This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coulomb branches of noncotangent type

Alexander Braverman Department of Mathematics, University of Toronto and Perimeter Institute of Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5;
Skolkovo Institute of Science and Technology
[email protected]
Gurbir Dhillon Yale University, New Haven, CT 06511, USA [email protected] Michael Finkelberg National Research University Higher School of Economics, Russian Federation, Department of Mathematics, 6 Usacheva st, 119048 Moscow;
Skolkovo Institute of Science and Technology;
Institute for the Information Transmission Problems
[email protected]
Sam Raskin The University of Texas at Austin, Department of Mathematics, RLM 8.100, 2515 Speedway Stop C1200, Austin, TX 78712, USA [email protected]  and  Roman Travkin Skolkovo Institute of Science and Technology, Moscow, Russia [email protected]
Abstract.

We propose a construction of the Coulomb branch of a 3d𝒩=43d\ {\mathcal{N}}=4 gauge theory corresponding to a choice of a connected reductive group GG and a symplectic finite-dimensional reprsentation 𝐌{\mathbf{M}} of GG, satisfying certain anomaly cancellation condition. This extends the construction of [BFN1] (where it was assumed that 𝐌=𝐍𝐍\mathbf{M}=\mathbf{N}\oplus\mathbf{N}^{*} for some representation 𝐍\mathbf{N} of GG). Our construction goes through certain “universal” ring object in the twisted derived Satake category of the symplectic group Sp(2n){\mathop{\operatorname{\rm Sp}}}(2n). The construction of this object uses a categorical version of the Weil representation; we also compute the image of this object under the (twisted) derived Satake equivalence and show that it can be obtained from the theta-sheaf [Ly, LL] on BunSp(2n)(1){\operatorname{Bun}}_{{\mathop{\operatorname{\rm Sp}}}(2n)}({\mathbb{P}}^{1}) via certain Radon transform. We also discuss applications of our construction to a potential mathematical construction of SS-duality for super-symmetric boundary conditions in 4-dimensional gauge theory and to (some extension of) the conjectures of Ben-Zvi, Sakellaridis and Venkatesh.

1. Introduction

1.1. Symplectic duality

Let XX be an algebraic variety over \mathbb{C}. We say that XX is singular symplectic (or XX has symplectic singularities) if

(1) XX is a normal Poisson variety;

(2) There exists a smooth dense open subset UU of XX on which the Poisson structure comes from a symplectic structure. We shall denote by ω\omega the corresponding symplectic form.

(3) There exists a resolution of singularities π:X~X\pi\colon\widetilde{X}\to X such that πω\pi^{*}\omega has no poles on X~\widetilde{X}.

We say that XX is a conical symplectic singularity if in addition to (1)-(3) above one has a ×\mathbb{C}^{\times}-action on XX which acts on ω\omega with some positive weight and which contracts all of XX to one point.

A symplectic resolution π:X~X\pi\colon\widetilde{X}\to X is a proper and birational morphism π\pi such that πω\pi^{*}\omega extends to a symplectic form on X~\widetilde{X}. Here is one example. Let 𝔤\mathfrak{g} be a semi-simple Lie algebra over \mathbb{C} and let 𝒩𝔤𝔤\mathcal{N}_{\mathfrak{g}}\subset\mathfrak{g}^{*} be its nilpotent cone. Let \mathcal{B} denote the flag variety of 𝔤\mathfrak{g}. Then the Springer map π:T𝒩𝔤\pi\colon T^{*}\mathcal{B}\to\mathcal{N}_{\mathfrak{g}} is proper and birational, so if we let X=𝒩𝔤,X~=TX=\mathcal{N}_{\mathfrak{g}},\widetilde{X}=T^{*}\mathcal{B} we get a symplectic resolution.

The idea of symplectic duality is this: often conical symplectic singularities come in “dual” pairs (X,X)(X,X^{*}) (the assignment XXX\to X^{*} is by no means a functor; we just have a lot of interesting examples of dual pairs). What does it mean that XX and XX^{*} are dual? This is in general not easy to tell, but many geometric questions about XX should be equivalent to some other geometric questions about XX^{*}. For example, we should have dimH(X~,)=dimH(X~,)\dim H^{\bullet}(\widetilde{X},\mathbb{C})=\dim H^{\bullet}(\widetilde{X}^{*},\mathbb{C}) (but these spaces are not supposed to be canonically isomorphic). We refer the reader to [BPW], [BLPW] for more details. There should be a lot of other connections between XX and XX^{*} which will take much longer to describe; we refer the reader to loc.cit. for the description of these properties as well as for examples.

1.2. 3-dimensional 𝒩=4{\mathcal{N}}=4 quantum field theories

One source of dual pairs (X,X)(X,X^{*}) comes from quantum field theory in the following way. Physicists have a notion of 3-dimensional 𝒩=4{\mathcal{N}}=4 super-symmetric quantum field theory. Any such theory 𝒯\mathcal{T} is supposed to have a well-defined moduli space of vacua (𝒯)\mathcal{M}(\mathcal{T}). This space is complicated, but it should have two special pieces called the Higgs and the Coulomb branch; we shall denote these by H(𝒯)\mathcal{M}_{H}(\mathcal{T}) and C(𝒯)\mathcal{M}_{C}(\mathcal{T}). They are supposed to be (singular) symplectic complex algebraic varieties (in fact, they don’t even have to be algebraic but for simplicity we shall only consider examples when they are).

Let GG be a complex reductive algebraic group and let 𝐌\mathbf{M} be a symplectic vector space with a Hamiltonian action of GG. Then to the pair (G,𝐌)(G,\mathbf{M}) one is supposed to associate a theory 𝒯(G,𝐌)\mathcal{T}(G,\mathbf{M}) provided that 𝐌\mathbf{M} satisfies certain anomaly cancellation condition, which can be formulated as follows. The representation 𝐌\mathbf{M} defines a homomorphism GSp(𝐌)G\to{\mathop{\operatorname{\rm Sp}}}(\mathbf{M}) and thus a homomorphism π4(G)π4(Sp(𝐌))=/2\pi_{4}(G)\to\pi_{4}({\mathop{\operatorname{\rm Sp}}}(\mathbf{M}))=\mathbb{Z}/2\mathbb{Z}. The anomaly cancellation condition is the condition that this homomorphism is trivial. Without going to further details at the moment we would like to emphasize the following:

1) Any 𝐌\mathbf{M} of the form T𝐍=𝐍𝐍T^{*}\mathbf{N}=\mathbf{N}\oplus\mathbf{N}^{*} where 𝐍\mathbf{N} is some representation GG satisfies this condition.

2) The anomaly cancellation condition is a “/2\mathbb{Z}/2\mathbb{Z}-condition” (later on we are going to formulate it more algebraically).

Assume that we are given 𝐌\mathbf{M} as above for which the anomaly cancellation condition is satisfied. Then the theory 𝒯(G,𝐌)\mathcal{T}(G,\mathbf{M}) is called gauge theory with gauge group GG and matter 𝐌\mathbf{M}. Its Higgs branch is expected to be equal to 𝐌///G\mathbf{M}/\!\!/\!\!/G: the Hamiltonian reduction of 𝐌\mathbf{M} with respect to GG. In particular, all Nakajima quiver varieties arise in this way (the corresponding theories are called quiver gauge theories).

The corresponding Coulomb branches are much trickier to define. Physicists had some expectations about those but no rigorous definition in general (only some examples). The idea is that at least in the conical case the pair (H(𝒯),C(𝒯))(\mathcal{M}_{H}(\mathcal{T}),\mathcal{M}_{C}(\mathcal{T})) should produce an example of a dual symplectic pair. A mathematical approach to the definition of Coulomb branches was proposed in [N]. A rigorous definition of the Coulomb branches C(G,𝐌){\mathcal{M}}_{C}(G,{\mathbf{M}}) is given in [BFN1] under the assumption that 𝐌=T𝐍=𝐍𝐍\mathbf{M}=T^{*}\mathbf{N}=\mathbf{N}\oplus\mathbf{N}^{*} for some representation 𝐍\mathbf{N} of GG.111In addition to the Coulomb branch C(G,𝐌){\mathcal{M}}_{C}(G,{\mathbf{M}}), in [BFN1, Remark 3.14] the authors define the KK-theoretic Coulomb branch CK(G,𝐌){\mathcal{M}}_{C}^{K}(G,{\mathbf{M}}) under the same assumption (physically, it should correspond to the Coulomb branch of the corresponding 4d gauge theory of 3×S1{\mathbb{R}}^{3}\times S^{1}). We would like to emphasize that at this point we are not able to extend this construction to arbitrary symplectic 𝐌{\mathbf{M}} with anomaly cancellation condition. The varieties C(G,𝐌)\mathcal{M}_{C}(G,\mathbf{M}) are normal, affine, Poisson, generically symplectic and satisfy the monopole formula. We expect that they are singular symplectic, but we can not prove this in general, cf. [We]. The main ingredient in the definition is the geometry of the affine Grassmannian GrG{\operatorname{Gr}}_{G} of GG. In [BFN1, BFN2, BFN3] these varieties are computed in many cases (in particular, in the case of so called quiver gauge theories — it turns out that one can associate a pair (G,𝐍)(G,\mathbf{N}) to any framed quiver). The quantizations of these varieties are also studied, as well as their (Poisson) deformations and (partial) resolutions.

1.3. Coulomb branches via ring objects in the derived Satake category

Let 𝒦=((t))𝒪=[[t]]{\mathcal{K}}={\mathbb{C}}(\!(t)\!)\supset{\mathcal{O}}={\mathbb{C}}[\![t]\!]. The affine Grassmannian ind-scheme GrG=G𝒦/G𝒪{\operatorname{Gr}}_{G}=G_{\mathcal{K}}/G_{\mathcal{O}} is the moduli space of GG-bundles on the formal disc equipped with a trivialization on the punctured formal disc. One can consider the derived Satake category DG𝒪(GrG)D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}).222In fact we are going to work with a certain renormalized version of it, cf. §2.1. This is a monoidal category which is monoidally equivalent to DG(Sym(𝔤[2]))D^{G^{\vee}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2])): the derived category of dg-modules over Sym(𝔤[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2]) endowed with a compatible action of GG^{\vee} (the monoidal structure on this category is just given by tensor product over Sym(𝔤[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2])); we shall denote the corresponding functor from DG𝒪(GrG)D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) to DG(Sym(𝔤[2])D^{G^{\vee}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2]) by ΦG\Phi_{G}. In [BFN3] we have attached to any 𝐍\mathbf{N} as above a certain ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} in DG𝒪(GrG)D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) (here as before we set 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N}) such that the algebra of functions on C(G,𝐌)\mathcal{M}_{C}(G,\mathbf{M}) is equal to HG𝒪(GrG,𝒜G,𝐌)H^{\bullet}_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G},\mathcal{A}_{G,\mathbf{M}}) (this cohomology has an algebra structure coming from the fact that 𝒜G,𝐌\mathcal{A}_{G,{\mathbf{M}}} is a ring object).

1.4. Ring objects for general 𝐌\mathbf{M} and twisted Satake category

One of the main goals of this paper is to construct the ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} for arbitrary symplectic representation 𝐌\mathbf{M} satisfying the anomaly cancellation condition.333Another construction of the Coulomb branch of a 3d𝒩=43d\ {\mathcal{N}}=4 gauge theory in the noncotangent case was proposed by C. Teleman [T]. In fact, we can construct the ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} for any symplectic 𝐌\mathbf{M} but instead of being an object of the derived Satake category DG𝒪(GrG)D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) it will be an object of a certain twisted version of it. More precisely, the representation 𝐌\mathbf{M} defines certain determinant line bundle 𝒟𝐌\mathcal{D}_{\mathbf{M}} on GrG{\operatorname{Gr}}_{G} which is equipped with certain multiplicative structure; we shall denote by 𝒟𝐌0\mathcal{D}_{\mathbf{M}}^{0} the total space of this bundle without the zero section. The line bundle 𝒟𝐌\mathcal{D}_{\mathbf{M}} is also G𝒪G_{\mathcal{O}}-equivariant. In particular, for any τ\tau\in{\mathbb{C}} one can consider the category DτG𝒪(GrG)D_{\tau}^{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) of G𝒪G_{\mathcal{O}}-equivariant sheaves on 𝒟𝐌0\mathcal{D}_{\mathbf{M}}^{0} which are ×{\mathbb{C}}^{\times}-monodromic with monodromy q=e2πiτq=e^{2\pi i\tau}. This category is again monoidal (because of the above multiplicative structure on 𝒟𝐌\mathcal{D}_{\mathbf{M}}). If τ\tau is a rational number and 𝒟𝐌τ\mathcal{D}_{\mathbf{M}}^{\tau} exists as a multiplicative line bundle on GrG{\operatorname{Gr}}_{G}, the twisted category DτG𝒪(GrG)D_{\tau}^{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) is naturally equivalent to DG𝒪(GrG)D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) (as a monoidal category).

In this paper we shall construct a ring object 𝒜G,𝐌D1/2G𝒪(GrG)\mathcal{A}_{G,\mathbf{M}}\in D_{-1/2}^{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}). It turns out (see Proposition 4.1.1) that the anomaly cancellation condition is equivalent to the existence of a multiplicative square root of 𝒟𝐌\mathcal{D}_{\mathbf{M}}. So, we can construct the ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} but it will be untwisted only if the anomaly cancellation condition is satisfied. In particular, we can take its G𝒪G_{\mathcal{O}}-equivariant cohomology (and thus define the algebra of functions on the corresponding Coulomb branch) only under the anomaly cancellation assumption.

1.5. The universal twisted ring object

In fact in order to construct the ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} for any GG and 𝐌\mathbf{M} it is enough to do it when G=Sp(2n)G={\mathop{\operatorname{\rm Sp}}}(2n) and 𝐌=2n\mathbf{M}=\mathbb{C}^{2n} is its tautological representation. The reason is as follows. Assume first that 𝐌=T𝐍{\mathbf{M}}=T^{*}{\mathbf{N}} and let i:GGi\colon G^{\prime}\to G be a homomorphism of connected reductive groups. It induces a morphism i~:GrGGrG\widetilde{i}\colon{\operatorname{Gr}}_{G^{\prime}}\to{\operatorname{Gr}}_{G}, and it follows from the construction of [BFN3] that 𝒜G,𝐌=i~!𝒜G,𝐌\mathcal{A}_{G^{\prime},\mathbf{M}}=\widetilde{i}^{!}\mathcal{A}_{G,\mathbf{M}}. Assuming that the same is true for arbitrary 𝐌\mathbf{M} and since the symplectic representation 𝐌\mathbf{M} is the same as a homomorphism GSp(𝐌)G\to{\mathop{\operatorname{\rm Sp}}}(\mathbf{M}) we see that the case G=Sp(𝐌)G={\mathop{\operatorname{\rm Sp}}}(\mathbf{M}) is universal in the sense that the object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} in general should just be equal to the !!-pullback of 𝒜Sp(𝐌),𝐌\mathcal{A}_{{\mathop{\operatorname{\rm Sp}}}(\mathbf{M}),\mathbf{M}}.444This was first observed by V. Drinfeld.

In this paper we do the following:

1) We construct the object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} (as was explained above it is enough to do it in the case G=Sp(𝐌)G={\mathop{\operatorname{\rm Sp}}}(\mathbf{M})).

2) We check that when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} for some representation 𝐍\mathbf{N} of GG, this construction coincides with the one of [BFN3].

3) In the case when G=Sp(𝐌)G={\mathop{\operatorname{\rm Sp}}}(\mathbf{M}) we compute the image of 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} under the twisted version of the derived geometric Satake equivalence (see §1.8 below). To do that we express 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} as a Radon transform of a certain theta-sheaf [Ly, LL] for the curve 1\mathbb{P}^{1} (the necessary facts and definitions about the Radon transform are reviewed in Appendix A). The idea that 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} should be related to the theta-sheaf also belongs to V. Drinfeld.

1.6. Idea of the construction

Let us briefly explain the idea of the construction of 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}}. Let 𝒞\mathcal{C} be a (dg) category endowed with a strong action of an algebraic group HH (e.g. one can take 𝒞\mathcal{C} to be the (dg-model of the) derived category of DD-modules on a scheme XX endowed with an action of HH). Let \mathcal{F} be an object of 𝒞\mathcal{C} which is equivariant under some closed subgroup LL of HH. Then one can canonically attach to \mathcal{F} a ring object 𝒜DmodL(H/L)\mathcal{A}_{\mathcal{F}}\in\mathrm{D}{\operatorname{-mod}}^{L}(H/L) (the LL-equivariant derived category of DD-modules on H/LH/L; this category is endowed with a natural monoidal structure with respect to convolution). This object has the property that its !-restriction to any hHh\in H is equal to RHom(,h)\operatorname{RHom}(\mathcal{F},\mathcal{F}^{h}).

Here is a variant of this construction. Assume that HH is endowed with a central extension

1×H~H1,1\to{\mathbb{C}}^{\times}\to\widetilde{H}\to H\to 1,

which splits over LL. Then for any κ\kappa\in\mathbb{C} it makes sense to talk about an action HH on 𝒞\mathcal{C} of level κ\kappa. Then in the same way as above we can define 𝒜DmodκL(H/L)\mathcal{A}_{\mathcal{F}}\in\operatorname{D-mod}_{\kappa}^{L}(H/L) (here Dmodκ\operatorname{D-mod}_{\kappa} stands for the corresponding category of twisted DD-modules on H/LH/L). The same thing works when HH is a group ind-scheme. We are going to apply it to the case when H=G𝒦,L=G𝒪,𝒞=𝒲modH=G_{\mathcal{K}},L=G_{\mathcal{O}},\mathcal{C}={\mathcal{W}}{\operatorname{-mod}}, where 𝒲{\mathcal{W}} is the Weyl algebra of the symplectic vector space 𝐌𝒦{\mathbf{M}}_{\mathcal{K}}. The line bundle 𝒟𝐌\mathcal{D}_{\mathbf{M}} defines a central extension G~𝒦{\widetilde{G}}_{\mathcal{K}} of G𝒦G_{\mathcal{K}}, and it is well-known that the action of G𝒦G_{\mathcal{K}} on 𝐌𝒦{\mathbf{M}}_{\mathcal{K}} naturally extends to a strong action of G~𝒦{\widetilde{G}}_{\mathcal{K}} on 𝒲mod{\mathcal{W}}{\operatorname{-mod}} of level 1/2-1/2. We now take \mathcal{F} to be [𝐌𝒪]{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}].555This action should be thought of as a categorical analog of the Weil representation, cf. [LL]. The corresponding ring object 𝒜G,𝐌\mathcal{A}_{G,\mathbf{M}} is just (the Riemann-Hilbert functor applied to) 𝒜\mathcal{A}_{\mathcal{F}} for \mathcal{F} as above. It is not difficult to check that when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} this construction coincides with the one from [BFN3].

Remark 1.6.1.

Here we make a remark about a connection between the above construction and some physics terminology. Suppose 𝐌\mathbf{M} is a symplectic representation of GG and suppose the anomaly cancellation holds. In this case, physicists would say that there are two (closely related) structures attached to this data:

a) a 3d 𝒩=4\mathcal{N}=4 theory T(G,𝐌)T(G,\mathbf{M}) such that T(G,𝐌)T(G,\mathbf{M}) has what physicists call GG-flavor symmetry. In this case one can gauge this symmetry to get a new 3d 𝒩=4\mathcal{N}=4 theory; this new theory is the theory 𝒯(G,𝐌)\mathcal{T}(G,\mathbf{M}) discussed in §1.2;

b) a supersymmetric boundary condition (G,𝐌)\mathcal{B}(G,\mathbf{M}) for 4d 𝒩=4\mathcal{N}=4 Yang-Mills.

The relationship between the two is that 𝒯(G,𝐌)\mathcal{T}(G,\mathbf{M}) is obtained from (G,𝐌)\mathcal{B}(G,\mathbf{M}) by pairing with the Dirichlet boundary condition for Yang-Mills; this implies that T(G,𝐌)T(G,\mathbf{M}) has GG-flavor symmetry (it comes from the corresponding symmetry of the Dirichlet boundary condition). Our constructions yield algebraic data attached to A-twists of the resulting physical theories. The category 𝒲{\mathcal{W}}-mod is the category of line operators of (the A-twist of) T(G,𝐌)T(G,\mathbf{M}), and the G𝒦G_{\mathcal{K}}-action on 𝒲{\mathcal{W}}-mod expresses the GG-flavor symmetry of T(G,𝐌)T(G,\mathbf{M}). More details about the connection between our language and the physics language can be found in [HR].

