This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Countably compact groups without non-trivial convergent sequences

M. Hrušák Centro de Ciencias Matemáticas
Universidad Nacional Autónoma de México
Campus Morelia
Morelia, Michoacán
México 58089
[email protected] http://www.matmor.unam.mx/ michael
J. van Mill KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands [email protected] U. A. Ramos-García Centro de Ciencias Matemáticas
Universidad Nacional Autónoma de México
Campus Morelia
Morelia, Michoacán
México 58089
[email protected]
 and  S. Shelah Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel and Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA [email protected] http://shelah.logic.at
Abstract.

We construct, in ZFC, a countably compact subgroup of 2𝔠2^{\mathfrak{c}} without non-trivial convergent sequences, answering an old problem of van Douwen. As a consequence we also prove the existence of two countably compact groups 𝔾0\mathbb{G}_{0} and 𝔾1\mathbb{G}_{1} such that the product 𝔾0×𝔾1\mathbb{G}_{0}\times\mathbb{G}_{1} is not countably compact, thus answering a classical problem of Comfort.

Key words and phrases:
Products of countably compact groups, pp-compact groups, ultrapowers, countably compact groups without convergent sequences
2010 Mathematics Subject Classification:
Primary 22A05, 03C20; Secondary 03E05, 54H11
The research of the first author was supported by a PAPIIT grant IN100317 and CONACyT grant A1-S-16164. The third named author was partially supported by the PAPIIT grants IA100517 and IN104419. Research of the fourth author was partially supported by European Research Council grant 338821. Paper 1173 on the fourth author’s list

1. Introduction

The celebrated Comfort-Ross theorem [11, 7] states that any product of pseudo-compact topological groups is pseudo-compact, in stark contrast with the examples due to Novák [28] and Terasaka [34] who constructed pairs of countably compact spaces whose product is not even pseudo-compact. This motivated Comfort [9] (repeated in [8]) to ask:

Question 1.1 (Comfort [8]).

Are there countably compact groups 𝔾0,𝔾1\mathbb{G}_{0},\mathbb{G}_{1} such that 𝔾0×𝔾1\mathbb{G}_{0}\times\mathbb{G}_{1} is not countably compact?

The first consistent positive answer was given by van Douwen [45] under MA, followed by Hart-van Mill [21] under MActble. In his paper van Douwen showed that every Boolean countably compact group without non-trivial convergent sequences contains two countably compact subgroups whose product is not countably compact, and asked:

Question 1.2 (van Douwen [45]).

Is there a countably compact group without non-trivial convergent sequences?

In fact, the first example of such a group was constructed by Hajnal and Juhász [20] a few years before van Douwen’s [45] assuming CH. Recall, that every compact topological group contains a non-trivial convergent sequence, as an easy consequence of the classical and highly non-trivial theorem of Ivanovskiĭ-Vilenkin-Kuz’minov (see [25]) that every compact topological group is dyadic, i.e., a continuous image of 2κ2^{\kappa} for some cardinal number κ\kappa.

Both questions have been studied extensively in recent decades, providing a large variety of sufficient conditions for the existence of examples to these questions, much work being done by Tomita and collaborators [17, 18, 23, 30, 33, 40, 41, 42, 37, 43, 44, 38], but also others [10, 13, 14, 27, 35]. The questions are considered central in the theory of topological groups [1, 2, 7, 8, 15, 32, 36].

Here we settle both problems by constructing in ZFC a countably compact subgroup of 2𝔠2^{\mathfrak{c}} without non-trivial convergent sequences.

The paper is organized as follows: In Section 2 we fix notation and review basic facts concerning ultrapowers, Fubini products of ultrafilters and Bohr topology. In Section 3 we study van Douwen’s problem in the realm of pp-compact groups. We show how iterated ultrapowers can be used to give interesting partial solutions to the problem. In particular, we show that an iterated ultrapower of the countable Boolean group endowed with the Bohr topology via a selective ultrafilter pp produces a pp-compact subgroup of 2𝔠2^{\mathfrak{c}} without non-trivial convergent sequences. This on the one hand raises interesting questions about ultrafilters, and on the other hand serves as a warm up for Section 4, where the main result of the paper is proved by constructing a countably compact subgroup of 2𝔠2^{\mathfrak{c}} without non-trivial convergent sequences using not a single ultrafilter, but rather a carefully constructed 𝔠\mathfrak{c}-sized family of ultrafilters.

2. Notation and terminology

Recall that an infinite topological space XX is countably compact if every infinite subset of XX has an accumulation point. Given pp a nonprincipal ultrafilter on ω\omega (for short, pωp\in\omega^{*}), a point xXx\in X and a sequence {xn:nω}X\{x_{n}:n\in\omega\}\subseteq X we say (following [5]) that x=px=p-limnωxn\lim_{n\in\omega}x_{n} if for every open UXU\subseteq X containing xx the set {nω:xnU}p\{n\in\omega\colon x_{n}\in U\}\in p. It follows that a space XX is countably compact if and only if every sequence {xn:nω}X\{x_{n}:n\in\omega\}\subseteq X has a pp-limit in XX for some ultrafilter pωp\in\omega^{*}. Given an ultrafilter pωp\in\omega^{*}, a space XX is pp-compact if for every sequence {xn:nω}X\{x_{n}:n\in\omega\}\subseteq X there is an xXx\in X such that x=px=p-limnωxn\lim_{n\in\omega}x_{n}.

For introducing the following definition, we fix a bijection φ:ωω×ω\varphi:\omega\to\omega\times\omega, and for a limit ordinal α<ω1\alpha<\omega_{1}, we pick an increasing sequence {αn:nω}\{\alpha_{n}:n\in\omega\} of smaller ordinals with supremum α\alpha. Given an ultrafilter pωp\in\omega^{*}, the iterated Fubini powers or Frolík sums [16] of pp are defined recursively as follows:

p1=pp^{1}=p
pα+1={Aω:{n:{m:(n,m)φ(A)}pα}p} and p^{\alpha+1}=\{A\subseteq\omega:\{n:\{m:(n,m)\in\varphi(A)\}\in p^{\alpha}\}\in p\}\text{ and }
pα={Aω:{n:{m:(n,m)φ(A)}pαn}p} for α limit.p^{\alpha}=\{A\subseteq\omega:\{n:\{m:(n,m)\in\varphi(A)\}\in p^{\alpha_{n}}\}\in p\}\text{ for }\alpha\text{ limit.}

The choice of the ultrafilter pαp^{\alpha} depends on (the arbitrary) choice of φ\varphi and the choice of the sequence {αn:nω}\{\alpha_{n}:n\in\omega\}, however, the type of pαp^{\alpha} does not (see e.g., [16, 19]).

For our purposes we give an alternative definition of the iterated Fubini powers of pp: given α<ω1\alpha<\omega_{1} we fix a well-founded tree Tαω<ωT_{\alpha}\subset\omega^{<\omega} such that

  1. (i)

    ρTα()=α\rho_{T_{\alpha}}(\varnothing)=\alpha, where ρTα\rho_{T_{\alpha}} denotes the rank function on Tα,\langle T_{\alpha},\subseteq\rangle;

  2. (ii)

    For every tTαt\in T_{\alpha}, if ρTα(t)>0\rho_{T_{\alpha}}(t)>0 then tnTαt^{\frown}n\in T_{\alpha} for all nωn\in\omega.

For βα\beta\leqslant\alpha, let Ωβ(Tα)={tTα:ρTα(t)=β}\Omega_{\beta}(T_{\alpha})=\{t\in T_{\alpha}\colon\rho_{T_{\alpha}}(t)=\beta\} and Tα+={tTα:ρTα(t)>0}T_{\alpha}^{+}=\{t\in T_{\alpha}\colon\rho_{T_{\alpha}}(t)>0\}.

If pωp\in\omega^{*}, then 𝕃p(Tα)\mathbb{L}_{p}(T_{\alpha}) will be used to denote the collection of all trees TTαT\subseteq T_{\alpha} such that for every tTTα+t\in T\cap T_{\alpha}^{+} the set succT(t)={nω:tnT}\text{succ}_{T}(t)=\{n\in\omega\colon t^{\frown}n\in T\} belongs to pp. Notice that each T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) is also a well-founded tree with ρT()=α\rho_{T}(\varnothing)=\alpha. Moreover, the family {Ω0(T):T𝕃p(Tα)}\{\Omega_{0}(T)\colon T\in\mathbb{L}_{p}(T_{\alpha})\} forms a base of an ultrafilter on Ω0(Tα)\Omega_{0}(T_{\alpha}) which has the same type of pαp^{\alpha}. If T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) and UpU\in p, TUT\upharpoonright{U} denotes the tree in 𝕃p(Tα)\mathbb{L}_{p}(T_{\alpha}) for which succTU(t)=succT(t)U\text{succ}_{T\upharpoonright{U}}(t)=\text{succ}_{T}(t)\cap U for all t(TU)+t\in(T\upharpoonright{U})^{+}.

Next we recall the ultrapower construction from model theory and algebra. Given a group 𝔾\mathbb{G} and an ultrafilter pωp\in\omega^{*}, denote by

𝗎𝗅𝗍p(𝔾)=𝔾ω/, where fg iff {n:f(n)=g(n)}p.\mathsf{ult}_{p}(\mathbb{G})=\mathbb{G}^{\omega}/\equiv\text{, where }f\equiv g\text{ iff }\{n:f(n)=g(n)\}\in p.

The Theorem of Łós [26] states that for any formula ϕ\phi with parameters [f0],[f1],[f_{0}],[f_{1}],\dots [fn][f_{n}], 𝗎𝗅𝗍p(𝔾)ϕ([f0],[f1],[fn])\mathsf{ult}_{p}(\mathbb{G})\models\phi([f_{0}],[f_{1}],\dots[f_{n}]) if and only if {k:𝔾ϕ(f0(k),f1(k),\{k:\mathbb{G}\models\phi(f_{0}(k),f_{1}(k), \dots fn(k))}pf_{n}(k))\}\in p. In particular, 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}) is a group with the same first order properties as 𝔾\mathbb{G}.

There is a natural embedding of 𝔾\mathbb{G} into 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}) sending each g𝔾g\in\mathbb{G} to the equivalence class of the constant function with value gg. We shall therefore consider 𝔾\mathbb{G} as a subgroup of 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}). Also, without loss of generality, we can assume that dom(f)p\text{dom}(f)\in p for every [f]𝗎𝗅𝗍p(𝔾)[f]\in\mathsf{ult}_{p}(\mathbb{G}).

Recall that the Bohr topology on a group 𝔾\mathbb{G} is the weakest group topology making every homomorphism ΦHom(𝔾,𝕋)\Phi\in\text{Hom}(\mathbb{G},\mathbb{T}) continuous, where the circle group 𝕋\mathbb{T} carries the usual compact topology. We let (𝔾,τBohr)(\mathbb{G},\tau_{\,\text{Bohr}}) denote 𝔾\mathbb{G} equipped with the Bohr topology.

Finally, our set-theoretic notation is mostly standard and follows [24]. In particular, recall that an ultrafilter pωp\in\omega^{*} is a PP-point if every function on ω\omega is finite-to-one or constant when restricted to some set in the ultrafilter and, an ultrafilter pωp\in\omega^{*} is a QQ-point if every finite-to-one function on ω\omega becomes one-to-one when restricted to a suitable set in the ultrafilter. The ultrafilters pωp\in\omega^{*} which are P-point and Q-point are called selective ultrafilters. For more background on set-theoretic aspects of ultrafilters see [6].

3. Iterated ultrapowers as pp-compact groups

In this section we shall give a canonical construction of a pp-compact group for every ultrafilter pωp\in\omega^{*}. This will be done by studying the iterated ultrapower construction.

Fix a group 𝔾\mathbb{G} and put 𝗎𝗅𝗍p0(𝔾)=𝔾\mathsf{ult}_{p}^{0}(\mathbb{G})=\mathbb{G}. Given an ordinal α\alpha with α>0\alpha>0, let

𝗎𝗅𝗍pα(𝔾)=𝗎𝗅𝗍p(limβ<α𝗎𝗅𝗍pβ(𝔾))),\mathsf{ult}_{p}^{\alpha}(\mathbb{G})=\mathsf{ult}_{p}\left(\varinjlim_{\beta<\alpha}\mathsf{ult}_{p}^{\beta}(\mathbb{G}))\right),

where limβ<α𝗎𝗅𝗍pβ(𝔾)\varinjlim_{\beta<\alpha}\mathsf{ult}_{p}^{\beta}(\mathbb{G}) denotes the direct limit of the direct system 𝗎𝗅𝗍pβ(𝔾),φδβ:δβ<α\langle\mathsf{ult}_{p}^{\beta}(\mathbb{G}),\varphi_{\delta\beta}\colon\delta\leqslant\beta<\alpha\rangle with the following properties:

  1. (1)

    φδδ\varphi_{\delta\delta} is the identity function on 𝗎𝗅𝗍pδ(𝔾)\mathsf{ult}_{p}^{\delta}(\mathbb{G}), and

  2. (2)

    φδβ:𝗎𝗅𝗍pδ(𝔾)𝗎𝗅𝗍pβ(𝔾)\varphi_{\delta\beta}\colon\mathsf{ult}_{p}^{\delta}(\mathbb{G})\to\mathsf{ult}_{p}^{\beta}(\mathbb{G}) is the canonical embedding of 𝗎𝗅𝗍pδ(𝔾)\mathsf{ult}_{p}^{\delta}(\mathbb{G}) into 𝗎𝗅𝗍pβ(𝔾)\mathsf{ult}_{p}^{\beta}(\mathbb{G}), defined recursively by φδ,α+1([f])=\varphi_{\delta,\alpha+1}([f])= the constant function with value [f][f], and φδ,α([f])=\varphi_{\delta,\alpha}([f])= the direct limit of φδ,β([f]),β<α\varphi_{\delta,\beta}([f]),\ \beta<\alpha for a limit ordinal α\alpha.

