This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Covariance of the redshift-space matter power spectrum after reconstruction

Chiaki Hikage Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan [email protected]    Ryuichi Takahashi Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8588, Japan    Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
Abstract

We explore the covariance of redshift-space matter power spectra after a standard density-field reconstruction. We derive perturbative formula of the covariance at the tree-level order and find that the amplitude of the off-diagonal components from the trispectrum decreases by reconstruction. Using a large set of NN-body simulations, we also find the similar reduction of the off-diagonal components of the covariance and thereby the signal-to-noise ratio (S/N) of the post- reconstructed (post-rec) power spectra significantly increases compared to the pre-reconstructed (pre-rec) spectra. This indicates that the information leaking to higher-order statistics come back to the two-point statistics by reconstruction. Interestingly, the post-rec spectra have higher S/N than the linear spectrum with Gaussian covariance when the scale of reconstruction characterized with the smoothing scale of the shift field is below 10h1\sim 10h^{-1}Mpc where the trispectrum becomes negative. We demonstrate that the error of the growth rate estimated from the monopole and quadrupole components of the redshift-space matter power spectra significantly improves by reconstruction. We also find a similar improvement of the growth rate even when taking into account the super-sample covariance, while the reconstruction cannot correct for the field variation of the super-sample modes.

preprint: APS/123-QED

I Introduction

A biggest challenge in the modern cosmology is the mystery of dark matter and dark energy (e.g., Amendola et al., 2005). Large-scale structure traced by galaxies is one of powerful cosmological probes to study the properties of the dark components. The baryonic acoustic oscillation (BAO) imprinted on galaxy distributions is a powerful cosmological probe to study the expansion history of the Universe (Eisenstein et al., 1998; Meiksin et al., 1999; Blake and Glazebrook, 2003; Hu and Haiman, 2003; Matsubara, 2004; Angulo et al., 2005; Seo and Eisenstein, 2005; White, 2005; Eisenstein et al., 2005; Cole et al., 2005; Padmanabhan et al., 2007; Percival et al., 2007; Eisenstein et al., 2007a; Huff et al., 2007; Angulo et al., 2008; Padmanabhan et al., 2007; Percival et al., 2007; Okumura et al., 2008; Xu et al., 2013; Anderson et al., 2014; Tojeiro et al., 2014; Kazin et al., 2014; Ross et al., 2015; Alam et al., 2016; Beutler et al., 2017). Bulk motion of galaxies associated with the growth of the large-scale structure generates the anisotropy in the redshift-space galaxy distribution, i.e., the redshift-space distortion, which probes the growth rate of the large-scale structure and is useful to test General Relativity and modified gravity models (e.g., Guzzo et al., 2008; Yamamoto et al., 2008; Reid et al., 2012; Beutler et al., 2014; Samushia et al., 2014; Oka et al., 2014; Hikage and Yamamoto, 2013). The full shape of the power spectrum also has fruitful information of cosmology (e.g., Ivanov et al., 2020). Upcoming spectroscopic galaxy surveys such as PFS (Takada et al., 2012), DESI (DESI Collaboration et al., 2016), HETDEX (Hill et al., 2008), Euclid (Amendola et al., 2016) and WFIRST(Spergel et al., 2015) are expected to do precise cosmological studies to clarify the nature of dark matter and dark energy.

In the linear perturbation theory, different wavelength modes of the fluctuations of matter density field grow independently. Since the gravitational growth of the large-scale structure is a nonlinear process, different modes are coupled with each other, which makes a precise cosmological analysis difficult. For example, the BAO signal in the large-scale structure is degraded and the BAO scale is biased at later times (e.g., Crocce and Scoccimarro, 2008). The perturbation theory breaks down in the nonlinear regime and thus precise analytical prediction is difficult at small scale. The two-point statistics such as the power spectrum characterize the whole statistical properties in Gaussian fields. However, non-Gaussianity increases in the evolved matter density field and thereby higher order moments/correlation functions also become important. The information content of the power spectrum are shown to be saturated on nonlinear scale (Scoccimarro et al., 1999a; Takahashi et al., 2009; Carron et al., 2015). This indicates that the cosmological information leaks to higher-order statistics beyond two-point statistics, which makes our cosmological analysis more complicated.

Density-field reconstruction aims for recovering the initial or linearly evolved density field. A standard BAO reconstruction method proposed by (Eisenstein et al., 2007b) shifts mass particles or galaxies toward their initial Lagrangian positions to recover the original BAO signal. The shift field is estimated using the inverse Zeldovich approximation (Zel’dovich, 1970) from the observed (evolved) density field after smoothing small-scale power. The reconstruction effectively undoes the bulk motion and thereby the BAO signal is successfully recovered (Seo et al., 2008; Padmanabhan et al., 2009; Noh et al., 2009; Seo et al., 2010; Sherwin and Zaldarriaga, 2012). The BAO reconstruction method has been applied to various galaxy surveys (Padmanabhan et al., 2012; Xu et al., 2013; Anderson et al., 2014; Tojeiro et al., 2014; Kazin et al., 2014; Ross et al., 2015; Alam et al., 2016; Beutler et al., 2017). It was also shown that the correlation of the reconstructed matter density field with the initial density field extends to more nonlinear scale (Seo et al., 2010; Tassev and Zaldarriaga, 2012; Schmittfull et al., 2015; Seo et al., 2016; Schmittfull et al., 2017; Wang et al., 2017; Yu et al., 2017; Hada and Eisenstein, 2018). Ref. Hikage et al. (2017) derived the 1-loop perturbative formula of the reconstructed matter power spectrum in real space. They found that the amplitudes of the 1-loop nonlinear terms decrease substantially by reconstruction and the perturbation theory works at more nonlinear scale. Ref. (Hikage et al., 2020) extended their formula to redshift-space clustering and demonstrated that the growth rate measurement from the redshift-space distortion is significantly improved.

How does the reconstruction alter the covariance of the matter power spectra? The covariance of matter power spectra without reconstruction has been investigated both from the perturbation theory and from NN-body simulations. The tree-level perturbative formula of the covariance of the matter power spectra was derived to show that the non-Gaussian effect generates the correlations between different bands and thereby the covariance has non-zero off-diagonal components (e.g., Scoccimarro et al., 1999a; Meiksin et al., 1999). The matter covariance has been also investigated from a large set of N-body simulations to show that the non-Gaussian effects significantly suppresses the signal-to-noise ratio (S/N) of the power spectrum and thereby degrades the information content of the power spectrum (Takahashi et al., 2009; Harnois-Déraps et al., 2013; Blot et al., 2015; Klypin and Prada, 2018; Villaescusa-Navarro et al., 2019). The non-Gaussian effects on the matter covariance comes from the mode coupling associated with the nonlinear gravity. Since the reconstruction effectively linearizes the field by partially removing mode-coupling effect, it is expected that the covariance of the power spectrum is more diagonalized.

Here we first investigate the covariance of the redshift-space matter power spectra after the field is reconstructed and evaluate the information content of the matter power spectrum by using the perturbation theory and a large set of N-body simulations. The mode coupling between the small-scale modes and the large-scale modes beyond survey size has a significant contribution to the matter covariance, which is known as ‘beat coupling’ (Hamilton et al., 2006) or ‘super-sample covariance (SSC)’ (Takada and Hu, 2013; Li et al., 2014). We also investigate the effect of SSC on the reconstructed covariance. Finally, we show the improvement of the growth rate measurement from the redshift-space power spectra when using the covariance matrix of reconstructed spectra.

This paper is organized as follows: in Section II, we derive a tree-level perturbative formula of the covariance of monopole and quadrupole components of matter power spectra after reconstructing the field. We see how the off-diagonal components of their covariance are changed by reconstruction with different smoothing scales. In Section III, we also numerically estimate the covariance using a large set of NN-body simulations to see the behavior of the covariance of reconstructed spectra. In Section IV, we evaluate the S/N of the reconstructed power spectra to discuss how much the information content is recovered. In Section V, we study the impact on the growth rate measurement by using the covariance of reconstructed spectra. We also study the effect of the super-sample covariance on our results in Section VI. Section VII is devoted to the summary and conclusions.

Throughout this paper, we assume a flat Λ\LambdaCDM model with the best-fit values of Planck TT,TE,EE+lowP in 2015, i.e., Ωb=0.0492\Omega_{b}=0.0492, Ωm=0.3156\Omega_{m}=0.3156, h=0.6727h=0.6727, ns=0.9645n_{s}=0.9645, and σ8=0.831\sigma_{8}=0.831 (Planck Collaboration et al., 2016).

II Perturbative formula of covariance of matter power spectra in redshift space

In this section, we derive the covariance of the monopole (=0\ell=0) and quadrupole (=2\ell=2) components of the redshift-space matter power spectrum in a perturbative approach. Our formula is applicable to higher-order multipoles such as hexadecapole (=4\ell=4), however, we do not include them because their signal-to-noise ratios are small relative to the monopole and the quadrupole and also their signals are dominated by the nonlinear redshift-space distortion.

