This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cosmology of f(Q)f(Q) gravity in non-flat Universe

Hamid Shabani Physics Department, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran    Avik De Department of Mathematical and Actuarial Sciences
Universiti Tunku Abdul Rahman, Jalan Sungai Long, 43000 Cheras, Malaysia
   Tee-How Loo Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia    Emmanuel N. Saridakis National Observatory of Athens, Lofos Nymfon, 11852 Athens, Greece CAS Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China. Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280 Antofagasta, Chile
Abstract

We investigate the cosmological implications of f(Q)f(Q) gravity, which is a modified theory of gravity based on non-metricity, in non-flat geometry. We perform a detailed dynamical-system analysis keeping the f(Q)f(Q) function completely arbitrary. As we show, the cosmological scenario admits a dark-matter dominated point, as well as a dark-energy dominated de Sitter solution which can attract the Universe at late times. However, the main result of the present work is that there are additional critical points which exist solely due to curvature. In particular, we find that there are curvature-dominated accelerating points which are unstable and thus can describe the inflationary epoch. Additionally, there is a point in which the dark-matter and dark-energy density parameters are both between zero and one, and thus it can alleviate the coincidence problem. Finally, there is a saddle point which is completely dominated by curvature. In order to provide a specific example, we apply our general analysis to the power-law case, showing that we can obtain the thermal history of the Universe, in which the curvature density parameter may exhibit a peak at intermediate times. These features, alongside possible indications that non-zero curvature could alleviate the cosmological tensions, may serve as advantages for f(Q)f(Q) gravity in non-flat geometry.

I Introduction

Modified gravity [1, 2] is one of the two main directions that one can follow in order to obtain an improved description of the Universe evolution, both concerning the early (inflation) and late (dark-energy) accelerated phases, as well as concerning the possible observational tensions [3]. In such theories one constructs modifications and extensions of General Relativity which present extra degrees of freedom capable of inducing corrections at the cosmological behavior, both at the background and perturbation level.

There are many ways to construct gravitational modifications. In the simplest ones one starts from the Einstein-Hilbert Lagrangian and adds new terms, resulting to f(R)f(R) gravity [4], to f(G)f(G) gravity [5], to f(P)f(P) gravity [6], to Lovelock gravity [7], to Horndeski/Galileon scalar-tensor theories [8, 9] etc. Alternatively, one may start from the torsion-based formulation of gravity and modify it accordingly, resulting to f(T)f(T) gravity [10, 11], f(T,TG)f(T,T_{G}) gravity [12], f(T,B)f(T,B) gravity [13], scalar-torsion theories [14] etc.

One different class of gravitational modifications arises when one starts from the equivalent formulation of gravity based on non-metricity. Initiated by Nester and Yo [15], based on an affine connection with vanishing curvature and torsion but metric-incompatibility, it was recently extended to f(Q)f(Q) theory [16]. f(Q)f(Q) gravity contains general relativity as a particular limit, and has the advantage of possessing second-order field equations. Hence, its cosmological application has attracted the interest of the literature [18, 19, 20, 21, 17, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 26, 27, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]. Nevertheless, all of these works focus on spatially-flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, in which case the coincident gauge implies that the affine connection field equations can be ignored and thus f(Q)f(Q) cosmology coincides with f(T)f(T) cosmology at the background level [69].

In this work we are interested in investigating f(Q)f(Q) cosmology in non-flat Universe, in order to reveal possible novel features, having in mind that non-flat geometry [70], apart from being potentially interesting [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81], might be one way to alleviate cosmological tensions [82]. The manuscript is organized as follows: In Section II we provide the basic mathematical formalism of symmetric teleparallel and f(Q)f(Q) gravity. Then, in Section III we perform a detailed dynamical-system analysis, extracting the general cosmological features, both for a general f(Q)f(Q) function as well as for a specific power-law example. Finally, in Section IV we summarize our results.

II Symmetric teleparallel and f(Q)f(Q) gravity

In this section we briefly review symmetric teleparallel formulation of gravity and its f(Q)f(Q) extension. In such a formalism one introduces a general affine connection Γβγα\Gamma^{\alpha}_{\,\,\,\beta\gamma}, defined by Γλ=μνΓ̊λ+μνLλ,μν\Gamma^{\lambda}{}_{\mu\nu}=\mathring{\Gamma}^{\lambda}{}_{\mu\nu}+L^{\lambda}{}_{\mu\nu}, where Γ̊λμν\mathring{\Gamma}^{\lambda}{}_{\mu\nu} is the Levi-Civita connection and the disformation tensor is given by

Lλ=μν12(QλμνQμλνQν)λμ,L^{\lambda}{}_{\mu\nu}=\frac{1}{2}(Q^{\lambda}{}_{\mu\nu}-Q_{\mu}{}^{\lambda}{}_{\nu}-Q_{\nu}{}^{\lambda}{}_{\mu})\,, (1)

with the non-metricity tensor given as

Qλμν=λgμν.Q_{\lambda\mu\nu}=\nabla_{\lambda}g_{\mu\nu}\,. (2)

Additionally, one can define the non-metricity scalar as

Q=QλμνPλμν=14(QλμνQλμν+2QλμνQμλν+QλQλ2QλQ~λ),Q=Q_{\lambda\mu\nu}P^{\lambda\mu\nu}=\frac{1}{4}(-Q_{\lambda\mu\nu}Q^{\lambda\mu\nu}+2Q_{\lambda\mu\nu}Q^{\mu\lambda\nu}+Q_{\lambda}Q^{\lambda}-2Q_{\lambda}\tilde{Q}^{\lambda}), (3)

with Qλ=QλμνgμνQ_{\lambda}=Q_{\lambda\mu\nu}g^{\mu\nu} and Q~ν=Qλμνgλμ\tilde{Q}_{\nu}=Q_{\lambda\mu\nu}g^{\lambda\mu}. Hence, using QQ as a Lagrangian gives rise to the same equations with general relativity.