In what follows, we will abbreviate 𝗎𝗅𝗍pα(𝔾)\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G}) for limβ<α𝗎𝗅𝗍pβ(𝔾)\varinjlim_{\beta<\alpha}\mathsf{ult}_{p}^{\beta}(\mathbb{G}). Moreover, we will treat 𝗎𝗅𝗍pα(𝔾)\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G}) as β<α𝗎𝗅𝗍pβ(𝔾)\bigcup_{\beta<\alpha}\mathsf{ult}_{p}^{\beta}(\mathbb{G}) and, in such case, we put ht(a)=min{β<α:a𝗎𝗅𝗍pβ(𝔾)}\text{ht}(a)=\min\{\beta<\alpha\colon a\in\mathsf{ult}_{p}^{\beta}(\mathbb{G})\} for every a𝗎𝗅𝗍pα(𝔾)a\in\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G}). This is, of course, formally wrong, but is facilitated by our identification of 𝔾\mathbb{G} with a subgroup of 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}). In this way we can avoid talking about direct limit constructions.

We now consider (𝔾,τBohr)(\mathbb{G},\tau_{\,\text{Bohr}}). Having fixed an ultrafilter pωp\in\omega^{*}, this topology naturally lifts to a topology on 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}) as follows: Every ΦHom(𝔾,𝕋)\Phi\in\text{Hom}(\mathbb{G},\mathbb{T}) naturally extends to a homomorphism Φ¯Hom(𝗎𝗅𝗍p(𝔾),𝕋)\overline{\Phi}\in\text{Hom}(\mathsf{ult}_{p}(\mathbb{G}),\mathbb{T}) by letting

(3.1) Φ¯([f])=p -limnωΦ(f(n)).\overline{\Phi}([f])=p\text{ -}\lim_{n\in\omega}\Phi(f(n)).

By Łós’s theorem, Φ¯\overline{\Phi} is indeed a homomorphism from 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}) to 𝕋\mathbb{T} and hence the weakest topology making every Φ¯\overline{\Phi} continuous, where ΦHom(𝔾,𝕋)\Phi\in\text{Hom}(\mathbb{G},\mathbb{T}), is a group topology on 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}). This topology will be denoted by τBohr¯\tau_{\,\overline{\text{Bohr}}}.

The following is a trivial, yet fundamental fact:

Lemma 3.1.

For every f:ω𝔾f:\omega\to\mathbb{G}, [f]=p[f]=p-limnωf(n)\lim_{n\in\omega}f(n) in τBohr¯\tau_{\,\overline{\text{Bohr}}}.

Proof.

This follows directly from the definition of Φ¯\overline{\Phi} and the identification of 𝔾\mathbb{G} with a subgroup of 𝗎𝗅𝗍p(𝔾)\mathsf{ult}_{p}(\mathbb{G}). ∎

The group that will be relevant for us is the group 𝗎𝗅𝗍pω1(𝔾)\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}), endowed with the topology τBohr¯\tau_{\,\overline{\text{Bohr}}} induced by the homomorphisms in Hom(𝔾,𝕋)\text{Hom}(\mathbb{G},\mathbb{T}) extended recursively all the way to 𝗎𝗅𝗍pω1(𝔾)\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}) by the same formula (3.1).

The (iterated) ultrapower with this topology is usually not Hausdorff (see [12, 3]), so we identify the inseparable functions and denote by (𝖴𝗅𝗍pω1(𝔾),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}),\tau_{\,\overline{\text{Bohr}}}) this quotient. More explicitly,

𝖴𝗅𝗍pω1(𝔾)=𝗎𝗅𝗍pω1(𝔾)/K,\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G})=\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G})/K,

where K=ΦHom(𝔾,𝕋)Ker(Φ¯)K=\bigcap_{\Phi\in\text{Hom}(\mathbb{G},\mathbb{T})}\text{Ker}(\overline{\Phi}). The natural projection will be denoted by

π:𝗎𝗅𝗍pω1(𝔾)𝗎𝗅𝗍pω1(𝔾)/K.\pi\colon\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G})\to\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G})/K.

The main reason for considering the iterated Fubini powers here is the following simple and crucial fact:

Proposition 3.2.

Let pωp\in\omega^{*} be an ultrafilter.

  1. (1)

    𝗎𝗅𝗍pα(𝔾)𝗎𝗅𝗍pα(𝔾)\mathsf{ult}_{p}^{\alpha}(\mathbb{G})\simeq\mathsf{ult}_{p^{\alpha}}(\mathbb{G}) for α<ω1\alpha<\omega_{1}, and

  2. (2)

    (𝖴𝗅𝗍pω1(𝔾),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}),\tau_{\,\overline{\text{Bohr}}}) is a Hausdorff pp-compact topological group.

Proof.

To prove (1), fix an α<ω1\alpha<\omega_{1}. For given [f]𝗎𝗅𝗍pα(𝔾)[f]\in\mathsf{ult}_{p}^{\alpha}(\mathbb{G}), recursively define a tree Tf𝕃p(Tα)T_{f}\in\mathbb{L}_{p}(T_{\alpha}) and a function f^:Tf𝗎𝗅𝗍pα(𝔾)\hat{f}\colon T_{f}\to\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) so that

  • succTf()=dom(f)\text{succ}_{T_{f}}(\varnothing)=\text{dom}(f_{\varnothing}) and f^()=[f]\hat{f}(\varnothing)=[f_{\varnothing}], where f=ff_{\varnothing}=f;

  • if f^(t)\hat{f}(t) is defined say f^(t)=[ft]\hat{f}(t)=[f_{t}], then succTf(t)=dom(ft)\text{succ}_{T_{f}}(t)=\text{dom}(f_{t}) and f^(tn)=ft(n)\hat{f}(t^{\frown}n)=f_{t}(n) for every nsuccTf(t)n\in\text{succ}_{T_{f}}(t).

We define φ:𝗎𝗅𝗍pα(𝔾)𝗎𝗅𝗍pα(𝔾)\varphi\colon\mathsf{ult}_{p}^{\alpha}(\mathbb{G})\to\mathsf{ult}_{p^{\alpha}}(\mathbb{G}) given by

φ([f])=[f^Ω0(Tf)].\varphi([f])=[\hat{f}\upharpoonright{\Omega_{0}(T_{f})}].
Claim 3.3.

φ\varphi is an isomorphism.

Proof of the claim. To see that φ\varphi is a surjection, let [f]𝗎𝗅𝗍pα(𝔾)[f]\in\mathsf{ult}_{p^{\alpha}}(\mathbb{G}) be such that dom(f)=Ω0(Tf)\text{dom}(f)=\Omega_{0}(T_{f}) for some Tf𝕃p(Tα)T_{f}\in\mathbb{L}_{p}(T_{\alpha}). Consider the function fˇ:Tf𝗎𝗅𝗍pα(𝔾)\check{f}\colon T_{f}\to\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) defined recursively by

  • fˇΩ0(Tf)=f\check{f}\upharpoonright{\Omega_{0}(T_{f})}=f and,

  • if tTα+t\in T_{\alpha}^{+}, then fˇ(t)=[fˇ(tn):nsuccTf(t)]\check{f}(t)=[\langle\check{f}(t^{\frown}n)\colon n\in\text{succ}_{T_{f}}(t)\rangle].

Notice that the function fˇ\check{f} satisfies that fˇ(t)𝗎𝗅𝗍pρTf(t)(𝔾)\check{f}(t)\in\mathsf{ult}_{p}^{\rho_{T_{f}(t)}}(\mathbb{G}) for every tTft\in T_{f}. In particular, fˇ()𝗎𝗅𝗍pα(𝔾)\check{f}(\varnothing)\in\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) and, a routine calculation shows that φ(fˇ())=[f]\varphi(\check{f}(\varnothing))=[f].

To see that φ\varphi is injective, suppose that φ([f])=φ([g])\varphi([f])=\varphi([g]). Then there exists a tree T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) such that

f^Ω0(T)=g^Ω0(T).\hat{f}\upharpoonright{\Omega_{0}(T)}=\hat{g}\upharpoonright{\Omega_{0}(T)}.

If set h:=f^Ω0(T)h:=\hat{f}\upharpoonright{\Omega_{0}(T)}, then we can verify recursively that hˇ()=[f]=[g]\check{h}(\varnothing)=[f]=[g]. Therefore, φ\varphi is a one-to-one function.

Finally, using again a recursive argument, one can check that φ\varphi preserves the group structure.  

To prove (2) note that by definition 𝖴𝗅𝗍pω1(𝔾)\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}) is a Hausdorff topological group. To see that 𝖴𝗅𝗍pω1(𝔾)\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}) is pp-compact, since 𝖴𝗅𝗍pω1(𝔾)\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}) is a continuous image of 𝗎𝗅𝗍pω1(𝔾)\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}), it suffices to check that 𝗎𝗅𝗍pω1(𝔾)\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}) is pp-compact. Let f:ω𝗎𝗅𝗍pω1(𝔾)f\colon\omega\to\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}) be a sequence and let nωn\in\omega. So f(n)𝗎𝗅𝗍p(𝗎𝗅𝗍pω1(𝔾))f(n)\in\mathsf{ult}_{p}(\mathsf{ult}_{p}^{\omega_{1}^{-}}(\mathbb{G})), that is, there exists fn:ωα<ω1𝗎𝗅𝗍pα(𝔾)f_{n}\colon\omega\to\bigcup_{\alpha<\omega_{1}}\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) such that f(n)=[fn]f(n)=[f_{n}]. Thus, for every nωn\in\omega there exists αn<ω1\alpha_{n}<\omega_{1} such that f(n)𝗎𝗅𝗍pαn(𝔾)f(n)\in\mathsf{ult}_{p}^{\alpha_{n}}(\mathbb{G}) and hence [f]𝗎𝗅𝗍pα(𝔾)[f]\in\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) for α=sup{αn:nω}<ω1\alpha=\sup\{\alpha_{n}:n\in\omega\}<\omega_{1}. Then [f]=p[f]=p-limnωf(n)\lim_{n\in\omega}f(n) in τBohr¯\tau_{\,\overline{\text{Bohr}}} as by the construction Φ¯([f])=p\overline{\Phi}([f])=p-limΦ¯(f(n))\lim\overline{\Phi}(f(n)) for every ΦHom(𝔾,𝕋)\Phi\in\text{Hom}(\mathbb{G},\mathbb{T}). This gives us the pp-compactness of 𝗎𝗅𝗍pω1(𝔾)\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{G}). ∎

The plan for our construction is as follows: fix an ultrafilter pωp\in\omega^{*}, find a suitable topological group 𝔾\mathbb{G} without convergent sequences and consider (𝖴𝗅𝗍pω1(𝔾),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}),\tau_{\,\overline{\text{Bohr}}}). The remaining issue is: Does (𝖴𝗅𝗍pω1(𝔾),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{G}),\tau_{\,\overline{\text{Bohr}}}) have non-trivial convergent sequences?

While our approach is applicable to an arbitrary group 𝔾\mathbb{G}, in the remainder of this paper we will be dealing exclusively with Boolean groups, i.e., groups where each element is its own inverse.111The general case will be dealt with in a separate paper. These groups are, in every infinite cardinality κ\kappa, isomorphic to the group [κ]<ω[\kappa]^{<\omega} with the symmetric difference \triangle as the group operation and \varnothing as the neutral element. Every Boolean group is a vector space over the trivial 22-element field which we identify with 2={0,1}2=\{0,1\}. Hence, we can talk, e.g., about linearly independent subsets of a Boolean group. Also, since every homomorphism from a Boolean group into the torus 𝕋\mathbb{T} takes at most two values (in the unique subgroup of 𝕋\mathbb{T} of size 22) we may and will identify Hom([ω]<ω,𝕋)\text{Hom}([\omega]^{<\omega},\mathbb{T}) with Hom([ω]<ω,2)\text{Hom}([\omega]^{<\omega},2) to highlight the fact that there are only two possible values. Hence also Hom([ω]<ω,2)\text{Hom}([\omega]^{<\omega},2) is a Boolean group and a vector space over the same field.

