This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209, China

Covariant Chiral Kinetic Equation in Non-Abelian Gauge field from “covariant gradient expansion”

Xiao-Li Luo a,1    Jian-Hua Gao.111Corresponding author. xiaoli_luo@mail.sdu.edu.cn gaojh@sdu.edu.cn
Abstract

We derive the chiral kinetic equation in 8 dimensional phase space in non-Abelian SU(N)SU(N) gauge field within the Wigner function formalism. By using the “covariant gradient expansion”, we disentangle the Wigner equations in four-vector space up to the first order and find that only the time-like component of the chiral Wigner function is independent while other components can be explicit derivative. After further decomposing the Wigner function or equations in color space, we present the non-Abelian covariant chiral kinetic equation for the color singlet and multiplet phase-space distribution functions. These phase-space distribution functions have non-trivial Lorentz transformation rules when we define them in different reference frames. The chiral anomaly from non-Abelian gauge field arises naturally from the Berry monopole in Euclidian momentum space in the vacuum or Dirac sea contribution. The anomalous currents as non-Abelian counterparts of chiral magnetic effect and chiral vortical effect have also been derived from the non-Abelian chiral kinetic equation.

1 Introduction

In recent years, there has been a considerable amount of theoretical work on the chiral kinetic theory (CKT) in relativistic heavy ion collisions. The CKT aims to incorporate the chiral anomaly into kinetic theory and provide a consistent formalism to describe various novel chiral effects, e.g., chiral magnetic effect Vilenkin:1980fu ; Kharzeev:2007jp ; Fukushima:2008xe , chiral vortical effect Vilenkin:1978hb ; Kharzeev:2007tn ; Erdmenger:2008rm ; Banerjee:2008th , chiral separation effect Son:2004tq ; Metlitski:2005pr and so on, which are all associated with the chiral anomaly. Recent progress on chiral effects and chiral kinetic theory in relativistic heavy ion collisions can be found in the reviews such as Kharzeev:2013ffa ; Kharzeev:2015znc ; Liu:2020ymh ; Gao:2020vbh ; Gao:2020pfu . The chiral kinetic equation has been derived from various methods, such as semiclassical approach Duval:2005vn ; Wong:2011nt ; Son:2012wh ; Stephanov:2012ki ; Stone:2013sga ; Dwivedi:2013dea ; Akamatsu:2014yza ; Chen:2014cla ; Manuel:2014dza ; Hayata:2017ihy , Wigner function formalism Gao:2012ix ; Chen:2012ca ; Hidaka:2016yjf ; Huang:2018wdl ; Gao:2018wmr ; Liu:2018xip , effective field theory Son:2012zy ; Carignano:2018gqt ; Lin:2019ytz ; Carignano:2019zsh and world-line approach Mueller:2017lzw ; Mueller:2017arw ; Mueller:2019gjj . The numerical simulation based on chiral kinetic equation can be found in Refs. Sun:2016nig ; Sun:2016mvh ; Sun:2017xhx ; Sun:2018idn ; Sun:2018bjl ; Zhou:2018rkh ; Zhou:2019jag ; Liu:2019krs .

Despite all these development, so far most of the literature focuses on the CKT in Abelian gauge field. Only very restricted work Stone:2013sga ; Akamatsu:2014yza ; Hayata:2017ihy ; Mueller:2019gjj had discussed the CKT in non-Abelian gauge field. However, as we all know, the dynamics of the produced quark-gluon plasma in relativistic heavy ion collisions are mainly determined by quantum chromodynamics — non-Abelian SU(3)SU(3) gauge field. Especially, in the small xx physics, the initial state in relativistic nucleus-nucleus collisions can be described as a classical coherent non-Abelian gauge field configuration called the color glass condensateGribov:1984tu ; Mueller:1985wy ; McLerran:1993ka ; McLerran:1994vd ; Iancu:2003xm . It still remains an open question how the decoherence from the classical color field to the quark gluon plasma takes place. In order to address these problems, we need generalize the CKT in Abelian gauge field to the one in non-Abelian gauge field.

In this paper, we will be dedicated to deriving the chiral kinetic equation in SU(N)SU(N) gauge field from the quantum transport theory Heinz:1983nx ; Elze:1986hq ; Elze:1986qd ; Elze:1989un ; Ochs:1998qj based on the Wigner functions from quantum gauge field theory. In Sec.2, we review the Wigner function formalism given in Refs. Heinz:1983nx ; Elze:1986hq ; Elze:1986qd ; Elze:1989un and present some results in Ref.Ochs:1998qj that would be useful for our present work. In Sec.3, we apply the “covariant gradient expansion” given in Elze:1986hq ; Elze:1986qd ; Elze:1989un ; Ochs:1998qj to expanding the Wigner equations for massless fermions up to the first order and disentangle the Wigner equations by the method developed in the Abelian case in Ref.Gao:2018wmr . We find that only the timelike component of the Wigner functions is independent and all other spacelike components can be derivative from timelike component directly. Such result is very similar to the Abelian case and reduces the Wigner equations greatly. We present the covariant chiral kinetic equation for this independent Wigner function in 8-dimensional form, i.e., 4-dimensional momentum space and 4-dimensional coordinate space. In comparison with the Abelian case, the extra constraint equation appears in non-Abelian case. In Sec.4, we decompose the results further in the color space and find that the color singlet phase-space distribution function and multiplet ones are totally coupled with each other. In Sec.5, We discuss the modified Lorentz transformation of the distribution function in phase space when we define it in different reference frames. With the results in previous sections, we calculate the vector and axial currents induced by color field and vorticity in Sec.6. It turns out that the non-Abelian chiral anomaly can be derived directly from the 4-dimentional Berry curvature in the vacuum contribution of the color singlet Wigner function. With specific distribution near global equilibrium, we can obtain the non-Abelian counterparts of chiral magnetic effect and chiral vortical effect. Finally, we summarize the paper in Sec.7.

In this work, we use the convention for the metric gμν=diag(1,1,1,1)g^{\mu\nu}=\mathrm{diag}(1,-1,-1,-1), Levi-Civita tensor ϵ0123=1\epsilon^{0123}=1. We choose natural units such that =c=1\hbar=c=1 except for the cases when we want to display \hbar dependence to clarify the perturbative expansion.

2 Quantum transport theory

In quantum transport theory, the gauge invariant density matrix for spin-1/2 quarks is defined as Heinz:1983nx ; Elze:1986hq ; Elze:1986qd

ρ(x+y2,xy2)=ψ¯(x+y2)U(x+y2,x)U(x,xy2)ψ(xy2).\displaystyle\rho\left(x+\frac{y}{2},x-\frac{y}{2}\right)=\bar{\psi}\left(x+\frac{y}{2}\right)U\left(x+\frac{y}{2},x\right)\otimes U\left(x,x-\frac{y}{2}\right)\psi\left(x-\frac{y}{2}\right). (1)

where the direct product is over both spinor and color indices. The element of density matrix with specific color and spinor indices is given by

ραβij(x+y2,xy2)=ψ¯βj(x+y2)Ujj(x+y2,x)Uii(x,xy2)ψαi(xy2).\displaystyle\rho_{\alpha\beta}^{ij}\left(x+\frac{y}{2},x-\frac{y}{2}\right)=\bar{\psi}_{\beta}^{j^{\prime}}\left(x+\frac{y}{2}\right)U^{j^{\prime}j}\left(x+\frac{y}{2},x\right)U^{ii^{\prime}}\left(x,x-\frac{y}{2}\right)\psi^{i^{\prime}}_{\alpha}\left(x-\frac{y}{2}\right). (2)

where α,β\alpha,\beta denote spinor indices, i,i,j,ji,i^{\prime},j,j^{\prime} mean color indices in fundamental representation and UjjU^{j^{\prime}j} or UiiU^{i^{\prime}i} is the Wilson line or gauge link

Uij(x,y)=[Pexp(igyx𝑑zμAμ(z))]ij\displaystyle U^{ij}(x,y)=\left[{P}\exp\left(\frac{ig}{\hbar}\int_{y}^{x}dz^{\mu}A_{\mu}(z)\right)\right]^{ij} (3)

which is necessary to keep the operator gauge invariant. In the definition of Wilson line PP denotes path ordering of the operator and the integral in the exponent is taken along the straight path from xx to yy. The gauge field potential is defined by Aμ=AμataA_{\mu}=A^{a}_{\mu}t^{a}, with the N21N^{2}-1 hermitian generators of SU(N)SU(N) in the fundamental representation satisfying

Trta=0,[ta,tb]=ifabctc,{ta,tb}=1Nδab𝟏+dabctc.\displaystyle\textrm{Tr}\,t^{a}=0,\ \ \ \left[t^{a},t^{b}\right]=if^{abc}t^{c},\ \ \ \left\{t^{a},t^{b}\right\}=\frac{1}{N}\delta^{ab}{\bf 1}+d^{abc}t^{c}. (4)

For non-Abelian gauge field, the covariant derivative in the fundamental representation is defined as,

Dμ(x)\displaystyle D_{\mu}(x) =\displaystyle= μigAμ(x),\displaystyle\partial_{\mu}-\frac{ig}{\hbar}A_{\mu}(x), (5)

and the field strength tensor follows as

Fμν(x)\displaystyle F_{\mu\nu}(x) \displaystyle\equiv Fμνata=ig[Dμ,Dν]=μAν(x)νAμ(x)ig[Aμ(x),Aν(x)].\displaystyle F_{\mu\nu}^{a}t^{a}=-\frac{\hbar}{ig}\left[D_{\mu},D_{\nu}\right]=\partial_{\mu}A_{\nu}(x)-\partial_{\nu}A_{\mu}(x)-\frac{ig}{\hbar}\left[A_{\mu}(x),A_{\nu}(x)\right]. (6)

The Wigner operator W^(x,p)\hat{W}(x,p) is related to the gauge invariant density matrix by Fourier transformation

W^(x,p)=d4y(2π)4eipyρ(x+y2,xy2),\displaystyle\hat{W}(x,p)=\int\frac{d^{4}y}{(2\pi)^{4}}e^{-ip\cdot y}\rho\left(x+\frac{y}{2},x-\frac{y}{2}\right), (7)

and the Wigner function is defined as ensemble averaging of the Wigner operator

W(x,p)=W^(x,p).\displaystyle W(x,p)=\langle\hat{W}(x,p)\rangle. (8)

In our present work, we will concentrate on the quark matter under a purely classical external non-Abelian gauge field, in which ordinary matrix multiplication rules in spinor space or color space suffice and the Wigner equations will not generate the so-called BBGKY-hierarchy Groot:1980 and can be closed by itself

[mγμ(pμ+12i𝒟μ(x))]W(x,p)\displaystyle\left[m-\gamma^{\mu}\left(p_{\mu}+\frac{1}{2}i\mathscr{D}_{\mu}(x)\right)\right]W(x,p) (9)
=\displaystyle= ig2γμpν{01ds1+s2[e12isΔFμν(x)]W(x,p)\displaystyle\frac{ig}{2}\gamma^{\mu}\partial^{\nu}_{p}\left\{\int_{0}^{1}ds{\,}\frac{1+s}{2}\left[e^{-\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right]W(x,p)\right.
+W(x,p)01ds1s2[e12isΔFμν(x)]},\displaystyle\left.\hskip 42.67912pt+W(x,p)\int_{0}^{1}ds{\,}\frac{1-s}{2}\left[e^{\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right]\right\},

together with the hermitian adjoint equation

W(x,p)[mγμ(pμ12i𝒟μ(x))]\displaystyle W(x,p)\left[m-\gamma^{\mu}\left(p_{\mu}-\frac{1}{2}i\mathscr{D}^{\dagger}_{\mu}(x)\right)\right] (10)
=\displaystyle= ig2pν{01ds1s2[e12isΔFμν(x)]W(x,p)\displaystyle-\frac{ig}{2}\partial^{\nu}_{p}\left\{\int_{0}^{1}ds{\,}\frac{1-s}{2}\left[e^{-\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right]W(x,p)\right.
+W(x,p)01ds1+s2[e12isΔFμν(x)]}γμ,\displaystyle\left.\hskip 42.67912pt+W(x,p)\int_{0}^{1}ds{\,}\frac{1+s}{2}\left[e^{\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right]\right\}\gamma^{\mu},

where we have introduced the definition of covariant derivative in the adjoint representation for a second-rank tensor 𝒯(x)\mathcal{T}(x) in color space by

𝒟μ(x)𝒯(x)[Dμ(x),𝒯(x)]=μx𝒯(x)ig[Aμ(x),𝒯(x)],\displaystyle\mathscr{D}_{\mu}(x)\mathcal{T}(x)\equiv\left[{D}_{\mu}(x),\mathcal{T}(x)\right]=\partial_{\mu}^{x}\mathcal{T}(x)-\frac{ig}{\hbar}\left[A_{\mu}(x),\mathcal{T}(x)\right], (11)

and Δp𝒟(x)\Delta\equiv\partial_{p}\cdot\mathscr{D}(x) with 𝒟(x)\mathscr{D}(x) only acting on FμνF_{\mu\nu} and p\partial_{p} always on WW after or in front of it. It should be noted that in the definition of the Wigner function given by Eq. (8) and the Wigner equations (9) and (10) there is no normal ordering in the Wigner matrix because we did not make any manipulation on the order of the quark field. It has been demonstrated in Gao:2019zhk ; Fang:2020com that this plays a central role to give rise to the chiral anomaly in the quantum kinetic theory.