Based on the symmetric teleparallel framework, one can proceed in constructing gravitational modifications, such as f(Q)f(Q) gravity [16], characterized by the action

S=12κf(Q)gd4x+Mgd4x,S=\frac{1}{2\kappa}\int f(Q)\sqrt{-g}\,d^{4}x+\int\mathcal{L}_{M}\sqrt{-g}\,d^{4}x, (4)

where we have added the matter Lagrangian for completeness, corresponding to an energy-momentum tensor of a perfect fluid Tμνm=(p+ρ)uμuν+pgμνT^{m}_{\mu\nu}=(p+\rho)u_{\mu}u_{\nu}+pg_{\mu\nu}, with pp and ρ\rho the pressure and energy density respectively. Variation of the action with respect to the metric leads to the field equations

2gλ(gFPλ)μν12fgμν+F(PνρσQμρσ2PρσμQρσ)ν=κTμνm,\frac{2}{\sqrt{-g}}\nabla_{\lambda}(\sqrt{-g}FP^{\lambda}{}_{\mu\nu})-\frac{1}{2}fg_{\mu\nu}+F(P_{\nu\rho\sigma}Q_{\mu}{}^{\rho\sigma}-2P_{\rho\sigma\mu}Q^{\rho\sigma}{}_{\nu})=\kappa T^{m}_{\mu\nu}, (5)

where the superpotential PλμνP^{\lambda}{}_{\mu\nu} is given by

Pλ=μν14(2Lλ+μνQλgμνQ~λgμν12δμλQν12δνλQμ),P^{\lambda}{}_{\mu\nu}=\frac{1}{4}\left(-2L^{\lambda}{}_{\mu\nu}+Q^{\lambda}g_{\mu\nu}-\tilde{Q}^{\lambda}g_{\mu\nu}-\frac{1}{2}\delta^{\lambda}_{\mu}Q_{\nu}-\frac{1}{2}\delta^{\lambda}_{\nu}Q_{\mu}\right)\,, (6)

and with F(Q)=df(Q)/dQF(Q)=df(Q)/dQ. Note that the field equations (5) can be alternatively written as [83]

FG̊μν+12gμν(FQf)+2FPλ̊λμνQ=κTμνm,F\mathring{G}_{\mu\nu}+\frac{1}{2}g_{\mu\nu}(FQ-f)+2F^{\prime}P^{\lambda}{}_{\mu\nu}\mathring{\nabla}_{\lambda}Q=\kappa T^{m}_{\mu\nu}, (7)

where G̊μν=R̊μν12gμνR̊\mathring{G}_{\mu\nu}=\mathring{R}_{\mu\nu}-\frac{1}{2}g_{\mu\nu}\mathring{R}, and all the expressions denoted with a ()̊\mathring{()} are calculated with respect to the Levi-Civita connection Γ̊λμν\mathring{\Gamma}^{\lambda}{}_{\mu\nu}. Hence, we can re-write them as [22]

G̊μν=κFTμνm+κTμνde,\mathring{G}_{\mu\nu}=\frac{\kappa}{F}T^{m}_{\mu\nu}+\kappa T^{\text{de}}_{\mu\nu}, (8)

having defined an effective dark-energy sector of geometrical origin as

κTμνde=1F[12gμν(fQF)2F̊λQPμνλ],\kappa T^{\text{de}}_{\mu\nu}=\frac{1}{F}\left[\frac{1}{2}g_{\mu\nu}(f-QF)-2F^{\prime}\mathring{\nabla}_{\lambda}QP^{\lambda}_{\mu\nu}\right], (9)

where a prime denotes differentiations with respect to the argument. Lastly, varying the action with respect to the affine connection, and assuming that the matter Lagrangian M\mathcal{L}_{M} does not depend on it, we obtain

μν(gFPνμ)λ=0.\displaystyle\nabla_{\mu}\nabla_{\nu}(\sqrt{-g}FP^{\nu\mu}{}_{\lambda})=0\,. (10)

Let us apply f(Q)f(Q) gravity to a cosmological framework. As we mentioned in the Introduction, we consider a non-flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime of the form

ds2=dt2+a(t)2(dr21kr2+r2dθ2+r2sin2θdϕ2),\displaystyle ds^{2}=-dt^{2}+a\left(t\right)^{2}\left(\frac{dr^{2}}{1-kr^{2}}+r^{2}\mathrm{d}\theta^{2}+r^{2}\sin^{2}\theta\mathrm{d}\phi^{2}\right), (11)

where k=0,±1k=0,\,\pm 1 denotes the spatial curvature. In this case, the non-trivial connection coefficients are given by [84]

Γt=tt\displaystyle\Gamma^{t}{}_{tt}= k+γ˙γ,Γt=rrγ1kr2,Γt=θθγr2,Γt=ϕϕγr2sin2θ\displaystyle-\frac{k+\dot{\gamma}}{\gamma},\quad\Gamma^{t}{}_{rr}=\frac{\gamma}{1-kr^{2}},\quad\Gamma^{t}{}_{\theta\theta}=\gamma r^{2},\quad\Gamma^{t}{}_{\phi\phi}=\gamma r^{2}\sin^{2}\theta
Γr=tr\displaystyle\Gamma^{r}{}_{tr}= kγ,Γr=rrkr1kr2,Γr=θθ(1kr2)r,Γr=ϕϕ(1kr2)rsin2θ,\displaystyle-\frac{k}{\gamma},\quad\Gamma^{r}{}_{rr}=\frac{kr}{1-kr^{2}},\quad\Gamma^{r}{}_{\theta\theta}=-(1-kr^{2})r,\quad\Gamma^{r}{}_{\phi\phi}=-(1-kr^{2})r\sin^{2}\theta,
Γθ=tθ\displaystyle\Gamma^{\theta}{}_{t\theta}= kγ,Γθ=rθ1r,Γθ=ϕϕcosθsinθ,\displaystyle-\frac{k}{\gamma},\quad\Gamma^{\theta}{}_{r\theta}=\frac{1}{r},\quad\Gamma^{\theta}{}_{\phi\phi}=-\cos\theta\sin\theta,
Γϕ=tϕ\displaystyle\Gamma^{\phi}{}_{t\phi}= kγ,Γϕ=rϕ1r,Γϕ=θϕcotθ,\displaystyle-\frac{k}{\gamma},\quad\Gamma^{\phi}{}_{r\phi}=\frac{1}{r},\quad\Gamma^{\phi}{}_{\theta\phi}=\cot\theta, (12)

where γ(t)\gamma(t) is a non-zero function of time. The corresponding non-metricity scalar QQ can be calculated from (II) as [84, 85, 86, 87]

Q(t)=3[2H2+(3kγγa2)H2ka2kγ˙γ2γ˙a2].Q(t)=-3\left[2H^{2}+\left(\frac{3k}{\gamma}-\frac{\gamma}{a^{2}}\right)H-\frac{2k}{a^{2}}-k\frac{\dot{\gamma}}{\gamma^{2}}-\frac{\dot{\gamma}}{a^{2}}\right]. (13)

Therefore, inserting into the field equations (7) we obtain the modified Friedmann equations

12f(3H2+3ka212Q)F+32Q˙(kγ+γa2)F+κρm=0\displaystyle-\frac{1}{2}f-\left(3H^{2}+3\frac{k}{a^{2}}-\frac{1}{2}Q\right)F+\frac{3}{2}\dot{Q}\left(\frac{k}{\gamma}+\frac{\gamma}{a^{2}}\right)F^{\prime}+\kappa\rho^{m}=0 (14)
12f+(3H2+2H˙+ka212Q)F+Q˙(2H+32kγ12γa2)F+κpm=0.\displaystyle\frac{1}{2}f+\left(3H^{2}+2\dot{H}+\frac{k}{a^{2}}-\frac{1}{2}Q\right)F+\dot{Q}\left(2H+\frac{3}{2}\frac{k}{\gamma}-\frac{1}{2}\frac{\gamma}{a^{2}}\right)F^{\prime}+\kappa p^{m}=0. (15)

III Cosmological behavior

In this section we investigate in detail the cosmological evolution of a Universe governed by f(Q)f(Q) gravity in non-flat geometry. In order to achieve that we perform a dynamical-system analysis [88, 89], which allows one to extract the global features of a cosmological scenario independently of the specific initial conditions [90, 91, 92, 93, 94, 95, 96]. Note that the dynamical-system analysis for f(Q)f(Q) gravity has been performed in the literature [97, 98, 99, 100, 101], however it remains in the flat FLRW case, while as we will see in the following the inclusion of spatial curvature leads to novel qualitative features.

