This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia

Coupled free fermion conformal field theories

Peter Bouwknegt    and Bolin Han [email protected], [email protected]
Abstract

We study a specific class of CFTs that involve coupled free fermions, arising from parafermion CFTs and lattice constructions. We analyse their representation spaces and the underlying exclusion statistics of coupled free fermions using specific bases. In one particular case, we reveal an unexpected connection between the coset construction of parafermions, the lattice construction, and and orbifold thereof. This connection is supported by proving a range of character identities within the context of coupled free fermions. Simultaneously, we obtain explicit expressions of certain string functions in terms of Dedekind eta functions.

1 Introduction

The study of formal properties of CFTs was initiated in the late 1960s MACK1969174 ; polyakov1974nonhamiltonian ; Ferrara:1971vh ; Parisi:1972zm ; Caianiello1978NonPerturbativeMI . Early work was done in general dimension d2d\geq 2, where the Lie algebra of the group of conformal transformations is almost always finite-dimensional, except when d=2d=2 where the group is infinite-dimensional. The infinite-dimensional symmetry group in 2D CFTs allows us to define the theories in a more abstract way via operator algebras and their representation theory.

With continuous developments since then, CFT has become an active area of research beyond its origins in statistical physics and attracted much attention for its intrinsic mathematical interest. The quest to classify and solve CFTs is a major goal of modern theoretical physics. A complete understanding of the space of CFTs is not yet available. It is only the rational CFT subclass that is reasonably well-understood.

Starting from the minimal models FQSminmodel ; Belavin:1984vu , various other constructions of rational CFTs, including the lattice construction DONG1993245 , WZW models KZWZW ; Witten1984WZW ; GepnerWitten , GKO coset construction GKOcoset , and the orbifold construction Dixon1985strorb ; Dixon1988strorb ; dixon1987orb ; DGM1990orb ; Dolan1996 , have been intensively investigated. Those theories that contain fields with spin-1 and spin-2 have drawn more attention from physicists, while the theories that contain fields of fractional spin, such as parafermionic CFTs, have not yet been fully explored.

Notable families of parafermion CFTs includes the FKF-type parafermions FRADKIN19801 , and the ZF-type parafermions, which relate to the WZW models as cosets in the form of 𝔰𝔩(2)^k/𝔲(1)^\widehat{\mathfrak{sl}(2)}_{k}/\widehat{\mathfrak{u}(1)} ZF1985 . A more general version of coset parafermion CFTs was introduced by Gepner in GEPNER87 , which can be thought of as cosets of WZW models in the form of 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}, where nn is the rank of 𝔤\mathfrak{g}, and kk to so-called level GEPNER89 ; Bratchikov_2000 .

We notice that when 𝔤\mathfrak{g} is simply-laced and k=2k=2, Gepner’s parafermions are spin-12\frac{1}{2} free fermions. Moreover, when 𝔤𝔰𝔩(2)^\mathfrak{g}\neq\widehat{\mathfrak{sl}(2)}, these fermions are coupled to each other.

In Section 2 we study the coupled free fermions arising from the coset CFT 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}, in particular for 𝔤=𝔰𝔩(3)\mathfrak{g}=\mathfrak{sl}(3) and 𝔤=𝔰𝔩(4)\mathfrak{g}=\mathfrak{sl}(4). We construct a basis for the modules of this CFT in terms of the coupled free fermions so that their characters can be computed in terms of so-called universal chiral partition functions (‘fermionic partition functions’), mathematically giving alternate explicit expressions for the string functions of affine Lie algebra modules. In Section 3 we give another construction of coupled free fermions, associated to (rescaled) lattice CFTs, and observe an intriguing relation between coset construction for 𝔰𝔩(4)\mathfrak{sl}(4) and the lattice CFT for 𝔰𝔩(3)\mathfrak{sl}(3)

Some details regarding the proof for the bases are given in Appendix A, while the proofs of the character identities can be found in a companion paper BCH .

2 The coset construction

Given an affine Lie algebra 𝔤^\hat{\mathfrak{g}} at level kk, one can construct a parafermionic conformal field theory containing fields which are non-local, of fractional spin, and chiral, as described in GEPNER87 . For simplicity, we only focus on the holomorphic part and assume that 𝔤\mathfrak{g} is simply-laced.

We associate a parafermionic field ψ(α)\psi^{(\alpha)} to each αQ\alpha\in Q, where QQ is the root lattice of 𝔤\mathfrak{g}, and identify ψ(α)\psi^{(\alpha)} and ψ(β)\psi^{(\beta)} if αβmodkQ\alpha\equiv\beta\mod kQ. Among these parafermionic fields, we are particularly interested in the so-called generating parafermions {ψ(α)αΔ}\{\psi^{(\alpha)}\mid\alpha\in\Delta\}, where Δ\Delta is the set of roots of 𝔤\mathfrak{g}. The OPEs of generating parafermions are determined so that the following fields

Jα(z)=2kα2cαψαeiαϕ(z)/k,αΔ,\displaystyle J^{\alpha}(z)=\sqrt{\dfrac{2k}{\alpha^{2}}}c_{\alpha}\psi_{\alpha}e^{i\alpha\cdot\phi(z)/\sqrt{k}},\;\;\alpha\in\Delta, Ji(z)=2ikαi2αizϕ(z),αiΔ0,\displaystyle J^{i}(z)=\dfrac{2i\sqrt{k}}{\alpha_{i}^{2}}\alpha_{i}\cdot\partial_{z}\phi(z)\;,\;\;\alpha_{i}\in\Delta_{0},

where cαc_{\alpha} are cocycles, ϕ(z)\phi(z) is the vector of nn free bosons and Δ0\Delta_{0} is the set of simple roots of 𝔤\mathfrak{g}, obey the current algebra commutation relations

Ja(z)Jb(w)kκab(zw)2+fabJcc(w)zw,J^{a}(z)J^{b}(w)\sim\dfrac{k\kappa^{ab}}{(z-w)^{2}}+\dfrac{f^{ab}{}_{c}\,J^{c}(w)}{z-w},

where Ja(z)J^{a}(z) stands for either Jα(z)J^{\alpha}(z) or Ji(z)J^{i}(z) defined above, κab\kappa^{ab} is the Killing form and fabcf^{ab}{}_{c} are structure constants of 𝔤\mathfrak{g} in the Chevalley basis.

It turns out that the cocycles and OPEs are given by

cαcα=1,cαcβ=Sα,βcα+β,\displaystyle c_{\alpha}c_{-\alpha}=1,\;\;\;\;c_{\alpha}c_{\beta}=S_{\alpha,\beta}c_{\alpha+\beta},
ψ(α)(z)ψ(α)(w)1(zw)2|α|2/k,\displaystyle\psi^{(\alpha)}(z)\psi^{(-\alpha)}(w)\sim\dfrac{1}{(z-w)^{2-|\alpha|^{2}/k}}, (1)
ψ(α)(z)ψ(β)(w)cα,βψ(α+β)(w)(zw)1+(α,β)/k,\displaystyle\psi^{(\alpha)}(z)\psi^{(\beta)}(w)\sim\dfrac{c_{\alpha,\beta}\psi^{(\alpha+\beta)}(w)}{(z-w)^{1+(\alpha,\beta)/k}}, (2)

where Sα,βS_{\alpha,\beta} are some roots of unity and cα,βc_{\alpha,\beta} are some constants to be fixed by the Borcherds identity (2).

Denote the energy-momentum tensor of the current algebra in the Sugawara form by L(c)(z)L^{(c)}(z), and that of the (uncoupled free) bosonic systems by L(b)(z)L^{(b)}(z). The energy-momentum tensor L(z)L(z) of the parafermionic system is then L(z)=L(c)(z)L(b)(z)L(z)=L^{(c)}(z)-L^{(b)}(z) and the central charge of the parafermionic system is

c(𝔤^k𝔲(1)^n)=c(𝔤^k)c(𝔲(1)^n)=kdim𝔤k+hn.c\left(\dfrac{\hat{\mathfrak{g}}_{k}}{\widehat{\mathfrak{u}(1)}^{n}}\right)=c\left(\hat{\mathfrak{g}}_{k}\right)-c\left(\widehat{\mathfrak{u}(1)}^{n}\right)=\dfrac{k\dim\mathfrak{g}}{k+h^{\vee}}-n. (3)

where hh^{\vee} is the dual Coxeter number of 𝔤\mathfrak{g}.

The conformal dimension of a parafermionic field ψ(α)\psi^{(\alpha)} with respect to L(z)L(z) is given by

h(α)=|α|22k+n(α),h(\alpha)=-\dfrac{|\alpha|^{2}}{2k}+n(\alpha), (4)

where n(α)n(\alpha) is the minimal number of roots of 𝔤\mathfrak{g} from which α\alpha is composed. The mode expansions of parafermionic fields ψ(α)\psi^{(\alpha)} are of the form

ψ(α)(z)=n+ϵ(α)ψn(α)znh(α),\psi^{(\alpha)}(z)=\sum_{n\in\mathbb{Z}+\epsilon(\alpha)}\psi^{(\alpha)}_{n}z^{-n-h(\alpha)}, (5)

where the twisting ϵ/\epsilon\in\mathbb{R}/\mathbb{Z} depends on relevant OPEs. Unitarity is defined by the conjugation relation

(ψn(α))=ψn(α),\left(\psi^{(\alpha)}_{n}\right)^{{\dagger}}=\psi^{(\alpha)}_{-n},

which is consistent with the generalised commutation relations (14).