The following theorem is the main result of this section.

Theorem 3.4.

Let pωp\in\omega^{*} be a selective ultrafilter. Then (𝖴𝗅𝗍pω1([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) is a Hausdorff pp-compact topological Boolean group without non-trivial convergent sequences.

In order to prove this theorem, we apply the first step of our plan.

Proposition 3.5.

The group [ω]<ω[\omega]^{<\omega} endowed with the topology τBohr\tau_{\,\text{Bohr}} is a non-discrete Hausdorff topological group without non-trivial convergent sequences.

Proof.

It is well-known and easy to see that τBohr\tau_{\,\text{Bohr}} is a non-discrete Hausdorff group topology (e.g., see [2] Section 9.9). To see that τBohr\tau_{\,\text{Bohr}} has no non-trivial convergent sequences, assume that f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} is a non-trivial sequence. Then rng(f)\text{rng}(f) is an infinite set. Find an infinite linearly independent set Arng(f)A\subseteq\text{rng}(f) and split it into two infinite pieces A0A_{0} and A1A_{1}, and take ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) such that AiΦ1(i)A_{i}\subseteq\Phi^{-1}(i) for every i<2i<2. Therefore, Φ\Phi is a witness that the sequence ff does not converge. ∎

We say that a sequence [fn]:nω𝗎𝗅𝗍p([ω]<ω)\langle[f_{n}]\colon n\in\omega\rangle\subset\mathsf{ult}_{p}([\omega]^{<\omega}) is pp-separated if for every nmωn\neq m\in\omega there is a ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) such that Φ¯([fn])Φ¯([fm])\overline{\Phi}([f_{n}])\neq\overline{\Phi}([f_{m}]). In other words, a sequence [fn]:nω𝗎𝗅𝗍p([ω]<ω)\langle[f_{n}]\colon n\in\omega\rangle\subset\mathsf{ult}_{p}([\omega]^{<\omega}) is pp-separated if and only if its elements represent distinct elements of

𝖴𝗅𝗍p([ω]<ω)=𝗎𝗅𝗍p([ω]<ω)/K\mathsf{Ult}_{p}([\omega]^{<\omega})=\mathsf{ult}_{p}([\omega]^{<\omega})/K

where K=ΦHom([ω]<ω,2)Ker(Φ¯)K=\bigcap_{\Phi\in\text{Hom}([\omega]^{<\omega},2)}\text{Ker}(\overline{\Phi}) and π:𝗎𝗅𝗍p([ω]<ω)𝖴𝗅𝗍p([ω]<ω)\pi:\mathsf{ult}_{p}([\omega]^{<\omega})\to\mathsf{Ult}_{p}([\omega]^{<\omega}) is the corresponding projection.

We next show that, in general, the plan does not work for all pωp\in\omega^{*}.

Lemma 3.6.

The following are equivalent:

  1. (1)

    There exists a pωp\in\omega^{*} such that (𝖴𝗅𝗍p([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) has non-trivial convergent sequences.

  2. (2)

    There exist a sequence Φn:nωHom([ω]<ω,2)\langle\Phi_{n}\colon n\in\omega\rangle\subset\text{Hom}([\omega]^{<\omega},2) and a mapping
    H:Hom([ω]<ω,2)ωH\colon\text{Hom}([\omega]^{<\omega},2)\to\omega such that for every nωn\in\omega the family

    {[ω]<ωKer(Φn)}{Ker(Φ):H(Φ)n}\{[\omega]^{<\omega}\setminus\text{Ker}(\Phi_{n})\}\cup\{\text{Ker}(\Phi)\colon\ H(\Phi)\leqslant n\}

    is centered.

Proof.

Let us prove (1) implies (2). Let f~:ω𝖴𝗅𝗍p([ω]<ω)\tilde{f}\colon\omega\to\mathsf{Ult}_{p}([\omega]^{<\omega}) be a non-trivial sequence, say f~(n)=π(f(n))\tilde{f}(n)=\pi(f(n)) (nωn\in\omega) where f:ω𝖴𝗅𝗍p([ω]<ω)f\colon\omega\to\mathsf{Ult}_{p}([\omega]^{<\omega}). Without loss of generality we can assume that f~\tilde{f} is a one-to-one function converging to π([])\pi([\langle\varnothing\rangle]), here \langle\varnothing\rangle denotes the constant sequence where each term is \varnothing. So [fn]:nω\langle[f_{n}]\colon n\in\omega\rangle is a pp-separated sequence τBohr¯\tau_{\,\overline{\text{Bohr}}}-converging to [][\langle\varnothing\rangle], where [fn]=f(n)[f_{n}]=f(n) for nωn\in\omega. By taking a subsequence if necessary, we may assume that for every nωn\in\omega there is a ΦnHom([ω]<ω,2)\Phi_{n}\in\text{Hom}([\omega]^{<\omega},2) such that Φ¯n([fn])=1\overline{\Phi}_{n}([f_{n}])=1. Now, by τBohr¯\tau_{\,\overline{\text{Bohr}}}-convergence of [fn]:nω\langle[f_{n}]\colon n\in\omega\rangle, there is a mapping H:Hom([ω]<ω,2)ωH\colon\text{Hom}([\omega]^{<\omega},2)\to\omega such that for each ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) and each nH(Φ)n\geqslant H(\Phi) it follows that Φ¯([fn])=0\overline{\Phi}([f_{n}])=0. Now we will check that for every nωn\in\omega the family {Ker(Φn)c}{Ker(Φ):\{\text{Ker}(\Phi_{n})^{c}\}\cup\{\text{Ker}(\Phi)\colon H(Φ)n}H(\Phi)\leqslant n\} is centered.222For a subset AA of the group [ω]<ω[\omega]^{<\omega}, Ac=[ω]<ωAA^{c}=[\omega]^{<\omega}\setminus A. For this, since ([ω]<ω,τBohr)([\omega]^{<\omega},\tau_{\,\text{Bohr}}) is without non-trivial convergent sequences and [fn]τBohr¯[][f_{n}]\xrightarrow{\tau_{\,\overline{\text{Bohr}}}}[\langle\varnothing\rangle], we may assume that [fn][a][f_{n}]\neq[\langle a\rangle] for every n,aω×[ω]<ω\langle n,a\rangle\in\omega\times[\omega]^{<\omega}, that is, fn[U]f_{n}[U] is infinite for all n,Uω×p\langle n,U\rangle\in\omega\times p. Now, fix nωn\in\omega and let FHom([ω]<ω,2)F\subset\text{Hom}([\omega]^{<\omega},2) be a finite set such that H(Φ)nH(\Phi)\leqslant n for every ΦF\Phi\in F. Then Φ¯([fn])=0\overline{\Phi}([f_{n}])=0 for every ΦF\Phi\in F and hence there exists UFpU_{F}\in p such that Φ(fn(k))=0\Phi(f_{n}(k))=0 for every k,ΦUF×F\langle k,\Phi\rangle\in U_{F}\times F. Since Φ¯n([fn])=1\overline{\Phi}_{n}([f_{n}])=1, there exists UnpU_{n}\in p such that Φn(fn(k))=1\Phi_{n}(f_{n}(k))=1 for every kUnk\in U_{n}. Put U=UFUnpU=U_{F}\cap U_{n}\in p. Then fn[U]Ker(Φn)cΦFKer(Φ)f_{n}[U]\subset\text{Ker}(\Phi_{n})^{c}\cap\bigcap_{\Phi\in F}\text{Ker}(\Phi), so we are done.

To prove (2) implies (1), first we observe that there is a sequence fn:nω([ω]<ω)ω\langle f_{n}\colon n\in\omega\rangle\subset([\omega]^{<\omega})^{\omega} such that for each F[ω]<ωF\in[\omega]^{<\omega} and every σ:F[ω]<ω\sigma\colon F\to[\omega]^{<\omega} there exists kωk\in\omega such that fi(k)=σ(i)f_{i}(k)=\sigma(i) for all iFi\in F. Now, define AΦ,n0={kω:Φ(fn(k))=0}A_{\Phi,n}^{0}=\{k\in\omega\colon\Phi(f_{n}(k))=0\} and AΦ,n1={kω:Φ(fn(k))=1}A_{\Phi,n}^{1}=\{k\in\omega\colon\Phi(f_{n}(k))=1\} for all (Φ,n)Hom([ω]<ω,2)×ω(\Phi,n)\in\text{Hom}([\omega]^{<\omega},2)\times\omega.

Fix Φn:nωHom([ω]<ω,2)\langle\Phi_{n}\colon n\in\omega\rangle\subset\text{Hom}([\omega]^{<\omega},2) and H:Hom([ω]<ω,2)ωH\colon\text{Hom}([\omega]^{<\omega},2)\to\omega as in (2).

Claim 3.7.

The collection nω{AΦn,n1}{AΦ,n0:H(Φ)n}\bigcup_{n\in\omega}\{A_{\Phi_{n},n}^{1}\}\cup\{A_{\Phi,n}^{0}\colon H(\Phi)\leqslant n\} forms a centered family which generates a free filter \mathcal{F}.

Proof of the claim. To show that such family is centered, let m>0m>0 and for every i<mi<m fix a finite set {Φj:j<mi}H1[i+1]\{\Phi^{j}\colon j<m_{i}\}\subset H^{-1}[i+1]. Then, considering all choice functions

σ:ni<m(Ker(Φi)cj<miKer(Φj)),\sigma\colon n\to\bigcup_{i<m}\left(\text{Ker}(\Phi_{i})^{c}\cap\bigcap_{j<m_{i}}\text{Ker}(\Phi^{j})\right),

we can ensure that

i<m(AΦi,i1j<miAΦj,i0)\bigcap_{i<m}\left(A_{\Phi_{i},i}^{1}\cap\bigcap_{j<m_{i}}A_{\Phi^{j},i}^{0}\right)

is an infinite set.

To see that the filter \mathcal{F} is free, let kωk\in\omega. If there is an nωn\in\omega such that fn(k)=f_{n}(k)=\varnothing, then kAΦn,n1k\notin A_{\Phi_{n},n}^{1}\in\mathcal{F}. In another case, since fn(k):nω\langle f_{n}(k)\colon n\in\omega\rangle does not τBohr\tau_{\,\text{Bohr}}-converge to \varnothing, there exists ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) such that Φ(fn(k))=1\Phi(f_{n}(k))=1 for infinitely many nn. Then pick one of such nn with H(Φ)nH(\Phi)\leqslant n and, kAΦ,n0k\notin A_{\Phi,n}^{0}\in\mathcal{F}.  

Let pωp\in\omega^{*} extend \mathcal{F}. By Claim 3.7, it follows that

  1. (i)

    Φ¯n([fn])=1\overline{\Phi}_{n}([f_{n}])=1, for every nωn\in\omega.

  2. (ii)

    The sequence Φ¯([fn]):nω\langle\overline{\Phi}([f_{n}])\colon n\in\omega\rangle converges to 0, for every ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2), i.e., [fn]:nω\langle[f_{n}]\colon n\in\omega\rangle is a τBohr¯\tau_{\,\overline{\text{Bohr}}}-convergent sequence to [][\langle\varnothing\rangle].

Finally, taking a subsequence if necessary, we can assume that [fn]:nω\langle[f_{n}]\colon n\in\omega\rangle is pp-separated and, hence π([fn]):nω\langle\pi([f_{n}])\colon n\in\omega\rangle is a non-trivial convergent sequence in (𝖴𝗅𝗍p([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}). ∎

Remark 3.8.

Note that the filter \mathcal{F} is actually an FσF_{\sigma}-filter.

Theorem 3.9.

There exists a pωp\in\omega^{*} such that (𝖴𝗅𝗍p([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) has non-trivial convergent sequences.

Proof.

We will show that the second clause of the Lemma 3.6 holds. To see this, choose any countable linearly independent set {Φn:nω}Hom([ω]<ω,2)\{\Phi_{n}\colon n\in\omega\}\subset\text{Hom}([\omega]^{<\omega},2). Let WW be a vector subspace of Hom([ω]<ω,2)\text{Hom}([\omega]^{<\omega},2) such that Hom([ω]<ω,2)=span{Φn:nω}W\text{Hom}([\omega]^{<\omega},2)=\text{span}\{\Phi_{n}\colon n\in\omega\}\oplus W. We define the mapping H:Hom([ω]<ω,2)ωH\colon\text{Hom}([\omega]^{<\omega},2)\to\omega as follows:

H(Φ)=min{n:Φspan{Φi:i<n}W}.H(\Phi)=\min\{n\colon\Phi\in\text{span}\{\Phi_{i}\colon i<n\}\oplus W\}.

Now, let nωn\in\omega and fix a finite set {Φj:j<m}H1[n+1]\{\Phi^{j}\colon j<m\}\subset H^{-1}[n+1]. In order to show that

Ker(Φn)cj<mKer(Φj)\text{Ker}(\Phi_{n})^{c}\cap\bigcap_{j<m}\text{Ker}(\Phi^{j})

is infinite, we shall need a fact concerning linear functionals on a vector space.

