This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

CP Phases in 2HDM and Effective Potential: A Geometrical View

Qing-Hong Cao [email protected] Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, China Center for High Energy Physics, Peking University, Beijing 100871, China    Kun Cheng [email protected] Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China    Changlong Xu [email protected] Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Abstract

Using a geometric description of 2HDM, we classify CP invariants into three independent sectors such as scalar potential, Yukawa interaction and CKM matrix. Thermal effective potential of 2HDM is calculated in a basis invariant way. It is shown that the CP violation in Yukawa interactions can contribute to effective potential at one loop level but the CP phase in the CKM matrix cannot leak to effective potential at all orders. In the 2HDM with a softly broken Z2Z_{2} symmetry, the leading thermal correction tends to restore the CP symmetry at high temperature.

Introduction. Two-Higgs-Doublet-Model (2HDM) is one of the simplest extensions of Standard Model (SM) that can provide both new sources of CP violation and strong first order phase transition [1, 2, 3, 4, 5, 6]. It suffers, unfortunately, from the arbitrariness of the scalar basis choice, e.g., a unitary transformation between the two Higgs doublets does not have any physical consequence. The CP phases in the 2HDM could originate from the scalar potential, Yukawa interactions, or Cabbibo-Kobayashi-Maskawa (CKM) matrix [7]. To fully understand the CP property of the 2HDM, one needs to clarify independent CP invariants. As a global symmetry the CP symmetry is best studied in basis invariant methods, such as the bilinear notation [8, 9, 10, 11, 12] or the tensor notation [13, 14, 15]. In the Letter we adopt the bilinear notation to categorize all the independent CP invariants through a geometric prospective, which makes the separation of the CP invariants from the Yukawa interactions and the CKM matrix intuitively evident. For the first time, effective potential including the contributions from the scalar self interactions, the Yukawa interactions and the gauge interactions are calculated fully in a way of basis invariant form.

A general fourth-degree scalar potential is

V(Φ1,Φ2)=m112Φ1Φ1+m222Φ2Φ2m122Φ1Φ2\displaystyle V(\Phi_{1},\Phi_{2})=m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1}+m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2}-m_{12}^{2}\Phi_{1}^{\dagger}\Phi_{2}
+12λ1(Φ1Φ1)2+12λ2(Φ2Φ2)2+λ3(Φ2Φ2)(Φ1Φ1)\displaystyle+\tfrac{1}{2}\lambda_{1}(\Phi_{1}^{\dagger}\Phi_{1})^{2}+\tfrac{1}{2}\lambda_{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2}+\lambda_{3}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{1})
+λ4(Φ1Φ2)(Φ2Φ1)+12λ5(Φ1Φ2)2\displaystyle+\lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1})+\tfrac{1}{2}\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2}
+λ6(Φ1Φ1)(Φ1Φ2)+λ7(Φ2Φ2)(Φ1Φ2)+h.c.,\displaystyle+\lambda_{6}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{1}^{\dagger}\Phi_{2})+\lambda_{7}(\Phi_{2}^{\dagger}\Phi_{2})(\Phi_{1}^{\dagger}\Phi_{2})+h.c.~{}, (1)

in which (m122,λ5,6,7)(m_{12}^{2},\lambda_{5,6,7}) are generally complex while all the others parameters are real. The scalar potential can be reparametrized by an SU(2)ΦSU(2)_{\Phi} rotation Φi=UijΦj\Phi_{i}^{\prime}=U_{ij}\Phi_{j} (i,j=1,2i,j=1,2). Making use of the relation between SU(2)SU(2) and SO(3)SO(3) groups, the basis transformation can be viewed explicitly in the so-called KK-space, in which the SU(2)ΦSU(2)_{\Phi} basis transformation Φi=UijΦj\Phi_{i}^{\prime}=U_{ij}\Phi_{j} corresponds to an SO(3)KSO(3)_{K} rotation. Define a four vector KμΦiσijμΦj=(K0,K)TK^{\mu}\equiv\Phi_{i}^{\dagger}\sigma_{ij}^{\mu}\Phi_{j}=(K_{0},\vec{K})^{T}, where

K=(Φ1Φ2+Φ2Φ1,i(Φ2Φ1Φ1Φ2),Φ1Φ1Φ2Φ2)T,\displaystyle\vec{K}=(\Phi_{1}^{\dagger}\Phi_{2}+\Phi_{2}^{\dagger}\Phi_{1},i(\Phi_{2}^{\dagger}\Phi_{1}-\Phi_{1}^{\dagger}\Phi_{2}),\Phi_{1}^{\dagger}\Phi_{1}-\Phi_{2}^{\dagger}\Phi_{2})^{T},
K0=Φ1Φ1+Φ2Φ2.\displaystyle K_{0}=\Phi_{1}^{\dagger}\Phi_{1}+\Phi_{2}^{\dagger}\Phi_{2}. (2)

Under an SO(3)KSO(3)_{K} rotation Rab(U)=12tr[UσaUσb]R_{ab}(U)=\tfrac{1}{2}\text{tr}\left[U^{\dagger}\sigma_{a}U\sigma_{b}\right], K0K_{0} behaves as a singlet while K\vec{K} transforms as a vector, i.e.,

(K0,K)=(K0,R(U)K).(K_{0}^{\prime},\vec{K}^{\prime})=(K_{0},R(U)\vec{K}). (3)

The scalar potential in the KK-space is [8, 11]