The covariance can be generally decomposed into the Gaussian and the non-Gaussian parts as

𝐂𝐨𝐯=𝐂𝐨𝐯(G)+𝐂𝐨𝐯(NG).\mathbf{Cov}=\mathbf{Cov}^{\rm(G)}+\mathbf{Cov}^{\rm(NG)}. (1)

When neglecting the convolution with the survey geometry, the Gaussian part is given by

𝐂𝐨𝐯(G)(ki,kj)\displaystyle\mathbf{Cov}_{\ell\ell^{\prime}}^{\rm(G)}(k_{i},k_{j}) =\displaystyle= (2+1)(2+1)211𝑑μ(μ𝐤i)(μ𝐤j)\displaystyle\frac{(2\ell+1)(2\ell^{\prime}+1)}{2}\int_{-1}^{1}d\mu{\cal L}_{\ell}(\mu_{\mathbf{k}_{i}}){\cal L}_{\ell^{\prime}}(\mu_{\mathbf{k}_{j}})
2V(2π)3VkiδijK[Pz(𝐤i)+1n][Pz(𝐤j)+1n],\displaystyle\frac{2}{V}\frac{(2\pi)^{3}}{V_{k_{i}}}\delta_{ij}^{\rm K}\left[P^{\rm z}(\mathbf{k}_{i})+\frac{1}{n}\right]\left[P^{\rm z}(\mathbf{k}_{j})+\frac{1}{n}\right],

where μ𝐤\mu_{\mathbf{k}} is the cosine angle between 𝐤\mathbf{k} and the line-of-sight direction, \cal{L}_{\ell} is the \ell-th Legendre polynomial, i.e., 0=1{\cal L}_{0}=1 and 2=(3μ21)/2{\cal L}_{2}=(3\mu^{2}-1)/2, VV is the sample volume, and nn is the number density of mass particles. The volume of kk-binning shell VkiV_{k_{i}} is approximated as 4πki2Δk4\pi k_{i}^{2}\Delta k where the binning width Δk\Delta k is much smaller the mean wavenumber of ii-th bin kik_{i}. The redshift-space linear matter power spectrum Pz(𝐤)P^{\rm z}(\mathbf{k}) is given by

Pz(𝐤)=Z1(𝐤)2PL(k),P^{\rm z}(\mathbf{k})=Z_{1}(\mathbf{k})^{2}P_{\rm L}(k), (3)

where PL(k)P_{\rm L}(k) is the linear matter power spectrum in real space and Z1Z_{1} is the first-order Eulerian kernel in redshift space

Z1(𝐤)=1+fμ𝐤2,Z_{1}(\mathbf{k})=1+f\mu_{\mathbf{k}}^{2}, (4)

with the linear growth rate fdlnD/dlnaf\equiv d\ln D/d\ln a defined as the logarithmic derivative of the linear growth factor.

Refer to caption
Figure 1: Tree-level non-Gaussian covariance of the monopole component of the matter power spectrum normalized with their Gaussian covariance, i.e., 𝐂𝐨𝐯00(tree)(ki,kj)/[𝐂𝐨𝐯00(G)(ki,ki)𝐂𝐨𝐯00(G)(kj,kj)]1/2{\bf Cov}_{00}^{\rm(tree)}(k_{i},k_{j})/[{\bf Cov}_{00}^{\rm(G)}(k_{i},k_{i}){\bf Cov}_{00}^{\rm(G)}(k_{j},k_{j})]^{1/2} for pre-rec and post-rec spectra with Rs=20h1R_{s}=20h^{-1}Mpc, 10h110h^{-1}Mpc and 5h1h^{-1}Mpc from left to right panels. As RsR_{s} is smaller, the off-diagonal terms are changed from positive to negative values. The output redshift is z=1.02z=1.02.

Next we derive the non-Gaussian covariance at tree level. We do not take into account the higher-order covariance such as the one-loop covariance for simplicity. The one-loop covariance becomes important at higher kk, however, the shot noise usually dominates the error at higher kk in actual observed data. In section VI, we take into account the super-sample covariance (SSC).

The tree-level covariance comes from the tree-level term of the trispectrum of matter power spectra given by (Fry, 1984)

T(tree)(𝐤𝟏,\displaystyle T^{\rm(tree)}(\mathbf{k_{1}}, 𝐤𝟐\displaystyle\mathbf{k_{2}} ,𝐤𝟑,𝐤𝟒)=4[Z2(𝐤𝟏𝟐,𝐤𝟏)Z2(𝐤𝟏𝟐,𝐤𝟑)PL(k12)\displaystyle,\mathbf{k_{3}},\mathbf{k_{4}})=4[Z_{2}(\mathbf{k_{12}},-\mathbf{k_{1}})Z_{2}(\mathbf{k_{12}},\mathbf{k_{3}})P_{\rm L}(k_{12}) (5)
×Z1(k1)PL(k1)Z1(k3)PL(k3)+(11perms.)]\displaystyle\times Z_{1}(k_{1})P_{\rm L}(k_{1})Z_{1}(k_{3})P_{\rm L}(k_{3})+(11~{}{\rm perms.})]
+6[Z3(𝐤𝟏,𝐤𝟐,𝐤𝟑)Z1(k1)PL(k1)\displaystyle+6[Z_{3}(\mathbf{k_{1}},\mathbf{k_{2}},\mathbf{k_{3}})Z_{1}(k_{1})P_{\rm L}(k_{1})
×Z1(k2)PL(k2)Z1(k3))PL(k3)+(3perms.)],\displaystyle\times Z_{1}(k_{2})P_{\rm L}(k_{2})Z_{1}(k_{3}))P_{\rm L}(k_{3})+(3~{}{\rm perms.})],

where ZnZ_{n} is the nn-th order Eulerian perturbation kernel of the matter density field in the redshift space (Scoccimarro et al., 1999b; Matsubara, 2008). The tree-level covariance of the multipole power spectra is written as (Scoccimarro et al., 1999a; Wadekar and Scoccimarro, 2019)

𝐂𝐨𝐯(tree)(\displaystyle\mathbf{Cov}_{\ell\ell^{\prime}}^{\rm(tree)}( ki\displaystyle k_{i} ,kj)=1V𝐤^i𝐤^jT(tree)(𝐤,𝐤,𝐤,𝐤)\displaystyle,k_{j})=\frac{1}{V}\int_{\mathbf{\hat{k}}_{i\ell}}\int_{\mathbf{\hat{k}^{\prime}}_{j\ell^{\prime}}}T^{\rm(tree)}(\mathbf{k},\mathbf{-k},\mathbf{k^{\prime}},\mathbf{-k^{\prime}}) (6)
=1V𝐤^i𝐤^j\displaystyle=\frac{1}{V}\int_{\mathbf{\hat{k}}_{i\ell}}\int_{\mathbf{\hat{k}^{\prime}}_{j\ell^{\prime}}}
[12Z3(𝐤,𝐤,𝐤)Z1(k)2Z1(k)PL(k)2PL(k)\displaystyle[12Z_{3}(\mathbf{k},-\mathbf{k},\mathbf{k^{\prime}})Z_{1}(k)^{2}Z_{1}(k^{\prime})P_{L}(k)^{2}P_{L}(k^{\prime})
+8Z2(𝐤𝐤,𝐤)2Z1(k)2PL(k)2PL(|𝐤𝐤|)\displaystyle+8Z_{2}(\mathbf{k-k^{\prime}},\mathbf{k^{\prime}})^{2}Z_{1}(k^{\prime})^{2}P_{L}(k^{\prime})^{2}P_{L}(|\mathbf{k^{\prime}-k}|)
+8Z2(𝐤𝐤,𝐤)Z2(𝐤𝐤,𝐤)PL(|𝐤𝐤|)\displaystyle+8Z_{2}(\mathbf{k-k^{\prime}},\mathbf{k^{\prime}})Z_{2}(\mathbf{k^{\prime}-k},\mathbf{k})P_{L}(|\mathbf{k^{\prime}-k}|)
×Z1(k)PL(k)Z1(k)PL(k)+(𝐤𝐤)],\displaystyle\times Z_{1}(k)P_{L}(k)Z_{1}(k^{\prime})P_{L}(k^{\prime})+(\mathbf{k}\leftrightarrow\mathbf{k^{\prime}})],

where the integral denotes

𝐤^i=𝐤ki𝐝𝐤Vki(2+1)(μ𝐤).\int_{\mathbf{\hat{k}}_{i\ell}}=\int_{\mathbf{k}\in k_{i}}\frac{\mathbf{dk}}{V_{k_{i}}}(2\ell+1){\cal L}_{\ell}(\mu_{\mathbf{k}}). (7)

The tree-level covariance after reconstruction can be obtained by replacing ZnZ_{n} with the kernel of post-reconstructed (post-rec) spectra Zn(rec)Z_{n}^{\rm(rec)} derived by (Hikage et al., 2020). The first-order kernel is not changed by the reconstruction

Z1(rec)(𝐤)=Z1(𝐤).Z_{1}^{\rm(rec)}(\mathbf{k})=Z_{1}(\mathbf{k}). (8)

The relation of the 2nd and 3rd-order post-rec kernels to the pre-reconstructed (pre-rec) kernels are given as (Hikage et al., 2020)