1.7. SS-duality and Ben-Zvi-Sakellaridis-Venkatesh conjectures

This subsection is somewhat digressive from the point of view of the main body of this paper. We include it here for completeness and in order to indicate some future research directions.

1.7.1. SS-duality for boundary conditions

The papers [GW1, GW2] developed the theory of super-symmetric boundary conditions in 4d gauge theories; it follows from loc.cit. that in addition to symplectic duality one should expect some kind of SS-duality for affine symplectic varieties 𝐌\mathbf{M} endowed with a Hamiltonian action of GG (here we no longer assume that 𝐌\mathbf{M} is a vector space) and with a ×{\mathbb{C}}^{\times}-action for which the symplectic form has degree 2 — again, satisfying some kind of anomaly cancellation condition (we don’t know how to formulate it precisely, but when 𝐌\mathbf{M} is a symplectic vector space with a linear action of GG, it should be the same condition as before; also, this condition should automatically be satisfied when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} where 𝐍\mathbf{N} is a smooth affine GG-variety). The SS-dual of 𝐌\mathbf{M} is another affine variety 𝐌\mathbf{M}^{\vee} endowed with a Hamiltonian action of the Langlands dual group GG^{\vee}. In fact, this kind of duality is not expected to be well-defined for arbitrary 𝐌\mathbf{M} — only in some “nice” cases, which we don’t know how to describe mathematically. Physically, it is explained in loc.cit. that to any 𝐌\mathbf{M} as above one can attach a super-symmetric boundary condition in the corresponding 4-dimensional gauge theory; SS-duality is supposed to be a well-defined operations on such boundary conditions, but since not all super-symmetric boundary conditions come from 𝐌\mathbf{M} as above, it follows that 𝐌\mathbf{M}^{\vee} will be well-defined only if we are sufficiently lucky. It should also be noted that in general one should definitely consider singular symplectic varieties. On the other hand, below we describe a rather general construction and some expected properties of it. Let us also note that more generally, when the anomaly cancellation condition is not satisfied, one should expect a duality between varieties 𝐌\mathbf{M} and 𝐌\mathbf{M}^{\vee} endowed with some additional “twisting data”.

1.7.2. The Whittaker reduction

Before we discuss a somewhat general approach to the construction of the SS-duality, let us give some explicit examples as well as some properties of SS-duality. First we need to recall the notion of Whittaker reduction.

Let 𝐌\mathbf{M} be any Hamiltonian GG-variety (i.e. 𝐌\mathbf{M} is a Poisson variety with a Hamiltonian GG-action). Let μ:𝐌𝔤\mu\colon\mathbf{M}\to\mathfrak{g}^{*} be the corresponding moment map. Let also UGU\subset G be a maximal unipotent subgroup of GG and let ψ:U𝔾a\psi\colon U\to\mathbb{G}_{a} be a generic homomorphism. Then we set WhitG(𝐌)\operatorname{Whit}_{G}(\mathbf{M}) to be the Hamiltonian reduction of 𝐌\mathbf{M} with respect to (U,ψ)(U,\psi). In other words, let us view ψ\psi as an element of 𝔲\mathfrak{u}^{*} (here 𝔲\mathfrak{u} is the Lie algebra of UU) and let 𝔤ψ\mathfrak{g}^{*}_{\psi} be the pre-image of ψ\psi under the natural projection 𝔤𝔲\mathfrak{g}^{*}\to\mathfrak{u}^{*}. Then

WhitG(𝐌)=(μ1(𝔤ψ))/U.\operatorname{Whit}_{G}(\mathbf{M})=(\mu^{-1}(\mathfrak{g}^{*}_{\psi}))/U.

It is well-known (cf. [K]) that the action of UU on 𝔤ψ\mathfrak{g}^{*}_{\psi} is free, so it is also free on μ1(𝔤ψ)\mu^{-1}(\mathfrak{g}^{*}_{\psi}). However, in principle μ1(𝔤ψ)\mu^{-1}(\mathfrak{g}^{*}_{\psi}) might be a dg-scheme. For simplicity we shall usually assume that it is not the case (for this it is enough to assume that μ\mu is flat over the regular part of 𝔤\mathfrak{g}^{*}).

More generally, we can talk about the Whittaker reduction of any GG-equivariant Sym(𝔤)\mathop{\operatorname{\rm Sym}}(\mathfrak{g})-module. The connection between the Whittaker reduction and the derived Satake isomorphism is this: it is shown in [BeF] that for any DG𝒪(GrG)\mathcal{F}\in D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}) we have

(1.7.1) HG𝒪(GrG,)=WhitG(Φ()).H^{\bullet}_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G},\mathcal{F})=\operatorname{Whit}_{G^{\vee}}(\Phi(\mathcal{F})).

1.7.3. Some expected properties of SS-duality

Here are some purely mathematical properties that are expected to be satisfied by the SS-dual variety 𝐌\mathbf{M}^{\vee} (when it is well-defined):

1) Assume that 𝐌\mathbf{M} is a point. Then 𝐌=WhitG(TG)\mathbf{M}^{\vee}=\operatorname{Whit}_{G^{\vee}}(T^{*}G^{\vee}) (note that TGT^{*}G^{\vee} is endowed with two commuting GG^{\vee}-actions, so after we take the Whittaker reduction with respect to one of them, the 2nd one remains).

2) Let HH be a connected reductive group and set G=H×HG=H\times H. Let 𝐌=TH\mathbf{M}=T^{*}H (with natural GG-action). Then we should have 𝐌=TH\mathbf{M}^{\vee}=T^{*}H^{\vee}.

3) Assume that 𝐌\mathbf{M} is a linear symplectic representation of GG satisfying the anomaly cancellation condition. Then one should have

(1.7.2) C(G,𝐌)=WhitG(𝐌).\mathcal{M}_{C}(G,\mathbf{M})=\operatorname{Whit}_{G^{\vee}}(\mathbf{M}^{\vee}).

4) We expect that (𝐌)=𝐌(\mathbf{M}^{\vee})^{\vee}=\mathbf{M} whenever it makes sense.

1.7.4. Construction of 𝐌\mathbf{M}^{\vee} in the cotangent case

Here is a construction in the case when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} where 𝐍\mathbf{N} is a smooth affine GG-variety. The construction of the ring object 𝒜G,𝐌\mathcal{A}_{G,{\mathbf{M}}} from [BFN3] makes sense verbatim in this case (in [BFN3] 𝐍\mathbf{N} was a vector space but it is not important for the construction). Let us consider ΦG(𝒜G,𝐌)\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}}). This is a commutative ring object of the derived category of GG^{\vee}-equivariant dg-modules over Sym(𝔤[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2]). Passing to its cohomology H(ΦG(𝒜G,𝐌))H^{\bullet}(\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}})) we just get a graded commutative algebra over Sym(𝔤[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2]).666In all the interesting cases we know the algebra ΦG(𝒜G,𝐌)\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}}) is formal, so we do not loose any information after passing to cohomology. Assuming that it has no cohomology in odd degrees, we can pass to its spectrum 𝐌{\mathbf{M}}^{\vee}. This is an affine scheme with an action of GG^{\vee} which is endowed with a compatible map to (𝔤)(\mathfrak{g}^{\vee})^{*}. In fact, the object 𝒜G,𝐌\mathcal{A}_{G,{\mathbf{M}}} is naturally equivariant with respect to the ×{\mathbb{C}}^{\times}-action which rescales t𝒦t\in\mathcal{K} (this action is usually called “loop rotation”). It is not difficult to see that (in the same way as in [BFN3]) this defines a natural non-commutative deformation of the ring H(ΦG(𝒜G,𝐌))H^{\bullet}(\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}})), and it particular, we get a Poisson structure on 𝐌\mathbf{M}^{\vee}. This Poisson structure is easily seen to be generically symplectic and the above map to (𝔤)({\mathfrak{g}}^{\!\scriptscriptstyle\vee})^{*} is the moment map for the GG^{\vee}-action and this Poisson structure. The grading on the ring H(ΦG(𝒜G,𝐌))H^{\bullet}(\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}})) defines a ×{\mathbb{C}}^{\times}-action on 𝐌\mathbf{M}^{\vee} with respect to which the symplectic form has degree 2 (more precisely, we must divide the homological grading by 2: we can do that since we are assuming that we only have cohomology in even degrees).

It is easy to see that the above definition satisfies properties 1-3) of §1.7.3. Namely, 1) is proved in [BeF], 2) essentially follows from the construction of the derived Satake equivalence, and 3) immediately follows from (1.7.1). On the other hand, property 4) does not hold in this generality — it fails already when GG is trivial; in general it is hard to formulate since typically even if 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} with smooth 𝐍\mathbf{N}, the variety 𝐌\mathbf{M}^{\vee} will be singular; also if it is smooth it might not be isomorphic to a cotangent of anything. But even when it is, the involutivity of the duality is far from obvious. Again, we believe that in some “nice” cases the equality (𝐌)=𝐌(\mathbf{M}^{\vee})^{\vee}=\mathbf{M} makes sense and it is true (we do not know how to say what “nice” means, but some examples are discussed below).

One can construct a natural functor from DG𝒪(𝐍𝒦)D_{G_{\mathcal{O}}}({\mathbf{N}}_{\mathcal{K}}) to DG(ΦG(𝒜G,𝐌))D^{G^{\vee}}(\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}})). Assuming formality of the ring ΦG(𝒜G,𝐌)\Phi_{G}(\mathcal{A}_{G,{\mathbf{M}}}) we can just think about the latter category as the derived category of GG^{\vee}-equivariant dg-modules over the coordinate ring [𝐌]\mathbb{C}[\mathbf{M}^{\vee}], when the latter is regarded as a dg-algebra with trivial differential and grading given by the above ×{\mathbb{C}}^{\times}-action. Ben-Zvi, Sakellaridis and Venkatesh conjectured that when 𝐍\mathbf{N} is a spherical variety for GG (i.e. when it has an open orbit with respect to a Borel subgroup of GG), this functor is an equivalence. In fact, in this formulation the above conjecture is not very hard – the real content of the conjecture (which we are not going to describe here) is hidden in the explicit (essentially combinatorial) calculation of 𝐌\mathbf{M}^{\vee} when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N}, where 𝐍\mathbf{N} is a smooth spherical GG-variety (this is done in [BZSV]; also, under some assumptions the conjecture of [BZSV] should hold for singular spherical 𝐍\mathbf{N}, but in this case it is much harder to formulate).

1.7.5. An example

Here is another example. Let G=GL(N)×GL(N1)G={\mathop{\operatorname{\rm GL}}}(N)\times{\mathop{\operatorname{\rm GL}}}(N-1) and let 𝐌=TGL(N)\mathbf{M}=T^{*}{\mathop{\operatorname{\rm GL}}}(N) where the action of GG comes from the action of GL(N){\mathop{\operatorname{\rm GL}}}(N) on itself by left multiplication and from the action of GL(N1){\mathop{\operatorname{\rm GL}}}(N-1) by right multiplication via the standard embedding GL(N1)GL(N){\mathop{\operatorname{\rm GL}}}(N-1)\hookrightarrow{\mathop{\operatorname{\rm GL}}}(N). In this case 𝐍=GL(N)\mathbf{N}={\mathop{\operatorname{\rm GL}}}(N) is a spherical GG-variety. Then it is essentially proved in [BFGT] that 𝐌=THom(N,N1)\mathbf{M}^{\vee}=T^{*}{\mathop{\operatorname{\rm Hom}}}(\mathbb{C}^{N},\mathbb{C}^{N-1}) and the Ben-Zvi-Sakellaridis-Venkatesh conjecture holds. It is, however, not clear how to deduce from this that (𝐌)=𝐌(\mathbf{M}^{\vee})^{\vee}=\mathbf{M}. A construction of the isomorphism (THom(N,N1))TGL(N)(T^{*}{\mathop{\operatorname{\rm Hom}}}(\mathbb{C}^{N},\mathbb{C}^{N-1}))^{\vee}\simeq T^{*}{\mathop{\operatorname{\rm GL}}}(N) is going to appear in a forthcoming paper of T.-H. Chen and J. Wang.

1.7.6. SS-duality outside of the cotangent type (linear case)

In all of the above examples we only worked with cases when 𝐌=T𝐍\mathbf{M}=T^{*}\mathbf{N} for some smooth affine GG-variety 𝐍\mathbf{N}. However, the main construction of this paper allows us to extend it to the case when 𝐌\mathbf{M} is an arbitrary symplectic representation of GG satisfying the anomaly cancellation condition.777One can also talk about SS-duality for twisted objects, but we will not discuss it here. Namely, as before we just let 𝐌\mathbf{M}^{\vee} be the spectrum of H(ΦG(𝒜G,𝐌))H^{\bullet}(\Phi_{G}(\mathcal{A}_{G,\mathbf{M}})) (also as before let us assume that there is no cohomology in odd degrees).

The following example is similar to the one of §1.7.5. Let NN be a positive integer. Let G=Sp(2N)×SO(2N)G={\mathop{\operatorname{\rm Sp}}}(2N)\times{\mathop{\operatorname{\rm SO}}}(2N). Let also 𝐌\mathbf{M} be the bi-fundamental representation of GG (i.e. 𝐌=2N2N\mathbf{M}=\mathbb{C}^{2N}\otimes\mathbb{C}^{2N} with the natural action of GG). Then G=SO(2N+1)×SO(2N)G^{\vee}={\mathop{\operatorname{\rm SO}}}(2N+1)\times{\mathop{\operatorname{\rm SO}}}(2N), and we conjecture that 𝐌=TSO(2N+1)\mathbf{M}^{\vee}=T^{*}{\mathop{\operatorname{\rm SO}}}(2N+1) (with the action of G=SO(2N+1)×SO(2N)G^{\vee}={\mathop{\operatorname{\rm SO}}}(2N+1)\times{\mathop{\operatorname{\rm SO}}}(2N) defined similarly to the example in §1.7.5). Note that if N>2N>2 then 𝐌\mathbf{M} is an irreducible representation of GG, so it cannot be written as T𝐍T^{*}\mathbf{N} for another representation 𝐍\mathbf{N}. On the other hand, 𝐌\mathbf{M}^{\vee} is manifestly written as a cotangent bundle to 𝐍=SO(2N+1)\mathbf{N}^{\vee}={\mathop{\operatorname{\rm SO}}}(2N+1) and the fact that (𝐌)=𝐌(\mathbf{M}^{\vee})^{\vee}=\mathbf{M} (together with the corresponding special case of the Ben-Zvi-Sakellaridis-Venkatesh conjecture) is proved in [BFT]. However, we do not know at the moment how to prove that 𝐌=TSO(2N+1)\mathbf{M}^{\vee}=T^{*}{\mathop{\operatorname{\rm SO}}}(2N+1) (but at least the main construction of this paper allows us to formulate this statement).

Here is a variant of this example. Let G=SO(2N)×Sp(2N2)G={\mathop{\operatorname{\rm SO}}}(2N)\times{\mathop{\operatorname{\rm Sp}}}(2N-2) (here we assume that N>1N>1) and let 𝐌\mathbf{M} be again its bi-fundamental representation. Then G=SO(2N)×SO(2N1)G^{\vee}={\mathop{\operatorname{\rm SO}}}(2N)\times{\mathop{\operatorname{\rm SO}}}(2N-1), and we expect that 𝐌=TSO(2N)\mathbf{M}^{\vee}=T^{*}{\mathop{\operatorname{\rm SO}}}(2N) (the action of G=SO(2N)×SO(2N1)G^{\vee}={\mathop{\operatorname{\rm SO}}}(2N)\times{\mathop{\operatorname{\rm SO}}}(2N-1) is again defined similarly to the example in §1.7.5).

1.8. The universal ring object under Satake equivalence

Finally, we are able to describe the image of the universal ring object under the twisted Satake equivalence (answering a question of V. Drinfeld). First, it turns out that for G=Sp(𝐌),𝔤=𝔰𝔭(𝐌)G={\mathop{\operatorname{\rm Sp}}}({\mathbf{M}}),\ {\mathfrak{g}}={\mathfrak{sp}}({\mathbf{M}}), there is a monoidal equivalence ΦG:D1/2G𝒪(GrG)DG(Sym(𝔤[2]))\Phi_{G}\colon D_{-1/2}^{G_{\mathcal{O}}}({\operatorname{Gr}}_{G})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])) [DLYZ]. Second, ΦG(𝒜G,𝐌)[WhitG(TG)]\Phi_{G}({\mathcal{A}}_{G,{\mathbf{M}}})\cong{\mathbb{C}}[\operatorname{Whit}_{G}(T^{*}G)] (Whittaker reduction of the shifted cotangent bundle of GG with respect to the left action. The cohomological grading arises from the one on [TG]=[G]Sym(𝔤){\mathbb{C}}[T^{*}G]={\mathbb{C}}[G]\otimes\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}), where the generators in 𝔤{\mathfrak{g}} are assigned degree 2, while [G]{\mathbb{C}}[G] is assigned degree 0).

Note that under the non-twisted Satake equivalence ΦG:DG𝒪(GrG)DG(Sym(𝔤[2]))\Phi_{G^{\vee}}\colon D_{G^{\vee}_{\mathcal{O}}}({\operatorname{Gr}}_{G^{\vee}})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])), we have ΦG(𝝎GrG)ΦG(𝒜G,𝐌)\Phi_{G^{\vee}}({\boldsymbol{\omega}}_{{\operatorname{Gr}}_{G^{\vee}}})\simeq\Phi_{G}({\mathcal{A}}_{G,{\mathbf{M}}}). This answer to Drinfeld’s question was proposed by D. Gaiotto.

Also, if we consider GSO(𝐌)G^{\vee}\cong{\mathop{\operatorname{\rm SO}}}({\mathbf{M}}^{\prime}) for a 2n+12n+1-dimensional vector space 𝐌{\mathbf{M}}^{\prime} equipped with a nondegenerate symmetric bilinear form, then 𝐌𝐌{\mathbf{M}}\otimes{\mathbf{M}}^{\prime} carries a natural symplectic form and a natural action of G×GG\times G^{\vee}. We have an isomorphism ΦG(𝒜G,𝐌)[WhitG(𝐌𝐌)]\Phi_{G}({\mathcal{A}}_{G,{\mathbf{M}}})\cong{\mathbb{C}}[\operatorname{Whit}_{G^{\vee}}({\mathbf{M}}\otimes{\mathbf{M}}^{\prime})] (with residual action of GG. The cohomological grading arises from the one on Sym(𝐌𝐌)\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathbf{M}}\otimes{\mathbf{M}}^{\prime}) where all the generators are assigned degree 1).

Similarly, in the universal cotangent case, when 𝖦=GL(𝐍){\mathsf{G}}={\mathop{\operatorname{\rm GL}}}({\mathbf{N}}) for an nn-dimensional vector space 𝐍{\mathbf{N}}, and 𝖦GL(𝐍){\mathsf{G}}^{\vee}\cong{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime}) for another nn-dimensional vector space 𝐍{\mathbf{N}}^{\prime}, we have the untwisted Satake equivalence Φ𝖦:D𝖦𝒪(Gr𝖦)D𝖦(Sym(𝔤𝔩(𝐍)[2]))\Phi_{\mathsf{G}}\colon D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{\mathsf{G}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{gl}}({\mathbf{N}})[-2])). Now Hom(𝐍,𝐍)Hom(𝐍,𝐍){\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\oplus{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}}) carries a natural sympectic form and a natural action of 𝖦×𝖦{\mathsf{G}}\times{\mathsf{G}}^{\vee}. We have an isomorphism Φ𝖦(𝒜𝖦,𝐍)[Whit𝖦(Hom(𝐍,𝐍)Hom(𝐍,𝐍))]\Phi_{\mathsf{G}}({\mathcal{A}}_{{\mathsf{G}},{\mathbf{N}}})\cong{\mathbb{C}}\Big{[}\operatorname{Whit}_{{\mathsf{G}}^{\vee}}\big{(}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\oplus{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\big{)}\Big{]} (with residual action of 𝖦{\mathsf{G}}. The cohomological grading arises from the one on Sym(Hom(𝐍,𝐍)Hom(𝐍,𝐍))\mathop{\operatorname{\rm Sym}}^{\bullet}\big{(}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\oplus{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\big{)} where all the generators are assigned degree 1).

1.9. Acknowledgments

We are deeply grateful to D. Ben-Zvi, R. Bezrukavnikov, V. Drinfeld, P. Etingof, B. Feigin, D. Gaiotto, D. Gaitsgory, A. Hanany, T. Johnson-Freyd, S. Lysenko, H. Nakajima, Y. Sakellaridis, A. Venkatesh, J. Wang, E. Witten, P. Yoo and Z. Yun for many helpful and inspiring discussions. M.F. and S.R. thank the 4th Nisyros Conference on Automorphic Representations and Related Topics held in July 2019 for stimulating much of this work.