We start by defining dimensionless variables in order to re-write Eqs. (14)-(15) as an autonomous system. For simplicity we will focus on dust matter, namely we consider pm=0p^{m}=0, while concerning the γ(t)\gamma(t) form we assume the simple case γ(t)=ϵa(t)\gamma(t)=\epsilon a(t) (analysis of the general case is straightforward, with the inclusion of an extra variable [101]). In particular, we have

x1=f6H2F,x2=Q6H2,x3=F˙HF,x4=12Ha,\displaystyle x_{1}=-\frac{f}{6H^{2}F},~{}~{}~{}~{}~{}x_{2}=\frac{Q}{6H^{2}},~{}~{}~{}~{}~{}x_{3}=\frac{\dot{F}}{HF},~{}~{}~{}~{}~{}x_{4}=\frac{1}{2Ha},
Ωm=κρm3H2F,Ωk=kH2a2,\displaystyle\Omega^{m}=\frac{\kappa\rho^{m}}{3H^{2}F},~{}~{}~{}~{}~{}~{}\Omega^{k}=-\frac{k}{H^{2}a^{2}},
r=QFf=x2x1,m=QFF,\displaystyle r=-\frac{QF}{f}=\frac{x_{2}}{x_{1}},~{}~{}~{}m=\frac{QF^{\prime}}{F}, (16)

where Ωm\Omega^{m} and Ωk\Omega^{k} denote the contributions to the dark matter and the spatial curvature energy densities, and thus according to (9) the first Friedmann equation (14) is written as 1=Ωm+Ωk+Ωde1=\Omega^{m}+\Omega^{k}+\Omega^{de} . The two parameters mm and rr parametrize the f(Q)f(Q) form as a function m(r)m(r), while the variable x4x_{4} has been introduced in order to break the degeneracy between positive and negative HH (since it is H2H^{2} that appears in the other variables).

Using the above dimensionless variables we result to the four-dimensional autonomous system

dx1dN=x2x3mx1(x3+3𝒜),\displaystyle\frac{dx_{1}}{dN}=-\frac{x_{2}x_{3}}{m}-x_{1}(x_{3}+3\mathcal{A}), (17)
dx2dN=x2x3m3x2𝒜,\displaystyle\frac{dx_{2}}{dN}=\frac{x_{2}x_{3}}{m}-3x_{2}\mathcal{A}, (18)
dx3dN=x3(3+x3+32𝒜),\displaystyle\frac{dx_{3}}{dN}=-x_{3}\left(3+x_{3}+\frac{3}{2}\mathcal{A}\right), (19)
ΩkdN=Ωk(2+3𝒜),\displaystyle\frac{\Omega^{k}}{dN}=-\Omega^{k}(2+3\mathcal{A}), (20)

with 𝒜2H˙3H2=1+x1+x2+x33(ζx42)+Ωk3\mathcal{A}\equiv\frac{2\dot{H}}{3H^{2}}=-1+x_{1}+x_{2}+\frac{x_{3}}{3}\left(\zeta x_{4}-2\right)+\frac{\Omega^{k}}{3} and ζ=3kϵ+ϵ\zeta=-3\frac{k}{\epsilon}+\epsilon, and where N=lnaN=\ln a. Hence, the total equation-of-state parameter is just weff=12H˙/3H2=1𝒜w^{eff}=-1-2\dot{H}/{3H^{2}}=-1-\mathcal{A}. Finally, we mention here that since r=x2/x1r=x_{2}/x_{1}, the condition dr/dN=rx3(1+1+rm)=0dr/dN=rx_{3}\left(1+\frac{1+r}{m}\right)=0 implies that the critical points of the system (17)-(20) must satisfy either r=0r=0 (or equivalently x2=0x_{2}=0), or x3=0x_{3}=0, or m(r)=(1+r)m(r)=-(1+r), while when the conditions x1=0x_{1}=0, x2=0x_{2}=0 and x30x_{3}\neq 0 simultaneously hold the relation m(r)=(1+r)m(r)=-(1+r) must be considered.

III.1 General f(Q)f(Q) form

We start by performing the analysis for a general f(Q)f(Q) form, namely for a general m(r)m(r) function. As we will see, in this case the intersections of the curve m(r)m(r) with the line m=r1m=-r-1 can play an important role in the way that the critical point corresponding to dark-matter dominated era connects to those exhibiting dark-energy domination.

In the general case the critical points of the system (17)-(20) are presented in Table 1. As can be seen, for a general f(Q)f(Q) function there exist seven critical points, or curves of critical points, with different physical features. Note that all mm and mm^{\prime} values must be calculated at probable intersections of m(r)m(r) with m=r1m=-r-1, which happen at the roots ri,i=1,2,r_{i},~{}i=1,2,\cdots.