One can derive generalised commutation relations between the modes of parafermionic fields from the Borcherds identity for parafermionic fields

j0(mj)[[AB]n+1+jC]m+k+1j\displaystyle\sum_{j\geq 0}\binom{m}{j}[[AB]_{n+1+j}C]_{m+k+1-j}
=\displaystyle= (1)j(nj)j0[A[BC]k+1+j]m+n+1jμAB(1)αABn[B[AC]m+1+j]n+k+1j,\displaystyle(-1)^{j}\binom{n}{j}\sum_{j\geq 0}[A[BC]_{k+1+j}]_{m+n+1-j}-\mu_{AB}(-1)^{\alpha_{AB}-n}[B[AC]_{m+1+j}]_{n+k+1-j}, (6)

where nαABmodn\equiv\alpha_{AB}\mod\mathbb{Z}, mαACmodm\equiv\alpha_{AC}\mod\mathbb{Z}, kαBCmodk\equiv\alpha_{BC}\mod\mathbb{Z} and the commutation factors μAB\mu_{AB} and singularity αAB\alpha_{AB} are given by the axiom

A(z)B(w)(zw)αAB=μABB(w)A(z)(wz)αAB.A(z)B(w)(z-w)^{\alpha_{AB}}=\mu_{AB}B(w)A(z)(w-z)^{\alpha_{AB}}. (7)

The parafermionic primary fields of 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}, denoted by ΦλΛ\Phi^{\Lambda}_{\lambda}, are labelled by ΛP^+(k)\Lambda\in\hat{P}^{(k)}_{+}, a dominant integral weight at level kk, and an integral weight λP^\lambda\in\hat{P} such that ΛλQ^\Lambda-\lambda\in\hat{Q}, where Q^\hat{Q} is the root lattice of 𝔤^\hat{\mathfrak{g}}. We notice that ΦλΛ\Phi^{\Lambda}_{\lambda} and ΦλΛ\Phi^{\Lambda^{\prime}}_{\lambda^{\prime}} are identified if

Λ=ΛandλλmodkQ^\Lambda^{\prime}=\Lambda\;\;\text{and}\;\;\lambda^{\prime}\equiv\lambda\mod k\hat{Q}

or

Λ=σΛandλ=σλ,\Lambda^{\prime}=\sigma\Lambda\;\;\text{and}\;\;\lambda^{\prime}=\sigma\lambda,

where σAut(Dyn(𝔤))\sigma\in\text{Aut}(\text{Dyn}(\mathfrak{g})). The modules of 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}, denoted by λΛ\mathcal{L}^{\Lambda}_{\lambda}, are therefore labelled and identified in the same manner.

The generating parafermions ψ(α)\psi^{(\alpha)} act on modules λΛ\mathcal{L}^{\Lambda}_{\lambda} as chiral vertex operators (CVOs). Consider a generic CVO

ϕλ(i)Λ(i)(ikj)(z):λ(j)Λ(j)λ(k)Λ(k),\phi^{\Lambda^{(i)}}_{\lambda^{(i)}}\binom{i}{k\;j}(z):\mathcal{L}^{\Lambda^{(j)}}_{\lambda^{(j)}}\to\mathcal{L}^{\Lambda^{(k)}}_{\lambda^{(k)}},

whose mode expansion is

ϕλ(i)Λ(i)(ikj)(z)=nϕλ(i)Λ(i)(ikj)n(hλ(k)Λ(k)hλ(j)Λ(j))zn+(hλ(k)Λ(k)hλ(j)Λ(j)hλ(i)Λ(i)),\phi^{\Lambda^{(i)}}_{\lambda^{(i)}}\binom{i}{k\;j}(z)=\sum_{n\in\mathbb{Z}}\phi^{\Lambda^{(i)}}_{\lambda^{(i)}}\binom{i}{k\;j}_{n-(h^{\Lambda^{(k)}}_{\lambda^{(k)}}-h^{\Lambda^{(j)}}_{\lambda^{(j)}})}z^{-n+(h^{\Lambda^{(k)}}_{\lambda^{(k)}}-h^{\Lambda^{(j)}}_{\lambda^{(j)}}-h^{\Lambda^{(i)}}_{\lambda^{(i)}})}, (8)

where hλΛh^{\Lambda}_{\lambda} is the conformal dimension of the field ΦλΛ\Phi^{\Lambda}_{\lambda}, given by

hλΛ=(Λ,Λ+2ρ)2(k+h)|λ|22k+nλΛ,h^{\Lambda}_{\lambda}=\dfrac{(\Lambda,\Lambda+2\rho)}{2(k+h^{\vee})}-\dfrac{|\lambda|^{2}}{2k}+n^{\Lambda}_{\lambda}, (9)

where nλΛn^{\Lambda}_{\lambda} is some integer. (If Λ=kΛ0\Lambda=k\Lambda_{0}, then nλΛn^{\Lambda}_{\lambda} may be described as the minimal number of finite roots from which the finite part of λ\lambda is composed. If λ\lambda is a weight in the representation Λ\Lambda, then nλΛ=0n^{\Lambda}_{\lambda}=0.)

The number of such CVOs are determined by the fusion rules of 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}, which are given by

Φλ(i)Λ(i)×Φλ(j)Λ(j)=k𝒩ijkΦλ(i)+λ(j)modkQ^Λ(k)\Phi^{\Lambda^{(i)}}_{\lambda^{(i)}}\times\Phi^{\Lambda^{(j)}}_{\lambda^{(j)}}=\sum_{k}\mathcal{N}_{ij}^{k}\,\Phi^{\Lambda^{(k)}}_{\lambda^{(i)}+\lambda^{(j)}\mod k\hat{Q}} (10)

where 𝒩ijk\mathcal{N}_{ij}^{k} are fusion rules of 𝔤^k\hat{\mathfrak{g}}_{k}.

The characters of λΛ\mathcal{L}^{\Lambda}_{\lambda}, denoted by bλΛb^{\Lambda}_{\lambda}, are defined in the standard way, that is,

bλΛ(τ):=Tr|λΛq(L0c/24),q=e2πiτb^{\Lambda}_{\lambda}(\tau):=\text{Tr}_{\big{|}{\mathcal{L}^{\Lambda}_{\lambda}}}\ q^{\left(L_{0}-c/24\right)}\,,\qquad q=e^{2\pi i\tau}

where L0L_{0} is the zeroth mode of the energy-momentum tensor L(z)L(z) of the parafermionic system. Recalling that L(z)=L(c)(z)L(b)(z)L(z)=L^{(c)}(z)-L^{(b)}(z), we have, as shown in GEPNER87 ,

bλΛ(τ)=Tr|λΛq(L0(c)c(𝔤^k)/24)Tr|λΛq(L0(b)n/24)=η(τ)ncλΛ(τ),b^{\Lambda}_{\lambda}(\tau)=\dfrac{\text{Tr}_{\big{|}\mathcal{L}^{\Lambda}_{\lambda}}\;q^{\left(L_{0}^{(c)}-c(\hat{\mathfrak{g}}_{k})/24\right)}}{\text{Tr}_{\big{|}\mathcal{L}^{\Lambda}_{\lambda}}\;q^{\left(L_{0}^{(b)}-n/24\right)}}=\eta(\tau)^{n}c^{\Lambda}_{\lambda}(\tau), (11)

where η(τ)\eta(\tau) is the Dedekind eta function and cλΛ(τ)c^{\Lambda}_{\lambda}(\tau) are the string functions of 𝔤^k\hat{\mathfrak{g}}_{k} KACPETERSON .

We notice that when 𝔤\mathfrak{g} is simply-laced and k=2k=2, this construction is of particular interest because then the OPEs (1) and (2) for generating parafermions reduce to

ψ(α)(z)ψ(α)(w)1(zw),\displaystyle\psi^{(\alpha)}(z)\psi^{(-\alpha)}(w)\sim\dfrac{1}{(z-w)}, (12)
ψ(α)(z)ψ(β)(w)cα,βψ(α+β)(w)(zw)1/2,ifα+βΔ.\displaystyle\psi^{(\alpha)}(z)\psi^{(\beta)}(w)\sim\dfrac{c_{\alpha,\beta}\psi^{(\alpha+\beta)}(w)}{(z-w)^{1/2}},\;\;\text{if}\;\alpha+\beta\in\Delta. (13)

Keeping in mind that ααmod2Q\alpha\equiv-\alpha\mod 2Q and the conformal dimension of any generating parafermion ψ(α)\psi^{(\alpha)} is 12\frac{1}{2} according to (4), we see that (12) tells us that we have a set of real free fermions {ψ(α)αΔ+}\{\psi^{(\alpha)}\mid\alpha\in\Delta_{+}\} and (13) tells us that these fermions are coupled to each other according to the root structure of 𝔤\mathfrak{g}. Therefore, we will call such a system a “coupled free fermion CFT” hereafter.

