . VcbV_{cb} and VudV_{ud} are the charm-bottom and upper-down Cabibbo-Kobayashi-Maskawa (CKM) matrix element. In this work we take that |Vud|=0.974|V_{ud}|=0.974 and |Vcb|=4.012×102|V_{cb}|=4.012\times 10^{-2} Zyla:2020zbs . mNim_{N_{i}} is the mass of the iith heavy neutrino. u¯(μ2)\bar{u}(\mu_{2}) and v(μ1)v(\mu_{1}) are the spinors of the two muons. The propagator PNiP_{N_{i}} is defined as

PNi=1(pBspDspμ1)2mNi2+iΓNiMNi.P_{N_{i}}=\frac{1}{(p_{B_{s}}-p_{D_{s}}-p_{\mu_{1}})^{2}-m_{N_{i}}^{2}+i\Gamma_{N_{i}}M_{N_{i}}}. (6)

Also, Ds|c(0)γμb(0)|Bs0=Ds+|c¯(0)γμb¯(0)|B¯s0\langle D_{s}^{-}|c(0)\gamma_{\mu}b(0)|B_{s}^{0}\rangle=\langle D_{s}^{+}|\bar{c}(0)\gamma_{\mu}\bar{b}(0)|\bar{B}_{s}^{0}\rangle is the BsDsB_{s}-D_{s} transition matrix element that can be parametrized as Monahan:2017uby

Ds|c(0)γμb(0)|Bs0=f0(t1)mBs2mDs2t1qμ+f+(t1)[pBsμ+pDsμmBs2mDs2t1qμ],\langle D_{s}^{-}|c(0)\gamma_{\mu}b(0)|B_{s}^{0}\rangle=f_{0}(t_{1})\frac{m_{B_{s}}^{2}-m_{D_{s}}^{2}}{t_{1}}q^{\mu}+f_{+}(t_{1})\Big{[}p_{B_{s}}^{\mu}+p_{D_{s}}^{\mu}-\frac{m_{B_{s}}^{2}-m_{D_{s}}^{2}}{t_{1}}q^{\mu}\Big{]}, (7)

where qμ=pBsμpDsμq^{\mu}=p_{B_{s}}^{\mu}-p_{D_{s}}^{\mu} is the transferred momentum and t1=q2t_{1}=q^{2}. In this work, we use the numerical result of the form factors f0(t1)f_{0}(t_{1}) and f+(t1)f_{+}(t_{1}) from Ref. Monahan:2017uby which is calculated by lattice QCD. Equation (5) shows that two CP-odd factors appear in the amplitudes that are nontrivial. The first is the CP-odd phases of the heavy-light mixing parameter UμNiU_{\mu N_{i}} and the second comes from the weak interaction vertex γμ(1γ5)\gamma^{\mu}(1-\gamma_{5}). In case there exists only one generation of heavy neutrino, such a CP-odd term would not result in a CP violation in the observable quantity since after being squared, the difference between the two amplitudes vanishes. While in case there are more than one generation of heavy neutrino, a CP violation would arise in the decay width. For simplicity, we write the amplitudes as

+\displaystyle\mathcal{M^{+}} =UμN12¯1++UμN22¯2+,\displaystyle=U_{\mu N_{1}}^{*2}\bar{\mathcal{M}}^{+}_{1}+U_{\mu N_{2}}^{*2}\bar{\mathcal{M}}^{+}_{2}, (8)
\displaystyle\mathcal{M^{-}} =UμN12¯1+UμN22¯2.\displaystyle=U_{\mu N_{1}}^{2}\bar{\mathcal{M}}^{-}_{1}+U_{\mu N_{2}}^{2}\bar{\mathcal{M}}^{-}_{2}.

Here ¯i±\bar{\mathcal{M}}^{\pm}_{i} represents the canonical amplitude contributed by the iith heavy neutrino

¯i+\displaystyle\bar{\mathcal{M}}^{+}_{i} =GF2VcbVudfπmNiPNiu¯(μ2)πγμ(1γ5)v(μ1)Ds|c(0)γμb(0)|Bs0,\displaystyle=G_{F}^{2}V_{cb}^{*}V_{ud}^{*}f_{\pi}^{*}m_{N_{i}}P_{N_{i}}\bar{u}(\mu_{2})\not{p}_{\pi}\gamma_{\mu}(1-\gamma_{5})v(\mu_{1})\langle D_{s}^{-}|c(0)\gamma^{\mu}b(0)|B_{s}^{0}\rangle, (9)
¯i\displaystyle\bar{\mathcal{M}}^{-}_{i} =GF2VcbVudfπmNiPNiu¯(μ2)πγμ(1+γ5)v(μ1)Ds|c(0)γμb(0)|Bs0.\displaystyle=G_{F}^{2}V_{cb}V_{ud}f_{\pi}m_{N_{i}}P_{N_{i}}\bar{u}(\mu_{2})\not{p}_{\pi}\gamma_{\mu}(1+\gamma_{5})v(\mu_{1})\langle D_{s}^{-}|c(0)\gamma^{\mu}b(0)|B_{s}^{0}\rangle.

It is straightforward to prove that

¯i+¯j+=¯i¯j.\bar{\mathcal{M}}^{+}_{i}\bar{\mathcal{M}}^{+*}_{j}=\bar{\mathcal{M}}^{-}_{i}\bar{\mathcal{M}}^{-*}_{j}. (10)

We then define the squared amplitude matrix MM as

Mij=¯i+¯j+=¯i¯j.M_{ij}=\bar{\mathcal{M}}^{+}_{i}\bar{\mathcal{M}}^{+*}_{j}=\bar{\mathcal{M}}^{-}_{i}\bar{\mathcal{M}}^{-*}_{j}. (11)

The explicit form of MM is shown in Appendix B. From Equation (49) in Appendix B we can verify that

M12=M21.M_{12}=M_{21}^{*}. (12)

Then the decay width for the two processes can be written as

Γ+\displaystyle\Gamma^{+} =𝑑Φ4[|UμN1|4M11+|UμN2|4M22+UμN12UμN22M12+UμN12UμN22M21],\displaystyle=\int d\Phi_{4}\Big{[}|U_{\mu N_{1}}|^{4}M_{11}+|U_{\mu N_{2}}|^{4}M_{22}+U_{\mu N_{1}}^{*2}U_{\mu N_{2}}^{2}M_{12}+U_{\mu N_{1}}^{2}U_{\mu N_{2}}^{*2}M_{21}\Big{]}, (13)
Γ\displaystyle\Gamma^{-} =𝑑Φ4[|UμN1|4M11+|UμN2|4M22+UμN12UμN22M12+UμN12UμN22M21],\displaystyle=\int d\Phi_{4}\Big{[}|U_{\mu N_{1}}|^{4}M_{11}+|U_{\mu N_{2}}|^{4}M_{22}+U_{\mu N_{1}}^{2}U_{\mu N_{2}}^{*2}M_{12}+U_{\mu N_{1}}^{*2}U_{\mu N_{2}}^{2}M_{21}\Big{]},

where dΦ4d\Phi_{4} is the four-body phase space

dΦ4=12mBs1(2π)8d3𝒑Ds(2EDs)d3𝒑1(2E1)d3𝒑2(2E2)d3𝒑π(2Eπ)δ4(pBspDspμ1pμ2pπ).d\Phi_{4}=\frac{1}{2m_{B_{s}}}\frac{1}{(2\pi)^{8}}\frac{d^{3}\bm{p}_{D_{s}}}{(2E_{D_{s}})}\frac{d^{3}\bm{p}_{1}}{(2E_{1})}\frac{d^{3}\bm{p}_{2}}{(2E_{2})}\frac{d^{3}\bm{p}_{\pi}}{(2E_{\pi})}\delta^{4}(p_{B_{s}}-p_{D_{s}}-p_{\mu_{1}}-p_{\mu_{2}}-p_{\pi}). (14)

The explicit form of dΦ4d\Phi_{4} and the reference frame we use to define the kinematic variables for numerical calculation are given in Appendix A. Note that the factors |PNi|2|P_{N_{i}}|^{2} appears in Equation (49), which can be approximated as

|PNi|2=|1pN2mNi2+iΓNimNi|2πmNiΓNiδ(pN2mNi2)(i=1,2),|P_{N_{i}}|^{2}=|\frac{1}{p_{N}^{2}-m_{N_{i}}^{2}+i\Gamma_{N_{i}}m_{N_{i}}}|^{2}\approx\frac{\pi}{m_{N_{i}}\Gamma_{N_{i}}}\delta(p_{N}^{2}-m_{N_{i}}^{2})~{}(i=1,2), (15)

when it is satisfied that ΓNimNi(i=1,2)\Gamma_{N_{i}}\ll m_{N_{i}}~{}(i=1,2). Thus with the narrow width approximation, 𝑑Φ4Mii\int d\Phi_{4}M_{ii} can be simplified as

𝑑Φ4Mii=Γ¯(BsDsμ1Ni)Γ¯(Niμ2π)ΓNi.\int d\Phi_{4}M_{ii}=\bar{\Gamma}(B_{s}\rightarrow D_{s}\mu_{1}N_{i})\frac{\bar{\Gamma}(N_{i}\rightarrow\mu_{2}\pi)}{\Gamma_{N_{i}}}. (16)

Here Γ¯(BsDsμ1Ni)\bar{\Gamma}(B_{s}\rightarrow D_{s}\mu_{1}N_{i}) and Γ¯(Niμ2π)\bar{\Gamma}(N_{i}\rightarrow\mu_{2}\pi) are the canonical decay widths for the subprocesses BsDsμ1NiB_{s}\rightarrow D_{s}\mu_{1}N_{i} and Niμ2πN_{i}\rightarrow\mu_{2}\pi, respectively,

Γ¯(BsDsμ1Ni)=Γ(BsDsμ1Ni)|UμNi|2,Γ¯(Niμ2π)=Γ(Niμ2π)|UμNi|2.\bar{\Gamma}(B_{s}\rightarrow D_{s}\mu_{1}N_{i})=\frac{\Gamma(B_{s}\rightarrow D_{s}\mu_{1}N_{i})}{|U_{\mu N_{i}}|^{2}},\quad\bar{\Gamma}(N_{i}\rightarrow\mu_{2}\pi)=\frac{\Gamma(N_{i}\rightarrow\mu_{2}\pi)}{|U_{\mu N_{i}}|^{2}}. (17)