A.B. was partially supported by NSERC. G.D. was supported by an NSF Postdoctoral Fellowship under grant No. 2103387. M.F. was partially funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. S.R. was supported by NSF grant DMS-2101984.

2. Setup and notation

2.1. Affine Grassmannians

Let 𝐌{\mathbf{M}} be a 2n2n-dimensional complex vector space equipped with a symplectic form ,\langle\,,\rangle. Its automorphism group is G=Sp(𝐌)G={\mathop{\operatorname{\rm Sp}}}({\mathbf{M}}).

Let 𝒦=((t))𝒪=[[t]]{\mathcal{K}}={\mathbb{C}}(\!(t)\!)\supset{\mathcal{O}}={\mathbb{C}}[\![t]\!]. The affine Grassmannian ind-scheme GrG=G𝒦/G𝒪{\operatorname{Gr}}_{G}=G_{\mathcal{K}}/G_{\mathcal{O}} is the moduli space of GG-bundles on the formal disc equipped with a trivialization on the punctured formal disc. The Kashiwara affine Grassmannian infinite type scheme 𝐆𝐫G=G𝒦/G[t1]{\mathbf{Gr}}_{G}=G_{\mathcal{K}}/G_{{\mathbb{C}}[t^{-1}]} is the moduli space of GG-bundles on 1{\mathbb{P}}^{1} equipped with a trivialization in the formal neighbourhood of 010\in{\mathbb{P}}^{1}.

The determinant line bundles over GrG{\operatorname{Gr}}_{G} and 𝐆𝐫G{\mathbf{Gr}}_{G} are denoted by 𝒟{\mathcal{D}}. The μ2\mu_{2}-gerbe of square roots of 𝒟{\mathcal{D}} over 𝐆𝐫G{\mathbf{Gr}}_{G} (resp. GrG{\operatorname{Gr}}_{G}) is denoted Gr~G{\widetilde{\operatorname{Gr}}}_{G} (resp. 𝐆𝐫~G{\widetilde{\mathbf{Gr}}}_{G}).

The action of G𝒦G_{\mathcal{K}} on GrG{\operatorname{Gr}}_{G} and 𝐆𝐫G{\mathbf{Gr}}_{G} lifts to the action of the metaplectic group-stack G~𝒦{\widetilde{G}}_{\mathcal{K}} on Gr~G{\widetilde{\operatorname{Gr}}}_{G} and 𝐆𝐫~G{\widetilde{\mathbf{Gr}}}_{G}. We have a splitting G𝒪G~𝒦G_{\mathcal{O}}\hookrightarrow{\widetilde{G}}_{\mathcal{K}}.

In what follows we only consider the genuine constructible sheaves on Gr~G{\widetilde{\operatorname{Gr}}}_{G} and 𝐆𝐫~G{\widetilde{\mathbf{Gr}}}_{G}: such that 1μ2-1\in\mu_{2} acts on them as 1-1. We consider a dg-enhancement DG𝒪b(Gr~G)D^{b}_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G}) of the (genuine) bounded equivariant constructible derived category. We denote by DG𝒪(Gr~G)D_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G}) the renormalized equivariant derived category defined as in [AGa, §12.2.3]. We also consider the category DG𝒪(𝐆𝐫~G)!D_{G_{\mathcal{O}}}({\widetilde{\mathbf{Gr}}}_{G})_{!} defined as in [ArG, §3.4.1] (the inverse limit over the G𝒪G_{\mathcal{O}}-stable open subgerbes of 𝐆𝐫~G{\widetilde{\mathbf{Gr}}}_{G}, cf. §A.4). It contains the IC-sheaves of the G𝒪G_{\mathcal{O}}-orbits closures.

An open sub-gerbe 𝒯Gr~G×𝐆𝐫~G{\mathcal{T}}\hookrightarrow{\widetilde{\operatorname{Gr}}}_{G}\times{\widetilde{\mathbf{Gr}}}_{G} is formed by all the pairs of transversal compact and discrete Lagrangian subspaces in 𝐌𝒦{\mathbf{M}}_{\mathcal{K}}. We denote by

Gr~G𝑝𝒯𝑞𝐆𝐫~G{\widetilde{\operatorname{Gr}}}_{G}\xleftarrow{p}{\mathcal{T}}\xrightarrow{q}{\widetilde{\mathbf{Gr}}}_{G}

the natural projections. The Radon Transform is (cf. §A.5, where its DD-module version is denoted RT!1{\mathop{\rm RT}}_{!}^{-1})

(2.1.1) RT:=pq!:DG𝒪(𝐆𝐫~G)!DG𝒪(Gr~G).{\mathop{\rm RT}}:=p_{*}q^{!}\colon D_{G_{\mathcal{O}}}({\widetilde{\mathbf{Gr}}}_{G})_{!}\to D_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G}).

The Theta-sheaf ΘDG𝒪(𝐆𝐫~G)!\Theta\in D_{G_{\mathcal{O}}}({\widetilde{\mathbf{Gr}}}_{G})_{!} introduced in [Ly] is the direct sum of IC-sheaves of two G𝒪G_{\mathcal{O}}-orbits in 𝐆𝐫~G:Θg{\widetilde{\mathbf{Gr}}}_{G}\colon\Theta_{g} of the open orbit, and Θs\Theta_{s} of the codimension 1 orbit.

2.2. D-modules

The dg-category of G𝒪G_{\mathcal{O}}-equivariant DD-modules on GrG{\operatorname{Gr}}_{G} (resp. on 𝐆𝐫G{\mathbf{Gr}}_{G}) twisted by the inverse square root 𝒟1/2{\mathcal{D}}^{-1/2} is denoted Dmod1/2G𝒪(GrG){\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G}) (resp. Dmod1/2G𝒪(𝐆𝐫G)!{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!}). More precisely, by Dmod1/2G𝒪(GrG){\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G}) we mean the renormalized equivariant category defined as in [AGa, §12.2.3], and Dmod1/2G𝒪(𝐆𝐫G)!{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!} is defined in §A.4. We have the Riemann–Hilbert equivalences

RH:Dmod1/2G𝒪(GrG)DG𝒪(Gr~G),Dmod1/2G𝒪(𝐆𝐫G)!DG𝒪(𝐆𝐫~G)!.{\mathop{\rm RH}}\colon{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G}),\ {\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!}\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D_{G_{\mathcal{O}}}({\widetilde{\mathbf{Gr}}}_{G})_{!}.

We denote RH1(Θ){\mathop{\rm RH}}^{-1}(\Theta) by ΘDmod1/2G𝒪(𝐆𝐫G)!\varTheta\in{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!}, a direct sum of two irreducible DD-modules, Θg\varTheta_{g} with the full support, and Θs\varTheta_{s} supported at the Schubert divisor.

The (derived) global sections 𝚪(𝐆𝐫G,Θg){\boldsymbol{\Gamma}}({\mathbf{Gr}}_{G},\varTheta_{g}) and 𝚪(𝐆𝐫G,Θs){\boldsymbol{\Gamma}}({\mathbf{Gr}}_{G},\varTheta_{s}) are irreducible G𝒪G_{\mathcal{O}}-integrable 𝔤aff{\mathfrak{g}}_{\operatorname{aff}}-modules of central charge 1/2-1/2, namely L1/20L^{0}_{-1/2} and L1/2ω1L^{\omega_{1}}_{-1/2} [KT, Theorem 4.8.1]. Here 𝔤=𝔰𝔭(𝐌){\mathfrak{g}}={\mathfrak{sp}}({\mathbf{M}}), and the highest component of L1/20L^{0}_{-1/2} (resp. L1/2ω1L^{\omega_{1}}_{-1/2}) with respect to 𝔤𝒪{\mathfrak{g}}_{\mathcal{O}} is the trivial (resp. defining) representation of 𝔤{\mathfrak{g}}.888For a finite dimensional counterpart of this statement (about global sections of irreducible equivariant DD-modules on the Lagrangian Grassmannian of 𝔤{\mathfrak{g}}), see §5.3.

The (derived) global sections functors

Γ:Dmod1/2G𝒪(GrG)Rep1/2G𝒪(𝔤aff),𝚪:Dmod1/2G𝒪(𝐆𝐫G)!Rep1/2G𝒪(𝔤aff)\Gamma\colon{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G})\to{\operatorname{Rep}}^{G_{\mathcal{O}}}_{-1/2}({\mathfrak{g}}_{\operatorname{aff}}),\ {\boldsymbol{\Gamma}}\colon{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!}\to{\operatorname{Rep}}^{G_{\mathcal{O}}}_{-1/2}({\mathfrak{g}}_{\operatorname{aff}})

(G𝒪G_{\mathcal{O}}-integrable 𝔤aff{\mathfrak{g}}_{\operatorname{aff}}-modules with central charge 1/2-1/2) admit the left adjoints (see §§A.7,A.4)

Loc:Rep1/2G𝒪(𝔤aff)Dmod1/2G𝒪(GrG),𝐋𝐨𝐜:Rep1/2G𝒪(𝔤aff)Dmod1/2G𝒪(𝐆𝐫G)!.{\operatorname{Loc}}\colon{\operatorname{Rep}}^{G_{\mathcal{O}}}_{-1/2}({\mathfrak{g}}_{\operatorname{aff}})\to{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G}),\ {\bf{Loc}}\colon{\operatorname{Rep}}^{G_{\mathcal{O}}}_{-1/2}({\mathfrak{g}}_{\operatorname{aff}})\to{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\mathbf{Gr}}_{G})_{!}.

According to [KT, Theorem 4.8.1(iv)], we have τ0𝐋𝐨𝐜(L1/20L1/2ω1)=Θ\tau_{\geq 0}{\bf{Loc}}(L^{0}_{-1/2}\oplus L^{\omega_{1}}_{-1/2})=\varTheta (the top cohomology in the natural tt-structure).

2.3. Weyl algebra

The symplectic form on 𝐌{\mathbf{M}} extends to the same named {\mathbb{C}}-valued symplectic form on 𝐌𝒦:f,g=Resf,g𝒦dt{\mathbf{M}}_{\mathcal{K}}\colon\langle f,g\rangle=\operatorname{Res}\langle f,g\rangle_{\mathcal{K}}dt. We denote by 𝒲{\mathcal{W}} the completion of the Weyl algebra of (𝐌𝒦,,)({\mathbf{M}}_{\mathcal{K}},\langle\,,\rangle) with respect to the left ideals generated by the compact subspaces of 𝐌𝒦{\mathbf{M}}_{\mathcal{K}}. It has an irreducible representation [𝐌𝒪]{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}]. Also, there is a homomorphism of Lie algebras 𝔤affLie𝒲{\mathfrak{g}}_{\operatorname{aff}}\to\operatorname{Lie}{\mathcal{W}}, see e.g. [FF]. According to [FF, rows 3,4 of Table XII at page 168], the restriction of [𝐌𝒪]{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}] to 𝔤aff{\mathfrak{g}}_{\operatorname{aff}} is L1/20L1/2ω1L^{0}_{-1/2}\oplus L^{\omega_{1}}_{-1/2} (even and odd functions, respectively).999For a finite dimensional counterpart of this statement (about restriction to 𝔤{\mathfrak{g}} of an irreducible module over the Weyl algebra of 𝐌{\mathbf{M}}), see §5.3.

We consider the dg-category 𝒲mod{\mathcal{W}}{\operatorname{-mod}} of discrete 𝒲{\mathcal{W}}-modules. More concretely, we identify 𝒲{\mathcal{W}} with the ring of differential operators on a Lagrangian discrete lattice 𝐋𝐌𝒦{\mathbf{L}}\subset{\mathbf{M}}_{\mathcal{K}}, e.g. 𝐋=t1𝐌[t1]{\mathbf{L}}=t^{-1}{\mathbf{M}}_{{\mathbb{C}}[t^{-1}]}. Then 𝒲mod{\mathcal{W}}{\operatorname{-mod}} is the inverse limit of Dmod(V){\rm D}{\operatorname{-mod}}(V) over finite dimensional subspaces V𝐋V\subset{\mathbf{L}} with respect to the functors iVV!i_{V\hookrightarrow V^{\prime}}^{!}. Equivalently, 𝒲mod{\mathcal{W}}{\operatorname{-mod}} is the colimit of Dmod(V){\rm D}{\operatorname{-mod}}(V) with respect to the functors iVV,i_{V\hookrightarrow V^{\prime},*}.

There is a twisted action Dmod1/2(G𝒦)𝒲mod\operatorname{D-mod}_{-1/2}(G_{\mathcal{K}})\circlearrowright{\mathcal{W}}{\operatorname{-mod}} that gives rise to an action Dmod1/2G𝒪(GrG)(𝒲mod)G𝒪{\operatorname{D-mod}_{-1/2}^{G_{{\mathcal{O}}}}}({\operatorname{Gr}}_{G})\circlearrowright({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}}, see [R, §10].

2.4. Twisted derived Satake

One of the main results of [DLYZ] is a construction of a monoidal equivalence Φ:DG𝒪b(Gr~G)DperfG(Sym(𝔤[2]))\Phi\colon D^{b}_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{G}_{\mathop{\operatorname{\rm perf}}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])) (dg-category of perfect complexes of dg-modules over the dg-algebra Sym(𝔤[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2]) equipped with a trivial differential). It extends to a monoidal equivalence of Ind-completions Φ:DG𝒪(Gr~G)DG(Sym(𝔤[2]))\Phi\colon D_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}_{G})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])).

Here is one of the key properties of the twisted derived Satake equivalence Φ\Phi. We choose a pair of opposite maximal unipotent subgroups UG,UGGU_{G},U_{G}^{-}\subset G, their regular characters ψ,ψ\psi,\psi^{-}, and denote by ϰ:DG(Sym(𝔤[2]))D([Ξ𝔤])\varkappa\colon D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2]))\to D({\mathbb{C}}[\Xi_{\mathfrak{g}}]) the functor of Kostant-Whittaker reduction with respect to (UG,ψ)(U_{G}^{-},\psi^{-}) (see e.g. [BeF, §2]). Here Ξ𝔤\Xi_{\mathfrak{g}} with grading disregarded is the tangent bundle TΣ𝔤T\Sigma_{\mathfrak{g}} of the Kostant slice Σ𝔤𝔤\Sigma_{\mathfrak{g}}\subset{\mathfrak{g}}^{*}. Let us write κ\kappa for the Ad-invariant bilinear form on 𝔤{\mathfrak{g}}, i.e., level, corresponding to our central charge of 1/2-1/2. Explicitly, if we write κb\kappa_{b} for the basic level giving the short coroots of 𝔤{\mathfrak{g}} squared length two, and κc\kappa_{c} for the critical level, then κ\kappa is defined by

κ=1/2κbκc.\kappa=-1/2\cdot\kappa_{b}-\kappa_{c}.

If we consider the Langlands dual Lie algebra 𝔤𝔰𝔬2n+1{\mathfrak{g}}^{\!\scriptscriptstyle\vee}\simeq{\mathfrak{so}}_{2n+1}, the form κ\kappa gives rise to identifications Σ𝔤Σ𝔤\Sigma_{\mathfrak{g}}\cong\Sigma_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}} and Ξ𝔤Ξ𝔤\Xi_{\mathfrak{g}}\cong\Xi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}. Also, we have a canonical isomorphism HG𝒪(GrG)[Ξ𝔤][Ξ𝔤]H^{\bullet}_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G})\cong{\mathbb{C}}[\Xi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}]\cong{\mathbb{C}}[\Xi_{\mathfrak{g}}]. This is a theorem of V. Ginzburg [G] (for a published account see e.g. [BeF, Theorem 1]).

Now given DG𝒪b(Gr~){\mathcal{F}}\in D^{b}_{G_{\mathcal{O}}}({\widetilde{\operatorname{Gr}}}) we consider the tensor product !RT(Θ){\mathcal{F}}\overset{!}{\otimes}\operatorname{RT}(\Theta) (notation of §2.1). Since the monodromies of the factors cancel out, it canonically descends to an object of DG𝒪(GrG).D_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G}). The aforementioned key property is a canonical isomorphism

(2.4.1) HG𝒪(GrG,!RT(Θ))ϰΦH^{\bullet}_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G},{\mathcal{F}}\overset{!}{\otimes}\operatorname{RT}(\Theta))\cong\varkappa\Phi{\mathcal{F}}

of HG𝒪(GrG)[Ξ𝔤]H^{\bullet}_{G_{\mathcal{O}}}({\operatorname{Gr}}_{G})\cong{\mathbb{C}}[\Xi_{\mathfrak{g}}]-modules.

3. The universal ring object

3.1. The internal Hom construction

To introduce the universal ring object and show its relation to the Θ\varTheta-sheaf, we recall the following general construction of internal Hom objects.

Let 𝒞\mathcal{C} be a module category over Dmod1/2(G𝒦)\operatorname{D-mod}_{-1/2}(G_{\mathcal{K}}). Given a subgroup HH of G𝒦G_{\mathcal{K}} and an HH-equivariant object ξ\xi of 𝒞\mathcal{C}, convolution with it yields a Dmod1/2(G𝒦)\operatorname{D-mod}_{-1/2}(G_{\mathcal{K}})-equivariant functor (Dmod1/2(G𝒦))H𝒞(\operatorname{D-mod}_{-1/2}(G_{\mathcal{K}})_{*})_{H}\rightarrow\mathcal{C}, and upon restriction to spherical vectors a Dmod1/2(GrG)G𝒪\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}-equivariant functor Dmod1/2(G𝒪\G𝒦)H(𝒞)G𝒪.\operatorname{D-mod}_{-1/2}(G_{\mathcal{O}}\backslash G_{\mathcal{K}})_{H}\rightarrow(\mathcal{C})^{G_{\mathcal{O}}}. If both 𝒞\mathcal{C} and (Dmod1/2(G𝒪\G𝒦))H(\operatorname{D-mod}_{-1/2}(G_{\mathcal{O}}\backslash G_{\mathcal{K}})_{*})_{H} are dualizable as abstract dg-categories, we obtain the dual Dmod1/2(GrG)G𝒪\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}-equivariant functor

(𝒞)G𝒪Dmod1/2(G𝒦/H)!G𝒪,ζ𝑜𝑚(ξ,ζ).(\mathcal{C}^{\vee})^{G_{\mathcal{O}}}\rightarrow\operatorname{D-mod}_{-1/2}(G_{\mathcal{K}}/H)^{G_{\mathcal{O}}}_{!},\ \zeta\mapsto{\mathop{\operatorname{{\mathcal{H}}\!\it om}}}(\xi,\zeta).

We apply this as follows. First, taking 𝒞=𝒲mod\mathcal{C}={\mathcal{W}}\operatorname{-mod}, H=G𝒪H=G_{{\mathcal{O}}}, and ξ=[𝐌𝒪]\xi=\mathbb{C}[{\mathbf{M}}_{{\mathcal{O}}}], we obtain a functor

F:(𝒲mod)G𝒪Dmod1/2(GrG)G𝒪,M𝑜𝑚([𝐌𝒪],M).F\colon({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}}\to\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}},\ M\mapsto{\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}],M).

Setting M=[𝐌𝒪]M=\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}], we obtain the internal Hom ring object

:=𝑜𝑚([𝐌𝒪],[𝐌𝒪])Dmod1/2(GrG)G𝒪.{\mathcal{R}}:={\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}],{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}])\in\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}.

Second, taking 𝒞=𝒲mod\mathcal{C}={\mathcal{W}}\operatorname{-mod}, H=G[t1]H=G_{\mathbb{C}[t^{-1}]}, and ξ=𝝎t1𝐌[t1]\xi={\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}}, i.e., the colimit of the dualizing sheaves 𝝎V{\boldsymbol{\omega}}_{V} over finite dimensional subspaces Vt1𝐌[t1]V\subset t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}, we obtain a functor

𝐅:(𝒲mod)G𝒪Dmod1/2(𝐆𝐫G)!G𝒪,M𝑜𝑚(𝝎t1𝐌[t1],M).{\mathbf{F}}\colon({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}}\to\operatorname{D-mod}_{-1/2}({\mathbf{Gr}}_{G})_{!}^{G_{\mathcal{O}}},\ M\mapsto{\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}},M).
Lemma 3.1.1.

We have a canonical isomorphism 𝐅([𝐌𝒪])Θ{\mathbf{F}}({\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}])\cong\varTheta.

Proof.