It is not hard to see that when 𝔤=𝔰𝔩2\mathfrak{g}=\mathfrak{sl}_{2}, the coupled free fermion CFT simply recovers the free fermion CFT. Thus, coupled free fermion CFTs are natural generalisations of the free fermion CFT.

For a coupled free fermion CFT 𝔰𝔩(n+1)^2/𝔲(1)^n\widehat{\mathfrak{sl}(n+1)}_{2}/\widehat{\mathfrak{u}(1)}^{n}, the twisting ϵ\epsilon in the mode expansion (5) can only be 0 or 12\frac{1}{2}, corresponding to NS- or R-sector respectively. The generalised commutation relations111Also known as ZZ-algebra relations Lepowsky1984 . between the modes of coupled free fermions derived from (2) are given in DING1994 ; BorisPF as follows:

ψn(α)ψm(α)+ψm(α)ψn(α)\displaystyle\psi^{(\alpha)}_{n}\psi^{(\alpha)}_{m}+\psi^{(\alpha)}_{m}\psi^{(\alpha)}_{n} =δm+n,0,\displaystyle=\delta_{m+n,0}, (14)
ψn(α)ψm(β)+μα,βψm(β)ψn(α)\displaystyle\psi^{(\alpha)}_{n}\psi^{(\beta)}_{m}+\mu_{\alpha,\beta}\psi^{(\beta)}_{m}\psi^{(\alpha)}_{n} =0,\displaystyle=0, ifα+βΔ,\displaystyle\text{if}\;\alpha+\beta\not\in\Delta,
l0(l12l)(ψm12l(α)ψn+12+l(β)+μα,βψnl(β)ψm+l(α))\displaystyle\sum_{l\geq 0}\binom{l-\frac{1}{2}}{l}\left(\psi^{(\alpha)}_{m-\frac{1}{2}-l}\psi^{(\beta)}_{n+\frac{1}{2}+l}+\mu_{\alpha,\beta}\psi^{(\beta)}_{n-l}\psi^{(\alpha)}_{m+l}\right) =cα,βψm+n(α+β),\displaystyle=c_{\alpha,\beta}\psi^{(\alpha+\beta)}_{m+n}, ifα+βΔ,\displaystyle\text{if}\;\alpha+\beta\in\Delta,

where the commutator factors μα,β\mu_{\alpha,\beta} are some roots of unity that satisfy

μα,βμβ,α=1,\displaystyle\mu_{\alpha,\beta}\mu_{\beta,\alpha}=1, μα,βcα,β=cβ,α.\displaystyle\mu_{\alpha,\beta}c_{\alpha,\beta}=c_{\beta,\alpha}.

It is also calculated in DING1994 ; BorisPF using (2) that

L(z)=4n+3αΔ+L(α)(z),L(z)=\frac{4}{n+3}\sum_{\alpha\in\Delta_{+}}L^{(\alpha)}(z), (15)

where L(α)(z)L^{(\alpha)}(z) is the energy-momentum tensor of a free fermion subalgebra:

L(α)(z):=12:ψ(α)(z)ψ(α)(z):.L^{(\alpha)}(z):=-\frac{1}{2}:\psi^{(\alpha)}(z)\partial\psi^{(\alpha)}(z):.

The mode expansion of L(z)L(z) is then given by

L(z)=nLnzn2,L(z)=\sum_{n}L_{n}z^{-n-2},

with

Ln=4n+3αΔ+Ln(α),L_{n}=\frac{4}{n+3}\sum_{\alpha\in\Delta_{+}}L_{n}^{(\alpha)},

where

Ln(α)={12r+12(r+12n):ψr(α)ψn+r(α):(NS),12r(r+12n):ψr(α)ψn+r(α):+116δn,0(R).L_{n}^{(\alpha)}=\left\{\begin{aligned} &\frac{1}{2}\sum_{r\in\mathbb{Z}+\frac{1}{2}}\left(r+\frac{1}{2}n\right):\psi^{(\alpha)}_{-r}\psi^{(\alpha)}_{n+r}:&(\text{NS}),\\ &\frac{1}{2}\sum_{r\in\mathbb{Z}}\left(r+\frac{1}{2}n\right):\psi^{(\alpha)}_{-r}\psi^{(\alpha)}_{n+r}:+\frac{1}{16}\delta_{n,0}&(\text{R}).\end{aligned}\right.

Here, whether the mode numbers are integers or half-integers is determined by (8) depending on which particular intertwiner we are considering.

It is easily checked that the modes of L(z)L(z) form the Virasoro algebra with central charge

c(𝔰𝔩(n+1)^2𝔲(1)^n)=n(n+1)n+3,c\left(\dfrac{\widehat{\mathfrak{sl}(n+1)}_{2}}{\widehat{\mathfrak{u}(1)}^{n}}\right)=\dfrac{n(n+1)}{n+3}, (16)

which agrees with (3). We notice that this number is the same as the sum of the first nn central charges of the discrete series of unitary minimal models, that is,

c(𝔰𝔩(n+1)^2𝔲(1)^n)=m=1n(16(m+2)(m+3)).c\left(\dfrac{\widehat{\mathfrak{sl}(n+1)}_{2}}{\widehat{\mathfrak{u}(1)}^{n}}\right)=\sum_{m=1}^{n}\left(1-\dfrac{6}{(m+2)(m+3)}\right). (17)

Indeed, it has been verified in BelGep that the coset parafermionic CFT 𝔰𝔩(n+1)^2/𝔲(1)^n\widehat{\mathfrak{sl}(n+1)}_{2}/\widehat{\mathfrak{u}(1)}^{n} can be decomposed into minimal models, taking these cosets as special cases of the AGT correspondence. Detailed analysis and examples of such decompositions can be found in BHphDthesis .

In the case of 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2}, let α1,α2\alpha_{1},\alpha_{2} denote the simple roots of 𝔰𝔩(3)\mathfrak{sl}(3). Then the positive roots of 𝔰𝔩(3)\mathfrak{sl}(3) are {α1,α2,α3:=α1+α2}\{\alpha_{1},\alpha_{2},\alpha_{3}:=\alpha_{1}+\alpha_{2}\} and we have 3 coupled free fermions ψ(1):=ψ(α1),ψ(2):=ψ(α2)\psi^{(1)}:=\psi^{(\alpha_{1})},\psi^{(2)}:=\psi^{(\alpha_{2})} and ψ(3):=ψ(α3)\psi^{(3)}:=\psi^{(\alpha_{3})}. There are 8 inequivalent primary fields in this model.

The algebraic structure of this model was studied in BorisPF , where the author noted that a kind of Poincaré-Birkhoff-Witt (PBW) theorem should hold for the model, but they failed to determine one. Despite the fact that, in Ard2002 , the author had found a basis involving (positive and negative) modes of parafermions associated with simple roots, with our understanding of coupled free fermions in terms of chiral vertex operators together with the explicit generalised commutation relations, we have found that it is straightforward to state a basis of PBW type in terms of non-positive modes of all coupled free fermions.

Let 1\mathcal{B}_{1} be set of states in the form of

ψN3N1+N22+12sN3(3)(3)ψN1+N2212s1(3)(3)\displaystyle\psi^{(3)}_{-N_{3}-\frac{N_{1}+N_{2}}{2}+\frac{1}{2}-s^{(3)}_{N_{3}}}\dots\psi^{(3)}_{-\frac{N_{1}+N_{2}}{2}-\frac{1}{2}-s^{(3)}_{1}} ψN2N12+12sN2(2)(2)\displaystyle\psi^{(2)}_{-N_{2}-\frac{N_{1}}{2}+\frac{1}{2}-s^{(2)}_{N_{2}}}\dots (18)
ψN1212s1(2)(2)ψN1+12sN1(1)(1)ψ12s1(1)(1)|0\displaystyle\dots\psi^{(2)}_{-\frac{N_{1}}{2}-\frac{1}{2}-s^{(2)}_{1}}\psi^{(1)}_{-N_{1}+\frac{1}{2}-s^{(1)}_{N_{1}}}\dots\psi^{(1)}_{-\frac{1}{2}-s^{(1)}_{1}}\ket{0}

with N1,N2,N30N_{1},N_{2},N_{3}\geq 0 and sN(i)s2(i)s1(i)0s^{(i)}_{N}\geq\dots s^{(i)}_{2}\geq s^{(i)}_{1}\geq 0 for i=1,2,3i=1,2,3.

Let 2\mathcal{B}_{2} be the set of states in the form of

ψN3N1+N22+1sN3(3)(3)ψN1+N22s1(3)(3)\displaystyle\psi^{(3)}_{-N_{3}-\frac{N_{1}+N_{2}}{2}+1-s^{(3)}_{N_{3}}}\dots\psi^{(3)}_{-\frac{N_{1}+N_{2}}{2}-s^{(3)}_{1}} ψN2N12+1sN2(2)(2)\displaystyle\psi^{(2)}_{-N_{2}-\frac{N_{1}}{2}+1-s^{(2)}_{N_{2}}}\dots (19)
ψN12s1(2)(2)ψN1+12sN1(1)(1)ψ12s1(1)(1)|1\displaystyle\dots\psi^{(2)}_{-\frac{N_{1}}{2}-s^{(2)}_{1}}\psi^{(1)}_{-N_{1}+\frac{1}{2}-s^{(1)}_{N_{1}}}\dots\psi^{(1)}_{-\frac{1}{2}-s^{(1)}_{1}}\ket{1^{\prime}}

with N1,N2,N30N_{1},N_{2},N_{3}\geq 0 and sN(i)s2(i)s1(i)0s^{(i)}_{N}\geq\dots s^{(i)}_{2}\geq s^{(i)}_{1}\geq 0 for i=1,2,3i=1,2,3.

