This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cosmological fluctuations in Delta Gravity

J. Alfaro    C. Rubio    and M. San Martín
Abstract

About 70% of the Universe is Dark Energy, but the physics community still does not know what it is. Delta Gravity (DG) is an alternative theory of gravitation that could solve this cosmological problem. Previously, we studied the Universe’s accelerated expansion, where DG was able to explain the SNe-Ia data successfully. In this work, we explore the cosmological fluctuations that give rise to the CMB through a hydrodynamic approximation. We calculate the gauge transformations for the metric and the perfect fluid to present the equations of the evolution of cosmological fluctuations, providing the necessary equations to solve in a semi-analytical way the scalar TT Power Spectrum. These equations will be useful for comparing the DG theory with astronomical observations and thus being able to constraint the DG cosmology, testing, in the future, the compatibility with the CMB Planck data, which are currently in controversy with SNe-Ia.

1 Introduction

Recently there has been a spark of interest in Cosmology because the observational constraints are more precise and can constraint the physics that describes the Universe. Despite the increasing evidence of cosmology phenomena such as the acceleration of the Universe described by the Dark Energy (DE) and the presence of a non-visible composition described by a Dark Matter (DM) composition, the Physics community has not been able to explain what they are [1, 2, 3]. The standard cosmological model, Λ\LambdaCDM, describes the Universe composition where the DE density is 69% of the Universe, the DM energy density is 26%, and the rest 5% is ordinary matter and light [1]. This standard model has been able to describe the Universe using these two dark components and even can explain the SNe-Ia and CMB observations, including the formation of the large scale structure through cosmological simulations[4, 5]. However, the Λ\LambdaCDM model is showing inconsistencies between the early and late Universe description [6]. These problems appear in different cosmological parameters such as the Hubble constant[7, 8], the curvature [9] or the S8S_{8} tension [10]. Measuring the cosmic microwave background (CMB) radiation, the Planck team found a local expansion rate of H0=67.37±0.54H_{0}=67.37\pm 0.54 Km/s/Mpc, which is consistent with a flat Λ\Lambda CDM model[1] (where the Hubble constant must be derived taking into account other observations like BAOs). On the other hand, the SH0ES collaboration found a larger value H0=73.52±1.62H_{0}=73.52\pm 1.62 Km/s/Mpc through model-independent measurements of the local Universe[7], at 3.5σ\gtrsim 3.5\sigma discrepancy with Planck value. This tension between early and late Universe exists even without Planck CMB data or the SH0ES distance ladder[6]. Another direct measurement of H0=72.52.3+2.1H_{0}=72.5^{+2.1}_{-2.3} Km/s/Mpc[11] form the H0LiCOW collaboration based on lensing time delays is in moderate tension with Planck, while a constraint from Big Bang nucleosynthesis (BBN) combined with baryon acoustic oscillation (BAO) data of H0=66.98±1.18H_{0}=66.98\pm 1.18 Km/s/Mpc[6] is inconsistent with SH0ES.

Other studies have tried to explain this discrepancy, suggesting that due to cosmic variance, the Hubble constant determined from nearby SNe-Ia may differ from that measured from the CMB by ±0.8\pm 0.8 percent at 1σ1\sigma statistical significance. Still, this difference does not explain the discrepancy between SNe-Ia and CMB[12]. Nevertheless, in an extreme case, observers located in the centers of the immense voids could measure a Hubble constant from SNe-Ia biased high by 5 percent.

From the first publication of the H0H_{0} tension [2] there have been many questions about the origin of this discrepancy. It has been suggested that could be errors in the calibration of Cepheids that contribute to systematic errors. This possible error has been discarded in an extensive discussion made by Riess et. al.[13].

Other publications have tried to solve the acceleration evidence, including anisotropies at local scales. Using SNe-Ia data [14] they found evidence of anisotropies associated with the direction and the amplitude of the bulk flow. Nevertheless, the effect of dipolar distribution dark energy cannot be excluded at high redshift. Also, there is another publication [15] where the anisotropies in cosmic acceleration are related to the Dark Energy, in their words, the cosmic acceleration deduced from supernovae may be an artifact of our being non-Copernican observers, rather than evidence for a dominant component of "dark energy" in the Universe.. Other studies [16] conclude that even in the case of anisotropy, the Dark Energy could not be completely ruled out. This kind of proposal could provide solutions to explain variations on the local scale, for example, different measurements on the local Hubble constant. But this kind of hypothesis could defy all the analyses made by Planck using Λ\LambdaCDM model because the Dark Energy component is essential for the evolution of photons of the CMB from the last Scattering Surface until now, even more, the sum over Ω\Omega for every component in the Universe would drastically change. Many other suggestions about discrepancies have appeared, not only related to SNe-Ia measurements, but also within the Planck data itself. The anisotropies in these measurements have been debated and could be ruled out because the uncertainty tends to be very high, and the results can be very inconsistent. Even hypothesis about the possibility of a Universe with less Dark Energy [17] has appeared.

Another source of errors in the local measurement could be an inhomogeneity in the local density. [18] In this scenario the presence of local structure does not appear to impede the possibility of measuring the Hubble constant to 1% precision, and there is no evidence of a change in the Hubble constant corresponding to an inhomogeneity.

Today, there are different methods to obtain the Hubble constant, even with SNe-II, [19]. In this research, they used SNe-II as standard candles to obtain an independent measurement of the Hubble constant. The value obtained was H0=75.84.9+5.2H_{0}=75.8^{+5.2}_{-4.9} km /s/Mpc. The local H0H_{0} is higher than the value from the early Universe with a confidence level of 95%. They concluded that there is no evidence that SNe-Ia are the source of the H0H_{0} tension. Even, from SNe-Ia, other publication concluded, from analyzing SNe-Ia as standard candles in the near-infrared, that H0H_{0} = 72.8 ±\pm 1.6 (statistical) ±\pm2.7 (systematic) km/s/Mpc. Indeed, they concluded that the tension in the competing H0H_{0} distance ladders is likely not a result of supernova systematics.

Other proposals have tried to reconcile Planck and SNe-Ia data, including modifications in the physics of the DE. In other words, introducing a [20] equation of state of interacting dark energy component, where ww is allowed to vary freely, could solve the H0H_{0} tension. Also, decaying dark matter model has been proposal in order to alleviate the H0H_{0} and σ8\sigma_{8} anomalies[21]; in their work they reduce the tension for both measurements when only consider Planck CMB data and the local SH0ES prior on H0H_{0}, however when BAOs and JLA supernova dataset are included their model is weakened.

Other controversies are related to inconsistencies with curvature (and other parameters needed to describe the CMB) [9], or are related to the tension between measurements of the amplitude of the power spectrum of density perturbations (inferred using CMB) and directly measured by large-scale structure (LSS) on smaller scales [10]. Extension of Λ\LambdaCDM models have been considered[22] trying to solve the tension of H0H_{0}. However, they concluded that none of these extended models can convincingly resolve the H0H_{0} tension. Through the time, the tension between Planck and SNe-Ia persist [1, 13], where the H0H_{0} is the most significant tension. Furthermore, the Universe is composed principally by DE, but we still do not know what it is.

In the last decades, there have been various proposals to explain the observed acceleration of the Universe. They involve the inclusion of some additional fields in approaches like Quintessence, Chameleon, Vector Dark Energy or Massive Gravity; The addition of higher-order terms in the Einstein-Hilbert action, like f(R)f(R) theories and Gauss-Bonnet terms, and the introduction of extra dimensions for a modification of gravity on large scales ([23]). Other interesting possibilities, are the search for non-trivial ultraviolet fixed points in gravity (asymptotic safety, [24]) and the notion of induced gravity ([25, 26, 27, 28]). The first possibility uses exact renormalization-group techniques ([29]-[30]) together with lattice and numerical techniques such as Lorentzian triangulation analysis ([31]). Induced gravity proposes that gravitation is a residual force produced by other interactions.

Delta Gravity (DG) [32] is an extension of General Relativity (GR), where new fields are added to the Lagrangian by a new symmetry (for more details see [32, 33, 34]). This theory predicts an accelerating Universe without a cosmological constant Λ\Lambda, and a Hubble parameter H0=74.47±1.63H_{0}=74.47\pm 1.63 Km/s/Mpc[35] when fitting SN-Ia Data, which is in agreement with SH0ES.
Although DG gives good results for local measurements, we need to study its cosmological predictions. In particular, the information provided by the anisotropies of matter and energy fluctuations in the Cosmic Microwave Background (CMB) could allow us to understand the physical meaning of these new fields which are included.
The temperature correlations give us information about the constituents of the Universe, such as baryonic and dark matter. Therefore we have to study the evolution of the CMB fluctuations from the last scattering (denoted by tlst_{ls}) to the present. Usually, these computations are carried out by codes such as CMBFast[36, 37] or CAMB111http://camb.info/[38], where Boltzmann equations for the fluids and its interactions provide us well-known results that are in agreement with Planck measurements[1].
Nevertheless, one can get a good approximation of this complex problem[39, 40]. In this work, we use an analytical method that consists of two steps instead of study the evolution of the scalar perturbations using Boltzmann equations. First, we use a hydrodynamic approximation, which assumes photons and baryonic plasma as a fluid in thermal equilibrium at recombination time, where there is a high rate of collisions between free electrons and photons. Second, we study the propagation of photons [32], by radial geodesics from the moment when the Universe switch from opaque to transparent at time tlst_{ls} until now.
In this research, we present the first steps of this essential procedure, developing the theory of scalar perturbations at first order. We discuss the gauge transformations in an extended Friedmann-Lemaître-Robertson-Walker (FRLW) Universe. Then we show how to get an expression for temperature fluctuations, and we demonstrate that they are gauge invariant, which is a crucial test from a theoretical point of view. With this result, we derive a formula for the scalar contribution to temperature multipole coefficients. This formula will be useful to test the theory, and could give a sign of the physical consequence of the “delta matter”, introduced in this theory.
The CMB provides cosmological constraints that are crucial to test a model. Many cosmological parameters can be obtained directly from the CMB Power Spectrum, such as h2Ωb,h2Ωc,100θ,τ,Ash^{2}\Omega_{b},h^{2}\Omega_{c},100\theta,\tau,A_{s} and nsn_{s} [1], but others can be derived from constraining CMB observation with SNe-Ia or BAOs. With the study of the CMB anisotropies, we can study two aspects: the compatibility between CMB Power Spectrum and DG fluctuations and the compatibility between CMB and SNe-Ia in the DG theory.

The paper is organized as follows: In Section 2, we introduce the definition of DG and its equations of motion, after that we review some implications of the first law or Thermodynamics, which will allow us to interpret the physical quantities of DG. Before finishing this section, we state the ansatz that the moment of equality between matter and radiation was equal as in DG as in GR, and we discuss its implications. In section 3 we study the gauge transformation for small perturbations of both geometrical and matter fields. We choose a gauge and present the gauge-invariant equations of motion for small perturbations. In Section 4, we study the evolution of cosmological perturbations where we solve partially the equations when the Universe is dominated by radiation and when it is dominated by matter. In Section 5, we derive the formula for temperature fluctuation; here, we find that this fluctuation can be expressed in three independent and gauge invariants terms. In Section 5, we obtain a formula for temperature multipole coefficients for scalar modes. This result will allow us to test the theory with Planck CMB data in future works. Finally, we give conclusions and remarks.

2 Definition of Delta Gravity

In this section, we will present the action as well all the symmetries of the model and derive the equations of motion.
These approaches are based on the application of a variation called δ~\tilde{\delta}. And it has the usual properties of a variation such as:

δ~(AB)\displaystyle\tilde{\delta}(AB) =\displaystyle= (δ~A)B+A(δ~B),\displaystyle(\tilde{\delta}A)B+A(\tilde{\delta}B),
δ~δA\displaystyle\tilde{\delta}\delta A =\displaystyle= δδ~A,\displaystyle\delta\tilde{\delta}A,
δ~(Φμ)\displaystyle\tilde{\delta}(\Phi_{\mu}) =\displaystyle= (δ~Φ)μ,\displaystyle(\tilde{\delta}\Phi)_{\mu}, (2.1)

where δ\delta is another variation. The main point of this variation is that, when it is applied on a field (function, tensor, etc), it produces new elements that we define as δ~\tilde{\delta} fields, which we treat them as an entirely new independent object from the original, Φ~=δ~(Φ)\tilde{\Phi}=\tilde{\delta}(\Phi). We use the convention that a tilde tensor is equal to the δ~\tilde{\delta} transformation of the original tensor when all its indexes are covariant.
Now we will present the δ~\tilde{\delta} prescription for a general action. The extension of the new symmetry is given by:

S0=dnx0(ϕ,iϕ)S=dnx(0(ϕ,iϕ)+δ~0(ϕ,iϕ)),S_{0}=\int d^{n}x{\cal L}_{0}(\phi,\partial_{i}\phi)\rightarrow S=\int d^{n}x({\cal L}_{0}(\phi,\partial_{i}\phi)+\tilde{\delta}{\cal L}_{0}(\phi,\partial_{i}\phi)), (2.2)

where S0S_{0} is the original action and SS is the extended action in Delta Gauge Theories.
When we apply this formalism to the Einstein-Hilbert action of GR, we get [32]

S=d4xg(R2κ+LM12κ(GαβκTαβ)g~αβ+L~M),\displaystyle S=\int d^{4}x\sqrt{-g}\left(\frac{R}{2\kappa}+L_{M}-\frac{1}{2\kappa}\left(G^{\alpha\beta}-\kappa T^{\alpha\beta}\right)\tilde{g}_{\alpha\beta}+\tilde{L}_{M}\right), (2.3)

where κ=8πGc2\kappa=\frac{8\pi G}{c^{2}}, g~μν=δ~gμν\tilde{g}_{\mu\nu}=\tilde{\delta}g_{\mu\nu}, LML_{M} is the matter Lagrangian and:

Tμν=2gδδgμν[gLM],\displaystyle T^{\mu\nu}=\frac{2}{\sqrt{-g}}\frac{\delta}{\delta g_{\mu\nu}}\left[\sqrt{-g}L_{M}\right], (2.4)
L~M=ϕ~IδLMδϕI+(μϕ~I)δLMδ(μϕI),\displaystyle\tilde{L}_{M}=\tilde{\phi}_{I}\frac{\delta L_{M}}{\delta\phi_{I}}+(\partial_{\mu}\tilde{\phi}_{I})\frac{\delta L_{M}}{\delta(\partial_{\mu}\phi_{I})}, (2.5)

with ϕ~=δ~ϕ\tilde{\phi}=\tilde{\delta}\phi are the δ~\tilde{\delta} matter fields or “delta matter” fields. The equations of motion are given by the variation of gμνg_{\mu\nu} and g~μν\tilde{g}_{\mu\nu}. It is easy to see that we get the usual Einstein’s equations varying the action (2.3) with respect to g~μν\tilde{g}_{\mu\nu}. By the other hand, variations with respect to gμνg_{\mu\nu} give the equations for g~μν\tilde{g}_{\mu\nu}:

F(μν)(αβ)ρλDρDλg~αβ\displaystyle F^{(\mu\nu)(\alpha\beta)\rho\lambda}D_{\rho}D_{\lambda}\tilde{g}_{\alpha\beta} +\displaystyle+ 12Rαβg~αβgμν+12Rg~μνRμαg~ανRναg~αμ+12g~ααGμν\displaystyle\frac{1}{2}R^{\alpha\beta}\tilde{g}_{\alpha\beta}g^{\mu\nu}+\frac{1}{2}R\tilde{g}^{\mu\nu}-R^{\mu\alpha}\tilde{g}^{\nu}_{\alpha}-R^{\nu\alpha}\tilde{g}^{\mu}_{\alpha}+\frac{1}{2}\tilde{g}^{\alpha}_{\alpha}G^{\mu\nu} (2.6)
=\displaystyle= κgδδgμν[g(Tαβg~αβ+2L~M)],\displaystyle\frac{\kappa}{\sqrt{-g}}\frac{\delta}{\delta g_{\mu\nu}}\left[\sqrt{-g}\left(T^{\alpha\beta}\tilde{g}_{\alpha\beta}+2\tilde{L}_{M}\right)\right],

with:

F(μν)(αβ)ρλ\displaystyle F^{(\mu\nu)(\alpha\beta)\rho\lambda} =\displaystyle= P((ρμ)(αβ))gνλ+P((ρν)(αβ))gμλP((μν)(αβ))gρλP((ρλ)(αβ))gμν,\displaystyle P^{((\rho\mu)(\alpha\beta))}g^{\nu\lambda}+P^{((\rho\nu)(\alpha\beta))}g^{\mu\lambda}-P^{((\mu\nu)(\alpha\beta))}g^{\rho\lambda}-P^{((\rho\lambda)(\alpha\beta))}g^{\mu\nu}\,,
P((αβ)(μν))\displaystyle P^{((\alpha\beta)(\mu\nu))} =\displaystyle= 14(gαμgβν+gανgβμgαβgμν),\displaystyle\frac{1}{4}\left(g^{\alpha\mu}g^{\beta\nu}+g^{\alpha\nu}g^{\beta\mu}-g^{\alpha\beta}g^{\mu\nu}\right), (2.7)

where (μν)(\mu\nu) denotes the totally symmetric combination of μ\mu and ν\nu. It is possible to simplify (2.6) (see [32]) to get the following system of equations:

Gμν\displaystyle G^{\mu\nu} =\displaystyle= κTμν,\displaystyle\kappa T^{\mu\nu}, (2.8)
F(μν)(αβ)ρλDρDλg~αβ+12gμνRαβg~αβ12g~μνR\displaystyle F^{(\mu\nu)(\alpha\beta)\rho\lambda}D_{\rho}D_{\lambda}\tilde{g}_{\alpha\beta}+\frac{1}{2}g^{\mu\nu}R^{\alpha\beta}\tilde{g}_{\alpha\beta}-\frac{1}{2}\tilde{g}^{\mu\nu}R =\displaystyle= κT~μν,\displaystyle\kappa\tilde{T}^{\mu\nu}\,, (2.9)

where T~μν=δ~Tμν\tilde{T}^{\mu\nu}=\tilde{\delta}T^{\mu\nu}. Besides, the energy momentum conservation now is given by

DνTμν\displaystyle D_{\nu}T^{\mu\nu} =\displaystyle= 0,\displaystyle 0, (2.10)
DνT~μν\displaystyle D_{\nu}\tilde{T}^{\mu\nu} =\displaystyle= 12TαβDμg~αβ12TμβDβg~αα+Dβ(g~αβTαμ).\displaystyle\frac{1}{2}T^{\alpha\beta}D^{\mu}\tilde{g}_{\alpha\beta}-\frac{1}{2}T^{\mu\beta}D_{\beta}\tilde{g}^{\alpha}_{\alpha}+D_{\beta}(\tilde{g}^{\beta}_{\alpha}T^{\alpha\mu}). (2.11)

Then, we are going to work with equations (2.8), (2.9), (2.10) and (2.11). However, as the perturbation theory in the standard sector is well known, (see [40]), we will focus on DG sector.