V\displaystyle V =ξ0K0+η00K02+ξK+2K0ηK+KTEK,\displaystyle=\xi_{0}K_{0}+\eta_{00}K_{0}^{2}+\vec{\xi}\cdot\vec{K}+2K_{0}\vec{\eta}\cdot\vec{K}+\vec{K}^{T}{E}\vec{K}, (4)

where

ξ0\displaystyle\xi_{0} \displaystyle\equiv 12(m112+m222),η00=(λ1+λ2+2λ3)/8\displaystyle\frac{1}{2}(m_{11}^{2}+m_{22}^{2}),\qquad\eta_{00}=(\lambda_{1}+\lambda_{2}+2\lambda_{3})/8
ξ\displaystyle\vec{\xi} =\displaystyle= ((m122),(m122),12(m112m222))T,\displaystyle\left(-\Re\left(m_{12}^{2}\right),\Im\left(m_{12}^{2}\right),\tfrac{1}{2}(m_{11}^{2}-m_{22}^{2})\right)^{T},
η\displaystyle\vec{\eta} =\displaystyle= ((λ6+λ7)/4,(λ6+λ7)/4,(λ1λ2)/8)T,\displaystyle\left(\Re(\lambda_{6}+\lambda_{7})/4,-\Im(\lambda_{6}+\lambda_{7})/4,(\lambda_{1}-\lambda_{2})/8\right)^{T},
E\displaystyle E =\displaystyle= 14(λ4+(λ5)(λ5)(λ6λ7)(λ5)λ4(λ5)(λ7λ6)(λ6λ7)(λ7λ6)(λ1+λ22λ3)/2).\displaystyle\frac{1}{4}\left(\begin{array}[]{ccc}\lambda_{4}+\Re\left(\lambda_{5}\right)&-\Im\left(\lambda_{5}\right)&\Re\left(\lambda_{6}-\lambda_{7}\right)\\ -\Im\left(\lambda_{5}\right)&\lambda_{4}-\Re\left(\lambda_{5}\right)&\Im\left(\lambda_{7}-\lambda_{6}\right)\\ \Re\left(\lambda_{6}-\lambda_{7}\right)&\Im\left(\lambda_{7}-\lambda_{6}\right)&\left(\lambda_{1}+\lambda_{2}-2\lambda_{3}\right)/2\end{array}\right). (8)

As the scalar potential is invariant under the SO(3)KSO(3)_{K} rotation, it demands the coefficients transform covariantly in the dual space of KμK^{\mu}, i.e. ξ0=ξ0\xi^{\prime}_{0}=\xi_{0}, η00=η00\eta^{\prime}_{00}=\eta_{00}, ξ=R(U)ξ\vec{\xi}^{\prime}=R(U)\vec{\xi}, η=R(U)η\vec{\eta}\prime=R(U)\vec{\eta} and E=R(U)ER(U)TE^{\prime}=R(U)ER(U)^{T}.

The conventional CP transformation ΦiΦi\Phi_{i}\to\Phi_{i}^{*} corresponds to a mirror reflection K2K2K_{2}\to-K_{2} in the KK-space [9]. The CP invariant potential satisfies

V(Φ1,Φ2)=V(Φ1,Φ2)|ΦiΦi,V(\Phi_{1},\Phi_{2})=V(\Phi_{1},\Phi_{2})|_{\Phi_{i}\to\Phi_{i}^{*}}, (9)

while in the KK-space it becomes

V(K0,K)=V(K0,K)|K2K2.V(K_{0},\vec{K})=V(K_{0},\vec{K})|_{K_{2}\to-K_{2}}. (10)

It requires that m12m_{12} and λ5,6,7\lambda_{5,6,7} are all real. Denote Π^\hat{\Pi} as the mirror operator that reflects K2K_{2} when acting on K\vec{K}, i.e. Π^(K1,K2,K3)=(K1,K2,K3)\hat{\Pi}(K_{1},K_{2},K_{3})=(K_{1},-K_{2},K_{3}). The potential is invariant under the mirror reflection, on condition that

ξ=Π^ξ,η=Π^η,E=Π^EΠ^T,\vec{\xi}=\hat{\Pi}\vec{\xi},\quad\vec{\eta}=\hat{\Pi}\vec{\eta},\quad E=\hat{\Pi}E\hat{\Pi}^{T}, (11)

which can be easily understood from a geometric view. The 3×33\times 3 real symmetric tensor EE possesses at least three C2C_{2} axis (principal axis) and three symmetry plane. In order to respect the CP conserving condition in Eq. 11, (E,ξ,η)(E,\vec{\xi},\vec{\eta}) are all invariant under the mirror reflection, therefore, ξ\vec{\xi} and η\vec{\eta} must lie on the same symmetry plane of EE; see Fig. 1. The symmetric tensor EE can be visualized as a ellipsoid when positive definite or as a hyperboloid when not positive definite.

Refer to caption
Figure 1: Configuration of parameter vectors in a CP symmetric potential, where the black dashed line denotes the three principal axis of the ellipsoid.

Independent CP invariants. Next we explore all the independent CP invariants which are free of the basis choice. The existence of a non-zero CP invariant is a sign of CP violation, and it corresponds to a non-zero CP phase. The CP symmetry is conserved if and only if all the CP invariants vanish.

1) Scalar potential: Two independent CP invariants in scalar potential can be constructed from ξ\vec{\xi}, η\vec{\eta} and EE [9],

I1=(ξ×η)Eξ,I2=(ξ×η)Eη.I_{1}=(\vec{\xi}\times\vec{\eta})\cdot E\vec{\xi},\quad I_{2}=(\vec{\xi}\times\vec{\eta})\cdot E\vec{\eta}. (12)

In case of ξ\vec{\xi} is collinear with η\vec{\eta} along direction l\vec{l}, another invariant (l×El)E2l(\vec{l}\times E\vec{l})\cdot E^{2}\vec{l} can be constructed; see Ref. [9] for details.