The last part that is yet unknown is the decay width for the heavy neutrinos ΓNi\Gamma_{N_{i}}. In the literature, ΓNi\Gamma_{N_{i}} can be calculated by summing up all possible decaying channels of the Majorana neutrino, which is explained in Appendix D. From Equation 63 as well as the nearly-degenerate condition mN1mN2m_{N_{1}}\approx m_{N_{2}}, we can simplify the ratio between ΓN1\Gamma_{N_{1}} and ΓN2\Gamma_{N_{2}} as

ΓN2ΓN1|UeN2|2ae(mN1)+|UμN2|2aμ(mN1)+|UτN2|2aτ(mN1)|UeN1|2ae(mN1)+|UμN1|2aμ(mN1)+|UτN1|2aτ(mN1),\frac{\Gamma_{N_{2}}}{\Gamma_{N_{1}}}\approx\frac{|U_{eN_{2}}|^{2}a_{e}(m_{N_{1}})+|U_{\mu N_{2}}|^{2}a_{\mu}(m_{N_{1}})+|U_{\tau N_{2}}|^{2}a_{\tau}(m_{N_{1}})}{|U_{eN_{1}}|^{2}a_{e}(m_{N_{1}})+|U_{\mu N_{1}}|^{2}a_{\mu}(m_{N_{1}})+|U_{\tau N_{1}}|^{2}a_{\tau}(m_{N_{1}})}, (18)

where the meaning of the factors al(l=e,μ,τ)a_{l}(l=e,\mu,\tau) is explained in Appendix D. The equation will be used in the analytical analysis in the next subsection. However, here we emphasize that we treat the lifetime of the sterile neutrino τN=/ΓN\tau_{N}=\hbar/\Gamma_{N} as a free parameter that can be measured by LHCb experiments in our experimental analysis. In Sec. III we explain in detail our treatment and justify that the treatment is consistent with the result in Appendix D.

II.2 CP violation

In the following part we define that

𝒜CP=SS+\mathcal{A}_{CP}=\frac{S^{-}}{S^{+}} (19)

to measure the size of the CP violation, where S±S^{\pm} are defined as

S±=Γ+±Γ.S^{\pm}=\Gamma^{+}\pm\Gamma^{-}. (20)

Then, following Eqs (13) and (2), we have

S=4|UμN1|2|UμN2|2sin(2ϕμN12ϕμN2)𝑑Φ4ImM12.S^{-}=4|U_{\mu N_{1}}|^{2}|U_{\mu N_{2}}|^{2}\sin(2\phi_{\mu N_{1}}-2\phi_{\mu N_{2}})\int d\Phi_{4}\mathrm{Im}M_{12}. (21)

Here ImM12\mathrm{Im}M_{12} represents the imaginary part of M12M_{12}. As shown by Appendix B, the imaginary part of M12M_{12} is proportional to the imaginary part of PN1PN2P_{N_{1}}P_{N_{2}}^{*},

ImPN1PN2=mN2ΓN2(pN2mN12)mN1ΓN1(pN2mN22)[(pN2mN12)2+(mN1ΓN1)2][(pN2mN22)2+(mN2ΓN2)2].\mathrm{Im}P_{N_{1}}P_{N_{2}}^{*}=\frac{m_{N_{2}}\Gamma_{N_{2}}(p_{N}^{2}-m_{N_{1}}^{2})-m_{N_{1}}\Gamma_{N_{1}}(p_{N}^{2}-m_{N_{2}}^{2})}{[(p_{N}^{2}-m_{N_{1}}^{2})^{2}+(m_{N_{1}}\Gamma_{N_{1}})^{2}][(p_{N}^{2}-m_{N_{2}}^{2})^{2}+(m_{N_{2}}\Gamma_{N_{2}})^{2}]}. (22)

The physics meaning of Equation (21) includes two parts. First, the appearance of the factor sin(2ϕμN12ϕμN2)\sin(2\phi_{\mu N_{1}}-2\phi_{\mu N_{2}}) implies that the physics origin of the CP violation is the difference between the CP-odd phases of mixing parameters between the two heavy neutrinos with the common ones. We define the CP-odd phase difference ϑ12\vartheta_{12} as

ϑ12=2(ϕμN1ϕμN2),\vartheta_{12}=2(\phi_{\mu N_{1}}-\phi_{\mu N_{2}}), (23)

which is the key parameter in deciding on the size of the CP violation. Second, the CP violation of the processes in consideration arises as a result of the interference of the contributions of the two generations of Majorana neutrinos, which is shown explicitly by the factor ImPN1PN2\mathrm{Im}P_{N_{1}}P_{N_{2}}^{*}. In case that mN1=mN2m_{N_{1}}=m_{N_{2}}, ImPN1PN2\mathrm{Im}P_{N_{1}}P_{N_{2}}^{*} vanishes and so does the CP-violating term SS^{-}.

The sum S+S^{+} can be written as

S+=2𝑑Φ4[|UμN1|4M11+|UμN2|4M22+2|UμN1|2|UμN2|2ReM12cosϑ12],S^{+}=2\int d\Phi_{4}\Big{[}|U_{\mu N_{1}}|^{4}M_{11}+|U_{\mu N_{2}}|^{4}M_{22}+2|U_{\mu N_{1}}|^{2}|U_{\mu N_{2}}|^{2}\mathrm{Re}M_{12}\cos\vartheta_{12}\Big{]}, (24)

where ReM12\mathrm{Re}M_{12} represents the real part of M12M_{12}, of which the corresponding key factor is the real part of PN1PN2P_{N_{1}}P_{N_{2}}^{*},

RePN1PN2=(pN2mN12)(pN2mN22)+mN1mN2ΓN1ΓN2[(pN2mN12)2+(mN1ΓN1)2][(pN2mN22)2+(mN2ΓN2)2].\mathrm{Re}P_{N_{1}}P_{N_{2}}^{*}=\frac{(p_{N}^{2}-m_{N_{1}}^{2})(p_{N}^{2}-m_{N_{2}}^{2})+m_{N_{1}}m_{N_{2}}\Gamma_{N_{1}}\Gamma_{N_{2}}}{[(p_{N}^{2}-m_{N_{1}}^{2})^{2}+(m_{N_{1}}\Gamma_{N_{1}})^{2}][(p_{N}^{2}-m_{N_{2}}^{2})^{2}+(m_{N_{2}}\Gamma_{N_{2}})^{2}]}. (25)

Note that Eqs (16) and (17) show that ΓN1×𝑑Φ4M11\Gamma_{N_{1}}\times\int d\Phi_{4}M_{11}(ΓN2×𝑑Φ4M22\Gamma_{N_{2}}\times\int d\Phi_{4}M_{22}) is only the function of the heavy neutrino mass mN1m_{N_{1}}(mN2m_{N_{2}}) and the two functions are of the same form. Considering the nearly-degenerate situation mN1mN2m_{N_{1}}\approx m_{N_{2}}, we have

𝑑Φ4M22𝑑Φ4M11ΓN1ΓN2.\frac{\int d\Phi_{4}M_{22}}{\int d\Phi_{4}M_{11}}\approx\frac{\Gamma_{N_{1}}}{\Gamma_{N_{2}}}. (26)

Then, the relative size of the CP violation 𝒜CP\mathcal{A}_{CP} can be written in the following simple form

𝒜CP=2δIκsinϑ121+κ2ΓN1ΓN2+2κδRcosϑ12.\mathcal{A}_{CP}=\frac{2\delta_{I}\kappa\sin\vartheta_{12}}{1+\kappa^{2}\frac{\Gamma_{N_{1}}}{\Gamma_{N_{2}}}+2\kappa\delta_{R}\cos\vartheta_{12}}. (27)

Here, we define that

δR=𝑑Φ4ReM12𝑑Φ4M11,δI=𝑑Φ4ImM12𝑑Φ4M11,\delta_{R}=\frac{\int d\Phi_{4}\mathrm{Re}M_{12}}{\int d\Phi_{4}M_{11}},~{}\delta_{I}=\frac{\int d\Phi_{4}\mathrm{Im}M_{12}}{\int d\Phi_{4}M_{11}}, (28)

to measure the relative size of the interference term of the two heavy neutrinos. The parameter κ\kappa is defined as

κ=|UμN2|2|UμN1|2.\kappa=\frac{|U_{\mu N_{2}}|^{2}}{|U_{\mu N_{1}}|^{2}}. (29)
Refer to caption
Figure 2: The parameters δI\delta_{I} and δR\delta_{R} as a function of yy for different values of mN1m_{N_{1}}. Note that since the deviation of δI/δR\delta_{I}/\delta_{R} between different choices of mN1m_{N_{1}} is very small (detailed numerical result shows that the difference is less than 1%), to distinguish them, we use different styles of plot, i.e., line plot and scatter point plot, to represent the results for different choices of mN1m_{N_{1}}.