One important result of DG is that photons follow geodesic trajectories given by the effective metric 𝐠μν=gμν+g~μν{\bf g_{\mu\nu}}=g_{\mu\nu}+\tilde{g}_{\mu\nu}, and for a FRLW Universe this metrics take the form

g¯μνdxμdxν=dt2+a2(t)(dx2+dy2+dz2),\bar{g}_{\mu\nu}dx^{\mu}dx^{\nu}=-dt^{2}+a^{2}(t)(dx^{2}+dy^{2}+dz^{2})\,, (2.12)

and

g¯~μνdxμdxν=3F(t)dt2+F(t)a2(t)(dx2+dy2+dz2),\tilde{\bar{g}}_{\mu\nu}dx^{\mu}dx^{\nu}=-3F(t)dt^{2}+F(t)a^{2}(t)(dx^{2}+dy^{2}+dz^{2}), (2.13)

where F(t)F(t) is a time dependent function which is determined by the solution of the unperturbed equations system, a(t)a(t) is the standard scale factor, which in Section 4 we will show that it is no longer the physical scale factor of the Universe. To obtain the form of g¯μν\bar{g}_{\mu\nu} and g¯~μν\tilde{\bar{g}}_{\mu\nu}, first we impose isotropy and homogeneity, and then we apply the harmonic gauge gμνΓμνα=0g^{\mu\nu}\Gamma^{\alpha}_{\mu\nu}=0 and its tilde version (for details see [33]).
One of the implications of this effective metric is that geometry is now described by a new tridimensional metric given by[32]

dl2\displaystyle dl^{2} =\displaystyle= γijdxidxj,\displaystyle\gamma_{ij}dx^{i}dx^{j}\,, (2.14)
γij\displaystyle\gamma_{ij} =\displaystyle= g00𝐠00(𝐠ij𝐠i0𝐠j0𝐠00),\displaystyle\frac{g_{00}}{{\bf g}_{00}}\left({\bf g}_{ij}-\frac{{\bf g}_{i0}{\bf g}_{j0}}{{\bf g}_{00}}\right)\,\,,

while the proper time is defined by gμνg_{\mu\nu}. In this case, tt is the cosmic time.

2.1 DG and Thermodynamics

Now we will study some implications of thermodynamics in cosmology for DG. Eq.(2.14) defines the modified scale factor of this theory:

aDG(t)=a(t)1+F(t)1+3F(t).a_{DG}(t)=a(t)\sqrt{\frac{1+F(t)}{1+3F(t)}}\,. (2.15)

Then the volume of a cosmological sphere is now

V=43πr3aDG3.V=\frac{4}{3}\pi r^{3}a_{DG}^{3}\,.

Any physical fluid has a density given by

ρ=Uc2V,\rho=\frac{U}{c^{2}V}\,, (2.16)

where UU is the internal energy and VV is the volume. From the first law of Thermodynamics we have

dUdt=TdSdtPdVdt.\frac{dU}{dt}=T\frac{dS}{dt}-P\frac{dV}{dt}\,. (2.17)

We will assume that the Universe evolved adiabatically, this means S˙=0\dot{S}=0. Then we get the well known relation for the energy conservation

ρ˙=3HDG(ρ+Pc2),\dot{\rho}=-3H_{DG}\left(\rho+\frac{P}{c^{2}}\right)\,, (2.18)

with HDG=a˙DG/aDGH_{DG}=\dot{a}_{DG}/a_{DG}. In order to known the evolution of ρ\rho we need an equation of state P(ρ)P(\rho). In [34] they showed that HDG(t)H_{DG}(t) replaces the first Friedmann equation, now we know that the second Friedmann equation is the thermodynamics statement that the Universe evolves adiabatically, so the physical densities must satisfies eq. (2.18). If we assume P=ωρP=\omega\rho we found

ρaDG3(1+ω)=ρ0aDG 03(1+ω),\rho a_{DG}^{3(1+\omega)}=\rho_{0}a_{DG\;0}^{3(1+\omega)}\,, (2.19)

where ρ0\rho_{0} is the density at the present. A crucial point in this theory is that GR equations (2.8) and (2.10) are valid, then we also have a similar relation for the densities of GR, but with the standard scale factor a(t)a(t), explicitly

ρGRa3(1+ω)=ρGR 0a03(1+ω).\rho_{GR}a^{3(1+\omega)}=\rho_{GR\;0}a_{0}^{3(1+\omega)}\,. (2.20)

Then we can relate both densities by the ratio between them

ρρGR(1+F(t)1+3F(t))3(1+ω)=constant(ω).\frac{\rho}{\rho_{GR}}\left(\sqrt{\frac{1+F(t)}{1+3F(t)}}\right)^{3(1+\omega)}=constant(\omega)\,. (2.21)

This ratio will be vitally important when we study the perturbations of the system. Because we will study the evolution of fractional perturbations at the last-scattering time defined as

δGRα=δρGRαρ¯GRα+p¯GRα,\delta_{GR\;\alpha}=\frac{\delta\rho_{GR\;\alpha}}{\bar{\rho}_{GR\;\alpha}+\bar{p}_{GR\;\alpha}}\,, (2.22)

where α\alpha runs between γ\gamma, ν\nu, BB and DD (photons, neutrinos, baryons and dark matter, respectively). If we consider the results from [34], at the moment of last-scattering (T3000KT\sim 3000\;K) we get

1+F(tls)1+3F(tls)1.\sqrt{\frac{1+F(t_{ls})}{1+3F(t_{ls})}}\sim 1\,. (2.23)

This mean that at that moment the physical density was proportional to the densities of GR, and without lost of generality we can take

δphysα(tls)=δGRα(tls)=δα(tls),\delta_{phys\;\alpha}(t_{ls})=\delta_{GR\;\alpha}(t_{ls})=\delta_{\alpha}(t_{ls})\,, (2.24)

as it will be introduce in Section 4. In facts, eq. (2.23) is valid for a wide range of times, from the beginning of the Universe (zz\rightarrow\infty) until z10z\sim 10, so this approximation is valid in the study of primordial perturbations in DG when using the equations of GR.
On the other hand, the number density (number of photons over the volume) at equilibrium with matter at temperature TT is

nT(ν)dν=8πν2dνehνkBT1;n_{T}(\nu)d\nu=\frac{8\pi\nu^{2}d\nu}{e^{\frac{h\nu}{k_{B}T}}-1}\,; (2.25)

After decoupling photons travel freely from the surface of last scattering to us. So the number of photons is conserved

dN=nTls(νls)dνlsdVls=nT(ν)dνdV,dN=n_{T_{ls}}(\nu_{ls})d\nu_{ls}dV_{ls}=n_{T}(\nu)d\nu dV\,, (2.26)

as frequencies are redshifted by ν=νlsaDG(tls)/aDG\nu=\nu_{ls}a_{DG}(t_{ls})/a_{DG}, and the volume V=VlsaDG3/aDG3(tls)V=V_{ls}a_{DG}^{3}/a_{DG}^{3}(t_{ls}) we find that in order to keep the form of a black body distribution, temperature in the number density should evolves as T=TlsaDG(tls)/aDGT=T_{ls}a_{DG}(t_{ls})/a_{DG}.

2.2 Equality time tEQt_{EQ}

After concluding this section, there is an ansatz that we need to propose in order to be completely consistent when solving the cosmological perturbation theory in the next section. This is about when the radiation was equal to the non-relativistic matter. We state that the moment when radiation and matter were equal at some tEQt_{EQ} is the same as in GR as in DG. The implication of this statement is the following: Let us consider the ratio of the matter and radiation densities of GR (2.20)

ρGRMρGRR=YC,\displaystyle\frac{\rho_{GR\;M}}{\rho_{GR\;R}}=\frac{Y}{C}\,, (2.27)

we remind that C=ΩR/ΩMC=\Omega_{R}/\Omega_{M}. Then the moment of equality in GR correspond to YEQ=CY_{EQ}=C. On the other side, if we consider the same ratio but now between the physical densities using (2.19), we get

ρphys;MρphysR=YDGCDG,\displaystyle\frac{\rho_{phys;M}}{\rho_{phys\;R}}=\frac{Y_{DG}}{C_{DG}}\,, (2.28)

where CDG=ΩDGR/ΩDGMC_{DG}=\Omega_{DG\;R}/\Omega_{DG\;M}. Then in the equality we need to impose YDG(YEQ)=CDGY_{DG}(Y_{EQ})=C_{DG}, explicitly

CDG=C1+F(C)1+3F(C)1+F(1)1+3F(1),C_{DG}=C\frac{\sqrt{\frac{1+F(C)}{1+3F(C)}}}{\sqrt{\frac{1+F(1)}{1+3F(1)}}}\,, (2.29)

if we take the value from [35], C104C\sim 10^{-4} and L0.45L\sim 0.45 implies F(C)103<<1F(C)\sim 10^{-3}<<1 and F(1)L/3F(1)\sim-L/3, then

CDG=C1L1L/3.C_{DG}=C\sqrt{\frac{1-L}{1-L/3}}\,. (2.30)

This means that total density of matter and radiation today depends explicitly on the geometry measured with LL[35].

3 Perturbation Theory

Now, we perturbed the metric as following

gμν=g¯μν+hμν,\displaystyle g_{\mu\nu}=\bar{g}_{\mu\nu}+h_{\mu\nu}\,, (3.1)
g~μν=g¯~μν+h~μν.\displaystyle\tilde{g}_{\mu\nu}=\tilde{\bar{g}}_{\mu\nu}+\tilde{h}_{\mu\nu}\,. (3.2)

Then, we follow the standard method, known as Scalar-Vector-Tensor decomposition [41]. This process allows us to study those sectors independently. Therefore, the perturbations are

h00=Ehi0=a[Hxi+Gi]hij=a2[Aδij+2Bxixj+Cixj+Cjxi+Dij],h_{00}=-E\;\;\;h_{i0}=a\left[\frac{\partial H}{\partial x^{i}}+G_{i}\right]\;\;\;h_{ij}=a^{2}\left[A\delta_{ij}+\frac{\partial^{2}B}{\partial x^{i}\partial x^{j}}+\frac{\partial C_{i}}{\partial x^{j}}+\frac{\partial C_{j}}{\partial x^{i}}+D_{ij}\right]\,, (3.3)

where

Cixi=Gixi=0Dijxj=0Dii=0.\frac{\partial C_{i}}{\partial x^{i}}=\frac{\partial G_{i}}{\partial x^{i}}=0\;\;\;\frac{\partial D_{ij}}{\partial x^{j}}=0\;\;\;D_{ii}=0\,. (3.4)

This decomposition must be equivalent for h~μν\tilde{h}_{\mu\nu} (by group theory):

h~00=E~h~i0=a[H~xi+G~i]h~ij=a2[A~δij+2B~xixj+C~ixj+C~jxi+D~ij],\tilde{h}_{00}=-\tilde{E}\;\;\;\tilde{h}_{i0}=a\left[\frac{\partial\tilde{H}}{\partial x^{i}}+\tilde{G}_{i}\right]\;\;\;\tilde{h}_{ij}=a^{2}\left[\tilde{A}\delta_{ij}+\frac{\partial^{2}\tilde{B}}{\partial x^{i}\partial x^{j}}+\frac{\partial\tilde{C}_{i}}{\partial x^{j}}+\frac{\partial\tilde{C}_{j}}{\partial x^{i}}+\tilde{D}_{ij}\right]\,, (3.5)

with

C~ixi=G~ixi=0D~ijxj=0D~ii=0.\frac{\partial\tilde{C}_{i}}{\partial x^{i}}=\frac{\partial\tilde{G}_{i}}{\partial x^{i}}=0\;\;\;\frac{\partial\tilde{D}_{ij}}{\partial x^{j}}=0\;\;\;\tilde{D}_{ii}=0\,. (3.6)

If we replace perturbations in (2.8), (2.9), (2.10), and (2.11), we get the equations for the perturbations. However, there are degrees of freedom that we have to take into account to have physical solutions. In the next subsection, we show how to choose a gauge to delete the nonphysical solutions.

3.1 Choosing a gauge

Under a space-time coordinate transformation, the metric perturbations transform as

Δhμν(x)=g¯λν(x)ϵλxμg¯μλ(x)ϵλxνg¯μνxλϵλ.\Delta h_{\mu\nu}(x)=-\bar{g}_{\lambda\nu}(x)\frac{\partial\epsilon^{\lambda}}{\partial x^{\mu}}-\bar{g}_{\mu\lambda}(x)\frac{\partial\epsilon^{\lambda}}{\partial x^{\nu}}-\frac{\partial\bar{g}_{\mu\nu}}{\partial x^{\lambda}}\epsilon^{\lambda}\,. (3.7)

In more detail,

Δhij\displaystyle\Delta h_{ij} =\displaystyle= ϵixjϵjxi+2aa˙δijϵ0,\displaystyle-\frac{\partial\epsilon_{i}}{\partial x^{j}}-\frac{\partial\epsilon_{j}}{\partial x^{i}}+2a\dot{a}\delta_{ij}\epsilon_{0}, (3.8)
Δhi0\displaystyle\Delta h_{i0} =\displaystyle= ϵitϵ0xi+2a˙aϵi,\displaystyle-\frac{\partial\epsilon_{i}}{\partial t}-\frac{\partial\epsilon_{0}}{\partial x^{i}}+2\frac{\dot{a}}{a}\epsilon_{i}, (3.9)
Δh00\displaystyle\Delta h_{00} =\displaystyle= 2ϵ0t.\displaystyle-2\frac{\partial\epsilon_{0}}{\partial t}\,. (3.10)

For delta perturbations we get

Δh~μν=g¯~μλϵλxνg¯~λνϵλxμg¯~μνxλϵλg¯μλϵ~λxνg¯λνϵ~λxμg¯μνxλϵ~λ.\Delta\tilde{h}_{\mu\nu}=-\tilde{\bar{g}}_{\mu\lambda}\frac{\partial\epsilon^{\lambda}}{\partial x^{\nu}}-\tilde{\bar{g}}_{\lambda\nu}\frac{\partial\epsilon^{\lambda}}{\partial x^{\mu}}-\frac{\partial\tilde{\bar{g}}_{\mu\nu}}{\partial x^{\lambda}}\epsilon^{\lambda}-\bar{g}_{\mu\lambda}\frac{\partial\tilde{\epsilon}^{\lambda}}{\partial x^{\nu}}-\bar{g}_{\lambda\nu}\frac{\partial\tilde{\epsilon}^{\lambda}}{\partial x^{\mu}}-\frac{\partial\bar{g}_{\mu\nu}}{\partial x^{\lambda}}\tilde{\epsilon}^{\lambda}\,. (3.11)

In more detail,

Δh~ij\displaystyle\Delta\tilde{h}_{ij} =\displaystyle= FϵixjFϵjxiϵ~jxiϵ~ixj+[ϵ0(2Faa˙+F˙a2)+2ϵ~0aa˙]δij,\displaystyle-F\frac{\partial\epsilon_{i}}{\partial x^{j}}-F\frac{\partial\epsilon_{j}}{\partial x^{i}}-\frac{\partial\tilde{\epsilon}_{j}}{\partial x^{i}}-\frac{\partial\tilde{\epsilon}_{i}}{\partial x^{j}}+\left[\epsilon_{0}\left(2Fa\dot{a}+\dot{F}a^{2}\right)+2\tilde{\epsilon}_{0}a\dot{a}\right]\delta_{ij}\;, (3.12)
Δh~i0\displaystyle\Delta\tilde{h}_{i0} =\displaystyle= Fϵit3Fϵ0xiϵ~itϵ~0xi+2Fa˙aϵi+2a˙aϵ~i,\displaystyle-F\frac{\partial\epsilon_{i}}{\partial t}-3F\frac{\partial\epsilon_{0}}{\partial x^{i}}-\frac{\partial\tilde{\epsilon}_{i}}{\partial t}-\frac{\partial\tilde{\epsilon}_{0}}{\partial x^{i}}+2F\frac{\dot{a}}{a}\epsilon_{i}+2\frac{\dot{a}}{a}\tilde{\epsilon}_{i}\,, (3.13)
Δh~00\displaystyle\Delta\tilde{h}_{00} =\displaystyle= 3ϵ0F˙6Fϵ0t2ϵ~0dt,\displaystyle-3\epsilon_{0}\dot{F}-6F\frac{\partial\epsilon_{0}}{\partial t}-2\frac{\partial\tilde{\epsilon}_{0}}{dt}\,, (3.14)

where ϵ\epsilon and ϵ~=δ~ϵ\tilde{\epsilon}=\tilde{\delta}\epsilon defines the coordinates transformation. Also we raised and lowered index using g¯μν\bar{g}_{\mu\nu}, so ϵ0=ϵ0\epsilon^{0}=-\epsilon_{0}, ϵ~0=ϵ~0\tilde{\epsilon}^{0}=-\tilde{\epsilon}_{0}, ϵi=a2ϵi\epsilon^{i}=a^{-2}\epsilon_{i} and ϵ~j=a2ϵ~j\tilde{\epsilon}^{j}=a^{-2}\tilde{\epsilon}_{j}.
Following the standard procedure, we decompose the spatial part of ϵμ\epsilon^{\mu} and ϵ~μ\tilde{\epsilon}^{\mu} into the gradient of a spatial scalar plus a divergenceless vector:

ϵi\displaystyle\epsilon_{i} =\displaystyle= iϵS+ϵiV,iϵV=0,\displaystyle\partial_{i}\epsilon^{S}+\epsilon_{i}^{V}\,\,,\hskip 8.5359pt\partial_{i}\epsilon^{V}=0\,, (3.15)
ϵ~i\displaystyle\tilde{\epsilon}_{i} =\displaystyle= iϵ~S+ϵ~iV,iϵ~V=0.\displaystyle\partial_{i}\tilde{\epsilon}^{S}+\tilde{\epsilon}_{i}^{V}\,\,,\hskip 8.5359pt\partial_{i}\tilde{\epsilon}^{V}=0\,. (3.16)

Thus, we can compare equations (3.3) and (3.5) with (3.8)-(3.10) and (3.12)-(3.14) to obtain the gauge transformations of the metric components:

ΔA\displaystyle\Delta A =\displaystyle= 2a˙aϵ0,ΔB=2a2ϵS,\displaystyle\frac{2\dot{a}}{a}\epsilon_{0}\,,\;\;\;\;\Delta B=-\frac{2}{a^{2}}\epsilon^{S}\,,
ΔCi\displaystyle\Delta C_{i} =\displaystyle= 1a2ϵiV,ΔDij=0,ΔE=2ϵ˙0,\displaystyle-\frac{1}{a^{2}}\epsilon_{i}^{V}\,,\;\;\;\;\Delta D_{ij}=0\,,\;\;\;\;\Delta E=2\dot{\epsilon}_{0}\,, (3.17)
ΔH\displaystyle\Delta H =\displaystyle= 1a(ϵ0ϵ˙S+2a˙aϵS),ΔGi=1a(ϵ˙iV+2a˙aϵiV),\displaystyle\frac{1}{a}\left(-\epsilon_{0}-\dot{\epsilon}^{S}+\frac{2\dot{a}}{a}\epsilon^{S}\right)\,,\;\;\;\;\Delta G_{i}=\frac{1}{a}\left(-\dot{\epsilon}_{i}^{V}+\frac{2\dot{a}}{a}\epsilon_{i}^{V}\right)\,,

and

ΔA~\displaystyle\Delta\tilde{A} =\displaystyle= (2a˙Fa+F˙)ϵ0+2a˙aϵ~0,ΔB~=2a2(FϵS+ϵ~S),\displaystyle\left(\frac{2\dot{a}F}{a}+\dot{F}\right)\epsilon_{0}+2\frac{\dot{a}}{a}\tilde{\epsilon}_{0}\,,\;\;\;\;\Delta\tilde{B}=-\frac{2}{a^{2}}\left(F\epsilon^{S}+\tilde{\epsilon}^{S}\right)\,,
ΔC~i\displaystyle\Delta\tilde{C}_{i} =\displaystyle= 1a2(FϵiV+ϵ~iV),ΔD~ij=0,ΔE~=6Fϵ˙0+3F˙ϵ0+2ϵ~˙0,\displaystyle-\frac{1}{a^{2}}\left(F\epsilon_{i}^{V}+\tilde{\epsilon}_{i}^{V}\right)\,,\;\;\;\;\Delta\tilde{D}_{ij}=0\,,\;\;\;\;\Delta\tilde{E}=6F\dot{\epsilon}_{0}+3\dot{F}\epsilon_{0}+2\dot{\tilde{\epsilon}}_{0}\,,
ΔH~\displaystyle\Delta\tilde{H} =\displaystyle= 1a(3Fϵ0ϵ~0Fϵ˙Sϵ~˙S+2Fa˙aϵS+2a˙aϵ~S),\displaystyle\frac{1}{a}\left(-3F\epsilon_{0}-\tilde{\epsilon}_{0}-F\dot{\epsilon}^{S}-\dot{\tilde{\epsilon}}^{S}+\frac{2F\dot{a}}{a}\epsilon^{S}+\frac{2\dot{a}}{a}\tilde{\epsilon}^{S}\right)\,,
ΔG~i\displaystyle\Delta\tilde{G}_{i} =\displaystyle= 1a(Fϵ˙iVϵ~˙iV+2Fa˙aϵiV+2a˙aϵ~iV).\displaystyle\frac{1}{a}\left(-F\dot{\epsilon}_{i}^{V}-\dot{\tilde{\epsilon}}_{i}^{V}+\frac{2F\dot{a}}{a}\epsilon_{i}^{V}+\frac{2\dot{a}}{a}\tilde{\epsilon}_{i}^{V}\right)\,. (3.18)

There are different scenarios in which we can continue with the calculations when we impose conditions on the parameters ϵμ\epsilon_{\mu} and ϵ~μ\tilde{\epsilon}_{\mu}. However, before discussing this, we will study the gauge transformation of energy-momentum tensors TμνT_{\mu\nu} and T~μν\tilde{T}_{\mu\nu}.