2) Yukawa interaction: For simplicity we consider the quark sector in this work. The Yukawa couplings for quarks in the 2HDM Lagrangian are

Yuk=Q¯Lmyu,imnΦ~iuRnQ¯Lmyd,imnΦidRn+h.c.,\displaystyle\mathcal{L}_{\rm Yuk}=-\bar{Q}_{L}^{m}y^{mn}_{u,i}\tilde{\Phi}_{i}u^{n}_{R}-\bar{Q}_{L}^{m}y^{mn}_{d,i}\Phi_{i}d^{n}_{R}+h.c.~{}, (13)

where QL=(uL,dL)TQ_{L}=(u_{L},d_{L})^{T} and the superscripts mm and nn sum over all generations. The Yukawa couplings yu,iy_{u,i} and yd,iy_{d,i} are in general complex, therefore, the Yukawa couplings y1y_{1} and y2y_{2} for a specific quark have four degree of freedom together. One can parameterize them by an overall strength |𝒴|=|y1|2+|y2|2|\mathcal{Y}|=\sqrt{|y_{1}|^{2}+|y_{2}|^{2}} and three angles as

(y1,y2)=𝒴(sβ,cβeiγ)=eiδ|𝒴|(sβ,cβeiγ).(y_{1},y_{2})=\mathcal{Y}(s_{\beta},c_{\beta}e^{-i\gamma})=e^{i\delta}|\mathcal{Y}|(s_{\beta},c_{\beta}e^{-i\gamma}). (14)

Usually, the Yukawa coupling terms in the Lagrangian cannot be expressed in bilinear notation. One can use the bilinear notation to deal with the Yukawa couplings if the couplings can be shown to be in vector representations of SU(2)ΦSU(2)_{\Phi} basis rotation. For each individual generation, yu,iy_{u,i} and yd,iy_{d,i}^{*} are covariant with Φi\Phi_{i} under basis transformation ΦiUijΦj\Phi_{i}\to U_{ij}\Phi_{j}. We define covariant vectors in the dual space of KμK^{\mu} in terms of the Yukawa couplings as follows:

Yu,μyu,i(σμ)ijyu,j,Yd,μyd,i(σμ)ijyd,j,Y_{u,\mu}\equiv y_{u,i}^{*}(\sigma_{\mu})_{ij}y_{u,j},\quad Y_{d,\mu}\equiv y_{d,i}(\sigma_{\mu})_{ij}y_{d,j}^{*}, (15)

which transform in the same way as ξμ\xi_{\mu} and ημ\eta_{\mu}, i.e.

(Y0,Y)u/dmn(Y0,R(U)Y)u/dmn.(Y_{0},\vec{Y})_{u/d}^{mn}\to(Y_{0},R(U)\vec{Y})_{u/d}^{mn}. (16)

The definition in Eq. 15 yields

Y=|𝒴|2(s2βcγ,s2βsγ,c2β),Y0=|Y|.\vec{Y}=|\mathcal{Y}|^{2}(s_{2\beta}c_{\gamma},-s_{2\beta}s_{\gamma},-c_{2\beta}),\quad Y_{0}=|\vec{Y}|. (17)

On the other hand, the common phase of y1y_{1} and y2y_{2}, δ\delta, is related the CKM matrix and absent in the SO(3)KSO(3)_{K} vectors.

If the Lagrangian preserves the CP symmetry, vectors Yu/dmn\vec{Y}_{u/d}^{mn} should be invariant under the mirror reflection Π^\hat{\Pi} and lie on the same reflection plane of ξ\vec{\xi} and η\vec{\eta} shown in Fig. 1. We construct CP invariants as follows:

Ju/dmn=(ξ×η)Yu/dmn.J_{u/d}^{mn}=(\vec{\xi}\times\vec{\eta})\cdot\vec{Y}_{u/d}^{mn}. (18)

From the geometrical view, when Y\vec{Y} is not in the same plane of ξ\vec{\xi} and η\vec{\eta}, nonzero CP invariant JJ is generated, and its magnitude is the “volumn” of the cross product (ξ×η)Y(\vec{\xi}\times\vec{\eta})\cdot\vec{Y}. Considering the Yukawa interactions of NN-generation quarks, we obtain 2N22N^{2} new CP invariants JumnJ_{u}^{mn} and JdmnJ_{d}^{mn} where m,n=1,2,,Nm,n=1,2,\cdots,N.

3) The CKM matrix: For each complex quark mass matrix MuM_{u} and MdM_{d}, one can always perform a singular decomposition such that VuLMuVuRV_{u}^{L}M_{u}V_{u}^{R} and VdLMdVdRV_{d}^{L}M_{d}V_{d}^{R} are real diagonal matrices, where Vu,dL,RV^{L,R}_{u,d} stands for a unitary quark basis transformation. But with three families of quarks, the complex phases in MuM_{u} and MdM_{d} cannot be simultaneously removed with the same VLV^{L}. Therefore, the CKM matrix VCKM=(VuL)VdLV_{\rm CKM}=(V_{u}^{L})^{\dagger}V_{d}^{L} [7] is left with a phase, which can be described by the so-called Jarlskog invariant [16, 17], a basis invariant quantity,

J=det[MuMu,MdMd].J=\det[M_{u}M_{u}^{\dagger},M_{d}M_{d}^{\dagger}]. (19)

The quark mass matrices given by Eq. 13 are Mumn=yu,imnviM_{u}^{mn}=y_{u,i}^{mn}v_{i}^{*} and Mdmn=yd,imnviM_{d}^{mn}=y_{d,i}^{mn}v_{i}, and each element of quark mass matrices is a SU(2)ΦSU(2)_{\Phi} singlet. Since the quark masses do not exhibit any SO(3)KSO(3)_{K} tensor structures, the Jarlskog invariant of CKM matrix constructed by SU(3)L/RSU(3)_{L/R} basis rotations of quark basis is different from those CP invariants constructed by SU(2)ΦSU(2)_{\Phi} rotations such as the invariants shown in Eq. 12 and Eq. 18.