We claim that 1\mathcal{B}_{1} and 2\mathcal{B}_{2} are the bases of the untwisted sector and twisted sector of 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2} respectively. One can inductively prove both the independence and the spanning property of our proposed basis with extensive manipulations of generalised commutation relations (14). Instead, in this paper we prove the spanning property by an inductive proof (see Appendix A) and conclude the independence from the equality of dimensions. The latter can be proven by a combinatorial argument as given in Ard2002 or by number theory techniques as given in BCH using Universal Chiral Partition Functions (UCPFs) KKMM1992 ; KKMM1993 ; berkovich1999universal ; BouwknegtUCPF .

In the case of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}, let α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3} denote the simple roots of 𝔰𝔩(4)\mathfrak{sl}(4) such that (α1,α3)=0(\alpha_{1},\alpha_{3})=0. Then the positive roots are Δ+={α1,α2,α3,α4:=α1+α2,α5:=α2+α3,α6:=α1+α2+α3}\Delta_{+}=\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}:=\alpha_{1}+\alpha_{2},\alpha_{5}:=\alpha_{2}+\alpha_{3},\alpha_{6}:=\alpha_{1}+\alpha_{2}+\alpha_{3}\} and therefore we have 6 coupled free fermions {ψ(i):=ψ(αi)αiΔ+}\{\psi^{(i)}:=\psi^{(\alpha_{i})}\mid\alpha_{i}\in\Delta_{+}\}. There are 24 inequivalent primary fields in this model.

The algebraic structure of this model is also briefly mentioned in BorisPF . Although the author noted that the commutation factors between the orthogonal fermions are equal ±1\pm 1, they did not specify any constraint to determine the sign. We have found that the constraints for 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} are

μ54=c14c21μ26c61c15=c12c64c16c25,\mu_{54}=\dfrac{c_{14}c_{21}}{\mu_{26}c_{61}c_{15}}=\dfrac{c_{12}c_{64}}{c_{16}c_{25}}, (20)

where μij:=μαi,αj\mu_{ij}:=\mu_{\alpha_{i},\alpha_{j}} and cij:=cαi,αjc_{ij}:=c_{\alpha_{i},\alpha_{j}}. Explicitly, a compatible choice of parameters could be

cij=μijcji,μijμji=1,\displaystyle c_{ij}=\mu_{ij}c_{ji},\;\mu_{ij}\mu_{ji}=1, (21)
μ13=μ26=1,μ54=1,\displaystyle\mu_{13}=\mu_{26}=1,\;\mu_{54}=-1,
μ12=μ24=μ41=μ15=\displaystyle\mu_{12}=\mu_{24}=\mu_{41}=\mu_{15}= μ56=μ61=μ23=μ35=μ52=μ43=μ64=μ36=x2,\displaystyle\mu_{56}=\mu_{61}=\mu_{23}=\mu_{35}=\mu_{52}=\mu_{43}=\mu_{64}=\mu_{36}=x^{2},
c12=c24=c41=c15=\displaystyle c_{12}=c_{24}=c_{41}=c_{15}= c56=c61=c23=c35=c52=c43=c64=c36=x2.\displaystyle c_{56}=c_{61}=c_{23}=c_{35}=c_{52}=c_{43}=c_{64}=c_{36}=\dfrac{x}{\sqrt{2}}.

where xx is again an 8th root of unity which is chosen to be eiπ4e^{-\frac{i\pi}{4}}.

Let 3\mathcal{B}_{3} be the set of states in the form of

ψN6N1+N3+N4+N52+12sN6(6)(6)ψN1+N3+N4+N5212s1(6)(6)ψN5N4N1+N2+N32+12sN5(5)(5)\displaystyle\psi^{(6)}_{-N_{6}-\frac{N_{1}+N_{3}+N_{4}+N_{5}}{2}+\frac{1}{2}-s^{(6)}_{N_{6}}}\dots\psi^{(6)}_{-\frac{N_{1}+N_{3}+N_{4}+N_{5}}{2}-\frac{1}{2}-s^{(6)}_{1}}\psi^{(5)}_{-N_{5}-N_{4}-\frac{N_{1}+N_{2}+N_{3}}{2}+\frac{1}{2}-s^{(5)}_{N_{5}}}\dots (22)
ψN4N1+N2+N3212s1(5)(5)ψN4N1+N2+N32+12sN4(4)(4)ψN1+N2+N3212s1(4)(4)ψN3N22+12sN3(3)(3)\displaystyle\dots\psi^{(5)}_{-N_{4}-\frac{N_{1}+N_{2}+N_{3}}{2}-\frac{1}{2}-s^{(5)}_{1}}\psi^{(4)}_{-N_{4}-\frac{N_{1}+N_{2}+N_{3}}{2}+\frac{1}{2}-s^{(4)}_{N_{4}}}\dots\psi^{(4)}_{-\frac{N_{1}+N_{2}+N_{3}}{2}-\frac{1}{2}-s^{(4)}_{1}}\psi^{(3)}_{-N_{3}-\frac{N_{2}}{2}+\frac{1}{2}-s^{(3)}_{N_{3}}}\dots
ψN2212s1(3)(3)ψN2N12+12sN2(2)(2)ψN1212s1(2)(2)ψN1+12sN1(1)(1)ψ12s1(1)(1)|0\displaystyle\dots\psi^{(3)}_{-\frac{N_{2}}{2}-\frac{1}{2}-s^{(3)}_{1}}\psi^{(2)}_{-N_{2}-\frac{N_{1}}{2}+\frac{1}{2}-s^{(2)}_{N_{2}}}\dots\psi^{(2)}_{-\frac{N_{1}}{2}-\frac{1}{2}-s^{(2)}_{1}}\psi^{(1)}_{-N_{1}+\frac{1}{2}-s^{(1)}_{N_{1}}}\dots\psi^{(1)}_{-\frac{1}{2}-s^{(1)}_{1}}\ket{0}

with N1,N2,,N60N_{1},N_{2},\dots,N_{6}\geq 0 and sN(i)s2(i)s1(i)0s^{(i)}_{N}\geq\dots s^{(i)}_{2}\geq s^{(i)}_{1}\geq 0 for i=1,2,,6i=1,2,\dots,6.

We claim that 3\mathcal{B}_{3} is a basis of PBW-type of the untwisted sector of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}. Analogous results for twisted sectors are included in BHphDthesis . In order to prove these results, we need explicit expressions of the coset characters of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} or, in other words, the string functions of 𝔰𝔩(4)^2\widehat{\mathfrak{sl}(4)}_{2}, according to (11). The expressions are as follows:

b20002000(τ)+b00202000(τ)=η(4τ)4η(6τ)8η(τ)η(2τ)4η(3τ)3η(12τ)4+η(2τ)8η(3τ)η(12τ)4η(τ)5η(4τ)4η(6τ)4,b20002000(τ)b00202000(τ)=η(τ)2η(2τ)2,b01012000(τ)=η(2τ)2η(6τ)2η(τ)3η(3τ),b20000101(τ)=b00020101(τ)=3η(6τ)3η(τ)2η(2τ),b01010101(τ)=η(2τ)3η(3τ)2η(τ)4η(6τ),b11001100(τ)=η(4τ)5η(τ)3η(8τ)2,b00111100(τ)=2η(2τ)2η(8τ)2η(τ)3η(4τ),\begin{array}[]{lp{1.6cm}l}\lx@intercol b^{2000}_{2000}(\tau)+b^{2000}_{0020}(\tau)=\dfrac{\eta(4\tau)^{4}\eta(6\tau)^{8}}{\eta(\tau)\eta(2\tau)^{4}\eta(3\tau)^{3}\eta(12\tau)^{4}}+\dfrac{\eta(2\tau)^{8}\eta(3\tau)\eta(12\tau)^{4}}{\eta(\tau)^{5}\eta(4\tau)^{4}\eta(6\tau)^{4}},\hfil\lx@intercol\\ b^{2000}_{2000}(\tau)-b^{2000}_{0020}(\tau)=\dfrac{\eta(\tau)^{2}}{\eta(2\tau)^{2}},&&b^{2000}_{0101}(\tau)=\dfrac{\eta(2\tau)^{2}\eta(6\tau)^{2}}{\eta(\tau)^{3}\eta(3\tau)},\\ b^{0101}_{2000}(\tau)=b^{0101}_{0002}(\tau)=\dfrac{3\eta(6\tau)^{3}}{\eta(\tau)^{2}\eta(2\tau)},&&b^{0101}_{0101}(\tau)=\dfrac{\eta(2\tau)^{3}\eta(3\tau)^{2}}{\eta(\tau)^{4}\eta(6\tau)},\\ b^{1100}_{1100}(\tau)=\dfrac{\eta(4\tau)^{5}}{\eta(\tau)^{3}\eta(8\tau)^{2}},&&b^{1100}_{0011}(\tau)=\dfrac{2\eta(2\tau)^{2}\eta(8\tau)^{2}}{\eta(\tau)^{3}\eta(4\tau)},\end{array} (23)

where affine weights are given in terms of Dynkin labels. The complete proofs of these expressions and the basis are given in BCH ; BHphDthesis .