Fact 3.10 ([31], p. 124).

Let VV be a vector space and Φ,Φ0,,Φm1\Phi,\Phi^{0},\dots,\Phi^{m-1} linear functionals on VV. Then the following statements are equivalent:

  1. (1)

    j<mKer(Φj)Ker(Φ)\bigcap_{j<m}\text{Ker}(\Phi^{j})\subset\text{Ker}(\Phi).

  2. (2)

    Φspan{Φj:j<m}\Phi\in\text{span}\{\Phi^{j}\colon j<m\}. \square

Using this fact, and noting that Φnspan{Φj:j<m}\Phi_{n}\notin\text{span}\{\Phi^{j}\colon j<m\}, one sees that

Ker(Φn)cj<mKer(Φj).\text{Ker}(\Phi_{n})^{c}\cap\bigcap_{j<m}\text{Ker}(\Phi^{j})\neq\emptyset.

Pick an arbitrary aKer(Φn)cj<mKer(Φj)a\in\text{Ker}(\Phi_{n})^{c}\cap\bigcap_{j<m}\text{Ker}(\Phi^{j}) and put

K=Ker(Φn)j<mKer(Φj).K=\text{Ker}(\Phi_{n})\cap\bigcap_{j<m}\text{Ker}(\Phi^{j}).

Then KK is an infinite set, and hence a+Ka+K is an infinite set too. But

a+KKer(Φn)cj<mKer(Φj),a+K\subset\text{Ker}(\Phi_{n})^{c}\cap\bigcap_{j<m}\text{Ker}(\Phi^{j}),

so we are done. ∎

Corollary 3.11 (𝖢𝖧\mathsf{CH}).

There is a P-point pωp\in\omega^{*} such that (𝖴𝗅𝗍p([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) has non-trivial convergent sequences.

Proof.

It is well-known (e.g., see [22]) that assuming 𝖢𝖧\mathsf{CH} every FσF_{\sigma}-filter can be extended to a P-point. ∎

As (𝖴𝗅𝗍p([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) is a topological subgroup of (𝖴𝗅𝗍pω1([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) there are ultrafilters (even P-points assuming CH) such that 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) has a non-trivial convergent sequence.

Selective ultrafilters and Q-points, have immediate combinatorial reformulations relevant in our context. Given a non-empty set II and 𝔾\mathbb{G} a Boolean group, we shall call a set {fi:iI}\{f_{i}\colon i\in I\} of functions fi:ω𝔾f_{i}\colon\omega\to\mathbb{G} pp-independent if

{n:a+iEfi(n)=}p\left\{n\colon a+\sum_{i\in E}f_{i}(n)=\varnothing\right\}\notin p

for every non-empty finite set EIE\subset I and every a𝔾a\in\mathbb{G}. Note that, in particular, a function f:ω𝔾f\colon\omega\to\mathbb{G} is not constant on an element of pp if and only if {f}\{f\} is pp-independent. Now, we will say that a function f:I𝔾f\colon I\to\mathbb{G} is linearly independent if ff is one-to-one and {f(i):iI}\{f(i)\colon i\in I\} is a linearly independent set and, a function f:I𝗎𝗅𝗍p(𝔾)f\colon I\to\mathsf{ult}_{p}(\mathbb{G}) is pp-independent if ff is one-to-one and {fi:iI}\{f_{i}\colon i\in I\} is a pp-independent set, where f(i)=[fi]f(i)=[f_{i}] for iIi\in I.

Proposition 3.12.

Let pωp\in\omega^{*} be an ultrafilter. Then:

  1. (1)

    pp is a Q-point if and only if for every finite-to-one function f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} there is a set UpU\in p such that fUf\upharpoonright{U} is linearly independent.

  2. (2)

    The following are equivalent

    1. (a)

      pp is selective;

    2. (b)

      for every function f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} which is not constant on an element of pp there is a set UpU\in p such that fUf\upharpoonright{U} is linearly independent;

    3. (c)

      for every pp-independent set {fn:nω}\{f_{n}\colon n\in\omega\} of functions fn:ω[ω]<ωf_{n}\colon\omega\to[\omega]^{<\omega}, there is a set UpU\in p and a function g:ωωg\colon\omega\to\omega so that fnUg(n)f_{n}\upharpoonright{U\setminus g(n)} is one-to-one for nωn\in\omega, fn[Ug(n)]fm[Ug(m)]=f_{n}[U\setminus g(n)]\cap f_{m}[U\setminus g(m)]=\varnothing if nmn\neq m, and

      nωfn[Ug(n)]\bigsqcup_{n\in\omega}f_{n}[U\setminus g(n)]

      is linearly independent.333Here \sqcup denotes the disjoint union.

Proof.

Let us prove (1). Suppose first that pp is a Q-point. Let f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} be a finite-to-one function. Recursively define a strictly increasing sequence nk:kω\langle n_{k}\colon k\in\omega\rangle of elements of ω\omega and a strictly increasing sequence of finite subgroups Hn:nω\langle H_{n}\colon n\in\omega\rangle of [ω]<ω[\omega]^{<\omega} so that

  1. (i)

    Hnrng(f)H_{n}\cap\text{rng}(f)\neq\emptyset for all nωn\in\omega, and

  2. (ii)

    nk=maxf1[Hk]&f′′[0,nk]Hk+1n_{k}=\max f^{-1}[H_{k}]\ \&\ f^{\prime\prime}[0,n_{k}]\subset H_{k+1}, for all kωk\in\omega.

Then partitioning ω\omega into the union of even intervals, and the union of odd intervals, one of them is in pp, say

A=iω[n2i,n2i+1)p.A=\bigcup_{i\in\omega}[n_{2i},n_{2i+1})\in p.

Applying Q-pointness we can assume that there exists a UpU\in p such that

|[n2i,n2i+1)U|=1 for every iω,|[n_{2i},n_{2i+1})\cap U|=1\text{ for every }i\in\omega,

and UAU\subseteq A. By item (ii) and since Hn:nω\langle H_{n}\colon n\in\omega\rangle is a strictly increasing sequence, it follows that fUf\upharpoonright{U} is one-to-one and {f(n):nU}\{f(n)\colon n\in U\} is linearly independent.

Suppose now that for every finite-to-one function f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} there is a UpU\in p such that fUf\upharpoonright{U} is one-to-one and {f(n):nU}\{f(n)\colon n\in U\} is linearly independent. Let In:nω\langle I_{n}\colon n\in\omega\rangle be a partition of ω\omega into finite sets. Define a finite-to-one function f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} by putting f(k)={n}f(k)=\{n\} for each kInk\in I_{n}. Then there is an UpU\in p such that fUf\upharpoonright{U} is one-to-one and {f(n):nU}\{f(n)\colon n\in U\} is linearly independent. Note that necessarily |InU|1|I_{n}\cap U|\leqslant 1 for every nωn\in\omega and therefore pp is a Q-point.

(2) To see (a) implies (b), let f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} be a function which is not constant on an element of pp. Using P-pointness, we may assume without loss of generality that ff is a finite-to-one function. So, by item (1), there is an UpU\in p such that fUf\upharpoonright{U} is one-to-one and {f(n):nU}\{f(n)\colon n\in U\} is linearly independent.

To see (b) implies (a), let f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} be a function which is not constant on an element of pp. By item (b), there is an UpU\in p such that fUf\upharpoonright{U} is one-to-one and {f(n):nU}\{f(n)\colon n\in U\} is linearly independent, and hence pp is a P-point. To verify that pp is a Q-point, notice that every finite-to-one function f:ω[ω]<ωf\colon\omega\to[\omega]^{<\omega} is not constant on an element of pp. Thus, by clause (1) we get the desired conclusion.

To prove (a) implies (c), assume that {fn:nω}\{f_{n}\colon n\in\omega\} is a pp-independent set of functions fn:ω[ω]<ωf_{n}\colon\omega\to[\omega]^{<\omega}.

Fact 3.13.

Given a finite pp-independent set {fi:i<n}\{f_{i}\colon i<n\}, and a finite linearly independent set A[ω]<ωA\subset[\omega]^{<\omega}, the set of all mωm\in\omega such that A{fi(m):i<n}A\sqcup\{f_{i}(m)\colon i<n\} is linearly independent, belongs to pp. \square

Using Fact 3.13, we can recursively construct a pp-branching tree Tω<ωT\subset\omega^{<\omega} such that for every tTt\in T, it follows that

succT(t)={m:At{fi(m):i|t|} is linearly independent},\text{succ}_{T}(t)=\{m\colon A_{t}\sqcup\{f_{i}(m)\colon i\leqslant|t|\}\text{ is linearly independent}\},

where At={fi(t(j)):i<|t|&j[i,|t|)}A_{t}=\{f_{i}(t(j))\colon i<|t|\ \&\ j\in[i,|t|)\}.

By Galvin-Shelah’s theorem ([4, Theorem 4.5.3]), let x[T]x\in[T] be a branch such that rng(x)p\text{rng}(x)\in p. Thus, if we put U=rng(x)U=\text{rng}(x) and g(n)=max(xn)g(n)=\max(x\upharpoonright{n}) for nωn\in\omega, we get the properties as in (c).

Finally, notice that (b) is a particular instance of (c) when {fn:nω}={f}\{f_{n}\colon n\in\omega\}=\{f\}. Therefore, (c) implies (b). ∎

Remark 3.14.

In the previous theorem, it is possible to change the group [ω]<ω[\omega]^{<\omega} to any arbitrary Boolean group and, the conclusions of the theorem remain true.

For technical reasons, it will be necessary to reformulate the notion of pp-independence.

Lemma 3.15.

Let 𝔾\mathbb{G} be a Boolean group and 0<α<ω10<\alpha<\omega_{1}. Then:

  1. (1)

    A set {fi:iI}\{f_{i}\colon i\in I\} of functions fi:ω𝔾f_{i}\colon\omega\to\mathbb{G} is pp-independent if and only if the function

    f~:I𝗎𝗅𝗍p1(𝔾)/𝗎𝗅𝗍p0(𝔾)\tilde{f}\colon I\to\mathsf{ult}_{p}^{1}(\mathbb{G})/\mathsf{ult}_{p}^{0}(\mathbb{G})

    defined by f~(i)=π01([fi])\tilde{f}(i)=\pi_{0}^{1}([f_{i}]) for iIi\in I is linearly independent, where π01:𝗎𝗅𝗍p1(𝔾)𝗎𝗅𝗍p1(𝔾)/𝗎𝗅𝗍p0(𝔾)\pi_{0}^{1}\colon\mathsf{ult}_{p}^{1}(\mathbb{G})\to\mathsf{ult}_{p}^{1}(\mathbb{G})/\mathsf{ult}_{p}^{0}(\mathbb{G}) denotes the natural projection.

  2. (2)

    A set {fi:iI}\{f_{i}\colon i\in I\} of functions fi:ω𝗎𝗅𝗍pα(𝔾)f_{i}\colon\omega\to\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) is pp-independent if and only if the set {f~i:iI}\{\tilde{f}_{i}\colon i\in I\} of functions f~i:ω𝗎𝗅𝗍pα(𝔾)/𝗎𝗅𝗍pα(𝔾)\tilde{f}_{i}\colon\omega\to\mathsf{ult}_{p}^{\alpha}(\mathbb{G})/\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G}) is a pp-independent set, where each f~i\tilde{f}_{i} is defined by f~i(n)=παα(fi(n))\tilde{f}_{i}(n)=\pi_{\alpha^{-}}^{\alpha}(f_{i}(n)) for nωn\in\omega and

    παα:𝗎𝗅𝗍pα(𝔾)𝗎𝗅𝗍pα(𝔾)/𝗎𝗅𝗍pα(𝔾)\pi^{\alpha}_{\alpha^{-}}\colon\mathsf{ult}_{p}^{\alpha}(\mathbb{G})\to\mathsf{ult}_{p}^{\alpha}(\mathbb{G})/\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G})

    denotes the natural projection.

Proof.

To see (1), note that

iE[fi]=[a]\sum_{i\in E}[f_{i}]=[\langle a\rangle]

iff

{n:a+iEfi(n)=}p,\left\{n\colon a+\sum_{i\in E}f_{i}(n)=\varnothing\right\}\in p,

for every non-empty finite set EIE\subset I and every a𝔾a\in\mathbb{G}.