We have [𝐌𝒪]=𝒲/(𝒲𝐌𝒪){\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}]={\mathcal{W}}/({\mathcal{W}}\cdot{\mathbf{M}}_{\mathcal{O}}). We denote 𝐅([𝐌𝒪]){\mathbf{F}}({\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}]) by {\mathcal{F}} for short. For a Lagrangian discrete lattice 𝐋{\mathbf{L}} representing a point of 𝐆𝐫G{\mathbf{Gr}}_{G}, the fiber 𝐋{\mathcal{F}}_{\mathbf{L}} of {\mathcal{F}} at 𝐋{\mathbf{L}} is 𝒲/(𝒲𝐌𝒪+𝐋𝒲){\mathcal{W}}/({\mathcal{W}}\cdot{\mathbf{M}}_{\mathcal{O}}+{\mathbf{L}}\cdot{\mathcal{W}}). According to [La, §2], the fiber Θ𝐋\varTheta_{\mathbf{L}} is 𝒲/(𝒲𝐌𝒪+𝐋𝒲){\mathcal{W}}/({\mathcal{W}}\cdot{\mathbf{M}}_{\mathcal{O}}+{\mathbf{L}}\cdot{\mathcal{W}}) as well.

For the reader’s convenience, let us briefly sketch a proof of the latter isomorphism. First, we consider the finite dimensional counterpart 𝒮=𝒮g𝒮s{\mathcal{S}}={\mathcal{S}}_{g}\oplus{\mathcal{S}}_{s} of Θ\varTheta as in §5.3. For a Lagrangian subspace L𝐌L\subset{\mathbf{M}} representing a point of LGr𝐌{\operatorname{LGr}}_{\mathbf{M}}, the fiber 𝒮L{\mathcal{S}}_{L} of 𝒮{\mathcal{S}} at LL is 𝒲𝐌/(𝒲𝐌𝐍+L𝒲𝐌){\mathcal{W}}_{\mathbf{M}}/({\mathcal{W}}_{\mathbf{M}}\cdot{\mathbf{N}}+L\cdot{\mathcal{W}}_{\mathbf{M}}) (notation of §5.3). This follows from the De Rham counterpart of the integral presentation [Ly, Proposition 5] of SS.

Second, representing 𝐌𝒦{\mathbf{M}}_{\mathcal{K}} as an ind-pro-limit of a growing family of finite dimensional symplectic spaces 𝐌{\mathbf{M}}^{\prime}, we can construct the Theta DD-module ΘSato\varTheta_{\operatorname{Sato}} on the co-Sato Lagrangian Grassmannian 𝐆𝐫Sato{\mathbf{Gr}}_{\operatorname{Sato}} of Lagrangian discrete lattices in 𝐌𝒦{\mathbf{M}}_{\mathcal{K}} as a certain limit of baby Theta DD-modules 𝒮𝐌{}_{{\mathbf{M}}^{\prime}}{\mathcal{S}} on LGr𝐌{\operatorname{LGr}}_{{\mathbf{M}}^{\prime}}, see [LL, §6.5]. The similar formula for the fibers of ΘSato\varTheta_{\operatorname{Sato}} follows. Finally, we have an embedding 𝐆𝐫G𝐆𝐫Sato{\mathbf{Gr}}_{G}\hookrightarrow{\mathbf{Gr}}_{\operatorname{Sato}}, and Θ\varTheta is the pullback of ΘSato\varTheta_{\operatorname{Sato}} by [LL, Theorem 3]. Hence the desired formula for the fibers of Θ\varTheta. ∎

3.2. Radon transform

Recall the Radon transform (2.1.1). We keep the same notation for its DD-module version RT:Dmod1/2(𝐆𝐫G)!G𝒪Dmod1/2(GrG)G𝒪{\mathop{\rm RT}}\colon\operatorname{D-mod}_{-1/2}({\mathbf{Gr}}_{G})_{!}^{G_{\mathcal{O}}}\to\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}. See the Appendix starting from §A.5, where it is denoted RT!1{\mathop{\rm RT}}_{!}^{-1}.

Proposition 3.2.1.

We have an isomorphism RTΘ{\mathcal{R}}\simeq{\mathop{\rm RT}}\varTheta.

Proof.

By Lemma 3.1.1, it suffices to show that the composition

(𝒲mod)G𝒪𝐅Dmod1/2(𝐆𝐫G)!G𝒪RTDmod1/2(GrG)G𝒪({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}}\xrightarrow{{\mathbf{F}}}\operatorname{D-mod}_{-1/2}({\mathbf{Gr}}_{G})^{G_{\mathcal{O}}}_{!}\xrightarrow{\operatorname{RT}}\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}

is Dmod1/2(GrG)G𝒪\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}-equivariantly equivalent to FF. By dualizing the appearing functors, we equivalently must show that the composition

Dmod1/2(GrG)G𝒪RTDmod1/2(𝐆𝐫G)G𝒪𝐅(𝒲mod)G𝒪\operatorname{D-mod}_{-1/2}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}\xrightarrow{\operatorname{RT}^{\vee}}\operatorname{D-mod}_{-1/2}({\mathbf{Gr}}_{G})^{G_{\mathcal{O}}}_{*}\xrightarrow{\mathbf{F}^{\vee}}({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}

sends the delta function at the origin δe\delta_{e} to [𝐌𝒪]\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}].

To show this, writing Av!G𝒪\operatorname{Av}^{G_{\mathcal{O}}}_{!} for the partially defined left adjoint to the forgetful functor (𝒲mod)G𝒪𝒲mod({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}\rightarrow{\mathcal{W}}\operatorname{-mod}, we have the following.

Lemma 3.2.2.

The category (𝒲mod)G𝒪({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}} is compactly generated by a single object Av!G𝒪([𝐌𝒪])\operatorname{Av}^{G_{\mathcal{O}}}_{!}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]).

Proof.

We have an equivalence (𝒲mod)G𝒪Dmod(Heis)G𝒪𝐌𝒪×𝔾a,χ({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}}\simeq\rm{D}{\operatorname{-mod}}(\operatorname{Heis})^{G_{\mathcal{O}}\ltimes{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a},\chi}, where Heis\operatorname{Heis} is the Heisenberg central extension of 𝐌𝒦{\mathbf{M}}_{\mathcal{K}} with 𝔾a{\mathbb{G}}_{a} (canonically split after restriction to 𝐌𝒪{\mathbf{M}}_{\mathcal{O}}), and χ\chi is the character of G𝒪𝐌𝒪×𝔾aG_{\mathcal{O}}\ltimes{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a} obtained by composition of projection to 𝔾a{\mathbb{G}}_{a} and exponentiating. Indeed, the 𝒲{\mathcal{W}}-module [𝐌𝒪]{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}] is strongly (G𝒪𝐌𝒪×𝔾a,χ)(G_{\mathcal{O}}\ltimes{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a},\chi)-equivariant, and so gives rise to a functor from Dmod(Heis)G𝒪𝐌𝒪×𝔾a,χ\rm{D}{\operatorname{-mod}}(\operatorname{Heis})^{G_{\mathcal{O}}\ltimes{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a},\chi} to (𝒲mod)G𝒪({\mathcal{W}}{\operatorname{-mod}})^{G_{\mathcal{O}}} that is the desired equivalence.

Now χ\chi is non-trivial on the stabilizer of any point mHeis(𝐌𝒪×𝔾a)m\in\operatorname{Heis}\smallsetminus({\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a}). Indeed, given a vector m𝐌𝒦m\in{\mathbf{M}}_{\mathcal{K}} with nontrivial polar part, we can find gG𝒪g\in G_{\mathcal{O}} such that gm=m+mgm=m+m^{\prime}, where m𝐌𝒪m^{\prime}\in{\mathbf{M}}_{\mathcal{O}} has nonzero Resm,m𝒦\operatorname{Res}\langle m,m^{\prime}\rangle_{\mathcal{K}}. So χ|Stab(m)\chi|_{\operatorname{Stab}(m)} is nontrivial.

Hence any object of Dmod(Heis)G𝒪𝐌𝒪×𝔾a,χ\rm{D}{\operatorname{-mod}}(\operatorname{Heis})^{G_{\mathcal{O}}\ltimes{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a},\chi} must be supported on 𝐌𝒪×𝔾a{\mathbf{M}}_{\mathcal{O}}\times{\mathbb{G}}_{a}. This yields an equivalence (𝒲mod)G𝒪Dmod(pt/G𝒪),({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}\simeq\operatorname{D-mod}(\operatorname{pt}/G_{\mathcal{O}}), which exchanges [𝐌𝒪]\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}] with the dualizing sheaf. Moreover, if we write [𝐌𝒪]\langle\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]\rangle for the full subcategory of 𝒲mod{\mathcal{W}}\operatorname{-mod} compactly generated by [𝐌𝒪]\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}], this exchanges the forgetful functor

(𝒲mod)G𝒪[𝐌𝒪]Vect({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}\rightarrow\langle\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]\rangle\simeq\operatorname{Vect}

with the functor of !!-pullback to the point

Dmod(pt/G𝒪)Dmod(pt)Vect.\operatorname{D-mod}({\operatorname{pt}}/G_{\mathcal{O}})\rightarrow\operatorname{D-mod}({\operatorname{pt}})\simeq\operatorname{Vect}.

The claim of the lemma now follows from the analogous fact for D-modules on pt/G𝒪{\operatorname{pt}}/G_{\mathcal{O}}, see for example [DG, §7.2.2]. ∎

We are now ready to calculate 𝐅RT(δe){\mathbf{F}}^{\vee}\circ{\mathop{\rm RT}}^{\vee}(\delta_{e}). First, if we write jDmod1/2(𝐆𝐫G)G𝒪j_{*}\in\operatorname{D-mod}_{-1/2}({\mathbf{Gr}}_{G})_{*}^{G_{\mathcal{O}}} for the *-extension of the constant D-module on the big cell, unwinding definitions we have that

𝐅RT(δe)𝐅(j)j𝝎t1𝐌[t1].{\mathbf{F}}^{\vee}\circ{\mathop{\rm RT}}^{\vee}(\delta_{e})\simeq{\mathbf{F}}^{\vee}(j_{*})\simeq j_{*}\star{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}}.

To identify this with [𝐌𝒪]\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}], by the proof of Lemma 3.2.2, particularly the exhibited equivalence (𝒲mod)G𝒪Dmod(pt/G𝒪)({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}\simeq\operatorname{D-mod}({\operatorname{pt}}/G_{\mathcal{O}}), we must show that Hom(𝒲mod)G𝒪(Av!G𝒪([𝐌𝒪]),j𝝎t1𝐌[t1]){\mathop{\operatorname{\rm Hom}}}_{({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}}(\operatorname{Av}^{G_{\mathcal{O}}}_{!}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]),j_{*}\star{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}}) is the trivial line \mathbb{C}, placed in cohomological degree zero.

To see this, note that jj_{*} identifies with the relative *-averaging (𝒲mod)G(𝒲mod)G𝒪({\mathcal{W}}\operatorname{-mod})^{G}\to({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}, and that, by the prounipotence of the kernel of G𝒪GG_{\mathcal{O}}\to G and the G𝒪G_{\mathcal{O}}-equivariance of [𝐌𝒪]\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}], one has a canonical equivalence Av!G([𝐌𝒪])Av!G𝒪([𝐌𝒪])\operatorname{Av}_{!}^{G}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}])\simeq\operatorname{Av}_{!}^{G_{\mathcal{O}}}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]). Therefore, we may compute

Hom(𝒲mod)G𝒪(Av!G𝒪([𝐌𝒪]),j𝝎t1𝐌[t1])Hom(𝒲mod)G(Av!G𝒪([𝐌𝒪]),𝝎t1𝐌[t1])Hom𝒲mod([𝐌𝒪],𝝎t1𝐌[t1])HomDmod(𝐌t1[t1])(δ0,𝝎t1𝐌[t1]),{\mathop{\operatorname{\rm Hom}}}_{({\mathcal{W}}\operatorname{-mod})^{G_{\mathcal{O}}}}(\operatorname{Av}^{G_{\mathcal{O}}}_{!}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]),j_{*}\star{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}})\\ \simeq{\mathop{\operatorname{\rm Hom}}}_{({\mathcal{W}}\operatorname{-mod})^{G}}(\operatorname{Av}^{G_{\mathcal{O}}}_{!}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}]),{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}})\\ \simeq{\mathop{\operatorname{\rm Hom}}}_{{\mathcal{W}}\operatorname{-mod}}(\mathbb{C}[{\mathbf{M}}_{\mathcal{O}}],{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}})\\ \simeq{\mathop{\operatorname{\rm Hom}}}_{\operatorname{D-mod}({\mathbf{M}}_{t^{-1}\mathbb{C}[t^{-1}]})}(\delta_{0},{\boldsymbol{\omega}}_{t^{-1}{\mathbf{M}}_{\mathbb{C}[t^{-1}]}})\simeq\mathbb{C},

as desired. ∎

Corollary 3.2.3.

We have an isomorphism Γ()[𝐌𝒪]\Gamma({\mathcal{R}})\simeq{\mathbb{C}}[{\mathbf{M}}_{\mathcal{O}}].

Proof.

Recall that 𝚪(Θ)[𝐌𝒪]\mathbf{\Gamma}(\varTheta)\simeq\mathbb{C}[{\mathbf{M}}_{{\mathcal{O}}}] and apply Proposition A.7.1. ∎

3.3. Computation of RH{\mathop{\rm RH}}{\mathcal{R}} under the twisted derived Satake

Recall the notation of §2.4. We consider an object [G]Sym(𝔤[2])DG(Sym(𝔤[2])){\mathbb{C}}[G]\otimes\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])\in D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])). In fact, [G]Sym(𝔤[2]){\mathbb{C}}[G]\otimes\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2]) has two such structures: with respect to the left (resp. right) GG-action and the left (resp. right) comoment morphism. We consider the hamiltonian reduction with respect to the right UGU_{G}-action ([G]Sym(𝔤[2]))///(UG,ψG)\big{(}{\mathbb{C}}[G]\otimes\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])\big{)}/\!\!/\!\!/(U_{G},\psi_{G}). This reduction has the residual left structure of a monoidal object of DG(Sym(𝔤[2]))D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])). We will denote this object by 𝔎{\mathfrak{K}}.

Theorem 3.3.1.

We have an isomorphism ΦRH𝔎\Phi{\mathop{\rm RH}}{\mathcal{R}}\simeq{\mathfrak{K}}.

Proof.

Recall that derived Satake exchanges Verdier duality on the automorphic side with the composition on the spectral side of the Chevalley involution \mathfrak{C} of GG and the standard duality of DperfG(Sym(𝔤[2]))D^{G}_{\mathop{\operatorname{\rm perf}}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])) sending a perfect complex to its dual (see [BeF, Lemma 14] and [DLYZ]). Equivalently, it exchanges the perfect pairing of dg-categories

DG𝒪(Gr~G)DG𝒪(Gr~G)Vect,𝒢HG𝒪(GrG,!𝒢),D_{G_{\mathcal{O}}}(\widetilde{{\operatorname{Gr}}}_{G})\otimes D_{G_{\mathcal{O}}}(\widetilde{{\operatorname{Gr}}}_{G})\rightarrow\operatorname{Vect},\quad{\mathcal{F}}\boxtimes{\mathcal{G}}\mapsto H^{*}_{G_{{\mathcal{O}}}}({\operatorname{Gr}}_{G},{\mathcal{F}}\overset{!}{\otimes}{\mathcal{G}}),

which is continuous due to our renormalization, with the perfect pairing

DG(Sym(𝔤[2]))DG(Sym(𝔤[2]))Vect,FG(M)Sym(𝔤[2])N.D^{G}({\mathop{\operatorname{\rm Sym}}}^{\bullet}({\mathfrak{g}}[-2]))\otimes D^{G}({\mathop{\operatorname{\rm Sym}}}^{\bullet}({\mathfrak{g}}[-2]))\rightarrow\operatorname{Vect},\quad F\boxtimes G\mapsto\mathfrak{C}(M)\underset{{\mathop{\operatorname{\rm Sym}}}^{\bullet}({\mathfrak{g}}[-2])}{\otimes}N.

To prove the theorem it is enough to show that derived Satake interchanges the functor DG𝒪(Gr~G)VectD_{G_{\mathcal{O}}}(\widetilde{{\operatorname{Gr}}}_{G})\rightarrow\operatorname{Vect} given by pairing with RH{\mathop{\rm RH}}{\mathcal{R}} and the functor DG(Sym(𝔤[2]))VectD^{G}({\mathop{\operatorname{\rm Sym}}}^{\bullet}({\mathfrak{g}}[-2]))\rightarrow\operatorname{Vect} given by pairing with 𝔎{\mathfrak{K}}. However, note the latter computes the underlying vector space of the Kostant–Whittaker reduction ϰ\varkappa, cf. §2.4. Applying the Riemann–Hilbert correspondence to the statement of Proposition 3.2.1, we obtain that RHRT(Θ){\mathop{\rm RH}}{\mathcal{R}}\simeq{\mathop{\rm RT}}(\Theta), and hence we are done by (2.4.1). ∎

4. Coulomb branches of noncotangent type

4.1. Anomaly cancellation

A symplectic representation 𝐌{\mathbf{M}} of a reductive group 𝖦{\mathsf{G}}, i.e. a homomorphism 𝖦Sp(𝐌)=G{\mathsf{G}}\to{\mathop{\operatorname{\rm Sp}}}({\mathbf{M}})=G gives rise to a morphism s:Gr𝖦GrGs\colon{\operatorname{Gr}}_{\mathsf{G}}\to{\operatorname{Gr}}_{G}. The pullback s𝒟s^{*}{\mathcal{D}} of the determinant line bundle of GrG{\operatorname{Gr}}_{G} is a multiplicative line bundle {\mathcal{L}} on Gr𝖦{\operatorname{Gr}}_{\mathsf{G}} (i.e. its pullback mm^{*}{\mathcal{L}} to the convolution diagram Gr𝖦×~Gr𝖦mGr𝖦{\operatorname{Gr}}_{\mathsf{G}}\widetilde{\times}{\operatorname{Gr}}_{\mathsf{G}}\stackrel{{\scriptstyle m}}{{\to}}{\operatorname{Gr}}_{\mathsf{G}} is isomorphic to ~{\mathcal{L}}\widetilde{\boxtimes}{\mathcal{L}}, and this isomorphism satisfies a natural cocycle condition). It is well known that the multiplicative line bundles on Gr𝖦{\operatorname{Gr}}_{\mathsf{G}} are in natural bijection with the invariant (with respect to the Weyl group of 𝖦{\mathsf{G}}) integral bilinear forms on the coweight lattice X(𝖦)X_{*}({\mathsf{G}}) assuming even values on all the coroots. The bilinear form BB corresponding to {\mathcal{L}} is nothing but the pullback of the trace form on 𝔤=𝔰𝔭(𝐌){\mathfrak{g}}={\mathfrak{sp}}({\mathbf{M}}). In case B/2B/2 is still an integral bilinear form assuming even values on all the coroots, there exists a multiplicative line bundle \sqrt{\mathcal{L}}. We choose such a square root, and the pullback of the gerbe Gr~G{\widetilde{\operatorname{Gr}}}_{G} trivializes. Hence the pullback 𝒜𝖦,𝐌:=s!RH{\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}:=s^{!}{\mathop{\rm RH}}{\mathcal{R}} can be viewed as a ring object of D𝖦𝒪(Gr𝖦)D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}) (no twisting).

Proposition 4.1.1.

The bilinear form BB is divisible by 2 (and B/2B/2 assumes even values on all the coroots) iff the induced morphism π4𝖦π4G=/2\pi_{4}{\mathsf{G}}\to\pi_{4}G={\mathbb{Z}}/2{\mathbb{Z}} is trivial.

For a proof, see Appendix B.

Remark 4.1.2.

The second condition of the proposition is the anomaly cancellation condition of [Wi].

In case the anomaly cancellation condition holds true, we can consider the ring 𝒜(𝖦,𝐌):=H𝖦𝒪(Gr𝖦,𝒜𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}):=H^{\bullet}_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}},{\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}). Since the universal ring object RH{\mathop{\rm RH}}{\mathcal{R}} is commutative (by explicit calculation of Theorem 3.3.1), the ring object 𝒜𝖦,𝐌{\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}} is commutative as well. Hence the ring 𝒜(𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) is also commutative, and the Coulomb branch C(𝖦,𝐌){\mathcal{M}}_{C}({\mathsf{G}},{\mathbf{M}}) is defined as Spec𝒜(𝖦,𝐌)\operatorname{Spec}{\mathcal{A}}({\mathsf{G}},{\mathbf{M}}).