3 The lattice construction and its connection to the coset construction

Motivated by recent investigations of the scaled lattice CFTs V2AnV_{\sqrt{2}A_{n}} Bae2021 ; LAM2004614 ; KITAZUME2000893 , where AnA_{n} denotes the root lattice of 𝔰𝔩(n+1)\mathfrak{sl}(n+1), we construct another family of coupled free fermions based on the lattice 12An\frac{1}{\sqrt{2}}A_{n}. In this CFT, each root of AnA_{n} contributes a field of conformal dimension 12\frac{1}{2}, i.e. a fermion. For each αAn\alpha\in A_{n}, define

ψα(z)=:eiα2Φ(z):\psi^{\alpha}(z)=:e^{i\frac{\alpha}{\sqrt{2}}\cdot\Phi(z)}:

and then the non-trivial OPEs between the generating fields ψα\psi^{\alpha} with αΔ\alpha\in\Delta read as follows:

ψα(z)ψα¯(w)\displaystyle\psi^{\alpha}(z)\overline{\psi^{\alpha}}(w) 1zw,\displaystyle\sim\dfrac{1}{z-w}, (24)
ψα(z)ψβ(w)\displaystyle\psi^{\alpha}(z)\psi^{\beta}(w) cα,βψα+β(w)(zw)1/2,ifα+βΔ,\displaystyle\sim\dfrac{c_{\alpha,\beta}\psi^{\alpha+\beta}(w)}{(z-w)^{1/2}},\;\text{if}\;\;\alpha+\beta\in\Delta, (25)

where we used the fact that ψα(z)=ψα¯(z)\psi^{-\alpha}(z)=\overline{\psi^{\alpha}}(z). Now, (24) suggests that each ψα\psi^{\alpha} is a free complex fermion and (25) suggests that the complex fermions are coupled to each other, so we indeed have coupled free fermions in V12AnV_{\frac{1}{\sqrt{2}}A_{n}} as desired.

We shall derive an energy-momentum tensor L(z)L(z) in terms of coupled free fermions as in (15). First, by expanding ei2αΦ(z)ei2αΦ(z)e^{\frac{i}{\sqrt{2}}\alpha\cdot\Phi(z)}e^{-\frac{i}{\sqrt{2}}\alpha\cdot\Phi(z)}, we see that

:ψα(z)ψα¯(z):=i2αΦ(z).:\psi^{\alpha}(z)\overline{\psi^{\alpha}}(z):=\frac{i}{\sqrt{2}}\alpha\cdot\partial\Phi(z).

Then we have

Lα(z):=12:ψα(z)ψα¯(z):=12(i2αΦ)(z)(i2αΦ)(z).L^{\alpha}(z):=-\frac{1}{2}:\psi^{\alpha}(z)\partial\overline{\psi^{\alpha}}(z):=\frac{1}{2}(\frac{i}{\sqrt{2}}\alpha\cdot\partial\Phi)(z)(\frac{i}{\sqrt{2}}\alpha\cdot\partial\Phi)(z).

We construct the total energy-momentum tensor as

L(z)=2n+1αΔ+Lα(z)=1n+1αΔ+:ψα(z)ψα¯(z):L(z)=\frac{2}{n+1}\sum_{\alpha\in\Delta_{+}}L^{\alpha}(z)=-\frac{1}{n+1}\sum_{\alpha\in\Delta_{+}}:\psi^{\alpha}(z)\partial\overline{\psi^{\alpha}}(z):

so that the conformal weight of the field ψα\psi^{\alpha} for any αAn\alpha\in A_{n} is indeed 12\frac{1}{2}.

Since 12An\frac{1}{\sqrt{2}}A_{n} is not integral, 12An(12An)\frac{1}{\sqrt{2}}A_{n}\not\subset\left(\frac{1}{\sqrt{2}}A_{n}\right)^{*} and we cannot expect to classify the modules by the cosets of 12An\frac{1}{\sqrt{2}}A_{n} in its dual as one does for V2AnV_{\sqrt{2}A_{n}}. However, we notice that 12An12(12An)=12An\frac{1}{\sqrt{2}}A_{n}\subset\frac{1}{2}\left(\frac{1}{\sqrt{2}}A_{n}\right)^{*}=\frac{1}{\sqrt{2}}A^{*}_{n}, so we may expect the modules correspond to the coset (12An)/(12An)\left(\frac{1}{\sqrt{2}}A^{*}_{n}\right)/\left(\frac{1}{\sqrt{2}}A_{n}\right). If this is the case, for γ(12An)/(12An)\gamma\in\left(\frac{1}{\sqrt{2}}A^{*}_{n}\right)/\left(\frac{1}{\sqrt{2}}A_{n}\right), the character would be given by

1η(τ)nνγ+12Anq12|ν|2.\dfrac{1}{\eta(\tau)^{n}}\sum_{\nu\in\gamma+\frac{1}{\sqrt{2}}A_{n}}q^{\frac{1}{2}|\nu|^{2}}. (26)

We can first test our conjecture on V12A1V_{\frac{1}{\sqrt{2}}A_{1}}. Let α\alpha denote the root of A1A_{1}. It is obvious that there is only one complex free fermion ψα\psi^{\alpha} in V12A1V_{\frac{1}{\sqrt{2}}A_{1}}. We can rewrite the complex free fermion ψα\psi^{\alpha} in terms of two real free fermions by setting

χα(z)=12(ψα(z)+ψα¯(z)),\displaystyle\chi^{\alpha}(z)=\frac{1}{\sqrt{2}}\left(\psi^{\alpha}(z)+\overline{\psi^{\alpha}}(z)\right), ξα(z)=1i2(ψα(z)ψα¯(z)),\displaystyle\xi^{\alpha}(z)=\frac{1}{i\sqrt{2}}\left(\psi^{\alpha}(z)-\overline{\psi^{\alpha}}(z)\right),

for which it can be seen that

χα(z)χα(w)1zw\chi^{\alpha}(z)\chi^{\alpha}(w)\sim\dfrac{1}{z-w}, ξα(z)ξα(w)1zw\xi^{\alpha}(z)\xi^{\alpha}(w)\sim\dfrac{1}{z-w}, χα(z)ξα(w)0\chi^{\alpha}(z)\xi^{\alpha}(w)\sim 0.

Therefore we should expect V12A1V_{\frac{1}{\sqrt{2}}A_{1}}-modules corresponding to the NS and R sectors of two (uncoupled) free fermions.

On the other hand, we know 12A1={122α}\frac{1}{\sqrt{2}}A_{1}^{*}=\mathbb{Z}\left\{\frac{1}{2\sqrt{2}}\alpha\right\} and therefore we expect two modules V12A1V_{\frac{1}{\sqrt{2}}A_{1}} and V122α+12A1V_{\frac{1}{2\sqrt{2}}\alpha+\frac{1}{\sqrt{2}}A_{1}}, whose characters are, according to (26),

ch[V12A1](τ)\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{1}}\right](\tau) =1η(τ)nq14|nα|2=1η(τ)nq12n2,\displaystyle=\dfrac{1}{\eta(\tau)}\sum_{n\in\mathbb{Z}}q^{\frac{1}{4}|n\alpha|^{2}}=\dfrac{1}{\eta(\tau)}\sum_{n\in\mathbb{Z}}q^{\frac{1}{2}n^{2}}, (27)
ch[V122α+12A1](τ)\displaystyle\mathrm{ch}\left[V_{\frac{1}{2\sqrt{2}}\alpha+\frac{1}{\sqrt{2}}A_{1}}\right](\tau) =1η(τ)nq14|(n+12)α|2=1η(τ)nq12(n+12)2.\displaystyle=\dfrac{1}{\eta(\tau)}\sum_{n\in\mathbb{Z}}q^{\frac{1}{4}\left|\left(n+\frac{1}{2}\right)\alpha\right|^{2}}=\dfrac{1}{\eta(\tau)}\sum_{n\in\mathbb{Z}}q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}}.

Comparing (27) and characters of fermions χh\chi_{h}, with hh the conformal dimension of the corresponding representation, given in SchCFT , we note that

ch[V12A1]=(χ0+χ12)2,\displaystyle\textstyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{1}}\right]=\left(\chi_{0}+\chi_{\frac{1}{2}}\right)^{2}, ch[V12A1]=(χ116)2,\displaystyle\textstyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{1}}\right]=\left(\chi_{\frac{1}{16}}\right)^{2},

which can be proved by the Jacobi triple identity

k=1(1qk)(1z1qk12)(1zqk12)=k(1)kzkq12k2.\prod_{k=1}^{\infty}(1-q^{k})(1-z^{-1}q^{k-\frac{1}{2}})(1-zq^{k-\frac{1}{2}})=\sum_{k\in\mathbb{Z}}(-1)^{k}z^{k}q^{\frac{1}{2}k^{2}}.