To see (2). Let EIE\subseteq I be a non-empty finite set and a𝗎𝗅𝗍pα(𝔾)a\in\mathsf{ult}_{p}^{\alpha}(\mathbb{G}) and, notice that

{n:iEf~i(n)=παα(a)}p\left\{n\colon\sum_{i\in E}\tilde{f}_{i}(n)=\pi^{\alpha}_{\alpha^{-}}(a)\right\}\in p

iff

{n:a+iEfi(n)𝗎𝗅𝗍pα(𝔾)}p\left\{n\colon a+\sum_{i\in E}f_{i}(n)\in\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G})\right\}\in p

iff

{n:(a+[f])+iEfi(n)=}p,\left\{n\colon(a+[f])+\sum_{i\in E}f_{i}(n)=\varnothing\right\}\in p,

where for some UpU\in p we have that f(n)=a+iEfi(n)𝗎𝗅𝗍pα(𝔾)f(n)=a+\sum_{i\in E}f_{i}(n)\in\mathsf{ult}_{p}^{\alpha^{-}}(\mathbb{G}) for nUn\in U. ∎

Note also that if ht([f])=α\text{ht}([f])=\alpha for α>0\alpha>0, then ff is not constant on an element of pp (equivalently, {f}\{f\} is pp-independent).

Lemma 3.16.

Let 0<α<ω10<\alpha<\omega_{1}, [f]𝗎𝗅𝗍pα([ω]<ω)[f]\in\mathsf{ult}_{p}^{\alpha}([\omega]^{<\omega}) and pp a selective ultrafilter. If ff is not constant on an element of pp, then there is a tree T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) with TTfT\subseteq T_{f} such that f^Ω0(T)\hat{f}\upharpoonright{\Omega_{0}(T)} is linearly independent.444Here, we are using the notation from the proof of Proposition 3.2 (1).

Proof.

First, if α=1\alpha=1, then the conclusion of the lemma follows from Proposition 3.12 (2) (b). Thus, we may assume that α2\alpha\geqslant 2.

We plan to construct a tree T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) with TTfT\subseteq T_{f}, so that the following hold for any βα\beta\leqslant\alpha:

  • if β>0\beta>0, then f^(t):tΩβ(T)\langle\hat{f}(t)\colon t\in\Omega_{\beta}(T)\rangle forms a pp-independence sequence;

  • if β=0\beta=0, then f^(t):tΩ0(T)\langle\hat{f}(t)\colon t\in\Omega_{0}(T)\rangle forms a linearly independent sequence.

In order to do this, first, we recursively construct a tree T𝕃p(Tα)T^{*}\in\mathbb{L}_{p}(T_{\alpha}) with TTfT^{*}\subseteq T_{f}, so that the following hold for any tTt\in T^{*} with ρT(t)1\rho_{T^{*}}(t)\geqslant 1:

  • if ht(f^(t))=1\text{ht}(\hat{f}(t))=1, then f^(tn):nsuccT(t)[ω]<ω\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T^{*}}(t)\rangle\subset[\omega]^{<\omega} forms a linearly independent sequence;

  • if ht(f^(t))=β+1\text{ht}(\hat{f}(t))=\beta+1 with β1\beta\geqslant 1, then f^(tn):nsuccT(t)𝗎𝗅𝗍pβ([ω]<ω)\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T^{*}}(t)\rangle\subset\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega}) forms a pp-independent sequence;

  • if ht(f^(t))\text{ht}(\hat{f}(t)) is a limit ordinal, then ht(f^(tn)):nsuccT(t)\langle\text{ht}(\hat{f}(t^{\frown}n))\colon n\in\text{succ}_{T^{*}}(t)\rangle is a strictly increasing sequence of non-zero ordinals.

At step tt. If ht(f^(t))=1\text{ht}(\hat{f}(t))=1 and f^(tn):nsuccTf(t)\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T_{f}}(t)\rangle is not constant on an element of pp, then ρTf(t)=1\rho_{T_{f}}(t)=1 and applying Proposition 3.12 (2) (b) there exists UpU\in p with UsuccTf(t)U\subseteq\text{succ}_{T_{f}}(t) such that f^(tn):nU\langle\hat{f}(t^{\frown}n)\colon n\in U\rangle is linearly independent. Therefore, in this case we put succT(t)=U\text{succ}_{T^{*}}(t)=U.

If ht(f^(t))=β+1\text{ht}(\hat{f}(t))=\beta+1 with β1\beta\geqslant 1 and f^(tn):nsuccTf(t)\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T_{f}}(t)\rangle is not constant on an element of pp, then consider the sequence

f~t:succTf(t)𝗎𝗅𝗍pβ([ω]<ω)/𝗎𝗅𝗍pβ([ω]<ω)\tilde{f}_{t}\colon\text{succ}_{T_{f}}(t)\to\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega})/\mathsf{ult}_{p}^{-\beta}([\omega]^{<\omega})

defined by f~t(n)=πββ(f^(tn))\tilde{f}_{t}(n)=\pi^{\beta}_{\beta^{-}}(\hat{f}(t^{\frown}n)) for nsuccTf(t)n\in\text{succ}_{T_{f}}(t). Since f^(tn):nsuccTf(t)\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T_{f}}(t)\rangle is not constant on an element of pp, by Lemma 3.15 (2), the sequence f~t\tilde{f}_{t} is not constant on an element of pp. Therefore, applying Proposition 3.12 (2) (b) and Remark 3.14, we can find an element UpU\in p with UsuccTf(t)U\subseteq\text{succ}_{T_{f}}(t) such that f~tU\tilde{f}_{t}\upharpoonright{U} is linearly independent. Thus, by Lemma 3.15 (1), putting succT(t)=U\text{succ}_{T^{*}}(t)=U we can conclude that f^(tn):nsuccT(t)\langle\hat{f}(t^{\frown}n)\colon n\in\text{succ}_{T^{*}}(t)\rangle forms a pp-independent sequence.

If ht(f^(t))=β\text{ht}(\hat{f}(t))=\beta is a limit ordinal, then for every δ<β\delta<\beta we set Uδ={nsuccTf(t):ht(f^(tn))=δ}U_{\delta}=\{n\in\text{succ}_{T_{f}}(t)\colon\text{ht}(\hat{f}(t^{\frown}n))=\delta\}. Then

δ<βUδ=succTf(t),\bigsqcup_{\delta<\beta}U_{\delta}=\text{succ}_{T_{f}}(t),

where each UδpU_{\delta}\notin p. The selectiveness of pp implies that there is an UpU\in p such that |UUδ|1|U\cap U_{\delta}|\leqslant 1 for every δ<β\delta<\beta. Thus, in this case put succT(t)=UU0\text{succ}_{T^{*}}(t)=U\setminus U_{0}. This concludes recursive construction of TT^{*}.

Notice that ρT(t)=ht(f^(t))\rho_{T^{*}}(t)=\text{ht}(\hat{f}(t)) for every tTt\in T^{*}. Now given a tree T𝕃p(Tα)T^{\prime}\in\mathbb{L}_{p}(T_{\alpha}) with TTT^{\prime}\subseteq T^{*}, we can canonically list its members tTt^{\prime}\in T^{\prime} as {tkT:k<ω}\{t_{k}^{T^{\prime}}\colon k<\omega\} so that

  • tkTtlTt_{k}^{T^{\prime}}\subset t_{l}^{T^{\prime}} entails k<lk<l;

  • tkT=tnt_{k}^{T^{\prime}}=t^{\frown}n, tlT=tmt_{l}^{T^{\prime}}=t^{\frown}m, ht(f^(t))\text{ht}(\hat{f}(t)) is a limit ordinal, and ht(f^(tn))<ht(f^(tm))\text{ht}(\hat{f}(t^{\frown}n))<\text{ht}(\hat{f}(t^{\frown}m)) entails k<lk<l;

  • tkT=tnt_{k}^{T^{\prime}}=t^{\frown}n, tlT=tmt_{l}^{T^{\prime}}=t^{\frown}m, ht(f^(t))\text{ht}(\hat{f}(t)) is a successor ordinal, and n<mn<m entails k<lk<l.

Choose a sufficiently large regular cardinal θ\theta and a countable elementary submodel MM of H(θ),\langle H(\theta),\in\rangle containing all the relevant objects such as pp and TT^{*}. Fix UpU\in p so that UU is a pseudo-intersection of pMp\cap M. Put T=TUT^{**}=T^{*}\upharpoonright{U} and Vt=succT(t)V_{t}=\text{succ}_{T^{**}}(t) for t(T)+t\in(T^{**})^{+}.

We unfix tt, and construct by recursion on kk the required condition T={tkT:kω}𝕃p(Tα)T=\{t_{k}^{T}\colon k\in\omega\}\in\mathbb{L}_{p}(T_{\alpha}) with TTT\subseteq T^{**}, as well as an auxiliary function g:T+ωg\colon T^{+}\to\omega and sets WtVtW_{t}\subseteq V_{t} for tT+t\in T^{+} such that the following are satisfied:

  1. (a)

    Wt=Vtg(t)=succT(t)W_{t}=V_{t}\setminus g(t)=\text{succ}_{T}(t) for all tT+t\in T^{+} (by definition).

  2. (b)

    For all kk,

    • if ρT(tkT)=1\rho_{T}(t^{T}_{k})=1, then

      f^(tlTn):lk(nWtlT&ρT(tlTn)=0)[ω]<ω\left\langle\hat{f}(t_{l}^{T}{}^{\frown}n)\colon\exists\,l\leqslant k\left(n\in W_{t_{l}^{T}}\ \&\ \rho_{T}(t_{l}^{T}{}^{\frown}n)=0\right)\right\rangle\subseteq[\omega]^{<\omega}

      forms a linearly independent sequence;

    • if ρT(tkT)=β+1\rho_{T}(t^{T}_{k})=\beta+1 with β1\beta\geqslant 1, then

      f^(tlTn):lk(nWtlT&ρT(tlTn)=β)𝗎𝗅𝗍pβ([ω]<ω)\left\langle\hat{f}(t_{l}^{T}{}^{\frown}n)\colon\exists\,l\leqslant k\left(n\in W_{t_{l}^{T}}\ \&\ \rho_{T}(t_{l}^{T}{}^{\frown}n)=\beta\right)\right\rangle\subset\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega})

      forms a pp-independence sequence;

    • if ρT(tkT)=β\rho_{T}(t^{T}_{k})=\beta is a limit ordinal, then

      ht(f^(tlTn)):lk(nWtlT&ρT(tlT)=β)\left\langle\text{ht}(\hat{f}(t_{l}^{T}{}^{\frown}n))\colon\exists\,l\leqslant k\left(n\in W_{t_{l}^{T}}\ \&\ \rho_{T}(t_{l}^{T})=\beta\right)\right\rangle

      forms an one-to-one sequence, and

      sup{ht(f^(tlTn)):l<k(ρT(tlT)β&nWtlT&ρT(tlTn)<β)}\displaystyle\sup\left\{\text{ht}(\hat{f}(t_{l}^{T}{}^{\frown}n))\colon\exists\,l<k\left(\rho_{T}(t_{l}^{T})\neq\beta\ \&\ n\in W_{t_{l}^{T}}\ \&\ \rho_{T}(t_{l}^{T}{}^{\frown}n)<\beta\right)\right\}
      <min{ht(f^(tkTn)):nWtkT}.\displaystyle<\min\left\{\text{ht}(\hat{f}(t_{k}^{T}{}^{\frown}n))\colon n\in W_{t_{k}^{T}}\right\}.

Before describing the construction let us recall a simple fact from linear algebra:

Fact 3.17.

Let AA and BB be linearly independent sets in a Boolean group with AA a finite set. Then there is ABA^{\prime}\subseteq B such that |A||A||A^{\prime}|\leq|A| and A(BA)A\sqcup(B\setminus A^{\prime}) is linearly independent.

Proof of the fact. Let VA=span(A)V_{A}=\text{span}(A) and VB=span(B)V_{B}=\text{span}(B). Then dim(VAVB)|A|\text{dim}(V_{A}\cap V_{B})\leqslant|A|, so there exists a set ABA^{\prime}\subseteq B such that span(A)=VAVB\text{span}(A^{\prime})=V_{A}\cap V_{B}. Therefore, |A||A||A^{\prime}|\leqslant|A| and A(BA)A\sqcup(B\setminus A^{\prime}) is linearly independent.  

Basic step k=0k=0. So t0T=t_{0}^{T}=\varnothing. We put g(t0T)=0g(t_{0}^{T})=0 and hence Wt0T=Vt0TW_{t_{0}^{T}}=V_{t_{0}^{T}}. The conditions (a) and (b) are immediate.