In order to make a more detailed analysis of this result, we make another assumption about the properties of the heavy neutrinos that the two Majorana neutrinos have approximately the same mixing parameters with the three generations of normal neutrinos, namely,

|UlN2|2|UlN1|21(l=e,μ,τ).\frac{|U_{lN_{2}}|^{2}}{|U_{lN_{1}}|^{2}}\approx 1~{}(l=e,\mu,\tau). (30)

Thus, the right-hand side of Equation (18) simply gives one. The size of the CP violation 𝒜CP\mathcal{A}_{CP} can be further simplified as

𝒜CP=δIsinϑ121+δRcosϑ12.\mathcal{A}_{CP}=\frac{\delta_{I}\sin\vartheta_{12}}{1+\delta_{R}\cos\vartheta_{12}}. (31)

The final result Equation (31) is only the function of mN1m_{N_{1}}, mN2m_{N_{2}} and the angle ϑ12\vartheta_{12}, or equivalently, mN1m_{N_{1}}, ΔmN\Delta m_{N} and ϑ12\vartheta_{12}. A natural way to measure the size of ΔmN\Delta m_{N} is to compare it with the decay width of the heavy neutrino ΓN\Gamma_{N}; thus, we define that

y=ΔmNΓN.y=\frac{\Delta m_{N}}{\Gamma_{N}}. (32)

Note that δI\delta_{I} and δR\delta_{R} rely both on the values of mN1m_{N_{1}} and yy. However, numerical result shows that in the mass region under consideration, namely, 0.5 GeV <mN1<<m_{N_{1}}< 3.5 GeV, the variation of δI\delta_{I} and δR\delta_{R} due to different choices of mNm_{N} is very small (less than 1%1\%). In Fig. 2, we present the numerical results of δI\delta_{I} and δR\delta_{R} as a function of yy under the condition that mN1m_{N_{1}} equals 1, 2 and 3 GeV. In conclusion, δI\delta_{I} and δR\delta_{R} can be considered as nearly independent of the choice of mN1m_{N_{1}} in the mass region 0.5 GeV <mN1<<m_{N_{1}}< 3.5 GeV. Thus, the size of the CP violation 𝒜CP\mathcal{A}_{CP} is also independent of mN1m_{N_{1}}. The relative size of 𝒜CP\mathcal{A}_{CP} reaches its maximum when yy is around 1. The above conclusions are all in accordance with the three-body case studied in Refs. Cvetic:2013eza ; Cvetic:2015ura . Note that the conclusion does not hold true when the mass interval is larger than several tens of GeV. Reference Najafi:2020dkp studies CP violation of a similar mechanism in WW boson decays and it shows that under the condition that mN1m_{N_{1}} equals 5, 10, 20 and 60 GeV, 𝒜CP\mathcal{A}_{CP} shows considerable differences. Another significant difference is that in our result 𝒜CP\mathcal{A}_{CP} reaches maximum when yy is around 1 while in Ref. Najafi:2020dkp yy is between 0.3 and 0.5. See Ref. Najafi:2020dkp for details. In Fig. 3, we give the numerical result of 𝒜CP\mathcal{A}_{CP} as a function of yy under different choices of ϑ12\vartheta_{12}.

Finally, the decay width for the process Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} and its CP-conjugate process can be written in the more compact form,

Γ±=2|UμN1|4[1+δRcosϑ12±δIsinϑ12]𝑑Φ4M11,\Gamma^{\pm}=2|U_{\mu N_{1}}|^{4}[1+\delta_{R}\cos\vartheta_{12}\pm\delta_{I}\sin\vartheta_{12}]\int d\Phi^{4}M_{11}, (33)

We define the averaged branching ratio ravr\mathcal{B}r_{avr} for experimental analysis in the next section,

ravr=12ΓBs(Γ++Γ),\mathcal{B}r_{avr}=\frac{1}{2\Gamma_{B_{s}}}(\Gamma^{+}+\Gamma^{-}), (34)

here, ΓBs=4.362×1013GeV\Gamma_{B_{s}}=4.362\times 10^{-13}~{}\mathrm{GeV} is the total decay width of BsB_{s} meson Zyla:2020zbs .

Refer to caption
Figure 3: The size of the CP violation 𝒜CP\mathcal{A}_{C}P as a function of yy for different choices of ϑ12\vartheta_{12}.

III Experimental analysis

In this part, we evaluate the possibility that such CP violation is observed by LHCb in its upgrade II LHCb:2018roe . In the experiment, the most important quantity is the absolute size of the averaged branching ratio ravr\mathcal{B}r_{avr}. In this section, we do not distinguish the two sterile neutrinos due to the degeneracy and use NN to represent both of them.

The expected number of Bs0B_{s}^{0} mesons produced on LHCb can be estimated as

NBs=×σbb¯×f(bBs0),N_{B_{s}}=\mathcal{L}\times\sigma_{b\bar{b}}\times f(b\rightarrow B_{s}^{0}), (35)

where 200fb1\mathcal{L}\approx 200~{}\mathrm{fb^{-1}} is the expected integrated luminosity of LHCb until 2035 LHCb:2018roe , σbb¯144μb\sigma_{b\bar{b}}\simeq 144~{}\mathrm{\mu b} the bb¯b\bar{b} cross section within the LHCb covered η\eta range (2<η<52<\eta<5Aaij:2016avz , and f(bBs0)4.4%f(b\rightarrow B_{s}^{0})\simeq 4.4\% the hardronization factor of b quark to BsB_{s} which is estimated from Ref. Aaij:2019pqz 333Ref. Aaij:2019pqz shows that the ratio between the production fraction of Λb\Lambda_{b} hardrons and the sum of the fraction of BB^{-} and B¯0\bar{B}^{0} is around 0.259 (averaged between 4GeV<pT<25GeV4~{}\mathrm{GeV}<p_{T}<25~{}\mathrm{GeV} and 2<η<52<\eta<5), while that between B¯s0\bar{B}^{0}_{s} and the sum of BB^{-} and B¯0\bar{B}^{0} is 0.122. Since B±B^{\pm}, B0/B¯0B^{0}/\bar{B}^{0}, B¯s0/Bs0\bar{B}^{0}_{s}/B^{0}_{s} and Λb0/Λ¯b0\Lambda_{b}^{0}/\bar{\Lambda}^{0}_{b} make the majority of bb¯b\bar{b} products, the fraction f(bb¯Λb)f(b\bar{b}\rightarrow\Lambda_{b}) is estimated as 0.122/(1+0.259+0.122)×0.50.0440.122/(1+0.259+0.122)\times 0.5\sim 0.044.. The final result is NBs1.9×1012N_{B_{s}}\approx 1.9\times 10^{12}.

In order to get the expected sensitivity of LHCb on the processes in consideration, we also need to know the detection efficiency of the LHCb detector ϵ(BsDsμμπ)\epsilon~{}(B_{s}\rightarrow D_{s}\mu\mu\pi), which contains the contribution from geometrical acceptance, trigger and selection requirements and particle identification LHCb:2013svv . A systematic evaluation of the detection efficiency requires a Monte Carlo simulation under a LHCb configuration as well as considering final state radiation generation and interaction of the produced particles with the detector and its response LHCb:2013svv . Here, however, we use an indirect approach to give an approximation to the detection efficiency, whose accuracy is enough for our calculation. Reference LHCb:2015wdu shows that the simulated detection efficiency of the process Bs0ϕ(K+K)μ+μB_{s}^{0}\rightarrow\phi(K^{+}K^{-})\mu^{+}\mu^{-} is 1.1%1.1\%. The main difference between Bs0ϕ(K+K)μ+μB_{s}^{0}\rightarrow\phi(K^{+}K^{-})\mu^{+}\mu^{-} and Bs0Dsπμ+μ+B_{s}^{0}\rightarrow D_{s}^{-}\pi^{-}\mu^{+}\mu^{+} comes from the replacement of KK^{-} with DsD_{s}^{-} 444The difference between the detection of KK and π\pi as well as between μ+\mu^{+} and μ\mu^{-} is very small and can be overlooked here.. DsD_{s} is reconstructed by the golden mode DsKKπD_{s}\rightarrow KK\pi, which requires two additional charged tracks and thus would reduce the detection efficiency. From Ref. LHCb:2020ist , we know that the ratio between the detection efficiency of Bs0Kμ+νB_{s}^{0}\rightarrow K^{-}\mu^{+}\nu and Bs0Dsμ+νB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\nu is around 0.733 (averaged over the full q2q^{2} range). Thus, we estimate the detection efficiency of BsDsπμμB_{s}\rightarrow D_{s}\pi\mu\mu to be 1.1%×0.7330.81%1.1\%\times 0.733\approx 0.81\%. We note that the accuracy of this approximation is enough for magnitude estimation.

Another factor we need to consider is the efficiency loss due to the flight of the long-lived particle, i.e., the intermediate sterile neutrinos NN, in the detector. The sterile neutrinos are produced nearly on shell and would travel for certain distance before decaying into its aftermath Dib:2014iga . We include this effect by adding another factor 𝒫N\mathcal{P}_{N} to the total detection efficiency, which relies on the lifetime of the sterile neutrino τN\tau_{N} as

𝒫N=1exp(LD/LN),\mathcal{P}_{N}=1-\exp{(-L_{D}/L_{N})}, (36)

where LDL_{D}\sim 1 m is the length of the detector and

LN=cτNγNβNL_{N}=c\tau_{N}\gamma_{N}\beta_{N} (37)

is the decay length of the sterile neutrino Dib:2014iga . Here cc represents the light speed and γNβN\gamma_{N}\beta_{N} is the Lorentz time dilation factor of NN. To our knowledge, the choice of γNβN\gamma_{N}\beta_{N} between 1 and 10 is common in the literature such as Refs. Cvetic:2016fbv ; Dib:2014iga based on the realistic condition of collider experiments. In this study, we take that γNβN\gamma_{N}\beta_{N} equals 4 instead of doing detailed calculation of γNβN\gamma_{N}\beta_{N} since the former is enough for magnitude estimation. For τN=1000\tau_{N}=1000 ps , the factor 𝒫N\mathcal{P}_{N} is about 56%56\%, while for τN100\tau_{N}\leq 100 ps 𝒫N\mathcal{P}_{N} is very close to 1 and the effect is almost negligible.

Following the practice in experimental research of sterile neutrinos such as Refs. LHCb:2014osd ; LHCb:2016inz , we take τN\tau_{N} as a free parameter that can be measured by LHCb experiment to avoid more complication, instead of calculating τN\tau_{N} through τN=/ΓN\tau_{N}=\hbar/\Gamma_{N}. We assume that the sterile neutrino lifetime τN=[100,1000]\tau_{N}=[100,1000] ps, which is within the acceptance of LHCb. Here, we justify that this assumption is consistent with Equation (63) under a certain choice of the size of |UlN|2|U_{lN}|^{2}. It can be read from Ref. Deppisch:2015qwa that around 1 GeV the currently known upper bound on |UeN|2|U_{eN}|^{2} is between 10710^{-7} and 10810^{-8} , and the upper bound on |UμN|2|U_{\mu N}|^{2} is between 10410^{-4} and 10510^{-5}, while that on |UτN|2|U_{\tau N}|^{2} is between 10310^{-3} and 10210^{-2}. The possible region that the corresponding lifetime of the sterile neutrino can lie in is drawn in Fig. 4. The plot shows that within the mass range [1GeV,4GeV][1~{}\mathrm{GeV},~{}4~{}\mathrm{GeV}], the choice that τN=[100,1000]\tau_{N}=[100,1000] ps is acceptable.