Fixed point Coordinates (x1,x2,x3,Ωk)(x_{1},x_{2},x_{3},\Omega^{k}) Eigenvalues Ωm\Omega^{m} Ωk\Omega^{k} weffw^{eff}
PmP^{m} (0,0,0,0))\left(0,0,0,0)\right) [3,3,32,1]\left[3,3,-\frac{3}{2},1\right] 11 0 0
PkP^{k} (0,0,0,1)\left(0,0,0,1\right) [2,1,2,2]\left[-2,-1,2,2\right] 0 11 13-\frac{1}{3}
PdsP^{ds} (x1,1x1,0,0)\left(x_{1},1-x_{1},0,0\right) [3,2,0,3][-3,-2,0,-3] 0 0 1-1
P1P^{1} (0,0,2,ϵ2k)\left(0,0,-2,-\frac{\epsilon^{2}}{k}\right) with k0k\neq 0 {[1,2,22m,2(1m+1)m+4],k=ϵ2,{2,±,22m,2(1m+1)m+4},k=+1,|ϵ|1±\left\{\begin{array}[]{l}\left[1,2,2-\frac{2}{m},2\left(\frac{1}{m}+1\right)m^{\prime}+4\right],\\ k=-\epsilon^{2},\\ \left\{2,\pm\infty,2-\frac{2}{m},2\left(\frac{1}{m}+1\right)m^{\prime}+4\right\},\\ k=+1,~{}~{}|\epsilon|\to 1^{\pm}\end{array}\right. 0 ϵ2k-\frac{\epsilon^{2}}{k} 13-\frac{1}{3}
P2P^{2} (0,0,6[2kϵ23k+1],0)\left(0,0,-6\left[\frac{2k}{\epsilon^{2}-3k}+1\right],0\right) [32,8ϵ2ϵ23k+1,j1,j2]\left[\frac{3}{2},-\frac{8\epsilon^{2}}{\epsilon^{2}-3k}+1,j_{1},j_{2}\right] 4ϵ2ϵ23k\frac{4\epsilon^{2}}{\epsilon^{2}-3k} 0 8kϵ23k3-\frac{8k}{\epsilon^{2}-3k}-3
P3P^{3} (2kkϵ2,0,6,0)\left(\frac{2k}{k-\epsilon^{2}},0,-6,0\right) {[8,6(m+1)m,l1,l2],(l1=3,l2=3),k=ϵ2\left\{\begin{array}[]{l}\left[-8,-\frac{6(m+1)}{m},l_{1},l_{2}\right],\\ (l_{1}=-3,l_{2}=3),~{}~{}k=-\epsilon^{2}\end{array}\right. 8kϵ2k+4\frac{8k}{\epsilon^{2}-k}+4 0 3-3
P4P^{4} (k(m1)+(m+1)ϵ2m[k(m+2)+mϵ2],(m+1)[k(m1)+(m+1)ϵ2]m[k(m+2)+mϵ2],6m2m+1,0)\begin{array}[]{l}\left(\frac{k(m-1)+(m+1)\epsilon^{2}}{m\left[k(m+2)+m\epsilon^{2}\right]},\frac{(m+1)\left[k(m-1)+(m+1)\epsilon^{2}\right]}{m\left[k(m+2)+m\epsilon^{2}\right]}\right.,\\ \left.-\frac{6m}{2m+1},0\right)\end{array} {[62m+12,3,32m+1,6(m+1)(m+1)2m+1],k=ϵ2\left\{\begin{array}[]{l}\left[\frac{6}{2m+1}-2,3,\frac{3}{2m+1},\frac{6(m+1)\left(m^{\prime}+1\right)}{2m+1}\right],\\ k=-\epsilon^{2}\end{array}\right. 2(m1)(k+ϵ2)k(m+2)+mϵ2\frac{2(m-1)\left(k+\epsilon^{2}\right)}{k(m+2)+m\epsilon^{2}} 0 22m+11\frac{2}{2m+1}-1
Table 1: The critical points in the general f(Q)f(Q) case, namely with general m(r)m(r). We have defined j1=6[k(m1)+(m+1)ϵ2]m(3kϵ2)j_{1}=\frac{6\left[k(m-1)+(m+1)\epsilon^{2}\right]}{m\left(3k-\epsilon^{2}\right)}, j2=6[(m+1)(kϵ2)m+2km]m(3kϵ2)j_{2}=\frac{6\left[(m+1)\left(k-\epsilon^{2}\right)m^{\prime}+2km\right]}{m\left(3k-\epsilon^{2}\right)}, l1=3(33k230kϵ2+ϵ4+k+ϵ2)4(kϵ2)l_{1}=-\frac{3\left(-\sqrt{33k^{2}-30k\epsilon^{2}+\epsilon^{4}}+k+\epsilon^{2}\right)}{4\left(k-\epsilon^{2}\right)} and l2=3(33k230kϵ2+ϵ4+k+ϵ2)4(ϵ2k)l_{2}=\frac{3\left(\sqrt{33k^{2}-30k\epsilon^{2}+\epsilon^{4}}+k+\epsilon^{2}\right)}{4\left(\epsilon^{2}-k\right)}.

The physical properties of these critical points are the following:

  • Point PmP^{m}: It corresponds to dark-matter (Ωm=1\Omega^{m}=1) dominated era with total equation-of-state parameter weff=0w^{eff}=0. Its eigenvalues imply that it is a saddle point and thus it can be the intermediate state of the Universe.

  • Point PkP^{k}: It corresponds to a curvature-dominated era and it is a saddle point.

  • Curve of points PdsP^{ds}: It corresponds to a dark-energy dominated Universe (since Ωm=Ωk=0\Omega^{m}=\Omega^{k}=0 we have Ωde=1\Omega^{de}=1), with weff=1w^{eff}=-1, namely to the de Sitter solution. Although it has a zero eigenvalue, application of the center manifold theorem [88, 89] shows that this point is stable and thus it can attract the Universe at late times.

  • Point P1P^{1}: This point exists only for non-flat geometry. It corresponds to a curvature-dominated solution if k=±ϵ2k=\pm\epsilon^{2}, and it is unstable for every values of mm and mm^{\prime}.

  • Point P2P^{2}: This point is physical (i.e. having 0Ωm10\leq\Omega^{m}\leq 1) only for k=1k=1 and for ϵ21\epsilon^{2}\leq 1. In this case Ωm\Omega^{m} and Ωde\Omega^{de} are both between 0 and 1 and thus this point can alleviate the coincidence problem. Additionally, it has 1weff1/3-1\leq w^{eff}\leq-1/3 and thus it corresponds to accelerated solution. The fact that it is unstable makes this point a good candidate for the description of inflation with a successful exit.

  • Point P3P^{3}: This point is physical only for k=1k=-1 and for 1ϵ25/31\leq\epsilon^{2}\leq 5/3, in which case Ωm\Omega^{m} and Ωde\Omega^{de} are both between 0 and 1. It corresponds to super-acceleration and it is unstable.

  • Curve of points P4P^{4}: The properties of this curve cannot be inferred without specifying m(r)m(r), namely the f(Q)f(Q) form.

In summary, f(Q)f(Q) cosmology in non-flat Universe exhibits the desired features of saddle matter-dominated era and stable late-time dark-energy era. However, apart from these, we obtain interesting features that arise solely from non-zero curvature, such as a point which can alleviate the coincidence problem, or a point that corresponds to a curvature-driven inflation which is unstable and thus it can easily acquire a successful inflation exit. Nevertheless, since some features cannot be extracted for the general f(Q)f(Q) form, in the following subsection we examine a specific f(Q)f(Q) case.

III.2 Application for f(Q)=ηQnf(Q)=\eta Q^{n}

Let us apply the above general analysis in the case f(Q)=ηQnf(Q)=\eta Q^{n}. Such a choice, according to (16) corresponds to m=n1=const.m=n-1=const. and r=n=const.r=-n=const., and thus x2=rx1x_{2}=rx_{1}, which implies that variable x2x_{2} is not needed. We first examine the flat case and then we continue to k=±1k=\pm 1.