3.2 TμνT_{\mu\nu} and T~μν\widetilde{T}_{\mu\nu}

Now we will decompose the energy-momentum tensors TμνT_{\mu\nu} and T~μν\tilde{T}_{\mu\nu} in the same way. For a perfect fluid, we would have (for more details see [33])

Tμν=pgμν+(ρ+p)uμuν,T_{\mu\nu}=pg_{\mu\nu}+(\rho+p)u_{\mu}u_{\nu}\,, (3.19)

while for T~μν\tilde{T}_{\mu\nu}[32, 33]

T~μν=p~gμν+pg~μν+(ρ~+p~)uμuν+(ρ+p)(12(g~μαuνuα+g~ναuμuα)+uμTuν+uμuνT),\tilde{T}_{\mu\nu}=\tilde{p}g_{\mu\nu}+p\tilde{g}_{\mu\nu}+(\tilde{\rho}+\tilde{p})u_{\mu}u_{\nu}+(\rho+p)\left(\frac{1}{2}(\tilde{g}_{\mu\alpha}u_{\nu}u^{\alpha}+\tilde{g}_{\nu\alpha}u_{\mu}u^{\alpha})+u_{\mu}^{T}u_{\nu}+u_{\mu}u_{\nu}^{T}\right)\,, (3.20)

where

gμνuμuν=1,g^{\mu\nu}u_{\mu}u_{\nu}=-1\,, (3.21)
gμνuμuνT=0.g^{\mu\nu}u_{\mu}u_{\nu}^{T}=0\,. (3.22)

The tensors gμνg_{\mu\nu} and g~μν\tilde{g}_{\mu\nu} are defined in (2.12) and (2.13) respectively, besides we consider

p\displaystyle p =\displaystyle= p¯+δp,\displaystyle\bar{p}+\delta p,
ρ\displaystyle\rho =\displaystyle= ρ¯+δρ,\displaystyle\bar{\rho}+\delta{\rho},
uμ\displaystyle u_{\mu} =\displaystyle= u¯μ+δuμ,\displaystyle\bar{u}_{\mu}+\delta u_{\mu},
p~\displaystyle\tilde{p} =\displaystyle= p¯~+δp~,\displaystyle\tilde{\bar{p}}+\delta{\tilde{p}},
ρ~\displaystyle\tilde{\rho} =\displaystyle= ρ¯~+δρ~,\displaystyle\tilde{\bar{\rho}}+\delta{\tilde{\rho}},
uμT\displaystyle u_{\mu}^{T} =\displaystyle= u¯μT+δuμT.\displaystyle\bar{u}_{\mu}^{T}+\delta{u}_{\mu}^{T}\,. (3.23)

Usually, the equation of state is given by p(ρ)p(\rho), so we could reduce this system. For now, we will work in the generic case. When we work in the frame u¯μ=(1,0,0,0)\bar{u}_{\mu}=(-1,0,0,0) we have u¯μT=0\bar{u}_{\mu}^{T}=0, and the normalization conditions (3.21) and (3.22) give

δu0\displaystyle\delta{u}^{0} =\displaystyle= δu0=h002\displaystyle\delta{u}_{0}=\frac{h_{00}}{2}
δu0T\displaystyle\delta{u}_{0}^{T} =\displaystyle= δuT0=0\displaystyle\delta{u}_{T}^{0}=0\, (3.24)

while δui\delta{u}_{i} and δuiT\delta{u}_{i}^{T} are independent dynamical variables (note that δuμδ(gμνuν)\delta{u}^{\mu}\equiv\delta(g^{\mu\nu}u_{\nu}) is not given by g¯μνδuν\bar{g}^{\mu\nu}\delta{u}_{\nu}. The same is true for δuTμ\delta{u}_{T}^{\mu}). Then, the first-order perturbation for both energy-momentum tensors ( a perfect fluid) are

δTμν=p¯hμν+δpg¯μν+(p¯+ρ¯)(u¯μδuν+δuμuν)+(δp+δρ)u¯μu¯ν,\delta{T}_{\mu\nu}=\bar{p}h_{\mu\nu}+\delta{p}\bar{g}_{\mu\nu}+(\bar{p}+\bar{\rho})(\bar{u}_{\mu}\delta{u}_{\nu}+\delta{u}_{\mu}u_{\nu})+(\delta{p}+\delta{\rho})\bar{u}_{\mu}\bar{u}_{\nu}\,, (3.25)

Therefore,

δTij=p¯hij+a2δijδp,,δTi0=p¯hi0(p¯+ρ¯)δui,,δT00=ρ¯h00+δρ.\delta{T}_{ij}=\bar{p}h_{ij}+a^{2}\delta_{ij}\delta{p},\,,\;\;\;\delta{T}_{i0}=\bar{p}h_{i0}-(\bar{p}+\bar{\rho})\delta{u}_{i},\,,\;\;\;\delta{T}_{00}=-\bar{\rho}h_{00}+\delta{\rho}\,. (3.26)

While

δT~μν\displaystyle\delta{\tilde{T}}_{\mu\nu} =\displaystyle= p¯~hμν+δp~g¯μν+p¯h~μν+δpg¯~μν+(ρ¯~+p¯~)(u¯μδuν+δuμu¯ν)\displaystyle\tilde{\bar{p}}h_{\mu\nu}+\delta{\tilde{p}}\bar{g}_{\mu\nu}+\bar{p}\tilde{h}_{\mu\nu}+\delta{p}\tilde{\bar{g}}_{\mu\nu}+(\tilde{\bar{\rho}}+\tilde{\bar{p}})(\bar{u}_{\mu}\delta{u}_{\nu}+\delta{u}_{\mu}\bar{u}_{\nu}) (3.27)
+\displaystyle+ (δρ~+δp~)u¯μu¯ν+(ρ¯+p¯){12[g¯~μα(u¯νδuα+δuνu¯α)+h~μαu¯νu¯α\displaystyle(\delta{\tilde{\rho}}+\delta{\tilde{p}})\bar{u}_{\mu}\bar{u}_{\nu}+(\bar{\rho}+\bar{p})\left\{\frac{1}{2}\left[\tilde{\bar{g}}_{\mu\alpha}(\bar{u}_{\nu}\delta{u}^{\alpha}+\delta{u}_{\nu}\bar{u}^{\alpha})+\tilde{h}_{\mu\alpha}\bar{u}_{\nu}\bar{u}^{\alpha}\right.\right.
+\displaystyle+ g¯~να(u¯μδuα+δuμu¯α)+h~ναu¯μu¯α]+u¯μTδuν+δuμTu¯ν+u¯μδuνT+δuμu¯νT}\displaystyle\left.\left.\tilde{\bar{g}}_{\nu\alpha}(\bar{u}_{\mu}\delta{u}^{\alpha}+\delta{u}_{\mu}\bar{u}^{\alpha})+\tilde{h}_{\nu\alpha}\bar{u}_{\mu}\bar{u}^{\alpha}\right]+\bar{u}_{\mu}^{T}\delta{u}_{\nu}+\delta{u}_{\mu}^{T}\bar{u}_{\nu}+\bar{u}_{\mu}\delta{u}_{\nu}^{T}+\delta{u}_{\mu}\bar{u}_{\nu}^{T}\right\}
+\displaystyle+ (δρ+δp){12[g¯~μαu¯νu¯α+g¯~ναu¯μu¯α]+u¯μTu¯ν+u¯μu¯νT},\displaystyle(\delta{\rho}+\delta{p})\left\{\frac{1}{2}\left[\tilde{\bar{g}}_{\mu\alpha}\bar{u}_{\nu}\bar{u}^{\alpha}+\tilde{\bar{g}}_{\nu\alpha}\bar{u}_{\mu}\bar{u}^{\alpha}\right]+\bar{u}_{\mu}^{T}\bar{u}_{\nu}+\bar{u}_{\mu}\bar{u}_{\nu}^{T}\right\}\,,

and

δT~00\displaystyle\delta{\tilde{T}}_{00} =\displaystyle= ρ¯~h00ρ¯h~00+3Fδρ+δρ~,\displaystyle-\tilde{\bar{\rho}}h_{00}-\bar{\rho}\tilde{h}_{00}+3F\delta{\rho}+\delta{\tilde{\rho}},
δT~i0\displaystyle\delta{\tilde{T}}_{i0} =\displaystyle= p¯~hi0+p¯h~i0(ρ¯~+p¯~)δui+(ρ¯+p¯){12[Fhi0h~i04Fδui]δuiT},\displaystyle\tilde{\bar{p}}h_{i0}+\bar{p}\tilde{h}_{i0}-(\tilde{\bar{\rho}}+\tilde{\bar{p}})\delta{u}_{i}+(\bar{\rho}+\bar{p})\left\{\frac{1}{2}[Fh_{i0}-\tilde{h}_{i0}-4F\delta{u}_{i}]-\delta{u}_{i}^{T}\right\},
δT~ij\displaystyle\delta{\tilde{T}}_{ij} =\displaystyle= p¯~hij+δp~a2δij+p¯h~ij+δpFa2δij,\displaystyle\tilde{\bar{p}}h_{ij}+\delta{\tilde{p}}a^{2}\delta_{ij}+\bar{p}\tilde{h}_{ij}+\delta{p}Fa^{2}\delta_{ij}\,, (3.28)

where we used δuα=δ(gαβuβ)=g¯αβδuβ+hμνu¯β\delta{u}^{\alpha}=\delta(g^{\alpha\beta}u_{\beta})=\bar{g}^{\alpha\beta}\delta{u}_{\beta}+h^{\mu\nu}\bar{u}_{\beta}.
Generally, we decompose δui(δuiT)\delta{u}_{i}\,(\delta{u}_{i}^{T}) into the gradient of a scalar velocity potential δu(δu~)\delta{u}\,(\delta{\tilde{u}}) and a divergenceless vector δuiV(δu~iV)\delta{u}_{i}^{V}\,(\delta{\tilde{u}}_{i}^{V}), and the dissipative corrections to the inertia tensor are added as follows

δTij\displaystyle\delta{T}_{ij} =\displaystyle= p¯hij+a2[δijδp+ijπS+iπjV+jπiV+πijT],\displaystyle\bar{p}h_{ij}+a^{2}\left[\delta_{ij}\delta{p}+\partial_{i}\partial_{j}\pi^{S}+\partial_{i}\pi_{j}^{V}+\partial_{j}\pi_{i}^{V}+\pi_{ij}^{T}\right]\,, (3.29)
δTi0\displaystyle\delta{T}_{i0} =\displaystyle= p¯hi0(p¯+ρ¯)(iδu+δuiV),\displaystyle\bar{p}h_{i0}-(\bar{p}+\bar{\rho})\left(\partial_{i}\delta{u}+\delta{u}_{i}^{V}\right)\,, (3.30)
δT00\displaystyle\delta{T}_{00} =\displaystyle= ρ¯h00+δρ,\displaystyle-\bar{\rho}h_{00}+\delta{\rho}\,, (3.31)

and

δT~ij\displaystyle\delta{\tilde{T}}_{ij} =\displaystyle= p¯~hij+a2[δijδp~+ijπ~S+iπ~jV+jπ~iV+π~ijT]+p¯h~ij\displaystyle\tilde{\bar{p}}h_{ij}+a^{2}\left[\delta_{ij}\delta{\tilde{p}}+\partial_{i}\partial_{j}\tilde{\pi}^{S}+\partial_{i}\tilde{\pi}_{j}^{V}+\partial_{j}\tilde{\pi}_{i}^{V}+\tilde{\pi}_{ij}^{T}\right]+\bar{p}\tilde{h}_{ij} (3.32)
+\displaystyle+ Fa2[δijδp+ijπS+iπjV+jπiV+πijT],\displaystyle Fa^{2}\left[\delta_{ij}\delta{p}+\partial_{i}\partial_{j}\pi^{S}+\partial_{i}\pi_{j}^{V}+\partial_{j}\pi_{i}^{V}+\pi_{ij}^{T}\right]\,,
δT~i0\displaystyle\delta{\tilde{T}}_{i0} =\displaystyle= p¯~hi0+p¯h~i0(ρ¯~+p¯~)(iu+uiV)\displaystyle\tilde{\bar{p}}h_{i0}+\bar{p}\tilde{h}_{i0}-(\tilde{\bar{\rho}}+\tilde{\bar{p}})(\partial_{i}\partial u+\partial u_{i}^{V}) (3.33)
+\displaystyle+ (ρ¯+p¯){12[Fhi0h~i04F(iδu+δuiV)]iδu~+δu~iV},\displaystyle(\bar{\rho}+\bar{p})\left\{\frac{1}{2}[Fh_{i0}-\tilde{h}_{i0}-4F(\partial_{i}\delta{u}+\delta{u}_{i}^{V})]-\partial_{i}\delta{\tilde{u}}+\delta{\tilde{u}}_{i}^{V}\right\},
δT~00\displaystyle\delta{\tilde{T}}_{00} =\displaystyle= ρ¯~h00ρ¯h~00+3Fδρ+δρ~,\displaystyle-\tilde{\bar{\rho}}h_{00}-\bar{\rho}\tilde{h}_{00}+3F\delta{\rho}+\delta{\tilde{\rho}}\,, (3.34)

where πiV(π~iV)\pi_{i}^{V}\,(\tilde{\pi}_{i}^{V}), πijT(π~ijT)\pi_{ij}^{T}\,(\tilde{\pi}_{ij}^{T}) and δuiV(δu~iV)\delta{u}_{i}^{V}\,(\delta{\tilde{u}}_{i}^{V}) satisfy similar conditions to (3.4) and (3.6). These conditions are (expressed before as Ci(C~i)C_{i}\,(\tilde{C}_{i}), Dij(D~ij)D_{ij}\,(\tilde{D}_{ij}) Gi(G~i)G_{i}\,(\tilde{G}_{i})):

iπiV=iπ~iV=iδuiV=iδu~iV=0iπijT=iπ~ijT=0,πiiT=π~iiT=0.\partial_{i}\pi_{i}^{V}=\partial_{i}\tilde{\pi}_{i}^{V}=\partial_{i}\delta{u}_{i}^{V}=\partial_{i}\delta{\tilde{u}}_{i}^{V}=0\,\;\;\partial_{i}\pi_{ij}^{T}=\partial_{i}\tilde{\pi}_{ij}^{T}=0\,,\;\;\pi_{ii}^{T}=\tilde{\pi}_{ii}^{T}=0\,. (3.35)

3.3 Gauge Transformations for the Energy-Momentum tensors

The gauge transformation for TμνT_{\mu\nu} is given by

ΔδTμν(x)=T¯λν(x)ϵλxμT¯μλ(x)ϵλxνT¯μνxλϵλ,\Delta\delta{T}_{\mu\nu}(x)=-\bar{T}_{\lambda\nu}(x)\frac{\partial\epsilon^{\lambda}}{\partial x^{\mu}}-\bar{T}_{\mu\lambda}(x)\frac{\partial\epsilon^{\lambda}}{\partial x^{\nu}}-\frac{\partial\bar{T}_{\mu\nu}}{\partial x^{\lambda}}\epsilon^{\lambda}\,, (3.36)

where the components are

ΔδTij\displaystyle\Delta\delta{T}_{ij} =\displaystyle= p¯(ϵixj+ϵjxi)+t(a2p¯)δijϵ0,\displaystyle-\bar{p}\left(\frac{\partial\epsilon_{i}}{\partial x^{j}}+\frac{\partial\epsilon_{j}}{\partial x^{i}}\right)+\frac{\partial}{\partial t}(a^{2}\bar{p})\delta_{ij}\epsilon_{0}, (3.37)
ΔδTi0\displaystyle\Delta\delta{T}_{i0} =\displaystyle= p¯ϵit+ρ¯ϵ0xi+2p¯a˙aϵi,\displaystyle-\bar{p}\frac{\partial\epsilon_{i}}{\partial t}+\bar{\rho}\frac{\partial\epsilon_{0}}{\partial x^{i}}+2\bar{p}\frac{\dot{a}}{a}\epsilon_{i}, (3.38)
ΔδT00\displaystyle\Delta\delta{T}_{00} =\displaystyle= 2ρ¯ϵ0t+ρ¯˙ϵ0.\displaystyle 2\bar{\rho}\frac{\partial\epsilon_{0}}{\partial t}+\dot{\bar{\rho}}\epsilon_{0}\,. (3.39)