Z2(rec)(\displaystyle Z_{2}^{\rm(rec)}( 𝐤1\displaystyle\mathbf{k}_{1} ,𝐤2)=Z2(𝐤1,𝐤2)\displaystyle,\mathbf{k}_{2})=Z_{2}(\mathbf{k}_{1},\mathbf{k}_{2}) (9)
+12[(𝐤𝐒z(1)(𝐤1))(𝐤2𝐋z(1)(𝐤2))\displaystyle+\frac{1}{2}\left[(\mathbf{k}\cdot\mathbf{S}^{\rm z(1)}(\mathbf{k}_{1}))(\mathbf{k}_{2}\cdot\mathbf{L}^{z(1)}(\mathbf{k}_{2}))\right.
+(𝐤𝐒z(1)(𝐤2))(𝐤1𝐋z(1)(𝐤1))],\displaystyle+\left.(\mathbf{k}\cdot\mathbf{S}^{\rm z(1)}(\mathbf{k}_{2}))(\mathbf{k}_{1}\cdot\mathbf{L}^{z(1)}(\mathbf{k}_{1}))\right],

and

Z3(rec)(\displaystyle Z_{3}^{\rm(rec)}( 𝐤1\displaystyle\mathbf{k}_{1} ,𝐤2,𝐤3)=Z3(𝐤1,𝐤2,𝐤3)\displaystyle,\mathbf{k}_{2},\mathbf{k}_{3})=Z_{3}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}) (10)
+16[2(𝐤𝐒z(1)(𝐤1))Z2(𝐤2,𝐤3)\displaystyle+\frac{1}{6}\left[2(\mathbf{k\cdot S}^{z(1)}(\mathbf{k}_{1}))Z_{2}(\mathbf{k}_{2},\mathbf{k}_{3})\right.
+(𝐤𝐒z(1)(𝐤1))(𝐤𝐒z(1)(𝐤2))(𝐤𝟑𝐋z(1)(𝐤𝟑))\displaystyle+(\mathbf{k\cdot S}^{z(1)}(\mathbf{k}_{1}))(\mathbf{k\cdot S}^{z(1)}(\mathbf{k}_{2}))(\mathbf{k_{3}}\cdot\mathbf{L}^{z(1)}(\mathbf{k_{3}}))
+(𝐤𝐒z(2)(𝐤1,𝐤2))(𝐤𝟑𝐋z(1)(𝐤𝟑))\displaystyle+(\mathbf{k\cdot S}^{z(2)}(\mathbf{k}_{1},\mathbf{k}_{2}))(\mathbf{k_{3}}\cdot\mathbf{L}^{z(1)}(\mathbf{k_{3}}))
+(2perms.)],\displaystyle+\left.{\rm(2~{}perms.)}\right],

where 𝐤=𝐤1++𝐤n\mathbf{k}=\mathbf{k}_{1}+...+\mathbf{k}_{n} in the nn-th order kernel. In the above equations, 𝐋z(n)\mathbf{L}^{z(n)} represents the nn-th order Lagrangian kernel in redshift space, which is related to the same order of Lagrangian kernel in real space 𝐋(n)\mathbf{L}^{(n)} as (Matsubara, 2008)

𝐋z(n)=𝐑(n)𝐋(n).\mathbf{L}^{z(n)}=\mathbf{R}^{(n)}\mathbf{L}^{(n)}. (11)

The redshift-space distortion tensor at nn-th order 𝐑(n)\mathbf{R}^{(n)} is given by

𝐑ij(n)=δij+nfz^iz^j,\mathbf{R}^{(n)}_{ij}=\delta_{ij}+nf\hat{z}_{i}\hat{z}_{j}, (12)

where δij\delta_{ij} is the Kronecker delta and z^i\hat{z}_{i} the i-th component of the unit vector in the line-of-sight direction. In a standard reconstruction (Eisenstein et al., 2007b), the shift field is estimated from the smoothed density field using the inverse Zeldovich approximation. The nn-th order kernel of the shift field 𝐒z(n)\mathbf{S}^{z(n)} is then given by

𝐒z(n)(𝐤1,,𝐤n)=n!W(k)𝐋(1)(𝐤)Zn(𝐤1,,𝐤n),\mathbf{S}^{z(n)}(\mathbf{k}_{1},...,\mathbf{k}_{n})=-n!W(k)\mathbf{L}^{(1)}(\mathbf{k})Z_{n}(\mathbf{k}_{1},...,\mathbf{k}_{n}), (13)

where W(k)W(k) is the smoothing kernel and we adopt Gaussian kernel, i.e., W(k)=exp(k2Rs2/2)W(k)=\exp(-k^{2}R_{s}^{2}/2) with different smoothing scales Rs=5h1R_{s}=5h^{-1}Mpc, 10h110h^{-1}Mpc and 20h1h^{-1}Mpc.

Figure 1 compares the tree-level non-Gaussian covariance of the monopole spectra before and after the reconstruction. The plotted covariance is normalized with their Gaussian components, i.e., 𝐂𝐨𝐯00(tree)(ki,kj)/[𝐂𝐨𝐯00(G)(ki,ki)𝐂𝐨𝐯00(G)(kj,kj)]1/2{\bf Cov}_{00}^{\rm(tree)}(k_{i},k_{j})/[{\bf Cov}_{00}^{\rm(G)}(k_{i},k_{i}){\bf Cov}_{00}^{\rm(G)}(k_{j},k_{j})]^{1/2} . The off-diagonal components have positive values for the pre-rec spectra, which means that the different modes are positively correlated by the mode coupling of gravity. After reconstruction, we find that the positive correlation decreases and becomes negative at RsR_{s} less than 10h1h^{-1}Mpc. This comes from that the values of the tree-level trispectra shift from positive to negative by replacing the perturbative kernels with the reconstructed one. This is related to our previous finding that the amplitudes of the one-loop terms of the power spectrum given by the same perturbative kernels decrease after the reconstruction (Hikage et al., 2020).

Refer to caption
Figure 2: Correlation coefficients of the monopole components of the matter power spectrum with fixed ki=0.085hk_{i}=0.085h/Mpc (upper) and 0.175hh/Mpc (lower) at z=1.02z=1.02 (left) and z=0z=0 (right). Different symbols denote the results for pre-rec and post-rec spectra with different RsR_{s}. Off-diagonal components of post-rec spectra significantly decreases and have negative values at RsR_{s} less than 10h110h^{-1}Mpc, which is consistent with the behavior of the perturbation theory in Figure 1.

III N-body simulations

We measure the covariance of the multipole components of matter power spectra over an ensemble of dark matter NN-body simulations as follows:

𝐂𝐨𝐯(\displaystyle{\bf Cov}_{\ell\ell^{\prime}}( k\displaystyle k ,k)=1Nreal1\displaystyle,k^{\prime})=\frac{1}{N_{\rm real}-1}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} (14)
×iNreal[P,i(k)P¯(k)][P,i(k)P¯(k)],\displaystyle\times\sum_{i}^{N_{\rm real}}[P_{\ell,i}(k)-\bar{P}_{\ell}(k)][P_{\ell^{\prime},i}(k^{\prime})-\bar{P}_{\ell^{\prime}}(k^{\prime})],

where NrealN_{\rm real} is the number of realizations and P¯\bar{P}_{\ell} is the averaged multipole components of matter power spectra. The binning width of kk is uniformly set to be 0.01h0.01h/Mpc and the minimum value of kk is set to be 0.01hh/Mpc. We perform N-body simulations using a publicly available code Gadget-2 (Springel, 2005). The initial distribution of mass particles is based on the 2LPT code (Crocce et al., 2006; Nishimichi et al., 2009) with Gaussian initial conditions at the input redshift of 3131. The initial redshift does not affect (less than 1%1\%) the power spectrum at k<0.3hk<0.3h/Mpc and z=0z=0 (see Fig. 35 of Nishimichi et al. (2019)). The initial linear power spectrum is computed by CAMB (Lewis et al., 2000). We adopt 4000 realizations with 5123 mass particles in a cubic box with a side length of 500h1500h^{-1}Mpc and two output redshifts of z=0z=0 and z=1.02z=1.02.

The NN-body particles are assigned to 5123512^{3} grid cells with the clouds-in-cell (CIC) method to calculate the density contrast. We then perform the Fourier transform 111FFTW3 at http://www.fftw.org to measure the multipole components of the power spectra PP_{\ell} after the pixel window effect is corrected (e.g., Jing, 2005). The reconstructed density field is computed as follows (Eisenstein et al., 2007b):

  • The shift field for the reconstruction is computed from the smoothed redshift-space mass density field using the inverse Zeldovich approximation, i.e., 𝐬~(𝐤)=(𝐤/k2)δ~m(z)(𝐤)W(k)\tilde{\mathbf{s}}(\mathbf{k})=-(\mathbf{k}/k^{2})\tilde{\delta}_{m}^{\rm(z)}(\mathbf{k})W(k) with Gaussian smoothing kernel W(k)=exp(k2Rs2/2)W(k)=\exp{(-k^{2}R_{s}^{2}/2)} at RsR_{s}=5h1h^{-1}Mpc, 10h1h^{-1}Mpc and 20h120h^{-1}Mpc. Note that we leave the reconstructed field anisotropic on large scales to constrain the growth rate from the anisotropy due to the redshift-space distortion.