To demonstrate the difference between the CP invariants in Yukawa couplings and the Jarlskog invariant in the CKM matrix explicitly, we consider the following real 2HDM potential in the Higgs basis [18],

H1=(G+v+ϕ+iG02),H2=(H+R+iI2),H_{1}=\begin{pmatrix}G^{+}\\ \dfrac{v+\phi+iG^{0}}{\sqrt{2}}\end{pmatrix},~{}~{}~{}~{}H_{2}=\begin{pmatrix}H^{+}\\ \dfrac{R+iI}{\sqrt{2}}\end{pmatrix}, (20)

The potential is symmetric under the CP transformation HiHiH_{i}\to H_{i}^{*}:

V(H1,H2)=V(H1,H2)|HiHi,V(H_{1},H_{2})=V(H_{1},H_{2})|_{H_{i}\to H_{i}^{*}}, (21)

demanding both ξ\vec{\xi} and η\vec{\eta} lie in the plane normal to K2\vec{K}_{2}, therefore ξ×ηK^2\vec{\xi}\times\vec{\eta}\propto\hat{K}_{2}. The most general Yukawa couplings can be written as

m,n=1N𝒴umnQ¯Lm(H~1sinβumn+eiγumnH~2cosβumn)uRn\displaystyle\sum_{m,n=1}^{N}\mathcal{Y}_{u}^{mn}\bar{Q}^{m}_{L}\left(\tilde{H}_{1}\sin\beta^{mn}_{u}+e^{-i\gamma^{mn}_{u}}\tilde{H}_{2}\cos\beta^{mn}_{u}\right)u_{R}^{n}
+\displaystyle+ m,n=1N𝒴dmnQ¯Lm(H1sinβdmn+eiγdmnH2cosβdmn)dRn\displaystyle\sum_{m,n=1}^{N}\mathcal{Y}_{d}^{mn}\bar{Q}^{m}_{L}\left(H_{1}\sin\beta^{mn}_{d}+e^{i\gamma^{mn}_{d}}H_{2}\cos\beta^{mn}_{d}\right)d_{R}^{n}
+\displaystyle+ h.c.,\displaystyle~{}~{}h.c.~{}, (22)

which yields Yμ=|𝒴|2(1,s2βcγ,s2βsγ,c2β)Y_{\mu}=|\mathcal{Y}|^{2}(1,s_{2\beta}c_{\gamma},-s_{2\beta}s_{\gamma},-c_{2\beta}) for each generation. Then CP phase in quark mass matrix is only related to the phase of overall factor 𝒴u/dmn\mathcal{Y}^{mn}_{u/d} while CP invariants Ju/dmnJ_{u/d}^{mn} are only related to γu/dmn\gamma_{u/d}^{mn} and βu/dmn\beta_{u/d}^{mn}.

Before going further, we would like to summarize what we have learned so far. Counting the numbers of independent CP invariants in the 2HDM, there are 2 from the scalar potential, 2N22N^{2} from the Yukawa interactions, and (N1)(N2)/2(N-1)(N-2)/2 from the CKM matrix. To conserve the CP symmetry, the vectors ξ\vec{\xi}, η\vec{\eta}, and Yu/dmn\vec{Y}_{u/d}^{mn} have to lie on the same reflection plane of EE. Each vector acts as an independent CP violation source if it departs from the reflection plane.

Effective potential. Up to now our classification of CP invariants is based only on the tree-level analysis. Next we examine the effective potential which contains quantum corrections from all the interactions mentioned above. Using the background method, the one-loop effective potential at zero temperature is [19]

Veff(ϕc)=Vtree(ϕc)+VCW(ϕc),V_{\rm eff}(\phi_{c})=V_{\rm tree}(\phi_{c})+V_{\rm CW}(\phi_{c}), (23)

where VtreeV_{\rm tree} denotes the tree level potential and

VCW(ϕc)\displaystyle V_{\rm CW}(\phi_{c}) =12𝐓𝐫d4p2π4ln[p2+𝐌2(ϕc)]\displaystyle=\frac{1}{2}\mathbf{Tr}\int\frac{d^{4}p}{2\pi^{4}}\ln\left[p^{2}+\mathbf{M}^{2}(\phi_{c})\right] (24)
=164π2inimi4(ϕc)[lnmi2(ϕc)μ2ci].\displaystyle=\frac{1}{64\pi^{2}}\sum_{i}n_{i}m_{i}^{4}(\phi_{c})\left[\ln\frac{m_{i}^{2}(\phi_{c})}{\mu^{2}}-c_{i}\right].

is the Coleman-Weinberg (CW) potential [20] calculated in the Landau gauge under MS¯\overline{\rm MS} scheme, 𝐌2\mathbf{M}^{2} is the mass matrix with eigenvalues mi2m_{i}^{2}, nin_{i} denotes the degree of freedom of the field, and cic_{i} is equal to 5/65/6 for gauge bosons and 3/23/2 for others.

The effective potential of the 2HDM has been discussed extensively [21, 22, 23, 24, 25]. As a usual practice, only neutral or CP even components of Higgs boson doublets are treated as background fields, which breaks the SU(2)LSU(2)_{L} invariance explicitly such that our previous discussions cannot apply to Veff(ϕc)V_{\rm eff}(\phi_{c}). In order to analyze the CP property of effective potential in bilinear notation, the mass matrix needs to be evaluated in a SU(2)LSU(2)_{L} invariant way. For that, we take all the components of the Higgs boson doublets to be background fields, and Φi=(ϕi,ϕi)T\Phi_{i}=(\phi_{i\uparrow},\phi_{i\downarrow})^{T} should be understood as background fields hereafter.

1) Contributions from the scalar loop: In scenario that the scalar potential preserves the CP symmetry at the tree level, the scalar self interaction cannot induce CP violation effects in the effective potential. It sounds trivial but hitherto verified only in a specific basis. Below we provide a basis independent proof.