If we take the convention in Ochs:1998qj , momentum derivatives standing to the right of the Wigner function are defined in the sense of partial integration as

W(x,p)pν1pνk(1)kpνkpν1W(x,p),\displaystyle W(x,p)\partial^{\nu_{1}}_{p}\cdots\partial^{\nu_{k}}_{p}\equiv(-1)^{k}\partial^{\nu_{k}}_{p}\cdots\partial^{\nu_{1}}_{p}W(x,p), (12)

and define generalized non-local momentum and derivative operators Πμ\Pi_{\mu} and GμG_{\mu} as

Πμ\displaystyle\Pi_{\mu} =\displaystyle= pμ+g201𝑑s(e12isΔFμν(x))ispν,\displaystyle p_{\mu}+\frac{g}{2}\int_{0}^{1}ds{\,}\left(e^{-\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right)is\partial^{\nu}_{p},
Gμ\displaystyle G_{\mu} =\displaystyle= Dμ+g201𝑑s(e12isΔFμν(x))pν,\displaystyle D_{\mu}+\frac{g}{2}\int_{0}^{1}ds{\,}\left(e^{-\frac{1}{2}is\Delta}F_{\mu\nu}(x)\right)\partial^{\nu}_{p}, (13)

the Wigner equations can be cast into a more compact form Ochs:1998qj ,

2mW(x,p)\displaystyle 2mW(x,p) =\displaystyle= γμ({Πμ,W(x,p)}+i[Gμ,W(x,p)]),\displaystyle\gamma^{\mu}\left(\left\{\Pi_{\mu},W(x,p)\right\}+i\left[G_{\mu},W(x,p)\right]\right), (14)
2mW(x,p)\displaystyle 2mW(x,p) =\displaystyle= ({Πμ,W(x,p)}i[Gμ,W(x,p)])γμ.\displaystyle\left(\left\{\Pi_{\mu},W(x,p)\right\}-i\left[G_{\mu},W(x,p)\right]\right)\gamma^{\mu}. (15)

Adding or subtracting the two equations above gives

4mW(x,p)\displaystyle 4mW(x,p) =\displaystyle= {γμ,{Πμ,W(x,p)}}+i[γμ,[Gμ,W(x,p)]],\displaystyle\left\{\gamma^{\mu},\left\{\Pi_{\mu},W(x,p)\right\}\right\}+i\left[\gamma^{\mu},\left[G_{\mu},W(x,p)\right]\right], (16)
0\displaystyle 0 =\displaystyle= [γμ,{Πμ,W(x,p)}]+i{γμ,[Gμ,W(x,p)]}.\displaystyle\left[\gamma^{\mu},\left\{\Pi_{\mu},W(x,p)\right\}\right]+i\left\{\gamma^{\mu},\left[G_{\mu},W(x,p)\right]\right\}. (17)

In spinor space, we can decompose the Wigner function into

W=14[+iγ5𝒫+γμ𝒱μ+γμγ5𝒜μ+12σμν𝒮μν].\displaystyle W=\frac{1}{4}\left[{{\mathscr{F}}}+i\gamma^{5}{{\mathscr{P}}}+\gamma^{\mu}{{\mathscr{V}}}_{\mu}+\gamma^{\mu}\gamma^{5}{{\mathscr{A}}}_{\mu}+\frac{1}{2}\sigma^{\mu\nu}{{\mathscr{S}}}_{\mu\nu}\right]. (18)

In this work, we will restrict ourselves to the massless or chiral fermions. In consequence, if we introduce a chirality basis via

𝒥sμ\displaystyle{\mathscr{J}}^{\mu}_{s} =\displaystyle= 12(𝒱μ+s𝒜μ),\displaystyle\frac{1}{2}\left({\mathscr{V}}^{\mu}+s{\mathscr{A}}^{\mu}\right), (19)

where s=+1/1s=+1/-1 denotes right-handed/left-handed component, the equations for the chiral Wigner function 𝒥sμ{\mathscr{J}}^{\mu}_{s} will decouple from all the other components of the Wigner function and each other as well, which leads to

0\displaystyle 0 =\displaystyle= {Πμ,𝒥sμ},\displaystyle\left\{\Pi_{\mu},{\mathscr{J}}^{\mu}_{s}\right\}, (20)
0\displaystyle 0 =\displaystyle= [Gμ,𝒥sμ],\displaystyle\left[G_{\mu},{\mathscr{J}}^{\mu}_{s}\right], (21)
0\displaystyle 0 =\displaystyle= {Πμ,𝒥sν}{Πν,𝒥sμ}+sϵμναβ[Gα,𝒥sβ],\displaystyle\left\{\Pi^{\mu},{\mathscr{J}}^{\nu}_{s}\right\}-\left\{\Pi^{\nu},{\mathscr{J}}^{\mu}_{s}\right\}{+}s\hbar\epsilon^{\mu\nu\alpha\beta}\left[G_{\alpha},{\mathscr{J}}_{s\beta}\right], (22)

where we have recovered the \hbar dependence before the generalized derivative operators in the last equation in order to make perturbative expansion in the following section. These Wigner equations will be the starting point of our present work in the following. For brevity, we will suppress the subscript ss of the left-hand or right-hand Wigner function 𝒥sμ{\mathscr{J}}^{\mu}_{s} in the subsequent sections and reinstate it when it is necessary.

3 Disentangling Wigner equations in four-vector space

In the Abelian plasma, the disentanglement theorem of Wigner functions has been demonstrated in Ref. Gao:2018wmr , which tell us that up to any order of \hbar among four components of Wigner functions 𝒥μ\mathscr{J}^{\mu} only the timelike component is independent and satisfies only one independent Wigner equation, the other spatial components can be totally fixed from this independent Wigner function and the Wigner equations for them are all satisfied automatically. Now let us try to generalize this disentanglement formalism from Abelian gauge field to non-Abelian gauge field. In order to achieve this goal, we will resort to the “covariant gradient expansion” proposed in Refs. Elze:1986qd ; Elze:1989un ; Ochs:1998qj . In this expansion scheme, when we have one extra covariant derivative DμD_{\mu} or 𝒟μ\mathscr{D}_{\mu}, we will have one extra higher order contribution. The “covariant gradient expansion” preserves gauge invariance order by order automatically. Actually we can trace such expansion in powers of \hbar, e.g., in the Wigner equations (22) and the generalized non-local momentum and derivative operators

Πμ\displaystyle\Pi_{\mu} =\displaystyle= k=0kΠμ(k)=pμig2k=0(i2)kk+1(k+2)![(p𝒟)kFνμ]pν\displaystyle\sum_{k=0}^{\infty}\hbar^{k}\Pi_{\mu}^{(k)}=p_{\mu}-\hbar\frac{ig}{2}\sum_{k=0}^{\infty}\left(-\frac{i\hbar}{2}\right)^{k}\frac{k+1}{(k+2)!}\left[\left(\partial_{p}\cdot{\mathscr{D}}\right)^{k}F_{\nu\mu}\right]\partial_{p}^{\nu} (23)
Gμ\displaystyle G_{\mu} =\displaystyle= k=0kGμ(k)=Dμg2k=0(i2)k1(k+1)![(p𝒟)kFνμ]pν.\displaystyle\sum_{k=0}^{\infty}\hbar^{k}G_{\mu}^{(k)}=D_{\mu}-\frac{g}{2}\sum_{k=0}^{\infty}\left(-\frac{i\hbar}{2}\right)^{k}\frac{1}{(k+1)!}\left[\left(\partial_{p}\cdot{\mathscr{D}}\right)^{k}F_{\nu\mu}\right]\partial_{p}^{\nu}. (24)

Up to the second order of \hbar, the non-local operators Πμ\Pi_{\mu} and GμG_{\mu} are given by

Πμ(0)\displaystyle\Pi_{\mu}^{(0)} =\displaystyle= pμ,Πμ(1)=ig4Fμνpν,Πμ(2)=g12[(p𝒟)Fμν]pν,\displaystyle p_{\mu},\ \ \ \Pi_{\mu}^{(1)}=\frac{ig}{4}F_{\mu\nu}\partial^{\nu}_{p},\ \ \Pi_{\mu}^{(2)}=\frac{g}{12}\left[\left(\partial_{p}\cdot{\mathscr{D}}\right)F_{\mu\nu}\right]\partial_{p}^{\nu}, (25)
Gμ(0)\displaystyle G_{\mu}^{(0)} =\displaystyle= Dμ+g2Fμνpν,Gμ(1)=ig8[(p𝒟)Fμν]pν.\displaystyle D_{\mu}+\frac{g}{2}F_{\mu\nu}\partial^{\nu}_{p},\ \ G_{\mu}^{(1)}=-\frac{ig}{8}\left[\left(\partial_{p}\cdot{\mathscr{D}}\right)F_{\mu\nu}\right]\partial_{p}^{\nu}. (26)

We can also expand the Wigner operator as

W(x,p)=k=0kW(k)(x,p).\displaystyle W(x,p)=\sum_{k=0}^{\infty}\hbar^{k}W^{(k)}(x,p). (27)

However it should be noted that the “covariant gradient expansion” is not completely identical to an expansion in powers of \hbar for non-Abelian gauge field which had been pointed out in Elze:1986qd ; Elze:1989un ; Ochs:1998qj though it is identical for Abelian gauge field. In non-Abelian case, there is an extra gauge potential AμA_{\mu} with ig/ig/\hbar in the covariant derivative DμD_{\mu} or 𝒟μ\mathscr{D}_{\mu} in Eqs. (23) and (24) while there only exist ordinary derivative μx\partial_{\mu}^{x} in the Abelian case.

In order to disentangle the Wigner equations further, it is convenient to introduce time-like 4-vector nμn^{\mu} with normalization n2=1n^{2}=1. For simplicity we assume nμn^{\mu} is a constant vector. With the auxiliary vector nμn^{\mu}, we can decompose any vector XμX^{\mu} into the component parallel to nμn^{\mu} and the other components perpendicular to nμn^{\mu},

Xμ=Xnnμ+X¯μ,X^{\mu}=X_{n}n^{\mu}+\bar{X}^{\mu}, (28)

where Xn=XnX_{n}=X\cdot n and X¯μ=ΔμνXν\bar{X}^{\mu}=\Delta^{\mu\nu}X_{\nu} with Δμν=gμνnμnν\Delta^{\mu\nu}=g^{\mu\nu}-n^{\mu}n^{\nu}. The gauge field tensor FμνF^{\mu\nu} can be also decomposed into

Fμν=EμnνEνnμϵ¯μνσBσF^{\mu\nu}=E^{\mu}n^{\nu}-E^{\nu}n^{\mu}-\bar{\epsilon}^{\mu\nu\sigma}B_{\sigma} (29)

with

Eμ=Fμνnν,Bμ=12ϵ¯μρσFρσ,E^{\mu}=F^{\mu\nu}n_{\nu},\ \ B^{\mu}=\frac{1}{2}\bar{\epsilon}^{\mu\rho\sigma}F_{\rho\sigma}, (30)

where for notational convenience we have defined ϵ¯μαβ=ϵμναβnν\bar{\epsilon}^{\mu\alpha\beta}=\epsilon^{\mu\nu\alpha\beta}n_{\nu}.