  • Each mass particle is displaced following the above shift field at the position interpolated from the shift field at neighboring grids with the CIC scheme.

  • Random particles are also displaced using the same shift vector field in the same manner as the mass particles.

  • Reconstructed density field is obtained by the displaced random field subtracted from the displaced data field as δ(rec)=δd(rec)δr(rec)\delta^{\rm(rec)}=\delta_{\rm d}^{\rm(rec)}-\delta_{\rm r}^{\rm(rec)}

We also compute the matter power spectra from 8 realizations of large-box NN-body simulations with a side length of 4h1h^{-1}Gpc. Each realization contains 409634096^{3} mass particles and they are assigned to 20483 grid cells with the CIC method. We confirm that the averaged spectra from 500h1500h^{-1}Mpc box is consistent with those from 4h14h^{-1}Gpc box, however, we find a large fluctuation of the quadrupole spectrum from 500h1500h^{-1}Mpc box due to a low resolution in kk-space. We therefore adopt the power spectrum from 4h1h^{-1}Gpc-box simulations and add the following correction to the covariance from 500h1500h^{-1}Mpc box simulations as

𝐂𝐨𝐯(\displaystyle{\bf Cov}_{\ell\ell^{\prime}}( k\displaystyle k ,k)=𝐂𝐨𝐯(500h1Mpc)(k,k)\displaystyle,k^{\prime})={\bf Cov}_{\ell\ell^{\prime}}^{\rm(500h^{-1}Mpc)}(k,k^{\prime})~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} (15)
×[P¯(4h1Gpc)(k)P¯(500h1Mpc)(k)][P¯(4h1Gpc)(k)P¯(500h1Mpc)(k)],\displaystyle\times\left[\frac{\bar{P}_{\ell}^{\rm(4h^{-1}Gpc)}(k)}{\bar{P}_{\ell}^{\rm(500h^{-1}Mpc)}(k)}\right]\left[\frac{\bar{P}_{\ell^{\prime}}^{\rm(4h^{-1}Gpc)}(k^{\prime})}{\bar{P}_{\ell^{\prime}}^{\rm(500h^{-1}Mpc)}(k^{\prime})}\right],

where P¯(Lbox)\bar{P}_{\ell}^{(L_{\rm box})} is the averaged multipole power spectrum from NN-body simulations with a side length of LboxL_{\rm box}.

Figure 2 shows the correlation matrix of the monopole spectra computed from the simulations at fixed ki=0.085hk_{i}=0.085h/Mpc and 0.175hh/Mpc at z=1.02z=1.02 and 0. Pre-rec spectra are positively correlated among different modes and thus the off-diagonal components are positive (Scoccimarro et al., 1999a; Meiksin et al., 1999). We find that the off-diagonal components substantially decrease to be nearly zero by reconstruction with Rs=10h1R_{s}=10h^{-1}Mpc. At Rs=5h1R_{s}=5h^{-1}Mpc, the off-diagonal components become negative values. This behavior is qualitatively consistent with the perturbation theory shown in the previous section.

Refer to caption
Refer to caption
Figure 3: Comparison of the signal-to-noise ratios (S/N) of the sum of the monopole and quadrupole components of redshift-space matter power spectra before reconstruction and after reconstruction with Rs=20h1R_{s}=20h^{-1}Mpc, 10h110h^{-1}Mpc and 5h1h^{-1}Mpc at z=1.02z=1.02 (left) and z=0z=0 (right). For comparison, we plot the S/N of the linear power spectrum using the analytical Gaussian covariance (Cov(GA)) with dotted lines. We find that the post-rec spectra has a better S/N than pre-rec one and also that the post-rec spectra with Rs=10h1R_{s}=10h^{-1}Mpc and 5h1h^{-1}Mpc have higher S/N than the Gaussian one. Lower panels focus on the differences of the S/N for the linear Gaussian one. For comparison, the S/N of the linear power spectra using the tree-level perturbative covariance (Cov(GA)+Cov(tree)) are plotted with dashed lines and show the similar behavior.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Monopole and quadruple components of the matter power spectrum from N-body simulations (filled circles) before reconstruction (upper-left) and after reconstruction with Rs=20h1R_{s}=20h^{-1}Mpc (upper-right), 10h1h^{-1}Mpc (lower-left) and 5h1h^{-1}Mpc (lower-right). Error-bars denote the 1σ\sigma sample variance from 4000 NN-body simulations where each volume is (500h1500h^{-1}Mpc)3. For comparison, the 1-loop perturbative formula are plotted with solid lines using the best-fit values of the lowest-order counterterms α\alpha_{\ell} (=0,2\ell=0,2) up to kmax=0.2hk_{\rm max}=0.2h/Mpc. The linear power spectra are also plotted with dashed lines. All of the plotted spectra are divided with the no-wiggle spectra. Small panels show the differences between the simulated spectra and the 1-loop perturbative formula with the best-fit values of α\alpha_{\ell}. The output redshift is z=1.02z=1.02.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Same as Figure 4 but for the output redshift of z=0z=0.
Refer to caption
Figure 6: Linear growth rate relative to the input value obtained by fitting the 1-loop perturbative formulae of the monopole and quadrupole power spectra to the simulated spectra with the maximum wavenumber kmaxk_{\rm max} varied (eq.[17]). The counterterms α\alpha_{\ell} (=0\ell=0 and 2) are freely fitted, while other cosmological parameters are fixed. Different plots show the pre-rec spectra (x-shaped crosses) and post-rec spectra with Rs=20h1R_{s}=20h^{-1}Mpc (circles), 10h1h^{-1}Mpc (triangles) and 5h1h^{-1}Mpc (+-shaped crosses) at z=1.02z=1.02 (left panels) and z=0z=0 (right panels). Covariance of the multipole power spectra is estimated from 4000 realizations of NN-body results with (500h1Mpc)3(500h^{-1}{\rm Mpc})^{3} volume. The error-bars denote the 1σ1\sigma uncertainty.

IV Signal-to-noise ratio of multipole power spectra

In this section, we evaluate the information content of redshift-space matter power spectra from the following signal-to-noise ratio (S/N):

(S/N)2=,0,2i,jki,kjkmaxP(ki)(𝐂𝐨𝐯1)(ki,kj)P(kj).{\rm(S/N)^{2}}=\sum_{\ell,\ell^{\prime}}^{0,2}\sum_{i,j}^{k_{i},k_{j}\leq k_{\rm max}}P_{\ell}(k_{i})({\bf Cov}^{-1})_{\ell\ell^{\prime}}(k_{i},k_{j})P_{\ell^{\prime}}(k_{j}). (16)

The multipole spectra PP_{\ell} and their covariance are directly estimated from the simulations as explained in the previous section. The inverse covariance matrix is computed by multiplying a so-called Hartlap factor α=(NrealNbin2)/(Nreal1)\alpha=(N_{\rm real}-N_{\rm bin}-2)/(N_{\rm real}-1) with the inverse of the covariance matrix (eq. [14])(Hartlap et al., 2007).

Figure 3 compares the S/N of pre-rec spectra and post-rec spectra with different RsR_{s} as a function of the maximum wavenumber kmaxk_{\rm max}. We find that the post-rec spectra have higher S/N than the pre-rec spectra. The improvement is larger at higher kk. For example, the S/N of the post-rec spectra with Rs=10h1R_{s}=10h^{-1}Mpc is improved by 7% (kmax=0.1hk_{\rm max}=0.1h/Mpc) and 30% (kmax=0.2hk_{\rm max}=0.2h/Mpc) at z=1.02z=1.02 relative to the pre-rec spectra. The improvement is more significant at z=0z=0: 18% (kmax=0.1hk_{\rm max}=0.1h/Mpc) and 69% (kmax=0.2hk_{\rm max}=0.2h/Mpc). Since the diagonal components of the covariance matrix is dominated by the Gaussian terms, the improvement of the S/N mainly comes from the decrement of the off-diagonal components as shown in Figure 1 and 2.

We also plot the S/N estimated from the linear spectra and the Gaussian covariance as a reference. Lower panels focus on the differences of S/N from the linear Gaussian one. Interestingly, it is found that the S/N of the post-rec spectra at Rs=10h1R_{s}=10h^{-1}Mpc and 5h1h^{-1}Mpc are comparable to or higher than the linear Gaussian one. The similar trend is found from the perturbative predictions where the linear spectra and the tree-level covariance (eq.6) are applied to calculate the S/N (eq.16), though the agreement of the perturbation with the numerical results is limited to be at k0.1hk\leq 0.1h/Mpc. The S/N from the perturbation rapidly increase at high kk because the determinant of tree-level covariance diverges (Takahashi et al., 2009). As shown in Figure 1 and 2, the off-diagonal components become negative at Rs<10h1R_{s}\lower 2.15277pt\hbox{$\;\buildrel<\over{\sim}\;$}10h^{-1}Mpc and thereby the S/N of the post-rec spectra becomes higher than the linear Gaussian one.