We shall proceed to investigate V12A2V_{\frac{1}{\sqrt{2}}A_{2}}. Let {α1,α2}\{\alpha_{1},\alpha_{2}\} denote the set of simple roots of A2A_{2} and set α3=α1+α2\alpha_{3}=\alpha_{1}+\alpha_{2}. Then we have three complex fermions ψα1\psi^{\alpha_{1}}, ψα2\psi^{\alpha_{2}}, ψα3\psi^{\alpha_{3}} in V12A2V_{\frac{1}{\sqrt{2}}A_{2}}. We can also rewrite them in terms of real fermions by setting, for i=1,2,3i=1,2,3,

χi(z)=12(ψαi(z)+ψαi¯(z)),\displaystyle\chi^{i}(z)=\frac{1}{\sqrt{2}}\left(\psi^{\alpha_{i}}(z)+\overline{\psi^{\alpha_{i}}}(z)\right), ξi(z)=1i2(ψαi(z)ψαi¯(z)).\displaystyle\xi^{i}(z)=\frac{1}{i\sqrt{2}}\left(\psi^{\alpha_{i}}(z)-\overline{\psi^{\alpha_{i}}}(z)\right). (28)

We notice that if the values of ci,jc_{i,j} are 8th root of unity with the ±\pm signs chosen carefully, then the OPEs of {χi,ξi:i=1,2,3}\{\chi_{i},\xi_{i}:i=1,2,3\} are exactly the same as the OPEs for generating fields in 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} as given by (12) and (13) with parameters given in (21). Explicitly, we have following correspondence:

χ1ψ(1),χ2ψ(2),χ3ψ(4),ξ1ψ(3),ξ2ψ(6),ξ3ψ(5).\begin{array}[]{cccccc}\chi^{1}\leftrightarrow\psi^{(1)},&\chi^{2}\leftrightarrow\psi^{(2)},&\chi^{3}\leftrightarrow\psi^{(4)},&\xi^{1}\leftrightarrow\psi^{(3)},&\xi^{2}\leftrightarrow\psi^{(6)},&\xi^{3}\leftrightarrow\psi^{(5)}.\end{array} (29)

Hence we expect that the V12A2V_{\frac{1}{\sqrt{2}}A_{2}}-modules are related to 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}-modules in one way or another. We may investigate their relations by looking at the characters.

We first note that 12A2\frac{1}{\sqrt{2}}A_{2}^{*} has a basis {132(α1α2),12α1}\left\{\frac{1}{3\sqrt{2}}(\alpha_{1}-\alpha_{2}),\frac{1}{\sqrt{2}}\alpha_{1}\right\}, so (12A2)/(12A2)\left(\frac{1}{\sqrt{2}}A_{2}^{*}\right)/\left(\frac{1}{\sqrt{2}}A_{2}\right) has three cosets that can be represented by

γ0:=0,γ1:=132(α1α2),γ2:=232(α1α2).\begin{array}[]{ccc}\gamma_{0}:=0,&\gamma_{1}:=\frac{1}{3\sqrt{2}}(\alpha_{1}-\alpha_{2}),&\gamma_{2}:=\frac{2}{3\sqrt{2}}(\alpha_{1}-\alpha_{2}).\end{array}

The characters of Vγi+12A2V_{\gamma_{i}+\frac{1}{\sqrt{2}}A_{2}} are then given by

ch[V12A2](τ)\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}\right](\tau) =η(τ)2m,nq12(m2+n2mn),\displaystyle=\eta(\tau)^{-2}\sum_{m,n\in\mathbb{Z}}q^{\frac{1}{2}(m^{2}+n^{2}-mn)}, (30)
ch[Vγ1+12A2](τ)=ch[Vγ2+12A2](τ)\displaystyle\mathrm{ch}\left[V_{\gamma_{1}+\frac{1}{\sqrt{2}}A_{2}}\right](\tau)=\mathrm{ch}\left[V_{\gamma_{2}+\frac{1}{\sqrt{2}}A_{2}}\right](\tau) =η(τ)2q23m,nq12(m2+n2mn+2m).\displaystyle=\eta(\tau)^{-2}q^{\frac{2}{3}}\sum_{m,n\in\mathbb{Z}}q^{\frac{1}{2}(m^{2}+n^{2}-mn+2m)}. (31)

Comparing (30) and (31) with (23), we find that

ch[V12A2]\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}\right] =b20002000+b00202000+6b01012000,\displaystyle=b^{2000}_{2000}+b^{2000}_{0020}+6b^{2000}_{0101}, (32)
ch[Vγ1+12A2]\displaystyle\mathrm{ch}\left[V_{\gamma_{1}+\frac{1}{\sqrt{2}}A_{2}}\right] =2(b20000101+3b01010101),\displaystyle=2\left(b^{0101}_{2000}+3b^{0101}_{0101}\right), (33)

which support our conjecture on the connection between V12A2V_{\frac{1}{\sqrt{2}}A_{2}} and 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}.

Ideally, we expect that the 18\frac{1}{8}-twisted sector of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} could also be recovered from the modules of V12A2V_{\frac{1}{\sqrt{2}}A_{2}}. It is seen that the shifted lattices can not lead us any further. Motivated by the decomposition of the 2\mathbb{Z}_{2}-twisted orbifold character V2A22V^{\mathbb{Z}_{2}}_{\sqrt{2}A_{2}} and the fact that the conformal dimension of the highest weight state in the 2\mathbb{Z}_{2}-orbifold from the lattice 12A2\frac{1}{\sqrt{2}}A_{2} would be d16=18\frac{d}{16}=\frac{1}{8}, we shall consider the 2\mathbb{Z}_{2}-orbifold of V12A2V_{\frac{1}{\sqrt{2}}A_{2}}, denoted by V12A22V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}.

Suppose that we have a reflection map θ\theta acts by taking the bosons Φ=(ϕ1,ϕ2)T\Phi=(\phi^{1},\phi^{2})^{T} to Φ-\Phi. We follow the orbifold construction given in DGM1990orb ; Dolan1996 with relaxed locality conditions whenever necessary. The orbifold characters are given by

ch++(q)=\displaystyle\text{ch}_{++}(q)= Tr0qL0d24,\displaystyle\Tr_{\mathcal{H}_{0}}q^{L_{0}-\frac{d}{24}}, ch+(q)=Tr0θqL0d24,\displaystyle\text{ch}_{+-}(q)=\Tr_{\mathcal{H}_{0}}\theta q^{L_{0}-\frac{d}{24}},
ch+(q)=\displaystyle\text{ch}_{-+}(q)= Tr0TqL0+d48,\displaystyle\Tr_{\mathcal{H}^{T}_{0}}q^{L_{0}+\frac{d}{48}}, ch(q)=Tr0TθqL0+d48,\displaystyle\text{ch}_{--}(q)=\Tr_{\mathcal{H}^{T}_{0}}\theta q^{L_{0}+\frac{d}{48}},

where \mathcal{H} is the fock space of the A2A_{2}-lattice construction, T(Γ)\mathcal{H}^{T}(\Gamma) is the space built up from a representation Γ0\Gamma_{0} of the gamma matrix algebra associated with Γ\Gamma, and 0\mathcal{H}_{0} (resp. 0T\mathcal{H}^{T}_{0}) is the subspace of \mathcal{H} (resp. T\mathcal{H}^{T}) on which θ\theta is the identity map.

The character formula ch++(q)\text{ch}_{++}(q) gives (30) and (31) for the untwisted sector and 16\frac{1}{6}-twisted sector of V12A22V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}} respectively. The reflection map θ\theta in ch+(q)\text{ch}_{+-}(q) gives an extra 1-1 for each simple root, so it gives a factor of (1)m+n(-1)^{m+n} to the summations in (30) and (31), and we have

ch[V12A22]+(τ)\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{+-}(\tau) =η(τ)2m,n(1)m+nq12(m2+n2mn),\displaystyle=\eta(\tau)^{-2}\sum_{m,n\in\mathbb{Z}}(-1)^{m+n}q^{\frac{1}{2}(m^{2}+n^{2}-mn)}, (34)
ch[Vγi+12A22]+(τ)\displaystyle\mathrm{ch}\left[V_{\gamma_{i}+\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{+-}(\tau) =η(τ)2q23m,n(1)m+nq12(m2+n2mn+2m),fori=1,2.\displaystyle=\eta(\tau)^{-2}q^{\frac{2}{3}}\sum_{m,n\in\mathbb{Z}}(-1)^{m+n}q^{\frac{1}{2}(m^{2}+n^{2}-mn+2m)},\quad\mathrm{for}\;i=1,2. (35)