While the gauge transformation of δT~μν\delta{\tilde{T}}_{\mu\nu} is given by

ΔδT~μν=T¯~μλϵλxνT¯~λνϵλxμT¯~μνxλϵλT¯μλϵ~λxνT¯λνϵ~λxμT¯μνxλϵ~λ,\Delta\delta{\tilde{T}}_{\mu\nu}=-\tilde{\bar{T}}_{\mu\lambda}\frac{\partial\epsilon^{\lambda}}{\partial x^{\nu}}-\tilde{\bar{T}}_{\lambda\nu}\frac{\partial\epsilon^{\lambda}}{\partial x^{\mu}}-\frac{\partial\tilde{\bar{T}}_{\mu\nu}}{\partial x^{\lambda}}\epsilon^{\lambda}-\bar{T}_{\mu\lambda}\frac{\partial\tilde{\epsilon}^{\lambda}}{\partial x^{\nu}}-\bar{T}_{\lambda\nu}\frac{\partial\tilde{\epsilon}^{\lambda}}{\partial x^{\mu}}-\frac{\partial\bar{T}_{\mu\nu}}{\partial x^{\lambda}}\tilde{\epsilon}^{\lambda}\,, (3.40)

where the components are

ΔδT~ij\displaystyle\Delta\delta{\tilde{T}}_{ij} =\displaystyle= (p¯~+p¯F)ϵixj(p¯~+p¯F)ϵjxip¯ϵ~jxip¯ϵ~ixj+[ϵ0t[a2(p¯~+p¯F)]+t(a2p¯)ϵ~0]δij\displaystyle-(\tilde{\bar{p}}+\bar{p}F)\frac{\partial\epsilon_{i}}{\partial x^{j}}-(\tilde{\bar{p}}+\bar{p}F)\frac{\partial\epsilon_{j}}{\partial x^{i}}-\bar{p}\frac{\partial\tilde{\epsilon}_{j}}{\partial x^{i}}-\bar{p}\frac{\partial\tilde{\epsilon}_{i}}{\partial x^{j}}+\left[\epsilon_{0}\frac{\partial}{\partial t}[a^{2}\left(\tilde{\bar{p}}+\bar{p}F\right)]+\frac{\partial}{\partial t}(a^{2}\bar{p})\tilde{\epsilon}_{0}\right]\delta_{ij} (3.41)
ΔδT~i0\displaystyle\Delta\delta{\tilde{T}}_{i0} =\displaystyle= (p¯~+p¯F)ϵit+(ρ¯~+3Fρ¯)ϵ0xip¯ϵ~it+ρ¯ϵ~0xi+2(p¯~+p¯F)a˙aϵi+2p¯a˙aϵ~i\displaystyle-(\tilde{\bar{p}}+\bar{p}F)\frac{\partial\epsilon_{i}}{\partial t}+(\tilde{\bar{\rho}}+3F\bar{\rho})\frac{\partial\epsilon_{0}}{\partial x^{i}}-\bar{p}\frac{\partial\tilde{\epsilon}_{i}}{\partial t}+\bar{\rho}\frac{\partial\tilde{\epsilon}_{0}}{\partial x^{i}}+2(\tilde{\bar{p}}+\bar{p}F)\frac{\dot{a}}{a}\epsilon_{i}+2\bar{p}\frac{\dot{a}}{a}\tilde{\epsilon}_{i} (3.42)
ΔδT~00\displaystyle\Delta\delta{\tilde{T}}_{00} =\displaystyle= ϵ0t(ρ¯~+3Fρ¯)+2(ρ¯~+3Fρ¯)ϵ0t+ρ¯˙ϵ~0+2ρ¯ϵ~0dt.\displaystyle\epsilon_{0}\frac{\partial}{\partial t}\left(\tilde{\bar{\rho}}+3F\bar{\rho}\right)+2(\tilde{\bar{\rho}}+3F\bar{\rho})\frac{\partial\epsilon_{0}}{\partial t}+\dot{\bar{\rho}}\tilde{\epsilon}_{0}+2\bar{\rho}\frac{\partial\tilde{\epsilon}_{0}}{dt}\,. (3.43)

ϵi\epsilon_{i} and ϵ~i\tilde{\epsilon}_{i} were decomposed in (3.15) to write these gauge transformations in terms of the scalar, vector and tensor components. The transformations (3.8)-(3.10) and (3.12)-(3.14) with (3.37)-(3.38) and (3.41)-(3.43) give the gauge transformation for the pressure, energy density and velocity potential:

Δδp=p¯˙ϵ0,Δδρ=ρ¯˙ϵ0,Δδu=ϵ0.\Delta\delta{p}=\dot{\bar{p}}\epsilon_{0}\,,\;\;\;\Delta\delta{\rho}=\dot{\bar{\rho}}\epsilon_{0}\;,\;\;\;\Delta\delta{u}=-\epsilon_{0}\,. (3.44)

The other ingredients of the energy-momentum tensor are gauge invariants:

ΔπS=ΔπiV=ΔπijT=ΔδuiV=0.\Delta\pi^{S}=\Delta\pi_{i}^{V}=\Delta\pi_{ij}^{T}=\Delta\delta{u}_{i}^{V}=0\,. (3.45)

Nevertheless, the other transformations are

Δδρ~\displaystyle\Delta\delta{\tilde{\rho}} =\displaystyle= t(ρ¯~+3Fρ¯)ϵ0+2(ρ¯~+3Fρ¯)ϵ0˙+ρ¯˙ϵ~0+2ρ¯ϵ~˙0ρ¯~ΔE\displaystyle\frac{\partial}{\partial t}(\tilde{\bar{\rho}}+3F\bar{\rho})\epsilon_{0}+2(\tilde{\bar{\rho}}+3F\bar{\rho})\dot{\epsilon_{0}}+\dot{\bar{\rho}}\tilde{\epsilon}_{0}+2\bar{\rho}\dot{\tilde{\epsilon}}_{0}-\tilde{\bar{\rho}}\Delta{E} (3.46a)
\displaystyle- 3Fρ¯ΔE~3FΔδρ,\displaystyle 3F\bar{\rho}\Delta{\tilde{E}}-3F\Delta{\delta{\rho}}\,,
Δδp~\displaystyle\Delta\delta{\tilde{p}} =\displaystyle= 1a2t[a2(p¯~+p¯F)]ϵ0+1a2t(a2ρ¯)ϵ~0p¯~ΔAp¯FΔA~FΔδp,\displaystyle\frac{1}{a^{2}}\frac{\partial}{\partial t}[a^{2}\left(\tilde{\bar{p}}+\bar{p}F\right)]\epsilon_{0}+\frac{1}{a^{2}}\frac{\partial}{\partial t}(a^{2}\bar{\rho})\tilde{\epsilon}_{0}-\tilde{\bar{p}}\Delta{A}-\bar{p}F\Delta{\tilde{A}}-F\Delta{\delta{p}}\,, (3.46b)
Δδu~\displaystyle\Delta{\delta{\tilde{u}}} =\displaystyle= 1(ρ¯+p¯){(p¯~+p¯F)ϵ˙S(ρ¯~+3Fρ¯)ϵ0+p¯ϵ~˙Sρ¯ϵ~02(p¯~+p¯F)a˙aϵS\displaystyle\frac{1}{(\bar{\rho}+\bar{p})}\left\{(\tilde{\bar{p}}+\bar{p}F)\dot{\epsilon}^{S}-(\tilde{\bar{\rho}}+3F\bar{\rho})\epsilon_{0}+\bar{p}\dot{\tilde{\epsilon}}^{S}-\bar{\rho}\tilde{\epsilon}_{0}-2(\tilde{\bar{p}}+\bar{p}F)\frac{\dot{a}}{a}\epsilon^{S}\right. (3.46c)
\displaystyle- 2p¯a˙aϵ~S+p¯~aΔH+p¯aΔH~(ρ¯+p¯)[12(1F)aΔH~+2FΔδu]},\displaystyle\left.2\bar{p}\frac{\dot{a}}{a}\tilde{\epsilon}^{S}+\tilde{\bar{p}}a\Delta{H}+\bar{p}a\Delta{\tilde{H}}-(\bar{\rho}+\bar{p})\left[\frac{1}{2}(1-F)a\Delta{\tilde{H}}+2F\Delta{\delta{u}}\right]\right\}\,,
Δδu~iV\displaystyle\Delta\delta{\tilde{u}}_{i}^{V} =\displaystyle= 1(ρ¯+p¯){(p¯~+p¯F)ϵ˙iV+p¯ϵ~˙iV2(p¯~+p¯F)a˙aϵiV2p¯a˙aϵ~iV+p¯~aΔGi\displaystyle\frac{1}{(\bar{\rho}+\bar{p})}\left\{(\tilde{\bar{p}}+\bar{p}F)\dot{\epsilon}_{i}^{V}+\bar{p}\dot{\tilde{\epsilon}}_{i}^{V}-2(\tilde{\bar{p}}+\bar{p}F)\frac{\dot{a}}{a}\epsilon_{i}^{V}-2\bar{p}\frac{\dot{a}}{a}\tilde{\epsilon}_{i}^{V}+\tilde{\bar{p}}a\Delta{G}_{i}\right. (3.46d)
+\displaystyle+ p¯aΔG~i12(ρ¯+p¯)(1F)aΔG~i},\displaystyle\left.\bar{p}a\Delta{\tilde{G}}_{i}-\frac{1}{2}(\bar{\rho}+\bar{p})(1-F)a\Delta{\tilde{G}}_{i}\right\}\,,
Δδπ~S\displaystyle\Delta{\delta{\tilde{\pi}}}^{S} =\displaystyle= 2a2(p¯~+p¯F)ϵS2p¯a2ϵ~Sp¯~ΔBp¯FΔB~,\displaystyle-\frac{2}{a^{2}}(\tilde{\bar{p}}+\bar{p}F)\epsilon^{S}-2\frac{\bar{p}}{a^{2}}\tilde{\epsilon}^{S}-\tilde{\bar{p}}\Delta{B}-\bar{p}F\Delta{\tilde{B}}\,, (3.46e)
Δδπ~iV\displaystyle\Delta{\delta{\tilde{\pi}}}_{i}^{V} =\displaystyle= 1a2(p¯~+p¯F)ϵiVp¯a2ϵ~iVp¯~ΔCip¯FΔC~i,\displaystyle-\frac{1}{a^{2}}(\tilde{\bar{p}}+\bar{p}F)\epsilon_{i}^{V}-\frac{\bar{p}}{a^{2}}\tilde{\epsilon}_{i}^{V}-\tilde{\bar{p}}\Delta{C}_{i}-\bar{p}F\Delta{\tilde{C}}_{i}\,, (3.46f)
Δδπ~ij\displaystyle\Delta{\delta{\tilde{\pi}}}_{ij} =\displaystyle= 0.\displaystyle 0\,. (3.46g)

The results given in (3.1), (3.1) and (3.44) are used to obtain

Δδρ~\displaystyle\Delta{\delta{\tilde{\rho}}} =\displaystyle= ρ¯~˙ϵ0+(ρ¯˙3Fρ¯)ϵ~0,\displaystyle\dot{\tilde{\bar{\rho}}}\epsilon_{0}+(\dot{\bar{\rho}}-3F\bar{\rho})\tilde{\epsilon}_{0}\,, (3.47a)
Δδp~\displaystyle\Delta{\delta{\tilde{p}}} =\displaystyle= p¯~˙ϵ0+p¯˙ϵ~0,\displaystyle\dot{\tilde{\bar{p}}}\epsilon_{0}+\dot{\bar{p}}\tilde{\epsilon}_{0}\,, (3.47b)
Δδu~\displaystyle\Delta{\delta{\tilde{u}}} =\displaystyle= [(13F)F2(p¯~+ρ¯~)(p¯+ρ¯)]ϵ012(1+F)ϵ~0(1F)a˙a(FϵS+ϵ~S)\displaystyle\left[(1-3F)\frac{F}{2}-\frac{(\tilde{\bar{p}}+\tilde{\bar{\rho}})}{(\bar{p}+\bar{\rho})}\right]\epsilon_{0}-\frac{1}{2}(1+F)\tilde{\epsilon}_{0}-(1-F)\frac{\dot{a}}{a}\left(F\epsilon^{S}+\tilde{\epsilon}^{S}\right) (3.47c)
+\displaystyle+ 12(1F)(Fϵ˙S+ϵ~˙S),\displaystyle\frac{1}{2}(1-F)\left(F\dot{\epsilon}^{S}+\dot{\tilde{\epsilon}}^{S}\right)\,,
Δδu~iV\displaystyle\Delta{\delta{\tilde{u}}}_{i}^{V} =\displaystyle= 12(1F)[Fϵ˙iV+ϵ~˙iV2a˙aFϵiV2a˙aϵ~iV],\displaystyle\frac{1}{2}(1-F)[F\dot{\epsilon}_{i}^{V}+\dot{\tilde{\epsilon}}_{i}^{V}-2\frac{\dot{a}}{a}F\epsilon_{i}^{V}-2\frac{\dot{a}}{a}\tilde{\epsilon}_{i}^{V}]\,, (3.47d)
Δδπ~iS\displaystyle\Delta{\delta{\tilde{\pi}}}_{i}^{S} =\displaystyle= 0,\displaystyle 0\,, (3.47e)
Δδπ~iV\displaystyle\Delta{\delta{\tilde{\pi}}}_{i}^{V} =\displaystyle= 0,\displaystyle 0\,, (3.47f)
Δδπ~ij\displaystyle\Delta{\delta{\tilde{\pi}}}_{ij} =\displaystyle= 0.\displaystyle 0\,. (3.47g)

As we said before, there are different choices for ϵ\epsilon and ϵ~\tilde{\epsilon} parameter to fix all the gauge freedoms. The most common and well-known gauges are the Newtonian gauge and Synchronous gauge. The former fix ϵS\epsilon^{S} such that B=0B=0, and choose ϵ0\epsilon_{0} such that H=0H=0 ( in equation (3.1) ). In DG, this choice is extended imposing similar conditions in (3.1) for ϵ~S\tilde{\epsilon}^{S} and ϵ~0\tilde{\epsilon}_{0}, such that B~=H~=0\tilde{B}=\tilde{H}=0. There is no remaining freedom to make a gauge transformation in this scenario. Nevertheless, in this work, we will use the Synchronous gauge, where we will choose ϵ0\epsilon_{0} such that E=0E=0, and ϵS\epsilon^{S} such that H=0H=0, (similar conditions for ϵ~0\tilde{\epsilon}_{0} and ϵ~S\tilde{\epsilon}^{S}). In the next section, we present the perturbed equations of motion in this frame, and we discuss the suitability of this choice for our purposes.

3.4 Fields equations and energy momentum conservations in synchronous gauge

Under this gauge fixing, perturbed Einstein equations Eq. (2.8) reads (at first order):

4πG(δρ+3δp+2πS)=12(3A¨+2B¨)+a˙2a(3A˙+2B˙).-4\pi G(\delta\rho+3\delta p+\nabla^{2}\pi^{S})=\frac{1}{2}\left(3\ddot{A}+\nabla^{2}\ddot{B}\right)+\frac{\dot{a}}{2a}\left(3\dot{A}+\nabla^{2}\dot{B}\right). (3.48)

While the energy-momentum conservation gives

δp+2πS+0[(ρ¯+p¯)δu]+3a˙a(ρ¯+p¯)δu\displaystyle\delta p+\nabla^{2}\pi^{S}+\partial_{0}[(\bar{\rho}+\bar{p})\delta u]+\frac{3\dot{a}}{a}(\bar{\rho}+\bar{p})\delta u =\displaystyle= 0,\displaystyle 0, (3.49)
δρ˙+3a˙a(δρ+δp)+2[a2(ρ¯+p¯)δu+a˙aπS]+12(ρ¯+p¯)0[3A+2B]\displaystyle\delta\dot{\rho}+\frac{3\dot{a}}{a}(\delta\rho+\delta p)+\nabla^{2}\left[a^{-2}(\bar{\rho}+\bar{p})\delta u+\frac{\dot{a}}{a}\pi^{S}\right]+\frac{1}{2}(\bar{\rho}+\bar{p})\partial_{0}\left[3A+\nabla^{2}B\right] =\displaystyle= 0.\displaystyle 0. (3.50)

We define

Ψ12[3A+2B],\Psi\equiv\frac{1}{2}\left[3{A}+\nabla^{2}{B}\right], (3.51)

then,

4πGa2(δρ+3δp+2πS)=t(a2Ψ˙),-4\pi Ga^{2}(\delta\rho+3\delta p+\nabla^{2}\pi^{S})=\frac{\partial}{\partial t}\left(a^{2}\dot{\Psi}\right), (3.52)
δρ˙+3a˙a(δρ+δp)+2[a2(ρ¯+p¯)δu+a˙aπS]+12(ρ¯+p¯)Ψ˙=0.\delta\dot{\rho}+\frac{3\dot{a}}{a}(\delta\rho+\delta p)+\nabla^{2}\left[a^{-2}(\bar{\rho}+\bar{p})\delta u+\frac{\dot{a}}{a}\pi^{S}\right]+\frac{1}{2}(\bar{\rho}+\bar{p})\dot{\Psi}=0. (3.53)

The unperturbed Einstein equations correspond to the Friedmann equations. In the Delta sector, computations give the non-perturbed equations:

3F˙a˙a=κ(3Fρ¯+ρ¯~)3\dot{F}\frac{\dot{a}}{a}=\kappa(3F\bar{\rho}+\tilde{\bar{\rho}}) (3.54)

, and

12Fa¨a+6F(a˙a)2+3F˙a˙a3F¨=κ(ρ¯~+3p¯~+3Fρ¯+3Fp¯).12F\frac{\ddot{a}}{a}+6F\left(\frac{\dot{a}}{a}\right)^{2}+3\dot{F}\frac{\dot{a}}{a}-3\ddot{F}=\kappa(\tilde{\bar{\rho}}+3\tilde{\bar{p}}+3F\bar{\rho}+3F\bar{p}). (3.55)

The perturbed contribution (at first order) is

[2F˙a˙a+F¨][3A+2B]+[6Fa˙a+52F˙][3A˙+2B˙][2a˙a][3A~˙+2B~˙]\displaystyle\left[2\dot{F}\frac{\dot{a}}{a}+\ddot{F}\right]\left[3A+\nabla^{2}B\right]+\left[6F\frac{\dot{a}}{a}+\frac{5}{2}\dot{F}\right]\left[3\dot{A}+\nabla^{2}\dot{B}\right]-\left[2\frac{\dot{a}}{a}\right]\left[3\dot{\tilde{A}}+\nabla^{2}\dot{\tilde{B}}\right]
+3F[3A¨+2B¨][3A~¨+2B~¨]=κ(3δp~+δρ~+Fδρ+3Fδp+2π~+F2π)\displaystyle+3F\left[3\ddot{A}+\nabla^{2}\ddot{B}\right]-\left[3\ddot{\tilde{A}}+\nabla^{2}\ddot{\tilde{B}}\right]=\kappa\left(3\delta{\tilde{p}}+\delta{\tilde{\rho}}+F\delta\rho+3F\delta p+\nabla^{2}\tilde{\pi}+F\nabla^{2}\pi\right) (3.56)