III.2.1 k=0k=0

In this case Ωk\Omega^{k} is absent and we acquire a two-dimensional system, namely (17) and (19) with zero Ωk\Omega^{k} terms. The corresponding physical critical points are shown in Table 2. As we can see, we obtain an unstable dark-matter dominated point, namely pmp^{m}, as well as a stable dark-energy dominated de Sitter solution pdep^{de}. However, for 1m21\leq m\leq 2 we obtain point pbp^{b}, in which Ωm\Omega^{m} and Ωde\Omega^{de} are both between 0 and 1 and thus this point can alleviate the coincidence problem, while it has 3/5weff1/3-3/5\leq w^{eff}\leq-1/3. Note that this point for 1m1\leq m is unstable. In Fig. 1 we depict the critical points, using for convenience the new variables xX/1X2Y2x\equiv X/\sqrt{1-X^{2}-Y^{2}} and yY/1X2Y2y\equiv Y/\sqrt{1-X^{2}-Y^{2}} in order to compactify them.

Fixed point Coordinates (x1,x3)(x_{1},x_{3}) Eigenvalues Ωm\Omega^{m} weffw^{eff}
pmp^{m} (0,0)\left(0,0\right) [3,32]\left[3,-\frac{3}{2}\right] 11 0
pdsp^{ds} (1m,0)\left(-\frac{1}{m},0\right) [3,3]\left[-3,-3\right] 0 1-1
pbp^{b} (m+1m2,6m2m+1)\left(\frac{m+1}{m^{2}},-\frac{6m}{2m+1}\right) [3(2m2+14m2(m+1)(7m+5)+1)4m(2m+1),3(2m2+14m2(m+1)(7m+5)1)4m(2m+1)]\left[-\frac{3\left(-2m^{2}+\sqrt{1-4m^{2}(m+1)(7m+5)}+1\right)}{4m(2m+1)},\frac{3\left(2m^{2}+\sqrt{1-4m^{2}(m+1)(7m+5)}-1\right)}{4m(2m+1)}\right] 22m2-\frac{2}{m} 22m+11\frac{2}{2m+1}-1
Table 2: The critical points for the case f(Q)=ηQnf(Q)=\eta Q^{n}, with k=0k=0.
Refer to caption
Figure 1: The phase-space behavior in the specific case of f(Q)=ηQnf(Q)=\eta Q^{n} gravity, for k=0k=0. The Universe passes through the saddle matter-dominated point pmp^{m} at intermediate times, before it results to the dark-energy dominated de Sitter solution pdsp^{ds}.

III.2.2 k=1k=-1

In the case of k0k\neq 0 the system of dynamical equations contains (17), (19) and (20). The critical points are presented in Table 3. As can be seen there is the unstable dark-matter dominated point QmQ^{m}, and the unstable curvature-dominated point QkQ^{k}. Additionally, there exist a stable dark-energy dominated de Sitter solution QdsQ^{ds}. Moreover, similarly to points P4P^{4} in Table 1 and pbp^{b} in Table 2 above, there is a point Q3Q^{3} in which Ωm\Omega^{m} and Ωde\Omega^{de} are both between 0 and 1 and thus this point can alleviate the coincidence problem.

Fixed point Coordinates (x1,x3,Ωk)(x_{1},x_{3},\Omega^{k}) Eigenvalues Ωm\Omega^{m} Ωk\Omega^{k} weffw^{eff}
QmQ^{m} (0,0,0))\left(0,0,0)\right) [3,32,1]\left[3,-\frac{3}{2},1\right] 11 0 0
QkQ^{k} (0,0,1)\left(0,0,1\right) [2,1,2]\left[-2,-1,2\right] 0 11 13-\frac{1}{3}
QdsQ^{ds} (1m,0,0)\left(-\frac{1}{m},0,0\right) [3,3,2][-3,-3,-2] 0 0 1-1
Q1Q^{1} (0,6[2kϵ23k+1],0)\left(0,-6\left[\frac{2k}{\epsilon^{2}-3k}+1\right],0\right) [32,8ϵ2ϵ23k,6[k(m1)+(m+1)ϵ2]m(3kϵ2)]\left[\frac{3}{2},-\frac{8\epsilon^{2}}{\epsilon^{2}-3k},\frac{6\left[k(m-1)+(m+1)\epsilon^{2}\right]}{m\left(3k-\epsilon^{2}\right)}\right] 4ϵ2ϵ23k\frac{4\epsilon^{2}}{\epsilon^{2}-3k} 0 8kϵ23k3-\frac{8k}{\epsilon^{2}-3k}-3
Q2Q^{2} (0,2,ϵ2k)\left(0,-2,-\frac{\epsilon^{2}}{k}\right) [22m,1,2]\left[2-\frac{2}{m},1,2\right] 0 ϵ2k-\frac{\epsilon^{2}}{k} 13-\frac{1}{3}
Q3Q^{3} (k(m1)+(m+1)ϵ2m[k(m+2)+mϵ2],6m2m+1,0)\left(\frac{k(m-1)+(m+1)\epsilon^{2}}{m\left[k(m+2)+m\epsilon^{2}\right]},-\frac{6m}{2m+1},0\right) {[62m+12,3,32m+1],k=ϵ2\left\{\begin{array}[]{l}\left[\frac{6}{2m+1}-2,3,\frac{3}{2m+1}\right],\\ k=-\epsilon^{2}\end{array}\right. 2(m1)(k+ϵ2)k(m+2)+mϵ2\frac{2(m-1)\left(k+\epsilon^{2}\right)}{k(m+2)+m\epsilon^{2}} 0 22m+11\frac{2}{2m+1}-1
Table 3: The critical points for the case f(Q)=ηQnf(Q)=\eta Q^{n}, with k=±1k=\pm 1.

In the presence of spatial curvature the two points Q1Q^{1} and Q2Q^{2} appear, too. Q1Q^{1} corresponds to P2P^{2} of Table 1, and it is is physical only for k=1k=1 and for ϵ21\epsilon^{2}\leq 1. It has both Ωm\Omega^{m} and Ωde\Omega^{de} between 0 and 1 and thus this point can alleviate the coincidence problem. Additionally, it has 1weff1/3-1\leq w^{eff}\leq-1/3 and therefore it corresponds to accelerated solution. The fact that it is unstable makes this point a good candidate for the description of inflation. Furthermore, point Q2Q^{2} corresponds to P1P^{1}, namely it describes a curvature-dominated solution if k=±ϵ2k=\pm\epsilon^{2}, and it is unstable.

Refer to caption
Refer to caption
Figure 2: The phase-space behavior in the specific case of f(Q)=ηQnf(Q)=\eta Q^{n} gravity, for k=1k=-1. Left panel: for the choice ϵ=0.1\epsilon=0.1 the system starts from the inflationary point Q1Q^{1}, then it passes close to the matter-dominated point QmQ^{m} and finally it results to the dark-energy dominated de Sitter solution QdsQ^{ds}. Right panel: for the choice ϵ=1\epsilon=1 the system starts from the scaling point Q3Q^{3} and it results to the dark-energy dominated de Sitter solution QdsQ^{ds} without passing sufficiently close to the matter-dominated point QmQ^{m}.