The mass matrices of the scalar sector cannot be analytically diagonalized, therefore we use the method in Ref. [26] to derive the bilinear form of the potential. We first expand the trace of logarithm in Eq. 24 as Taylor series and calculate the trace for each term. For example, it yields

𝐓𝐫(mS2)\displaystyle\mathbf{Tr}(m^{2}_{S}) =8RμAμ+4Sμνηνμ\displaystyle=8R_{\mu}A^{\mu}+4S_{\mu\nu}\eta^{\nu\mu}
=(20η00+4tr(E))K0+24Kη+8ξ0,\displaystyle=\left(20\eta_{00}+4\operatorname{tr}(E)\right)K_{0}+24\vec{K}\cdot\vec{\eta}+8\xi_{0}, (25)

where

Sμν=\displaystyle S^{\mu\nu}= RμKν+RνKμgμν(RK),\displaystyle R^{\mu}K^{\nu}+R^{\nu}K^{\mu}-g^{\mu\nu}(RK),
SAμν=\displaystyle S_{A}^{\mu\nu}= AμKν+AνKμgμν(AK),\displaystyle A^{\mu}K^{\nu}+A^{\nu}K^{\mu}-g^{\mu\nu}(AK),
Aμ=\displaystyle A_{\mu}= 2ημνKν+ξμ,\displaystyle 2\eta_{\mu\nu}K^{\nu}+\xi_{\mu},
Rμ=\displaystyle R^{\mu}= (1,0,0,0).\displaystyle(1,0,0,0). (26)

The result is consistent with that in Ref. [27]. Our final result is

VCW(S)=(Sμνηνρ,SAμνηνρ),V_{CW}^{(S)}=\mathcal{F}\left(S^{\mu\nu}\eta_{\nu\rho},~{}S_{A}^{\mu\nu}\eta_{\nu\rho}\right), (27)

where \mathcal{F} is a function of the traces of Sμνηνρ,SAμνηνρS^{\mu\nu}\eta_{\nu\rho},S_{A}^{\mu\nu}\eta_{\nu\rho} and their combinations [28]. If the tree level potential is invariant under the mirror reflection Π^\hat{\Pi} operation, i.e.

Vtree(K0,K)=Vtree(K0,Π^K),V_{\rm tree}(K_{0},\vec{K})=V_{\rm tree}(K_{0},\hat{\Pi}\vec{K}), (28)

then any combination of the tensors given in Eq. CP Phases in 2HDM and Effective Potential: A Geometrical View is invariant too. As a result, the VCW(S)V_{\rm CW}^{(S)} is also CP invariant, i.e.

VCW(S)(K0,K)=VCW(S)(K0,Π^K),V_{\rm CW}^{(S)}(K_{0},\vec{K})=V_{\rm CW}^{(S)}(K_{0},\hat{\Pi}\vec{K}), (29)

as it should be.

2) Contributions from the gauge boson loop: The mass matrices of gauge bosons can be diagonalized and written in gauge invariant form directly. The eigenvalues of gauge boson masses obtained from the kinetic terms are

mZ2=g28((1+tW2)K0+4tW2|K|2+(tW21)2K02),\displaystyle m^{2}_{Z}=\frac{g^{2}}{8}\left((1+t_{W}^{2})K_{0}+\sqrt{4t^{2}_{W}|\vec{K}|^{2}+(t_{W}^{2}-1)^{2}K_{0}^{2}}\right),
mγ2=g28((1+tW2)K04tW2|K|2+(tW21)2K02),\displaystyle m^{2}_{\gamma}=\frac{g^{2}}{8}\left((1+t_{W}^{2})K_{0}-\sqrt{4t^{2}_{W}|\vec{K}|^{2}+(t_{W}^{2}-1)^{2}K_{0}^{2}}\right),
mW±2=g24K0,\displaystyle m^{2}_{W^{\pm}}=\frac{g^{2}}{4}K_{0}, (30)

where tW=tanθWt_{W}=\tan\theta_{W}, and a massless photon is ensured by the neutral vacuum condition K0=|K|K_{0}=|\vec{K}| [8]. Therefore, the CW potential from gauge boson loop contributions VCW(G)=VCW(G)(K0,|K|)V_{\rm CW}^{(G)}=V_{\rm CW}^{(G)}(K_{0},|\vec{K}|) is spherically symmetric in the KK-space,

VCW(G)(K0,K)=VCW(G)(K0,RK),RO(3).V_{\rm CW}^{(G)}(K_{0},\vec{K})=V_{\rm CW}^{(G)}(K_{0},R\vec{K}),\qquad R\in O(3).

Furthermore, any global symmetry exhibited by the tree level potential cannot be broken by quantum corrections from gauge bosons.

3) Contributions from the quark loop: Usually, the dominant correction of quark loops to the effective potential is from the heaviest quark. Nevertheless, we include both top and bottom quarks to ensure our calculation being SU(2)LSU(2)_{L} invariant. The top and bottom quark masses can mix as there are charged background fields. The fermion mass matrix derived from 2/ψ¯LiψRj-\partial^{2}\mathcal{L}/\partial\bar{\psi}^{i}_{L}\partial\psi^{j}_{R} reads as

(t¯L,b¯L)(yitϕiyibϕiyitϕiyibϕi)(tRbR).(\bar{t}_{L},\bar{b}_{L})\begin{pmatrix}y_{it}\phi_{i\downarrow}^{*}&y_{ib}\phi_{i\uparrow}\\ -y_{it}\phi_{i\uparrow}^{*}&y_{ib}\phi_{i\downarrow}\end{pmatrix}\begin{pmatrix}t_{R}\\ b_{R}\end{pmatrix}. (31)

After singular decomposition Mdiag=L1MRM_{\rm diag}=L^{-1}MR, two elements of the diagonalized mass matrix are

mt/b2=B±B2+C2,m_{t/b}^{2}=\dfrac{B\pm\sqrt{B^{2}+C}}{2}, (32)

where BB and CC, in terms of Yμ=(Y0,Y)Y_{\mu}=(Y_{0},\vec{Y}) defined in Eq. 15, are