Geometrically, we think of the orbifold as given by (A2/2)/2\left(A_{2}/\sqrt{2}\right)/\mathbb{Z}_{2}. According to ItoKuniZ2string ; Bagger1986 , the 2\mathbb{Z}_{2}-twisted states are located at the fixed points of the orbifold. Hence, in this case, the 2\mathbb{Z}_{2}-twisted characters are given by the squares of the characters of a free boson in the anti-periodic sector SchCFT ; francesco1997conformal , that is,

ch[V12A22]+:=[ch+(τ)]2\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{-+}:=[\mathrm{ch}_{-+}(\tau)]^{2} =η(τ)2η(τ/2)2,\displaystyle=\eta(\tau)^{2}\eta(\tau/2)^{-2}, (36)
ch[V12A22]:=[ch(τ)]2\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{--}:=[\mathrm{ch}_{--}(\tau)]^{2} =η(2τ)2η(τ/2)2η(τ)4.\displaystyle=\eta(2\tau)^{2}\eta(\tau/2)^{2}\eta(\tau)^{-4}. (37)

Comparing the V12A22V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}-characters (34) - (37) with 𝔰𝔩(4)^2\widehat{\mathfrak{sl}(4)}_{2}-string functions in (23), we note that

ch[V12A22]+=b20002000+b002020002b01012000,\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{+-}=b^{2000}_{2000}+b^{2000}_{0020}-2b^{2000}_{0101}, ch[Vγi+12A22]+=b20000101b01010101,\displaystyle\mathrm{ch}\left[V_{\gamma_{i}+\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{+-}=b^{0101}_{2000}-b^{0101}_{0101},
ch[V12A22]+=b11001100+b00111100,\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{-+}=b^{1100}_{1100}+b^{1100}_{0011}, ch[V12A22]=b11001100b00111100,\displaystyle\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{--}=b^{1100}_{1100}-b^{1100}_{0011},

which suggest a strong connection between V12A22V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}} and 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}.

Furthermore, we note that the UCPF of the 18\frac{1}{8}-twisted sectors of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} is 44 times ch[V12A22]+\mathrm{ch}\left[V_{\frac{1}{\sqrt{2}}A_{2}}^{\mathbb{Z}_{2}}\right]_{-+} BCH . The factor 4 here interestingly agrees with the number of fixed points of the 2\mathbb{Z}_{2} action on A2/2A_{2}/\sqrt{2}.

4 Summary

We introduced the notion of coupled free fermions and focused on the structure of the class of coupled free fermion CFTs from the coset construction 𝔤^k/𝔲(1)^n\hat{\mathfrak{g}}_{k}/\widehat{\mathfrak{u}(1)}^{n}. In particular, we studied in detail the examples: 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2} and 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}. We analysed their representation spaces and chiral vertex operators with extensive use of generalised commutation relations. We found specific bases for them so that more information about the exclusion statistics of coupled free fermions can be revealed.

We also noticed another class of coupled free fermion CFTs which are from the lattice construction based on 12Xn\frac{1}{\sqrt{2}}X_{n}, with XnX_{n} the root lattice of any simply-laced Lie algebra. We paid special attention to the example of the 12A2\frac{1}{\sqrt{2}}A_{2} lattice model because of its unexpected relation to the 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} coset model. We later found out that more precisely speaking, it is the 2\mathbb{Z}_{2}-orbifold of 12A2\frac{1}{\sqrt{2}}A_{2}-lattice model that is intimately connected to 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} by studying the modules of 12A2\frac{1}{\sqrt{2}}A_{2}-lattice model and its orbifold. At this stage, we can conclude that the orbifold of the 12A2\frac{1}{\sqrt{2}}A_{2} lattice model and the 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3} coset model can be projected onto sub-sectors of each other. We obtained full correspondence between the characters of the 2\mathbb{Z}_{2}-orbifold of the 12A2\frac{1}{\sqrt{2}}A_{2} lattice model and the characters of 𝔰𝔩(4)^2/𝔲(1)^3\widehat{\mathfrak{sl}(4)}_{2}/\widehat{\mathfrak{u}(1)}^{3}.

Acknowledgements.
This work was partially supported by “Tim and Margaret Bourke PhD Scholarship”.

Appendix A Proof of the spanning property of 1\mathcal{B}_{1}

For 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2}, due to the simple structure of Q/2Q2×2Q/2Q\cong\mathbb{Z}_{2}\times\mathbb{Z}_{2}, the OPEs (12) and (13), and the generalised commutation relations (14) can be summarised as

ψ(i)(z)ψ(i)(w)1(zw),\displaystyle\psi^{(i)}(z)\psi^{(i)}(w)\sim\dfrac{1}{(z-w)}, (38)
ψ(i)(z)ψ(j)(w)cijψ(k)(w)(zw)1/2,ifijk,\displaystyle\psi^{(i)}(z)\psi^{(j)}(w)\sim\dfrac{c_{ij}\psi^{(k)}(w)}{(z-w)^{1/2}},\;\;\text{if}\;i\neq j\neq k,

and

ψniψmi+ψmiψni\displaystyle\psi^{i}_{n}\psi^{i}_{m}+\psi^{i}_{m}\psi^{i}_{n} =δm+n,0,\displaystyle=\delta_{m+n,0}, (39)
l0(l12l)(ψm12l(i)ψn+12+l(j)+μijψnl(j)ψm+l(i))\displaystyle\sum_{l\geq 0}\binom{l-\frac{1}{2}}{l}\left(\psi^{(i)}_{m-\frac{1}{2}-l}\psi^{(j)}_{n+\frac{1}{2}+l}+\mu_{ij}\psi^{(j)}_{n-l}\psi^{(i)}_{m+l}\right) =cijψm+n(k),\displaystyle=c_{ij}\psi^{(k)}_{m+n}, ijk,\displaystyle i\neq j\neq k, (40)

respectively, with constants cij:=cαi,αjc_{ij}:=c_{\alpha_{i},\alpha_{j}} and μij:=μαi,αj\mu_{ij}:=\mu_{\alpha_{i},\alpha_{j}} given in BorisPF as follows:

cij=μijcji,μijμji=1\displaystyle c_{ij}=\mu_{ij}c_{ji},\;\mu_{ij}\mu_{ji}=1 (41)
μ12=μ23=μ31=x2,\displaystyle\mu_{12}=\mu_{23}=\mu_{31}=x^{2},
c12=c23=c31=x2,\displaystyle c_{12}=c_{23}=c_{31}=\frac{x}{\sqrt{2}},

where xx is an 8th root of unity, which we may choose to be eiπ4e^{-\frac{i\pi}{4}} here.

We say a state is of length nn if its total number of modes is nn. We say a state in the Fock space of the untwisted sector of 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2} of length nn is well-ordered if it is 0 or a linear combination of the states in the form of (18) of length less or equal than nn. Let P(n)P(n) be the statement that any state in the Fock space of the untwisted sector of 𝔰𝔩(3)^2/𝔲(1)^2\widehat{\mathfrak{sl}(3)}_{2}/\widehat{\mathfrak{u}(1)}^{2} with nn modes can be well-ordered.

P(1)P(1) is obvious since we have ψm(i)|0=0\psi^{(i)}_{m}\ket{0}=0 for any i=1,2,3i=1,2,3 and m0m\geq 0. Now suppose P(n)P(n) for all n<Nn<N, we intend to prove P(N)P(N). With this inductive hypothesis, we can ignore the terms on the right-hand side of (39) and (40) in the following discussion. The exact coefficients in the generalised commutation relations are not crucial to this discussion either. We use the notation \sim to suppress such non-crucial information and view (39) and (40) as

ψn(i)ψm(i)ψm(i)ψn(i),\displaystyle\psi^{(i)}_{n}\psi^{(i)}_{m}\sim\psi^{(i)}_{m}\psi^{(i)}_{n}, (42)
ψr(i)ψs(j)l1ψrl(i)ψs+l(j)+l0ψs12l(j)ψr+12+l(i).\displaystyle\psi^{(i)}_{r}\psi^{(j)}_{s}\sim\sum_{l\geq 1}\psi^{(i)}_{r-l}\psi^{(j)}_{s+l}+\sum_{l\geq 0}\psi^{(j)}_{s-\frac{1}{2}-l}\psi^{(i)}_{r+\frac{1}{2}+l}. (43)

We observe two facts about (42) and (43):

  1. F.1

    They will not change the number of ψ(i)\psi^{(i)}-modes for each i=1,2,3i=1,2,3.

  2. F.2

    They will not change the total mode number of a state.

Let |ψ:=ψmN(iN)ψmN1(iN1)ψm1(i1)|0\ket{\psi}:=\psi^{(i_{N})}_{m_{N}}\psi^{(i_{N-1})}_{m_{N-1}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} be a state with NN modes. Because P(N1)P(N-1), we can assume that |ψ:=ψmN1(iN1)ψm1(i1)|0\ket{\psi^{\prime}}:=\psi^{(i_{N-1})}_{m_{N-1}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} is in the form of (18) with N1N_{1} ψ(1)\psi^{(1)}-modes, N2N_{2} ψ(2)\psi^{(2)}-modes and N3N_{3} ψ(3)\psi^{(3)}-modes. We have the following cases:

  1. C.1

    If iN=iN1=ii_{N}=i_{N-1}=i and

    1. (a)

      mN<mN1m_{N}<m_{N-1}, then we are done.

    2. (b)

      mN=mNsm_{N}=m_{N-s} for some sNis\leq N_{i}, then by using (42) repeatedly we have |ψ0\ket{\psi}\sim 0.