4.2. Cotangent type

Assume that a symplectic representation 𝐌{\mathbf{M}} of a reductive group 𝖦{\mathsf{G}} splits as 𝐌=𝐍𝐍{\mathbf{M}}={\mathbf{N}}\oplus{\mathbf{N}}^{*} for some 𝖦{\mathsf{G}}-module 𝐍{\mathbf{N}}. Then the anomaly cancellation condition holds true, and we obtain a ring object 𝒜𝖦,𝐌D𝖦𝒪(Gr𝖦){\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}\in D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}). On the other hand, a ring object 𝒜𝖦,𝐍:=π𝝎[2dim𝐍𝒪]D𝖦𝒪(Gr𝖦){\mathcal{A}}_{{\mathsf{G}},{\mathbf{N}}}:=\pi_{*}{\boldsymbol{\omega}}_{\mathcal{R}}[-2\dim{\mathbf{N}}_{\mathcal{O}}]\in D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}) is defined in [BFN3, 2(ii)], such that 𝒜(𝖦,𝐍)=H𝖦𝒪(Gr𝖦,𝒜𝖦,𝐍){\mathcal{A}}({\mathsf{G}},{\mathbf{N}})=H^{\bullet}_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}},{\mathcal{A}}_{{\mathsf{G}},{\mathbf{N}}}) (the ring of functions on the Coulomb branch of cotangent type).

Lemma 4.2.1.

We have an isomorphism of ring objects 𝒜𝖦,𝐍𝒜𝖦,𝐌{\mathcal{A}}_{{\mathsf{G}},{\mathbf{N}}}\cong{\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}.

Proof.

The monoidal category Dmod(Gr𝖦)𝖦𝒪\rm{D}{\operatorname{-mod}}({\operatorname{Gr}}_{\mathsf{G}})^{{\mathsf{G}}_{\mathcal{O}}} acts on (𝒲mod)𝖦𝒪Dmod(𝐍𝒦)𝖦𝒪({\mathcal{W}}{\operatorname{-mod}})^{{\mathsf{G}}_{\mathcal{O}}}\cong\rm{D}{\operatorname{-mod}}({\mathbf{N}}_{\mathcal{K}})^{{\mathsf{G}}_{\mathcal{O}}}, and 𝒜𝖦,𝐌DR:=𝑜𝑚(δ𝐍𝒪,δ𝐍𝒪){\mathcal{A}}^{DR}_{{\mathsf{G}},{\mathbf{M}}}:={\mathop{\operatorname{{\mathcal{H}}\!\it om}}}(\delta_{{\mathbf{N}}_{\mathcal{O}}},\delta_{{\mathbf{N}}_{\mathcal{O}}}). By definition, it represents the functor Dmod(Gr𝖦)𝖦𝒪𝒢HomDmod(𝐍𝒦)𝖦𝒪(𝒢δ𝐍𝒪,δ𝐍𝒪)\rm{D}{\operatorname{-mod}}({\operatorname{Gr}}_{\mathsf{G}})^{{\mathsf{G}}_{\mathcal{O}}}\ni{\mathcal{G}}\mapsto{\mathop{\operatorname{\rm Hom}}}_{\rm{D}{\operatorname{-mod}}({\mathbf{N}}_{\mathcal{K}})^{{\mathsf{G}}_{\mathcal{O}}}}({\mathcal{G}}\star\delta_{{\mathbf{N}}_{\mathcal{O}}},\delta_{{\mathbf{N}}_{\mathcal{O}}}). Now 𝒜𝖦,𝐌D𝖦𝒪(Gr𝖦){\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}\in D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}) is the image of 𝒜𝖦,𝐌DRDmod(Gr𝖦)𝖦𝒪{\mathcal{A}}^{DR}_{{\mathsf{G}},{\mathbf{M}}}\in\rm{D}{\operatorname{-mod}}({\operatorname{Gr}}_{\mathsf{G}})^{{\mathsf{G}}_{\mathcal{O}}} under the Riemann–Hilbert correspondence.

More generally, given a group HH acting on a variety XX we denote by

HprHH×Xa,prXXH\xleftarrow{{\operatorname{pr}}_{H}}H\times X\xrightarrow{a,{\operatorname{pr}}_{X}}X

the natural projections and the action morphism. The monoidal derived constructible category D(H)D(H) (with respect to convolution) acts on D(X)D(X) (by convolution), and given D(X){\mathcal{F}}\in D(X), the internal Hom object 𝑜𝑚(,)D(H){\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\mathcal{F}},{\mathcal{F}})\in D(H) is given explicitly by 𝑜𝑚(,)=prHHom¯(prX!,a!){\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\mathcal{F}},{\mathcal{F}})={\operatorname{pr}}_{H*}\underline{{\mathop{\operatorname{\rm Hom}}}}({\operatorname{pr}}_{X}^{!}{\mathcal{F}},a^{!}{\mathcal{F}}), where Hom¯(𝒳,𝒴)=𝔻𝒳!𝒴\underline{{\mathop{\operatorname{\rm Hom}}}}({\mathcal{X}},{\mathcal{Y}})={\mathbb{D}}{\mathcal{X}}\otimes^{!}{\mathcal{Y}}.

Now let YXY\subset X be a smooth subvariety, and =¯Y{\mathcal{F}}=\underline{{\mathbb{C}}}_{Y}. Set

Z:={(h,y)H×Y:hyY}H×X.Z:=\{(h,y)\in H\times Y\ :\ hy\in Y\}\subset H\times X.

Then 𝑜𝑚(,)=prH𝝎Z[2dimY]{\mathop{\operatorname{{\mathcal{H}}\!\it om}}}({\mathcal{F}},{\mathcal{F}})={\operatorname{pr}}_{H*}{\boldsymbol{\omega}}_{Z}[-2\dim Y].

Similar statement applies to the situation when HH comes with a closed subgroup AA such that YY is AA-invariant, and we consider the action of D(A\H/A)D(A\backslash H/A) on D(X)AD(X)^{A}.

Applying this to H=𝖦𝒦,A=𝖦𝒪,X=𝐍𝒦,Y=𝐍𝒪H={\mathsf{G}}_{\mathcal{K}},A={\mathsf{G}}_{\mathcal{O}},\ X={\mathbf{N}}_{\mathcal{K}},\ Y={\mathbf{N}}_{\mathcal{O}} we obtain the desired isomorphism 𝒜𝖦,𝐌𝒜𝖦,𝐍:=π𝝎[2dim𝐍𝒪]D𝖦𝒪(Gr𝖦){\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}}\cong{\mathcal{A}}_{{\mathsf{G}},{\mathbf{N}}}:=\pi_{*}{\boldsymbol{\omega}}_{\mathcal{R}}[-2\dim{\mathbf{N}}_{\mathcal{O}}]\in D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}) (see [BFN1, 2(ii)] for the meaning of the cohomological shift 𝝎[2dim𝐍𝒪]{\boldsymbol{\omega}}_{\mathcal{R}}[-2\dim{\mathbf{N}}_{\mathcal{O}}]). ∎

4.3. Finite generation

Lemma 4.3.1.

𝒜(𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) is a finitely generated integral domain.

Proof.

We essentially repeat the argument of [BFN1, 6(iii)]. We choose a Cartan torus 𝖳𝖦{\mathsf{T}}\subset{\mathsf{G}}, restrict our symplectic representation 𝐌{\mathbf{M}} from 𝖦{\mathsf{G}} to 𝖳{\mathsf{T}}, and consider the corresponding ring 𝒜(𝖳,𝐌){\mathcal{A}}({\mathsf{T}},{\mathbf{M}}). Note that the 𝖳{\mathsf{T}}-module 𝐌{\mathbf{M}} is automatically of cotangent type, i.e. 𝐌𝐍𝐍{\mathbf{M}}\simeq{\mathbf{N}}\oplus{\mathbf{N}}^{*} for a 𝖳{\mathsf{T}}-module 𝐍{\mathbf{N}}. In notation of [BFN1, 3(iv)], we have 𝒜(𝖳,𝐌)=𝒜(𝖳,𝐍){\mathcal{A}}({\mathsf{T}},{\mathbf{M}})={\mathcal{A}}({\mathsf{T}},{\mathbf{N}}). Similarly to [BFN1, Lemma 5.17], we obtain an injective homomorphism 𝒜(𝖳,𝐌)𝒜(𝖦,𝐌)H𝖦(pt)H𝖳(pt){\mathcal{A}}({\mathsf{T}},{\mathbf{M}})\hookrightarrow{\mathcal{A}}({\mathsf{G}},{\mathbf{M}})\otimes_{H^{\bullet}_{\mathsf{G}}({\operatorname{pt}})}H^{\bullet}_{\mathsf{T}}({\operatorname{pt}}).

Since Gr𝖦{\operatorname{Gr}}_{\mathsf{G}} is the union of its spherical Schubert subvarieties, we obtain a filtration by support on 𝒜(𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) (and the induced filtration on 𝒜(𝖳,𝐌){\mathcal{A}}({\mathsf{T}},{\mathbf{M}})) numbered by the cone X+(𝖦)X^{+}_{*}({\mathsf{G}}) of dominant coweights of 𝖦{\mathsf{G}}. For λX+(𝖦)\lambda\in X^{+}_{*}({\mathsf{G}}) let iλi_{\lambda} denote the locally closed embedding Gr𝖦λGr𝖦{\operatorname{Gr}}^{\lambda}_{\mathsf{G}}\hookrightarrow{\operatorname{Gr}}_{\mathsf{G}}. The key observation is that iλ!𝒜𝖦,𝐌i_{\lambda}^{!}{\mathcal{A}}_{{\mathsf{G}},{\mathbf{M}}} is a trivial one-dimensional local system on Gr𝖦λ{\operatorname{Gr}}^{\lambda}_{\mathsf{G}} (shifted to some cohomological degree determined by the monopole formula). It gives rise to an element [λ]gr𝒜(𝖦,𝐌)[{\mathcal{R}}_{\lambda}]\in\operatorname{gr}{\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) (in the cotangent case this element was the fundamental class of the preimage of Gr𝖦λ{\operatorname{Gr}}^{\lambda}_{\mathsf{G}} in the variety of triples, hence the notation).

Now the proof of [BFN1, Proposition 6.2, Proposition 6.8] goes through word for word in our situation and establishes the desired finite generation. ∎

4.4. Normality

Lemma 4.4.1.

𝒜(𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) is integrally closed.

Proof.

Again we repeat the argument of [BFN1, 6(v)] with minor modifications. It reduces to an explicit calculation of 𝒜(𝖦,𝐌){\mathcal{A}}({\mathsf{G}},{\mathbf{M}}) for 𝖦=SL(2){\mathsf{G}}={\mathop{\operatorname{\rm SL}}}(2) or 𝖦=PGL(2){\mathsf{G}}={\mathop{\operatorname{\rm PGL}}}(2) as in [BFN1, Lemma 6.9]. Now any symplectic representation of PGL(2){\mathop{\operatorname{\rm PGL}}}(2) is of cotangent type (since any irreducible representation is odd-dimensional), so 𝒜(PGL(2),𝐌){\mathcal{A}}({\mathop{\operatorname{\rm PGL}}}(2),{\mathbf{M}}) is already computed in [BFN1, Lemma 6.9(2)]. For SL(2){\mathop{\operatorname{\rm SL}}}(2), a representation 𝐌=kVkMk{\mathbf{M}}=\oplus_{k\in{\mathbb{N}}}V^{k}\otimes M^{k} (where VkV^{k} is an irreducible SL(2){\mathop{\operatorname{\rm SL}}}(2)-module of dimension k+1k+1, and MkM^{k} is a multiplicity space) is symplectic iff dimMk\dim M^{k} is even for kk even. Furthermore, it is easy to see that the anomaly cancellation condition is that the sum dimM4+1\sum_{\ell\in{\mathbb{N}}}\dim M^{4\ell+1} must be even. Equivalently, if for a weight χX(SL(2))=\chi\in X^{*}({\mathop{\operatorname{\rm SL}}}(2))={\mathbb{Z}} we denote by mχm_{\chi} the dimension of the χ\chi-weight space of 𝐌{\mathbf{M}}, then N:=χ|χ|mχ/4N:=\sum_{\chi\in{\mathbb{Z}}}|\chi|m_{\chi}/4 must be integral.

Then the same argument as in the proof of [BFN1, Lemma 6.9(1)] identifies 𝒜(SL(2),𝐌){\mathcal{A}}({\mathop{\operatorname{\rm SL}}}(2),{\mathbf{M}}) as an algebra with 3 generators δ,ξ,η\delta,\xi,\eta and a single relation ξ2=δη2δN1\xi^{2}=\delta\eta^{2}-\delta^{N-1} if N>0N>0, and ξ2=δη2+η\xi^{2}=\delta\eta^{2}+\eta if N=0N=0. In particular, it is always integrally closed. ∎

5. Odds and ends

5.1. An orthosymplectic construction of 𝔎{\mathfrak{K}}

The invariants Sym(𝔤[2])G\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])^{G} form a free graded commutative algebra [Σ𝔤]{\mathbb{C}}[\Sigma^{\bullet}_{\mathfrak{g}}] with generators in degrees 4,8,,4n4,8,\ldots,4n (functions on a graded version of Kostant slice). Recall the ring object 𝔎{\mathfrak{K}} of DG(Sym(𝔤[2]))D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])) introduced in §3.3. It is well known that 𝔎[G×Σ𝔤]{\mathfrak{K}}\simeq{\mathbb{C}}[G\times\Sigma^{\bullet}_{\mathfrak{g}}], where GG acts in the RHS via g(g,σ)=(gg,σ)g\cdot(g^{\prime},\sigma)=(gg^{\prime},\sigma), and the morphism G×Σ𝔤𝔤[2]G\times\Sigma^{\bullet}_{\mathfrak{g}}\to{\mathfrak{g}}^{*}[2] is (g,σ)Adgσ(g,\sigma)\mapsto\operatorname{Ad}_{g}\sigma.

Let us present one more construction of 𝔎{\mathfrak{K}}. We take a 2n+12n+1-dimensional complex vector space 𝐌{\mathbf{M}}^{\prime} equipped with a nondegenerate symmetric bilinear form (,)(\,,). Given AHom(𝐌,𝐌)A\in{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}}^{\prime},{\mathbf{M}}) we have the adjoint operator AtHom(𝐌,𝐌)A^{t}\in{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime}). We have two moment maps

𝐪𝔤:Hom(𝐌,𝐌)𝔤𝔤,AAAt;𝐪𝔤:Hom(𝐌,𝐌)𝔰𝔬(𝐌)=𝔤(𝔤),AAtA,{\mathbf{q}}_{\mathfrak{g}}\colon{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})\to{\mathfrak{g}}\cong{\mathfrak{g}}^{*},\ A\mapsto AA^{t};\\ {\mathbf{q}}_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}\colon{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})\to{\mathfrak{so}}({\mathbf{M}}^{\prime})={\mathfrak{g}}^{\!\scriptscriptstyle\vee}\cong({\mathfrak{g}}^{\!\scriptscriptstyle\vee})^{*},\ A\mapsto A^{t}A,

(we use the Killing form to identify 𝔤{\mathfrak{g}} (resp. 𝔤{\mathfrak{g}}^{\!\scriptscriptstyle\vee}) with its dual), and the natural action G×G=SO(𝐌)×Sp(𝐌)Hom(𝐌,𝐌)G^{\vee}\times G={\mathop{\operatorname{\rm SO}}}({\mathbf{M}}^{\prime})\times{\mathop{\operatorname{\rm Sp}}}({\mathbf{M}})\circlearrowright{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}}^{\prime},{\mathbf{M}}). We choose a maximal unipotent subgroup UGGU_{G^{\vee}}\subset G^{\vee} and a regular character ψ𝔤\psi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}} of its Lie algebra. The hamiltonian reduction [Hom(𝐌,𝐌)]///(UG,ψ𝔤){\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})\big{]}/\!\!/\!\!/(U_{G^{\vee}},\psi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}) carries the residual action of GG and comoment morphism from Sym(𝔤)\mathop{\operatorname{\rm Sym}}({\mathfrak{g}}).

Now we consider [Hom(𝐌,𝐌)]{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})\big{]} as a dg-algebra with trivial differential and with cohomological grading such that all the generators in Hom(𝐌,𝐌){\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})^{*} have degree 1. We will denote this dg-algebra by [Hom(𝐌,𝐌)[1]]{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})[1]\big{]}.101010So strictly speaking we should consider the generators in Hom(𝐌,𝐌){\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})^{*} as having odd parity. Then the comoment morphisms are the homomorphisms of dg-algebras

𝐪𝔤:Sym(𝔤[2])[Hom(𝐌,𝐌)[1]]Sym(𝔤[2]):𝐪𝔤,{\mathbf{q}}_{\mathfrak{g}}^{*}\colon\mathop{\operatorname{\rm Sym}}\!{}^{\bullet}({\mathfrak{g}}[-2])\to{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})[1]\big{]}\leftarrow\mathop{\operatorname{\rm Sym}}\!{}^{\bullet}({\mathfrak{g}}^{\!\scriptscriptstyle\vee}[-2])\ :{\mathbf{q}}_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}^{*},

and [Hom(𝐌,𝐌)[1]]///(UG,ψ𝔤){\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})[1]\big{]}/\!\!/\!\!/(U_{G^{\vee}},\psi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}) is a ring object of DG(Sym(𝔤[2]))D^{G}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{g}}[-2])).

Proposition 5.1.1.

We have an isomorphism 𝔎[Hom(𝐌,𝐌)[1]]///(UG,ψ𝔤){\mathfrak{K}}\simeq{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})[1]\big{]}/\!\!/\!\!/(U_{G^{\vee}},\psi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}}).

Proof.

We consider a locally closed subvariety Y𝐌×Hom(𝐌,𝐌)[1]Y\subset{\mathbf{M}}^{\prime}\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}}^{\prime},{\mathbf{M}})[1] formed by the pairs (v,A)(v,A) such that vv is a cyclic vector for C:=AtA𝐌C:=A^{t}A\circlearrowright{\mathbf{M}}^{\prime} satisfying the orthogonality relations (v,Ckv)=0(v,C^{k}v)=0 for any k<2nk<2n (note that for odd kk this orthogonality relation is automatically satisfied), and (v,C2nv)=1(v,C^{2n}v)=1.

Clearly, YY is equipped with the action of G×G=SO(𝐌)×Sp(𝐌)G^{\vee}\times G={\mathop{\operatorname{\rm SO}}}({\mathbf{M}}^{\prime})\times{\mathop{\operatorname{\rm Sp}}}({\mathbf{M}}) and with a morphism π:Y𝔤[2]𝔤[2],(v,A)AAt\pi\colon Y\to{\mathfrak{g}}[2]\cong{\mathfrak{g}}^{*}[2],\ (v,A)\mapsto AA^{t}. Hence the categorical quotient Y//GY/\!\!/G^{\vee} carries the residual action of GG and is equipped with the residual morphism π¯:Y//G𝔤[2]\overline{\pi}\colon Y/\!\!/G^{\vee}\to{\mathfrak{g}}^{*}[2].

One can easily construct an isomorphism Hom(𝐌,𝐌)[1]///(UG,ψ𝔤)Y//G{\mathop{\operatorname{\rm Hom}}}({\mathbf{M}},{\mathbf{M}}^{\prime})[1]/\!\!/\!\!/(U_{G^{\vee}},\psi_{{\mathfrak{g}}^{\!\scriptscriptstyle\vee}})\simeq Y/\!\!/G^{\vee}. We will construct an isomorphism [Y]G𝔎{\mathbb{C}}[Y]^{G^{\vee}}\simeq{\mathfrak{K}}. More precisely, we will construct an isomorphism [Y]G[G×Σ𝔤]{\mathbb{C}}[Y]^{G^{\vee}}\simeq{\mathbb{C}}[G\times\Sigma_{\mathfrak{g}}^{\bullet}] with gradings disregarded, and it will be immediate to check that it respects the gradings (along with the GG-action and the comoment morphism).

We consider a locally closed subvariety X𝐌×𝔤X\subset{\mathbf{M}}\times{\mathfrak{g}} formed by the pairs (u,x)(u,x) such that uu is a cyclic vector of xx satisfying the orthogonality relations u,xku=0\langle u,x^{k}u\rangle=0 for any k<2n1k<2n-1 (note that for even kk this orthogonality relation is automatically satisfied), and u,x2n1u=1\langle u,x^{2n-1}u\rangle=1.