Now we can decompose the Wigner functions and Wigner equations along the direction nμn^{\mu} order by order. The leading order or the zeroth order result is very simple

0\displaystyle 0 =\displaystyle= pn𝒥n(0)+p¯μ𝒥¯(0)μ,\displaystyle p_{n}{\mathscr{J}}_{n}^{(0)}+\bar{p}_{\mu}\bar{{\mathscr{J}}}^{(0)\mu}, (31)
0\displaystyle 0 =\displaystyle= [Gn(0),𝒥n(0)]+[G¯μ(0),𝒥¯(0)μ],\displaystyle\left[G_{n}^{(0)},{\mathscr{J}}_{n}^{(0)}\right]+\left[\bar{G}_{\mu}^{(0)},\bar{{\mathscr{J}}}^{(0)\mu}\right], (32)
0\displaystyle 0 =\displaystyle= p¯μ𝒥n(0)pn𝒥¯(0)μ,\displaystyle\bar{p}^{\mu}{\mathscr{J}}_{n}^{(0)}-p_{n}\bar{{\mathscr{J}}}^{(0)\mu}, (33)
0\displaystyle 0 =\displaystyle= p¯μ𝒥¯(0)νp¯ν𝒥¯(0)μ.\displaystyle\bar{p}^{\mu}\bar{{\mathscr{J}}}^{(0)\nu}-\bar{p}^{\nu}\bar{{\mathscr{J}}}^{(0)\mu}. (34)

From Eq.(33), we can express the space-like component 𝒥¯(0)μ\bar{{\mathscr{J}}}^{(0)\mu} in terms of 𝒥n(0){\mathscr{J}}_{n}^{(0)}

𝒥¯(0)μ\displaystyle\bar{{\mathscr{J}}}^{(0)\mu} =\displaystyle= p¯μ𝒥n(0)pn.\displaystyle\bar{p}^{\mu}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}. (35)

Substituting this relation into Eqs.(31) gives rise to the on-shell condition

p2𝒥n(0)pn\displaystyle p^{2}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}} =\displaystyle= 0,\displaystyle 0, (36)

which means 𝒥n(0)/pn{{\mathscr{J}}_{n}^{(0)}}/{p_{n}} must be proportional to the Dirac delta function δ(p2)\delta(p^{2})

𝒥n(0)pn\displaystyle\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}} =\displaystyle= f(0)δ(p2),\displaystyle f^{(0)}\delta(p^{2}), (37)

where f(0)f^{(0)} can be regarded as the usual particle distribution function in four-dimensional momentum space and four-dimensional coordinate space. It must be non-singular function at p2=0p^{2}=0. Putting Eqs.(37) and (35) together, we get the full Wigner function of the zeroth order

𝒥(0)μ\displaystyle{\mathscr{J}}^{(0)\mu} =\displaystyle= pμf(0)δ(p2).\displaystyle p^{\mu}f^{(0)}\delta(p^{2}). (38)

The transport equation satisfied by f(0)f^{(0)} can be obtained from Eq.(32)

0\displaystyle 0 =\displaystyle= [Gμ(0),pμf(0)δ(p2)].\displaystyle\left[G_{\mu}^{(0)},p^{\mu}f^{(0)}\delta(p^{2})\right]. (39)

It is obvious that Eq.(34) is automatically satisfied with the expression (35).

The next-to-leading order or the first order equations are given by

0\displaystyle 0 =\displaystyle= 2pn𝒥n(1)+2p¯μ𝒥¯(1)μ+{Πn(1),𝒥n(0)}+{Π¯μ(1),𝒥¯(0)μ},\displaystyle 2p_{n}{\mathscr{J}}^{(1)}_{n}+2\bar{p}_{\mu}\bar{{\mathscr{J}}}^{(1)\mu}+\left\{\Pi_{n}^{(1)},{\mathscr{J}}^{(0)}_{n}\right\}+\left\{\bar{\Pi}_{\mu}^{(1)},\bar{{\mathscr{J}}}^{(0)\mu}\right\}, (40)
0\displaystyle 0 =\displaystyle= [Gn(0),𝒥n(1)]+[G¯μ(0),𝒥¯(1)μ]+[Gn(1),𝒥n(0)]+[G¯μ(1),𝒥¯(0)μ],\displaystyle\left[G_{n}^{(0)},{\mathscr{J}}^{{(1)}}_{n}\right]+\left[\bar{G}_{\mu}^{(0)},\bar{{\mathscr{J}}}^{{(1)}\mu}\right]+\left[G_{n}^{(1)},{\mathscr{J}}^{{(0)}}_{n}\right]+\left[\bar{G}_{\mu}^{(1)},\bar{{\mathscr{J}}}^{{(0)}\mu}\right],\hskip 8.0pt (41)
0\displaystyle 0 =\displaystyle= 2p¯μ𝒥n(1)2pn𝒥¯(1)μ+{Π¯(1)μ,𝒥n(0)}{Πn(1),𝒥¯(0)μ}\displaystyle 2\bar{p}^{\mu}{\mathscr{J}}^{(1)}_{n}-2p_{n}\bar{{\mathscr{J}}}^{(1)\mu}+\left\{\bar{\Pi}^{(1)\mu},{\mathscr{J}}^{(0)}_{n}\right\}-\left\{\Pi^{(1)}_{n},\bar{{\mathscr{J}}}^{(0)\mu}\right\} (42)
+sϵ¯μαβ[Gα(0),𝒥β(0)],\displaystyle{+}s\bar{\epsilon}^{\mu\alpha\beta}\left[G_{\alpha}^{(0)},{\mathscr{J}}_{\beta}^{(0)}\right],
0\displaystyle 0 =\displaystyle= 2p¯μ𝒥¯(1)ν2p¯ν𝒥¯(1)μ+{Π¯(1)μ,𝒥¯(0)ν}{Π¯(1)ν,𝒥¯(0)μ}\displaystyle 2\bar{p}^{\mu}\bar{{\mathscr{J}}}^{(1)\nu}-2\bar{p}^{\nu}\bar{{\mathscr{J}}}^{(1)\mu}+\left\{\bar{\Pi}^{(1)\mu},\bar{{\mathscr{J}}}^{(0)\nu}\right\}-\left\{\bar{\Pi}^{(1)\nu},\bar{{\mathscr{J}}}^{(0)\mu}\right\} (43)
+sϵ¯μνα([Gα(0),𝒥n(0)][Gn(0),𝒥α(0)]).\displaystyle{+}s\bar{\epsilon}^{\mu\nu\alpha}\left(\left[G_{\alpha}^{(0)},{\mathscr{J}}_{n}^{(0)}\right]-\left[G_{n}^{(0)},{\mathscr{J}}_{\alpha}^{(0)}\right]\right).

From Eq.(42), we can express 𝒥¯(1)μ\bar{{\mathscr{J}}}^{(1)\mu} in terms of 𝒥n(1){\mathscr{J}}^{(1)}_{n} and 𝒥n(0){\mathscr{J}}^{(0)}_{n}

𝒥¯(1)μ\displaystyle\bar{{\mathscr{J}}}^{(1)\mu} =\displaystyle= p¯μ𝒥n(1)pn+s2pnϵ¯μαβ[Gα(0),p¯β𝒥n(0)pn]\displaystyle\bar{p}^{\mu}\frac{{\mathscr{J}}^{(1)}_{n}}{p_{n}}{+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}\left[G_{\alpha}^{(0)},\bar{p}_{\beta}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right] (44)
+12pn({Π¯(1)μ,pn𝒥n(0)pn}{Πn(1),p¯μ𝒥n(0)pn}).\displaystyle+\frac{1}{2p_{n}}\left(\left\{\bar{\Pi}^{(1)\mu},p_{n}\frac{{\mathscr{J}}^{(0)}_{n}}{p_{n}}\right\}-\left\{\Pi^{(1)}_{n},\bar{p}^{\mu}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right\}\right).

Substituting it into Eqs.(40) and (41) gives rise to the modified on-shell condition and transport equation for 𝒥n(1){\mathscr{J}}_{n}^{(1)}, respectively,

p2𝒥n(1)pn\displaystyle p^{2}\frac{{\mathscr{J}}_{n}^{(1)}}{p_{n}} =\displaystyle= s2pnϵ¯μαβp¯μ[Gα(0),p¯β𝒥n(0)pn]12{Πμ(1),pμ𝒥n(0)pn}\displaystyle{-}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}\bar{p}_{\mu}\left[G_{\alpha}^{(0)},\bar{p}_{\beta}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right]-{\frac{1}{2}}\left\{\Pi_{\mu}^{(1)},p^{\mu}\frac{{\mathscr{J}}^{(0)}_{n}}{p_{n}}\right\} (45)
p¯μ2pn({Π¯(1)μ,pn𝒥n(0)pn}{Πn(1),p¯μ𝒥n(0)pn}),\displaystyle-\frac{\bar{p}_{\mu}}{2p_{n}}\left(\left\{\bar{\Pi}^{(1)\mu},p_{n}\frac{{\mathscr{J}}^{(0)}_{n}}{p_{n}}\right\}-\left\{\Pi^{(1)}_{n},\bar{p}^{\mu}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right\}\right),
[Gμ(0),pμ𝒥n(1)pn]\displaystyle\left[G_{\mu}^{(0)},p^{\mu}\frac{{\mathscr{J}}^{(1)}_{n}}{p_{n}}\right] =\displaystyle= s2ϵ¯μαβ[G¯μ(0),1pn[Gα(0),p¯β𝒥n(0)pn]][Gμ(1),pμ𝒥n(0)pn]\displaystyle{-}\frac{s}{2}\bar{\epsilon}^{\mu\alpha\beta}\left[\bar{G}_{\mu}^{(0)},\frac{1}{p_{n}}\left[G_{\alpha}^{(0)},\bar{p}_{\beta}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right]\right]-\left[G_{\mu}^{(1)},p^{\mu}\frac{{\mathscr{J}}^{{(0)}}_{n}}{p_{n}}\right] (46)
12[G¯μ(0),1pn({Π¯(1)μ,pn𝒥n(0)pn}{Πn(1),p¯μ𝒥n(0)pn})].\displaystyle-\frac{1}{2}\left[\bar{G}_{\mu}^{(0)},\frac{1}{p_{n}}\left(\left\{\bar{\Pi}^{(1)\mu},p_{n}\frac{{\mathscr{J}}^{(0)}_{n}}{p_{n}}\right\}-\left\{\Pi^{(1)}_{n},\bar{p}^{\mu}\frac{{\mathscr{J}}_{n}^{(0)}}{p_{n}}\right\}\right)\right].

It is easy to verify that the general expression of the constraint equation (45) is given by

𝒥n(1)pn=f(1)δ(p2)+s2pnϵ¯μαβpμ{g2Fαβ,f(0)}δ(p2)+{Πμ(1),pμf(0)}δ(p2).\displaystyle\frac{{\mathscr{J}}_{n}^{(1)}}{p_{n}}=f^{(1)}\delta(p^{2}){+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}p_{\mu}\left\{\frac{g}{2}F_{\alpha\beta},f^{(0)}\right\}\delta^{\prime}(p^{2})+\left\{\Pi_{\mu}^{(1)},p^{\mu}f^{(0)}\right\}\delta^{\prime}(p^{2}). (47)

Just like f(0)f^{(0)}, the function f(1)f^{(1)} is also a non-singular distribution function at p2=0p^{2}=0 in four-dimensional momentum space and four-dimensional coordinate space and can be regarded as the first order correction to f(0)f^{(0)}. The transport equation for f(1)f^{(1)} can be directly obtained by inserting Eq.(47) into Eq.(46) and will not be presented explicitly here to avoid too lengthy equations. Putting Eqs.(44) and (47) together, we get the full Wigner function of the first order

𝒥(1)μ\displaystyle{\mathscr{J}}^{(1)\mu} =\displaystyle= pμ[f(1)δ(p2)+s2pnϵ¯ναβpν{g2Fαβ,f(0)}δ(p2)+{Πν(1),pνf(0)}δ(p2)]\displaystyle p^{\mu}\left[f^{(1)}\delta(p^{2}){+}\frac{s}{2p_{n}}\bar{\epsilon}^{\nu\alpha\beta}p_{\nu}\left\{\frac{g}{2}F_{\alpha\beta},f^{(0)}\right\}\delta^{\prime}(p^{2})+\left\{\Pi_{\nu}^{(1)},p^{\nu}f^{(0)}\right\}\delta^{\prime}(p^{2})\right] (48)
+12pn({Π¯(1)μ,pnf(0)δ(p2)}{Πn(1),p¯μf(0)δ(p2)})\displaystyle+\frac{1}{2p_{n}}\left(\left\{\bar{\Pi}^{(1)\mu},p_{n}f^{(0)}\delta(p^{2})\right\}-\left\{\Pi^{(1)}_{n},\bar{p}^{\mu}f^{(0)}\delta(p^{2})\right\}\right)
+s2pnϵ¯μαβ[Gα(0),p¯βf(0)δ(p2)].\displaystyle{+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}\left[G_{\alpha}^{(0)},\bar{p}_{\beta}f^{(0)}\delta(p^{2})\right].