B=\displaystyle B= 12(Yt0+Yb0)K0+12(Yt+Yb)K,\displaystyle\frac{1}{2}(Y_{t0}+Y_{b0})K_{0}+\frac{1}{2}(\vec{Y}_{t}+\vec{Y}_{b})\cdot\vec{K},
C=\displaystyle C= 12(YtYb)K02(Yt0Yb+Yb0Yt)K0K\displaystyle-\frac{1}{2}(Y_{t}\cdot Y_{b})K_{0}^{2}-(Y_{t0}\vec{Y}_{b}+Y_{b0}\vec{Y}_{t})K_{0}\vec{K}
+12K(YtYbYt0Yb0YtYbYbYt)K.\displaystyle+\frac{1}{2}\vec{K}\cdot(\vec{Y}_{t}\cdot\vec{Y}_{b}-Y_{t0}Y_{b0}-\vec{Y}_{t}\otimes\vec{Y}_{b}-\vec{Y}_{b}\otimes\vec{Y}_{t})\cdot\vec{K}.

The symbol “\otimes” means direct product of two vectors. For illustration, we consider the special case of ytyby_{t}\gg y_{b}, in which the top quark plays the leading role. The mass square of top quark is

mt2=14(Yt0K0+YtK).m_{t}^{2}=\frac{1}{4}(Y_{t0}K_{0}+\vec{Y}_{t}\cdot\vec{K}). (33)

Consider a scalar potential conserving the CP symmetry at the tree level, i.e. Vtree(K0,K)=Vtree(K0,Π^K)V_{\rm tree}(K_{0},\vec{K})=V_{\rm tree}(K_{0},\hat{\Pi}\vec{K}). When the Yukawa coupling breaks the CP symmetry, or equivalently, Yt/bΠ^Yt/b\vec{Y}_{t/b}\neq\hat{\Pi}\vec{Y}_{t/b}, mt2m_{t}^{2} is no longer invariant under the mirror reflection and introduces the CP violation effect to the effective potential at one-loop level,

VCW(F)(K0,K)VCW(F)(K0,Π^K).V_{\rm CW}^{(F)}(K_{0},\vec{K})\neq V_{\rm CW}^{(F)}(K_{0},\hat{\Pi}\vec{K}). (34)

The CP violation effect is related to |Jt||J_{t}|.

4) Contributions from the CKM matrix: Last but not least, we consider the impact of the Jarlskog invariant on the effective potential. Ref. [29] studied the possibility of the Jarlskog invariant entering the effective potential at three loop level, but their calculation of three-loop tadpole diagrams of the CP-odd scalar field shows no impact from the Jarlskog invariant. We notice that the CP violation effect appears in the effective potential only in the form of SO(3)KSO(3)_{K} tensors. As the Jarlskog invariant cannot be described by the tensor structure of SO(3)KSO(3)_{K} group, we conjecture that the CP phase in the CKM matrix would not leak into the effective potential through quantum corrections.

Without loss of generality, consider a CP-conserving Type-I 2HDM in which the SO(3)KSO(3)_{K} covariant parameter tensors are EE, ξ\vec{\xi}, η\vec{\eta} and Y\vec{Y}. To respect the CP symmetry, all the tensors are invariant under a mirror symmetry Π^\hat{\Pi}, i.e.

Eab\displaystyle E_{ab} =EcdΠacΠbd,\displaystyle=E_{cd}\Pi_{ac}\Pi_{bd}, ξa=ξcΠac,\displaystyle\xi_{a}=\xi_{c}\Pi_{ac},
ηa\displaystyle\eta_{a} =ηcΠac,\displaystyle=\eta_{c}\Pi_{ac}, Ya=YcΠac.\displaystyle Y_{a}=Y_{c}\Pi_{ac}. (35)

Any global SU(2)LSU(2)_{L} invariant effective potential can be written as

Veff(ΦiΦj)=Veff(K0,K)\displaystyle V_{\rm eff}(\Phi_{i}^{\dagger}\Phi_{j})=V_{\rm eff}(K_{0},\vec{K})
=\displaystyle= Veff(K0,Ta(1)Ka,Tab(2)KaKb,Tabc(3)KaKbKc,),\displaystyle V_{\rm eff}(K_{0},T^{(1)}_{a}K_{a},T^{(2)}_{ab}K_{a}K_{b},T^{(3)}_{abc}K_{a}K_{b}K_{c},\cdots), (36)

where Ta1aq(q)T^{(q)}_{a_{1}\cdots a_{q}} transforms as a rank-qq tensor under the SO(3)KSO(3)_{K} rotation. In the KK-space the tensor Ta1aq(q)T^{(q)}_{a_{1}\cdots a_{q}} can be constructed by tensor products of tree level parameter tensors. Moreover, the tensor constructed by E,η,ξ,YE,\vec{\eta},\vec{\xi},\vec{Y} is also invariant under the mirror reflection,

Ta1aq(q)=Tb1bq(q)Πa1b1Πaqbq.T^{(q)}_{a_{1}\cdots a_{q}}=T^{(q)}_{b_{1}\cdots b_{q}}\Pi_{a_{1}b_{1}}\cdots\Pi_{a_{q}b_{q}}. (37)

It guarantees the CP invariance of effective potential,

Veff(K0,K)=Veff(K0,Π^K).V_{\rm eff}(K_{0},\vec{K})=V_{\rm eff}(K_{0},\hat{\Pi}\vec{K}). (38)

Even though the quark mass matrix, whose elements are SU(2)ΦSU(2)_{\Phi} singlets, may enter Ta1aq(q)T^{(q)}_{a_{1}\cdots a_{q}} as a factor, tensor structures of Ta1aq(q)T^{(q)}_{a_{1}\cdots a_{q}} remain unchanged and the result of Eq. 38 still holds.