In Table. 1, we present the expected number of events for certain choices of related parameters, based on the experimental ability discussed above. We use 𝒩+\mathcal{N}_{+}/𝒩\mathcal{N}_{-} to represent the event numbers of Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-}/Bs0¯Ds+μμπ+\bar{B_{s}^{0}}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+}. The expected number of events at LHCb upgrade II is estimated as

𝒩±=NBs×ϵ(BsDsμμπ)×𝒫N×Γ±ΓBs.\mathcal{N}_{\pm}=N_{B_{s}}\times\epsilon~{}(B_{s}\rightarrow D_{s}\mu\mu\pi)\times\mathcal{P}_{N}\times\frac{\Gamma^{\pm}}{\Gamma_{B_{s}}}. (38)

For |UμN|2=104|U_{\mu N}|^{2}=10^{-4}, several hundreds of events can be expected, and there is significant difference between 𝒩+\mathcal{N}_{+} and 𝒩\mathcal{N}_{-}. For |UμN|2=105|U_{\mu N}|^{2}=10^{-5}, event numbers decrease to a few, and the observable CP violation is not that significant. However, it should be noted that our result is based on a relatively conservative estimation on the experimental ability of LHCb since we use the detection efficiency of previous LHCb experiments. During the upgrade II, certain detection ability of LHCb detectors will be improved LHCb:2018roe and it is possible that more events can be observed.

τN=\tau_{N}= 1000 ps τN=\tau_{N}= 100 ps
𝒩+\mathcal{N}_{+} 𝒩\mathcal{N}_{-} 𝒩+\mathcal{N}_{+} 𝒩\mathcal{N}_{-}
|UμN|2=104|U_{\mu N}|^{2}=10^{-4} 665 390 119 70
|UμN|2=105|U_{\mu N}|^{2}=10^{-5} 7 4 1 0
Table 1: Expected event numbers for Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} (𝒩+\mathcal{N}_{+}) and Bs0¯Ds+μμπ+\bar{B_{s}^{0}}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+} (𝒩+\mathcal{N}_{+}) under the assumption that |UμN|2|U_{\mu N}|^{2} equals 10410^{-4} and 10510^{-5}. The relative parameters are chosen as follows: mN=2GeVm_{N}=2~{}\mathrm{GeV}, y=1y=1, ϑ12=π/4\vartheta_{12}=\pi/4.
Refer to caption
Figure 4: The shaded region represent the possible region of the lifetime of the sterile neutrino NN. The black line represents the case when |UeN|2=107,|UμN|2=104,|UτN|2=102|U_{eN}|^{2}=10^{-7},|U_{\mu N}|^{2}=10^{-4},|U_{\tau N}|^{2}=10^{-2}, and the blue line represents the case when |UeN|2=108,|UμN|2=105,|UτN|2=103|U_{eN}|^{2}=10^{-8},|U_{\mu N}|^{2}=10^{-5},|U_{\tau N}|^{2}=10^{-3}.
Refer to caption
Figure 5: The upper bound on the heavy-light mixing parameter |UμN|2|U_{\mu N}|^{2} under the assumption that no positive signal about the processes is observed Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} on LHCb. The shaded regions represents the excluded region given by previous experiments including NuTeV Vaitaitis:1999wq , BEBC CooperSarkar:1985nh , Belle Liventsev:2013zz and Delphi Abreu:1996pa .

On the other hand, suppose that such modes were not observed on the LHCb upgrade II, we can constrain the upper bound on the heavy-light mixing parameter |UμN|2|U_{\mu N}|^{2} by requiring the total number of events to be lower than some threshold. Reference Feldman:1997qc shows that the experimental sensitivity on |UμN|2|U_{\mu N}|^{2} at 95%95\% confidence level (C.L.) under a background-free environment is obtained for 𝒩events=3.09\mathcal{N}_{\text{events}}=3.09. Thus, the upper bound on |UμN|2|U_{\mu N}|^{2} at 95%95\% C.L. is obtained by requiring that

NBs×ϵ(BsDsμμπ)×𝒫N×ravr=3.09.N_{B_{s}}\times\epsilon~{}(B_{s}\rightarrow D_{s}\mu\mu\pi)\times\mathcal{P}_{N}\times\mathcal{B}r_{\mathrm{avr}}=3.09. (39)

The numerical result of Equation (39) is shown in Fig. 5. For comparison, we also include currently known upper bounds on |UμN|2|U_{\mu N}|^{2} given by other experiments including NuTeV Vaitaitis:1999wq , BEBC CooperSarkar:1985nh , Belle Liventsev:2013zz , and Delphi Abreu:1996pa in the plot. The plot shows that during the mass region [1GeV,3GeV][1~{}\mathrm{GeV},3~{}\mathrm{GeV}], the channel gives a comparable or even stronger constraint on the size of |UμN|2|U_{\mu N}|^{2}. Specifically, for mNm_{N} equals 2 GeV, the constraint on |UμN|2|U_{\mu N}|^{2} goes as low as 6×1066\times 10^{-6}.

IV Summary and conclusions

In this paper, we study the lepton-number-violating (LNV) process Bs0Dsμ+μ+πB_{s}^{0}\rightarrow D_{s}^{-}\mu^{+}\mu^{+}\pi^{-} and its CP-conjugate process Bs0¯Ds+μμπ+\bar{B_{s}^{0}}\rightarrow D_{s}^{+}\mu^{-}\mu^{-}\pi^{+} that are induced by two nearly-degenerate Majorana neutrinos and explore the possibility for searching for the CP violation in such processes. We point out that the physics origin of the CP violation is ϑ12\vartheta_{12}, which is defined as the difference between the CP-odd phases of mixing parameters between two generations of heavy neutrinos with the normal ones. The CP violation becomes considerable when the masses of the two generations of heavy neutrinos are nearly degenerate but have a nonzero difference ΔmN\Delta m_{N}. The numerical result draws the following conclusion. First, the relative size of the CP violation 𝒜CP\mathcal{A}_{CP} is only the function of the mass difference ΔmN\Delta m_{N} and ϑ12\vartheta_{12} and 𝒜CP\mathcal{A}_{CP} is nearly independent of the absolute mass of the lighter heavy neutrino in the mass region we considered. Second, 𝒜CP\mathcal{A}_{CP} reaches its maximum when ΔmN\Delta m_{N} is around the size of the decay width of the intermediate sterile neutrino and the maximum value depends on the CP-odd phase difference ϑ12\vartheta_{12}. It should be noted that the above conclusion is drawn under the assumption that the two Majorana neutrinos have approximately the same mixing parameters with the three normal neutrinos.

We also analyze the possibility that such CP violation is observed by LHCb during its upgrade II. It is shown that under a current constraint on the heavy-light neutrino mixing parameter, namely, 104<|UμN|2<10510^{-4}<|U_{\mu N}|^{2}<10^{-5}, it is possible that such a CP violation can be observed with the LHCb experimental ability. We also give the upper bound on the heavy-light mixing parameter under the assumption that no positive signal of the processes is observed. The result shows that such modes can give a complementary constraint on the heavy-light mixing parameter compared with previous experiments including NuTeV, BEBC, Belle, and Delphi in the mass region 1 GeV <mN<<m_{N}< 3 GeV. Thus, we note that it is worthwhile searching for such modes on LHCb due to the possibility of both observing new types of CP violation in BsB_{s} meson decays and setting complementary constraints on |UμN|2|U_{\mu N}|^{2}.

V Acknowledgement

This work is supported by National Natural Science Foundation of China (Grant No. 12075003).

APPENDIX

Appendix A THE FOUR-BODY PHASE SPACE dΦ4d\Phi_{4}

The four-body phase space dΦ4d\Phi_{4} is

dΦ4=12mBs1(2π)8d4,d\Phi_{4}=\frac{1}{2m_{B_{s}}}\frac{1}{(2\pi)^{8}}d_{4}, (40)

where the factor d4d_{4} is defined as

d4=d3𝒑Ds(2EDs)d3𝒑1(2E1)d3𝒑2(2E2)d3𝒑π(2Eπ)δ4(pBspDspμ1pμ2pπ).d_{4}=\frac{\mathrm{d}^{3}\bm{p}_{D_{s}}}{(2E_{D_{s}})}\frac{d^{3}\bm{p}_{1}}{(2E_{1})}\frac{d^{3}\bm{p}_{2}}{(2E_{2})}\frac{d^{3}\bm{p}_{\pi}}{(2E_{\pi})}\delta^{4}(p_{B_{s}}-p_{D_{s}}-p_{\mu_{1}}-p_{\mu_{2}}-p_{\pi}). (41)

Remember the fact that

d3𝒑N(2EN)=d4pNδ+(pN2mN2),\frac{d^{3}\bm{p}_{N}}{(2E_{N})}=d^{4}p_{N}\delta_{+}(p_{N}^{2}-m_{N}^{2}), (42)

then it is straightforward to prove that d4d_{4} can be factorized as

d4=d3(BsDsμ1N)d2(Nμ2π)dpN2.d_{4}=d_{3}(B_{s}\rightarrow D_{s}\mu_{1}N)d_{2}(N\rightarrow\mu_{2}\pi)dp_{N}^{2}. (43)