In order to present the above features in a more transparent way, we proceed to numerical investigation and in Fig. 2 we depict the corresponding phase-space behavior in the X1X3X_{1}-X_{3} plane. In the left panel the system starts from the inflationary point Q1Q^{1}, then it passes close to the matter-dominated point QmQ^{m} and finally it results to the dark-energy dominated de Sitter solution QdsQ^{ds}. As we can see, the role of spatial curvature is crucial in obtaining such a thermal history of the Universe. Moreover, for completeness, in the right panel of Fig. 2 we present a parameter-case in which the trajectories starting from Q3Q^{3} do not approach QmQ^{m} efficiently.

Refer to caption
Refer to caption
Figure 3: The redshift evolution of the density parameters (left panel) and of the deceleration and equation-of-state parameters (right panel) in the specific case of f(Q)=ηQnf(Q)=\eta Q^{n} gravity, for k=1k=-1 and ϵ=0.1\epsilon=0.1 We have set the initial conditions x1i=1.05×1010x_{1i}=-1.05\times 10^{-10}, x3i=2.00013x_{3i}=-2.00013 and Ωik=5×107\Omega^{k}_{i}=5\times 10^{-7}.

In the left panel of Fig. 3 we provide the redshift-evolution of the density parameters, while in the right panel we depict the evolution of the deceleration and total equation-of-state parameters (note that ln(1+z)=lna=N\ln(1+z)=-\ln a=-N). Interestingly enough, we observe a transition from the initial accelerated expansion stage, to the intermediate matter-dominated non-accelerating era, and then to the final accelerated expansion phase. Additionally, note that the spatial curvature density parameter grows when the domination of the matter and the dark energy phases is reversed.

Finally, in order to illustrate the behavior of the phase-space trajectories near the curvature-dominated points QkQ^{k} and Q2Q^{2}, we focus on the x1=0x_{1}=0 plane. In upper panel of Fig. 4 we display QmQ^{m}, QkQ^{k} and Q2Q^{2} in the x1=0x_{1}=0 plane for k=1k=-1. Note that in the x1=0x_{1}=0 plane one cannot indicate the point QdsQ^{ds} for which one acquires x1=1/mx_{1}=-1/m. As we can see, for particular initial values the dark-matter dominated phase falls between two different epochs with considerable values of Ωk\Omega^{k}. In particular, the Universe evolves from an epoch with curvature domination to the dark-matter dominated era and then to another curvature-dominated epoch. The lower panels of Fig. 4 show the time evolution of the density parameters, and the deceleration and total equation-of-state parameters. As we can see, the transition Q2Q^{2}-QmQ^{m}-QkQ^{k}-QdsQ^{ds} is also possible for a particular set of the initial values.

Refer to caption
Refer to caption
Refer to caption
Figure 4: Upper panel: the phase-space behavior in the specific case of f(Q)=ηQnf(Q)=\eta Q^{n} gravity, in the x1x_{1}-plane, for k=1k=-1 and ϵ=1\epsilon=1. The orange curve represents the transition from the curvature-dominated point Q2Q^{2} to the matter-dominated point QmQ^{m} and then to the curvature-dominated solution QkQ^{k}. Lower panels: the corresponding redshift evolution of the density parameters and of the deceleration and equation-of-state parameters. We have set the initial conditions x1i=1.5×107x_{1i}=-1.5\times 10^{-7}, x3i=2.1x_{3i}=-2.1 and Ωik=0.9\Omega^{k}_{i}=0.9, related to the black dot near Q2Q^{2} in the upper panel.

III.2.3 k=+1k=+1

In the case of k=+1k=+1 the system of dynamical equations (17), (19) and (20) exhibits the critical points presented in Table 3. In particular, one has points QmQ^{m} and QdsQ^{ds}, however in this case QkQ^{k} and Q1Q^{1} are not physical. Point Q2Q^{2} corresponds to a closed spatial curvature dominated era. Finally, Q3Q^{3} exists, in which Ωm\Omega^{m} and Ωde\Omega^{de} are between 0 and 1 and thus it can alleviate the coincidence problem. In Fig. 5 we plot the phase-space trajectories in both Ωk=0\Omega^{k}=0 and x1=0x_{1}=0 planes. As we can see, we cannot obtain any transition between QmQ^{m} and Q2Q^{2}/Q3Q^{3}. Hence, we conclude that under positive spatial curvature we can only obtain the usual transition from matter to dark-energy dominated phases.

Refer to caption
Refer to caption
Figure 5: The phase-space behavior in the specific case of f(Q)=ηQnf(Q)=\eta Q^{n} gravity, for k=+1k=+1, in the X1X3X_{1}-X_{3} plane (left panel) and in the QkX3Q^{k}-X_{3} plane (right panel). The unstable Q1Q^{1} point stands in between QmQ^{m} and Q2Q^{2}/Q3Q^{3} and thus it blocks transitions between them, and hence we can only obtain the usual transition from matter to dark-energy dominated phases.

IV Concluding remarks

In this manuscript we investigated the cosmological implications of f(Q)f(Q) gravity, which is a modified theory of gravity based on non-metricity, in non-flat FLRW geometry. After presenting the relevant cosmological equations, we performed a detailed dynamical-system analysis in order to reveal the global features of the evolution, independently of the initial conditions.

Firstly, we performed the analysis keeping the f(Q)f(Q) function completely arbitrary. As we showed, the cosmological scenario admits a dark-matter dominated point, which is saddle and thus it can be the intermediate state of the Universe, as well as dark-energy dominated de Sitter solution which is stable and thus it can attract the Universe at late times. However, the main result of the present work is that there are additional critical points and curves of critical points which exist solely due to curvature

In particular, we found that there are points which are curvature-dominated and correspond to accelerating expansion, and the fact that they are unstable makes them good candidates for the description of inflation. Additionally, there is a point in which the dark-matter and dark-energy density parameters are both between zero and one, and thus it can alleviate the coincidence problem. Finally, there is a saddle point which is completely dominated by curvature.

In order to provide a specific example, we applied our general analysis to the power-law case f(Q)=ηQnf(Q)=\eta Q^{n}. In this specific model, the Universe exhibits the general features presented above, namely a saddle matter-dominated point and a late-time dark-energy dominated attractor. Furthermore, it has points that exist only in the non-flat case, which can alleviate the coincidence problem, as well as curvature-dominated accelerating unstable points that can describe the early-time inflationary epoch. In this case we performed a numerical investigation showing that the system in the open geometry case exhibits a transition from the initial accelerated expansion stage, to the intermediate matter-dominated non-accelerating era, and then to the final accelerated expansion phase, while the curvature density parameter exhibits a peak at intermediate times.

In summary, f(Q)f(Q) cosmology in non-flat Universe exhibits the desired behavior known from the flat case, however it additionally exhibits qualitatively novel features that arise solely from non-zero curvature. This fact, alongside possible indications that non-zero curvature could alleviate the cosmological tensions, makes it both interesting and necessary to further investigate modified gravity, and in particular f(Q)f(Q) gravity, in non-flat geometry.