    3. (c)

      mNs<mN<mNs1m_{N-s}<m_{N}<m_{N-s-1} for some 0<s<Ni0<s<N_{i}, or mNs<mNj=1iNj212m_{N-s}<m_{N}\leq-\sum_{j=1}^{i}\frac{N_{j}}{2}-\frac{1}{2} for s=Nis=N_{i}, then by using (42) repeatedly we have

      |ψψmN1(iN1)ψmNs(iNs)ψmN(iN)ψmNs1(iNs1)ψm1(i1)|0\ket{\psi}\sim\psi^{(i_{N-1})}_{m_{N-1}}\cdots\psi^{(i_{N-s})}_{m_{N-s}}\psi^{(i_{N})}_{m_{N}}\psi^{(i_{N-s-1})}_{m_{N-s-1}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}

      which is well-ordered.

    4. (d)

      mN>j=1iNj212m_{N}>-\sum_{j=1}^{i}\frac{N_{j}}{2}-\frac{1}{2}, then by using (42) repeatedly we have

      |ψψmN1(i)ψmNNi(i)ψmN(i)ψmNNi1(iNNi1)ψm1(i1)|0.\ket{\psi}\sim\psi^{(i)}_{m_{N-1}}\cdots\psi^{(i)}_{m_{N-N_{i}}}\psi^{(i)}_{m_{N}}\psi^{(i_{N-N_{i}-1})}_{m_{N-N_{i}-1}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}.

      Because of P(NNi)P(N-N_{i}) and F.1, we see that

      ψmN(i)ψmNNi1(iNNi1)ψm1(i1)|0kψmN(k)(i)ψmNNi1(k)(iNNi1)ψm1(k)(i1)|0=:k|ψ(k)\psi^{(i)}_{m_{N}}\psi^{(i_{N-N_{i}-1})}_{m_{N-N_{i}-1}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}\sim\sum_{k}\psi^{(i)}_{m^{(k)}_{N}}\psi^{(i_{N-N_{i}-1})}_{m^{(k)}_{N-N_{i}-1}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0}=:\sum_{k}\ket{\psi_{(k)}}

      with mN(k)j=1iNj212m^{(k)}_{N}\leq-\sum_{j=1}^{i}\frac{N_{j}}{2}-\frac{1}{2},k\forall k. Recall that |ψ\ket{\psi^{\prime}} is in the form of (18), so we know mN1<<mNNij=1iNj212m_{N-1}<\cdots<m_{N-N_{i}}\leq-\sum_{j=1}^{i}\frac{N_{j}}{2}-\frac{1}{2}. Therefore we have must have for each kk that mN(k)mN1m^{(k)}_{N}\leq m_{N-1}, or mN(k)mNNim^{(k)}_{N}\geq m_{N-N_{i}}, or there exists 1<s<Ni1<s<N_{i} such that mNsmN(k)mNs1m_{N-s}\leq m^{(k)}_{N}\leq m_{N-s-1}. Hence by using (42) repeatedly we know ψmN1(i)ψmNNi(i)|ψ(k)\psi^{(i)}_{m_{N-1}}\cdots\psi^{(i)}_{m_{N-N_{i}}}\ket{\psi_{(k)}} can be well-ordered.

  2. C.2

    If i=iN>iN1=ji=i_{N}>i_{N-1}=j and

    1. (a)

      mNN2m_{N}\leq-\frac{N}{2}, then we are done.

    2. (b)

      mN>N2m_{N}>-\frac{N}{2}, then by (43) we have

      ψmN(i)ψmN1(j)ψmN2(iN2)ψm1(i1)|0\displaystyle\psi^{(i)}_{m_{N}}\psi^{(j)}_{m_{N-1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} (\medsquare\medsquare)
      \displaystyle\sim l11ψmNl1(i)ψmN1+l1(j)ψmN2(iN2)ψm1(i1)|0\displaystyle\sum_{l_{1}\geq 1}\psi^{(i)}_{m_{N}-l_{1}}\psi^{(j)}_{m_{N-1}+l_{1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} (\medstar\medstar)
      +\displaystyle+ l10ψmN112l1(j)ψmN+12+l1(i)ψmN2(iN2)ψm1(i1)|0.\displaystyle\sum_{l_{1}\geq 0}\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}}\psi^{(i)}_{m_{N}+\frac{1}{2}+l_{1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}. (\meddiamond\meddiamond)

      We note that because of P(N1)P(N-1) and F.1, we know that for the terms in (\meddiamond)(\meddiamond) we have

      ψmN112l1(j)ψmN+12+l1(i)ψmN2(iN2)ψm1(i1)|0\displaystyle\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}}\psi^{(i)}_{m_{N}+\frac{1}{2}+l_{1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}
      \displaystyle\sim\, ψmN112l1(j)kψmN(k)(i)ψmN2(k)(iN2)ψm1(k)(i1)|0,\displaystyle\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}}\sum_{k}\psi^{(i)}_{m^{(k)}_{N}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0}, withmN(k)N2+12.\displaystyle\mathrm{with}\;\;m^{(k)}_{N}\leq-\frac{N}{2}+\frac{1}{2}.

      Now using (43) again, we have

      ψmN112l1(j)ψmN(k)(i)ψmN2(k)(iN2)ψm1(k)(i1)|0\displaystyle\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}}\psi^{(i)}_{m^{(k)}_{N}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0} (\filledsquare\filledsquare)
      \displaystyle\sim r11ψmN112l1r1(j)ψmN(k)+r1(i)ψmN2(k)(iN2)ψm1(k)(i1)|0\displaystyle\sum_{r_{1}\geq 1}\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}-r_{1}}\psi^{(i)}_{m^{(k)}_{N}+r_{1}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0} (\filledstar\filledstar)
      +\displaystyle+ r10ψmN(k)12r1(i)ψmN1l1+r1(j)ψmN2(k)(iN2)ψm1(k)(i1)|0\displaystyle\sum_{r_{1}\geq 0}\psi^{(i)}_{m^{(k)}_{N}-\frac{1}{2}-r_{1}}\psi^{(j)}_{m_{N-1}-l_{1}+r_{1}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0} (\filleddiamond\filleddiamond)

      Since mN(k)12r1N2m^{(k)}_{N}-\frac{1}{2}-r_{1}\leq-\frac{N}{2} for any r1r_{1} and P(N1)P(N-1), we see that (\filleddiamond\filleddiamond) can be well-ordered. Then by using (\filledstar\filledstar) repeatedly, we have

      (\filledsquare)\displaystyle(\filledsquare)\sim l11l21ls1ψmN112l1(r1++rs)(j)ψmN(k)+r1++rs(i)ψmN2(k)(iN2)ψm1(k)(i1)|0\displaystyle\sum_{l_{1}\geq 1}\sum_{l_{2}\geq 1}\cdots\sum_{l_{s}\geq 1}\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}-(r_{1}+\cdots+r_{s})}\psi^{(i)}_{m^{(k)}_{N}+r_{1}+\cdots+r_{s}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0}
      +\displaystyle+ well-ordered terms,\displaystyle\text{well-ordered terms},

      where ss is a large enough number so that mN(k)+s+j=1N2mj(k)0m^{(k)}_{N}+s+\sum_{j=1}^{N-2}m^{(k)}_{j}\geq 0. Hence by P(N1)P(N-1) and F.2, we know that ψmN(k)+r1++rs(i)ψmN2(k)(iN2)ψm1(k)(i1)|0\psi^{(i)}_{m^{(k)}_{N}+r_{1}+\cdots+r_{s}}\psi^{(i_{N-2})}_{m^{(k)}_{N-2}}\cdots\psi^{(i_{1})}_{m^{(k)}_{1}}\ket{0} is 0 since it has non-negative total mode number, which gives that (\filledsquare\filledsquare) and therefore (\meddiamond)(\meddiamond) can be well-ordered. Similarly, by using (\medstar\medstar) repeatedly, we see (\medsquare\medsquare) can be well-ordered.

  3. C.3

    If i=iN<iN1=ji=i_{N}<i_{N-1}=j, then by (43) we have

    ψmN(i)ψmN1(j)ψmN2(iN2)ψm1(i1)|0\displaystyle\psi^{(i)}_{m_{N}}\psi^{(j)}_{m_{N-1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} (\heartsuit)
    \displaystyle\sim l11ψmNl1(i)ψmN1+l1(j)ψmN2(iN2)ψm1(i1)|0\displaystyle\sum_{l_{1}\geq 1}\psi^{(i)}_{m_{N}-l_{1}}\psi^{(j)}_{m_{N-1}+l_{1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0} (\medcircle\medcircle)
    +\displaystyle+ l10ψmN112l1(j)ψmN+12+l1(i)ψmN2(iN2)ψm1(i1)|0.\displaystyle\sum_{l_{1}\geq 0}\psi^{(j)}_{m_{N-1}-\frac{1}{2}-l_{1}}\psi^{(i)}_{m_{N}+\frac{1}{2}+l_{1}}\psi^{(i_{N-2})}_{m_{N-2}}\cdots\psi^{(i_{1})}_{m_{1}}\ket{0}. (\triangle)

    Here (\triangle) can be well-ordered by C.2 and therefore (\heartsuit) can be well-ordered using (\medcircle\medcircle) repeatedly, as argued in C.2b.

References