Here, d3(BsDsμ1N)d_{3}(B_{s}\rightarrow D_{s}\mu_{1}N) is the corresponding factor in the three-body phase space for the subprocess BsDsμ1NB_{s}\rightarrow D_{s}\mu_{1}N and d2(Nμ2π)d_{2}(N\rightarrow\mu_{2}\pi) is that for Nμ2πN\rightarrow\mu_{2}\pi. pNp_{N} is the four-momenta of the intermediate sterile neutrino. In the following we set t2=pN2t_{2}=p_{N}^{2}. In the rest frame of μ1N\mu_{1}-N, d3(BsDsμ1N)d_{3}(B_{s}\rightarrow D_{s}\mu_{1}N) can be simplified as

d3(BsDsμ1N)=164mBs2λ12(mBs2,mDs2,t1)λ12(t1,mμ2,mN2)1t1dt1dΩμ1dΩDs,d_{3}(B_{s}\rightarrow D_{s}\mu_{1}N)=\frac{1}{64m_{B_{s}}^{2}}\lambda^{\frac{1}{2}}(m_{B_{s}}^{2},m_{D_{s}}^{2},t_{1})\lambda^{\frac{1}{2}}(t_{1},m_{\mu}^{2},m_{N}^{2})\frac{1}{t_{1}}dt_{1}d\Omega^{*}_{\mu_{1}}d\Omega_{D_{s}}, (44)

where t1=(pN+pμ1)2=(pBspDs)2t_{1}=(p_{N}+p_{\mu_{1}})^{2}=(p_{B_{s}}-p_{D_{s}})^{2}, and dΩμ1=dcosθ1dφ1d\Omega^{*}_{\mu_{1}}=d\cos\theta_{1}d\varphi_{1} is the solid angle of μ1\mu_{1} in the μ1N\mu_{1}-N rest frame, while dΩDs=dcosθ2φ2d\Omega_{D_{s}}=d\cos\theta_{2}\varphi_{2} is that of DsD_{s} in the rest frame of BsB_{s}. The function λ(x,y,z)\lambda(x,y,z) is the kinematic Källen function, λ(x,y,z)=x2+y2+z22xy2yz2xz\lambda(x,y,z)=x^{2}+y^{2}+z^{2}-2xy-2yz-2xz. In the rest frame of NN, d2(Nμ2π)d_{2}(N\rightarrow\mu_{2}\pi) is written as

d2(Nμ2π)=18t2λ12(t2,mμ2,mπ2)dΩμ2,d_{2}(N\rightarrow\mu_{2}\pi)=\frac{1}{8t_{2}}\lambda^{\frac{1}{2}}(t_{2},m_{\mu}^{2},m_{\pi}^{2})d\Omega_{\mu_{2}}, (45)

where dΩμ2=dcosθ3dφ3d\Omega_{\mu_{2}}=d\cos\theta_{3}d\varphi_{3} is the solid angle of μ2\mu_{2} in the rest frame of NN. As is shown in the next part, the square of the amplitude ||2|\mathcal{M}|^{2} is independent of φ1\varphi_{1} and ΩDs\Omega_{D_{s}}; thus, they can be integrated and give a factor 8π28\pi^{2}. As a result, the four-body phase space d4d_{4} is

d4=π264mBs2λ12(mBs2,mDs2,t1)λ12(t1,mμ2,mN2)λ12(t2,mμ2,mπ2)1t1t2dt1dt2dcosθ1dcosθ3dφ3.d_{4}=\frac{\pi^{2}}{64m_{B_{s}}^{2}}\lambda^{\frac{1}{2}}(m_{B_{s}}^{2},m_{D_{s}}^{2},t_{1})\lambda^{\frac{1}{2}}(t_{1},m_{\mu}^{2},m_{N}^{2})\lambda^{\frac{1}{2}}(t_{2},m_{\mu}^{2},m_{\pi}^{2})\frac{1}{t_{1}t_{2}}dt_{1}dt_{2}d\cos\theta_{1}d\cos\theta_{3}d\varphi_{3}. (46)

Here, t1t_{1} and t2t_{2} satisfy that (t2+mμ)2t1(mBsmDs)2(\sqrt{t_{2}}+m_{\mu})^{2}\leq t_{1}\leq(m_{B_{s}}-m_{D_{s}})^{2} and t2(mμ+mπ)2t_{2}\geq(m_{\mu}+m_{\pi})^{2}. The definitions of θ1,ϕ1,θ3,ϕ3\theta_{1},\phi_{1},\theta_{3},\phi_{3} and the reference frames we used are shown in Fig. 6.

Refer to caption
Refer to caption
Figure 6: The reference frames we use and the definitions of the solid angles.

Appendix B EXPLICIT FORM OF THE SQUARED MATRIX MM

For simplicity, we define in the following that

K=GF2VcbVudfπK=G_{F}^{2}V_{cb}V_{ud}f_{\pi} (47)

and

T±=u¯(μ2)πγμ(1γ5)v(μ1)Ds|c(0)γμb(0)|Bs0.T^{\pm}=\bar{u}(\mu_{2})\not{p}_{\pi}\gamma_{\mu}(1\mp\gamma_{5})v(\mu_{1})\langle D_{s}^{-}|c(0)\gamma_{\mu}b(0)|B_{s}^{0}\rangle. (48)

T±T^{\pm} contains all the spinor structures of the decaying processes. It can be checked that |T+|2=|T|2|T|2|T^{+}|^{2}=|T^{-}|^{2}\equiv|T|^{2}. Then the elements of the squared amplitude matrix MM are written as

Mij=|K|2mNimNjPNiPNj|T|2M_{ij}=|K|^{2}m_{N_{i}}m_{N_{j}}P_{N_{i}}P_{N_{j}}^{*}|T|^{2} (49)

Apart from PNiPNjP_{N_{i}}P_{N_{j}}^{*}, other factors in MijM_{ij} are always real. Thus, the real/imaginary part of M12M_{12} is proportional to the real/imaginary part of PN1PN2P_{N_{1}}P_{N_{2}}^{*}. The completed form of |T|2|T|^{2} is

|T|2=C00f02(t1)+C01f0(t1)f+(t1)+C11f+2(t1).|T|^{2}=C_{00}f_{0}^{2}(t_{1})+C_{01}f_{0}(t_{1})f_{+}(t_{1})+C_{11}f_{+}^{2}(t_{1}). (50)

Here, the coefficients are

C00\displaystyle C_{00} =8t12(mBs2mDs2)2{mπ2[t1(pμ1pμ2)2(qpμ1)(qpμ2)]+4(pπpμ2)(qpπ)(qpμ1)2t1(pπpμ1)(pπpμ2)},\displaystyle=\frac{8}{t_{1}^{2}}(m_{B_{s}}^{2}-m_{D_{s}}^{2})^{2}\Big{\{}m_{\pi}^{2}[t_{1}(p_{\mu_{1}}\cdot p_{\mu_{2}})-2(q\cdot p_{\mu_{1}})(q\cdot p_{\mu_{2}})]+4(p_{\pi}\cdot p_{\mu_{2}})(q\cdot p_{\pi})(q\cdot p_{\mu_{1}})-2t_{1}(p_{\pi}\cdot p_{\mu_{1}})(p_{\pi}\cdot p_{\mu_{2}})\Big{\}}, (51)
C01\displaystyle C_{01} =16t(mBs2mDs2){(qpμ1)[2(pπpμ2)(Ppπ)mπ2(Ppμ2)]+(Ppμ1)[2(pπpμ2)(qpπ)mπ2(qpμ2)]},\displaystyle=\frac{16}{t}(m_{B_{s}}^{2}-m_{D_{s}}^{2})\Big{\{}(q\cdot p_{\mu_{1}})\big{[}2(p_{\pi}\cdot p_{\mu_{2}})(P\cdot p_{\pi})-m_{\pi}^{2}(P\cdot p_{\mu_{2}})\big{]}+(P\cdot p_{\mu_{1}})\big{[}2(p_{\pi}\cdot p_{\mu_{2}})(q\cdot p_{\pi})-m_{\pi}^{2}(q\cdot p_{\mu_{2}})\big{]}\Big{\}},
C11\displaystyle C_{11} =8{P2[mπ2(pμ1pμ2)2(pπpμ1)(pπpμ2)]2mπ2(Ppμ1)(Ppμ2)+4(pπpμ2)(Ppπ)(Ppμ1)},\displaystyle=8\Big{\{}P^{2}[m_{\pi}^{2}(p_{\mu_{1}}\cdot p_{\mu_{2}})-2(p_{\pi}\cdot p_{\mu_{1}})(p_{\pi}\cdot p_{\mu_{2}})]-2m_{\pi}^{2}(P\cdot p_{\mu_{1}})(P\cdot p_{\mu_{2}})+4(p_{\pi}\cdot p_{\mu_{2}})(P\cdot p_{\pi})(P\cdot p_{\mu_{1}})\Big{\}},

where we define that

P=pBs+pDsmBs2mDs2t1q.P=p_{B_{s}}+p_{D_{s}}-\frac{m_{B_{s}}^{2}-m_{D_{s}}^{2}}{t_{1}}q. (52)

Most inner products in Equation (51) can be written as functions of t1,t2,θ1,θ3,φ3t_{1},t_{2},\theta_{1},\theta_{3},\varphi_{3} directly, namely,

pDsq=12(mBs2mDs2t1),pDspμ1=EDsEμ1|𝒑Ds||𝒑μ1|cosθ1,qpμ1=12(t1+mμ2t2),\displaystyle p_{D_{s}}\cdot q=\frac{1}{2}(m_{B_{s}}^{2}-m_{D_{s}}^{2}-t_{1}),~{}p_{D_{s}}\cdot p_{\mu_{1}}=E_{D_{s}}^{*}E_{\mu_{1}}^{*}-|\bm{p}_{D_{s}}^{*}||\bm{p}_{\mu_{1}}^{*}|\cos\theta_{1},~{}q\cdot p_{\mu_{1}}=\frac{1}{2}(t_{1}+m_{\mu}^{2}-t_{2}), (53)
pμ2pπ=12(t2mμ2mπ2),pμ1pπ=Eμ1Eπ+|𝒑μ1||𝒑μ2|cosθ3,pμ1pμ2=Eμ1Eμ2|𝒑μ1||𝒑μ2|cosθ3.\displaystyle p_{\mu_{2}}\cdot p_{\pi}=\frac{1}{2}(t_{2}-m_{\mu}^{2}-m_{\pi}^{2}),~{}~{}~{}p_{\mu_{1}}\cdot p_{\pi}=E_{\mu_{1}}E_{\pi}+|\bm{p}_{\mu_{1}}||\bm{p}_{\mu_{2}}|\cos\theta_{3},~{}~{}~{}~{}p_{\mu_{1}}\cdot p_{\mu_{2}}=E_{\mu_{1}}E_{\mu_{2}}-|\bm{p}_{\mu_{1}}||\bm{p}_{\mu_{2}}|\cos\theta_{3}.