Recursion step k>0k>0. Assume WtlTW_{t^{T}_{l}} (for l<kl<k) as well as gkg\upharpoonright{k} have been defined so as to satisfy (a) and (b). In particular, we know already tkTt_{k}^{T}, for it is of the form tlTnt_{l}^{T}{}^{\frown}n for some nWtlTn\in W_{t_{l}^{T}} where l<kl<k. Put ρT(tkT)=γ\rho_{T}(t^{T}_{k})=\gamma and assume γ1\gamma\geqslant 1. Note that, since (b) is satisfied for ll, we must have ρT(tlT)=γ+1\rho_{T}(t_{l}^{T})=\gamma+1 and

f^(tjTm):jl(mWtjT&ρT(tjTm)=γ)𝗎𝗅𝗍pγ([ω]<ω)\left\langle\hat{f}(t_{j}^{T}{}^{\frown}m)\colon\exists\,j\leqslant l\left(m\in W_{t_{j}^{T}}\ \&\ \rho_{T}(t_{j}^{T}{}^{\frown}m)=\gamma\right)\right\rangle\subset\mathsf{ult}_{p}^{\gamma}([\omega]^{<\omega})

is a pp-independent sequence. Put

Al\displaystyle A_{l} ={tlT:lk&ρT(tlT)=γ}\displaystyle=\{t_{l^{\prime}}^{T}\colon l^{\prime}\leqslant k\ \&\ \rho_{T}(t_{l^{\prime}}^{T})=\gamma\}
{tjTm:jl(mWtjT&ρT(tjTm)=γ)}\displaystyle\subset\left\{t_{j}^{T}{}^{\frown}m\colon\exists\,j\leqslant l\left(m\in W_{t_{j}^{T}}\ \&\ \rho_{T}(t_{j}^{T}{}^{\frown}m)=\gamma\right)\right\}

and Al=Al{tkT}A_{l}^{-}=A_{l}\setminus\{t_{k}^{T}\}.

If γ=1\gamma=1, then applying Proposition 3.12 (2) (c) there exists VpV\in p and a function gl:Alωg_{l}\colon A_{l}\to\omega such that

f^(tm):tAl&mVgl(t)[ω]<ω\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}\ \&\ m\in V\setminus g_{l}(t)\right\rangle\subseteq[\omega]^{<\omega}

is a linearly independent sequence. Using the elementarity of MM and our assumption about UU we conclude that there exists a function gl,U:Alωg_{l,U}\colon A_{l}\to\omega such that

f^(tm):tAl&mUgl,U(t)[ω]<ω\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}\ \&\ m\in U\setminus g_{l,U}(t)\right\rangle\subseteq[\omega]^{<\omega}

is a linearly independent sequence. Note that VtkTgl,U(tkT)Ugl,U(tkT)V_{t_{k}^{T}}\setminus g_{l,U}(t_{k}^{T})\subseteq U\setminus g_{l,U}(t_{k}^{T}) and Wtgl,U(t)Ugl,U(t)W_{t}\setminus g_{l,U}(t)\subseteq U\setminus g_{l,U}(t) for tAlt\in A_{l}^{-}. Since AlA_{l} is a finite set, using Fact 3.17, we can find a natural number g(tkT)gl,U(tkT)g(t_{k}^{T})\geqslant g_{l,U}(t_{k}^{T}) so that

f^(tm):tAl&mWtf^(tkTm):mVtkTg(tkT)\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}^{-}\ \&\ m\in W_{t}\right\rangle\cup\left\langle\hat{f}(t_{k}^{T}{}^{\frown}m)\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\rangle

forms a linearly independent sequence, as required.

For the case γ=β+1\gamma=\beta+1 with β1\beta\geqslant 1, we will proceed in a similar way as the previous case. Given tAlt\in A_{l}, let

f~t:Vt𝗎𝗅𝗍pβ([ω]<ω)/𝗎𝗅𝗍pβ([ω]<ω)\tilde{f}_{t}\colon V_{t}\to\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega})/\mathsf{ult}_{p}^{\beta^{-}}([\omega]^{<\omega})

be defined by f~t(m)=πββ(f^(tm))\tilde{f}_{t}(m)=\pi_{\beta}^{\beta^{-}}(\hat{f}(t^{\frown}m)) for mVtm\in V_{t}. By Lemma 3.15 (2), {f~t:tAl}\{\tilde{f}_{t}\colon t\in A_{l}\} is a pp-independent set. Thus, applying Proposition 3.12 (2) (c) and Remark 3.14, we can find an element VpV\in p and a function gl:Alωg_{l}\colon A_{l}\to\omega such that

f~t(m):tAl&mVgl(t)𝗎𝗅𝗍pβ([ω]<ω)/𝗎𝗅𝗍pβ([ω]<ω)\left\langle\tilde{f}_{t}(m)\colon t\in A_{l}\ \&\ m\in V\setminus g_{l}(t)\right\rangle\subseteq\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega})/\mathsf{ult}_{p}^{\beta^{-}}([\omega]^{<\omega})

is a linearly independent sequence. By elementarity of MM and the property of UU we have that there exists a function gl,U:Alωg_{l,U}\colon A_{l}\to\omega such that

f~t(m):tAl&mUgl,U(t)\left\langle\tilde{f}_{t}(m)\colon t\in A_{l}\ \&\ m\in U\setminus g_{l,U}(t)\right\rangle

is a linearly independent sequence. Since AlA_{l} is a finite set, VtkTgl,U(tkT)Ugl,U(tkT)V_{t_{k}^{T}}\setminus g_{l,U}(t_{k}^{T})\subseteq U\setminus g_{l,U}(t_{k}^{T}) and Wtgl,U(t)Ugl,U(t)W_{t}\setminus g_{l,U}(t)\subseteq U\setminus g_{l,U}(t) for tAlt\in A_{l}^{-}, using Fact 3.17, we can find a natural number g(tkT)gl,U(tkT)g(t_{k}^{T})\geqslant g_{l,U}(t_{k}^{T}) so that

f~t(m):tAl&mWtf~tkT(m):mVtkTg(tkT)\left\langle\tilde{f}_{t}(m)\colon t\in A_{l}^{-}\ \&\ m\in W_{t}\right\rangle\cup\left\langle\tilde{f}_{t_{k}^{T}}(m)\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\rangle

forms a linearly independent sequence and, by Lemma 3.15 (1), this means that

f^(tm):tAl&mWtf^(tkTm):mVtkTg(tkT)𝗎𝗅𝗍pβ([ω]<ω)\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}^{-}\ \&\ m\in W_{t}\right\rangle\cup\left\langle\hat{f}(t_{k}^{T}{}^{\frown}m)\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\rangle\subset\mathsf{ult}_{p}^{\beta}([\omega]^{<\omega})

forms a pp-independent sequence, as required.

If γ\gamma is a limit ordinal, then applying Proposition 3.12 (2) (c) there exists VpV\in p and a function gl:Alωg_{l}\colon A_{l}\to\omega such that

f^(tm):tAl&mVgl(t)𝗎𝗅𝗍pγ([ω]<ω)\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}\ \&\ m\in V\setminus g_{l}(t)\right\rangle\subset\mathsf{ult}_{p}^{\gamma^{-}}([\omega]^{<\omega})

is a linearly independent sequence. Thus, proceeding as previous cases, it is possible to find a function gl,U:Alωg_{l,U}\colon A_{l}\to\omega and a natural number g(tkT)gl,U(tkT)g(t_{k}^{T})\geqslant g_{l,U}(t_{k}^{T}) so that

f^(tm):tAl&mWtf^(tkTm):mVtkTg(tkT)\left\langle\hat{f}(t^{\frown}m)\colon t\in A_{l}^{-}\ \&\ m\in W_{t}\right\rangle\cup\left\langle\hat{f}(t_{k}^{T}{}^{\frown}m)\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\rangle

forms a linearly independent sequence. In particular,

ht(f^(tm)):tAl&mWtht(f^(tkTm)):mVtkTg(tkT)\left\langle\text{ht}(\hat{f}(t^{\frown}m))\colon t\in A_{l}^{-}\ \&\ m\in W_{t}\right\rangle\cup\left\langle\text{ht}(\hat{f}(t_{k}^{T}{}^{\frown}m))\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\rangle

forms an one-to-one sequence and, since γ\gamma is a limit ordinal, one sees that without loss of generality, we may assume that

sup{ht(f^(tlTm)):l<k(ρT(tlT)γ&mWtlT&ρT(tlTm)<γ)}\displaystyle\sup\left\{\text{ht}(\hat{f}(t_{l}^{T}{}^{\frown}m))\colon\exists\,l<k\left(\rho_{T}(t_{l}^{T})\neq\gamma\ \&\ m\in W_{t_{l}^{T}}\ \&\ \rho_{T}(t_{l}^{T}{}^{\frown}m)<\gamma\right)\right\}
<min{ht(f^(tkTm)):mVtkTg(tkT)},\displaystyle<\min\left\{\text{ht}(\hat{f}(t_{k}^{T}{}^{\frown}m))\colon m\in V_{t_{k}^{T}}\setminus g(t_{k}^{T})\right\},

as required. ∎

Now we are ready to prove the main theorem of this section.

Proof of the Theorem 3.4. According to Proposition 3.2, 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) is a Hausdorff pp-compact topological group. It remains therefore only to show that 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) contains no non-trivial convergent sequences to π([])\pi([\langle\varnothing\rangle]). To see this, let f~:ω𝖴𝗅𝗍pω1([ω]<ω)\tilde{f}\colon\omega\to\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) be a non-trivial sequence, say f~(n)=π(f(n))\tilde{f}(n)=\pi(f(n)) (nωn\in\omega) where f:ω𝗎𝗅𝗍pω1([ω]<ω)f\colon\omega\to\mathsf{ult}_{p}^{\omega_{1}}([\omega]^{<\omega}). Without loss of generality we can assume that f~\tilde{f} is a one-to-one function. Thus, since

𝗎𝗅𝗍pω1([ω]<ω)=𝗎𝗅𝗍p(α<ω1𝗎𝗅𝗍pα([ω]<ω)),\mathsf{ult}_{p}^{\omega_{1}}([\omega]^{<\omega})=\mathsf{ult}_{p}\left(\bigcup_{\alpha<\omega_{1}}\mathsf{ult}_{p}^{\alpha}([\omega]^{<\omega})\right),

there exists 0<α<ω10<\alpha<\omega_{1} so that [f]𝗎𝗅𝗍pα([ω]<ω)[f]\in\mathsf{ult}_{p}^{\alpha}([\omega]^{<\omega}) and ff is not constant on an element of pp. By Lemma 3.16, there is a tree T𝕃p(Tα)T\in\mathbb{L}_{p}(T_{\alpha}) with TTfT\subseteq T_{f} such that f^Ω0(T)\hat{f}\upharpoonright{\Omega_{0}(T)} is linearly independent. Note that f^[Ω0(T)][ω]<ω\hat{f}[\Omega_{0}(T)]\subseteq[\omega]^{<\omega}. Take ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) so that f^[Ω0(T)]Φ1(1)\hat{f}[\Omega_{0}(T)]\subseteq\Phi^{-1}(1). So Φ¯([f^])=1\overline{\Phi}([\hat{f}])=1 and hence Φ¯([f])=1\overline{\Phi}([f])=1. Thus, Φ¯\overline{\Phi} is a witness that the sequence ff does not τBohr¯\tau_{\,\overline{\text{Bohr}}}-converge to [][\langle\varnothing\rangle] and, since f~\tilde{f} is one-to-one, in fact f~\tilde{f} does not converge to π([])\pi([\langle\varnothing\rangle]).  

4. Countably compact group without convergent sequences

In this section we develop the ideas introduced in the previous section into a ZFC construction of a countably compact subgroup of 2𝔠2^{\mathfrak{c}} without non-trivial convergent sequences. Recall that any boolean group of size 𝔠\mathfrak{c} (in particular 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega})) is isomorphic to [𝔠]<ω[\mathfrak{c}]^{<\omega}. In fact, the extension of homomorphisms produces a (topological and algebraic) embedding hh of (𝖴𝗅𝗍pω1([ω]<ω),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}),\tau_{\,\overline{\text{Bohr}}}) into 2𝔠2Hom([ω]<ω,2)2^{\mathfrak{c}}\simeq 2^{\text{Hom}([\omega]^{<\omega},2)} defined by

h([f])(Φ)=Φ¯([f]).h([f])(\Phi)=\overline{\Phi}([f]).

Similarly to the ultrapower construction, we shall extend the Bohr topology τBohr\tau_{\,\text{Bohr}} on [ω]<ω[\omega]^{<\omega} to a group topology τBohr¯\tau_{\,\overline{\text{Bohr}}} on [𝔠]<ω[\mathfrak{c}]^{<\omega} to obtain the result. The difference is that rather than using a single ultrafilter, we shall use a carefully constructed 𝔠\mathfrak{c}-sized family of ultrafilters.

Theorem 4.1.

There is a Hausdorff countably compact topological Boolean group without non-trivial convergent sequences.

Proof.

We shall construct a countably compact topology on [𝔠]<ω[\mathfrak{c}]^{<\omega} starting from ([ω]<ω,τBohr)([\omega]^{<\omega},\tau_{\,\text{Bohr}}) as follows:

Fix an indexed family {fα:α[ω,𝔠)}([𝔠]<ω)ω\{f_{\alpha}\colon\alpha\in[\omega,\mathfrak{c})\}\subset([\mathfrak{c}]^{<\omega})^{\omega} of one-to-one sequences such that

  1. (1)

    for every infinite X[𝔠]<ωX\subseteq[\mathfrak{c}]^{<\omega} there is an α[ω,𝔠)\alpha\in[\omega,\mathfrak{c}) with rng(fα)X\text{rng}(f_{\alpha})\subseteq X,

  2. (2)

    each fαf_{\alpha} is a sequence of linearly independent elements, and

  3. (3)

    rng(fα)[α]<ω\text{rng}(f_{\alpha})\subset[\alpha]^{<\omega} for every α[ω,𝔠)\alpha\in[\omega,\mathfrak{c}).