Besides, 0000 component of delta Energy-momentum conservation in (2.11) give

δρ~˙+3a˙a(δρ~+δp~)+3F˙2(δρ+δp)+2[(ρ¯~+p¯~)a2δu+(ρ¯+p¯)Fa2δu+(ρ¯+p¯)a2δu~]\displaystyle\delta\dot{\tilde{\rho}}+\frac{3\dot{a}}{a}(\delta{\tilde{\rho}}+\delta{\tilde{p}})+\frac{3\dot{F}}{2}(\delta{\rho}+\delta{p})+\nabla^{2}\left[\frac{(\tilde{\bar{\rho}}+\tilde{\bar{p}})}{a^{2}}\delta{u}+\frac{(\bar{\rho}+\bar{p})F}{a^{2}}\delta{u}+\frac{(\bar{\rho}+\bar{p})}{a^{2}}\delta{\tilde{u}}\right]
+(ρ¯~+p¯~)20[3A+2B]+(ρ¯+p¯)20[3A~+2B~](ρ¯+p¯)20(F[3A+2B])=0,\displaystyle+\frac{(\tilde{\bar{\rho}}+\tilde{\bar{p}})}{2}\partial_{0}[3A+\nabla^{2}B]+\frac{(\bar{\rho}+\bar{p})}{2}\partial_{0}[3\tilde{A}+\nabla^{2}\tilde{B}]-\frac{(\bar{\rho}+\bar{p})}{2}\partial_{0}(F[3A+\nabla^{2}B])=0\,, (3.57)

while the i0i0 component gives

δp~+0[(ρ¯~+p¯~)δu]+0[(ρ¯+p¯)δu~]0[(ρ¯+p¯)Fδu]+3(ρ¯+p¯)F˙δu\displaystyle\delta{\tilde{p}}+\partial_{0}[(\tilde{\bar{\rho}}+\tilde{\bar{p}})\delta{u}]+\partial_{0}[(\bar{\rho}+\bar{p})\delta{\tilde{u}}]-\partial_{0}[(\bar{\rho}+\bar{p})F\delta{u}]+3(\bar{\rho}+\bar{p})\dot{F}\delta{u}
+3a˙a(ρ¯+p¯)δu~+3a˙a(ρ¯~+p¯~)δu3a˙aF(ρ¯+p¯)δu=0.\displaystyle+\frac{3\dot{a}}{a}(\bar{\rho}+\bar{p})\delta{\tilde{u}}+\frac{3\dot{a}}{a}(\tilde{\bar{\rho}}+\tilde{\bar{p}})\delta{u}-\frac{3\dot{a}}{a}F(\bar{\rho}+\bar{p})\delta{u}=0\;. (3.58)

Analogous to the standard sector, we define

Ψ~12[3A~+2B~],\tilde{\Psi}\equiv\frac{1}{2}\left[3\tilde{A}+\nabla^{2}\tilde{B}\right]\;, (3.59)

then the gravitational equation becomes

[2F˙a˙a+F¨]a2Ψ+[6Fa˙a+52F˙]a2Ψ˙+3Fa2Ψ¨ddt(a2Ψ~˙)=κ2(3δp~+δρ~+Fδρ\displaystyle\left[2\dot{F}\frac{\dot{a}}{a}+\ddot{F}\right]a^{2}\Psi+\left[6F\frac{\dot{a}}{a}+\frac{5}{2}\dot{F}\right]a^{2}\dot{\Psi}+3Fa^{2}\ddot{\Psi}-\frac{d}{dt}\left(a^{2}\dot{\tilde{\Psi}}\right)=\frac{\kappa}{2}\left(3\delta{\tilde{p}}+\delta{\tilde{\rho}}+F\delta\rho\right.
+3Fδp+2π~+F2π).\displaystyle+\left.3F\delta p+\nabla^{2}\tilde{\pi}+F\nabla^{2}\pi\right). (3.60)

Now, the delta energy conservation is given by

δρ~˙+3a˙a(δρ~+δp~)+3F˙2(δρ+δp)+2[(ρ¯~+p¯~)a2δu+(ρ¯+p¯)Fa2δu+(ρ¯+p¯)a2δu~]\displaystyle\delta\dot{\tilde{\rho}}+\frac{3\dot{a}}{a}(\delta{\tilde{\rho}}+\delta{\tilde{p}})+\frac{3\dot{F}}{2}(\delta{\rho}+\delta{p})+\nabla^{2}\left[\frac{(\tilde{\bar{\rho}}+\tilde{\bar{p}})}{a^{2}}\delta{u}+\frac{(\bar{\rho}+\bar{p})F}{a^{2}}\delta{u}+\frac{(\bar{\rho}+\bar{p})}{a^{2}}\delta{\tilde{u}}\right]
+(ρ¯~+p¯~)Ψ˙+(ρ¯+p¯)Ψ~˙(ρ¯+p¯)0(FΨ)=0.\displaystyle+(\tilde{\bar{\rho}}+\tilde{\bar{p}})\dot{\Psi}+(\bar{\rho}+\bar{p})\dot{\tilde{\Psi}}-(\bar{\rho}+\bar{p})\partial_{0}(F\Psi)=0\,. (3.61)

The study of the non-perturbed sector was already treated in Alfaro et al. and applied to the supernovae observations. We will consider these results when necessary. For now, we only need the expression for the time dependent function F(t)F(t), which is

F(Y)=LY3Y+C,F(Y)=-\frac{LY}{3}\sqrt{Y+C}\,, (3.62)

where YY(t)=a(t)/a0Y\equiv Y(t)=a(t)/a_{0} is the quotient between the scale factor at a time tt over the scale factor in the actuality (which for our purposes we will consider equal to one). LL (0.45)(\sim 0.45) and CC (104)(\sim 10^{-4}) are the new parameters of DG that are already determined by supernova data[33, 35]. We have to remark that our definition of Ψ\Psi is not the usual since the standard definition is with the time derivative of fields AA and BB, respectively. In the delta sector appears explicitly the combinations of these fields without a time derivative, so if the reader wants to compare results with other works, he or she should take into consideration this definition to analyze the gauge. In the next section, we will discuss the evolution of the cosmological fluctuations, which will help us compute the scalar contribution to the CMB.

4 Evolution of cosmological fluctuations

Until now, we have developed the perturbation theory in DG; now, we are interested in studying the evolution of the cosmological fluctuations to have a physical interpretation of the delta matter fields, which this theory naturally introduces. Even in the standard cosmology, the system of equations that describes these perturbations are complicated to allow analytic solutions, and there are comprehensive computer programs to this task, such as CMBfast[36, 37], and CAMB[38]. However, such computer programs can not give a clear understanding of the physical phenomena involved. Nevertheless, some good approximations allow to compute the spectrum of the CMB fluctuations with a rather good agreement with these computer programs[40, 39]. In particular, we are going to extend Weinberg approach for this task. This method consists of two main aspects: first, the hydrodynamic limit, which assumes that near recombination time photons were in local thermal equilibrium with the baryonic plasma, then photons could be treated hydro-dynamically, like plasma and cold dark matter. Second, a sharp transition from thermal equilibrium to complete transparency at the moment tlst_{ls} of the last scattering.
Since we will reproduce this approach, we consider the Universe’s standard components, which means photons, neutrinos, baryons, and cold dark matter. Then the task is to understand the role of their own delta-counterpart. We will also neglect both anisotropic inertia tensors and took the usual state equation for pressures and energy densities and perturbations. Besides, as we will treat photons and delta photons hydro-dynamically, we will use δuγ=δuB\delta u_{\gamma}=\delta u_{B} and δu~γ=δu~B\delta\tilde{u}_{\gamma}=\delta\tilde{u}_{B}. Finally, as the synchronous scheme does not completely fix the gauge freedom, one can use the remaining freedom to put δuD=0\delta u_{D}=0, which means that cold dark matter evolves at rest with respect to the Universe expansion. In our theory, the extended synchronous scheme also has extra freedom, which we will use to choose δu~D=0\delta\tilde{u}_{D}=0 as its standard part. Now we will present the equations for both sectors. However, we will provide more detail in the delta sector because Weinberg[40] already calculates the solution of Einstein’s equations.
Einstein’s equations and its energy-momentum conservation in Fourier space are

ddt(a2Ψ˙q)\displaystyle\frac{d}{dt}\left(a^{2}\dot{\Psi}_{q}\right) =\displaystyle= 4πGa2(δρDq+δρBq+2δργq+2δρνq),\displaystyle-4\pi Ga^{2}\left(\delta\rho_{Dq}+\delta\rho_{Bq}+2\delta\rho_{\gamma q}+2\delta\rho_{\nu q}\right)\,, (4.1)
δρ˙γq+4Hδργq(4q/3a)ρ¯γδuγq\displaystyle\delta\dot{\rho}_{\gamma q}+4H\delta\rho_{\gamma q}-(4q/3a)\bar{\rho}_{\gamma}\delta u_{\gamma q} =\displaystyle= (4/3)ρ¯γΨ˙q,\displaystyle-(4/3)\bar{\rho}_{\gamma}\dot{\Psi}_{q}\,, (4.2)
δρ˙Dq+3HδρDq\displaystyle\delta\dot{\rho}_{Dq}+3H\delta\rho_{Dq} =\displaystyle= ρ¯DΨ˙q,\displaystyle-\bar{\rho}_{D}\dot{\Psi}_{q}\,, (4.3)
δρ˙Bq+3HδρBq(q/a)ρ¯Bδuγq\displaystyle\delta\dot{\rho}_{Bq}+3H\delta\rho_{Bq}-(q/a)\bar{\rho}_{B}\delta u_{\gamma q} =\displaystyle= ρ¯BΨ˙q,\displaystyle-\bar{\rho}_{B}\dot{\Psi}_{q}\,, (4.4)
δρ˙νq+4Hδρνq(4q/3a)ρ¯νδuνq\displaystyle\delta\dot{\rho}_{\nu q}+4H\delta\rho_{\nu q}-(4q/3a)\bar{\rho}_{\nu}\delta u_{\nu q} =\displaystyle= (4/3)ρ¯νΨ˙q,\displaystyle-(4/3)\bar{\rho}_{\nu}\dot{\Psi}_{q}\,, (4.5)

where Ha˙/aH\equiv\dot{a}/a. It is useful to rewrite these equations in term of the dimensionless fractional perturbation

δαq=δραqρ¯α+p¯α,\delta_{\alpha q}=\frac{\delta\rho_{\alpha q}}{\bar{\rho}_{\alpha}+\bar{p}_{\alpha}}\,, (4.6)

where α\alpha can be γ\gamma, ν\nu, BB and DD (photons, neutrinos, baryons and dark matter, respectively). a4ρ¯γa^{4}\bar{\rho}_{\gamma}, a4ρ¯νa^{4}\bar{\rho}_{\nu}, a3ρ¯Da^{3}\bar{\rho}_{D}, a3ρ¯Ba^{3}\bar{\rho}_{B} are time independent quantities, then (4.1)-(4.5) are

ddt(a2Ψ˙q)\displaystyle\frac{d}{dt}\left(a^{2}\dot{\Psi}_{q}\right) =\displaystyle= 4πGa2(ρ¯DδDq+ρ¯BδBq+83ρ¯γδγq+83ρ¯νδ)νq,\displaystyle-4\pi Ga^{2}\left(\bar{\rho}_{D}\delta_{Dq}+\bar{\rho}_{B}\delta_{Bq}+\frac{8}{3}\bar{\rho}_{\gamma}\delta_{\gamma q}+\frac{8}{3}\bar{\rho}_{\nu}\delta{}_{\nu q}\right)\,, (4.7a)
δ˙γq(q2/a2)δuγq\displaystyle\dot{\delta}_{\gamma q}-(q^{2}/a^{2})\delta u_{\gamma q} =\displaystyle= Ψ˙q,\displaystyle-\dot{\Psi}_{q}\,, (4.7b)
δ˙Dq\displaystyle\dot{\delta}_{Dq} =\displaystyle= Ψq,\displaystyle-\Psi_{q}\,, (4.7c)
δ˙Bq(q2/a2)δuγq\displaystyle\dot{\delta}_{Bq}-(q^{2}/a^{2})\delta u_{\gamma q} =\displaystyle= Ψ˙q,\displaystyle-\dot{\Psi}_{q}\,, (4.7d)
δ˙νq(q2/a2)δuνq\displaystyle\dot{\delta}_{\nu q}-(q^{2}/a^{2})\delta u_{\nu q} =\displaystyle= Ψ˙q,\displaystyle-\dot{\Psi}_{q}\,, (4.7e)
ddt((1+R)δuγqa)\displaystyle\frac{d}{dt}\left(\frac{\left(1+R\right)\delta u_{\gamma q}}{a}\right) =\displaystyle= 13aδγq,\displaystyle-\frac{1}{3a}\delta_{\gamma q}\,, (4.7f)
ddt(δuνqa)\displaystyle\frac{d}{dt}\left(\frac{\delta u_{\nu q}}{a}\right) =\displaystyle= 13aδνq,\displaystyle-\frac{1}{3a}\delta_{\nu q}\,, (4.7g)

where R=3ρ¯B/4ρ¯γR=3\bar{\rho}_{B}/4\bar{\rho}_{\gamma}. By the other side, in delta sector we will use a dimensionless fractional perturbation. However, this perturbation is defined as the delta transformation of (4.6)222We choose this definition because the system of equations now seems as an homogeneous system exactly equal to the GR sector (where now the variables are the tilde-fields) with external forces mediated by the GR solutions. Maybe the most intuitive solution should be δ~αqint=δρ~αqρ¯~α+p¯~α,\tilde{\delta}^{int}_{\alpha q}=\frac{\delta\tilde{\rho}_{\alpha q}}{\tilde{\bar{\rho}}_{\alpha}+\tilde{\bar{p}}_{\alpha}}\;, however these definitions are related by δ~αq=ρ¯~α+p¯~αρ¯α+p¯α(δ~αqintδαq).\tilde{\delta}_{\alpha q}=\frac{\tilde{\bar{\rho}}_{\alpha}+\tilde{\bar{p}}_{\alpha}}{\bar{\rho}_{\alpha}+\bar{p}_{\alpha}}\left(\tilde{\delta}^{int}_{\alpha q}-\delta_{\alpha q}\right)\;. ,

δ~αqδ~δαq=δρ~αqρ¯α+p¯αρ¯~α+p¯~αρ¯α+p¯αδαq.\tilde{\delta}_{\alpha q}\equiv\tilde{\delta}\delta_{\alpha q}=\frac{\delta\tilde{\rho}_{\alpha q}}{\bar{\rho}_{\alpha}+\bar{p}_{\alpha}}-\frac{\tilde{\bar{\rho}}_{\alpha}+\tilde{\bar{p}}_{\alpha}}{\bar{\rho}_{\alpha}+\bar{p}_{\alpha}}\delta_{\alpha q}\,. (4.8)

In [33], they found

ρ¯~Rρ¯R=2F(a)andρ¯~Mρ¯M=32F(a).\frac{\tilde{\bar{\rho}}_{R}}{\bar{\rho}_{R}}=-2F(a)\;\;\;\;and\;\;\;\;\frac{\tilde{\bar{\rho}}_{M}}{\bar{\rho}_{M}}=-\frac{3}{2}F(a)\,. (4.9)

We will assume that this quotient holds for every component. Also using the result that a4ρ¯~γ/Fa^{4}\tilde{\bar{\rho}}_{\gamma}/F, a4ρ¯~ν/Fa^{4}\tilde{\bar{\rho}}_{\nu}/F, a3ρ¯~D/Fa^{3}\tilde{\bar{\rho}}_{D}/F, a3ρ¯~B/Fa^{3}\tilde{\bar{\rho}}_{B}/F are time independent, the equations for the delta sector are

[2F˙a˙a+F¨]a2Ψq+[6Fa˙a+52F˙]a2Ψ˙q+3Fa2Ψ¨qddt(a2Ψ~˙q)\displaystyle\left[2\dot{F}\frac{\dot{a}}{a}+\ddot{F}\right]a^{2}\Psi_{q}+\left[6F\frac{\dot{a}}{a}+\frac{5}{2}\dot{F}\right]a^{2}\dot{\Psi}_{q}+3Fa^{2}\ddot{\Psi}_{q}-\frac{d}{dt}\left(a^{2}\dot{\tilde{\Psi}}_{q}\right)
=κ2a2[ρ¯Dδ~Dq+ρ¯Bδ~Bq+83ρ¯γδ~γq+83ρ¯νδ~νqF2(ρ¯DδDq+ρ¯BδBq)\displaystyle=\frac{\kappa}{2}a^{2}\left[\bar{\rho}_{D}\tilde{\delta}_{Dq}+\bar{\rho}_{B}\tilde{\delta}_{Bq}+\frac{8}{3}\bar{\rho}_{\gamma}\tilde{\delta}_{\gamma q}+\frac{8}{3}\bar{\rho}_{\nu}\tilde{\delta}_{\nu q}-\frac{F}{2}\left(\bar{\rho}_{D}{\delta}_{Dq}+\bar{\rho}_{B}{\delta}_{Bq}\right)\right. \displaystyle- 83F(ρ¯γδγq+ρ¯νδνq)],\displaystyle\left.\frac{8}{3}F\left(\bar{\rho}_{\gamma}{\delta}_{\gamma q}+\bar{\rho}_{\nu}{\delta}_{\nu q}\right)\right]\,,
δ~˙γqq2a2(δu~γq+Fδuγq)+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{\gamma q}-\frac{q^{2}}{a^{2}}\left(\delta\tilde{u}_{\gamma q}+F\delta u_{\gamma q}\right)+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\;, (4.10a)
δ~˙Dq+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{Dq}+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\;, (4.10b)
δ~˙Bqq2a2(δu~γq+Fδuγq)+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{Bq}-\frac{q^{2}}{a^{2}}\left(\delta\tilde{u}_{\gamma q}+F\delta u_{\gamma q}\right)+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\;, (4.10c)
δ~˙νqq2a2(δu~νq+Fδuνq)+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{\nu q}-\frac{q^{2}}{a^{2}}\left(\delta\tilde{u}_{\nu q}+F\delta u_{\nu q}\right)+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\;, (4.10d)
δ~γq3a+ddt((1+R)δu~γqa)+2Fddt((RR~)δuγqa)\displaystyle\frac{\tilde{\delta}_{\gamma q}}{3a}+\frac{d}{dt}\left(\frac{(1+R)\delta\tilde{u}_{\gamma q}}{a}\right)+2F\frac{d}{dt}\left(\frac{(R-\tilde{R})\delta{u}_{\gamma q}}{a}\right)
Fddt((1+R)δuγqa)2F˙(R~R)δuγqa\displaystyle-F\frac{d}{dt}\left(\frac{(1+R)\delta u_{\gamma q}}{a}\right)-2\dot{F}(\tilde{R}-R)\frac{\delta u_{\gamma q}}{a} =\displaystyle= 0,\displaystyle 0\;, (4.10e)
δ~νq3a+ddt(δu~νqa)Fddt(δuνqa)\displaystyle\frac{\tilde{\delta}_{\nu q}}{3a}+\frac{d}{dt}\left(\frac{\delta\tilde{u}_{\nu q}}{a}\right)-F\frac{d}{dt}\left(\frac{\delta u_{\nu q}}{a}\right) =\displaystyle= 0,\displaystyle 0\;, (4.10f)

with R~=3ρ¯~B/4ρ¯~γ\tilde{R}=3\tilde{\bar{\rho}}_{B}/4\tilde{\bar{\rho}}_{\gamma}. Due to the definition of tilde fractional perturbation (4.8), solutions for (4.10)-(4.10f) can be obtained easily, putting all solutions of GR equal to zero, then the system is exactly equal to the system of equations (4.7a)-(4.7g) and the solution of tilde perturbations in the homogeneous system are exactly equal to the GR solutions, and then we only need to "turn on" the GR source and find the complete solutions just like a forced-system.
We will impose initial conditions to find solutions valid up to recombination time. At sufficiently early times the Universe was dominated by radiation, and as Friedmann equations are valid in our theory (in particular the first equation), we can use a good approximation given by ata\propto\sqrt{t} and 8πGρ¯R/3=1/4t28\pi G\bar{\rho}_{R}/3=1/4t^{2}, while RR and R~1\tilde{R}\ll 1. Here