Information of nonlinear growth of structure can be normally captured by higher-order statistics beyond two-point statistics. The reconstruction returns the information leaking to higher-order statistics back to the two-point statistics. The return is larger at smaller RsR_{s} where smaller scales can be reconstructed and thereby the S/N increases at smaller RsR_{s}. The growth information is however buried on strongly nonlinear regime and thus the increment of S/N from Rs=10h1R_{s}=10h^{-1}Mpc to Rs=5h1R_{s}=5h^{-1}Mpc at z=0z=0 is limited.

Refer to caption
Refer to caption
Figure 7: Same as Figure 3 but for the S/N of pre-rec and post-rec spectra with Rs=10h1R_{s}=10h^{-1}Mpc and the super-sample covariance (SSC) is included in the simulated covariance. The predictions from the 1-loop perturbative formulae are also estimated from the covariance including SSC, i.e., Cov(GA)+Cov(tree)+Cov(SSC) .
Refer to caption
Figure 8: Same as Figure 6 but for the SSC effect is included. Here we fix the smoothing scale RsR_{s} for the post-rec spectra 10h1h^{-1}Mpc.

V Impacts on growth rate measurements

In this section we explore if the estimates of cosmological parameters are improved by reconstruction, particularly focusing on the growth rate. We evaluate the error of the growth rate including the systematics when using the 1-loop perturbative formulae as a theoretical modeling of the matter power spectra. The likelihood is estimated as follows:

\displaystyle{\cal L} \displaystyle\propto exp(χ22),\displaystyle\exp{\left(-\frac{\chi^{2}}{2}\right)}, (17)
χ2(𝐩)\displaystyle\chi^{2}(\mathbf{p}) =\displaystyle= ,0,2i,jki,kjkmax[Ptheory(ki;𝐩)Psim(ki)]\displaystyle\sum_{\ell,\ell^{\prime}}^{0,2}\sum_{i,j}^{k_{i},k_{j}\leq k_{\rm max}}[P_{\ell}^{\rm theory}(k_{i};\mathbf{p})-P_{\ell}^{\rm sim}(k_{i})]
(𝐂𝐨𝐯1)(ki,kj)[Ptheory(kj;𝐩)Psim(kj)].\displaystyle(\mathbf{Cov}^{-1})_{\ell\ell^{\prime}}(k_{i},k_{j})[P_{\ell^{\prime}}^{\rm theory}(k_{j};\mathbf{p})-P_{\ell^{\prime}}^{\rm sim}(k_{j})].

For the theoretical model, we adopt the 1-loop perturbative formulae derived in our previous work (Hikage et al., 2020). In order to correct the effects from small-scale physics on large-scale modes, we include the lowest-order counterterms given by α(=0,2)\alpha_{\ell}(\ell=0,2) multiplied with k2k^{2} times the linear power spectrum PlinearP_{\ell}^{\rm linear} as suggested from the effective field theory (e.g., Carrasco et al., 2012)

Ptheory=P1loop+αk2Plinear(k).P_{\ell}^{\rm theory}=P_{\ell}^{\rm 1-loop}+\alpha_{\ell}k^{2}P_{\ell}^{\rm linear}(k). (19)

The set of free parameters 𝐩\mathbf{p} is the growth rate ff and two counterterms α\alpha_{\ell} and other cosmological parameters are fixed for simplicity. In the theoretical covariance of PP_{\ell} is again estimated from simulations with the survey volume V=(500h1Mpc)3V=(500h^{-1}{\rm Mpc})^{3} and the number density n1n\sim 1[(h1h^{-1}Mpc)]3{}^{-3}] including a volume-size correction (eq.[15]), which fully takes into account the mode coupling between different bins of kk. Note that in our previous paper (Hikage et al., 2020), we assumed the Gaussian covariance with different volumes and number density for simplicity to estimate the impact of the growth rate measurement. We estimate the posterior distribution using a nested sampling algorithm multinest (Feroz et al., 2009), implemented in Monte Python (Audren et al., 2013).

Figure 4 and 5 compare the monopole and quadrupole spectra from N-body simulations with the 1-loop perturbation theory at z=1.02z=1.02 and 0. We adopt the best-fit values of α\alpha_{\ell} by fitting the spectrum out to k=0.2hk=0.2h/Mpc. Each panel shows the results of pre-rec (upper-left) and post-rec spectra with different Rs=20h1R_{s}=20h^{-1}Mpc (upper-right), 10h1h^{-1}Mpc (lower-left) and 5h1h^{-1}Mpc (lower-right). We find that the fitting to the simulated spectrum is best for the post-rec spectra with Rs=20h1R_{s}=20h^{-1}Mpc, while the post-rec spectra with Rs=5h1R_{s}=5h^{-1}Mpc is the worst fitting. More quantitatively speaking, the minimum chi-squared values are 0.76 (pre-rec), 0.09 (post-rec with 20h1h^{-1}Mpc), 0.88 (post-rec with 10h1h^{-1}Mpc), and 3.6 (post-rec with 5h1h^{-1}Mpc) at z=1.02z=1.02 and 8.9 (pre-rec), 0.7 (post-rec with 20h1h^{-1}Mpc), 4.7 (post-rec with 10h1h^{-1}Mpc), and 27 (post-rec with 5h1h^{-1}Mpc). Ref. Hikage et al. (2020) showed that the reconstruction partially suppresses the nonlinearity of the gravitational growth and thereby the perturbation works at higher kk. However, when RsR_{s} is too small, the shift field estimated from the evolved density field becomes more nonlinear and thereby the perturbation does not work well. This is consistent with our previous work in reals-space matter clustering (Hikage et al., 2017).

Figure 6 shows the best-fit values of ff against the input value finputf_{\rm input} and its 1 sigma error. We find that the value of f/finputf/f_{\rm input} is consistent with unity up to kmax0.3hk_{\rm max}\sim 0.3h/Mpc at z=1.02z=1.02 and kmax0.2hk_{\rm max}\sim 0.2h/Mpc at z=0z=0 for both pre-rec and post-rec spectra. Note that, since the 1-loop approximation does not work at such high kmaxk_{\rm max}, the input value of ff can be recovered by chance. It is found that the statistical error decreases after reconstruction over all range of kk. For example, the error decrements of ff from the post-rec spectra relative to that from the pre-rec spectra at z=1.02z=1.02 are 11% (Rs=20h1R_{s}=20h^{-1}Mpc), 20% (Rs=10h1R_{s}=10h^{-1}Mpc), and 17% (Rs=5h1R_{s}=5h^{-1}Mpc) at kmax=0.2h1k_{\rm max}=0.2h^{-1}Mpc and 13% (Rs=20h1R_{s}=20h^{-1}Mpc), 33% (Rs=10h1R_{s}=10h^{-1}Mpc) and 33% (Rs=5h1R_{s}=5h^{-1}Mpc) at kmax=0.3h1k_{\rm max}=0.3h^{-1}Mpc. The error decrements at z=0z=0 are 18% (Rs=20h1R_{s}=20h^{-1}Mpc), 33% Rs=10h1R_{s}=10h^{-1}Mpc), and 22% (Rs=5h1R_{s}=5h^{-1}Mpc) when kmax=0.2h1k_{\rm max}=0.2h^{-1}Mpc. We find that the error of ff is significantly improved and the error improvement is almost maximized around Rs10h1R_{s}\sim 10h^{-1}Mpc where the covariance is almost diagonal by reconstruction. Table. 1 summarizes the minimum chi-squared values and the reduction of statistical errors for pre-rec and post-rec spectra with three different smoothing scales.

pre-rec 20h120h^{-1}Mpc 10h110h^{-1}Mpc 5h15h^{-1}Mpc
χmin2\chi_{\rm min}^{2} z=1z=1 0.76 0.09 0.88 3.6
z=0z=0 8.9 0.7 4.7 27
error z=1z=1
reduction 0.2h10.2h^{-1}Mpc - 11%\% 20(13)%\% 17 %\%
z=1z=1
0.3h10.3h^{-1}Mpc - 13 %\% 33(30)%\% 33 %\%
z=0z=0
0.2h10.2h^{-1}Mpc - 18 %\% 33(28)%\% 22 %\%
Table 1: A summary of the minimum chi-squared values and the reduction of statistical errors for pre-rec and post-rec spectra with three different smoothing scales RsR_{s}. For the reduction of statistical errors at z=1z=1, the results with two different kmaxk_{\rm max} are shown. The error reduction for Rs=10h1R_{s}=10h^{-1}Mpc shown in the bracket is the case with the super-sample covariance.