Thermal corrections. At finite temperature, thermal correction VTV_{T} should also be included in the effective potential [19],

Veff\displaystyle V_{\rm eff} =Vtree+VCW+VT,\displaystyle=V_{\rm tree}+V_{\rm CW}+V_{T},
VT\displaystyle V_{T} =iniT42π2JB/F(mi2/T2).\displaystyle=\sum_{i}n_{i}\frac{T^{4}}{2\pi^{2}}J_{B/F}\left(m_{i}^{2}/T^{2}\right). (39)

At a high-temperature the leading contributions of the thermal bosonic function JBJ_{B} and fermionic function JFJ_{F} yield

VT(G)\displaystyle V_{T}^{(G)} g2T232(3+tW2)K0,\displaystyle\approx\frac{g^{2}T^{2}}{32}(3+t_{W}^{2})K_{0}, (40)
VT(F)\displaystyle V_{T}^{(F)} T28[(Yt0+Yb0)K0+(Yt+Yb)K)],\displaystyle\approx-\frac{T^{2}}{8}\left[(Y_{t0}+Y_{b0})K_{0}+(\vec{Y}_{t}+\vec{Y}_{b})\cdot\vec{K})\right], (41)
VT(S)\displaystyle V_{T}^{(S)} T26[(5η00+tr(E))K0+6ηK].\displaystyle\approx\frac{T^{2}}{6}\left[\left(5\eta_{00}+\operatorname{tr}(E)\right)K_{0}+6\vec{\eta}\cdot\vec{K}\right]. (42)

Noted that the leading thermal correction from gauge bosons is SO(3)KSO(3)_{K} symmetric and will not change any global symmetry in the potential, while contributions from quarks and scalars can modify global symmetries of the potential by shifting tree-level parameters ξ\vec{\xi}:

ξ\displaystyle\vec{\xi} ξ+T28(8ηYtYb),\displaystyle\rightarrow\vec{\xi}+\frac{T^{2}}{8}\left(8\vec{\eta}-\vec{Y}_{t}-\vec{Y}_{b}\right), (43)

which shows that the CP violations in the quadratic couplings can be affected by the quartic couplings and the Yukawa interactions at high temperature.

Softly broken Z2Z_{2} symmetry. Finally, we examine the 2HDM with a softly broken ZZ symmetry which is often studied in literature. The 2HDM often induces flavor changing neutral current which is prohibited by precision measurements. A Z2Z_{2} symmetry,

Φ1Φ1,Φ2Φ2,\Phi_{1}\to-\Phi_{1},\quad\Phi_{2}\to\Phi_{2}, (44)

is therefore introduced to forbid the flavor changing neutral current [30]. The Z2Z_{2} symmetry demands m12=λ6=λ7=0m_{12}=\lambda_{6}=\lambda_{7}=0. The parameter tensors are of the patterns

ξ=(00#),η=(00#),E=14(##0##000#),\vec{\xi}=\left(\begin{array}[]{c}0\\ 0\\ \#\end{array}\right),~{}~{}\vec{\eta}=\left(\begin{array}[]{c}0\\ 0\\ \#\end{array}\right),~{}~{}E=\frac{1}{4}\left(\begin{array}[]{ccc}\#&\#&0\\ \#&\#&0\\ 0&0&\#\end{array}\right), (45)

where the symbol “#\#” denotes combinations of other coefficients. From geometrical perspective, ξ\vec{\xi} and η\vec{\eta} are on the third primary axis of the symmetric tensor EE, and the Z2Z_{2} symmetry is nothing but a 180180^{\circ} rotation (C2C_{2}) around the third primary axis, i.e. C2K=C2(K1,K2,K3)=(K1,K2,K3)C_{2}\vec{K}=C_{2}(K_{1},K_{2},K_{3})=(-K_{1},-K_{2},K_{3}). A Z2Z_{2} invariant 2HDM satisfies

ξ=C2ξ,η=C2η,E=C2EC2T.\vec{\xi}=C_{2}\vec{\xi},\quad\vec{\eta}=C_{2}\vec{\eta},\quad E=C_{2}EC_{2}^{T}. (46)

The vectors Yu/dmn\vec{Y}_{u/d}^{mn} defined in Eq. 16 are covariant under an SO(3)KSO(3)_{K} rotation, therefore also satisfy

Yu/dmn=C2Yu/dmn,\vec{Y}_{u/d}^{mn}=C_{2}\vec{Y}_{u/d}^{mn}, (47)

and it is parallel to ξ,η\vec{\xi},\vec{\eta} and the C2C_{2} axis of EE likewise. Yu/dmn\vec{Y}_{u/d}^{mn} points to the same direction in Type-I 2HDM, while Yumn\vec{Y}_{u}^{mn} and Ydmn\vec{Y}_{d}^{mn} are in opposite directions in Type-II case. We thus use Y\vec{Y} to label the direction of Yu/dmn\vec{Y}_{u/d}^{mn} for simplicity. Clearly, a Z2Z_{2} symmetric 2HDM Lagrangian is always CP invariant.

Refer to caption
Figure 2: Parameter vectors for a broken Z2Z_{2} symmetry.

The Z2Z_{2} symmetry can be softly broken when m1220m_{12}^{2}\neq 0. The vector η\vec{\eta} is not changed, but ξ=(#,0,#)T\vec{\xi}=(\#,0,\#)^{T} points to an arbitrary direction; see Fig. 2. Hence, the scalar potential exhibits only one CP invariant, (ξ×η)Eξ(\vec{\xi}\times\vec{\eta})\cdot E\vec{\xi}, and no CP invariant arises from the Yukawa interactions as Yη\vec{Y}\parallel\vec{\eta}. As a result, the 2HDM potential preserving the CP symmetry at tree level still maintain the CP invariance at loop level. In addition, as shown in Eq. 43, leading thermal correction to ξ\vec{\xi}, the only CP violating source, is CP conserving as both η\vec{\eta} and Y\vec{Y} lie on the principal axis of EE. As long as the length of η\vec{\eta} and Y\vec{Y} are not fine tuned, ξ\vec{\xi} tends to be bend towards the principal axis at sufficient high temperatures, restoring the Z2Z_{2} and CP symmetries.