As we note in the zeroth order case, the equation (34) is automatically satisfied once we have the expression (35). Now we can check if the first order equation (43) also holds automatically by using the first order expression (44) together with Eqs.(32), (36) and (38). In consequence, after direct calculation we find that the first order equation (43) is not satisfied automatically but lead to the constraint equation for 𝒥μ(0){\mathscr{J}}_{\mu}^{(0)} or f(0)f^{(0)}

0\displaystyle 0 =\displaystyle= nα([Fνα,𝒥(0)μ]+[Fαμ,𝒥(0)ν]+[Fμν,𝒥(0)α]).\displaystyle n_{\alpha}\left(\left[F^{\nu\alpha},{\mathscr{J}}^{(0)\mu}\right]+\left[F^{\alpha\mu},{\mathscr{J}}^{(0)\nu}\right]+\left[F^{\mu\nu},{\mathscr{J}}^{(0)\alpha}\right]\right). (49)

Because nαn^{\alpha} is an arbitrary auxiliary vector with normalization n2=1n^{2}=1, the constraint equation should not depend on nαn^{\alpha} or this equation should hold for any nαn^{\alpha}. This leads to the Lorentz covariant constraint equation

[Fνα,𝒥(0)μ]+[Fαμ,𝒥(0)ν]+[Fμν,𝒥(0)α]=0,\displaystyle\left[F^{\nu\alpha},{\mathscr{J}}^{(0)\mu}\right]+\left[F^{\alpha\mu},{\mathscr{J}}^{(0)\nu}\right]+\left[F^{\mu\nu},{\mathscr{J}}^{(0)\alpha}\right]=0, (50)

which is equivalent to

[F~αβ,𝒥α(0)]=0withF~αβ=12ϵαβμνFμν.\displaystyle\left[\tilde{F}^{\alpha\beta},{\mathscr{J}}^{(0)}_{\alpha}\right]=0\ \ \ {\textrm{with}\ \ \ \tilde{F}^{\alpha\beta}=\frac{1}{2}\epsilon^{\alpha\beta\mu\nu}}F_{\mu\nu}. (51)

In Ref. Ochs:1998qj , similar constraints for \mathscr{F} and 𝒮μν\mathscr{S}_{\mu\nu} in Eq.(18) had already been obtained. Such constraints only arise in the quantum transport theory with non-Abelian gauge field. The disentanglement theorem of Wigner functions in Abelian gauge field given in Ref. Gao:2018wmr show that all these constraint equations in Abelian cases are satisfied automatically and holds up to any order of \hbar. We also notice that the first order equation (43) gives the constraint for the zeroth order Wigner function 𝒥(0)μ{\mathscr{J}}^{(0)\mu} because the first order Wigner functions are totally canceled due to the antisymmetry of the equation. Hence in order to get the constraint for the first order Wigner function 𝒥(1)μ{\mathscr{J}}^{(1)\mu}, we need the second order Wigner functions and equations. The second order expression of Eq.(22) is given by

0\displaystyle 0 =\displaystyle= 2p¯μ𝒥n(2)2pn𝒥¯(2)μ\displaystyle 2\bar{p}^{\mu}{\mathscr{J}}^{(2)}_{n}-2p_{n}\bar{{\mathscr{J}}}^{(2)\mu} (52)
+{Π¯(1)μ,𝒥n(1)}{Πn(1),𝒥¯(1)μ}+{Π¯(2)μ,𝒥n(0)}{Πn(2),𝒥¯(0)μ}\displaystyle+\left\{\bar{\Pi}^{(1)\mu},{\mathscr{J}}^{(1)}_{n}\right\}-\left\{\Pi^{(1)}_{n},\bar{{\mathscr{J}}}^{(1)\mu}\right\}+\left\{\bar{\Pi}^{(2)\mu},{\mathscr{J}}^{(0)}_{n}\right\}-\left\{\Pi^{(2)}_{n},\bar{{\mathscr{J}}}^{(0)\mu}\right\}
+sϵ¯μαβ([Gα(0),𝒥β(1)]+[Gα(1),𝒥β(0)]),\displaystyle{+}s\bar{\epsilon}^{\mu\alpha\beta}\left(\left[G_{\alpha}^{(0)},{\mathscr{J}}_{\beta}^{(1)}\right]+\left[G_{\alpha}^{(1)},{\mathscr{J}}_{\beta}^{(0)}\right]\right),
0\displaystyle 0 =\displaystyle= 2p¯μ𝒥¯(2)ν2p¯ν𝒥¯(2)μ\displaystyle 2\bar{p}^{\mu}\bar{{\mathscr{J}}}^{(2)\nu}-2\bar{p}^{\nu}\bar{{\mathscr{J}}}^{(2)\mu} (53)
+{Π¯(1)μ,𝒥¯(1)ν}{Π¯(1)ν,𝒥¯(1)μ}+{Π¯(2)μ,𝒥¯(0)ν}{Π¯(2)ν,𝒥¯(0)μ}\displaystyle+\left\{\bar{\Pi}^{(1)\mu},\bar{{\mathscr{J}}}^{(1)\nu}\right\}-\left\{\bar{\Pi}^{(1)\nu},\bar{{\mathscr{J}}}^{(1)\mu}\right\}+\left\{\bar{\Pi}^{(2)\mu},\bar{{\mathscr{J}}}^{(0)\nu}\right\}-\left\{\bar{\Pi}^{(2)\nu},\bar{{\mathscr{J}}}^{(0)\mu}\right\}
+sϵ¯μνα([Gα(0),𝒥n(1)][Gn(0),𝒥α(1)]+[Gα(1),𝒥n(0)][Gn(1),𝒥α(0)]).\displaystyle{+}s\bar{\epsilon}^{\mu\nu\alpha}\left(\left[G_{\alpha}^{(0)},{\mathscr{J}}_{n}^{(1)}\right]-\left[G_{n}^{(0)},{\mathscr{J}}_{\alpha}^{(1)}\right]+\left[G_{\alpha}^{(1)},{\mathscr{J}}_{n}^{(0)}\right]-\left[G_{n}^{(1)},{\mathscr{J}}_{\alpha}^{(0)}\right]\right).

From the first equation above, we can express 𝒥¯(2)μ\bar{{\mathscr{J}}}^{(2)\mu} in terms of 𝒥n(2){\mathscr{J}}^{(2)}_{n}, 𝒥n(1){\mathscr{J}}^{(1)}_{n} and 𝒥n(0){\mathscr{J}}^{(0)}_{n} as

𝒥¯(2)μ\displaystyle\bar{{\mathscr{J}}}^{(2)\mu} =\displaystyle= p¯μ𝒥n(2)pn+s2pnϵ¯μαβ([Gα(0),𝒥β(1)]+[Gα(1),𝒥β(0)])\displaystyle\bar{p}^{\mu}\frac{{\mathscr{J}}^{(2)}_{n}}{p_{n}}{+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}\left(\left[G_{\alpha}^{(0)},{\mathscr{J}}_{\beta}^{(1)}\right]+\left[G_{\alpha}^{(1)},{\mathscr{J}}_{\beta}^{(0)}\right]\right) (54)
+12pn({Π¯(1)μ,𝒥n(1)}{Πn(1),𝒥¯(1)μ})\displaystyle+\frac{1}{2p_{n}}\left(\left\{\bar{\Pi}^{(1)\mu},{\mathscr{J}}^{(1)}_{n}\right\}-\left\{\Pi^{(1)}_{n},\bar{{\mathscr{J}}}^{(1)\mu}\right\}\right)
+12pn({Π¯(2)μ,𝒥n(0)}{Πn(2),𝒥¯(0)μ}).\displaystyle+\frac{1}{2p_{n}}\left(\left\{\bar{\Pi}^{(2)\mu},{\mathscr{J}}^{(0)}_{n}\right\}-\left\{\Pi^{(2)}_{n},\bar{{\mathscr{J}}}^{(0)\mu}\right\}\right).

Similar to the first order, substituting it into Eq.(53) and using Eqs. (44), (45) and (46) leads to the constraint for 𝒥(1)μ{\mathscr{J}}^{(1)\mu}

[F~αβ,𝒥(1)α]\displaystyle\left[\tilde{F}_{\alpha\beta},{\mathscr{J}}^{(1)\alpha}\right] =\displaystyle= 332[[F~ναβpF~νβαp,Fνκκp],𝒥(0)α].\displaystyle-\frac{3}{32}\left[\left[\tilde{F}_{\nu\alpha}\partial^{p}_{\beta}-\tilde{F}_{\nu\beta}\partial^{p}_{\alpha},F^{\nu\kappa}\partial^{p}_{\kappa}\right],{\mathscr{J}}^{(0)\alpha}\right]. (55)

As we just mentioned above, these constraints are unique for non-Abelian gauge field and absent for Abelian field. Such constraints actually originate from the fact that the “covariant gradient expansion” is not completely identical to an expansion in powers of \hbar for non-Abelian gauge field. One difference between non-Abelian and Abelian is the operator Gμ(0)G_{\mu}^{(0)}. In the non-Abelian case, the derivative in Gμ(0)G_{\mu}^{(0)} is covariant derivative DμD_{\mu}, while in Abelian case, it is ordinary space-time derivative μx\partial^{x}_{\mu}. When we calculate high order contribution through iterative process, we will meet the commutator [Dμ,Dν]=igFμν/[D_{\mu},D_{\nu}]=igF_{\mu\nu}/\hbar in non-Abelian gauge field and this term will contribute to the lower power order, but for the ordinary derivative such issue will never happen in Abelian gauge field. Actually, during our calculation of (55), we find that if we do not use the constraints for 𝒥(0)α{\mathscr{J}}^{(0)\alpha} in Eq. (50) or (51) beforehand, we will have the same term as the right side of Eq. (49) but with minus sign. This term from the second order equation will eventually cancel the one from the first order. Although we can not give the general proof, we expect that the third order equation of (22) will cancel the second order result (55) and so on. Adding all the contributions up to any high order, the constraint equation (22) should also be satisfied automaticaly.

4 Decomposing covariant chiral kinetic equations in color space

Up to now, the Wigner function 𝒥μ{{\mathscr{J}}}^{\mu} is still an N×NN\times N matrix in color space. Hence it is necessary to decompose the Wigner function into color singlet and multiplet components:

𝒥μ(x,p)\displaystyle{{\mathscr{J}}}_{\mu}(x,p) =\displaystyle= 𝒥μI(x,p)𝟏+𝒥μa(x,p)ta,\displaystyle{\mathscr{J}}_{\mu}^{I}(x,p){\bf{1}}+{{\mathscr{J}}}^{a}_{\mu}(x,p)t^{a}, (56)

with

𝒥μI(x,p)\displaystyle{\mathscr{J}}_{\mu}^{I}(x,p) =\displaystyle= 1Ntr𝒥μ(x,p),𝒥μa(x,p)=2trta𝒥μ(x,p).\displaystyle\frac{1}{N}\textrm{tr}{{\mathscr{J}}}_{\mu}(x,p),\,\ \ \ {{\mathscr{J}}}^{a}_{\mu}(x,p)={2}\textrm{tr}\,t^{a}{{\mathscr{J}}}_{\mu}(x,p). (57)

It should be noted that we use upper index “II” to denote singlet component. Similarly, we can decompose the operators into the color singlet and multiplet contributions:

Gμ(0)\displaystyle G_{\mu}^{(0)} =\displaystyle= Dμ+Gμ(0)ata,Πμ(1)=Πμ(1)ata,Gμ(1)=Gμ(1)ata,\displaystyle D_{\mu}+G_{\mu}^{(0)a}t^{a},\ \ \ \Pi_{\mu}^{(1)}=\Pi_{\mu}^{(1)a}t^{a},\ \ \ G_{\mu}^{(1)}=G_{\mu}^{(1)a}t^{a}, (58)

where

Gμ(0)a=g2Fμνapν,Πμ(1)a=ig4Fμνapν,Gμ(1)a=ig8(𝒟λacFμνc)pλpν,\displaystyle G_{\mu}^{(0)a}=\frac{g}{2}F_{\mu\nu}^{a}\partial_{p}^{\nu},\ \ \ \Pi_{\mu}^{(1)a}=\frac{ig}{4}F_{\mu\nu}^{a}\partial_{p}^{\nu},\ \ \ G_{\mu}^{(1)a}=-\frac{ig}{8}\left(\mathscr{D}^{ac}_{\lambda}F^{c}_{\mu\nu}\right)\partial_{p}^{\lambda}\partial_{p}^{\nu}, (59)

with 𝒟λac=δcaλx+gfbcaAλb/{\mathscr{D}}^{ac}_{\lambda}=\delta^{ca}\partial^{x}_{\lambda}+gf^{bca}A^{b}_{\lambda}/\hbar. With such decomposition, the singlet and multiplet components of Wigner functions at the zeroth order can be derived from Eqs.(38)

𝒥(0)Iμ\displaystyle{\mathscr{J}}^{(0){I}\mu} =\displaystyle= pμf(0)Iδ(p2),𝒥(0)aμ=pμf(0)aδ(p2),\displaystyle p^{\mu}f^{(0){I}}\delta(p^{2}),\ \ \ {\mathscr{J}}^{(0)a\mu}=p^{\mu}f^{(0)a}\delta(p^{2}), (60)

which satisfy the coupled transport equations

0\displaystyle 0 =\displaystyle= μx𝒥(0)Iμ+1NGμ(0)a𝒥(0)aμ,\displaystyle\partial^{x}_{\mu}{\mathscr{J}}^{(0){I}\mu}+\frac{1}{N}G_{\mu}^{(0)a}{\mathscr{J}}^{(0)a\mu}, (61)
0\displaystyle 0 =\displaystyle= 𝒟μac𝒥(0)cμ+2Gμ(0)a𝒥(0)Iμ+dbcaGμ(0)b𝒥(0)cμ.\displaystyle{\mathscr{D}}^{ac}_{\mu}{\mathscr{J}}^{(0)c\mu}+2G_{\mu}^{(0)a}{\mathscr{J}}^{(0){I}\mu}+d^{bca}G_{\mu}^{(0)b}{\mathscr{J}}^{(0)c\mu}. (62)

Similarly but more complicatedly, the color decomposition of first order Wigner functions can be derived from Eq (48)