Here, we list the explicit forms for the energies and three-momenta that appear in the above terms (the superscript “*” represents the value in the WW^{*} rest frame),

EDs=12t1(mBs2mDs2t1),Eμ1=12t1(t1+mμ2t2),|𝒑Ds|=12t1λ12(mBs2,mDs2,t1),\displaystyle E_{D_{s}}^{*}=\frac{1}{2\sqrt{t_{1}}}(m_{B_{s}}^{2}-m_{D_{s}}^{2}-t_{1}),~{}E_{\mu_{1}}^{*}=\frac{1}{2\sqrt{t_{1}}}(t_{1}+m_{\mu}^{2}-t_{2}),~{}|\bm{p}_{D_{s}}^{*}|=\frac{1}{2\sqrt{t_{1}}}\lambda^{\frac{1}{2}}(m_{B_{s}}^{2},m_{D_{s}}^{2},t_{1}), (54)
|𝒑μ1|=12t1λ12(t1,mμ2,t2),Eμ1=12t2(t1mμ2t2),Eμ2=12t2(t2mμ2+mπ2),\displaystyle|\bm{p}_{\mu_{1}}^{*}|=\frac{1}{2\sqrt{t_{1}}}\lambda^{\frac{1}{2}}(t_{1},m_{\mu}^{2},t_{2}),\qquad E_{\mu_{1}}=\frac{1}{2\sqrt{t_{2}}}(t_{1}-m_{\mu}^{2}-t_{2}),~{}~{}E_{\mu_{2}}=\frac{1}{2\sqrt{t_{2}}}(t_{2}-m_{\mu}^{2}+m_{\pi}^{2}),
Eπ=12t2(t2mμ2+mπ2),|𝒑μ1|=12t2λ12(t1,mμ2,t2),|𝒑μ2|=12t2λ12(t2,mμ2,mπ2),\displaystyle E_{\pi}=\frac{1}{2\sqrt{t_{2}}}(t_{2}-m_{\mu}^{2}+m_{\pi}^{2}),\qquad|\bm{p}_{\mu_{1}}|=\frac{1}{2\sqrt{t_{2}}}\lambda^{\frac{1}{2}}(t_{1},m_{\mu}^{2},t_{2}),~{}~{}|\bm{p}_{\mu_{2}}|=\frac{1}{2\sqrt{t_{2}}}\lambda^{\frac{1}{2}}(t_{2},m_{\mu}^{2},m_{\pi}^{2}),
EN=12t1(t1+t2mμ2),|𝒑N|=12t1λ12(t1,t2,mμ2).\displaystyle E_{N}^{*}=\frac{1}{2\sqrt{t_{1}}}(t_{1}+t_{2}-m_{\mu}^{2}),\qquad~{}|\bm{p}_{N}^{*}|=\frac{1}{2\sqrt{t_{1}}}\lambda^{\frac{1}{2}}(t_{1},t_{2},m_{\mu}^{2}).

Note that q=pμ1+pμ2+pπq=p_{\mu_{1}}+p_{\mu_{2}}+p_{\pi}, so qpμ2q\cdot p_{\mu_{2}} and qpπq\cdot p_{\pi} can also be written directly. In order to get pDspμ2p_{D_{s}}\cdot p_{\mu_{2}} and pDspπp_{D_{s}}\cdot p_{\pi}, we need to do a Lorentz transformation from the WW* rest frame to the NN rest frame on pDsp_{D_{s}}, since only the four-momenta vector of DsD_{s} in the WW* rest frame can be written directly. We need to first rotate the zz axis of ΣW\Sigma_{W^{*}} to the direction of 𝒑μ1\bm{p}_{\mu_{1}}, then boost the four-momenta vector of pDsp_{D_{s}} from the WW^{*} rest frame to the NN rest from. In the WW^{*} rest frame where the zz axis points to the direction of 𝒑μ1\bm{p}_{\mu_{1}}, the four-momenta vector of DsD_{s} is

pDs=(EDs,|𝒑Ds|sinθ1,0,|𝒑Ds|cosθ1).p_{D_{s}}^{*}=(E_{D_{s}}^{*},~{}|\bm{p}^{*}_{D_{s}}|\sin\theta_{1},~{}0,~{}|\bm{p}^{*}_{D_{s}}|\cos\theta_{1}). (55)

The Lorentz boost from the WW^{*} rest frame to the NN rest frame is

B(𝒗N)=(γN00γN|𝒗N|01000010γN|𝒗N|00γN),B(\bm{v}_{N})=\left(\begin{array}[]{cccc}\gamma_{N}&~{}0&~{}0&~{}\gamma_{N}|\bm{v}_{N}|\\ 0&~{}1&~{}0&~{}0\\ 0&~{}0&~{}1&~{}0\\ \gamma_{N}|\bm{v}_{N}|&~{}0&~{}0&~{}\gamma_{N}\end{array}\right), (56)

where γN\gamma_{N} and 𝒗N\bm{v}_{N} are the Lorentz factor and the speed of NN in the WW^{*} rest frame, respectively,

γN=ENmN,|𝒗N|=|𝒑N|EN.\gamma_{N}=\frac{E_{N}^{*}}{m_{N}},~{}~{}~{}|\bm{v}_{N}|=\frac{|\bm{p}_{N}^{*}|}{E_{N}^{*}}. (57)

Here, ENE_{N}^{*} and |𝒑N||\bm{p}_{N}^{*}| are given in Equation (54). As a result, pDspμ2p_{D_{s}}\cdot p_{\mu_{2}} and pDspπp_{D_{s}}\cdot p_{\pi} are written as

pDspμ2=γN(EDs+|𝒗N||𝒑Ds|cosθ1)Eμ2|𝒑Ds||𝒑μ2|sinθ1sinθ3cosφ3γN(|𝒑Ds|cosθ1+|𝒗N|EDs)|𝒑μ2|cosθ3,\displaystyle p_{D_{s}}\cdot p_{\mu_{2}}=\gamma_{N}(E_{D_{s}}^{*}+|\bm{v}_{N}||\bm{p}_{D_{s}}^{*}|\cos\theta_{1})E_{\mu_{2}}-|\bm{p}_{D_{s}}^{*}||\bm{p}_{\mu_{2}}|\sin\theta_{1}\sin\theta_{3}\cos\varphi_{3}-\gamma_{N}(|\bm{p}_{D_{s}}^{*}|\cos\theta_{1}+|\bm{v}_{N}|E_{D_{s}}^{*})|\bm{p}_{\mu_{2}}|\cos\theta_{3}, (58)
pDspπ=γN(EDs+|𝒗N||𝒑Ds|cosθ1)Eπ+|𝒑Ds||𝒑μ2|sinθ1sinθ3cosφ3+γN(|𝒑Ds|cosθ1+|𝒗N|EDs)|𝒑μ2|cosθ3\displaystyle p_{D_{s}}\cdot p_{\pi}~{}=\gamma_{N}(E_{D_{s}}^{*}+|\bm{v}_{N}||\bm{p}_{D_{s}}^{*}|\cos\theta_{1})E_{\pi}+|\bm{p}_{D_{s}}^{*}||\bm{p}_{\mu_{2}}|\sin\theta_{1}\sin\theta_{3}\cos\varphi_{3}+\gamma_{N}(|\bm{p}_{D_{s}}^{*}|\cos\theta_{1}+|\bm{v}_{N}|E_{D_{s}}^{*})|\bm{p}_{\mu_{2}}|\cos\theta_{3}

Appendix C DECAY WIDTH FOR BsDsμ1NiB_{s}\rightarrow D_{s}\mu_{1}N_{i} AND FOR Niμ2πN_{i}\rightarrow\mu_{2}\pi

Refer to caption
Figure 7: Feynman diagram for BsDsμ1NiB_{s}\rightarrow D_{s}\mu_{1}N_{i}

The Feynman diagram for BsDsμ1NiB_{s}\rightarrow D_{s}\mu_{1}N_{i} is shown in Fig. 7. The amplitude for the process is

i(BsDsμ1Ni)=GF2UμNiVcbu¯(pNi)γμ(1γ5)v(p1)Ds|c(0)γμb(0)|Bs0,i\mathcal{M}(B_{s}\rightarrow D_{s}\mu_{1}N_{i})=\frac{G_{F}}{\sqrt{2}}U_{\mu N_{i}}V_{cb}\bar{u}(p_{N_{i}})\gamma_{\mu}(1-\gamma_{5})v(p_{1})\langle D_{s}^{-}|c(0)\gamma^{\mu}b(0)|B_{s}^{0}\rangle, (59)

Integrating the amplitude over three-body phase space, we have the decay width for BsDsμ1NiB_{s}\rightarrow D_{s}\mu_{1}N_{i},

Γ(BsDsμ1Ni)=GF2Vcb2384π31mBs3tmintmax𝑑t1t2λ12(mBs2,mDs2,t)λ12(mμ2,mNi2,t)[f+2(t)D1(t)+f02(t)D0(t)],\Gamma(B_{s}\rightarrow D_{s}\mu_{1}N_{i})=\frac{G_{F}^{2}V_{cb}^{2}}{384\pi^{3}}\frac{1}{m_{B_{s}}^{3}}\int_{t_{min}}^{t_{max}}dt\frac{1}{t^{2}}\lambda^{\frac{1}{2}}(m_{B_{s}}^{2},m_{D_{s}}^{2},t)\lambda^{\frac{1}{2}}(m_{\mu}^{2},m_{N_{i}}^{2},t)\Big{[}f_{+}^{2}(t)D_{1}(t)+f_{0}^{2}(t)D_{0}(t)\Big{]}, (60)

where tmin=(mNi+mμ)2t_{min}=(m_{N_{i}}+m_{\mu})^{2}, tmax=(mBsmDs)2t_{max}=(m_{B_{s}}-m_{D_{s}})^{2} and coefficients D1(t)D_{1}(t) and D0(t)D_{0}(t) are

D1(t)\displaystyle D_{1}(t) =[(tmDs2)22mBs2(t+mDs2)+mBs4][2t2tmNi2+mμ2(2mNi2t)mNi2mμ4]\displaystyle=\Big{[}(t-m_{D_{s}}^{2})^{2}-2m_{B_{s}}^{2}(t+m_{D_{s}}^{2})+m_{B_{s}}^{4}\Big{]}\Big{[}2t^{2}-tm_{N_{i}}^{2}+m_{\mu}^{2}(2m_{N_{i}}^{2}-t)-m_{N_{i}}^{2}-m_{\mu}^{4}\Big{]} (61)
D0(t)\displaystyle D_{0}(t) =3(mBs2mDs2)[tmNi2+mμ2(2mNi2+t)mNi4mμ4].\displaystyle=3(m_{B_{s}}^{2}-m_{D_{s}}^{2})\Big{[}tm_{N_{i}}^{2}+m_{\mu}^{2}(2m_{N_{i}}^{2}+t)-m_{N_{i}}^{4}-m_{\mu}^{4}\Big{]}.