We have an isomorphism η:XG×Σ𝔤\eta\colon X\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}G\times\Sigma_{\mathfrak{g}} defined as follows. The second factor of η(u,x)\eta(u,x) is the image of xx in 𝔤//G𝔤//G=Σ𝔤{\mathfrak{g}}/\!\!/G\cong{\mathfrak{g}}^{*}/\!\!/G=\Sigma_{\mathfrak{g}}. The first factor of η(u,x)\eta(u,x) is the symplectic 2n×2n2n\times 2n-matrix with columns 𝖢0,𝖢1,,𝖢2n1{\mathsf{C}}_{0},{\mathsf{C}}_{1},\ldots,{\mathsf{C}}_{2n-1} defined as follows. First, we set 𝖢k=xku{\mathsf{C}}_{k}=x^{k}u for k=0,,nk=0,\ldots,n. Second, we set 𝖢n+1=(1)n(xn+1uu,x2n+1uxn1u){\mathsf{C}}_{n+1}=(-1)^{n}(x^{n+1}u-\langle u,x^{2n+1}u\rangle x^{n-1}u) to make sure 𝖢n2,𝖢n+1=1\langle{\mathsf{C}}_{n-2},{\mathsf{C}}_{n+1}\rangle=1 and 𝖢n,𝖢n+1=0\langle{\mathsf{C}}_{n},{\mathsf{C}}_{n+1}\rangle=0. Third, we define 𝖢n+2{\mathsf{C}}_{n+2} as (1)n1xn+2u(-1)^{n-1}x^{n+2}u plus an appropriate linear combination of xnux^{n}u and xn2ux^{n-2}u to make sure that 𝖢n3,𝖢n+2=1\langle{\mathsf{C}}_{n-3},{\mathsf{C}}_{n+2}\rangle=1, and 𝖢n+2{\mathsf{C}}_{n+2} is orthogonal to all the other previous columns. Then we continue to apply this ‘Gram-Schmidt orthogonalization process’ to xn+3u,,x2n1ux^{n+3}u,\ldots,x^{2n-1}u in order to obtain the desired columns 𝖢n+3,,𝖢2n1{\mathsf{C}}_{n+3},\ldots,{\mathsf{C}}_{2n-1}.

Now we consider a morphism ξ:YX,(v,A)(u=Av,x=AAt)\xi\colon Y\to X,\ (v,A)\mapsto(u=Av,\ x=AA^{t}). It factors through YY//Gξ¯XY\to Y/\!\!/G^{\vee}\stackrel{{\scriptstyle\overline{\xi}}}{{\longrightarrow}}X, and it follows from the first fundamental theorem of the invariant theory for SO(𝐌){\mathop{\operatorname{\rm SO}}}({\mathbf{M}}^{\prime}) that ξ¯\overline{\xi} is an isomorphism, cf. [BFT, proof of Lemma 2.8.1.(a)]. ∎

5.2. The universal ring object of cotangent type

We choose a pair of transversal Lagrangian subspaces 𝐌=𝐍𝐍{\mathbf{M}}={\mathbf{N}}\oplus{\mathbf{N}}^{*}. They give rise to a (Siegel) Levi subgroup 𝖦=GL(𝐍)G=Sp(𝐌){\mathsf{G}}={\mathop{\operatorname{\rm GL}}}({\mathbf{N}})\subset G={\mathop{\operatorname{\rm Sp}}}({\mathbf{M}}). The corresponding embedding of the affine Grassmannians Gr𝖦GrG{\operatorname{Gr}}_{\mathsf{G}}\hookrightarrow{\operatorname{Gr}}_{G} is denoted by ss. The pullback s𝒟s^{*}{\mathcal{D}} of the determinant line bundle of GrG{\operatorname{Gr}}_{G} is the square of the determinant line bundle of Gr𝖦{\operatorname{Gr}}_{\mathsf{G}}. Hence the pullback of the gerbe Gr~G{\widetilde{\operatorname{Gr}}}_{G} trivializes, and the pullback 𝖱:=s!RH{\mathsf{R}}:=s^{!}{\mathop{\rm RH}}{\mathcal{R}} can be viewed as an object of D𝖦𝒪(Gr𝖦)D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}}) (no twisting). It is nothing but the ring object considered in [BFN3]: the direct image of the dualizing sheaf of the variety of triples associated to the representation 𝐍{\mathbf{N}} of 𝖦{\mathsf{G}} in [BFN1].

We will compute the image of 𝖱{\mathsf{R}} under the derived Satake equivalence Φ:D𝖦𝒪(Gr𝖦)D𝖦(Sym(𝔤𝔩(𝐍)[2]))\Phi\colon D_{{\mathsf{G}}_{\mathcal{O}}}({\operatorname{Gr}}_{\mathsf{G}})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{\mathsf{G}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{gl}}({\mathbf{N}})[-2])). To this end, similarly to §5.1, we introduce another copy 𝐍{\mathbf{N}}^{\prime} of an nn-dimensional complex vector space, and consider the moment map

𝐪:Hom(𝐍,𝐍)×Hom(𝐍,𝐍)𝔤𝔩(𝐍)×𝔤𝔩(𝐍)𝔤𝔩(𝐍)×𝔤𝔩(𝐍),(A,B)(AB,BA),{\mathbf{q}}\colon{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\to{\mathfrak{gl}}({\mathbf{N}})\times{\mathfrak{gl}}({\mathbf{N}}^{\prime})\cong{\mathfrak{gl}}({\mathbf{N}})^{*}\times{\mathfrak{gl}}({\mathbf{N}}^{\prime})^{*},\\ (A,B)\mapsto(AB,BA),

(we use the trace form to identify 𝔤𝔩(𝐍){\mathfrak{gl}}({\mathbf{N}}) (resp. 𝔤𝔩(𝐍){\mathfrak{gl}}({\mathbf{N}}^{\prime})) with its dual), and the natural action GL(𝐍)×GL(𝐍)Hom(𝐍,𝐍)×Hom(𝐍,𝐍){\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime})\times{\mathop{\operatorname{\rm GL}}}({\mathbf{N}})\circlearrowright{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime}). We choose a maximal unipotent subgroup UGL(𝐍)U\subset{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime}) and a regular character ψ\psi of its Lie algebra. The hamiltonian reduction [Hom(𝐍,𝐍)×Hom(𝐍,𝐍)]///(U,ψ){\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\big{]}/\!\!/\!\!/(U,\psi) carries the residual action of GL(𝐍){\mathop{\operatorname{\rm GL}}}({\mathbf{N}}) and comoment morphism from Sym(𝔤𝔩(𝐍))\mathop{\operatorname{\rm Sym}}({\mathfrak{gl}}({\mathbf{N}})).

Now we consider [Hom(𝐍,𝐍)×Hom(𝐍,𝐍)]{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})\big{]} as a dg-algebra with trivial differential and with cohomological grading such that all the generators in Hom(𝐍,𝐍)Hom(𝐍,𝐍){\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})^{*}\oplus{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})^{*} have degree 1. We will denote this algebra by [Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1]]{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1]\big{]}.111111So strictly speaking we should consider the generators in Hom(𝐍,𝐍)Hom(𝐍,𝐍){\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})^{*}\oplus{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})^{*} as having odd parity. Then the comoment morphism is a homomorphism of dg-algebras

𝐪:Sym(𝔤𝔩(𝐍)[2]𝔤𝔩(𝐍)[2])[Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1]],{\mathbf{q}}^{*}\colon\mathop{\operatorname{\rm Sym}}\!{}^{\bullet}({\mathfrak{gl}}({\mathbf{N}})[-2]\oplus{\mathfrak{gl}}({\mathbf{N}}^{\prime})[-2])\to{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1]\big{]},

and [Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1]]///(U,ψ){\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1]\big{]}/\!\!/\!\!/(U,\psi) is a ring object of D𝖦(Sym(𝔤𝔩(𝐍)[2]))D^{\mathsf{G}}(\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{gl}}({\mathbf{N}})[-2])).

Proposition 5.2.1.

We have an isomorphism

Φ𝖱[Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1]]///(U,ψ).\Phi{\mathsf{R}}\simeq{\mathbb{C}}\big{[}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1]\big{]}/\!\!/\!\!/(U,\psi).
Proof.

We consider an open subvariety Z𝐍×Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1]Z\subset{\mathbf{N}}^{\prime}\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1] formed by the triples (v,A,B)(v,A,B) such that vv is a cyclic vector for BA𝐍BA\circlearrowright{\mathbf{N}}^{\prime}. It is equipped with a morphism ϖ:Z𝔤𝔩(𝐍)[2]𝔤𝔩(𝐍)[2],(v,A,B)AB\varpi\colon Z\to{\mathfrak{gl}}({\mathbf{N}})[2]\cong{\mathfrak{gl}}({\mathbf{N}})^{*}[2],\ (v,A,B)\mapsto AB, and a natural action of GL(𝐍)×GL(𝐍){\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime})\times{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}). Hence the categorical quotient Z//GL(𝐍)Z/\!\!/{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime}) carries the residual action of GL(𝐍){\mathop{\operatorname{\rm GL}}}({\mathbf{N}}) and is equipped with the residual morphism ϖ¯:Z//GL(𝐍)𝔤𝔩(𝐍)[2]\overline{\varpi}\colon Z/\!\!/{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime})\to{\mathfrak{gl}}({\mathbf{N}})^{*}[2].

One can easily construct an isomorphism

(Hom(𝐍,𝐍)[1]×Hom(𝐍,𝐍)[1])///(U,ψ)Z//GL(𝐍).\big{(}{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}}^{\prime},{\mathbf{N}})[1]\times{\mathop{\operatorname{\rm Hom}}}({\mathbf{N}},{\mathbf{N}}^{\prime})[1]\big{)}/\!\!/\!\!/(U,\psi)\simeq Z/\!\!/{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime}).

It remains to construct an isomorphism Φ𝖱[Z]GL(𝐍)\Phi{\mathsf{R}}\simeq{\mathbb{C}}[Z]^{{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime})} compatible with the comoment morphisms from Sym(𝔤𝔩(𝐍)[2])\mathop{\operatorname{\rm Sym}}^{\bullet}({\mathfrak{gl}}({\mathbf{N}})[-2]) and with the actions of GL(𝐍){\mathop{\operatorname{\rm GL}}}({\mathbf{N}}).

The desired isomorphism is a corollary of [BFGT, Theorem 3.6.1]. Indeed, in notation of [BFGT, §3.2, §3.10], we have 𝖱=u0(E0!𝝎GrGL(𝐍)×𝐍𝒦!E0){\mathsf{R}}=u_{0}^{*}(E_{0}\overset{!}{\circledast}{\boldsymbol{\omega}}_{{\operatorname{Gr}}_{{\mathop{\operatorname{\rm GL}}}({\mathbf{N}})\times{\mathbf{N}}_{\mathcal{K}}}}\overset{!}{\circledast}E_{0}) by comparison of definitions (say E0E_{0} stands for the constant sheaf on GrGL(𝐍)0×𝐍𝒪{\operatorname{Gr}}^{0}_{{\mathop{\operatorname{\rm GL}}}({\mathbf{N}})}\times{\mathbf{N}}_{\mathcal{O}}, see [BFGT, §3.9], while 𝝎{\boldsymbol{\omega}} stands for the dualizing sheaf). So we have to compute this triple convolution in terms of the mirabolic Satake equivalence. The corresponding convolution on the coherent side is defined in [BFGT, §§3.4,3.5]. The convolution of 3 objects is computed via the double cyclic quiver A~3\tilde{A}_{3} on 4 vertices, cf. [BFGT, (3.4.1)]. The result of this computation is nothing but [Z]GL(𝐍){\mathbb{C}}[Z]^{{\mathop{\operatorname{\rm GL}}}({\mathbf{N}}^{\prime})}. ∎

5.3. Baby version

Let PGP\subset G stand for the stabilizer of the Lagrangian subspace 𝐍𝐌{\mathbf{N}}\subset{\mathbf{M}} (Siegel parabolic). Let PPP^{\prime}\subset P stand for the derived subgroup. We consider the Lagrangian Grassmannian LGr𝐌=G/P{\operatorname{LGr}}_{\mathbf{M}}=G/P. The μ2\mu_{2}-gerbe of square roots of the ample determinant line bundle 𝒟{\mathcal{D}} over LGr𝐌{\operatorname{LGr}}_{\mathbf{M}} is denoted LGr~𝐌{\widetilde{\operatorname{LGr}}}_{\mathbf{M}}. The group PP^{\prime} acts on LGr~𝐌{\widetilde{\operatorname{LGr}}}_{\mathbf{M}}. We consider the derived constructible category DPb(LGr~𝐌)D^{b}_{P^{\prime}}({\widetilde{\operatorname{LGr}}}_{\mathbf{M}}) of genuine sheaves on LGr~𝐌{\widetilde{\operatorname{LGr}}}_{\mathbf{M}} (such that 1μ2-1\in\mu_{2} acts by 1-1). An open sub-gerbe 𝒯LGr~𝐌×LGr~𝐌{\mathcal{T}}\hookrightarrow{\widetilde{\operatorname{LGr}}}_{\mathbf{M}}\times{\widetilde{\operatorname{LGr}}}_{\mathbf{M}} is formed by all the pairs of transversal Lagrangian subspaces in 𝐌{\mathbf{M}}. We denote by LGr~𝐌p𝒯qLGr~𝐌{\widetilde{\operatorname{LGr}}}_{\mathbf{M}}\stackrel{{\scriptstyle p}}{{\leftarrow}}{\mathcal{T}}\stackrel{{\scriptstyle q}}{{\rightarrow}}{\widetilde{\operatorname{LGr}}}_{\mathbf{M}} the two projections, and we define the Radon Transform RT:=pq!:DPb(LGr~𝐌)DPb(LGr~𝐌){\mathop{\rm RT}}:=p_{*}q^{!}\colon D^{b}_{P^{\prime}}({\widetilde{\operatorname{LGr}}}_{\mathbf{M}})\to D^{b}_{P^{\prime}}({\widetilde{\operatorname{LGr}}}_{\mathbf{M}}). Finally, we consider the PP^{\prime}-equivariant derived category Dmod1/2P(LGr𝐌)\operatorname{D-mod}_{-1/2}^{P^{\prime}}({\operatorname{LGr}}_{\mathbf{M}}) of DD-modules on LGr𝐌{\operatorname{LGr}}_{\mathbf{M}} twisted by the negative square root of the determinant line bundle 𝒟{\mathcal{D}}. We have the Riemann–Hilbert equivalence RH:Dmod1/2P(LGr𝐌)DPb(LGr~𝐌){\mathop{\rm RH}}\colon\operatorname{D-mod}_{-1/2}^{P^{\prime}}({\operatorname{LGr}}_{\mathbf{M}})\mathbin{\vphantom{j^{X^{2}}}\smash{\overset{\sim}{\vphantom{\rule{0.0pt}{1.99997pt}}\smash{\longrightarrow}}}}D^{b}_{P^{\prime}}({\widetilde{\operatorname{LGr}}}_{\mathbf{M}}).

The Weyl algebra of the symplectic space 𝐌{\mathbf{M}} is denoted by 𝒲𝐌{\mathcal{W}}_{\mathbf{M}}. The homomorphism 𝔤=𝔰𝔭(𝐌)Lie𝒲𝐌{\mathfrak{g}}={\mathfrak{sp}}({\mathbf{M}})\to\operatorname{Lie}{\mathcal{W}}_{\mathbf{M}} (oscillator representation) goes back to [S], see [H, §2] and [La, §1.1]. The restriction of the 𝒲𝐌{\mathcal{W}}_{\mathbf{M}}-module [𝐍]{\mathbb{C}}[{\mathbf{N}}] to 𝔤{\mathfrak{g}} is a direct sum of two irreducible modules LλgLλsL^{\lambda_{g}}\oplus L^{\lambda_{s}} (even and odd functions). Here in the standard orthonormal basis ε1,,εn\varepsilon_{1},\ldots,\varepsilon_{n} of a Cartan Lie subalgebra of LieP\operatorname{Lie}P we have λg=12i=1nεi\lambda_{g}=-\frac{1}{2}\sum_{i=1}^{n}\varepsilon_{i}, and λs=λgεn\lambda_{s}=\lambda_{g}-\varepsilon_{n}.

The baby version SS of Θ\Theta-sheaf, introduced in [Ly, Definition 2] and studied in [LL, §2], is the direct sum of IC-sheaves of two PP-orbits in LGr~𝐌:Sg{\widetilde{\operatorname{LGr}}}_{\mathbf{M}}\colon S_{g} of the open orbit, and SsS_{s} of the codimension 1 orbit. We have irreducible twisted DD-modules 𝒮g=τ0LocLλg,𝒮s=τ0LocLλs{\mathcal{S}}_{g}=\tau_{\geq 0}{\operatorname{Loc}}L^{\lambda_{g}},\ {\mathcal{S}}_{s}=\tau_{\geq 0}{\operatorname{Loc}}L^{\lambda_{s}}, and RH(𝒮g)=Sg,RH(𝒮s)=Ss{\mathop{\rm RH}}({\mathcal{S}}_{g})=S_{g},\ {\mathop{\rm RH}}({\mathcal{S}}_{s})=S_{s}.

Finally, RT(S){\mathop{\rm RT}}(S) is isomorphic to SS up to a shift. More precisely, we have RT(Sg)Ss[n2+2]{\mathop{\rm RT}}(S_{g})\simeq S_{s}[n^{2}+2], and RT(Ss)Sg[n2]{\mathop{\rm RT}}(S_{s})\simeq S_{g}[n^{2}] for nn odd, while for nn even we have RT(Ss)Ss[n2+2]{\mathop{\rm RT}}(S_{s})\simeq S_{s}[n^{2}+2] and RT(Sg)Sg[n2]{\mathop{\rm RT}}(S_{g})\simeq S_{g}[n^{2}]. This follows e.g. from [LY, Theorem 10.7].

Appendix A Localization and the Radon transform

By Gurbir Dhillon


A.1. Lie groups and algebras

Let GG be an almost simple, simply connected, group and 𝔤{\mathfrak{g}} its Lie algebra.121212The results discussed below straightforwardly generalize to any connected reductive group GG. Let κ\kappa be a level, i.e. an Ad\operatorname{Ad}-invariant bilinear form on 𝔤{\mathfrak{g}}, and consider the associated affine Lie algebra

0𝟏𝔤^κ𝔤((t))0.0\rightarrow\mathbb{C}\cdot\mathbf{1}\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\rightarrow{\mathfrak{g}}(\!(t)\!)\rightarrow 0.

A.2. Levels

Let us write κc\kappa_{c} for the critical level, i.e., minus one half times the Killing form. We recall that a level κ\kappa is called positive if

κκc+0κc.\kappa\notin\kappa_{c}+\mathbb{Q}^{\geqslant 0}\cdot\kappa_{c}.

Similarly, a level κ\kappa is called negative if

κκc0κc.\kappa\notin\kappa_{c}-\mathbb{Q}^{\geqslant 0}\cdot\kappa_{c}.

Note that, in this convention, an irrational multiple of the critical level is considered both positive and negative.

A.3. Localization on the thin Grassmannian

For any level κ\kappa, one has a Dmodκ(G𝒦)\operatorname{D-mod}_{\kappa}(G_{{\mathcal{K}}})-equivariant functor of global sections

Γκ:Dmodκ(GrG)𝔤^κmod.\Gamma_{\kappa}\colon\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}.

It is the unique equivariant functor sending the delta D-module at the trivial coset δe\delta_{e} to the vacuum module, i.e., the parabolically induced module

𝕍κ:=pind𝔤𝔤^κ.\mathbb{V}_{\kappa}:=\operatorname{pind}_{{\mathfrak{g}}}^{\widehat{{\mathfrak{g}}}_{\kappa}}\mathbb{C}.

The functor admits a right adjoint. Moreover, after passing to spherical vectors, it also admits a left adjoint. That is, one has an adjunction

Locκ:𝔤^κmodG𝒪Dmodκ(GrG)G𝒪:Γκ.\operatorname{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\rightleftarrows\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}:\Gamma_{\kappa}.

A.4. Localization on the thick Grassmannian

Let us denote the usual and dual categories of D-modules on the thick Grassmannian by

Dmodκ(𝐆𝐫G)!andDmodκ(𝐆𝐫G).\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}\quad\text{and}\quad\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}.

By definition, if we let 𝐔i\mathbf{U}_{i} range through the quasicompact open subschemes of 𝐆𝐫G{\mathbf{Gr}}_{G}, we have

Dmodκ(𝐆𝐫G)!lim𝑖Dmodκ(𝐔i)andDmodκ(𝐆𝐫G)lim𝑖Dmodκ(𝐔i),\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}\simeq\underset{i}{\varprojlim}\operatorname{D-mod}_{\kappa}(\mathbf{U}_{i})\quad\text{and}\quad\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}\simeq\underset{i}{\varinjlim}\operatorname{D-mod}_{\kappa}(\mathbf{U}_{i}),

where the transition maps are given by !!-restriction and *-pushforward, respectively.