VI super-sample covariance

The super-sample covariance (SSC) comes from the mixing between the long-wavelength modes beyond the survey window and the short-wavelength modes inside the survey area. The response of the power spectrum to the change in background density δb\delta_{b} is given as (Takada and Hu, 2013; Li et al., 2014)

𝐂𝐨𝐯(SSC)=σb2P(k)δbP(k)δb,\mathbf{Cov}^{\rm(SSC)}_{\ell\ell^{\prime}}=\sigma_{\rm b}^{2}\frac{\partial P_{\ell}(k)}{\partial\delta_{\rm b}}\frac{\partial P_{\ell^{\prime}}(k^{\prime})}{\partial\delta_{\rm b}}, (20)

where the variance of δb\delta_{\rm b} in the survey window is defined as

σb2=1V2𝐝𝐪(2π)3|W~(𝐪)|2PL(q),\sigma_{\rm b}^{2}=\frac{1}{V^{2}}\int\frac{\mathbf{dq}}{(2\pi)^{3}}|\tilde{W}(\mathbf{q})|^{2}P_{L}(q), (21)

with the Fourier transform of the survey mask field W(𝐱)W(\mathbf{x}) given as W~(𝐪)\tilde{W}(\mathbf{q}). The response of the multipole power spectrum to δb\delta_{\rm b} is given by (Li et al., 2018)

lnP(k)δb=G+Ddlnk3P(k)dlnk,\frac{\partial\ln P_{\ell}(k)}{\partial\delta_{\rm b}}=G_{\ell}+D_{\ell}\frac{d\ln k^{3}P_{\ell}(k)}{d\ln k}, (22)

where the first term is the growth modulation by the background density, which is also known as beat coupling (BC) (Hamilton et al., 2006), and the second term is the dilation effect that comes from the change of the local expansion rate depending on the background density (Li et al., 2014). Here we neglect the response of the background tide for simplicity. The growth and dilation term for =0\ell=0 and 2 are given in Table 1 and 2 of (Li et al., 2018) as

G0\displaystyle G_{0} =\displaystyle= 6821(1+f)+164105f2+415f31+23f+15f2,\displaystyle\frac{\frac{68}{21}(1+f)+\frac{164}{105}f^{2}+\frac{4}{15}f^{3}}{1+\frac{2}{3}f+\frac{1}{5}f^{2}}, (23)
G2\displaystyle G_{2} =\displaystyle= 12221f+656147f2+5863f343f+47f2,\displaystyle\frac{\frac{122}{21}f+\frac{656}{147}f^{2}+\frac{58}{63}f^{3}}{\frac{4}{3}f+\frac{4}{7}f^{2}}, (24)

and

D0\displaystyle D_{0} =\displaystyle= 13(1+f)+15f2+17f31+23f+15f2,\displaystyle-\frac{\frac{1}{3}(1+f)+\frac{1}{5}f^{2}+\frac{1}{7}f^{3}}{1+\frac{2}{3}f+\frac{1}{5}f^{2}}, (25)
D2\displaystyle D_{2} =\displaystyle= 23f+47f2+1063f343f+47f2,\displaystyle-\frac{\frac{2}{3}f+\frac{4}{7}f^{2}+\frac{10}{63}f^{3}}{\frac{4}{3}f+\frac{4}{7}f^{2}}, (26)

where the linear bias is set to be unity here. The density fluctuation in a given survey is defined against the mean within the survey window rather than the global mean and thereby the normalization of the power spectrum is altered as (Takada and Hu, 2013)

Pw(k)=P(k)(1+δb(z))2,P_{\ell}^{\rm w}(k)=\frac{P_{\ell}(k)}{(1+\delta_{\rm b}^{\rm(z)})^{2}}, (27)

where δb(z)\delta_{\rm b}^{\rm(z)} is the background density in redshift space and thereby the response is changed to

lnP(k)δblnPw(k)δblnP(k)δb(2+23f).\frac{\partial\ln P_{\ell}(k)}{\partial\delta_{\rm b}}\rightarrow\frac{\partial\ln P_{\ell}^{\rm w}(k)}{\partial\delta_{\rm b}}\simeq\frac{\partial\ln P_{\ell}(k)}{\partial\delta_{\rm b}}-\left(2+\frac{2}{3}f\right). (28)

The non-Gaussian covariance is computed as the sum of the tree-level term (eq.[6]) and the SSC as

𝐂𝐨𝐯(NG)=𝐂𝐨𝐯(tree)+𝐂𝐨𝐯(SSC).\mathbf{Cov}^{\rm(NG)}=\mathbf{Cov}^{\rm(tree)}+\mathbf{Cov}^{\rm(SSC)}. (29)

In section III, we numerically compute the covariance from the ensemble average over NN-body simulations with the volume of (500h1(500h^{-1}Mpc)3)^{3}, however, the fluctuations beyond the boxsize are not taken into account. We compute the covariance including SSC by extracting subboxes with the volume of (500h1(500h^{-1}Mpc)3)^{3} from the 8 realizations of large simulation boxes with the volume of (4h1Gpc)3(4h^{-1}{\rm Gpc})^{3} containing 409634096^{3} particles. The total number of subboxes becomes 8×(4h1Gpc/500h1Mpc)3=40968\times(4h^{-1}{\rm Gpc}/500h^{-1}{\rm Mpc})^{3}=4096. The mean density field is computed in each subbox and the shift field for reconstruction is computed from the smoothed density field using particle data in each subbox. The reconstructed density field is also computed in each subbox data including mass particles shifted from neighboring subboxes. Strictly speaking, the fluctuation beyond the large simulation boxsize 4h14h^{-1}Gpc is not included in the covariance, however, the SSC is dominated by the fluctuations below this size. (Klypin and Prada, 2018) also addressed the question of what box size is needed to model the large-scale structure and argued that modes larger than 1 h1h^{-1}Gpc do not contribute. For the purpose of comparison with the perturbation theory, however, we integrate kk from 2π/(4h12\pi/(4h^{-1}Gpc) in the calculation of σb\sigma_{b} (eq.[21]).

Figure 7 shows the comparison of the S/N for pre-rec and post-rec spectra with Rs=10h1R_{s}=10h^{-1}Mpc. We find that both S/N decrease when including SSC. Since the reconstruction is performed within the survey area, the bulk motion of super-sample modes cannot be corrected by the reconstruction. The post-rec spectra, however, have still higher S/N than the pre-rec spectra. The reconstruction improves S/N by 5% (kmax=0.1hk_{\rm max}=0.1h/Mpc) and by 19% (kmax=0.2hk_{\rm max}=0.2h/Mpc) at z=1.02z=1.02 and by 14% (kmax=0.1hk_{\rm max}=0.1h/Mpc) and by 40% (kmax=0.2hk_{\rm max}=0.2h/Mpc) at z=0z=0. The perturbation formulae also show the consistent results with the numerical one and they quantitatively agrees upto k0.1hk\sim 0.1h/Mpc.

Figure 8 shows the impact on the growth rate measurements when including SSC. The input value of growth rate are again recovered upto kmax0.3hk_{\rm max}\sim 0.3h/Mpc at z=1.02z=1.02 and kmax0.2hk_{\rm max}\sim 0.2h/Mpc at z=0z=0 for both pre-rec and post-rec spectra. The improvements of the error by the reconstruction with Rs=10h1R_{s}=10h^{-1}Mpc are 13% when kmax=0.2hk_{\rm max}=0.2h/Mpc and 30% when kmax=0.3hk_{\rm max}=0.3h/Mpc at z=1.02z=1.02 and 28% when kmax=0.2hk_{\rm max}=0.2h/Mpc at z=0z=0, which are comparable to the improvement without SSC.

VII Summary and conclusions

We investigated the covariance of the redshift-space matter power spectra after a standard density-field reconstruction that is commonly used in the BAO analysis. We derived the perturbative formula of the covariance of the multipole components of the power spectra at tree level. We find that the positive off-diagonal components of the covariance from the tree-level trispectra decrease after the reconstruction and have negative values at the smoothing scale of the shift field RsR_{s} less than 10h1\sim 10h^{-1}Mpc. We also computed the covariance of the multipole power spectra directly from a large set of NN-body simulations. We find the significant decrease of the off-diagonal components and the behavior is consistent with the perturbation theory. In consequence, the information content of the post-rec power spectra evaluated with the signal-to-noise ratio (S/N) of their monopole and quadrupole components significantly increase compared to the pre-rec power spectra. Interestingly, the S/N of the reconstructed spectra with RsR_{s} less than 10h1h^{-1}Mpc exceeds to that of the linear spectrum with the Gaussian covariance, which comes from the negative off-diagonal components of the covariance matrix. The enhancement of the S/N is more significant at later times. We also studied the super-sample covariance effect both from perturbative and numerical approaches. We find that the S/N reduces even after the reconstruction because the reconstruction performs within the survey area and thus the bulk motion of the super-sample modes cannot be corrected by reconstruction. Even when the SSC is included, the post-rec spectra still have higher S/N than the pre-rec spectra.

We find that the tree-level perturbative approach is limited to describe the simulated covariance at k0.1hk\leq 0.1h/Mpc. This indicates that higher-order mode coupling needs to be taken into account to describe the covariance more accurately. There are several works to describe mode couplings at higher kk based on the effective field theory (Bertolini et al., 2016), the response approach (Barreira and Schmidt, 2017), and also semi-analytical models (Neyrinck, 2011; Mohammed and Seljak, 2014; Mohammed et al., 2017). It may be interesting to apply these methods to describe the covariance of reconstructed spectra.