Acknowledgements.
This research was partially supported by the UTAR Research Fund Scheme. ENS would like to acknowledge the contribution of the COST Action CA21136 “Addressing observational tensions in cosmology with systematics and fundamental physics (CosmoVerse)”.

References

  • [1] E. N. Saridakis et al. [CANTATA], Springer, 2021, [arXiv:2105.12582 [gr-qc]].
  • [2] S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011).
  • [3] E. Abdalla, G. Franco Abellán, A. Aboubrahim, A. Agnello, O. Akarsu, Y. Akrami, G. Alestas, D. Aloni, L. Amendola and L. A. Anchordoqui, et al. JHEAp 34, 49-211 (2022).
  • [4] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  • [5] S. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).
  • [6] C. Erices, E. Papantonopoulos and E. N. Saridakis, Phys. Rev. D 99, no.12, 123527 (2019).
  • [7] D. Lovelock, J. Math. Phys.  12, 498 (1971).
  • [8] G. W. Horndeski, Int. J. Theor. Phys. 10, 363-384 (1974).
  • [9] C. Deffayet, G. Esposito-Farese and A. Vikman, Phys. Rev. D 79, 084003 (2009).
  • [10] G. R. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019 (2009).
  • [11] Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, Rept. Prog. Phys. 79, no.10, 106901 (2016).
  • [12] G. Kofinas and E. N. Saridakis, Phys. Rev. D 90, 084044 (2014).
  • [13] S. Bahamonde, C. G. Böhmer and M. Wright, Phys. Rev. D 92, no.10, 104042 (2015).
  • [14] C. Q. Geng, C. C. Lee, E. N. Saridakis and Y. P. Wu, Phys. Lett. B 704, 384-387 (2011).
  • [15] J. M. Nester and H. J. Yo, Chin. J. Phys. 37, 113 (1999).
  • [16] J. Beltrán Jiménez, L. Heisenberg and T. Koivisto, Phys. Rev. D 98, no.4, 044048 (2018).
  • [17] F. K. Anagnostopoulos, S. Basilakos and E. N. Saridakis, Phys. Lett. B 822, 136634 (2021).
  • [18] W. Khyllep, A. Paliathanasis and J. Dutta, Phys. Rev. D 103, no.10, 103521 (2021).
  • [19] S. Mandal, D. Wang and P. K. Sahoo, Phys. Rev. D 102, 124029 (2020).
  • [20] B. J. Barros, T. Barreiro, T. Koivisto and N. J. Nunes, Phys. Dark Univ. 30, 100616 (2020).
  • [21] J. Lu, X. Zhao and G. Chee, Eur. Phys. J. C 79, no.6, 530 (2019).
  • [22] A. De and L.T. How, Phys. Rev. D 106, no.4, 048501 (2022).
  • [23] A. De, S. Mandal, J. T. Beh, T. H. Loo, P. K. Sahoo, Eur. Phys. J. C 82, no.1, 72 (2022).
  • [24] R. Solanki, A. De, S. Mandal and P. K. Sahoo, Phys. Dark Univ. 36, 101053 (2022).
  • [25] R. Solanki, A. De and P. K. Sahoo, Phys. Dark Univ. 36, 100996 (2022).
  • [26] P. Sarmah et al., Phys. Dark Univ. 40, 101209 (2023).
  • [27] A. De, D. Saha, G. Subramaniam and A. K. Sanyal, [arXiv:2209.12120 [gr-qc]].
  • [28] J. T. Beh, T. h. Loo and A. De, Chin. J. Phys. 77, 1551-1560 (2022).
  • [29] J. Beltrán Jiménez, L. Heisenberg, T. S. Koivisto and S. Pekar, Phys. Rev. D 101, no.10, 103507 (2020).
  • [30] N. Frusciante, Phys. Rev. D 103, no.4, 044021 (2021).
  • [31] . Atayde and N. Frusciante, Phys. Rev. D 104, no.6, 064052 (2021).
  • [32] J. Ferreira, T. Barreiro, J. Mimoso and N. J. Nunes, Phys. Rev. D 105, no.12, 123531 (2022).
  • [33] S. Capozziello and R. D’Agostino, Phys. Lett. B 832, 137229 (2022).
  • [34] G. N. Gadbail, S. Mandal and P. K. Sahoo, Phys. Lett. B 835, 137509 (2022).
  • [35] R. Lazkoz, F. S. N. Lobo, M. Ortiz-Baños and V. Salzano, Phys. Rev. D 100, no.10, 104027 (2019).
  • [36] I. Ayuso, R. Lazkoz and V. Salzano, Phys. Rev. D 103, no.6, 063505 (2021).
  • [37] F. Bajardi, D. Vernieri and S. Capozziello, Eur. Phys. J. Plus 135, no.11, 912 (2020).
  • [38] A. Lymperis, JCAP 11, 018 (2022).
  • [39] P. Sahoo, A. De, T. H. Loo and P. K. Sahoo, Commun. Theor. Phys. 74, no.12, 125402 (2022).
  • [40] F. D’Ambrosio, S. D. B. Fell, L. Heisenberg and S. Kuhn, Phys. Rev. D 105, no.2, 024042 (2022).
  • [41] M. Li and D. Zhao, Phys. Lett. B 827, 136968 (2022).
  • [42] N. Dimakis, A. Paliathanasis and T. Christodoulakis, Class. Quant. Grav. 38, no.22, 225003 (2021).
  • [43] M. Hohmann, Phys. Rev. D 104, no.12, 124077 (2021).
  • [44] A. Kar, S. Sadhukhan and U. Debnath, Mod. Phys. Lett. A 37, no.28, 2250183 (2022).
  • [45] W. Wang, H. Chen and T. Katsuragawa, Phys. Rev. D 105, no.2, 024060 (2022).
  • [46] I. Quiros, Phys. Rev. D 105, no.10, 104060 (2022).
  • [47] S. Mandal and P. K. Sahoo, Phys. Lett. B 823, 136786 (2021).
  • [48] I. S. Albuquerque and N. Frusciante, Phys. Dark Univ. 35, 100980 (2022).
  • [49] G. Papagiannopoulos, S. Basilakos and E. N. Saridakis, Phys. Rev. D 106, no.10, 103512 (2022).
  • [50] F. K. Anagnostopoulos, V. Gakis, E. N. Saridakis and S. Basilakos, Eur. Phys. J. C 83, no.1, 58 (2023).
  • [51] S. Arora and P. K. Sahoo, Annalen Phys. 534, no.8, 2200233 (2022).
  • [52] L. Pati, S. A. Narawade, S. K. Tripathy and B. Mishra, Eur. Phys. J. C 83, no.5, 445 (2023).