As for the process Niμ2πN_{i}\rightarrow\mu_{2}\pi, the decay width is well known in the literature,

Γ(Niμπ)=GF216π|Vud|2|UμNi|2fπ2mNiλ1/2(mNi2,mμ2,mπ2)[(1mμ2mNi2)2mπ2mNi2(1+mμ2mNi2)].\Gamma(N_{i}\rightarrow\mu\pi)=\frac{G_{F}^{2}}{16\pi}|V_{ud}|^{2}|U_{\mu N_{i}}|^{2}f_{\pi}^{2}m_{N_{i}}\lambda^{1/2}(m_{N_{i}}^{2},m_{\mu}^{2},m_{\pi}^{2})\left[\left(1-\frac{m_{\mu}^{2}}{m_{N_{i}}^{2}}\right)^{2}-\frac{m_{\pi}^{2}}{m_{N_{i}}^{2}}\left(1+\frac{m_{\mu}^{2}}{m_{N_{i}}^{2}}\right)\right]. (62)

Appendix D TOTAL DECAY WIDTH FOR THE INTERMEDIATE MAJORANA NEUTRINO

Although ΓNi\Gamma_{N_{i}} can be calculated through the channel-by-channel approach, which sums up the partial decay rates for all the leptonic and semileptonic decay modes of NN Atre:2009rg , for neutrino mass larger than 1 GeV the uncertainties of the hadronic parameters such as the decay constants of the final hadronic states are large. Since we are interested in the mass range between 1 and 4 GeV, here we use the inclusive approach introduced in Ref. Helo:2010cw , which approximates the semileptonic decays of NN by its decays into free quark-antiquark pairs and leptons and the approximation is better than the channel-by-channel method for neutrino mass more than 1 GeV Bondarenko:2018ptm . We refer to Ref. Helo:2010cw for details of the calculation. Then all the decay channels of NN are three-body decays and the partial decay rates are proportional to mN5m_{N}^{5}. Thus, the total decay width can be written as

ΓNi=GF2mNi596π3l=e,μ,τ|UlN|2al(mNi),\Gamma_{N_{i}}=\frac{G_{F}^{2}m_{N_{i}}^{5}}{96\pi^{3}}\sum_{l=e,\mu,\tau}|U_{lN}|^{2}a_{l}(m_{N_{i}}), (63)

where al(mNi)a_{l}(m_{N_{i}}) are dimensionless functions of mNim_{N_{i}}, and the numerical values of al(mNi)a_{l}(m_{N_{i}}) are presented in Fig. 8.

Refer to caption
Figure 8: Numerical values of al(mN)a_{l}(m_{N})