Conclusion. We generalized the bilinear notation of 2HDM scalar potential to Yukawa couplings by defining dual vectors Yu/dmn\vec{Y}^{mn}_{u/d} in bilinear space. By doing so, we obtained all the independent CP invariants in the 2HDM from a geometric view. For the first time, the separation of CP invariants from the Yukawa interactions and the CKM matrix is made intuitively evident. We categorized the CP invariants into three independent sectors, i.e. scalar self interaction, Yukawa interaction and the CKM matrix.

We calculated the Coleman-Weinberg potential in a basis invariant manner. The scalar potential that preserves the CP symmetry at tree level can receive CP violation corrections only from the Yukawa interactions at one-loop level. We proved that the CP phase in the CKM matrix cannot leak to effective potential at all orders based on the basis invariant form. We further showed that the leading thermal corrections shift the scalar quadratic couplings only with Yukawa and scalar quartic couplings. When a softly broken Z2Z_{2} symmetry is imposed, the scalar quadratic terms ξ\vec{\xi} is the only source that breaks Z2Z_{2} and CP symmetries, but its effect tends to be suppressed by Yukawa couplings and scalar quartic couplings at large temperature such that the Z2Z_{2} and CP symmetries tend to be restored.

Acknowledgments. We thanks Yandong Liu, Jiang-Hao Yu and Hao Zhang for useful suggestions. The work is supported in part by the National Science Foundation of China under Grant Nos. 11725520, 11675002, and 11635001.

References

  • Lee [1973] T. D. Lee, Phys. Rev. D 8, 1226 (1973).
  • Gunion and Haber [2005] J. F. Gunion and H. E. Haber, Phys. Rev. D 72, 095002 (2005), eprint hep-ph/0506227.
  • Branco et al. [2005] G. C. Branco, M. N. Rebelo, and J. I. Silva-Marcos, Phys. Lett. B 614, 187 (2005), eprint hep-ph/0502118.
  • Branco et al. [2012] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Phys. Rept. 516, 1 (2012), eprint 1106.0034.
  • Battye et al. [2011] R. A. Battye, G. D. Brawn, and A. Pilaftsis, JHEP 08, 020 (2011), eprint 1106.3482.
  • Pilaftsis [2012] A. Pilaftsis, Phys. Lett. B 706, 465 (2012), eprint 1109.3787.
  • Kobayashi and Maskawa [1973] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
  • Maniatis et al. [2006] M. Maniatis, A. von Manteuffel, O. Nachtmann, and F. Nagel, Eur. Phys. J. C 48, 805 (2006), eprint hep-ph/0605184.
  • Maniatis et al. [2008] M. Maniatis, A. von Manteuffel, and O. Nachtmann, Eur. Phys. J. C 57, 719 (2008), eprint 0707.3344.
  • Ivanov [2007] I. P. Ivanov, Phys. Rev. D 75, 035001 (2007), [Erratum: Phys.Rev.D 76, 039902 (2007)], eprint hep-ph/0609018.
  • Ivanov [2008] I. P. Ivanov, Phys. Rev. D 77, 015017 (2008), eprint 0710.3490.
  • Nishi [2006] C. C. Nishi, Phys. Rev. D 74, 036003 (2006), [Erratum: Phys.Rev.D 76, 119901 (2007)], eprint hep-ph/0605153.
  • Botella and Silva [1995] F. J. Botella and J. P. Silva, Phys. Rev. D 51, 3870 (1995), eprint hep-ph/9411288.
  • Davidson and Haber [2005] S. Davidson and H. E. Haber, Phys. Rev. D 72, 035004 (2005), [Erratum: Phys.Rev.D 72, 099902 (2005)], eprint hep-ph/0504050.
  • Trautner [2019] A. Trautner, JHEP 05, 208 (2019), eprint 1812.02614.
  • Jarlskog [1985] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
  • Dunietz et al. [1985] I. Dunietz, O. W. Greenberg, and D.-d. Wu, Phys. Rev. Lett. 55, 2935 (1985).
  • Lavoura and Silva [1994] L. Lavoura and J. P. Silva, Phys. Rev. D 50, 4619 (1994), eprint hep-ph/9404276.
  • Quiros [1999] M. Quiros, in ICTP Summer School in High-Energy Physics and Cosmology (1999), pp. 187–259, eprint hep-ph/9901312.
  • Coleman and Weinberg [1973] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).
  • Cline et al. [2011] J. M. Cline, K. Kainulainen, and M. Trott, JHEP 11, 089 (2011), eprint 1107.3559.
  • Basler et al. [2020] P. Basler, M. Mühlleitner, and J. Müller, JHEP 05, 016 (2020), eprint 1912.10477.
  • Basler et al. [2017] P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt, and A. Wlotzka, JHEP 02, 121 (2017), eprint 1612.04086.
  • Ferreira et al. [2020] P. M. Ferreira, L. A. Morrison, and S. Profumo, JHEP 04, 125 (2020), eprint 1910.08662.
  • Basler and Mühlleitner [2019] P. Basler and M. Mühlleitner, Comput. Phys. Commun. 237, 62 (2019), eprint 1803.02846.
  • Degee and Ivanov [2010] A. Degee and I. P. Ivanov, Phys. Rev. D 81, 015012 (2010), eprint 0910.4492.
  • Ivanov [2009] I. P. Ivanov, Acta Phys. Polon. B 40, 2789 (2009), eprint 0812.4984.
  • Cao et al. [2022] Q.-H. Cao, K. Cheng, and C. Xu (2022), eprint in preparation.
  • Fontes et al. [2021] D. Fontes, M. Löschner, J. C. Romão, and J. a. P. Silva, Eur. Phys. J. C 81, 541 (2021), eprint 2103.05002.
  • Glashow and Weinberg [1977] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).