𝒥(1)Iμ\displaystyle{\mathscr{J}}^{(1){I}\mu} =\displaystyle= pμf(1)Iδ(p2)s2ϵμναβpνg2NFαβaf(0)aδ(p2)\displaystyle p^{\mu}f^{(1){I}}\delta(p^{2}){-}\frac{s}{2}\epsilon^{\mu\nu\alpha\beta}p_{\nu}\frac{g}{2N}F^{a}_{\alpha\beta}f^{(0)a}\delta^{\prime}(p^{2}) (63)
+s2pnϵ¯μαβpβ(αxf(0)I+1NGα(0)af(0)a)δ(p2),\displaystyle{+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}p_{\beta}\left(\partial^{x}_{\alpha}f^{(0){I}}+\frac{1}{N}G_{\alpha}^{(0)a}f^{(0)a}\right)\delta(p^{2}),
𝒥(1)aμ\displaystyle{\mathscr{J}}^{(1)a\mu} =\displaystyle= pμf(1)aδ(p2)sϵμναβpν(g2Fαβaf(0)I+12dbcag2Fαβbf(0)c)δ(p2)\displaystyle p^{\mu}f^{(1)a}\delta(p^{2}){-}s\epsilon^{\mu\nu\alpha\beta}p_{\nu}\left(\frac{g}{2}F^{a}_{\alpha\beta}f^{(0){I}}+\frac{1}{2}d^{bca}\frac{g}{2}F^{b}_{\alpha\beta}f^{(0)c}\right)\delta^{\prime}(p^{2}) (64)
+s2pnϵ¯μαβpβ(𝒟αacf(0)c+2Gα(0)af(0)I+dbcaGα(0)bf(0)c)δ(p2)\displaystyle{+}\frac{s}{2p_{n}}\bar{\epsilon}^{\mu\alpha\beta}p_{\beta}\left(\frac{}{}{\mathscr{D}}^{ac}_{\alpha}f^{(0)c}+2G_{\alpha}^{(0)a}f^{(0){I}}+d^{bca}G_{\alpha}^{(0)b}f^{(0)c}\frac{}{}\right)\delta(p^{2})
+12pnifbca(Π¯(1)bμ[pnf(0)cδ(p2)]Πn(1)b[p¯μf(0)cδ(p2)])\displaystyle+\frac{1}{2p_{n}}if^{bca}\left(\bar{\Pi}^{(1)b\mu}\left[p_{n}f^{(0)c}\delta(p^{2})\right]-\Pi^{(1)b}_{n}\left[\bar{p}^{\mu}f^{(0)c}\delta(p^{2})\right]\frac{}{}\right)
+ifbcapμ[Πν(1)b(pνf(0)c)]δ(p2),\displaystyle+if^{bca}p^{\mu}\left[\Pi_{\nu}^{(1)b}\left(p^{\nu}f^{(0)c}\right)\right]\delta^{\prime}(p^{2}),

which satisfy the corresponding transport equations

0\displaystyle 0 =\displaystyle= μx𝒥(1)Iμ+1NGμ(0)a𝒥(1)aμ,\displaystyle\partial^{x}_{\mu}{\mathscr{J}}^{(1){I}\mu}+\frac{1}{N}G_{\mu}^{(0)a}{\mathscr{J}}^{(1)a\mu}, (65)
0\displaystyle 0 =\displaystyle= 𝒟μac𝒥(1)cμ+2Gμ(0)a𝒥(1)Iμ+dbcaGμ(0)b𝒥(1)cμ+ifbcaGμ(1)b𝒥(0)cμ.\displaystyle{\mathscr{D}}^{ac}_{\mu}{\mathscr{J}}^{(1)c\mu}+2G_{\mu}^{(0)a}{\mathscr{J}}^{(1){I}\mu}+d^{bca}G_{\mu}^{(0)b}{\mathscr{J}}^{(1)c\mu}+if^{bca}G_{\mu}^{(1)b}{\mathscr{J}}^{(0)c\mu}. (66)

In order to attain all the results above, we have used the Eq.(4) repeatedly. We note that the singlet distribution f(0)If^{(0){I}} and multiplet distribution f(0)af^{(0){a}} are totally coupled with each other even in the zeroth order transport equation, which displays the much complexity for non-Abelian chiral kinetic equation, in comparison with chiral kinetic equation in Abelian gauge field.

5 Frame dependence of distribution function

We can regard f(x,p)f(x,p) as the particle distribution function in 8-dimensional phase space and f(0)(x,p)f^{(0)}(x,p) in Eq.(37) and f(1)(x,p)f^{(1)}(x,p) in Eq.(47) are the zeroth order and first order corrections to f(x,p)f(x,p), respectively. However this distribution function defined in this way depends on the auxiliary vector nμn^{\mu} we choose. Since we can identify this time-like vector nμn^{\mu} as the velocity of the observer in a reference frame, the distribution function depends on the reference frame in which we define it. In general, the distribution function in phase space can not be Lorentz scalar when we change the reference frame from one to another. In this section, we will derive how these distribution functions transform in different reference frames. In order to do that, we rewrite the zeroth and first order results for Wigner functions with explicit dependence on the frame velocity nμn^{\mu} as the following:

𝒥(0)μ\displaystyle{\mathscr{J}}^{(0)\mu} =\displaystyle= pμn𝒥(0)np,\displaystyle p^{\mu}\frac{n\cdot{\mathscr{J}}^{(0)}}{n\cdot p}, (67)
𝒥(1)μ\displaystyle{\mathscr{J}}^{(1)\mu} =\displaystyle= pμn𝒥(1)np+s2npϵμναβnν[Gα(0),𝒥β(0)]\displaystyle p^{\mu}\frac{n\cdot{\mathscr{J}}^{(1)}}{n\cdot p}{+}\frac{s}{2n\cdot p}\epsilon^{\mu\nu\alpha\beta}n_{\nu}\left[G_{\alpha}^{(0)},{\mathscr{J}}^{(0)}_{\beta}\right] (68)
+12np({Π(1)μ,n𝒥(0)}{nΠ(1),𝒥(0)μ}).\displaystyle+\frac{1}{2n\cdot p}\left(\left\{\Pi^{(1)\mu},n\cdot{\mathscr{J}}^{(0)}\right\}-\left\{n\cdot\Pi^{(1)},{\mathscr{J}}^{(0)\mu}\right\}\right).

Of course, we can also define the particle distribution function in another reference frame with velocity nn^{\prime},

𝒥(0)μ\displaystyle{\mathscr{J}}^{(0)\mu} =\displaystyle= pμn𝒥(0)np,\displaystyle p^{\mu}\frac{n^{\prime}\cdot{\mathscr{J}}^{(0)}}{n^{\prime}\cdot p}, (69)
𝒥(1)μ\displaystyle{\mathscr{J}}^{(1)\mu} =\displaystyle= pμn𝒥(1)np+s2npϵμναβnν[Gα(0),𝒥β(0)]\displaystyle p^{\mu}\frac{n^{\prime}\cdot{\mathscr{J}}^{(1)}}{n^{\prime}\cdot p}{+}\frac{s}{2n^{\prime}\cdot p}\epsilon^{\mu\nu\alpha\beta}n^{\prime}_{\nu}\left[G_{\alpha}^{(0)},{\mathscr{J}}^{(0)}_{\beta}\right] (70)
+12np({Π(1)μ,n𝒥(0)}{nΠ(1),𝒥(0)μ}).\displaystyle+\frac{1}{2n^{\prime}\cdot p}\left(\left\{\Pi^{(1)\mu},n^{\prime}\cdot{\mathscr{J}}^{(0)}\right\}-\left\{n^{\prime}\cdot\Pi^{(1)},{\mathscr{J}}^{(0)\mu}\right\}\right).

Since 𝒥(0)μ{\mathscr{J}}^{(0)\mu} and 𝒥(1)μ{\mathscr{J}}^{(1)\mu} should not depend on the auxiliary vector, we will get the modified Lorentz transformation for 𝒥n(0)/pn{{\mathscr{J}}^{(0)}_{n}}/{p_{n}} and 𝒥n(1)/pn{{\mathscr{J}}^{(1)}_{n}}/{p_{n}}

δ(n𝒥(0)np)\displaystyle\delta\left(\frac{n\cdot{\mathscr{J}}^{(0)}}{n\cdot p}\right) =\displaystyle= n𝒥(0)npn𝒥(0)np=0,\displaystyle\frac{n^{\prime}\cdot{\mathscr{J}}^{(0)}}{n^{\prime}\cdot p}-\frac{n\cdot{\mathscr{J}}^{(0)}}{n\cdot p}=0, (71)
δ(n𝒥(1)np)\displaystyle\delta\left(\frac{n\cdot{\mathscr{J}}^{(1)}}{n\cdot p}\right) =\displaystyle= n𝒥(1)npn𝒥(1)np\displaystyle\frac{n^{\prime}\cdot{\mathscr{J}}^{(1)}}{n^{\prime}\cdot p}-\frac{n\cdot{\mathscr{J}}^{(1)}}{n\cdot p} (72)
=\displaystyle= sϵμναβnμnν2(np)(np)[Gα(0),𝒥β(0)](nμnνnνnμ)2(np)(np){Π(1)μ,𝒥(0)ν}.\displaystyle{-}\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}}{2(n\cdot p)(n^{\prime}\cdot p)}\left[G_{\alpha}^{(0)},{\mathscr{J}}^{(0)}_{\beta}\right]-\frac{\left(n_{\mu}n^{\prime}_{\nu}-n_{\nu}n^{\prime}_{\mu}\right)}{2(n\cdot p)(n^{\prime}\cdot p)}\left\{\Pi^{(1)\mu},{\mathscr{J}}^{(0)\nu}\right\}.

We note that the zeroth order 𝒥n(0)/pn{{\mathscr{J}}^{(0)}_{n}}/{p_{n}} does not depend on the reference frame and is Lorentz scalar while the first order 𝒥n(1)/pn{{\mathscr{J}}^{(1)}_{n}}/{p_{n}} does have non-trivial transformation and is not Lorentz scalar when we change from reference frame nμn_{\mu} to nμn^{\prime}_{\mu}. The first term of the last line in Eq.(72) is just the so-called side-jump term and the second term is unique for non-Abelian gauge field and absent for Abelian gauge field. We can decompose the modified Lorentz transformation into color singlet and multiplet components:

δ(n𝒥(0)Inp)\displaystyle\delta\left(\frac{n\cdot{\mathscr{J}}^{(0){I}}}{n\cdot p}\right) =\displaystyle= 0,δ(n𝒥(0)anp)=0,\displaystyle 0,\hskip 28.45274pt\delta\left(\frac{n\cdot{\mathscr{J}}^{(0)a}}{n\cdot p}\right)=0, (73)
δ(n𝒥(1)Inp)\displaystyle\delta\left(\frac{n\cdot{\mathscr{J}}^{(1){I}}}{n\cdot p}\right) =\displaystyle= sϵμναβnμnν2(np)(np)αx𝒥β(0)Isϵμναβnμnν2(np)(np)NGα(0)a𝒥β(0)a,\displaystyle{-}\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}}{2(n\cdot p)(n^{\prime}\cdot p)}\partial_{\alpha}^{x}{\mathscr{J}}^{(0){I}}_{\beta}{-}\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}}{2(n\cdot p)(n^{\prime}\cdot p)N}G_{\alpha}^{(0)a}{\mathscr{J}}^{(0)a}_{\beta}, (74)
δ(n𝒥(1)anp)\displaystyle\delta\left(\frac{n\cdot{\mathscr{J}}^{(1)a}}{n\cdot p}\right) =\displaystyle= sϵμναβnμnν2(np)(np)[𝒟αac𝒥β(0)c+2Gαa(0)𝒥β(0)I+dbcaGα(0)b𝒥β(0)c]\displaystyle{-}\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}}{2(n\cdot p)(n^{\prime}\cdot p)}\left[{\mathscr{D}}^{ac}_{\alpha}{\mathscr{J}}^{(0)c}_{\beta}+2G_{\alpha}^{a(0)}{\mathscr{J}}^{(0){I}}_{\beta}+d^{bca}G_{\alpha}^{(0)b}{\mathscr{J}}^{(0)c}_{\beta}\right] (75)
nμnνnνnμ2(np)(np)ifbcaΠ(1)bμ𝒥(0)cν.\displaystyle-\frac{n_{\mu}n^{\prime}_{\nu}-n_{\nu}n^{\prime}_{\mu}}{2(n\cdot p)(n^{\prime}\cdot p)}if^{bca}\Pi^{(1)b\mu}{\mathscr{J}}^{(0)c\nu}.