Following Arkhipov–Gaitsgory [ArG], one has Dmodκ(G𝒦)\operatorname{D-mod}_{\kappa}(G_{\mathcal{K}})-equivariant localization and global sections functors

(A.4.1) 𝐋𝐨𝐜κ:𝔤^κmodDmodκ(𝐆𝐫G)!and𝚪κ:Dmodκ(𝐆𝐫G)𝔤^κmod.\mathbf{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}\rightarrow\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}\quad\text{and}\quad\mathbf{\Gamma_{\kappa}}\colon\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}.

Upon passing to spherical vectors, one has the following adjunctions, which are sensitive to the sign of the level. If κ\kappa is positive, 𝐋𝐨𝐜κ\mathbf{Loc}_{\kappa} admits a right adjoint of (smooth) global sections

(A.4.2) 𝐋𝐨𝐜κ:𝔤^κmodG𝒪Dmodκ(𝐆𝐫G)!G𝒪:𝚪κ.\mathbf{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\rightleftarrows\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}^{G_{\mathcal{O}}}\colon\mathbf{\Gamma_{\kappa}}.

Similarly, if κ\kappa is negative, 𝚪κ\mathbf{\Gamma_{\kappa}} admits a left adjoint

(A.4.3) 𝐋𝐨𝐜κ:𝔤^κmodG𝒪Dmodκ(𝐆𝐫G)G𝒪:𝚪κ.\mathbf{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\rightleftarrows\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}^{G_{\mathcal{O}}}\colon\mathbf{\Gamma_{\kappa}}.

We emphasize that the sources of the functors denoted 𝚪κ\mathbf{\Gamma_{\kappa}} in (A.4.1) and (A.4.2) are distinct, as are the sources of the functors denoted 𝐋𝐨𝐜κ\mathbf{Loc}_{\kappa} in (A.4.1) and (A.4.3).

A.5. Radon Transform

For any level κ\kappa, consider the Radon transform functors

RT!:Dmodκ(GrG)Dmodκ(𝐆𝐫G)!and\displaystyle\operatorname{RT}_{!}\colon\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\rightarrow\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}\quad\text{and}
RT:Dmodκ(GrG)Dmodκ(𝐆𝐫G).\displaystyle\operatorname{RT}_{*}\colon\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\rightarrow\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}.

These are by definition Dmodκ(G𝒦)\operatorname{D-mod}_{\kappa}(G_{\mathcal{K}})-equivariant, and are characterized by sending δe\delta_{e} to the !!- and *-extensions of the constant intersection cohomology D-module

[G𝒪G[t1]/G[t1]],\mathbb{C}[G_{\mathcal{O}}\cdot G_{\mathbb{C}[t^{-1}]}/G_{\mathbb{C}[t^{-1}]}],

respectively. In what follows, we denote these objects by j!j_{!} and jj_{*}, respectively.

It is standard that RT!\operatorname{RT}_{!} and RT\operatorname{RT}_{*} induce equivalences on spherical vectors, and in particular are fully faithful embeddings.

A.6. Global sections and the Radon transform: negative level

We now turn to the relationship between the global sections functors on the thin and thick Grassmannians and the Radon transform. We begin with the case of κ\kappa negative.

Proposition A.6.1.

Suppose κ\kappa is negative. Then the functor of global sections on the thin Grassmannian

(A.6.1) Γκ:Dmodκ(GrG)𝔤^κmod\Gamma_{\kappa}\colon\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}

is canonically Dmodκ(G𝒦)\operatorname{D-mod}_{\kappa}(G_{{\mathcal{K}}})-equivariantly equivalent to the composition

(A.6.2) Dmodκ(GrG)RTDmodκ(𝐆𝐫G)𝚪κ𝔤^κmod.\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\xrightarrow{\operatorname{RT}_{*}}\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}\xrightarrow{\mathbf{\Gamma_{\kappa}}}\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}.
Proof.

It is enough to show that the composition (A.6.2) sends δe\delta_{e} to the vacuum module 𝕍κ\mathbb{V}_{\kappa}. Unwinding definitions, we have

𝚪κRT(δe)𝚪κ(j)[G𝒪G[t1]/G[t1]],\mathbf{\Gamma_{\kappa}}\circ\operatorname{RT}_{*}(\delta_{e})\simeq\mathbf{\Gamma_{\kappa}}(j_{*})\simeq\mathbb{C}[G_{\mathcal{O}}\cdot G_{\mathbb{C}[t^{-1}]}/G_{\mathbb{C}[t^{-1}]}],

i.e., δe\delta_{e} is sent to the algebra of functions on the big cell. The function which is identically one on the cell yields, by its G𝒪G_{\mathcal{O}} invariance, a canonical map of 𝔤^κ\widehat{{\mathfrak{g}}}_{\kappa}-modules

𝕍κ[G𝒪G[t1]/G[t1]].\mathbb{V}_{\kappa}\rightarrow\mathbb{C}[G_{\mathcal{O}}\cdot G_{\mathbb{C}[t^{-1}]}/G_{\mathbb{C}[t^{-1}]}].

It is straightforward to see that the characters of the two appearing modules coincide. Moreover, by our assumption on κ\kappa, 𝕍κ\mathbb{V}_{\kappa} is irreducible, hence the map is an isomorphism, as desired. ∎

Remark A.6.2.

The functions on the big cell, at any level, are canonically isomorphic to the contragredient dual of the vacuum. In particular, at a positive rational level κ\kappa, the assertion of Proposition A.6.1 is false. We will meet its corrected variant in Proposition A.7.1 below.

By taking the statement of Proposition A.6.1, passing to spherical invariants, and then left adjoints, we deduce the following.

Corollary A.6.3.

Suppose κ\kappa is negative. Then the localization functor on the thin Grassmannian

Locκ:𝔤^κmodG𝒪Dmodκ(GrG)G𝒪\operatorname{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\rightarrow\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}

is canonically Dmodκ(G𝒪\G𝒦/G𝒪)\operatorname{D-mod}_{\kappa}(G_{\mathcal{O}}\backslash G_{\mathcal{K}}/G_{\mathcal{O}})-equivariantly equivalent to the composition

𝔤^κmodG𝒪𝐋𝐨𝐜κDmodκ(𝐆𝐫G)RT1Dmodκ(GrG).\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\xrightarrow{\mathbf{Loc}_{\kappa}}\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{*}\xrightarrow{\operatorname{RT}_{*}^{-1}}\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G}).

A.7. Global sections and the Radon transform: positive level

Let us now turn to the case of κ\kappa of positive level. As we will see momentarily, the analog of the approach we took at negative level requires knowing the global sections of a !!-extension, and is therefore less immediate.

Proposition A.7.1.

Suppose κ\kappa is positive. Then the functor of global sections on the thin Grassmannian

Γκ:Dmodκ(GrG)𝔤^κmod\Gamma_{\kappa}\colon\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}

is canonically Dmodκ(G𝒦)\operatorname{D-mod}_{\kappa}(G_{\mathcal{K}})-equivariantly equivalent to the composition

Dmodκ(GrG)RT!Dmodκ(𝐆𝐫G)!𝚪κ𝔤^κmod.\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})\xrightarrow{\operatorname{RT}_{!}}\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})_{!}\xrightarrow{\mathbf{\Gamma}_{\kappa}}\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}.
Proof.

It is enough to show the composition sends δe\delta_{e} to the vacuum module 𝕍κ\mathbb{V}_{\kappa}. By definition, we have that

𝚪κRT!(δe)𝚪κ(j!).\mathbf{\Gamma_{\kappa}}\circ\operatorname{RT}_{!}(\delta_{e})\simeq\mathbf{\Gamma_{\kappa}}(j_{!}).

We will deduce the calculation of the latter global sections from the work of Kashiwara–Tanisaki on localization at positive level [KT].

To do so, fix a Borel subgroup BB^{-} of GG. Write 𝐈\mathbf{I^{-}} for the ‘thick Iwahori’ group ind-scheme associated to BB^{-}, i.e., the preimage of BB^{-} under the map

G[t1]GG_{\mathbb{C}[t^{-1}]}\rightarrow G

given by evaluation at infinity. Write 𝐅𝐥GG𝒦/𝐈\mathbf{Fl}_{G}\simeq G_{\mathcal{K}}/\mathbf{I}^{-} for the thick affine flag variety. Consider the functor of (smooth) global sections

𝚪κ(𝐅𝐥G,):Dmodκ(𝐅𝐥G)𝔤^κmod,\mathbf{\Gamma}_{\kappa}(\mathbf{Fl}_{G},-)\colon\operatorname{D-mod}_{\kappa}(\mathbf{Fl}_{G})\rightarrow\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod},

which is denoted in loc.cit. by Γ~\widetilde{\Gamma}.

Fix another Borel subgroup BB of GG in general position with BB^{-}. Write II for the associated Iwahori group scheme, i.e., the preimage of BB under the map G𝒪GG_{\mathcal{O}}\rightarrow G given by evaluation at zero.

Let us denote by ȷ!\jmath_{!} the !!-extension of the constant intersection cohomology D-module on the open orbit I𝐈/𝐈I\cdot\mathbf{I^{-}}/\mathbf{I^{-}}. On the other side of 𝚪κ\mathbf{\Gamma}_{\kappa}, let us denote the Verma module of highest weight zero for 𝔤{\mathfrak{g}} by M0M_{0}, and note the Verma module for 𝔤^κ\widehat{{\mathfrak{g}}}_{\kappa} of highest weight zero is given by pind𝔤𝔤^κ(M0)\operatorname{pind}_{{\mathfrak{g}}}^{\widehat{{\mathfrak{g}}}_{\kappa}}(M_{0}).

Then, the desired result of Kashiwara–Tanisaki is the canonical equivalence

𝚪κ(𝐅𝐥G,ȷ!)pind𝔤𝔤^κ(M0),\mathbf{\Gamma}_{\kappa}(\mathbf{Fl}_{G},\jmath_{!})\simeq\operatorname{pind}_{{\mathfrak{g}}}^{\widehat{{\mathfrak{g}}}_{\kappa}}(M_{0}),

see [KT, Theorem 4.8.1(ii)].131313Strictly speaking, Kashiwara–Tanisaki discuss only the case of κ\kappa positive rational, but their argument applies more generally to any positive κ\kappa.

We are ready to deduce the proposition. Consider the projection

π:𝐅𝐥G𝐆𝐫G.\pi\colon\mathbf{Fl}_{G}\rightarrow{\mathbf{Gr}}_{G}.

As both functors denoted by 𝚪κ\mathbf{\Gamma}_{\kappa} are the smooth vectors in the naive global sections, and π\pi is a Zariski locally trivial fibration with fibre G/BG/B, we have that

𝚪κ(j!)𝚪κ(𝐅𝐥G,π!(j!)),\mathbf{\Gamma}_{\kappa}(j_{!})\simeq\mathbf{\Gamma}_{\kappa}(\mathbf{Fl}_{G},\pi^{!*}(\hskip 0.56905ptj_{!})),

where π!:=π![dimG/B]\pi^{!*}:=\pi^{!}[-\dim G/B]. If we write Av!I,G𝒪\operatorname{Av}_{!}^{I,G_{\mathcal{O}}} for the functor of relative !!-averaging from II-invariants to G𝒪G_{\mathcal{O}}-invariants, note that

π!(j!)Av!I,G𝒪(ȷ!).\pi^{!*}(\hskip 0.56905ptj_{!})\simeq\operatorname{Av}^{I,G_{\mathcal{O}}}_{!}(\hskip 0.56905pt\jmath_{!}).

By the equivariance of the appearing functors, we then have

𝚪κ(𝐅𝐥G,π!(j!))𝚪κ(𝐅𝐥G,Av!I,G𝒪(ȷ!))Av!I,G𝒪𝚪κ(𝐅𝐥G,ȷ!)Av!I,G𝒪pind𝔤𝔤^κ(M0)pind𝔤𝔤^κAv!B,G(M0)pind𝔤𝔤^κ()𝕍κ,\mathbf{\Gamma}_{\kappa}(\mathbf{Fl}_{G},\pi^{!*}(\hskip 0.56905ptj_{!}))\simeq\mathbf{\Gamma_{\kappa}}(\mathbf{Fl}_{G},\operatorname{Av}_{!}^{I,G_{\mathcal{O}}}(\hskip 0.56905pt\jmath_{!}))\\ \simeq\operatorname{Av}_{!}^{I,G_{\mathcal{O}}}\circ\hskip 0.56905pt\mathbf{\Gamma_{\kappa}}(\mathbf{Fl}_{G},\jmath_{!})\simeq\operatorname{Av}_{!}^{I,G_{\mathcal{O}}}\circ\operatorname{pind}_{{\mathfrak{g}}}^{\widehat{{\mathfrak{g}}}_{\kappa}}(M_{0})\\ \simeq\operatorname{pind}_{\mathfrak{g}}^{\widehat{{\mathfrak{g}}}_{\kappa}}\circ\operatorname{Av}_{!}^{B,G}(M_{0})\simeq\operatorname{pind}_{\mathfrak{g}}^{\widehat{{\mathfrak{g}}}_{\kappa}}(\mathbb{C})\simeq\mathbb{V}_{\kappa},

as desired. ∎

Corollary A.7.2.

Suppose κ\kappa is positive. Then the functor of localization on the thin Grassmannian

Locκ:𝔤^κmodG𝒪Dmodκ(GrG)G𝒪\operatorname{Loc}_{\kappa}\colon\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\rightarrow\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}

is canonically Dmodκ(G𝒪\G𝒦/G𝒪)\operatorname{D-mod}_{\kappa}(G_{\mathcal{O}}\backslash G_{\mathcal{K}}/G_{\mathcal{O}})-equivariantly equivalent to the composition

𝔤^κmodG𝒪𝐋𝐨𝐜κDmodκ(𝐆𝐫G)G𝒪RT!1Dmodκ(GrG)G𝒪.\widehat{{\mathfrak{g}}}_{\kappa}\operatorname{-mod}^{G_{\mathcal{O}}}\xrightarrow{\mathbf{Loc}_{\kappa}}\operatorname{D-mod}_{\kappa}({\mathbf{Gr}}_{G})^{G_{\mathcal{O}}}\xrightarrow{{\mathop{\rm RT}}_{!}^{-1}}\operatorname{D-mod}_{\kappa}({\operatorname{Gr}}_{G})^{G_{\mathcal{O}}}.
Remark A.7.3.

Analogs of the results of this appendix hold, mutatis mutandis, after replacing the thick and thin Grassmannians by any opposite thick and thin partial affine flag varieties, by similar arguments, as well as for monodromic D-modules on the enhanced thick and thin affine flag varieties. Similarly, one may replace G𝒦G_{\mathcal{K}} by a quasi-split form.

With some care about hypotheses on twists, similar results hold for a symmetrizable Kac–Moody group, again by similar arguments. We leave the details to the interested reader.

Appendix B Topological vs. algebraic anomaly cancellation condition

By Theo Johnson-Freyd


The goal of this appendix is to prove Proposition 4.1.1.

B.1. Simply connected case

Let 𝖦{\mathsf{G}} be a connected complex reductive group with classifying space B𝖦{\mathrm{B}}{\mathsf{G}}, and let ϱ:𝖦Sp(2n,)\varrho\colon{\mathsf{G}}\to{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}) a symplectic representation of 𝖦{\mathsf{G}}. Recall that H4(BSp(2n,),)H^{4}({\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}),{\mathbb{Z}})\cong{\mathbb{Z}} is generated by the universal (quaternionic first) Pontryagin class q1q_{1}. Thus ϱ\varrho has a (quaternionic first) Pontryagin class q1(ϱ)=ϱ(q1)H4(B𝖦,)q_{1}(\varrho)=\varrho^{*}(q_{1})\in H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}), equal (up to a sign convention) to the second Chern class of the underlying complex representation ϱ:𝖦Sp(2n,)SL(2n,)\varrho\colon{\mathsf{G}}\to{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}})\to\mathrm{SL}(2n,{\mathbb{C}}). Recall furthermore that π4Sp(2n,)π5BSp(2n,)/2\pi_{4}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}})\cong\pi_{5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}})\cong{\mathbb{Z}}/2{\mathbb{Z}}.

Theorem B.1.1.

If q1(ϱ)q_{1}(\varrho) is even, i.e. divisible by 22 in H4(B𝖦,)H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}), then ϱ\varrho induces the zero map π5ϱ:π5B𝖦π5BSp(2n,)\pi_{5}\varrho\colon\pi_{5}{\mathrm{B}}{\mathsf{G}}\to\pi_{5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}). If 𝖦{\mathsf{G}} is simply connected, then the converse holds: if π5ϱ=0\pi_{5}\varrho=0, then q1(ϱ)q_{1}(\varrho) is even.

Theorem B.1.1 obviously depends only on the homotopy 5-type τ5BSp(2n,)\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}) of BSp(2n,){\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}). This homotopy 5-type is independent of nn, and so we will henceforth call it simply τ5BSp\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}. We will prove Theorem B.1.1 for any map ϱ:B𝖦τ5BSp\varrho\colon{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}.

Remark B.1.2.

To see that simple connectivity is a necessary condition, consider ϱ:𝖦=×Sp(2,)\varrho\colon{\mathsf{G}}={\mathbb{C}}^{\times}\hookrightarrow{\mathop{\operatorname{\rm Sp}}}(2,{\mathbb{C}}) a Cartan torus of Sp(2,){\mathop{\operatorname{\rm Sp}}}(2,{\mathbb{C}}). Then q1(ϱ)q_{1}(\varrho) is a generator of H4(B𝖦,)H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}).

Proposition B.1.3.

If 𝖦{\mathsf{G}} is connected and simply connected, then H5B𝖦H_{5}{\mathrm{B}}{\mathsf{G}} is trivial.

Proof.

Recall that π2𝖦=π3B𝖦\pi_{2}{\mathsf{G}}=\pi_{3}{\mathrm{B}}{\mathsf{G}} vanishes and π4B𝖦=H4B𝖦\pi_{4}{\mathrm{B}}{\mathsf{G}}=H_{4}{\mathrm{B}}{\mathsf{G}} is a free abelian group.141414Indeed, π3B𝖦\pi_{3}{\mathrm{B}}{\mathsf{G}} vanishes for every Lie group, with no conditions, and π4B𝖦\pi_{4}{\mathrm{B}}{\mathsf{G}} is always free abelian. The Hurewicz map π4B𝖦H4B𝖦\pi_{4}{\mathrm{B}}{\mathsf{G}}\to H_{4}{\mathrm{B}}{\mathsf{G}} is an isomorphism if 𝖦{\mathsf{G}} is simply connected, in which case H4B𝖦H_{4}{\mathrm{B}}{\mathsf{G}} has rank equal to the number of simple factors of 𝖦{\mathsf{G}}. Recall furthermore that H(B𝖦,)H^{\bullet}({\mathrm{B}}{\mathsf{G}},{\mathbb{Q}}) is concentrated in even degrees.151515H(B𝖦,)H^{\bullet}({\mathrm{B}}{\mathsf{G}},{\mathbb{Q}}) is a polynomial algebra on generators of degrees twice the exponents of 𝖦{\mathsf{G}}. From the universal coefficient theorem, we find that H5B𝖦H_{5}{\mathrm{B}}{\mathsf{G}} is torsion.

Choose a Borel subgroup B𝖦B\subset{\mathsf{G}}, and consider the flag variety X=𝖦/BX={\mathsf{G}}/B. The homology of XX is very well understood. Indeed, XX has a Schubert decomposition into cells of even real dimension. In particular, the homology of the manifold XX is free abelian and concentrated in even degrees.

Consider the homological Serre spectral sequence for the fibre bundle XBBB𝖦X\to{\mathrm{B}}B\to{\mathrm{B}}{\mathsf{G}}:

Eij2:=Hi(B𝖦,HjX)Hi+jBB.E^{2}_{ij}:=H_{i}({\mathrm{B}}{\mathsf{G}},H_{j}X)\Rightarrow H_{i+j}{\mathrm{B}}B.