Recovery of cosmological information in the two-point statistics makes the cosmological analysis simpler. We demonstrated that the reconstruction significantly reduced the error of growth rate inferred from the redshift-space power spectrum. So far the reconstruction has been mainly applied to the BAO analysis due to the lack of theoretical understandings of the reconstructed spectrum. Since it is found that the error of the full shape of the power spectrum is improved, it is interesting to investigate how the other cosmological parameters are improved by using the information of the full shape of power spectra after reconstruction. We also have to take into account the galaxy bias and the shot noise as well as various observational effects such as survey geometry to apply the actual observational data (e.g., Wadekar and Scoccimarro, 2019). The shot noise increases the statistical uncertainties in the power spectrum(eq.[II]) and also in the shift field for reconstruction particularly when the smoothing scale is small. We leave this for future work.

Acknowledgements.
We thank an anonymous referee for useful comments. This work is supported by MEXT/JSPS KAKENHI Grant Numbers JP16K17684 (CH), JP18H04348 (CH), JP17H01131 (RT), and 20H04723 (RT). KK is supported by the UK STFC grant ST/S000550/1, and the European Research Council under the European Union’s Horizon 2020 programme (grant agreement No.646702 ”CosTesGrav”). Numerical computations were in part carried out on Cray XC30 and XC50 at Centre for Computational Astrophysics, National Astronomical Observatory of Japan.