ρ¯Mρ¯D+ρ¯B,ρ¯Rρ¯γ+ρ¯ν.\bar{\rho}_{M}\equiv\bar{\rho}_{D}+\bar{\rho}_{B}\;,\;\;\;\;\bar{\rho}_{R}\equiv\bar{\rho}_{\gamma}+\bar{\rho}_{\nu}\,. (4.11)

Besides, we are interested in adiabatic solutions, in the sense that all the δαq\delta_{\alpha q} and δ~αq\tilde{\delta}_{\alpha q} become equal at very early times. So, we make the ansatz:

δγq=δνq=δBq=δDq=δq,δuγq=δuνq=δuq,\displaystyle\delta_{\gamma q}=\delta_{\nu q}=\delta_{Bq}=\delta_{Dq}=\delta_{q}\,,\;\;\;\;\delta u_{\gamma q}=\delta u_{\nu q}=\delta u_{q}\;, (4.12)
δ~γq=δ~νq=δ~Bq=δ~Dq=δ~q,δu~γq=δu~νq=δu~q.\displaystyle\tilde{\delta}_{\gamma q}=\tilde{\delta}_{\nu q}=\tilde{\delta}_{Bq}=\tilde{\delta}_{Dq}=\tilde{\delta}_{q}\,,\;\;\;\;\delta\tilde{u}_{\gamma q}=\delta\tilde{u}_{\nu q}=\delta\tilde{u}_{q}\,. (4.13)

Finally, we drop the term q2/R2q^{2}/R^{2} because we are considering very early times. Then Equations (4.7a)-(4.7g) becomes

ddt(tΨq)\displaystyle\frac{d}{dt}\left(t\Psi_{q}\right) =\displaystyle= 1tδq,\displaystyle-\frac{1}{t}\delta_{q}\;, (4.14)
δ˙q\displaystyle\dot{\delta}_{q} =\displaystyle= Ψq,\displaystyle-\Psi_{q}\;, (4.15)

and

ddt(δuqt)=1tδq.\frac{d}{dt}\left(\frac{\delta u_{q}}{\sqrt{t}}\right)=-\frac{1}{t}\delta_{q}\;. (4.16)

While equations (4.10)-(4.10f) becomes

[2F˙a˙a+F¨]a2Ψq+[6Fa˙a+52F˙]a2Ψ˙q+3Fa2Ψ¨q\displaystyle\left[2\dot{F}\frac{\dot{a}}{a}+\ddot{F}\right]a^{2}\Psi_{q}+\left[6F\frac{\dot{a}}{a}+\frac{5}{2}\dot{F}\right]a^{2}\dot{\Psi}_{q}+3Fa^{2}\ddot{\Psi}_{q}
ddt(a2Ψ~˙q)\displaystyle-\frac{d}{dt}\left(a^{2}\dot{\tilde{\Psi}}_{q}\right) =\displaystyle= a2t2(δ~qFδq),\displaystyle\frac{a^{2}}{t^{2}}(\tilde{\delta}_{q}-F\delta_{q})\;, (4.17)
δ~˙q+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{q}+\dot{\tilde{\Psi}}_{q}-\partial_{0}({F\Psi_{q}}) =\displaystyle= 0,\displaystyle 0\;, (4.18)
δ~q3a+ddt(δu~qa)Fddt(δuqa)\displaystyle\frac{\tilde{\delta}_{q}}{3a}+\frac{d}{dt}\left(\frac{\delta\tilde{u}_{q}}{a}\right)-F\frac{d}{dt}\left(\frac{\delta u_{q}}{a}\right) =\displaystyle= 0.\displaystyle 0\;. (4.19)

Inspection of Eq. (3.62) show that at this era, for aCa\ll C, we have FL2aC/3F\propto-L_{2}a\sqrt{C}/3. Also in DG, time can be integrated from first Friedmann equation with only radiation and matter, one gets:

t(Y)=21+C3H0(Y+C(Y2C)+2C32),t(Y)=\frac{2\sqrt{1+C}}{3H_{0}}\left(\sqrt{Y+C}(Y-2C)+2C^{\frac{3}{2}}\right)\;, (4.20)

we recall that Y=a/a0=aY=a/a_{0}=a assuming a0=1a_{0}=1, H0=a˙0/a0H_{0}=\dot{a}_{0}/a_{0} is the usual Hubble parameter which we recall is not longer the physical Hubble parameter. Thus, radiation era time and a(t)a(t) were related by a(t)=(3H0C/1+C)1/2t1/2a(t)=(3H_{0}\sqrt{C}/\sqrt{1+C})^{1/2}t^{1/2}. This complete system Eqs. (4.14)-(4.16) and Eqs. (4)-(4.19) has analytical solution:

δγq=δBq=δDq=δνq=q2t2qa2,\delta_{\gamma q}=\delta_{Bq}=\delta_{Dq}=\delta_{\nu q}=\frac{q^{2}t^{2}{\cal R}_{q}}{a^{2}}\;, (4.21)
Ψ˙q=tq2qa2,\dot{\Psi}_{q}=-\frac{tq^{2}{\cal R}_{q}}{a^{2}}\;, (4.22)
δuγq=δuνq=2t3q2q9a2,\delta u_{\gamma q}=\delta u_{\nu q}=-\frac{2t^{3}q^{2}{\cal R}_{q}}{9a^{2}}\;, (4.23)

where333the definition of q{\cal R}_{q} is given in section 5.4: Conservation outside the horizon, Cosmology, Weinberg.

q2qa2HΨq+4πGa2δρq+q2Hδuq,q^{2}{\cal R}_{q}\equiv-a^{2}H\Psi_{q}+4\pi Ga^{2}\delta\rho_{q}+q^{2}H\delta u_{q}\;, (4.24)

is a gauge invariant quantity, which take a time independent value for q/aHq/a\ll H. Here H=a˙/aH=\dot{a}/a is the GR definition of the Hubble parameter, which we recall is not longer the physical one. On the other hand, we get

δ~q\displaystyle\tilde{\delta}_{q} =\displaystyle= L2Cq2qt23a,\displaystyle-\frac{L_{2}\sqrt{C}q^{2}{\cal R}_{q}t^{2}}{3a}\;, (4.25)
Ψ~˙q\displaystyle\dot{\tilde{\Psi}}_{q} =\displaystyle= L2Cq2qta,\displaystyle\frac{L_{2}\sqrt{C}q^{2}{\cal R}_{q}t}{a}\;, (4.26)
δu~q\displaystyle\delta\tilde{u}_{q} =\displaystyle= L2Cq2qt3a.\displaystyle\frac{L_{2}\sqrt{C}q^{2}{\cal R}_{q}t^{3}}{a}\,. (4.27)

We will talk about this initial conditions later. Note that Eqs. (4.7b)-ec. (4.7d) give

ddt(δγδB)=0.\frac{d}{dt}\left(\delta_{\gamma}-\delta_{B}\right)=0\;. (4.28)

This implies that if we start from adiabatic solutions, δγ=δB\delta_{\gamma}=\delta_{B} is true for all the Universe evolution (the same happens for its delta version, from Eqs. (4.10a)-Eq (4.10c)).

4.1 Matter era

In this era we use at2/3a\propto t^{2/3}, then (still using R=R~=0R=\tilde{R}=0) we have

ddt(a2Ψq)=4πGρ¯Da2δDq,\frac{d}{dt}\left(a^{2}\Psi_{q}\right)=-4\pi G\bar{\rho}_{D}a^{2}\delta_{Dq}\,, (4.29a)
δ˙Dq=Ψq,\dot{\delta}_{Dq}=-\Psi_{q}\,, (4.29b)
ddt((1+R)δuγqa)=13aδγq,\frac{d}{dt}\left(\frac{(1+R)\delta u_{\gamma q}}{a}\right)=-\frac{1}{3a}\delta_{\gamma q}\,, (4.29c)
ddt(δuνqa)=13aδνq.\frac{d}{dt}\left(\frac{\delta u_{\nu q}}{a}\right)=-\frac{1}{3a}\delta_{\nu q}\,. (4.29d)

For the delta sector,

[2F˙a˙a+F¨]a2Ψq+[6Fa˙a+52F˙]a2Ψ˙q+3Fa2Ψ¨q,\displaystyle\left[2\dot{F}\frac{\dot{a}}{a}+\ddot{F}\right]a^{2}\Psi_{q}+\left[6F\frac{\dot{a}}{a}+\frac{5}{2}\dot{F}\right]a^{2}\dot{\Psi}_{q}+3Fa^{2}\ddot{\Psi}_{q},
ddt(a2Ψ~˙q)=2a23t2(δ~DqFδDq2),\displaystyle-\frac{d}{dt}\left(a^{2}\dot{\tilde{\Psi}}_{q}\right)=\frac{2a^{2}}{3t^{2}}\left(\tilde{\delta}_{Dq}-F\frac{\delta_{Dq}}{2}\right)\,, (4.29e)
δ~˙γqq2a2(δu~γq+Fδuγq)+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{\gamma q}-\frac{q^{2}}{a^{2}}\left(\delta\tilde{u}_{\gamma q}+F\delta u_{\gamma q}\right)+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\,, (4.29f)
δ~˙Dq+Ψ~˙q0(FΨq)\displaystyle\dot{\tilde{\delta}}_{Dq}+\dot{\tilde{\Psi}}_{q}-\partial_{0}(F\Psi_{q}) =\displaystyle= 0,\displaystyle 0\,, (4.29g)
δ~γq3a+ddt(δu~γqa)Fddt(δuγqa)\displaystyle\frac{\tilde{\delta}_{\gamma q}}{3a}+\frac{d}{dt}\left(\frac{\delta\tilde{u}_{\gamma q}}{a}\right)-F\frac{d}{dt}\left(\frac{\delta u_{\gamma q}}{a}\right) =\displaystyle= 0.\displaystyle 0\,. (4.29h)

Where (in this era),

a(t)=(3H021+C)2/3t2/3,a(t)=\left(\frac{3H_{0}}{2\sqrt{1+C}}\right)^{2/3}t^{2/3}, (4.30)
F(t)\displaystyle F(t) \displaystyle\propto L3a(t)3/2.\displaystyle-\frac{L}{3}a(t)^{3/2}. (4.31)

It is remarkable that in GR sector there are exact solutions, given by

δDq\displaystyle\delta_{Dq} =\displaystyle= 9q2t2q𝒯(κ)10a2,\displaystyle\frac{9q^{2}t^{2}{\cal R}_{q}{\cal T}(\kappa)}{10a^{2}}\,, (4.32)
Ψ˙q\displaystyle\dot{\Psi}_{q} =\displaystyle= 3q2tq𝒯(κ)5a2,\displaystyle-\frac{3q^{2}t{\cal R}_{q}{\cal T}(\kappa)}{5a^{2}}\,, (4.33)
δγq=δνq=3q5[𝒯(κ)𝒮(κ)cos(q0tdt3a+Δ(κ))],\displaystyle\delta_{\gamma q}=\delta_{\nu q}=\frac{3{\cal R}_{q}}{5}\left[{\cal T}(\kappa)-{\cal S}(\kappa)\cos\left(q\int_{0}^{t}\frac{dt}{\sqrt{3}a}+\Delta(\kappa)\right)\right]\;, (4.34)
δuγq=δuνq=3tq5[𝒯(κ)+𝒮(κ)a3qtsin(q0tdt3a+Δ(κ))].\displaystyle\delta u_{\gamma q}=\delta u_{\nu q}=\frac{3t{\cal R}_{q}}{5}\left[-{\cal T}(\kappa)+{\cal S}(\kappa)\frac{a}{\sqrt{3}qt}\sin\left(q\int_{0}^{t}\frac{dt}{\sqrt{3}a}+\Delta(\kappa)\right)\right]\,. (4.35)

Where 𝒯(κ){\cal T}(\kappa), 𝒮(κ){\cal S}(\kappa) and Δ(κ)\Delta(\kappa) are time-independent dimensionless functions of the dimensionless re-scaled wave number

κq2aEQHEQ\kappa\equiv\frac{q\sqrt{2}}{a_{EQ}H_{EQ}} (4.36)

.

aEQa_{EQ} and HEQH_{EQ} are, respectively, the Robertson-Walker scale factor and the expansion rate at matter-radiation equally. These are known as transfer functions. (These functions can only depend on κ\kappa because they must be independent of the spatial coordinates’ normalization and are dimensionless. A complete discussion of the behavior of these functions can be found in [40]). On the other side, delta perturbations have not an exact solution, and numerical calculation is needed to find them, however we will not present numerical solutions in this work, and we only will estimate the initial conditions of the perturbations at the end of this section.

In order to get all transfer functions we have to compare solutions with the full equation system (with ρB=ρ~B=0\rho_{B}=\tilde{\rho}_{B}=0). To do this task let us make the change of variable ya/aEQ=a/Cy\equiv a/a_{EQ}=a/C, this means

ddt=HEQ21+yyddy.\frac{d}{dt}=\frac{H_{EQ}}{\sqrt{2}}\frac{\sqrt{1+y}}{y}\frac{d}{dy}\,. (4.37)

Also, we will use the following parametrization for all perturbations

δDq=κ2q0d(y)/4,δγq=δνq=κ2q0r(y)/4,\displaystyle\delta_{Dq}=\kappa^{2}{\cal R}^{0}_{q}d(y)/4\,\,,\;\;\;\;\delta_{\gamma q}=\delta_{\nu q}=\kappa^{2}{\cal R}^{0}_{q}r(y)/4\,,
Ψ˙q=(κ2HEQ/42)q0f(y),δuγq=δuνq=(κ22/4HEQ)q0g(y),\displaystyle\dot{\Psi}_{q}=(\kappa^{2}H_{EQ}/4\sqrt{2}){\cal R}^{0}_{q}f(y)\,\,,\;\;\;\delta u_{\gamma q}=\delta u_{\nu q}=(\kappa^{2}\sqrt{2}/4H_{EQ}){\cal R}^{0}_{q}g(y)\,,

and

δ~Dq=κ2q0d~(y)/4,δ~γq=δ~νq=κ2q0r~(y)/4,\displaystyle\tilde{\delta}_{Dq}=\kappa^{2}{\cal R}^{0}_{q}\tilde{d}(y)/4\,\,,\;\;\;\;\tilde{\delta}_{\gamma q}=\tilde{\delta}_{\nu q}=\kappa^{2}{\cal R}^{0}_{q}\tilde{r}(y)/4\,,
Ψ~˙q=(κ2HEQ/42)q0f~(y),δu~γq=δu~νq=(κ22/4HEQ)q0g~(y).\displaystyle\dot{\tilde{\Psi}}_{q}=(\kappa^{2}H_{EQ}/4\sqrt{2}){\cal R}^{0}_{q}\tilde{f}(y)\,\,,\;\;\;\delta\tilde{u}_{\gamma q}=\delta\tilde{u}_{\nu q}=(\kappa^{2}\sqrt{2}/4H_{EQ}){\cal R}^{0}_{q}\tilde{g}(y)\,.

Then Eqs. (4.29a)-(4.29d) and Eqs. (4.29e)-(4.29h) become

1+yddy(y2f(y))\displaystyle\sqrt{1+y}\frac{d}{dy}\left(y^{2}{f}(y)\right) =\displaystyle= 32d(y)4r(y)y,\displaystyle-\frac{3}{2}{d}(y)-\frac{4{r}(y)}{y}\,, (4.38a)
1+yddyr(y)κ2g(y)y\displaystyle\sqrt{1+y}\frac{d}{dy}{r}(y)-\frac{\kappa^{2}{g}(y)}{y} =\displaystyle= yf(y),\displaystyle-y{f}(y)\,, (4.38b)
1+yddyd(y)\displaystyle\sqrt{1+y}\frac{d}{dy}{d}(y) =\displaystyle= yf(y),\displaystyle-y{f}(y)\,, (4.38c)
1+yddy(g(y)y)\displaystyle\sqrt{1+y}\frac{d}{dy}\left(\frac{{g}(y)}{y}\right) =\displaystyle= r(y)3,\displaystyle-\frac{{r}(y)}{3}\,\,, (4.38d)
and
[(1+2y)yF(y)+y(1+y)F′′(y)]d(y)+[6F(y)+52yF(y)]y1+yf(y)\displaystyle-\left[(1+2y)yF^{\prime}(y)+y(1+y)F^{\prime\prime}(y)\right]d(y)+\left[6F(y)+\frac{5}{2}yF^{\prime}(y)\right]y\sqrt{1+y}f(y)
+3F(y)y21+yf(y)1+yddy(y2f~(y))=3d~(y)2+4r~(y)y\displaystyle+3F(y)y^{2}\sqrt{1+y}f^{\prime}(y)-\sqrt{1+y}\frac{d}{dy}\left(y^{2}\tilde{f}(y)\right)=\frac{3\tilde{d}(y)}{2}+\frac{4\tilde{r}(y)}{y}
3F(y)d(y)44F(y)r(y)y\displaystyle-\frac{3F(y)d(y)}{4}-\frac{4F(y)r(y)}{y} ,\displaystyle\,, (4.38e)
1+yddyd~(y)=yf~(y)1+yddyd(y)\displaystyle\sqrt{1+y}\frac{d}{dy}\tilde{d}(y)=-y\tilde{f}(y)-\sqrt{1+y}\frac{d}{dy}d(y) ,\displaystyle\,, (4.38f)
1+yddyr~(y)=κ2y[g~(y)+F(y)g(y)]yf~(y)1+yddyd(y)\displaystyle\sqrt{1+y}\frac{d}{dy}\tilde{r}(y)=\frac{\kappa^{2}}{y}[\tilde{g}(y)+F(y)g(y)]-y\tilde{f}(y)-\sqrt{1+y}\frac{d}{dy}d(y) ,\displaystyle\,, (4.38g)
1+yddy(g~(y)y)=r~(y)3+1+yF(y)ddy(g(y)y)\displaystyle\sqrt{1+y}\frac{d}{dy}\left(\frac{\tilde{g}(y)}{y}\right)=-\frac{\tilde{r}(y)}{3}+\sqrt{1+y}F(y)\frac{d}{dy}\left(\frac{g(y)}{y}\right) .\displaystyle\,. (4.38h)

In this notation, the initial conditions are

d(y)\displaystyle d(y) =\displaystyle= r(y)y2,\displaystyle r(y)\rightarrow y^{2}\,,
f(y)\displaystyle f(y) \displaystyle\rightarrow 2,\displaystyle-2\,,
g(y)\displaystyle g(y) \displaystyle\rightarrow y49.\displaystyle-\frac{y^{4}}{9}\,.

For delta sector,

d~(y)\displaystyle\tilde{d}(y) =\displaystyle= r~(y)L2C3/23y3,\displaystyle\tilde{r}(y)\rightarrow-\frac{L_{2}C^{3/2}}{3}y^{3}\,,
f~(y)\displaystyle\tilde{f}(y) \displaystyle\rightarrow 2L2C3/2y,\displaystyle\sqrt{2}L_{2}C^{3/2}y\,,
g~(y)\displaystyle\tilde{g}(y) \displaystyle\rightarrow L2C3/22y5.\displaystyle\frac{L_{2}C^{3/2}}{2}y^{5}\,.

From supernovae fit, we know that C104C\sim 10^{-4} and L0.45L\sim 0.45 [33, 35], thus we can estimate that fluctuations of “delta matter” at the beginning of the Universe was much smaller than fluctuations of standard matter. For example, at y103y\sim 10^{-3} the ratio between components of the Universe is |δ~α/δα|1010|\tilde{\delta}_{\alpha}/\delta_{\alpha}|\sim 10^{-10}.