The E2E^{2} page vanishes whenenever jj is odd and also when 1i31\leq i\leq 3. Since BB is homotopy equivalent to a torus, HBBH_{\bullet}{\mathrm{B}}B is free abelian and concentrated in even degrees, and hence the EE^{\infty} page vanishes when i+ji+j is odd. It follows that there is an exact sequence

0H5B𝖦H4XH4BBH4B𝖦0.0\to H_{5}{\mathrm{B}}{\mathsf{G}}\to H_{4}X\to H_{4}{\mathrm{B}}B\to H_{4}{\mathrm{B}}{\mathsf{G}}\to 0.

But H5B𝖦H_{5}{\mathrm{B}}{\mathsf{G}} is torsion, whereas H4XH_{4}X is free abelian.∎

Corollary B.1.4.

Let 𝖦{\mathsf{G}} be a connected complex reductive Lie group, not necessarily simply connected, and let YY be any topological space. Suppose given a map B𝖦τ4Y{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}Y which admits a lift to YY. Then any two lifts B𝖦Y{\mathrm{B}}{\mathsf{G}}\to Y induce the same map π5B𝖦π5Y\pi_{5}{\mathrm{B}}{\mathsf{G}}\to\pi_{5}Y.

Proof.

The lifts of a map B𝖦τ4Y{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}Y along τ5Yτ4Y\tau_{\leq 5}Y\to\tau_{\leq 4}Y, assuming there are any, form a torsor for H5(B𝖦,π5Y)H^{5}({\mathrm{B}}{\mathsf{G}},\pi_{5}Y). Suppose two lifts differ by some class in H5(B𝖦,π5Y)H^{5}({\mathrm{B}}{\mathsf{G}},\pi_{5}Y). Then their actions on π5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}} differ by the image of that class along the Hurewicz map H5(B𝖦,π5Y)Hom(π5B𝖦,π5Y)H^{5}({\mathrm{B}}{\mathsf{G}},\pi_{5}Y)\to{\mathop{\operatorname{\rm Hom}}}(\pi_{5}{\mathrm{B}}{\mathsf{G}},\pi_{5}Y) induced from π5B𝖦H5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}}\to H_{5}{\mathrm{B}}{\mathsf{G}}.

Let 𝖦sc{\mathsf{G}}^{{\operatorname{sc}}} denote the simply connected cover of 𝖦{\mathsf{G}}. Then π5B𝖦scπ5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}}^{\operatorname{sc}}\to\pi_{5}{\mathrm{B}}{\mathsf{G}} is an isomorphism, and so the Hurewicz map π5B𝖦H5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}}\to H_{5}{\mathrm{B}}{\mathsf{G}} factors through H5B𝖦scH5B𝖦H_{5}{\mathrm{B}}{\mathsf{G}}^{{\operatorname{sc}}}\to H_{5}{\mathrm{B}}{\mathsf{G}}. But H5B𝖦sc=0H_{5}{\mathrm{B}}{\mathsf{G}}^{{\operatorname{sc}}}=0 by Proposition B.1.3. ∎

To complete the proof of Theorem B.1.1, we will need to know the space τ5BSp\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}. It has precisely two nontrivial homotopy groups: π4=\pi_{4}={\mathbb{Z}} and π5=/2\pi_{5}={\mathbb{Z}}/2{\mathbb{Z}}. Thus we will know it completely if we know its Postnikov k-invariant. Recall that the Postnikov k-invariant of the extension K(/2,5)τ5BSpK(,4)K({\mathbb{Z}}/2{\mathbb{Z}},5)\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}\to K({\mathbb{Z}},4) is some universal cohomology operation f:H4(,)H6(,/2)f\colon H^{4}(-,{\mathbb{Z}})\to H^{6}(-,{\mathbb{Z}}/2{\mathbb{Z}}). A map XK(,4)X\to K({\mathbb{Z}},4) is, up to homotopy, a class αH4(X,)\alpha\in H^{4}(X,{\mathbb{Z}}), and it lifts along τ5BSpK(,4)\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}\to K({\mathbb{Z}},4) if and only if f(α)=0H6(X,/2)f(\alpha)=0\in H^{6}(X,{\mathbb{Z}}/2{\mathbb{Z}}).

Lemma B.1.5.

The Postnikov kk-invariant of the τ5BSp\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} is Sq2(mod 2):H4(,)H6(,/2){\operatorname{Sq}}^{2}\circ(\mathrm{mod}\,2)\colon H^{4}(-,{\mathbb{Z}})\to H^{6}(-,{\mathbb{Z}}/2{\mathbb{Z}}), where (mod 2):H4(,)H4(,/2)(\mathrm{mod}\,2)\colon H^{4}(-,{\mathbb{Z}})\to H^{4}(-,{\mathbb{Z}}/2{\mathbb{Z}}) is the corresponding map on coefficients, and Sq2{\operatorname{Sq}}^{2} is the second Steenrod square.

Proof.

Bott periodicity identifies τ5BSp\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} with the 4-fold suspension of the infinite loop space τ1ko\tau_{\leq 1}ko. Thus the statement in the Lemma follows from (and is equivalent to) the fact that the k-invariant (at the level of infinite loop spaces) connecting π0ko=\pi_{0}ko={\mathbb{Z}} to π1ko=/2\pi_{1}ko={\mathbb{Z}}/2{\mathbb{Z}} is Sq2(mod 2){\operatorname{Sq}}^{2}\circ(\mathrm{mod}\,2). ∎

Proof of Theorem B.1.1.

Fix ϱ:B𝖦τ5BSp\varrho\colon{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}. The class q1(ϱ)H4(B𝖦,)q_{1}(\varrho)\in H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}) is nothing but the image of ϱ\varrho along τ5BSpτ4BSp=K(,4)\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}\to\tau_{\leq 4}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}=K({\mathbb{Z}},4), and note that q1(ϱ)q_{1}(\varrho) factors through τ4B𝖦\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}.

Suppose that q1(ϱ)q_{1}(\varrho) is even. Then Sq2(q1(ϱ)mod 2)=0{\operatorname{Sq}}^{2}(q_{1}(\varrho)\,\mathrm{mod}\,2)=0, and so q1(ϱ):τ4B𝖦τ4BSpq_{1}(\varrho)\colon\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} lifts to a map τ4B𝖦τ5BSp\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}. The composition B𝖦τ4B𝖦τ5BSp{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} vanishes on π5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}}. This composition might not be equal to ϱ\varrho, but it and ϱ\varrho are both lifts of the same map B𝖦τ4BSp{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}. And so by Corollary B.1.4 they have the same (trivial) value on π5B𝖦\pi_{5}{\mathrm{B}}{\mathsf{G}}.

Now suppose that 𝖦{\mathsf{G}} is connected and simply connected. Then τ4B𝖦K(A,4)\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}\cong K(A,4) where AA is a free abelian group, and H4(B𝖦,/2)=H4(K(A,4),/2)=Hom(A,/2)H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}})=H^{4}(K(A,4),{\mathbb{Z}}/2{\mathbb{Z}})={\mathop{\operatorname{\rm Hom}}}(A,{\mathbb{Z}}/2{\mathbb{Z}}). We claim that Sq2:H4(K(A,4),/2)H6(K(A,4),/2){\operatorname{Sq}}^{2}\colon H^{4}(K(A,4),{\mathbb{Z}}/2{\mathbb{Z}})\to H^{6}(K(A,4),{\mathbb{Z}}/2{\mathbb{Z}}) is injective. Indeed, suppose that α0Hom(A,/2)\alpha\neq 0\in{\mathop{\operatorname{\rm Hom}}}(A,{\mathbb{Z}}/2{\mathbb{Z}}), and let a:Aa\colon{\mathbb{Z}}\to A be an element such that α(a)0\alpha(a)\neq 0. By restricting along the corresponding map K(,4)K(A,4)K({\mathbb{Z}},4)\to K(A,4), if suffices to prove the claim when A=A={\mathbb{Z}} and α\alpha is the map that reduces mod 2. There is a nonzero map β:K(/2,3)K(,4)\beta\colon K({\mathbb{Z}}/2{\mathbb{Z}},3)\to K({\mathbb{Z}},4), and the composition K(/2,3)𝛽K(,4)𝛼K(/2,4)K({\mathbb{Z}}/2{\mathbb{Z}},3)\overset{\beta}{\to}K({\mathbb{Z}},4)\overset{\alpha}{\to}K({\mathbb{Z}}/2{\mathbb{Z}},4) is the class Sq1zH4(K(/2,3),/2){\operatorname{Sq}}^{1}z\in H^{4}(K({\mathbb{Z}}/2{\mathbb{Z}},3),{\mathbb{Z}}/2{\mathbb{Z}}), where zH3(K(/2,3),/2)z\in H^{3}(K({\mathbb{Z}}/2{\mathbb{Z}},3),{\mathbb{Z}}/2{\mathbb{Z}}) generates H3(K(/2,3),/2)H^{3}(K({\mathbb{Z}}/2{\mathbb{Z}},3),{\mathbb{Z}}/2{\mathbb{Z}}) over the Steenrod algebra. Then Sq2(α)(β)=Sq2Sq1z0H6(K(/2,3),/2){\operatorname{Sq}}^{2}(\alpha)(\beta)={\operatorname{Sq}}^{2}{\operatorname{Sq}}^{1}z\neq 0\in H^{6}(K({\mathbb{Z}}/2{\mathbb{Z}},3),{\mathbb{Z}}/2{\mathbb{Z}}). It follows that Sq2(α)0{\operatorname{Sq}}^{2}(\alpha)\neq 0, proving the claim that Sq2:H4(K(A,4),/2)H6(K(A,4),/2){\operatorname{Sq}}^{2}\colon H^{4}(K(A,4),{\mathbb{Z}}/2{\mathbb{Z}})\to H^{6}(K(A,4),{\mathbb{Z}}/2{\mathbb{Z}}) is injective.

Suppose that π5ϱ=0\pi_{5}\varrho=0. Then the map τ5ϱ:τ5B𝖦τ5BSp\tau_{\leq 5}\varrho\colon\tau_{\leq 5}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} factors through the cofibre of the inclusion K(π5B𝖦,5)τ5B𝖦K(\pi_{5}{\mathrm{B}}{\mathsf{G}},5)\to\tau_{\leq 5}{\mathrm{B}}{\mathsf{G}}. Note that this inclusion is the fibre of the map τ5B𝖦τ4B𝖦\tau_{\leq 5}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}. In general, given a fibre bundle of spaces FEBF\to E\to B, there is a canonical map cofibre(FE)B\operatorname{cofibre}(F\to E)\to B, but it is not always an equivalence. However, assuming 𝖦{\mathsf{G}} is connected and simply connected, then τ5ϱ:τ5B𝖦τ5BSp\tau_{\leq 5}\varrho\colon\tau_{\leq 5}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} is canonically a map of infinite loop spaces,161616In general, a space all of whose homotopy groups are in degrees (n,2n](n,2n] for some nn is automatically an infinite loop space. and for infinite loop spaces, a fibre and cofibre sequences agree. In particular, if π5ϱ=0\pi_{5}\varrho=0 and 𝖦{\mathsf{G}} is connected and simply connected, then τ5ϱ:τ5B𝖦τ5BSp\tau_{\leq 5}\varrho\colon\tau_{\leq 5}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} factors through τ4B𝖦\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}.

But this means that q1(ϱ):τ4B𝖦τ4BSpq_{1}(\varrho)\colon\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}}\to\tau_{\leq 4}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}} does lift along τ5BSpτ5BSp\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}\to\tau_{\leq 5}{\mathrm{B}}{\mathop{\operatorname{\rm Sp}}}, and so Sq2(q1(ϱ)mod 2)=0H6(τ4B𝖦,/2){\operatorname{Sq}}^{2}(q_{1}(\varrho)\,\mathrm{mod}\,2)=0\in H^{6}(\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}}). On the other hand, since 𝖦{\mathsf{G}} is connected and simply connected, Sq2:H4(τ4B𝖦,/2)H6(τ4B𝖦,/2){\operatorname{Sq}}^{2}\colon H^{4}(\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}})\to H^{6}(\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}}) is injective. Thus q1(ϱ)mod 2=0H4(τ4B𝖦,/2)=H4(B𝖦,/2)q_{1}(\varrho)\,\mathrm{mod}\,2=0\in H^{4}(\tau_{\leq 4}{\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}})=H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}/2{\mathbb{Z}}), or in other words q1(ϱ)q_{1}(\varrho) is even. ∎

B.2. General case (proof of Proposition 4.1.1)

We choose a Cartan torus T𝖦T\subset{\mathsf{G}}. The Weyl group of (𝖦,T)({\mathsf{G}},T) is denoted WW. If 𝖦{\mathsf{G}} is simply connected, then the coweight lattice X(T)X_{*}(T) coincides with the coroot lattice QQ. The cohomology group H4(B𝖦,)H^{4}({\mathrm{B}}{\mathsf{G}},{\mathbb{Z}}) is canonically identified with the group Bil(Q)W\operatorname{Bil}(Q)^{W} of WW-invariant integer-valued bilinear forms on QQ such that B(λ,λ)2B(\lambda,\lambda)\in 2{\mathbb{Z}} for any λQ\lambda\in Q (invariant even bilinear forms). Let Tr:𝔰𝔭(2n,)×𝔰𝔭(2n,)\operatorname{Tr}\colon{\mathfrak{sp}}(2n,{\mathbb{C}})\times{\mathfrak{sp}}(2n,{\mathbb{C}})\to{\mathbb{C}} stand for the trace form of the defining representation of Sp(2n,){\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}). Given a representation ϱ:𝖦Sp(2n,)\varrho\colon{\mathsf{G}}\to{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}), we obtain a bilinear form ϱTrBil(Q)W\varrho^{*}\operatorname{Tr}\in\operatorname{Bil}(Q)^{W}. According to Theorem B.1.1, the vanishing of π4ϱ\pi_{4}\varrho is equivalent to the divisibility ϱTr2Bil(Q)W\varrho^{*}\operatorname{Tr}\in 2\operatorname{Bil}(Q)^{W}.

For arbitrary reductive 𝖦{\mathsf{G}} with a Cartan torus TT, we denote by Bil(X(T))W\operatorname{Bil}(X_{*}(T))^{W} the group of WW-invariant integer-valued bilinear forms on X(T)X_{*}(T) such that B(λ,λ)2B(\lambda,\lambda)\in 2{\mathbb{Z}} for any λ\lambda in the coroot sublattice QX(T)Q\subset X_{*}(T). For a representation ϱ:𝖦Sp(2n,)\varrho\colon{\mathsf{G}}\to{\mathop{\operatorname{\rm Sp}}}(2n,{\mathbb{C}}) we have to check the equivalence of conditions π4ϱ=0\pi_{4}\varrho=0 and ϱTr2Bil(X(T))W\varrho^{*}\operatorname{Tr}\in 2\operatorname{Bil}(X_{*}(T))^{W}.

First, if 𝖦=𝖳{\mathsf{G}}={\mathsf{T}} is a torus, then π4(𝖳)=0\pi_{4}({\mathsf{T}})=0, and it is immediate to check that ϱTr2Bil(X(T))\varrho^{*}\operatorname{Tr}\in 2\operatorname{Bil}(X_{*}(T)). Hence the desired equivalence holds true for any symplectic representation of any group of the form 𝖦sc×𝖳{\mathsf{G}}^{\operatorname{sc}}\times{\mathsf{T}}.

Now for general 𝖦{\mathsf{G}}, choose a finite cover ϖ:𝖦×𝖳𝖦\varpi\colon{\mathsf{G}}^{\prime}\times{\mathsf{T}}\twoheadrightarrow{\mathsf{G}}, where 𝖦{\mathsf{G}}^{\prime} is semisimple simply-connected. It remains to check that ϱTr\varrho^{*}\operatorname{Tr} is divisible by 2 iff (ϱϖ)Tr(\varrho\circ\varpi)^{*}\operatorname{Tr} is divisible by 2. This is clear since 𝖦{\mathsf{G}} and 𝖦×𝖳{\mathsf{G}}^{\prime}\times{\mathsf{T}} share the same coroots, and the pullback of the trace form to the coweight lattice of any torus is always divisible by 2.

This completes the proof of Proposition 4.1.1.

References

  • [AGa] D. Arinkin, D. Gaitsgory, Singular support of coherent sheaves, and the geometric Langlands conjecture, Selecta Math. (N.S.) 21 (2015), 1–199.
  • [ArG] S. Arkhipov, D. Gaitsgory, Localization and the long intertwining operator for representations of affine Kac-Moody algebras,
    https://people.math.harvard.edu/\simgaitsgde/GL/Arkh.pdf (2009).
  • [BZSV] D. Ben-Zvi, Y. Sakellaridis and A. Venkatesh, Duality in the relative Langlands program, in preparation.
  • [BeF] R. Bezrukavnikov, M. Finkelberg, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), no. 1, 39–72.
  • [BPW] T. Braden, N. Proudfoot, B. Webster, Quantizations of conical symplectic resolutions I: local and global structure, Astérisque 384 (2016), 1–73.
  • [BLPW] T. Braden, A. Licata, N. Proudfoot, B. Webster, Quantizations of conical symplectic resolutions II: category 𝒪{\mathcal{O}} and symplectic duality, Astérisque 384 (2016), 75–179.
  • [BFN1] A. Braverman, M. Finkelberg, H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional 𝒩=4{\mathcal{N}}=4 gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), no. 5, 1071–1147.
  • [BFN2] A. Braverman, M. Finkelberg, H. Nakajima, Coulomb branches of 3d𝒩=43d\ {\mathcal{N}}=4 quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes), Adv. Theor. Math. Phys. 23 (2019), no. 1, 75–166.
  • [BFN3] A. Braverman, M. Finkelberg, H. Nakajima, Ring objects in the equivariant derived Satake category arising from Coulomb branches (with appendix by Gus Lonergan), Adv. Theor. Math. Phys. 23 (2019), no. 2, 253–344.
  • [BFGT] A. Braverman, M. Finkelberg, V. Ginzburg, R. Travkin, Mirabolic Satake equivalence and supergroups, Compos. Math. 157 (2021), no. 8, 1724–1765.
  • [BFT] A. Braverman, M. Finkelberg, R. Travkin, Orthosymplectic Satake equivalence, arXiv:1912.01930.
  • [DG] V. Drinfeld, D. Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Anal. 23 (2013), no. 1, 149-294.
  • [DLYZ] G. Dhillon, Y.-W. Li, Z. Yun, X. Zhu, Endoscopy for affine Hecke categories, in preparation.
  • [FF] A. Feingold, I. Frenkel, Classical Affine Algebras, Adv. Math. 56 (1985), 117--172.
  • [GW1] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in 𝒩=4{\mathcal{N}}=4 Super Yang-Mills Theory, Journal of Statistical Physics, 135 (2009), 789--855.
  • [GW2] D. Gaiotto and E. Witten, S-duality of boundary conditions in 𝒩=4{\mathcal{N}}=4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009), no. 3, 721--896.
  • [GR] D. Gaitsgory and N. Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs 221 (2017).
  • [G] V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, arXiv:alg-geom/9511007.
  • [HR] J. Hilburn and S. Raskin, Tate’s thesis in the de Rham Setting, arXiv:2107.11325.
  • [H] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539--570. Erratum, Trans. Amer. Math. Soc. 318 (1990), no. 2, 823.
  • [KT] M. Kashiwara, T. Tanisaki, Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras. III. Positive rational case, Asian J. Math. 2 (1998), no. 4, 779--832.
  • [K] B. Kostant, Lie group representations on polynomial rings, American Journal of Math. 85 (1963), no. 3, 327--404.
  • [La] V. Lafforgue, Correspondance Theta pour les D-modules, unpublished manuscript.
  • [Ly] S. Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 415--466.
  • [LL] V. Lafforgue, S. Lysenko, Geometric Weil representation: local field case, Compos. Math. 145 (2009), no. 1, 56--88.
  • [LY] G. Lusztig, Z. Yun, Endoscopy for Hecke categories, character sheaves and representations, Forum Math. Pi 8 (2020), e12, 93pp. Corrigendum, arXiv:1904.01176v3.
  • [N] H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional 𝒩=4{\mathcal{N}}=4 gauge theories, I, Adv. Theor. Math. Phys. 20 (2016), no. 3, 595--669.
  • [R] S. Raskin, Homological methods in semi-infinite contexts, https://web.ma.utexas.edu/users/sraskin/topalg.pdf (2019).
  • [S] D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149--167.
  • [T] C. Teleman, Coulomb branches for quaternionic representations, https://math.berkeley.edu/\simteleman/math/perimeter.pdf (2020).
  • [We] A. Weekes, Quiver gauge theories and symplectic singularities, arXiv:2005.01702.
  • [Wi] E. Witten, An SU(2)SU(2) Anomaly, Phys. Lett. B 117 (1982), no. 5, 324--328.