Using Eqs. (60), (63) and (64), we obtain the transformation of the singlet and multiplet distribution function of f(0)f^{(0)} and f(1)f^{(1)} when we define them in different frames, respectively,

δ(p2)δf(0)I\displaystyle\delta(p^{2})\delta f^{(0){I}} =\displaystyle= 0,\displaystyle 0,
δ(p2)δf(0)a\displaystyle\delta(p^{2})\delta f^{(0)a} =\displaystyle= 0,\displaystyle 0, (76)
δ(p2)δf(1)I\displaystyle\delta(p^{2})\delta f^{(1){I}} =\displaystyle= δ(p2)sϵμναβnμnνpβ2(np)(np)[αxf(0)I+2NGα(0)af(0)a],\displaystyle{-}\delta(p^{2})\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}p_{\beta}}{2(n\cdot p)(n^{\prime}\cdot p)}\left[\partial_{\alpha}^{x}f^{(0){I}}+\frac{\hbar^{2}}{N}G_{\alpha}^{(0)a}f^{(0)a}\right], (77)
δ(p2)δf(1)a\displaystyle\delta(p^{2})\delta f^{(1)a} =\displaystyle= δ(p2)sϵμναβnμnνpβ2(np)(np)[𝒟αacf(0)c+2Gα(0)af(0)I+dbcaGα(0)bf(0)c]\displaystyle{-}\delta(p^{2})\frac{s\epsilon^{\mu\nu\alpha\beta}n_{\mu}n^{\prime}_{\nu}p_{\beta}}{2(n\cdot p)(n^{\prime}\cdot p)}\left[{\mathscr{D}}^{ac}_{\alpha}f^{(0)c}+2G_{\alpha}^{(0)a}f^{(0){I}}+d^{bca}G_{\alpha}^{(0)b}f^{(0)c}\right] (78)
nμnνnνnμ2(np)(np)ifbcaΠ(1)bμ(pνf(0)cδ(p2)).\displaystyle-\frac{n_{\mu}n^{\prime}_{\nu}-n_{\nu}n^{\prime}_{\mu}}{2(n\cdot p)(n^{\prime}\cdot p)}if^{bca}\Pi^{(1)b\mu}\left(p^{\nu}f^{(0)c}\delta(p^{2})\right).

These non-trivial transformation play very important role to choose some specific solutions. They will be used to derive chiral effects in the next section.

6 Chiral effects in non-Abelian gauge field

As we all know, chiral kinetic theory tries to incorporate chiral anomaly, a novel and prominent quantum effect, into kinetic approach in a consistent way. It can describe various chiral effects originating from chiral anomaly, such as chiral magnetic effect and chiral vortical effect. However, as far as we know, most of work in the literature on chiral kinetic theory focused on the chiral anomaly or chiral effects induced by Abelian gauge field. In this section, we will demonstrate how the non-Abelian chiral effects can arise naturally in the formalism discussed in the preceding sections.

6.1 Non-Abelian chiral anomaly

First of all, let us consider the non-Abelian chiral anomaly. In general, we can write the zeroth order Wigner function in free Dirac field as the following,

𝒥sμ(0)ij\displaystyle{\mathscr{J}}^{(0)ij}_{s\mu} =\displaystyle= δij4π3[θ(p0)nsi+θ(p0)(n¯si1)]pμδ(p2)\displaystyle\frac{\delta_{ij}}{4\pi^{3}}\left[{\theta(p_{0})}n^{i}_{s}+{\theta(-p_{0})}\left(\bar{n}^{i}_{s}-1\right)\right]p_{\mu}\delta\left(p^{2}\right) (79)

where we have recovered the lower chirality index ss, the upper scripts ii and jj indicate the color index in fundamental representation corresponding to Eq.(2) and the repeated indices here do not denote summation. The function nsi/n¯sin_{s}^{i}/\bar{n}_{s}^{i} represent the quark/antiquark number density with color ii and chirality ss in phase space. They are defined as the ensemble average of the normal-ordered number density operator and are expected to vanish at infinity in phase space. The 1-1 term in antiparticle distribution is vacuum or Dirac sea contribution and originate from the anticommutator of the antiparticle field in the definition of Wigner funciton without normal ordering. This term plays a central role to generate the chiral anomaly as pointed out in Gao:2019zhk ; Fang:2020com . Decomposing it in color space gives rise to

𝒥sμ(0)ij\displaystyle{\mathscr{J}}^{(0)ij}_{s\mu} =\displaystyle= δij𝒥sμ(0)I+tija𝒥sμ(0)a\displaystyle\delta_{ij}{\mathscr{J}}^{(0){I}}_{s\mu}+t^{a}_{ij}{\mathscr{J}}^{(0)a}_{s\mu} (80)

where the singlet and multiplet components are given by, respectively,

𝒥sμ(0)I\displaystyle{\mathscr{J}}^{(0){I}}_{s\mu} =\displaystyle= pμfs(0)Iδ(p2),𝒥sμ(0)a=pμfs(0)aδ(p2),\displaystyle p_{\mu}f^{(0){I}}_{s}\delta(p^{2}),\ \ \ \ {\mathscr{J}}^{(0)a}_{s\mu}=p_{\mu}f^{(0)a}_{s}\delta(p^{2}), (81)

with

fs(0)I\displaystyle f^{(0){I}}_{s} =\displaystyle= 14π3Ni[θ(p0)nsi+θ(p0)n¯si]14π3θ(p0),\displaystyle\frac{1}{4\pi^{3}N}\sum_{i}\left[{\theta(p_{0})}n_{s}^{i}+{\theta(-p_{0})}\bar{n}^{i}_{s}\right]-\frac{1}{4\pi^{3}}\theta(-p_{0}), (82)
fs(0)a\displaystyle f^{(0)a}_{s} =\displaystyle= 12π3itiia[θ(p0)nsi+θ(p0)n¯si].\displaystyle\frac{1}{2\pi^{3}}\sum_{i}t^{a}_{ii}\left[{\theta(p_{0})}n^{i}_{s}+{\theta(-p_{0})}\bar{n}^{i}_{s}\right]. (83)

We note that only the singlet component fs(0)If^{(0){I}}_{s} includes the vacuum contribution. In order to consider the chiral anomaly, we need the transport equation for the axial Wigner functions 𝒜Iμ{\mathscr{A}}^{{I}\mu} and 𝒜aμ{\mathscr{A}}^{{a}\mu}

𝒜Iμ=s=±1s𝒥sIμ,𝒜aμ=s=±1s𝒥saμ,\displaystyle{\mathscr{A}}^{I\mu}=\sum_{s=\pm 1}s{\mathscr{J}}^{I\mu}_{s},\hskip 56.9055pt{\mathscr{A}}^{a\mu}=\sum_{s=\pm 1}s{\mathscr{J}}^{a\mu}_{s}, (84)

from which we can obtain the chiral currents

j5Iμ=d4p𝒜Iμ,j5aμ=d4p𝒜aμ.\displaystyle j^{I\mu}_{5}=\int d^{4}p{\mathscr{A}}^{I\mu},\hskip 56.9055ptj^{a\mu}_{5}=\int d^{4}p{\mathscr{A}}^{a\mu}. (85)

The zeroth order equations can be derived trivially from Eqs.(61,62)

μx𝒜(0)Iμ\displaystyle\partial^{x}_{\mu}{\mathscr{A}}^{(0){I}\mu} =\displaystyle= 1NGμ(0)a𝒜(0)aμ,\displaystyle-\frac{1}{N}G_{\mu}^{(0)a}{\mathscr{A}}^{(0)a\mu}, (86)
𝒟μac𝒜(0)cμ\displaystyle{\mathscr{D}}^{ac}_{\mu}{\mathscr{A}}^{(0)c\mu} =\displaystyle= 2Gμ(0)a𝒜(0)IμdbcaGμ(0)b𝒜(0)cμ.\displaystyle-2G_{\mu}^{(0)a}{\mathscr{A}}^{(0){I}\mu}-d^{bca}G_{\mu}^{(0)b}{\mathscr{A}}^{(0)c\mu}. (87)

From the expression (81), we note that the vacuum contributions in 𝒜(0)Iμ{\mathscr{A}}^{(0){I}\mu} and 𝒜(0)aμ{\mathscr{A}}^{(0){a}\mu} are all cancelled between s=+1s=+1 and s=1s=-1. Since the right hand sides of the equations above are all total derivatives on momentum and only normal particle distributions are involved, integrating over the 4-momentum leads to the conservation of chiral current at the zeroth order.

μxj5(0)Iμ=0,𝒟μacj5(0)cμ=0.\displaystyle\partial^{x}_{\mu}j^{(0){I}\mu}_{5}=0,\hskip 28.45274pt{\mathscr{D}}^{ac}_{\mu}j^{(0)c\mu}_{5}=0. (88)

The first order equations can be given from Eqs.(65, 66)

0\displaystyle 0 =\displaystyle= μx𝒜(1)Iμ+1NGμ(0)a𝒜(1)aμ,\displaystyle\partial^{x}_{\mu}{\mathscr{A}}^{(1){I}\mu}+\frac{1}{N}G_{\mu}^{(0)a}{\mathscr{A}}^{(1)a\mu}, (89)
0\displaystyle 0 =\displaystyle= 𝒟μac𝒜(1)cμ+2Gμ(0)a𝒜(1)Iμ+dbcaGμ(0)b𝒜(1)cμ+ifbcaGμ(1)b𝒜(0)cμ.\displaystyle{\mathscr{D}}^{ac}_{\mu}{\mathscr{A}}^{(1)c\mu}+2G_{\mu}^{(0)a}{\mathscr{A}}^{(1){I}\mu}+d^{bca}G_{\mu}^{(0)b}{\mathscr{A}}^{(1)c\mu}+if^{bca}G_{\mu}^{(1)b}{\mathscr{A}}^{(0)c\mu}. (90)

The right hand sides of these first order equations are still all total derivatives, after integrating over momentum, the only possible nonvanishing contribution is from the singular vacuum term,

μxj5(1)Iμ\displaystyle\partial^{x}_{\mu}j^{(1){I}\mu}_{5} =\displaystyle= g22NFμλaF~a,μνd4ppλ[pνfv(0)δ(p2)],\displaystyle\frac{g^{2}}{2N}F^{a}_{\mu\lambda}\tilde{F}^{a,\mu\nu}\int d^{4}p\,\partial^{\lambda}_{p}\left[p_{\nu}f_{v}^{(0)}\delta^{\prime}(p^{2})\right], (91)
𝒟μacj5(1)cμ\displaystyle{\mathscr{D}}^{ac}_{\mu}j^{(1)c\mu}_{5} =\displaystyle= g22dbcaFμλbF~c,μνd4ppλ[pνfv(0)δ(p2)],\displaystyle\frac{g^{2}}{2}d^{bca}F^{b}_{\mu\lambda}\tilde{F}^{c,\mu\nu}\int d^{4}p\,\partial^{\lambda}_{p}\left[p_{\nu}f_{v}^{(0)}\delta^{\prime}(p^{2})\right], (92)

where fv(0)f_{v}^{(0)} represents the vacuum contribution

fv(0)\displaystyle f_{v}^{(0)} =\displaystyle= 12π3θ(p0).\displaystyle-\frac{1}{2\pi^{3}}\theta(-p_{0}). (93)

Using the identity

FμλaF~a,μν\displaystyle F^{a}_{\mu\lambda}\tilde{F}^{a,\mu\nu} =\displaystyle= 14gλνF~αβFαβ=gλνEaBa,\displaystyle\frac{1}{4}g^{\nu}_{\lambda}\tilde{F}^{\alpha\beta}F_{\alpha\beta}=g^{\nu}_{\lambda}E^{a}\cdot B^{a}, (94)
dbcaFμλbF~c,μν\displaystyle d^{bca}F^{b}_{\mu\lambda}\tilde{F}^{c,\mu\nu} =\displaystyle= 14gλνdbcaF~b,αβFαβc=gλνdbcaEbBc,\displaystyle\frac{1}{4}g^{\nu}_{\lambda}d^{bca}\tilde{F}^{b,\alpha\beta}F^{c}_{\alpha\beta}=g^{\nu}_{\lambda}d^{bca}E^{b}\cdot B^{c}, (95)

we have

μxj5(1)Iμ\displaystyle\partial^{x}_{\mu}j^{(1){I}\mu}_{5} =\displaystyle= g22NEaBad4ppλ[pλfv(0)δ(p2)],\displaystyle\frac{g^{2}}{2N}E^{a}\cdot B^{a}\int d^{4}p\,\partial^{\lambda}_{p}\left[p_{\lambda}f_{v}^{(0)}\delta^{\prime}(p^{2})\right], (96)
𝒟μacj5(1)c,μ\displaystyle{\mathscr{D}}^{ac}_{\mu}j^{(1)c,\mu}_{5} =\displaystyle= g22dbcaEbBcd4ppλ[pλfv(0)δ(p2)].\displaystyle\frac{g^{2}}{2}d^{bca}E^{b}\cdot B^{c}\int d^{4}p\,\partial^{\lambda}_{p}\left[p_{\lambda}f_{v}^{(0)}\delta^{\prime}(p^{2})\right]. (97)

As in the Abelian case Gao:2019zhk ; Fang:2020com , we can finish integrating the momentum

Cv=d4ppλ[pλfv(0)δ(p2)]\displaystyle C_{v}=\int d^{4}p\,\partial^{\lambda}_{p}\left[p_{\lambda}f_{v}^{(0)}\delta^{\prime}(p^{2})\right] (98)

in 4 dimensional Euclidean momentum space pEμ=(ip0,𝐩)p_{E}^{\mu}=(ip_{0},{\bf p}) by Wick rotation

Cv=12π2d4pE2π2μ(pEμpE4)=12π2,\displaystyle C_{v}=-\frac{1}{2\pi^{2}}\int\frac{d^{4}p_{E}}{2\pi^{2}}\,\partial_{\mu}\left(\frac{p^{\mu}_{E}}{p_{E}^{4}}\right)=-\frac{1}{2\pi^{2}}, (99)

or 3 dimensional Euclidean momentum space 𝐩{\bf p} after integrating over p0p_{0}

Cv=12π2d3𝐩2π𝐩(𝐩^2𝐩2)=12π2,\displaystyle C_{v}=-\frac{1}{2\pi^{2}}\int\frac{d^{3}{\bf p}}{2\pi}{\mathbf{\partial}}_{\bf p}\cdot\left(\,\frac{\hat{\bf p}}{2{\bf p}^{2}}\right)=-\frac{1}{2\pi^{2}}, (100)

where pEμ/pE4p^{\mu}_{E}/p^{4}_{E} and 𝐩^/2𝐩2\hat{\bf p}/2{\bf p}^{2} are just the Berry curvature of a 4-dimensional and 3-dimensional monopoles in Euclidean momentum space, respectively. It follows that

μxj5(1)Iμ\displaystyle\partial^{x}_{\mu}j^{(1){I}\mu}_{5} =\displaystyle= g24π2NEaBa,𝒟μacj5(1)cμ=g24π2dbcaEbBc.\displaystyle{-}\frac{g^{2}}{4\pi^{2}N}E^{a}\cdot B^{a},\ \ \ {\mathscr{D}}^{ac}_{\mu}j^{(1)c\mu}_{5}={-}\frac{g^{2}}{4\pi^{2}}d^{bca}E^{b}\cdot B^{c}. (101)

It is obvious that the non-Abelian chiral anomaly originates from the Berry curvature of the vacuum contribution.