We do not show numerical solutions here because the aim of this work is to trace a guide for future work, in particular, in the numeric computation of multipole coefficients for temperature fluctuations in the CMB. However, we will derive the equations to do that computation.

5 Derivation of temperature fluctuations

It is possible to find expressions analogous to temperature fluctuations usually obtained by Boltzmann equations by studying photons propagation in FRLW perturbed coordinates, with the condition g¯i0=0\bar{g}_{i0}=0444see Section 7.1: General formulas for the temperature fluctuation, Cosmology, Weinberg.. For DG, the metric which photons follow is given by

𝐠00\displaystyle{\bf g}_{00} =\displaystyle= ((1+3F(t))c2+E(𝐱,t)+E~(𝐱,t)),𝐠i0=0,\displaystyle-((1+3F(t))c^{2}+E({\bf x},t)+\tilde{E}({\bf x},t))\,,\;\;\;\;{\bf g}_{i0}=0\,,
𝐠ij\displaystyle{\bf g}_{ij} =\displaystyle= a2(t)(1+F(t))δij+hij(𝐱,t)+h~ij(𝐱,t),\displaystyle a^{2}(t)(1+F(t))\delta_{ij}+h_{ij}({\bf x},t)+\tilde{h}_{ij}({\bf x},t)\,, (5.1)

A ray of light propagating to the origin of the FRLW coordinate system , from a direction n^\hat{n}, will have a comoving radial coordinate rr related with tt by

0=𝐠¯μνdxμdxν=((1+3F(t))c2+E(rn^,t)+E~(rn^,t))dt2\displaystyle 0={\bf\bar{g}_{\mu\nu}}dx^{\mu}dx^{\nu}=-((1+3F(t))c^{2}+E(r\hat{n},t)+\tilde{E}(r\hat{n},t))dt^{2}
+(a2(t)(1+F(t))+hrr(rn^,t)+h~rr(rn^,t))dr2,\displaystyle+(a^{2}(t)(1+F(t))+h_{rr}(r\hat{n},t)+\tilde{h}_{rr}(r\hat{n},t))dr^{2}\,, (5.2)

in other words,

drdt\displaystyle\frac{dr}{dt} =\displaystyle= ((1+3F(t))c2+E+E~a2(t)(1+F(t))+hrr+h~rr)1/2\displaystyle-\left(\frac{(1+3F(t))c^{2}+E+\tilde{E}}{a^{2}(t)(1+F(t))+h_{rr}+\tilde{h}_{rr}}\right)^{1/2} (5.3)
\displaystyle\simeq caDG(t)+c(hrr+h~rr)2(1+3F(t))aDG3(t)E+E~2(1+3F(t))caDG(t),\displaystyle-\frac{c}{a_{DG}(t)}+\frac{c(h_{rr}+\tilde{h}_{rr})}{2(1+3F(t))a_{DG}^{3}(t)}-\frac{E+\tilde{E}}{2(1+3F(t))ca_{DG}(t)}\,,

where aDG(t)a_{DG}(t) is the modified scale factor given by

aDG(t)=a(t)1+F(t)1+3F(t).a_{DG}(t)=a(t)\sqrt{\frac{1+F(t)}{1+3F(t)}}. (5.4)

Now we will use the approximation of a sharp transition between opaque and transparent Universe at a moment tlst_{ls} of last scattering, at red shift z1090z\simeq 1090. With this approximation, the relevant term at first order in Eq. (5.3) is

r(t)=c[s(t)+tlstdtaDG(t)N(cs(t)n^,t)],r(t)=c\left[s(t)+\int_{t_{ls}}^{t}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}N\left(cs(t^{\prime})\hat{n},t^{\prime}\right)\,\right]\,, (5.5)

where

N(𝐱,t)12(1+3F)[hrr(𝐱,t)+h~rr(𝐱,t)aDG2E(𝐱,t)c2E~(𝐱,t)c2],N({\bf x},t)\equiv\frac{1}{2(1+3F)}\left[\frac{h_{rr}({\bf x},t)+\tilde{h}_{rr}({\bf x},t)}{a_{DG}^{2}}-\frac{E({\bf x},t)}{c^{2}}-\frac{\tilde{E}({\bf x},t)}{c^{2}}\right]\,, (5.6)

and s(t)s(t) is the zero order solution for the radial coordinate. s(t)=rlss(t)=r_{ls} when t=tlst=t_{ls}:

s(t)=rlstlstdtaDG(t)=tt0dtaDG(t).s(t)=r_{ls}-\int_{t_{ls}}^{t}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}=\int_{t}^{t_{0}}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}\,. (5.7)

If a ray of light arrives to r=0r=0 at a time t0t_{0}, then Eq. (5.5) gives

0=s(t0)+tlstdtaDG(t)N(cs(t)n^,t)=rls+tlst0dtaDG(t)(N(cs(t)n^,t)1).0=s(t_{0})+\int_{t_{ls}}^{t}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}N\left(cs(t^{\prime})\hat{n},t^{\prime}\right)=r_{ls}+\int_{t_{ls}}^{t_{0}}\frac{dt}{a_{DG}(t)}\left(N\left(cs(t)\hat{n},t\right)-1\right)\,. (5.8)

A time interval δtls\delta t_{ls}, between departure of successive rays of light at time tlst_{ls} of last scattering, produces an interval of time δt0\delta t_{0}, between the arrival of the rays of light at t0t_{0}, given by the variation of Eq. (5.8):

0=δtlsaDG(tls)[1N(crlsn^,tls)+ctlst0dtaDG(t)(N(r(t)n^,t)r)r=cs(t)]\displaystyle 0=\frac{\delta t_{ls}}{a_{DG}(t_{ls})}\left[1-N(cr_{ls}\hat{n},t_{ls})+c\int_{t_{ls}}^{t_{0}}\frac{dt}{a_{DG}(t)}\left(\frac{\partial N\left(r(t)\hat{n},t\right)}{\partial r}\right)_{r=cs(t)}\right]
+δtls(uγr(crlsn^,tls)+u~γr(crlsn^,tls))+δt0aDG(t0)[1+N(0,t0)].\displaystyle+\delta t_{ls}(\partial u_{\gamma}^{r}(cr_{ls}\hat{n},t_{ls})+\partial\tilde{u}_{\gamma}^{r}(cr_{ls}\hat{n},t_{ls}))+\frac{\delta t_{0}}{a_{DG}(t_{0})}\left[-1+N(0,t_{0})\right]\,. (5.9)

The velocity terms of the photon-gas or photon-electron-nucleon arise because of the variation respect to the time of the radial coordinate rlsr_{ls} described by the Eq. (5.8). The exchange rate of N(s(t)n^,t)N(s(t)\hat{n},t) is

ddtN(s(t)n^,t)=(tN(rn^,t))r=cs(t)caDG(t)(N(rn^,t)r)r=cs(t),\frac{d}{dt}N\left(s(t)\hat{n},t\right)=\left(\frac{\partial}{\partial t}N(r\hat{n},t)\right)_{r=cs(t)}-\frac{c}{a_{DG}(t)}\left(\frac{\partial N(r\hat{n},t)}{\partial r}\right)_{r=cs(t)}\,,

then,

0=δtlsaDG(tls)[1N(0,tls)+tlst0𝑑t(N(rn^,t)t)r=cs(t)]\displaystyle 0=\frac{\delta t_{ls}}{a_{DG}(t_{ls})}\left[1-N(0,t_{ls})+\int_{t_{ls}}^{t_{0}}dt\left(\frac{\partial N\left(r\hat{n},t\right)}{\partial t}\right)_{r=cs(t)}\right]
+δtls(uγr(rlsn^,tls)+u~γr(rlsn^,tls))+δt0aDG(t0)[1+N(0,t0)].\displaystyle+\delta t_{ls}(\partial u_{\gamma}^{r}(r_{ls}\hat{n},t_{ls})+\partial\tilde{u}_{\gamma}^{r}(r_{ls}\hat{n},t_{ls}))+\frac{\delta t_{0}}{a_{DG}(t_{0})}\left[-1+N(0,t_{0})\right]\,. (5.10)

This result gives the ratio between the time intervals between ray of lights that are emitted and received. However, we are interested in this ratio, but for the proper time, that in DG it is defined with the original metric gμνg_{\mu\nu}:

δτL=1+E(rls,tls)c2δtls,δτ0=1+E(0,t0)c2δt0,\delta\tau_{L}=\sqrt{1+\frac{E(r_{ls},t_{ls})}{c^{2}}}\delta t_{ls}\;,\;\;\;\delta\tau_{0}=\sqrt{1+\frac{E(0,t_{0})}{c^{2}}}\delta t_{0}\;, (5.11)

At first order, it gives the ratio between a received frequency and an emitted one:

ν0νL=δτLδτ0=aDG(tls)aDG(t0)[1+12c2(E(rlsn^,t)E(0,t0))\displaystyle\frac{\nu_{0}}{\nu_{L}}=\frac{\delta\tau_{L}}{\delta\tau_{0}}=\frac{a_{DG}(t_{ls})}{a_{DG}(t_{0})}\left[1+\frac{1}{2c^{2}}\left(E(r_{ls}\hat{n},t)-E(0,t_{0})\right)\right.
tlst0(tN(rn^,t))r=cs(t)dtaDG(t)(δuγr(rlsn^,t)+δu~γr(rlsn^,t))].\displaystyle-\left.\int_{t_{ls}}^{t_{0}}\left(\frac{\partial}{\partial t}N(r\hat{n},t)\right)_{r=cs(t)}dt-a_{DG}(t)(\delta u_{\gamma}^{r}(r_{ls}\hat{n},t)+\delta\tilde{u}_{\gamma}^{r}(r_{ls}\hat{n},t))\right]\,. (5.12)

In [35], we defined the physical scale factor as YDG(t)aDG(t)/aDG(t0)Y_{DG}(t)\equiv a_{DG}(t)/a_{DG}(t_{0}). Thus, we recover the standard expression for the redshift. The observed temperature at the present time t0t_{0} from direction n^\hat{n} is

T(n^)=(ν0νL)(T¯(tls)+δT(crlsn^,tls)),T(\hat{n})=\left(\frac{\nu_{0}}{\nu_{L}}\right)(\bar{T}(t_{ls})+\delta T(cr_{ls}\hat{n},t_{ls}))\;, (5.13)

In absence of perturbations, the observed temperature in all directions should be

T0=(aDG(tls)aDG(t0))T¯(tls),T_{0}=\left(\frac{a_{DG}(t_{ls})}{a_{DG}(t_{0})}\right)\bar{T}(t_{ls})\,, (5.14)

therefore, the ratio between the observed temperature shift that comes from direction n^\hat{n} and the unperturbed value is

ΔT(n^)T0\displaystyle\frac{\Delta T(\hat{n})}{T_{0}} \displaystyle\equiv T(n^)T0T0=ν0aDG(t0)νLaDG(tls)1+δT(crlsn^,tls)T¯(tls)\displaystyle\frac{T(\hat{n})-T_{0}}{T_{0}}=\frac{\nu_{0}a_{DG}(t_{0})}{\nu_{L}a_{DG}(t_{ls})}-1+\frac{\delta T(cr_{ls}\hat{n},t_{ls})}{\bar{T}(t_{ls})} (5.15)
=\displaystyle= 12c2(E(rlsn^,t)E(0,t0))tlst0𝑑t(tN(rn^,t))r=cs(t)\displaystyle\frac{1}{2c^{2}}\left(E(r_{ls}\hat{n},t)-E(0,t_{0})\right)-\int_{t_{ls}}^{t_{0}}dt\left(\frac{\partial}{\partial t}N(r\hat{n},t)\right)_{r=cs(t)}
\displaystyle- aDG(t)(δuγr(rlsn^,t)+δu~γr(rlsn^,t))+δT(crlsn^,tls)T¯(tls).\displaystyle a_{DG}(t)(\delta u_{\gamma}^{r}(r_{ls}\hat{n},t)+\delta\tilde{u}_{\gamma}^{r}(r_{ls}\hat{n},t))+\frac{\delta T(cr_{ls}\hat{n},t_{ls})}{\bar{T}(t_{ls})}\,.

For scalar perturbations in any gauge with 𝐡i0=0{\bf h}_{i0}=0, the metric perturbations are

h00=E,hij=(1+F)a2[Aδij+2Bxixj],\displaystyle h_{00}=-E\;\;,\;\;h_{ij}=(1+F)a^{2}\left[A\delta_{ij}+\frac{\partial^{2}B}{\partial x^{i}\partial x^{j}}\right],
h~00=E~,h~ij=(1+F)a2[A~δij+2B~xixj].\displaystyle\tilde{h}_{00}=-\tilde{E}\;\;,\;\;\tilde{h}_{ij}=(1+F)a^{2}\left[\tilde{A}\delta_{ij}+\frac{\partial^{2}\tilde{B}}{\partial x^{i}\partial x^{j}}\right]. (5.16)

Besides for scalar perturbations radial velocity of the photon fluid and the delta versions are given in terms of the velocity potentials δuγ\delta u_{\gamma} and δu~γ\delta\tilde{u}_{\gamma}, respectively,

δuγr=(g¯+g~¯)rμδuγxμ=1(1+F(t))a2δuγr,\displaystyle\delta u_{\gamma}^{r}=(\bar{g}+\bar{\tilde{g}})^{r\mu}\frac{\partial\delta u_{\gamma}}{\partial x^{\mu}}=\frac{1}{(1+F(t))a^{2}}\frac{\partial\delta u_{\gamma}}{\partial r}\,,
δu~γr=(g¯+g~¯)rμδu~γxμ=1(1+F(t))a2δu~γr.\displaystyle\delta\tilde{u}_{\gamma}^{r}=(\bar{g}+\bar{\tilde{g}})^{r\mu}\frac{\partial\delta\tilde{u}_{\gamma}}{\partial x^{\mu}}=\frac{1}{(1+F(t))a^{2}}\frac{\partial\delta\tilde{u}_{\gamma}}{\partial r}\,. (5.17)

Then Eq. (5.15) gives the scalar contribution to temperature fluctuations

(ΔT(n^)T0)S\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S} =\displaystyle= 12c2(E(rlsn^,t)E(0,t0))tlst0𝑑t(tN(rn^,t))r=cs(t)\displaystyle\frac{1}{2c^{2}}\left(E(r_{ls}\hat{n},t)-E(0,t_{0})\right)-\int_{t_{ls}}^{t_{0}}dt\left(\frac{\partial}{\partial t}N(r\hat{n},t)\right)_{r=cs(t)} (5.18)
\displaystyle- 1(1+3F(t))aDG(δuγ(crlsn^,t)r+δu~γ(crlsn^,t)t)\displaystyle\frac{1}{(1+3F(t))a_{DG}}\left(\frac{\partial\delta u_{\gamma}(cr_{ls}\hat{n},t)}{\partial r}+\frac{\partial\delta\tilde{u}_{\gamma}(cr_{ls}\hat{n},t)}{\partial t}\right)
+\displaystyle+ δT(crlsn^,tls)T¯(tls),\displaystyle\frac{\delta T(cr_{ls}\hat{n},t_{ls})}{\bar{T}(t_{ls})}\,,

where

N=12[A+2Br2+(A~+2B~r2)E1+3FE~1+3F].N=\frac{1}{2}\left[A+\frac{\partial^{2}B}{\partial r^{2}}+\left(\tilde{A}+\frac{\partial^{2}\tilde{B}}{\partial r^{2}}\right)-\frac{E}{1+3F}-\frac{\tilde{E}}{1+3F}\right]\,. (5.19)

In the next step we will study the gauge transformations of these fluctuations. The following identity for the fields BB and B~\tilde{B} will be useful:

(2B˙r2)r=s(t)=(ddt[aDGB˙r+aDGa˙DGB˙+aDG2B¨]+t[aDGa˙DGB˙+aDG2B¨])r=s(t).\left(\frac{\partial^{2}\dot{B}}{\partial r^{2}}\right)_{r=s(t)}=-\left(\frac{d}{dt}\left[a_{DG}\frac{\partial\dot{B}}{\partial r}+a_{DG}\dot{a}_{DG}\dot{B}+a_{DG}^{2}\ddot{B}\right]+\frac{\partial}{\partial t}\left[a_{DG}\dot{a}_{DG}\dot{B}+a_{DG}^{2}\ddot{B}\right]\right)_{r=s(t)}. (5.20)

Then, the temperature fluctuations are described by

(ΔT(n^)T0)S=(ΔT(n^)T0)earlyS+(ΔT(n^)T0)lateS+(ΔT(n^)T0)ISWS\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}=\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{early}+\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{late}+\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{ISW} (5.21)