Given a sequence {pα:α[ω,𝔠)}ω\{p_{\alpha}\colon\alpha\in[\omega,\mathfrak{c})\}\subset\omega^{*} define for every ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2) its extension Φ¯Hom([𝔠]<ω,2)\overline{\Phi}\in\text{Hom}([\mathfrak{c}]^{<\omega},2) recursively by putting

Φ¯({α})=pα-limnωΦ¯(fα(n)).\overline{\Phi}(\{\alpha\})=p_{\alpha}\text{-}\lim_{n\in\omega}\overline{\Phi}(f_{\alpha}(n)).

Note that [ω]<ω[\omega]^{<\omega} together with the independent set {{α}:α[ω,𝔠)}\{\{\alpha\}:\alpha\in[\omega,\mathfrak{c})\} generate the group [𝔠]<ω[\mathfrak{c}]^{<\omega} so the above definition uniquely extends Φ\Phi to a homomorphism Φ¯:[𝔠]<ω2\overline{\Phi}:[\mathfrak{c}]^{<\omega}\to 2.

This allows us to define the topology τBohr¯\tau_{\,\overline{\text{Bohr}}} induced by {Φ¯:ΦHom([ω]<ω,2)}\{\overline{\Phi}:\Phi\in\text{Hom}([\omega]^{<\omega},2)\} on [𝔠]<ω[\mathfrak{c}]^{<\omega} as the weakest topology making all Φ¯\overline{\Phi} continuous (for ΦHom([ω]<ω,2)\Phi\in\text{Hom}([\omega]^{<\omega},2)), or equivalently, the group topology having {Ker(Φ¯):ΦHom([ω]<ω,2)}\{\text{Ker}(\overline{\Phi}):\Phi\in\text{Hom}([\omega]^{<\omega},2)\} as a subbasis of the filter of neighbourhoods of the neutral element \varnothing. It follows directly from the above observation that independently of the choice of the ultrafilters the topology is a countably compact group topology on [𝔠]<ω[\mathfrak{c}]^{<\omega}. Indeed, {α}{fα(n):nω}¯τBohr¯\{\alpha\}\in\overline{\{f_{\alpha}(n)\colon n\in\omega\}}^{\tau_{\,\overline{\text{Bohr}}}} for every α[ω,𝔠)\alpha\in[\omega,\mathfrak{c}), in fact {α}=pα-limnωfα(n)\{\alpha\}=p_{\alpha}\text{-}\lim_{n\in\omega}f_{\alpha}(n).

Call a set D[𝔠]ωD\in[\mathfrak{c}]^{\omega} suitably closed if ωD\omega\subseteq D and nωfα(n)D\bigcup_{n\in\omega}f_{\alpha}(n)\subseteq D for every αD\alpha\in D. The following claim shows that the construction is locally countable.

Claim 4.2.

The topology τBohr¯\tau_{\,\overline{\text{Bohr}}} contains no non-trivial convergent sequences if and only if D[𝔠]ω suitably closed ΨHom([D]<ω,2) such that \forall D\in[\mathfrak{c}]^{\omega}\text{ suitably closed }\exists\Psi\in\text{Hom}([D]^{<\omega},2)\text{ such that }

  1. (1)

    αDωΨ({α})=pα-limnωΨ(fα(n))\forall\alpha\in D\setminus\omega\ \Psi(\{\alpha\})=p_{\alpha}\text{-}\lim_{n\in\omega}\Psi(f_{\alpha}(n));

  2. (2)

    i2|{n:Ψ(fα(n))=i}|=ω\forall i\in 2\ |\{n:\Psi(f_{\alpha}(n))=i\}|=\omega.

Proof of the claim. Given an infinite X[𝔠]<ωX\subseteq[\mathfrak{c}]^{<\omega} there is an α[ω,𝔠)\alpha\in[\omega,\mathfrak{c}) such that rng(fα)X\text{rng}(f_{\alpha})\subseteq X. Let DD be suitably closed with αD\alpha\in D, and let Ψ\Psi be the given homomorphism. It follows directly from the definition, and property (1) of Ψ\Psi, that, if Φ=Ψ[ω]<ω\Phi=\Psi\restriction[\omega]^{<\omega} then in turn Ψ=Φ¯[D]<ω\Psi=\overline{\Phi}\restriction[D]^{<\omega}, which implies that fα(n):nω\langle f_{\alpha}(n)\colon n\in\omega\rangle (and hence also XX) is not a convergent sequence as Φ¯\overline{\Phi} takes both values 0 and 11 infinitely often on the set {fα(n):nω}\{f_{\alpha}(n)\colon n\in\omega\}.

The reverse implication is even more trivial (and not really necessary for the proof).  

Note that if this happens then, in particular,

K=ΦHom([ω]<ω,2)Ker(Φ¯)K=\bigcap_{\Phi\in\text{Hom}([\omega]^{<\omega},2)}\text{Ker}(\overline{\Phi})

is finite, and [𝔠]<ω/K[\mathfrak{c}]^{<\omega}/K with the quotient topology is the Hausdorff countably compact group without non-trivial convergent sequences we want.

Hence to finish the proof it suffices to produce a suitable family of ultrafilters.

Claim 4.3.

There is a family {pα:α<𝔠}\{p_{\alpha}\colon\alpha<\mathfrak{c}\} of free ultrafilters on ω\omega such that for every D[𝔠]ωD\in[\mathfrak{c}]^{\omega} and {fα:αD}\{f_{\alpha}:\alpha\in D\} such that each fαf_{\alpha} is an one-to-one enumeration of linearly independent elements of [𝔠]<ω[\mathfrak{c}]^{<\omega} there is a sequence Uα:αD\langle U_{\alpha}:\alpha\in D\rangle such that

  1. (1)

    {Uα:αD}\{U_{\alpha}:\alpha\in D\} is a family of pairwise disjoint subsets of ω\omega,

  2. (2)

    UαpαU_{\alpha}\in p_{\alpha} for every αD\alpha\in D, and

  3. (3)

    {fα(n):αD&nUα}\{f_{\alpha}(n):\alpha\in D\ \&\ n\in U_{\alpha}\} is a linearly independent subset of [𝔠]<ω[\mathfrak{c}]^{<\omega}.

Proof of the claim. Fix {In:nω}\{I_{n}:n\in\omega\} a partition of ω\omega into finite sets such that

|In|>nm<n|Im|,|I_{n}|>n\cdot\sum_{m<n}|I_{m}|,

and let

={Bω:nω|InB|m<n|Im|}.\mathcal{B}=\{B\subseteq\omega:\ \forall n\in\omega\ |I_{n}\setminus B|\leqslant\sum_{m<n}|I_{m}|\}.

Note that \mathcal{B} is a centered family, and denote by \mathcal{F} the filter it generates. Note also, that if AA is an infinite subset of ω\omega then nAIn+\bigcup_{n\in A}I_{n}\in\mathcal{F}^{+}.

Let {Aα:α𝔠}\{A_{\alpha}:\alpha\in\mathfrak{c}\} be any almost disjoint family of size 𝔠\mathfrak{c} of infinite subsets of ω\omega, and let, for every α<𝔠\alpha<\mathfrak{c}, pαp_{\alpha} be any ultrafilter on ω\omega extending nAαIn\mathcal{F}\restriction\bigcup_{n\in A_{\alpha}}I_{n}.

To see that this works, let D={αn:nω}D=\{\alpha_{n}:n\in\omega\} and a family {fα:αD}\{f_{\alpha}:\alpha\in D\} of one-to-one sequences of linearly independent elements of [𝔠]<ω[\mathfrak{c}]^{<\omega} be given. Let {Bn:nω}\{B_{n}:n\in\omega\} be a partition of ω\omega such that Bn=AαnB_{n}=^{*}A_{\alpha_{n}} for every nωn\in\omega, and recursively define a set BB such that, I0BI_{0}\subseteq B,

|InB|m<n|Im||I_{n}\setminus B|\leqslant\sum_{m<n}|I_{m}|

for every n>0n>0, and

{fαn(m):mBIl,lBn and nω} is linearly independent.\{f_{\alpha_{n}}(m):m\in B\cap I_{l},\,l\in B_{n}\text{ and }n\in\omega\}\text{ is linearly independent}.

In order to obtain the set BB we recursively use Fact 3.17 to construct a sequence {Cl:lω}\{C_{l}\colon l\in\omega\} of finite sets such that:

  • C0=C_{0}=\varnothing;

  • If l>0l>0, then

    1. (i)

      ClIlC_{l}\subseteq I_{l},

    2. (ii)

      |Cl|i<l|IiCi||C_{l}|\leqslant\sum_{i<l}|I_{i}\setminus C_{i}|, and

    3. (iii)

      i<lfαni[IiCi]\bigsqcup_{i<l}f_{\alpha_{n_{i}}}[I_{i}\setminus C_{i}] is linearly independent, where nin_{i} is such that iBnii\in B_{n_{i}}.

Put B=lωIlClB=\bigcup_{l\in\omega}I_{l}\setminus C_{l}. By (ii), it follows that BB\in\mathcal{B}\subseteq\mathcal{F}. Since Bn=AnB_{n}=^{*}A_{n} and BB\in\mathcal{F}, is clear that Un:=BlBnIlpαnU_{n}:=B\cap\bigcup_{l\in B_{n}}I_{l}\in p_{\alpha_{n}}. By (iii), it follows that {fαn(m):mUn and nω}\{f_{\alpha_{n}}(m)\colon m\in U_{n}\text{ and }n\in\omega\} is linearly independent. Therefore, the sequence Un:nω\langle U_{n}\colon n\in\omega\rangle is as required.  

Now, use this family of ultrafilters as the parameter in the construction of the topology described above. By Claim 4.2 it suffices to show that given a suitably closed D𝔠D\subseteq\mathfrak{c} and αDω\alpha\in D\setminus\omega there is a homomorphism Ψ:[D]<ω2\Psi:[D]^{<\omega}\to 2 such that

  1. (1)

    αDωΨ({α})=pα-limnωΨ(fα(n))\forall\alpha\in D\setminus\omega\ \Psi(\{\alpha\})=p_{\alpha}\text{-}\lim_{n\in\omega}\Psi(f_{\alpha}(n))

  2. (2)

    i2|{n:Ψ(fα(n))=i}|=ω\forall i\in 2\ |\{n:\Psi(f_{\alpha}(n))=i\}|=\omega.

By Claim 4.3, there is a sequence Uα:αDω\langle U_{\alpha}:\alpha\in D\setminus\omega\rangle such that

  1. (1)

    {Uα:αDω}\{U_{\alpha}:\alpha\in D\setminus\omega\} is a family of pairwise disjoint subsets of ω\omega,

  2. (2)

    UαpαU_{\alpha}\in p_{\alpha} for every αDω\alpha\in D\setminus\omega, and

  3. (3)

    {fα(n):αDω&nUα}\{f_{\alpha}(n):\alpha\in D\setminus\omega\ \&\ n\in U_{\alpha}\} is a linearly independent subset of [𝔠]<ω[\mathfrak{c}]^{<\omega}.

Enumerate DωD\setminus\omega as {αn:nω}\{\alpha_{n}:n\in\omega\} so that α=α0\alpha=\alpha_{0}. Recursively define a function h:{fα(n):αDω&nUα}2h:\{f_{\alpha}(n):\alpha\in D\setminus\omega\ \&\ n\in U_{\alpha}\}\to 2 so that

  1. (1)

    hh takes both values 0 and 11 infinitely often on {fα0(n):nUα0{α0}}\{f_{\alpha_{0}}(n):\ n\in U_{\alpha_{0}}\setminus\{\alpha_{0}\}\},

  2. (2)

    Ψ0({α0})=pα0\Psi_{0}(\{\alpha_{0}\})=p_{\alpha_{0}}-limkUα0Ψ0(fα0(k))\lim_{k\in U_{\alpha_{0}}}\Psi_{0}(f_{\alpha_{0}}(k)), and

  3. (3)

    if {αn}\{\alpha_{n}\} is in the subgroup generated by {fαm(n):m<n&nUαm}\{f_{\alpha_{m}}(n):m<n\ \&\ n\in U_{\alpha_{m}}\} then Ψn({αn})=pαn-limkUαnΨn(fαn(k))\Psi_{n}(\{\alpha_{n}\})=p_{\alpha_{n}}\text{-}\lim_{k\in U_{\alpha_{n}}}\Psi_{n}(f_{\alpha_{n}}(k)), and making sure that

  4. (4)

    Ψn({αn})=pαn-limkUαnΨn(fα(k)).\Psi_{n}(\{\alpha_{n}\})=p_{\alpha_{n}}\text{-}\lim_{k\in U_{\alpha_{n}}}\Psi_{n}(f_{\alpha}(k)).