6.2 Non-Abelian anomalous currents

As we all know that the vorticity and magnetic field imposed on a chiral system could induce some novel chiral effects such as chiral magnetic effect, chiral vortical effect and chiral separate effect. In this section, we will derive the chiral effects induced by non-Abelian gauge field. For the zeroth order distribution function in Eqs.(82,83), we assume the quark and antiquark number density is the global equilibrium Fermi-Dirac distribution

nsi=11+e(upμsi)/T,n¯si=11+e(up+μsi)/T.\displaystyle n_{s}^{i}=\frac{1}{1+e^{\left(u\cdot p-\mu_{s}^{i}\right)/T}},\ \ \ \ \bar{n}_{s}^{i}=\frac{1}{1+e^{\left(-u\cdot p+\mu_{s}^{i}\right)/T}}. (102)

where μsi\mu_{s}^{i} denotes the chemical potential of the quark with chirality ss and color ii. The chirality chemical potential μsi\mu_{s}^{i} is related to the vector chemical potential μi\mu^{i} and axial chemical potential μ5i\mu_{5}^{i} by μsi=μi+sμ5i\mu_{s}^{i}=\mu^{i}{+}s\mu_{5}^{i}. Now let us impose the covariant-constant field in this chiral system

Fμνa=Fμνξa\displaystyle F^{a}_{\mu\nu}=F_{\mu\nu}\xi^{a} (103)

with the color index aa only running in the N1N-1 commuting Cartan generators and ξa\xi^{a} being (N1N-1) - dimensional constant color vector. Since the field tensor FμνF_{\mu\nu} is independent of space and time, the external gauge potential AμaA^{a}_{\mu} can be chosen as

Aμa=12Fμνxνξa.\displaystyle A^{a}_{\mu}=-\frac{1}{2}F_{\mu\nu}x^{\nu}\xi^{a}. (104)

It is easy to verify that when the following constraint conditions are satisfied

μxuνT+νxuμT=0,μxμsiT=gξatiiaEμT,\displaystyle\partial^{x}_{\mu}\frac{u_{\nu}}{T}+\partial^{x}_{\nu}\frac{u_{\mu}}{T}=0,\ \ \ \partial_{\mu}^{x}\frac{\mu^{i}_{s}}{T}=g\xi^{a}t^{a}_{ii}\frac{E_{\mu}}{T}, (105)

the zeroth order Wigner function in (82,83) with Fermi-Dirac distribution is indeed the solution of the zeroth order Wigner equations (61, 62). Once we have a special zeroth order solution, most of the terms in the first order solution are totally fixed by Eqs.(63) and (64) except for the first terms with fs(1)I=0f^{(1)I}_{s}=0 or fs(1)a=0f^{(1)a}_{s}=0. As shown in Ref. Gao:2018jsi , we can not causally set fs(1)I=0f^{(1)I}_{s}=0 and fs(1)a=0f^{(1)a}_{s}=0 because they must be consistent with the transformations (77) and (78). Substituting these specific solution (82,83,102) and conditions (105) into the transformations of the first order, we can have

δ(p2)δfs(1)I\displaystyle\delta(p^{2})\delta f_{s}^{(1){I}} =\displaystyle= δ(p2)snνΩ~νσpσ2(np)dfs(0)Idy+δ(p2)snνΩ~νσpσ2(np)dfs(0)Idy,\displaystyle{-}\delta(p^{2})\frac{sn^{\prime}_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n^{\prime}\cdot p)}\frac{df_{s}^{(0){I}}}{dy}{+}\delta(p^{2})\frac{sn_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n\cdot p)}\frac{df_{s}^{(0){I}}}{dy}, (106)
δ(p2)δfs(1)a\displaystyle\delta(p^{2})\delta f_{s}^{(1)a} =\displaystyle= δ(p2)snνΩ~νσpσ2(np)dfs(0)ady+δ(p2)snνΩ~νσpσ2(np)dfs(0)ady,\displaystyle{-}\delta(p^{2})\frac{sn^{\prime}_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n^{\prime}\cdot p)}\frac{df_{s}^{(0)a}}{dy}{+}\delta(p^{2})\frac{sn_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n\cdot p)}\frac{df_{s}^{(0)a}}{dy}, (107)

where we have defined

Ωμν\displaystyle\Omega_{\mu\nu} =\displaystyle= 12(μxuνTνxuμT),Ω~μν=12ϵμναβΩαβ,y=up/T.\displaystyle\frac{1}{2}\left(\partial^{x}_{\mu}\frac{u_{\nu}}{T}-\partial^{x}_{\nu}\frac{u_{\mu}}{T}\right),\ \ \ \tilde{\Omega}_{\mu\nu}=\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\Omega^{\alpha\beta},\ \ \ y=u\cdot p/T. (108)

This indicates that we can choose the specific solution which is consistent with the transformations (77) and (78),

fs(1)I\displaystyle f^{(1){I}}_{s} =\displaystyle= snνΩ~νσpσ2(np)dfs(0)Idy,fs(1)a=snνΩ~νσpσ2(np)dfs(0)ady.\displaystyle{-}\frac{sn_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n\cdot p)}\frac{df^{(0){I}}_{s}}{dy},\ \ \ f^{(1)a}_{s}={-}\frac{sn_{\nu}\tilde{\Omega}^{\nu\sigma}p_{\sigma}}{2(n\cdot p)}\frac{df^{(0)a}_{s}}{dy}. (109)

Inserting these results into Eqs.(63) and (64) gives rise to

𝒥s(1)Iμ\displaystyle{\mathscr{J}}_{s}^{(1)I\mu} =\displaystyle= s2Ω~μνpνdfs(0)Idyδ(p2)sg2NF~a,μνpνfs(0)aδ(p2),\displaystyle{-}\frac{s}{2}\tilde{\Omega}^{\mu\nu}p_{\nu}\frac{df^{(0)I}_{s}}{dy}\delta(p^{2}){-}\frac{sg}{2N}\tilde{F}^{a,\mu\nu}p_{\nu}f^{(0)a}_{s}\delta^{\prime}(p^{2}), (110)
𝒥s(1)a,μ\displaystyle{\mathscr{J}}^{(1)a,\mu}_{s} =\displaystyle= s2Ω~μνpνdfs(0)adyδ(p2)sgF~b,μνpν(δabfs(0)I+12dbcafs(0)c)δ(p2),\displaystyle{-}\frac{s}{2}\tilde{\Omega}^{\mu\nu}p_{\nu}\frac{df^{(0)a}_{s}}{dy}\delta(p^{2}){-}{sg}\tilde{F}^{b,\mu\nu}p_{\nu}\left(\delta^{ab}f^{(0)I}_{s}+\frac{1}{2}d^{bca}f^{(0)c}_{s}\right)\delta^{\prime}(p^{2}), (111)

where we have dropped all the terms which vanish when color index runs only in the N1N-1 commuting Cartan generators. It is obvious that the final expressions do not depend on the auxiliary vector nμn^{\mu} any more and are explicitly Lorentz covariant.

Now it is straightforward to obtain the right-handed/left-handed currents by integrating the 4-dimension momentum pμp^{\mu}.

js(1)Iμ\displaystyle j_{s}^{(1)I\mu} =\displaystyle= s2ωμd4pydfs(0)Idyδ(p2)sg2NBaμTd4pyfs(0)aδ(p2),\displaystyle{-}\frac{s}{2}\omega^{\mu}\int d^{4}p\,y\frac{df^{(0)I}_{s}}{dy}\delta(p^{2}){-}\frac{sg}{2N}B^{a\mu}T\int d^{4}p\,yf^{(0)a}_{s}\delta^{\prime}(p^{2}), (112)
js(1)aμ\displaystyle j^{(1)a\mu}_{s} =\displaystyle= s2ωμd4pydfs(0)adyδ(p2)sgBbμTd4py(δabfs(0)I+dbca2fs(0)c)δ(p2),\displaystyle{-}\frac{s}{2}\omega^{\mu}\int d^{4}p\,y\frac{df^{(0)a}_{s}}{dy}\delta(p^{2}){-}{sg}B^{b\mu}T\int d^{4}p\,y(\delta^{ab}f^{(0)I}_{s}+\frac{d^{bca}}{2}f^{(0)c}_{s})\delta^{\prime}(p^{2}), (113)

where ωμ=TΩ~μνuν=ϵμναβuναxuβ/2\omega^{\mu}=T\tilde{\Omega}^{\mu\nu}u_{\nu}=\epsilon^{\mu\nu\alpha\beta}u_{\nu}\partial_{\alpha}^{x}u_{\beta}/2. From Eqs.(82) and (83) together with Eq.(102), we can finish the integrals analytically

d4pydfs(0)Idyδ(p2)\displaystyle\int d^{4}p\,y\frac{df^{(0)I}_{s}}{dy}\delta(p^{2}) =\displaystyle= T26iμsi 22π2N,Td4pyfs(0)Iδ(p2)=iμsi4π2N,\displaystyle-\frac{T^{2}}{6}-\frac{\sum_{i}\mu_{s}^{i\,2}}{2\pi^{2}N},\ \ \ \ T\int d^{4}p\,yf^{(0)I}_{s}\delta^{\prime}(p^{2})=\frac{\sum_{i}\mu_{s}^{i}}{4\pi^{2}N}, (114)
d4pydfs(0)adyδ(p2)\displaystyle\int d^{4}p\,y\frac{df^{(0)a}_{s}}{dy}\delta(p^{2}) =\displaystyle= itiiaμsi 2π2,Td4pyfs(0)aδ(p2)=itiiaμsi2π2,\displaystyle-\frac{\sum_{i}t^{a}_{ii}\mu_{s}^{i\,2}}{\pi^{2}},\ \ \ \ \ \ \ \ \ T\int d^{4}p\,yf^{(0)a}_{s}\delta^{\prime}(p^{2})=\frac{\sum_{i}t^{a}_{ii}\mu_{s}^{i}}{2\pi^{2}},\ (115)

It follows that

js(1)Iμ\displaystyle j_{s}^{(1)I\mu} =\displaystyle= ξsIωμ+ξBsIaBaμ,js(1)aμ=ξsaωμ+ξBsabBbμ\displaystyle\xi_{s}^{I}\omega^{\mu}+\xi_{Bs}^{Ia}B^{a\mu},\ \ \ j^{(1)a\mu}_{s}=\xi_{s}^{a}\omega^{\mu}+\xi_{Bs}^{ab}B^{b\mu} (116)

where

ξsI\displaystyle\xi_{s}^{I} =\displaystyle= s(T212+14π2Niμsi 2),ξBsIa=sg4π2Nitiiaμsi,\displaystyle s\left(\frac{T^{2}}{12}+\frac{1}{4\pi^{2}N}\sum_{i}\mu_{s}^{i\,2}\right),\ \ \ \ \xi_{Bs}^{Ia}={-}\frac{sg}{4\pi^{2}N}\sum_{i}t^{a}_{ii}\mu_{s}^{i}, (117)
ξsa\displaystyle\xi_{s}^{a} =\displaystyle= s2π2itiiaμsi 2,ξBsab=sg4π2(δabNiμsi+dbcaitiicμsi).\displaystyle\frac{s}{2\pi^{2}}\sum_{i}t^{a}_{ii}\mu_{s}^{i\,2},\hskip 56.9055pt\xi_{Bs}^{ab}={-}\frac{sg}{4\pi^{2}}\left(\frac{\delta^{ab}}{N}\sum_{i}\mu_{s}^{i}+{d^{bca}}\sum_{i}t^{c}_{ii}\mu_{s}^{i}\right). (118)