References

  • (1) Y. Fukuda et al. [Super-Kamiokande], Phys. Rev. Lett. 81, 1562-1567 (1998) doi:10.1103/PhysRevLett.81.1562 [arXiv:hep-ex/9807003 [hep-ex]].
  • (2) R. Wendell et al. [Super-Kamiokande], Phys. Rev. D 81, 092004 (2010) doi:10.1103/PhysRevD.81.092004 [arXiv:1002.3471 [hep-ex]].
  • (3) P. Minkowski, Phys. Lett. B 67, 421-428 (1977) doi:10.1016/0370-2693(77)90435-X
  • (4) M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C 790927, 315-321 (1979) [arXiv:1306.4669 [hep-th]].
  • (5) R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980) doi:10.1103/PhysRevLett.44.912
  • (6) T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980) doi:10.1143/PTP.64.1103
  • (7) L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Phys. Rev. D 87, 093006 (2013) doi:10.1103/PhysRevD.87.093006 [arXiv:1208.4607 [hep-ph]].
  • (8) S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17-20 (1994) doi:10.1103/PhysRevLett.72.17 [arXiv:hep-ph/9303287 [hep-ph]].
  • (9) X. D. Shi and G. M. Fuller, Phys. Rev. Lett. 82, 2832-2835 (1999) doi:10.1103/PhysRevLett.82.2832 [arXiv:astro-ph/9810076 [astro-ph]].
  • (10) T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17-26 (2005) doi:10.1016/j.physletb.2005.06.020 [arXiv:hep-ph/0505013 [hep-ph]].
  • (11) L. Canetti, M. Drewes and M. Shaposhnikov, Phys. Rev. Lett. 110, no.6, 061801 (2013) doi:10.1103/PhysRevLett.110.061801 [arXiv:1204.3902 [hep-ph]].
  • (12) S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Adv. High Energy Phys. 2016, 2162659 (2016) doi:10.1155/2016/2162659 [arXiv:1601.07512 [hep-ph]].
  • (13) M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Ann. Rev. Nucl. Part. Sci. 69, 219-251 (2019) doi:10.1146/annurev-nucl-101918-023407 [arXiv:1902.04097 [nucl-ex]].
  • (14) J. Engel and J. Menéndez, Rept. Prog. Phys. 80, no.4, 046301 (2017) doi:10.1088/1361-6633/aa5bc5 [arXiv:1610.06548 [nucl-th]].
  • (15) J. Abad, J. G. Esteve and A. F. Pacheco, Phys. Rev. D 30, 1488 (1984) doi:10.1103/PhysRevD.30.1488
  • (16) L. S. Littenberg and R. E. Shrock, Phys. Rev. Lett. 68, 443-446 (1992) doi:10.1103/PhysRevLett.68.443
  • (17) L. S. Littenberg and R. Shrock, Phys. Lett. B 491, 285-290 (2000) doi:10.1016/S0370-2693(00)01041-8 [arXiv:hep-ph/0005285 [hep-ph]].
  • (18) A. Ali, A. V. Borisov and N. B. Zamorin, Eur. Phys. J. C 21, 123-132 (2001) doi:10.1007/s100520100702 [arXiv:hep-ph/0104123 [hep-ph]].
  • (19) M. A. Ivanov and S. G. Kovalenko, Phys. Rev. D 71, 053004 (2005) doi:10.1103/PhysRevD.71.053004 [arXiv:hep-ph/0412198 [hep-ph]].
  • (20) C. Dib, V. Gribanov, S. Kovalenko and I. Schmidt, Phys. Lett. B 493, 82-87 (2000) doi:10.1016/S0370-2693(00)01134-5 [arXiv:hep-ph/0006277 [hep-ph]].
  • (21) A. Atre, V. Barger and T. Han, Phys. Rev. D 71, 113014 (2005) doi:10.1103/PhysRevD.71.113014 [arXiv:hep-ph/0502163 [hep-ph]].
  • (22) A. Atre, T. Han, S. Pascoli and B. Zhang, JHEP 05, 030 (2009) doi:10.1088/1126-6708/2009/05/030 [arXiv:0901.3589 [hep-ph]].
  • (23) J. C. Helo, S. Kovalenko and I. Schmidt, Nucl. Phys. B 853, 80-104 (2011) doi:10.1016/j.nuclphysb.2011.07.020 [arXiv:1005.1607 [hep-ph]].
  • (24) G. Cvetic, C. Dib, S. K. Kang and C. S. Kim, Phys. Rev. D 82, 053010 (2010) doi:10.1103/PhysRevD.82.053010 [arXiv:1005.4282 [hep-ph]].
  • (25) G. Cvetic and C. S. Kim, Phys. Rev. D 94, no.5, 053001 (2016) [erratum: Phys. Rev. D 95, no.3, 039901 (2017)] doi:10.1103/PhysRevD.94.053001 [arXiv:1606.04140 [hep-ph]].
  • (26) G. Cvetic and C. S. Kim, Phys. Rev. D 96, no.3, 035025 (2017) [erratum: Phys. Rev. D 102, no.1, 019903 (2020); erratum: Phys. Rev. D 102, no.3, 039902 (2020)] doi:10.1103/PhysRevD.96.035025 [arXiv:1705.09403 [hep-ph]].
  • (27) G. Cvetič and C. S. Kim, Phys. Rev. D 100, no.1, 015014 (2019) doi:10.1103/PhysRevD.100.015014 [arXiv:1904.12858 [hep-ph]].
  • (28) D. Milanes, N. Quintero and C. E. Vera, Phys. Rev. D 93, no.9, 094026 (2016) doi:10.1103/PhysRevD.93.094026 [arXiv:1604.03177 [hep-ph]].
  • (29) J. Mejia-Guisao, D. Milanés, N. Quintero and J. D. Ruiz-Alvarez, Phys. Rev. D 97, no.7, 075018 (2018) doi:10.1103/PhysRevD.97.075018 [arXiv:1708.01516 [hep-ph]].
  • (30) D. Milanés and N. Quintero, Phys. Rev. D 98, no.9, 096004 (2018) doi:10.1103/PhysRevD.98.096004 [arXiv:1808.06017 [hep-ph]].
  • (31) T. Asaka and H. Ishida, Phys. Lett. B 763, 393-396 (2016) doi:10.1016/j.physletb.2016.10.070 [arXiv:1609.06113 [hep-ph]].
  • (32) E. J. Chun, A. Das, S. Mandal, M. Mitra and N. Sinha, Phys. Rev. D 100, no.9, 095022 (2019) doi:10.1103/PhysRevD.100.095022 [arXiv:1908.09562 [hep-ph]].
  • (33) N. Quintero, G. Lopez Castro and D. Delepine, Phys. Rev. D 84, 096011 (2011) [erratum: Phys. Rev. D 86, 079905 (2012)] doi:10.1103/PhysRevD.84.096011 [arXiv:1108.6009 [hep-ph]].
  • (34) C. Barbero, G. Lopez Castro and A. Mariano, Phys. Lett. B 566, 98-107 (2003) doi:10.1016/S0370-2693(03)00773-1 [arXiv:nucl-th/0212083 [nucl-th]].
  • (35) C. Barbero, L. F. Li, G. Lopez Castro and A. Mariano, Phys. Rev. D 76, 116008 (2007) doi:10.1103/PhysRevD.76.116008 [arXiv:0709.2431 [hep-ph]].
  • (36) C. Barbero, L. F. Li, G. López Castro and A. Mariano, Phys. Rev. D 87, no.3, 036010 (2013) doi:10.1103/PhysRevD.87.036010 [arXiv:1301.3448 [hep-ph]].
  • (37) J. Mejia-Guisao, D. Milanes, N. Quintero and J. D. Ruiz-Alvarez, Phys. Rev. D 96, no.1, 015039 (2017) doi:10.1103/PhysRevD.96.015039 [arXiv:1705.10606 [hep-ph]].
  • (38) G. Zhang and B.-Q. Ma, Phys. Rev. D 103, no.3, 033004 (2021) doi:10.1103/PhysRevD.103.033004 [arXiv:2101.05566 [hep-ph]].
  • (39) G. Lopez Castro and N. Quintero, Phys. Rev. D 85, 076006 (2012) [erratum: Phys. Rev. D 86, 079904 (2012)] doi:10.1103/PhysRevD.85.076006 [arXiv:1203.0537 [hep-ph]].
  • (40) V. Gribanov, S. Kovalenko and I. Schmidt, Nucl. Phys. B 607, 355-368 (2001) doi:10.1016/S0550-3213(01)00169-9 [arXiv:hep-ph/0102155 [hep-ph]].
  • (41) G. Cvetic, C. Dib, C. S. Kim and J. D. Kim, Phys. Rev. D 66, 034008 (2002) [erratum: Phys. Rev. D 68, 059901 (2003)] doi:10.1103/PhysRevD.66.034008 [arXiv:hep-ph/0202212 [hep-ph]].
  • (42) K. Abe et al. [T2K], Phys. Rev. Lett. 107, 041801 (2011) doi:10.1103/PhysRevLett.107.041801 [arXiv:1106.2822 [hep-ex]].
  • (43) F. P. An et al. [Daya Bay], Phys. Rev. Lett. 108, 171803 (2012) doi:10.1103/PhysRevLett.108.171803 [arXiv:1203.1669 [hep-ex]].
  • (44) J. K. Ahn et al. [RENO], Phys. Rev. Lett. 108, 191802 (2012) doi:10.1103/PhysRevLett.108.191802 [arXiv:1204.0626 [hep-ex]].
  • (45) G. Cvetič, C. S. Kim and J. Zamora-Saá, J. Phys. G 41, 075004 (2014) doi:10.1088/0954-3899/41/7/075004 [arXiv:1311.7554 [hep-ph]].
  • (46) G. Cvetic, C. S. Kim, R. Kogerler and J. Zamora-Saa, Phys. Rev. D 92, 013015 (2015) doi:10.1103/PhysRevD.92.013015 [arXiv:1505.04749 [hep-ph]].
  • (47) G. Cvetič, C. S. Kim and J. Zamora-Saá, Phys. Rev. D 89, no.9, 093012 (2014) doi:10.1103/PhysRevD.89.093012 [arXiv:1403.2555 [hep-ph]].
  • (48) C. O. Dib, M. Campos and C. S. Kim, JHEP 02, 108 (2015) doi:10.1007/JHEP02(2015)108 [arXiv:1403.8009 [hep-ph]].
  • (49) G. Cvetic, C. Dib, C. S. Kim and J. Zamora-Saa, Symmetry 7, 726-773 (2015) doi:10.3390/sym7020726 [arXiv:1503.01358 [hep-ph]].
  • (50) G. Cvetic, C. S. Kim, S. Mendizabal and J. Zamora-Saa, Eur. Phys. J. C 80, no.11, 1052 (2020) doi:10.1140/epjc/s10052-020-08625-0 [arXiv:2007.04115 [hep-ph]].
  • (51) J. Zhang, T. Wang, G. Li, Y. Jiang and G. L. Wang, Phys. Rev. D 103, no.3, 035015 (2021) doi:10.1103/PhysRevD.103.035015 [arXiv:2010.13286 [hep-ph]].
  • (52) J. Zamora-Saa, JHEP 05, 110 (2017) doi:10.1007/JHEP05(2017)110 [arXiv:1612.07656 [hep-ph]].
  • (53) S. Tapia and J. Zamora-Saá, Nucl. Phys. B 952, 114936 (2020) doi:10.1016/j.nuclphysb.2020.114936 [arXiv:1906.09470 [hep-ph]].
  • (54) F. Najafi, J. Kumar and D. London, JHEP 04, 021 (2021) doi:10.1007/JHEP04(2021)021 [arXiv:2011.03686 [hep-ph]].
  • (55) A. Abada, C. Hati, X. Marcano and A. M. Teixeira, JHEP 09, 017 (2019) doi:10.1007/JHEP09(2019)017 [arXiv:1904.05367 [hep-ph]].
  • (56) A. Das, P. S. B. Dev and R. N. Mohapatra, Phys. Rev. D 97, no.1, 015018 (2018) doi:10.1103/PhysRevD.97.015018 [arXiv:1709.06553 [hep-ph]].
  • (57) D. Gorbunov and M. Shaposhnikov, JHEP 10, 015 (2007) [erratum: JHEP 11, 101 (2013)] doi:10.1088/1126-6708/2007/10/015 [arXiv:0705.1729 [hep-ph]].
  • (58) R. Aaij et al. [LHCb], [arXiv:1808.08865 [hep-ex]].
  • (59) C. Dib and C. S. Kim, Phys. Rev. D 89, no.7, 077301 (2014) doi:10.1103/PhysRevD.89.077301 [arXiv:1403.1985 [hep-ph]].
  • (60) P. A. Zyla et al. [Particle Data Group], PTEP 2020, no.8, 083C01 (2020) doi:10.1093/ptep/ptaa104
  • (61) C. J. Monahan, H. Na, C. M. Bouchard, G. P. Lepage and J. Shigemitsu, Phys. Rev. D 95, no.11, 114506 (2017) doi:10.1103/PhysRevD.95.114506 [arXiv:1703.09728 [hep-lat]].
  • (62) R. Aaij et al. [LHCb], Phys. Rev. Lett. 118, no.5, 052002 (2017) [erratum: Phys. Rev. Lett. 119, no.16, 169901 (2017)] doi:10.1103/PhysRevLett.118.052002 [arXiv:1612.05140 [hep-ex]].
  • (63) R. Aaij et al. [LHCb], Phys. Rev. D 100, no.3, 031102 (2019) doi:10.1103/PhysRevD.100.031102 [arXiv:1902.06794 [hep-ex]].
  • (64) R. Aaij et al. [LHCb], Phys. Rev. D 87, no.11, 112009 (2013) doi:10.1103/PhysRevD.87.112009 [arXiv:1304.6317 [hep-ex]].
  • (65) R. Aaij et al. [LHCb], JHEP 09, 179 (2015) doi:10.1007/JHEP09(2015)179 [arXiv:1506.08777 [hep-ex]].
  • (66) R. Aaij et al. [LHCb], Phys. Rev. Lett. 126, no.8, 081804 (2021) doi:10.1103/PhysRevLett.126.081804 [arXiv:2012.05143 [hep-ex]].
  • (67) R. Aaij et al. [LHCb], Phys. Rev. Lett. 112, no.13, 131802 (2014) doi:10.1103/PhysRevLett.112.131802 [arXiv:1401.5361 [hep-ex]].
  • (68) R. Aaij et al. [LHCb], Eur. Phys. J. C 77, no.4, 224 (2017) doi:10.1140/epjc/s10052-017-4744-6 [arXiv:1612.00945 [hep-ex]].
  • (69) F. F. Deppisch, P. S. Bhupal Dev and A. Pilaftsis, New J. Phys. 17, no.7, 075019 (2015) doi:10.1088/1367-2630/17/7/075019 [arXiv:1502.06541 [hep-ph]].
  • (70) A. Vaitaitis et al. [NuTeV and E815], Phys. Rev. Lett. 83, 4943-4946 (1999) doi:10.1103/PhysRevLett.83.4943 [arXiv:hep-ex/9908011 [hep-ex]].
  • (71) A. M. Cooper-Sarkar et al. [WA66], Phys. Lett. B 160, 207-211 (1985) doi:10.1016/0370-2693(85)91493-5
  • (72) D. Liventsev et al. [Belle], Phys. Rev. D 87, no.7, 071102 (2013) [erratum: Phys. Rev. D 95, no.9, 099903 (2017)] doi:10.1103/PhysRevD.87.071102 [arXiv:1301.1105 [hep-ex]].
  • (73) P. Abreu et al. [DELPHI], Z. Phys. C 74, 57-71 (1997) [erratum: Z. Phys. C 75, 580 (1997)] doi:10.1007/s002880050370
  • (74) G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873-3889 (1998) doi:10.1103/PhysRevD.57.3873 [arXiv:physics/9711021 [physics.data-an]].
  • (75) K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, JHEP 11, 032 (2018) doi:10.1007/JHEP11(2018)032 [arXiv:1805.08567 [hep-ph]].