Where Ψn\Psi_{n} is a homomorphism defined on the subgroup generated by

{fαm(n):m<n&nUαm}{{αm}:m<n}\{f_{\alpha_{m}}(n):m<n\ \&\ n\in U_{\alpha_{m}}\}\cup\{\{\alpha_{m}\}:m<n\}

extending h{fαm(n):m<n&nUαm}h\restriction\{f_{\alpha_{m}}(n):m<n\ \&\ n\in U_{\alpha_{m}}\}. Then let Ψ\Psi be any homomorphism extending mωΨm\bigcup_{m\in\omega}\Psi_{m}. Doing this is straightforward given that the set

{fα(n):αDω&nUα}\{f_{\alpha}(n):\alpha\in D\setminus\omega\ \&\ n\in U_{\alpha}\}

is linearly independent.

Finally, note that if we, for a[𝔠]<ωa\in[\mathfrak{c}]^{<\omega}, let

H(a)(Φ)=Φ¯(a)H(a)(\Phi)=\overline{\Phi}(a)

then HH is a continuous homomorphism from [𝔠]<ω[\mathfrak{c}]^{<\omega} to 2Hom([ω]<ω,2)2^{\text{Hom}([\omega]^{<\omega},2)} whose kernel is the same group K=ΦHom([ω]<ω)Ker(Φ¯)K=\bigcap_{\Phi\in\text{Hom}([\omega]^{<\omega})}\text{Ker}(\overline{\Phi}), which defines a homeomorphism (and isomorphism) of [𝔠]<ω/K[\mathfrak{c}]^{<\omega}/K onto a subgroup of 2Hom([ω]<ω)2𝔠2^{\text{Hom}([\omega]^{<\omega})}\simeq 2^{\mathfrak{c}}. ∎

5. Concluding remarks and questions

Even though the results of the paper solve longstanding open problems, they also open up very interesting new research possibilities. In Theorem 3.4 we showed that if pp is a selective ultrafilter then 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) is a pp-compact group without non-trivial convergent sequences. This raises the following two interesting questions, the first of which is the equivalent of van Douwen’s problem for pp-compact groups.

Question 5.1.

Is there in ZFC a Hausdorff pp-compact topological group without a non-trivial convergent sequence?

A closely related problem asks how much can the property of being selective be weakened in Theorem 3.4. Recall that by Corollary 3.11 it is consistent that there is a P-point pp for which 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) does contain a non-trivial convergent sequence. On the other hand, 𝖴𝗅𝗍pω1([ω]<ω)𝖴𝗅𝗍pαω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega})\simeq\mathsf{Ult}_{p^{\alpha}}^{\omega_{1}}([\omega]^{<\omega}) for every α<ω1\alpha<\omega_{1}, so there are consistently non-P-points for which (𝖴𝗅𝗍pω1([ω]<ω)(\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) contains no non-trivial convergent sequences.

Question 5.2.

Is the existence of an ultrafilter pp such that 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) contains no non-trivial convergent sequences equivalent to the existence of a selective ultrafilter?

Question 5.3.

Is it consistent with ZFC that 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) contains a non-trivial convergent sequence for every ultrafilter pωp\in\omega^{*}?

Assuming 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}) contains no non-trivial convergent sequences, it is easy to construct for every nωn\in\omega a subgroup \mathbb{H} of 𝖴𝗅𝗍pω1([ω]<ω)\mathsf{Ult}_{p}^{\omega_{1}}([\omega]^{<\omega}), such that n\mathbb{H}^{n} is countably compact while n+1\mathbb{H}^{n+1} is not. It should be possible to modify the construction in Theorem 4.1 to construct such groups in ZFC. These issues will be dealt with in a separate paper.

Another interesting question is:

Question 5.4.

Is it consistent with 𝖹𝖥𝖢\mathsf{ZFC} that there is a Hausdorff countably compact topological group without non-trivial convergent sequences of weight <𝔠<\mathfrak{c}?

Finally, let us recall a 1955 problem of Wallace:

Question 5.5 (Wallace [46]).

Is every both-sided cancellative countably compact topological semigroup necessarily a group?

It is well known that a counterexample can be recursively constructed inside of any non-torsion countably compact topological group without non-trivial convergent sequences [29, 39]. The fact that we do not know how to modify (in ZFC) the construction in Theorem 4.1 to get a non-torsion example of a countably compact group seems surprising. Also the proof of Theorem 3.4 does not seem to easily generalize to non-torsion groups. Hence:

Question 5.6.

Is there, in ZFC , a non-torsion countably compact topological group without non-trivial convergent sequences?

Question 5.7.

Assume pωp\in\omega^{*} is a selective ultrafilter. Does (𝖴𝗅𝗍pω1(),τBohr¯)(\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{Z}),\tau_{\,\overline{\text{Bohr}}}) contain no non-trivial convergent sequence?

Here the τBohr¯\tau_{\,\overline{\text{Bohr}}} is defined as before as the weakest topology on 𝗎𝗅𝗍pω1()\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{Z}) which makes all extensions of homomorphisms from \mathbb{Z} to 𝕋\mathbb{T} continuous, and the group 𝖴𝗅𝗍pω1()=𝗎𝗅𝗍pω1()/K\mathsf{Ult}_{p}^{\omega_{1}}(\mathbb{Z})=\mathsf{ult}_{p}^{\omega_{1}}(\mathbb{Z})/K with KK being the intersection of all kernels of the extended homomorphisms.


Acknowledments. The authors would like to thank Alan Dow and Osvaldo Guzmán for stimulating conversations. The authors also wish to thank the anonymous referee for a thorough reading of the text and for helpful suggestions.

References

  • [1] A. V. Arhangel’skii, Selected old open problems in general topology, Bul. Acad. Ştiinţe Repub. Mold. Mat. (2013), no. 2-3, 37–46. MR 3241473
  • [2] Alexander Arhangel\cprimeskii and Mikhail Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris, 2008. MR 2433295 (2010i:22001)
  • [3] Paul Bankston, Coarse topologies in nonstandard extensions via separative ultrafilters, Illinois J. Math. 27 (1983), no. 3, 459–466. MR 698308
  • [4] Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995, On the structure of the real line. MR 1350295 (96k:03002)
  • [5] Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/1970), 185–193. MR 0251697
  • [6] Andreas Blass, Ultrafilters and set theory, Ultrafilters across mathematics, Contemp. Math., vol. 530, Amer. Math. Soc., Providence, RI, 2010, pp. 49–71. MR 2757533
  • [7] W. W. Comfort, Topological groups, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 1143–1263. MR 776643
  • [8] by same author, Problems on topological groups and other homogeneous spaces, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 313–347. MR 1078657
  • [9] by same author, Letter to K. A. Ross, (August 1, 1966).
  • [10] W. W. Comfort, S. U. Raczkowski, and F. J. Trigos-Arrieta, Making group topologies with, and without, convergent sequences, Appl. Gen. Topol. 7 (2006), no. 1, 109–124. MR 2284939
  • [11] W. W. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483–496. MR 207886
  • [12] Mauro Di Nasso and Marco Forti, Hausdorff ultrafilters, Proc. Amer. Math. Soc. 134 (2006), no. 6, 1809–1818. MR 2207497
  • [13] Dikran Dikranjan, Countably compact groups satisfying the open mapping theorem, Topology Appl. 98 (1999), no. 1-3, 81–129, II Iberoamerican Conference on Topology and its Applications (Morelia, 1997). MR 1719996
  • [14] Dikran Dikranjan and Dmitri Shakhmatov, Forcing hereditarily separable compact-like group topologies on abelian groups, Topology Appl. 151 (2005), no. 1-3, 2–54. MR 2139740
  • [15] by same author, Selected topics from the structure theory of topological groups, Open problems in topology II, Elsevier, 2007, pp. 389–406.
  • [16] Zdeněk Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91. MR 0203676
  • [17] S. Garcia-Ferreira and A. H. Tomita, Countably compact groups and pp-limits, Bol. Soc. Mat. Mexicana (3) 9 (2003), no. 2, 309–321. MR 2029279
  • [18] S. Garcia-Ferreira, A. H. Tomita, and S. Watson, Countably compact groups from a selective ultrafilter, Proc. Amer. Math. Soc. 133 (2005), no. 3, 937–943. MR 2113947
  • [19] Salvador García-Ferreira, Three orderings on β(ω)ω\beta(\omega)\setminus\omega, Topology Appl. 50 (1993), no. 3, 199–216. MR 1227550
  • [20] A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, General Topology and Appl. 6 (1976), no. 2, 199–205. MR 0431086
  • [21] Klaas Pieter Hart and Jan van Mill, A countably compact topological group HH such that H×HH\times H is not countably compact, Trans. Amer. Math. Soc. 323 (1991), no. 2, 811–821. MR 982236
  • [22] M. Hrušák, D. Meza-Alcántara, E. Thümmel, and C. Uzcátegui, Ramsey type properties of ideals, Ann. Pure Appl. Logic 168 (2017), no. 11, 2022–2049. MR 3692233
  • [23] Piotr B. Koszmider, Artur H. Tomita, and S. Watson, Forcing countably compact group topologies on a larger free abelian group, Proceedings of the 15th Summer Conference on General Topology and its Applications/1st Turkish International Conference on Topology and its Applications (Oxford, OH/Istanbul, 2000), vol. 25, 2000, pp. 563–574 (2002). MR 1925707
  • [24] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980, An introduction to independence proofs. MR 597342
  • [25] V. Kuz\cprimeminov, Alexandrov’s hypothesis in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727–729. MR 0104753
  • [26] Jerzy Łoś, Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, Mathematical interpretation of formal systems, North-Holland Publishing Co., Amsterdam, 1955, pp. 98–113. MR 0075156
  • [27] V. I. Malykhin and L. B. Shapiro, Pseudocompact groups without convergent sequences, Mat. Zametki 37 (1985), no. 1, 103–109, 139. MR 792239
  • [28] J. Novák, On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106–112. MR 0060212
  • [29] Desmond Robbie and Sergey Svetlichny, An answer to A. D. Wallace’s question about countably compact cancellative semigroups, Proc. Amer. Math. Soc. 124 (1996), no. 1, 325–330. MR 1328373
  • [30] Manuel Sanchis and Artur Hideyuki Tomita, Almost pp-compact groups, Topology Appl. 159 (2012), no. 9, 2513–2527. MR 2921841
  • [31] H. H. Schaefer and M. P. Wolff, Topological vector spaces, second ed., Graduate Texts in Mathematics, vol. 3, Springer-Verlag, New York, 1999. MR 1741419
  • [32] Dmitri Shakhmatov, A comparative survey of selected results and open problems concerning topological groups, fields and vector spaces, Topology Appl. 91 (1999), no. 1, 51–63. MR 1666795
  • [33] Paul J. Szeptycki and Artur H. Tomita, HFD groups in the Solovay model, Topology Appl. 156 (2009), no. 10, 1807–1810. MR 2519216
  • [34] Hidetaka Terasaka, On Cartesian product of compact spaces, Osaka Math. J. 4 (1952), 11–15. MR 0051500
  • [35] M. G. Tkachenko, Countably compact and pseudocompact topologies on free abelian groups, Izv. Vyssh. Uchebn. Zaved. Mat. (1990), no. 5, 68–75. MR 1083312
  • [36] Michael G. Tkachenko, Topological features of topological groups, Handbook of the history of general topology, Vol. 3, Hist. Topol., vol. 3, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1027–1144. MR 1900269
  • [37] A. H. Tomita, Countable compactness and finite powers of topological groups without convergent sequences, Topology Appl. 146/147 (2005), 527–538. MR 2107169
  • [38] A. H. Tomita and S. Watson, Ultraproducts, pp-limits and antichains on the Comfort group order, Topology Appl. 143 (2004), no. 1-3, 147–157. MR 2080287
  • [39] Artur H. Tomita, The Wallace problem: a counterexample from MAcountable{\rm MA}_{\rm countable} and pp-compactness, Canad. Math. Bull. 39 (1996), no. 4, 486–498. MR 1426694
  • [40] Artur Hideyuki Tomita, On finite powers of countably compact groups, Comment. Math. Univ. Carolin. 37 (1996), no. 3, 617–626. MR 1426926
  • [41] by same author, A group under MAcountable\rm MA_{countable} whose square is countably compact but whose cube is not, Topology Appl. 91 (1999), no. 2, 91–104. MR 1664516
  • [42] by same author, Two countably compact topological groups: one of size ω\aleph_{\omega} and the other of weight ω\aleph_{\omega} without non-trivial convergent sequences, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2617–2622. MR 1974663
  • [43] by same author, A solution to Comfort’s question on the countable compactness of powers of a topological group, Fund. Math. 186 (2005), no. 1, 1–24. MR 2163099
  • [44] by same author, The weight of a countably compact group whose cardinality has countable confinality, Topology Appl. 150 (2005), no. 1-3, 197–205. MR 2133678
  • [45] Eric K. van Douwen, The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980), no. 2, 417–427. MR 586725
  • [46] A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95–112. MR 67907