  • [53] S. K. Maurya, K. Newton Singh, S. V. Lohakare and B. Mishra, Fortsch. Phys. 70, no.11, 2200061 (2022).
  • [54] S. Capozziello and M. Shokri, Phys. Dark Univ. 37, 101113 (2022).
  • [55] N. Dimakis, M. Roumeliotis, A. Paliathanasis, P. S. Apostolopoulos and T. Christodoulakis, Phys. Rev. D 106, no.12, 123516 (2022).
  • [56] R. D’Agostino and R. C. Nunes, Phys. Rev. D 106, no.12, 124053 (2022).
  • [57] S. A. Narawade and B. Mishra, Annalen Phys. 535, no.5, 2200626 (2023).
  • [58] E. D. Emtsova, A. N. Petrov and A. V. Toporensky, Eur. Phys. J. C 83, no.5, 366 (2023).
  • [59] S. Bahamonde, G. Trenkler, L. G. Trombetta and M. Yamaguchi, Phys. Rev. D 107, no.10, 104024 (2023).
  • [60] S. A. Narawade, S. H. Shekh, B. Mishra, W. Khyllep and J. Dutta, [arXiv:2303.01985 [gr-qc]].
  • [61] J. Ferreira, [arXiv:2303.12674 [astro-ph.CO]].
  • [62] O. Sokoliuk, S. Arora, S. Praharaj, A. Baransky and P. K. Sahoo, Mon. Not. Roy. Astron. Soc. 522, no.1, 252-267 (2023).
  • [63] A. Y. Shaikh, Eur. Phys. J. Plus 138, no.3, 301 (2023)
  • [64] M. Jan, A. Ashraf, A. Basit, A. Caliskan and E. Güdekli, Symmetry 15, no.4, 859 (2023).
  • [65] N. Dimakis, M. Roumeliotis, A. Paliathanasis and T. Christodoulakis, [arXiv:2304.04419 [gr-qc]].
  • [66] M. Koussour and A. De, Eur. Phys. J. C 83, no.5, 400 (2023).
  • [67] J. A. Nájera, C. A. Alvarado and C. Escamilla-Rivera, [arXiv:2304.12601 [gr-qc]].
  • [68] L. Atayde and N. Frusciante, [arXiv:2306.03015 [astro-ph.CO]].
  • [69] L. Järv, M. Rünkla, M. Saal and O. Vilson, Phys. Rev. D 97, no.12, 124025 (2018).
  • [70] P. Coles, G.F.R. Ellis, Is the universe open or closed?, Cambridge University Press, Cambridge (1997).
  • [71] W. Yang, W. Giarè, S. Pan, E. Di Valentino, A. Melchiorri and J. Silk, Phys. Rev. D 107, no.6, 063509 (2023).
  • [72] S. Chatzidakis, A. Giacomini, P. G. L. Leach, G. Leon, A. Paliathanasis and S. Pan, JHEAp 36, 141-151 (2022).
  • [73] G. Subramaniam, A. De, T. H. Loo and Y. K. Goh, Phys. Dark Univ. 41, 101243 (2023).
  • [74] M. Cruz and S. Lepe, Class. Quant. Grav. 35, no.15, 155013 (2018).
  • [75] E. Di Valentino, A. Melchiorri and J. Silk, Nature Astron. 4, no.2, 196-203 (2019).
  • [76] S. Vagnozzi, E. Di Valentino, S. Gariazzo, A. Melchiorri, O. Mena and J. Silk, Phys. Dark Univ. 33, 100851 (2021).
  • [77] S. Vagnozzi, A. Loeb and M. Moresco, Astrophys. J. 908, no.1, 84 (2021).
  • [78] S. Dhawan, J. Alsing and S. Vagnozzi, Mon. Not. Roy. Astron. Soc. 506, no.1, L1-L5 (2021).
  • [79] A. A. Asgari, A. H. Abbassi and J. Khodagholizadeh, Eur. Phys. J. C 74, 2917 (2014).
  • [80] A. Glanville, C. Howlett and T. M. Davis, Mon. Not. Roy. Astron. Soc. 517, no.2, 3087-3100 (2022).
  • [81] S. Bahamonde, K. F. Dialektopoulos, M. Hohmann, J. Levi Said, C. Pfeifer and E. N. Saridakis, Eur. Phys. J. C 83, no.3, 193 (2023). citeDiValentino:2019qzk
  • [82] E. Di Valentino, A. Melchiorri and J. Silk, Nature Astron. 4, no.2, 196-203 (2019).
  • [83] D. Zhao, Eur. Phys. J. C 82, 303, (2022).
  • [84] N. Dimakis, A. Paliathanasis, M. Roumeliotis, and T. Christodoulakis, Phys. Rev. D, 106, 043509 (2022).
  • [85] N. Dimakis, M. Roumeliotis, A. Paliathanasis, P. S. Apostolopoulos and T. Christodoulakis, Phys. Rev. D 106, no.12, 123516 (2022).
  • [86] A. De and T. H. Loo, Class. Quant. Grav. 40, no.11, 115007 (2023).
  • [87] A. Paliathanasis, Phys. Dark Univ. 41, 101255 (2023).
  • [88] A. A. Coley, Dynamical systems and cosmology, Kluwer (2003).
  • [89] S. Bahamonde, C. G. Böhmer, S. Carloni, E. J. Copeland, W. Fang and N. Tamanini, Phys. Rept. 775-777, 1-122 (2018).
  • [90] E. J. Copeland, A. R. Liddle and D. Wands, Phys. Rev. D 57, 4686-4690 (1998).
  • [91] M. R. Setare and E. N. Saridakis, Phys. Rev. D 79, 043005 (2009).
  • [92] T. Matos, J. R. Luevano, I. Quiros, L. A. Urena-Lopez and J. A. Vazquez, Phys. Rev. D 80, 123521 (2009).
  • [93] E. J. Copeland, S. Mizuno and M. Shaeri, Phys. Rev. D 79, 103515 (2009).
  • [94] G. Leon, J. Saavedra and E. N. Saridakis, Class. Quant. Grav. 30, 135001 (2013).
  • [95] M. A. Skugoreva, E. N. Saridakis and A. V. Toporensky, Phys. Rev. D 91, 044023 (2015).
  • [96] A. Hernández-Almada, G. Leon, J. Magaña, M. A. García-Aspeitia, V. Motta, E. N. Saridakis, K. Yesmakhanova and A. D. Millano, Mon. Not. Roy. Astron. Soc. 512, no.4, 5122-5134 (2022).
  • [97] S. A. Narawade, L. Pati, B. Mishra and S. K. Tripathy, Phys. Dark Univ. 36, 101020 (2022).
  • [98] W. Khyllep, J. Dutta, E. N. Saridakis and K. Yesmakhanova, Phys. Rev. D 107, no.4, 044022 (2023).
  • [99] C. G. Boehmer, E. Jensko and R. Lazkoz, Universe 9, no.4, 166 (2023).
  • [100] S. A. Narawade, S. P. Singh and B. Mishra, [arXiv:2303.06427 [gr-qc]].
  • [101] H. Shabani, A. De and T. H. Loo, [arXiv:2304.02949 [gr-qc]].