The vector current and axial current can be obtained from right-hand and left-hand currents directly,

j(1)Iμ\displaystyle j^{(1)I\mu} =\displaystyle= j+1(1)Iμ+j1(1)Iμ=ξIωμ+ξBIaBaμ,\displaystyle j^{(1)I\mu}_{+1}+j^{(1)I\mu}_{-1}=\xi^{I}\omega^{\mu}+\xi_{B}^{Ia}B^{a\mu}, (119)
j(1)aμ\displaystyle j^{(1)a\mu} =\displaystyle= j+1(1)aμ+j1(1)aμ=ξaωμ+ξBabBbμ,\displaystyle j^{(1)a\mu}_{+1}+j^{(1)a\mu}_{-1}=\xi^{a}\omega^{\mu}+\xi_{B}^{ab}B^{b\mu}, (120)
j5(1)Iμ\displaystyle j^{(1)I\mu}_{5} =\displaystyle= j+1(1)Iμj1(1)Iμ=ξ5Iωμ+ξB5IaBaμ,\displaystyle j^{(1)I\mu}_{+1}-j^{(1)I\mu}_{-1}=\xi^{I}_{5}\omega^{\mu}+\xi_{B5}^{Ia}B^{a\mu}, (121)
j5(1)aμ\displaystyle j^{(1)a\mu}_{5} =\displaystyle= j+1(1)aμj1(1)aμ=ξ5aωμ+ξB5abBbμ,\displaystyle j^{(1)a\mu}_{+1}-j^{(1)a\mu}_{-1}=\xi^{a}_{5}\omega^{\mu}+\xi_{B5}^{ab}B^{b\mu}, (122)

where the anomalous transport coefficients for the vector currents are given by

ξI\displaystyle\xi^{I} =\displaystyle= 1π2Niμiμ5i,ξBIa=g2π2Nitiiaμ5i,\displaystyle\frac{1}{\pi^{2}N}\sum_{i}\mu^{i}\mu_{5}^{i},\ \ \ \ \xi_{B}^{Ia}=-\frac{g}{2\pi^{2}N}\sum_{i}t^{a}_{ii}\mu_{5}^{i}, (123)
ξa\displaystyle\xi^{a} =\displaystyle= 2π2itiiaμiμ5i,ξBab=g2π2(δabNiμ5i+dbcaitiicμ5i)\displaystyle\frac{2}{\pi^{2}}\sum_{i}t^{a}_{ii}\mu^{i}\mu_{5}^{i},\ \ \ \xi_{B}^{ab}=-\frac{g}{2\pi^{2}}\left(\frac{\delta^{ab}}{N}\sum_{i}\mu_{5}^{i}+{d^{bca}}\sum_{i}t^{c}_{ii}\mu_{5}^{i}\right) (124)

and the coefficients for the axial currents are given by

ξ5I\displaystyle\xi_{5}^{I} =\displaystyle= T26+12π2Ni(μi 2+μ5i 2),ξB5Ia=g2π2Nitiiaμi,\displaystyle\frac{T^{2}}{6}{+}\frac{1}{2\pi^{2}N}\sum_{i}(\mu^{i\,2}+\mu_{5}^{i\,2}),\ \ \xi_{B5}^{Ia}={-}\frac{g}{2\pi^{2}N}\sum_{i}t^{a}_{ii}\mu^{i}, (125)
ξ5a\displaystyle\xi_{5}^{a} =\displaystyle= 1π2itiia(μi 2+μ5i 2),ξB5ab=g2π2(δabNiμi+dbcaitiicμi).\displaystyle\frac{1}{\pi^{2}}\sum_{i}t^{a}_{ii}(\mu^{i\,2}+\mu_{5}^{i\,2}),\hskip 28.45274pt\xi_{B5}^{ab}={-}\frac{g}{2\pi^{2}}\left(\frac{\delta^{ab}}{N}\sum_{i}\mu^{i}+{d^{bca}}\sum_{i}t^{c}_{ii}\mu^{i}\right). (126)

These are just the non-Abelian counterparts of the chiral magnetic effect, chiral vortical effect and chiral separation effect. We note that the coefficients ξI\xi^{I}, ξBIa\xi_{B}^{Ia}, ξ5I\xi^{I}_{5} and ξB5Ia\xi_{B5}^{Ia} for the singlet current are very similar to the coefficients in the Abelian case. They can be regarded as the average value of the coefficient in Abelian currents over different colors. These results will reduce into the usual Abelian chiral effects if we set N=1N=1, tiia=1t^{a}_{ii}=1 and g=1g=-1. The coefficients ξa\xi^{a}, ξBab\xi_{B}^{ab}, ξ5a\xi^{a}_{5} and ξB5ab\xi_{B5}^{ab} are unique for the non-Abelian currents and similar results were also obtained in different approachs in Refs. Son:2009tf ; Landsteiner:2011cp .

7 Summary

In this paper, we generalize the chiral kinetic theory in Abelian gauge field to non-Abelian gauge field. Starting from the gauge invariant and Lorentz invariant quantum transport theory set up in Heinz:1983nx ; Elze:1986hq ; Elze:1986qd ; Elze:1989un ; Ochs:1998qj , we decompose the Wigner functions and Wigner equations completely both in spinor space and in color space. With the help of the “covariant gradient expansion”, we find that the right-handed and left-handed Wigner function are totally decoupled with all the other Wigner functions. Among the four components of right-handed or left-handed Wigner functions, we can define the time-like component as the independent Wigner function and regard it as the phase space particle distribution function in some reference frame with velocity nμn^{\mu}. In consequence, all the space-like components can be totally determined by this chosen independent distribution function. Such disentangling process simplifies the Wigner equations greatly. The difference between Abelian and non-Abelian gauge field is that in Abelian gauge field the disentanglement theorem demonstrated in Gao:2018wmr show that the transport equation for space-like components are automatically satisfied while in non-Abelian gauge field these equations are not satisfied automatically order by order and we obtain extra constraint conditions. We present the chiral kinetic equations up to the first order in non-Abelian gauge field in 8-dimension phase space. Since the kinetic equations of the singlet component and multiplet components are totally coupled with each other, the non-Abelian chiral kinetic equation is much more complicated than Abelian chiral kinetic equation. We also give the modified Lorentz transformation of the non-Abelian phase space distribution function when we define them in different frames. Finally, we utilize it to calculate the non-Abelian chiral anomaly and the vector and axial currents induced by color field and vorticity and and find that it is consistent and successful in describing the chiral effects in non-Abelian gauge field.

Acknowledgements.
This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 11890710, 11890713 and 11475104, and the Natural Science Foundation of Shandong Province under Grant No. JQ201601.

References

  • (1) A. Vilenkin, Phys. Rev. D 22, 3080 (1980).
  • (2) D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227 (2008).
  • (3) K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).
  • (4) A. Vilenkin, Phys. Lett.  80B, 150 (1978).
  • (5) D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797 , 67(2007).
  • (6) J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, JHEP 0901, 055 (2009).
  • (7) N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka, JHEP 1101, 094 (2011).
  • (8) D. T. Son and A. R. Zhitnitsky, Phys. Rev. D 70, 074018(2004).
  • (9) M. A. Metlitski and A. R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005).
  • (10) D. E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133-151 (2014).
  • (11) D. E. Kharzeev, J. Liao, S. A. Voloshin and G. Wang, Prog. Part. Nucl. Phys. 88, 1-28 (2016).
  • (12) Y. C. Liu and X. G. Huang, Nucl. Sci. Tech. 31, no.6, 56 (2020).
  • (13) J. H. Gao, G. L. Ma, S. Pu and Q. Wang, Nucl. Sci. Tech. 31, no.9, 90 (2020).
  • (14) J. H. Gao, Z. T. Liang and Q. Wang, Int. J. Mod. Phys. A 36, no.01, 2130001 (2021)
  • (15) C. Duval, Z. Horvath, P. A. Horvathy, L. Martina and P. Stichel, Mod. Phys. Lett. B 20 (2006) 373
  • (16) C. H. Wong and Y. Tserkovnyak, Phys. Rev. B 84 (2011) 115209
  • (17) D. T. Son and N. Yamamoto, Phys. Rev. Lett.  109 (2012) 181602
  • (18) M. A. Stephanov and Y. Yin, Phys. Rev. Lett.  109 (2012) 162001
  • (19) M. Stone and V. Dwivedi, Phys. Rev. D 88 (2013) no.4, 045012
  • (20) V. Dwivedi and M. Stone, J. Phys. A 47 (2013) 025401
  • (21) Y. Akamatsu and N. Yamamoto, Phys. Rev. D 90 (2014) no.12, 125031
  • (22) J. Y. Chen, D. T. Son, M. A. Stephanov, H. U. Yee and Y. Yin, Phys. Rev. Lett.  113 (2014) no.18, 182302
  • (23) C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 90 (2014) no.7, 076007
  • (24) T. Hayata and Y. Hidaka, PTEP 2017 (2017) no.7, 073I01
  • (25) J. H. Gao, Z. T. Liang, S. Pu, Q. Wang and X. N. Wang, Phys. Rev. Lett.  109, 232301 (2012)
  • (26) J. W. Chen, S. Pu, Q. Wang and X. N. Wang, Phys. Rev. Lett.  110 (2013) no.26, 262301
  • (27) Y. Hidaka, S. Pu and D. L. Yang, Phys. Rev. D 95 (2017) no.9, 091901
  • (28) A. Huang, S. Shi, Y. Jiang, J. Liao and P. Zhuang, Phys. Rev. D 98 (2018) no.3, 036010
  • (29) J. H. Gao, Z. T. Liang, Q. Wang and X. N. Wang, Phys. Rev. D 98 (2018) no.3, 036019
  • (30) Y. C. Liu, L. L. Gao, K. Mameda and X. G. Huang, Phys. Rev. D 99 (2019) no.8, 085014
  • (31) D. T. Son and N. Yamamoto, Phys. Rev. D 87 (2013) 085016
  • (32) S. Carignano, C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 98 (2018) no.7, 076005
  • (33) S. Lin and A. Shukla, JHEP 1906 (2019) 060
  • (34) S. Carignano, C. Manuel and J. M. Torres-Rincon, arXiv:1908.00561 [hep-ph].
  • (35) N. Mueller and R. Venugopalan, Phys. Rev. D 97 (2018) no.5, 051901
  • (36) N. Mueller and R. Venugopalan, Phys. Rev. D 96 (2017) no.1, 016023
  • (37) N. Mueller and R. Venugopalan, Phys. Rev. D 99 (2019) no.5, 056003
  • (38) Y. Sun, C. M. Ko and F. Li, Phys. Rev. C 94 (2016) no.4, 045204
  • (39) Y. Sun and C. M. Ko, Phys. Rev. C 95 (2017) no.3, 034909
  • (40) Y. Sun and C. M. Ko, Phys. Rev. C 96 (2017) no.2, 024906
  • (41) Y. Sun and C. M. Ko, Phys. Rev. C 98 (2018) no.1, 014911
  • (42) Y. Sun and C. M. Ko, Phys. Rev. C 99 (2019) no.1, 011903
  • (43) W. H. Zhou and J. Xu, Phys. Rev. C 98 (2018) no.4, 044904
  • (44) W. H. Zhou and J. Xu, Phys. Lett. B 798 (2019) 134932
  • (45) S. Y. F. Liu, Y. Sun and C. M. Ko, Phys. Rev. Lett. 125, no.6, 062301 (2020)
  • (46) L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rept.  100 (1983) 1.
  • (47) A. H. Mueller and J. w. Qiu, Nucl. Phys. B 268 (1986) 427.
  • (48) L. D. McLerran and R. Venugopalan, Phys. Rev. D 49 (1994) 3352
  • (49) L. D. McLerran and R. Venugopalan, Phys. Rev. D 50 (1994) 2225
  • (50) E. Iancu and R. Venugopalan, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma* 249-3363
  • (51) U. W. Heinz, Phys. Rev. Lett.  51, 351 (1983).
  • (52) H. T. Elze, M. Gyulassy and D. Vasak, Phys. Lett. B 177, 402 (1986).
  • (53) H. T. Elze, M. Gyulassy and D. Vasak, Nucl. Phys.  B 276, 706 (1986).
  • (54) H. T. Elze and U. W. Heinz, Phys. Rept.  183, 81 (1989).
  • (55) S.R. De Groot, W.A. Van Leeuwen, and C.G. Van Weert, “Relativistic Kinetic Theory” North-Holland, Amsterdam, 1980
  • (56) J. H. Gao, Z. T. Liang and Q. Wang, Phys. Rev. D 101, no.9, 096015 (2020)
  • (57) R. H. Fang and J. H. Gao, Nucl. Phys. A 1005, 121851 (2021)
  • (58) S. Ochs and U. W. Heinz, Annals Phys.  266, 351 (1998)
  • (59) C. Itzykson and J. Zuber, “Quantum Field Thoery” McGraw-Hill International Book Company.
  • (60) J. h. Gao, J. Y. Pang and Q. Wang, Phys. Rev. D 100, no.1, 016008 (2019)
  • (61) D. T. Son and P. Surowka, Phys. Rev. Lett.  103, 191601 (2009).
  • (62) K. Landsteiner, E. Megias and F. Pena-Benitez, Phys. Rev. Lett.  107, 021601 (2011).