References

  • Amendola et al. (2005) L. Amendola, C. Quercellini, and E. Giallongo, MNRAS 357, 429 (2005), eprint astro-ph/0404599.
  • Eisenstein et al. (1998) D. J. Eisenstein, W. Hu, and M. Tegmark, ApJ 504, L57 (1998), eprint astro-ph/9805239.
  • Meiksin et al. (1999) A. Meiksin, M. White, and J. A. Peacock, MNRAS 304, 851 (1999), eprint astro-ph/9812214.
  • Blake and Glazebrook (2003) C. Blake and K. Glazebrook, Astrophys. J.  594, 665 (2003), eprint astro-ph/0301632.
  • Hu and Haiman (2003) W. Hu and Z. Haiman, Phys. Rev. D 68, 063004 (2003), eprint astro-ph/0306053.
  • Matsubara (2004) T. Matsubara, Astrophys. J.  615, 573 (2004), eprint astro-ph/0408349.
  • Angulo et al. (2005) R. E. Angulo, C. M. Baugh, C. S. Frenk, R. G. Bower, A. Jenkins, and S. L. Morris, MNRAS 362, L25 (2005), eprint astro-ph/0504456.
  • Seo and Eisenstein (2005) H.-J. Seo and D. J. Eisenstein, Astrophys. J.  633, 575 (2005), eprint astro-ph/0507338.
  • White (2005) M. White, Astroparticle Physics 24, 334 (2005), eprint astro-ph/0507307.
  • Eisenstein et al. (2005) D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol, R. Scranton, H.-J. Seo, M. Tegmark, Z. Zheng, et al., Astrophys. J.  633, 560 (2005), eprint astro-ph/0501171.
  • Cole et al. (2005) S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry, J. Bland-Hawthorn, T. Bridges, R. Cannon, et al., MNRAS 362, 505 (2005), eprint astro-ph/0501174.
  • Padmanabhan et al. (2007) N. Padmanabhan, D. J. Schlegel, U. Seljak, A. Makarov, N. A. Bahcall, M. R. Blanton, J. Brinkmann, D. J. Eisenstein, D. P. Finkbeiner, J. E. Gunn, et al., MNRAS 378, 852 (2007), eprint astro-ph/0605302.
  • Percival et al. (2007) W. J. Percival, R. C. Nichol, D. J. Eisenstein, J. A. Frieman, M. Fukugita, J. Loveday, A. C. Pope, D. P. Schneider, A. S. Szalay, M. Tegmark, et al., Astrophys. J.  657, 645 (2007), eprint astro-ph/0608636.
  • Eisenstein et al. (2007a) D. J. Eisenstein, H.-J. Seo, and M. White, Astrophys. J.  664, 660 (2007a), eprint astro-ph/0604361.
  • Huff et al. (2007) E. Huff, A. E. Schulz, M. White, D. J. Schlegel, and M. S. Warren, Astroparticle Physics 26, 351 (2007), eprint astro-ph/0607061.
  • Angulo et al. (2008) R. E. Angulo, C. M. Baugh, C. S. Frenk, and C. G. Lacey, MNRAS 383, 755 (2008), eprint astro-ph/0702543.
  • Okumura et al. (2008) T. Okumura, T. Matsubara, D. J. Eisenstein, I. Kayo, C. Hikage, A. S. Szalay, and D. P. Schneider, Astrophys. J.  676, 889 (2008), eprint 0711.3640.
  • Xu et al. (2013) X. Xu, A. J. Cuesta, N. Padmanabhan, D. J. Eisenstein, and C. K. McBride, MNRAS 431, 2834 (2013), eprint 1206.6732.
  • Anderson et al. (2014) L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, A. Burden, et al., MNRAS 441, 24 (2014), eprint 1312.4877.
  • Tojeiro et al. (2014) R. Tojeiro, A. J. Ross, A. Burden, L. Samushia, M. Manera, W. J. Percival, F. Beutler, J. Brinkmann, J. R. Brownstein, A. J. Cuesta, et al., MNRAS 440, 2222 (2014), eprint 1401.1768.
  • Kazin et al. (2014) E. A. Kazin, J. Koda, C. Blake, N. Padmanabhan, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. J. Croton, et al., MNRAS 441, 3524 (2014), eprint 1401.0358.
  • Ross et al. (2015) A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, MNRAS 449, 835 (2015), eprint 1409.3242.
  • Alam et al. (2016) S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A. Blazek, A. S. Bolton, J. R. Brownstein, A. Burden, C.-H. Chuang, et al., ArXiv e-prints (2016), eprint 1607.03155.
  • Beutler et al. (2017) F. Beutler, H.-J. Seo, A. J. Ross, P. McDonald, S. Saito, A. S. Bolton, J. R. Brownstein, C.-H. Chuang, A. J. Cuesta, D. J. Eisenstein, et al., MNRAS 464, 3409 (2017), eprint 1607.03149.
  • Guzzo et al. (2008) L. Guzzo, M. Pierleoni, B. Meneux, E. Branchini, O. Le Fèvre, C. Marinoni, B. Garilli, J. Blaizot, G. De Lucia, A. Pollo, et al., Nature (London) 451, 541 (2008), eprint 0802.1944.
  • Yamamoto et al. (2008) K. Yamamoto, T. Sato, and G. Hütsi, Progress of Theoretical Physics 120, 609 (2008), eprint 0805.4789.
  • Reid et al. (2012) B. A. Reid, L. Samushia, M. White, W. J. Percival, M. Manera, N. Padmanabhan, A. J. Ross, A. G. Sánchez, S. Bailey, D. Bizyaev, et al., MNRAS 426, 2719 (2012), eprint 1203.6641.
  • Beutler et al. (2014) F. Beutler, S. Saito, H.-J. Seo, J. Brinkmann, K. S. Dawson, D. J. Eisenstein, A. Font-Ribera, S. Ho, C. K. McBride, F. Montesano, et al., MNRAS 443, 1065 (2014), eprint 1312.4611.
  • Samushia et al. (2014) L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, G.-B. Zhao, A. J. Ross, M. Manera, É. Aubourg, F. Beutler, et al., MNRAS 439, 3504 (2014), eprint 1312.4899.
  • Oka et al. (2014) A. Oka, S. Saito, T. Nishimichi, A. Taruya, and K. Yamamoto, MNRAS 439, 2515 (2014), eprint 1310.2820.
  • Hikage and Yamamoto (2013) C. Hikage and K. Yamamoto, JCAP 8, 019 (2013), eprint 1303.3380.
  • Ivanov et al. (2020) M. M. Ivanov, M. Simonović, and M. Zaldarriaga, JCAP 2020, 042 (2020), eprint 1909.05277.
  • Takada et al. (2012) M. Takada, R. Ellis, M. Chiba, J. E. Greene, H. Aihara, N. Arimoto, K. Bundy, J. Cohen, O. Doré, G. Graves, et al., ArXiv e-prints (2012), eprint 1206.0737.
  • DESI Collaboration et al. (2016) DESI Collaboration, A. Aghamousa, J. Aguilar, S. Ahlen, S. Alam, L. E. Allen, C. Allende Prieto, J. Annis, S. Bailey, C. Balland, et al., ArXiv e-prints (2016), eprint 1611.00036.
  • Hill et al. (2008) G. J. Hill, K. Gebhardt, E. Komatsu, N. Drory, P. J. MacQueen, J. Adams, G. A. Blanc, R. Koehler, M. Rafal, M. M. Roth, et al., in Panoramic Views of Galaxy Formation and Evolution, edited by T. Kodama, T. Yamada, and K. Aoki (2008), vol. 399 of Astronomical Society of the Pacific Conference Series, p. 115, eprint 0806.0183.
  • Amendola et al. (2016) L. Amendola, S. Appleby, A. Avgoustidis, D. Bacon, T. Baker, M. Baldi, N. Bartolo, A. Blanchard, C. Bonvin, S. Borgani, et al., ArXiv e-prints (2016), eprint 1606.00180.
  • Spergel et al. (2015) D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue, A. Dressler, B. S. Gaudi, T. Greene, O. Guyon, et al., ArXiv e-prints (2015), eprint 1503.03757.
  • Crocce and Scoccimarro (2008) M. Crocce and R. Scoccimarro, Phys. Rev. D 77, 023533 (2008), eprint 0704.2783.
  • Scoccimarro et al. (1999a) R. Scoccimarro, M. Zaldarriaga, and L. Hui, Astrophys. J.  527, 1 (1999a), eprint astro-ph/9901099.
  • Takahashi et al. (2009) R. Takahashi, N. Yoshida, M. Takada, T. Matsubara, N. Sugiyama, I. Kayo, A. J. Nishizawa, T. Nishimichi, S. Saito, and A. Taruya, Astrophys. J.  700, 479 (2009), eprint 0902.0371.
  • Carron et al. (2015) J. Carron, M. Wolk, and I. Szapudi, MNRAS 453, 450 (2015), eprint 1412.5511.
  • Eisenstein et al. (2007b) D. J. Eisenstein, H.-J. Seo, E. Sirko, and D. N. Spergel, Astrophys. J.  664, 675 (2007b), eprint astro-ph/0604362.
  • Zel’dovich (1970) Y. B. Zel’dovich, A.&Ap. 5, 84 (1970).
  • Seo et al. (2008) H.-J. Seo, E. R. Siegel, D. J. Eisenstein, and M. White, Astrophys. J.  686, 13 (2008), eprint 0805.0117.
  • Padmanabhan et al. (2009) N. Padmanabhan, M. White, and J. D. Cohn, Phys. Rev. D 79, 063523 (2009), eprint 0812.2905.
  • Noh et al. (2009) Y. Noh, M. White, and N. Padmanabhan, Phys. Rev. D 80, 123501 (2009), eprint 0909.1802.
  • Seo et al. (2010) H.-J. Seo, J. Eckel, D. J. Eisenstein, K. Mehta, M. Metchnik, N. Padmanabhan, P. Pinto, R. Takahashi, M. White, and X. Xu, Astrophys. J.  720, 1650 (2010), eprint 0910.5005.
  • Sherwin and Zaldarriaga (2012) B. D. Sherwin and M. Zaldarriaga, Phys. Rev. D 85, 103523 (2012), eprint 1202.3998.
  • Padmanabhan et al. (2012) N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, MNRAS 427, 2132 (2012), eprint 1202.0090.
  • Tassev and Zaldarriaga (2012) S. Tassev and M. Zaldarriaga, JCAP 2012, 006 (2012), eprint 1203.6066.
  • Schmittfull et al. (2015) M. Schmittfull, Y. Feng, F. Beutler, B. Sherwin, and M. Y. Chu, Phys. Rev. D 92, 123522 (2015), eprint 1508.06972.
  • Seo et al. (2016) H.-J. Seo, F. Beutler, A. J. Ross, and S. Saito, MNRAS 460, 2453 (2016), eprint 1511.00663.
  • Schmittfull et al. (2017) M. Schmittfull, T. Baldauf, and M. Zaldarriaga, Phys. Rev. D 96, 023505 (2017), eprint 1704.06634.
  • Wang et al. (2017) X. Wang, H.-R. Yu, H.-M. Zhu, Y. Yu, Q. Pan, and U.-L. Pen, ApJ 841, L29 (2017), eprint 1703.09742.
  • Yu et al. (2017) Y. Yu, H.-M. Zhu, and U.-L. Pen, Astrophys. J.  847, 110 (2017), eprint 1703.08301.
  • Hada and Eisenstein (2018) R. Hada and D. J. Eisenstein, MNRAS 478, 1866 (2018), eprint 1804.04738.
  • Hikage et al. (2017) C. Hikage, K. Koyama, and A. Heavens, Phys. Rev. D 96, 043513 (2017), eprint 1703.07878.
  • Hikage et al. (2020) C. Hikage, K. Koyama, and R. Takahashi, Phys. Rev. D 101, 043510 (2020), eprint 1911.06461.
  • Harnois-Déraps et al. (2013) J. Harnois-Déraps, U.-L. Pen, I. T. Iliev, H. Merz, J. D. Emberson, and V. Desjacques, MNRAS 436, 540 (2013), eprint 1208.5098.
  • Blot et al. (2015) L. Blot, P. S. Corasaniti, J. M. Alimi, V. Reverdy, and Y. Rasera, MNRAS 446, 1756 (2015), eprint 1406.2713.
  • Klypin and Prada (2018) A. Klypin and F. Prada, MNRAS 478, 4602 (2018), eprint 1701.05690.
  • Villaescusa-Navarro et al. (2019) F. Villaescusa-Navarro, C. Hahn, E. Massara, A. Banerjee, A. M. Delgado, D. Kodi Ramanah, T. Charnock, E. Giusarma, Y. Li, E. Allys, et al., arXiv e-prints arXiv:1909.05273 (2019), eprint 1909.05273.
  • Hamilton et al. (2006) A. J. S. Hamilton, C. D. Rimes, and R. Scoccimarro, MNRAS 371, 1188 (2006), eprint astro-ph/0511416.
  • Takada and Hu (2013) M. Takada and W. Hu, Phys. Rev. D 87, 123504 (2013), eprint 1302.6994.
  • Li et al. (2014) Y. Li, W. Hu, and M. Takada, Phys. Rev. D 89, 083519 (2014), eprint 1401.0385.
  • Planck Collaboration et al. (2016) Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, et al., A.&Ap. 594, A13 (2016), eprint 1502.01589.
  • Fry (1984) J. N. Fry, Astrophys. J.  279, 499 (1984).
  • Scoccimarro et al. (1999b) R. Scoccimarro, H. M. P. Couchman, and J. A. Frieman, Astrophys. J.  517, 531 (1999b), eprint astro-ph/9808305.
  • Matsubara (2008) T. Matsubara, Phys. Rev. D 77, 063530 (2008), eprint 0711.2521.
  • Wadekar and Scoccimarro (2019) D. Wadekar and R. Scoccimarro, arXiv e-prints arXiv:1910.02914 (2019), eprint 1910.02914.
  • Springel (2005) V. Springel, MNRAS 364, 1105 (2005), eprint astro-ph/0505010.
  • Crocce et al. (2006) M. Crocce, S. Pueblas, and R. Scoccimarro, MNRAS 373, 369 (2006), eprint astro-ph/0606505.
  • Nishimichi et al. (2009) T. Nishimichi, A. Shirata, A. Taruya, K. Yahata, S. Saito, Y. Suto, R. Takahashi, N. Yoshida, T. Matsubara, N. Sugiyama, et al., PASJ 61, 321 (2009), eprint 0810.0813.
  • Nishimichi et al. (2019) T. Nishimichi, M. Takada, R. Takahashi, K. Osato, M. Shirasaki, T. Oogi, H. Miyatake, M. Oguri, R. Murata, Y. Kobayashi, et al., Astrophys. J.  884, 29 (2019), eprint 1811.09504.
  • Lewis et al. (2000) A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J.  538, 473 (2000), eprint astro-ph/9911177.
  • Note (1) Note1, fFTW3 at http://www.fftw.org.
  • Jing (2005) Y. P. Jing, Astrophys. J.  620, 559 (2005), eprint astro-ph/0409240.
  • Hartlap et al. (2007) J. Hartlap, P. Simon, and P. Schneider, A.&Ap. 464, 399 (2007), eprint astro-ph/0608064.
  • Carrasco et al. (2012) J. J. M. Carrasco, M. P. Hertzberg, and L. Senatore, Journal of High Energy Physics 2012, 82 (2012), eprint 1206.2926.
  • Feroz et al. (2009) F. Feroz, M. P. Hobson, and M. Bridges, MNRAS 398, 1601 (2009), eprint 0809.3437.
  • Audren et al. (2013) B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, Journal of Cosmology and Astroparticle Physics 2013, 001–001 (2013), ISSN 1475-7516, URL http://dx.doi.org/10.1088/1475-7516/2013/02/001.
  • Li et al. (2018) Y. Li, M. Schmittfull, and U. Seljak, JCAP 2018, 022 (2018), eprint 1711.00018.
  • Bertolini et al. (2016) D. Bertolini, K. Schutz, M. P. Solon, J. R. Walsh, and K. M. Zurek, Phys. Rev. D 93, 123505 (2016), eprint 1512.07630.
  • Barreira and Schmidt (2017) A. Barreira and F. Schmidt, JCAP 2017, 051 (2017), eprint 1705.01092.
  • Neyrinck (2011) M. C. Neyrinck, Astrophys. J.  736, 8 (2011), eprint 1103.5476.
  • Mohammed and Seljak (2014) I. Mohammed and U. Seljak, MNRAS 445, 3382 (2014), eprint 1407.0060.
  • Mohammed et al. (2017) I. Mohammed, U. Seljak, and Z. Vlah, MNRAS 466, 780 (2017), eprint 1607.00043.