where

(ΔT(n^)T0)earlyS\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{early} =\displaystyle= 12aDG(tls)a˙DG(tls)B˙(rlsn^,tls)12aDG2(tls)B¨(rlsn^,tls)+12E(rlsn^,tls)\displaystyle-\frac{1}{2}a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})\dot{B}(r_{ls}\hat{n},t_{ls})-\frac{1}{2}a_{DG}^{2}(t_{ls})\ddot{B}(r_{ls}\hat{n},t_{ls})+\frac{1}{2}E(r_{ls}\hat{n},t_{ls})
+δT(rlsn^)T¯(tls)\displaystyle+\frac{\delta T(r_{ls}\hat{n})}{\bar{T}(t_{ls})} \displaystyle- aDG(tls)[r(12B˙(rn^,tls)+1(1+3F(tls))aDG2(tls)δuγ(rn^,tls))r=rls]\displaystyle a_{DG}(t_{ls})\left[\frac{\partial}{\partial r}\left(\frac{1}{2}\dot{B}(r\hat{n},t_{ls})+\frac{1}{(1+3F(t_{ls}))a_{DG}^{2}(t_{ls})}\delta{u}_{\gamma}(r\hat{n},t_{ls})\right)_{r=r_{ls}}\right]
\displaystyle- {(12aDG(tls)a˙DG(tls)B~˙(rlsn^,tls)+12aDG2(tls)B~¨(rlsn^,tls))\displaystyle\left\{\left(\frac{1}{2}a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})\dot{\tilde{B}}(r_{ls}\hat{n},t_{ls})+\frac{1}{2}a_{DG}^{2}(t_{ls})\ddot{\tilde{B}}(r_{ls}\hat{n},t_{ls})\right)\right.
+aDG(tls)\displaystyle+a_{DG}(t_{ls}) ×\displaystyle\times [r(12B~˙(rn^,tls)+1(1+3F(tls))aDG2(tls)δu~γ(rn^,tls))r=rls]},\displaystyle\left.\left[\frac{\partial}{\partial r}\left(\frac{1}{2}\dot{\tilde{B}}(r\hat{n},t_{ls})+\frac{1}{(1+3F(t_{ls}))a_{DG}^{2}(t_{ls})}\delta{\tilde{u}}_{\gamma}(r\hat{n},t_{ls})\right)_{r=r_{ls}}\right]\right\}\,, (5.22)
(ΔT(n^)T0)lateS\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{late} =\displaystyle= 12aDG(t0)a˙DG(t0)B˙(0,t0)+12aDG2(t0)B¨(0,t0)12E(0,t0)\displaystyle\frac{1}{2}a_{DG}(t_{0})\dot{a}_{DG}(t_{0})\dot{B}(0,t_{0})+\frac{1}{2}a_{DG}^{2}(t_{0})\ddot{B}(0,t_{0})-\frac{1}{2}E(0,t_{0})
+\displaystyle+ aDG(t0)[r(12B˙(rn^,t0)+1(1+3F(t0))aDG2(t0)δuγ(rn^,t0))r=0]\displaystyle a_{DG}(t_{0})\left[\frac{\partial}{\partial r}\left(\frac{1}{2}\dot{B}(r\hat{n},t_{0})+\frac{1}{(1+3F(t_{0}))a_{DG}^{2}(t_{0})}\delta{u}_{\gamma}(r\hat{n},t_{0})\right)_{r=0}\right]
+\displaystyle+ {(12aDG(t0)a˙DG(t0)B~˙(0,t0)+12aDG2(t0)B~¨(0,t0))\displaystyle\left\{\left(\frac{1}{2}a_{DG}(t_{0})\dot{a}_{DG}(t_{0})\dot{\tilde{B}}(0,t_{0})+\frac{1}{2}a_{DG}^{2}(t_{0})\ddot{\tilde{B}}(0,t_{0})\right)\right.
+aDG(t0)\displaystyle+a_{DG}(t_{0}) ×\displaystyle\times [r(12B~˙(rn^,t0)+1(1+3F(t0))aDG2(t0)δu~γ(rn^,t0))r=rls]},\displaystyle\left.\left[\frac{\partial}{\partial r}\left(\frac{1}{2}\dot{\tilde{B}}(r\hat{n},t_{0})+\frac{1}{(1+3F(t_{0}))a_{DG}^{2}(t_{0})}\delta{\tilde{u}}_{\gamma}(r\hat{n},t_{0})\right)_{r=r_{ls}}\right]\right\}\;, (5.23)
(ΔT(n^)T0)ISWS\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{ISW} =\displaystyle= 12tlst0dt{t[aDG2(t)B¨(rn^,t)+aDG(t)a˙DG(t)B˙(rn^,t)+A(rn^,t)\displaystyle-\frac{1}{2}\int_{t_{ls}}^{t_{0}}dt\left\{\frac{\partial}{\partial t}\left[a_{DG}^{2}(t)\ddot{B}(r\hat{n},t)+a_{DG}(t)\dot{a}_{DG}(t)\dot{B}(r\hat{n},t)+A(r\hat{n},t)\right.\right. (5.24)
\displaystyle- E(rn^,t)1+3F(t)+aDG2(t)B~¨(rn^,t)+aDG(t)a˙DG(t)B~˙(rn^,t)\displaystyle\frac{E(r\hat{n},t)}{1+3F(t)}+a_{DG}^{2}(t)\ddot{\tilde{B}}(r\hat{n},t)+a_{DG}(t)\dot{a}_{DG}(t)\dot{\tilde{B}}(r\hat{n},t)
+\displaystyle+ A~(rn^,t)E~(rn^,t)1+3F(t)]},\displaystyle\left.\left.\tilde{A}(r\hat{n},t)-\frac{\tilde{E}(r\hat{n},t)}{1+3F(t)}\right]\right\}\,,

The “late” term is the sum of independent direction terms and a term proportional to n^\hat{n}, which was added to represent the local anisotropies of the gravitational field and the local fluid. In GR, these terms only contribute to the multipole expansion for l=0l=0 and l=1l=1. Thus we will ignore their contribution to DG.

5.1 Gauge transformations

We are going to study the gauge transformations for photons propagating in the metric 𝐠μν{\bf g}_{\mu\nu} for a parameter ϵμ{\boldsymbol{\epsilon}_{\mu}}. Then the transformations are

ΔA\displaystyle\Delta{A} =\displaystyle= 2a˙(1+F)aϵ𝟎1+3F,ΔB=21+Fϵ𝑺(1+F)a2,\displaystyle\frac{2\dot{a}}{(1+F)a}\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\,,\;\;\;\;\Delta{B}=-\frac{2}{1+F}\frac{\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\,,
ΔCi\displaystyle\Delta{C}_{i} =\displaystyle= 11+Fϵ𝒊𝑽(1+F)a2,ΔDij=0,ΔE=2t(ϵ𝟎1+3F),\displaystyle-\frac{1}{1+F}\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\,,\;\;\;\;\Delta{D}_{ij}=0\,,\;\;\;\;\Delta{E}=2\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\right), (5.25)
ΔH\displaystyle\Delta{H} =\displaystyle= 11+Fa[a2t(ϵ𝑺(1+F)a2)+ϵ𝟎(1+3F)],ΔGi=a1+Ft(ϵ𝒊𝑽(1+F)a2).\displaystyle-\frac{1}{\sqrt{1+F}a}\left[a^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\right)+\frac{\boldsymbol{\epsilon_{0}}}{(1+3F)}\right]\,,\;\;\;\;\Delta{G}_{i}=-\frac{a}{\sqrt{1+F}}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\right).

and

ΔA~\displaystyle\Delta\tilde{A} =\displaystyle= 1(1+F)a2[t(Fa2)ϵ𝟎1+3F],ΔB~=1(1+F)a2[2F1+Fϵ𝑺],\displaystyle\frac{1}{(1+F)a^{2}}\left[\frac{\partial}{\partial t}(Fa^{2})\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\right]\,,\;\;\;\;\Delta\tilde{B}=-\frac{1}{(1+F)a^{2}}\left[\frac{2F}{1+F}\boldsymbol{\epsilon^{S}}\right]\,,
ΔC~i\displaystyle\Delta\tilde{C}_{i} =\displaystyle= F1+Fϵ𝒊𝑽(1+F)a2,ΔD~ij=0,ΔE~=6Ft(ϵ𝟎1+3F)+3F˙1+3Fϵ𝟎\displaystyle-\frac{F}{1+F}\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\,,\;\;\;\;\Delta\tilde{D}_{ij}=0\,,\;\;\;\;\Delta\tilde{E}=6F\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\right)+\frac{3\dot{F}}{1+3F}\boldsymbol{\epsilon_{0}}
ΔH~\displaystyle\Delta\tilde{H} =\displaystyle= 11+Fa[Fa2t(ϵ𝑺(1+F)a2)+3Fϵ𝟎(1+3F)],\displaystyle-\frac{1}{\sqrt{1+F}a}\left[Fa^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\right)+\frac{3F\boldsymbol{\epsilon_{0}}}{(1+3F)}\right]\,,
ΔG~i\displaystyle\Delta\tilde{G}_{i} =\displaystyle= 11+Fa[Fa2t(ϵ𝒊𝑽(1+F)a2)].\displaystyle-\frac{1}{\sqrt{1+F}a}\left[Fa^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\right)\right]. (5.26)

Now, considering the sum of the perturbations we get

ΔA+ΔA~\displaystyle\Delta A+\Delta\tilde{A} =\displaystyle= 1(1+F)a2t[(1+F)a2]ϵ𝟎1+3F,\displaystyle\frac{1}{(1+F)a^{2}}\frac{\partial}{\partial t}[(1+F)a^{2}]\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\,, (5.27a)
ΔB+ΔB~\displaystyle\Delta B+\Delta\tilde{B} =\displaystyle= 2ϵ𝑺(1+F)a2,\displaystyle-\frac{2\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\,, (5.27b)
ΔE+ΔE~\displaystyle\Delta E+\Delta\tilde{E} =\displaystyle= 2(1+3F)t(ϵ𝟎1+3F)+3F˙1+3Fϵ𝟎,\displaystyle 2(1+3F)\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\right)+\frac{3\dot{F}}{1+3F}\boldsymbol{\epsilon_{0}}\,, (5.27c)
ΔH+ΔH~\displaystyle\Delta H+\Delta\tilde{H} =\displaystyle= 11+Fa[(1+F)a2t(ϵ𝑺(1+F)a2)+ϵ𝟎],\displaystyle-\frac{1}{\sqrt{1+F}a}\left[(1+F)a^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\right)+\boldsymbol{\epsilon_{0}}\right]\,, (5.27d)
ΔCi+ΔC~i\displaystyle\Delta C_{i}+\Delta\tilde{C}_{i} =\displaystyle= ϵ𝒊𝑽(1+F)a2,\displaystyle-\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\,, (5.27e)
ΔGi+ΔG~i\displaystyle\Delta G_{i}+\Delta\tilde{G}_{i} =\displaystyle= 11+Fa[(1+F)a2t(ϵ𝒊𝑽(1+F)a2)].\displaystyle-\frac{1}{\sqrt{1+F}a}\left[(1+F)a^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon_{i}^{V}}}{(1+F)a^{2}}\right)\right]\,. (5.27f)

Now, we will study the gauge transformations that preserve the condition 𝐠i0=gio+g~i0=0{\bf g}_{i0}=g_{io}+\tilde{g}_{i0}=0. This means that ΔH+ΔH~=0\Delta H+\Delta\tilde{H}=0. This gives a solution for ϵ𝟎\boldsymbol{\epsilon_{0}} given by

ϵ𝟎=(1+F)a2t(ϵ𝑺(1+F)a2).\displaystyle\boldsymbol{\epsilon_{0}}=-(1+F)a^{2}\frac{\partial}{\partial t}\left(\frac{\boldsymbol{\epsilon^{S}}}{(1+F)a^{2}}\right)\,. (5.28)

When we study how “ISW” term transform under this type of transformations, we found that ΔISW=0\Delta ISW=0. While for the “early” term we should note that temperature perturbations transforms as

ΔδT(rlsn^,t)=T¯˙(t)ϵ𝟎1+3F,\Delta\delta T(r_{ls}\hat{n},t)=\dot{\bar{T}}(t)\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\,, (5.29)

With this expression and T¯aDG=cte\bar{T}a_{DG}=cte, we finally obtain

ΔδT(rlsn^,t)T¯(tls)=a˙DGaDGϵ𝟎1+3F.\frac{\Delta\delta T(r_{ls}\hat{n},t)}{\bar{T}(t_{ls})}=-\frac{\dot{a}_{DG}}{a_{DG}}\frac{\boldsymbol{\epsilon_{0}}}{1+3F}\,. (5.30)

This results implies that the “early” term is invariant under this gauge transformation. Note that this gauge transformation is equivalent to the previously discussed in Section 1, because we can always take ϵ\boldsymbol{\epsilon} as a combination of ϵ\epsilon and ϵ~\tilde{\epsilon}. Then we remark that temperature fluctuations are gauge invariant under scalar transformations that leave 𝐠i0=0{\bf g}_{i0}=0.

5.2 Single modes

We will assume that since the last scattering until now all the scalar contributions are dominated by a unique mode, such that any perturbation X(𝐱,t)X({\bf x},t) could be written as

X(𝐱,t)=d3qα(𝐪)ei𝐪𝐱Xq(t),X({\bf x},t)=\int d^{3}q\alpha({\bf q})e^{i{\bf q\cdot x}}X_{q}(t)\,, (5.31)

where α(𝐪)\alpha({\bf q}) is an stochastic variable, normalized such that

α(𝐪)α(𝐪)=δ3(𝐪𝐪).\langle\alpha({\bf q})\alpha^{*}({\bf q}^{\prime})\rangle=\delta^{3}({\bf q}-{\bf q}^{\prime})\,. (5.32)

Then Eqs (5) and (5.24) become

(ΔT(n^)T0)earlyS\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{early} =\displaystyle= d3qα(𝐪)ei𝐪n^r(tls)((q)+~(q)+iq^n^(𝒢(q)+𝒢~(q))),\displaystyle\int d^{3}q\alpha({\bf q})e^{i{\bf q}\cdot\hat{n}r(t_{ls})}\left({\cal F}(q)+\tilde{{\cal F}}(q)+i\hat{q}\cdot\hat{n}({\cal G}(q)+\tilde{{\cal G}}(q))\right)\,, (5.33)
(ΔT(n^)T0)ISWS\displaystyle\left(\frac{\Delta T(\hat{n})}{T_{0}}\right)^{S}_{ISW} =\displaystyle= 12t0t1dtd3qα(𝐪)ei𝐪n^s(t)ddt[aDG2(t)B¨q(t)+aDG(t)a˙DG(t)B˙q(t)\displaystyle-\frac{1}{2}\int_{t_{0}}^{t_{1}}dt\int d^{3}q\alpha({\bf q})e^{i{\bf q}\cdot\hat{n}s(t)}\frac{d}{dt}\left[a_{DG}^{2}(t)\ddot{B}_{q}(t)+a_{DG}(t)\dot{a}_{DG}(t)\dot{B}_{q}(t)\right. (5.34)
+\displaystyle+ Aq(t)Eq(t)1+3F(t)+(aDG2(t)B~¨q(t)+aDG(t)a˙DG(t)B~˙q(t)+A~q(t)\displaystyle A_{q}(t)-\frac{E_{q}(t)}{1+3F(t)}+\left.\left(a_{DG}^{2}(t)\ddot{\tilde{B}}_{q}(t)+a_{DG}(t)\dot{a}_{DG}(t)\dot{\tilde{B}}_{q}(t)+\tilde{A}_{q}(t)\right.\right.
\displaystyle- E~q(t)1+3F(t))],\displaystyle\left.\left.\frac{\tilde{E}_{q}(t)}{1+3F(t)}\right)\right]\,,

where

(q)\displaystyle{\cal F}(q) =\displaystyle= 12aDG2(t)B¨q(tls)12aDG(t)a˙DG(tls)B˙q(tls)+12Eq(tls)+δTq(tls)T¯(tls),\displaystyle-\frac{1}{2}a_{DG}^{2}(t)\ddot{B}_{q}(t_{ls})-\frac{1}{2}a_{DG}(t)\dot{a}_{DG}(t_{ls})\dot{B}_{q}(t_{ls})+\frac{1}{2}E_{q}(t_{ls})+\frac{\delta T_{q}(t_{ls})}{\bar{T}(t_{ls})}\,, (5.35)
~(q)\displaystyle\tilde{{\cal F}}(q) =\displaystyle= 12aDG2(t)B~¨q(tls)12aDG(tls)a˙DG(tls)B~˙q(tls),\displaystyle-\frac{1}{2}a_{DG}^{2}(t)\ddot{\tilde{B}}_{q}(t_{ls})-\frac{1}{2}a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})\dot{\tilde{B}}_{q}(t_{ls})\,, (5.36)
𝒢(q)\displaystyle{\cal G}(q) =\displaystyle= q(12aDG(tls)B˙q(tls)+1(1+3F(tls))aDG(tls)δuγ(tls)),\displaystyle-q\left(\frac{1}{2}a_{DG}(t_{ls})\dot{B}_{q}(t_{ls})+\frac{1}{(1+3F(t_{ls}))a_{DG}(t_{ls})}\delta u_{\gamma}(t_{ls})\right)\,, (5.37)
𝒢~(q)\displaystyle\tilde{{\cal G}}(q) =\displaystyle= q(12aDG(tls)B~˙q(tls)+1(1+3F(tls))aDG(tls)δu~γ(tls)).\displaystyle-q\left(\frac{1}{2}a_{DG}(t_{ls})\dot{\tilde{B}}_{q}(t_{ls})+\frac{1}{(1+3F(t_{ls}))a_{DG}(t_{ls})}\delta\tilde{u}_{\gamma}(t_{ls})\right)\,. (5.38)

These functions are called form factors. We emphasize that combination given by (q)+~(q){\cal F}(q)+\tilde{{\cal F}}(q) and 𝒢(q)+𝒢~(q){\cal G}(q)+\tilde{{\cal G}}(q), and the expression inside the integral are gauge invariants under gauge transformations that preserve 𝐠i0{\bf g}_{i0} equal to zero.

6 Coefficients of multipole temperature expansion: Scalar modes

As an application of the previous results, we will study the contribution of the scalar modes for temperature-temperature correlation, given by:

CTT,l=14πd2n^d2n^Pl(n^n^)ΔT(n^)ΔT(n^),C_{TT,l}=\frac{1}{4\pi}\int d^{2}\hat{n}\int d^{2}\hat{n}^{\prime}P_{l}(\hat{n}\cdot\hat{n}^{\prime})\langle\Delta T(\hat{n})\Delta T(\hat{n}^{\prime})\rangle\,, (6.1)

where ΔT(n^)\Delta T(\hat{n}) is the stochastic variable which gives the deviation of the average of observed temperature in direction n^\hat{n}, and \langle\ldots\rangle denotes the average over the position of the observer. However, the observed quantity is

CTT,lobs=14πd2n^d2n^Pl(n^n^)ΔT(n^)ΔT(n^),C_{TT,l}^{obs}=\frac{1}{4\pi}\int d^{2}\hat{n}\int d^{2}\hat{n}^{\prime}P_{l}(\hat{n}\cdot\hat{n}^{\prime})\Delta T(\hat{n})\Delta T(\hat{n^{\prime}})\,, (6.2)

nevertheless, the mean square fractional difference between this equation and Eq. (6.1) is 2/(2l+1)2/(2l+1), and therefore it may be neglected for l1l\gg 1.
In order to calculate this coefficients we use the following expansion in spherical harmonics

eiq^n^ρ=4πl=0m=lm=liljl(ρ)Ylm(n^)Ylm(q^),e^{i\hat{q}\cdot\hat{n}\rho}=4\pi\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}i^{l}j_{l}(\rho)Y_{l}^{m}(\hat{n})Y_{l}^{m*}(\hat{q})\,, (6.3)

where jl(ρ)j_{l}(\rho) are the spherical Bessel’s functions. Using this expression in Eq. (5.33), and replacing the factor iq^n^i\hat{q}\cdot\hat{n} for time derivatives of Bessel’s functions, the scalar contribution of the observed T-T fluctuations in direction n^\hat{n} are

(ΔT(n^))S=lmaT,lmSYlm(n^),(\Delta T(\hat{n}))^{S}=\sum_{lm}a_{T,lm}^{S}Y_{l}^{m}(\hat{n})\,, (6.4)

where

aT,lmS=4πilT0d3qα(𝐪)Yll(q^)[jl(qrls)((q)+~(q))+jl(qrls)(𝒢(q)+𝒢~(q))],\displaystyle a_{T,lm}^{S}=4\pi i^{l}T_{0}\int d^{3}q\alpha({\bf q})Y_{l}^{l*}(\hat{q})\left[j_{l}(qr_{ls})({\cal F}(q)+\tilde{{\cal F}}(q))+j_{l}^{\prime}(qr_{ls})({\cal G}(q)+\tilde{{\cal G}}(q))\right]\,, (6.5)

and α(𝐪)\alpha({\bf q}) is a stochastic parameter for the dominant scalar mode. It is normalized such that

α(𝐪)α(𝐪)=δ3(𝐪𝐪).\langle\alpha({\bf q})\alpha^{*}({\bf q^{\prime}})\rangle=\delta^{3}({\bf q}-{\bf q^{\prime}})\,. (6.6)

Inserting this expression in Eq. (6.1) we get

CTT,lS=16π2T020q2𝑑q[jl(qrls)((q)+~(q))+jl(qrls)(𝒢(q)+𝒢~(q))]2.C_{TT,l}^{S}=16\pi^{2}T_{0}^{2}\int_{0}^{\infty}q^{2}dq\left[j_{l}(qr_{ls})({\cal F}(q)+\tilde{{\cal F}}(q))+j_{l}^{\prime}(qr_{ls})({\cal G}(q)+\tilde{{\cal G}}(q))\right]^{2}\,. (6.7)

Now we will consider the case l1l\gg 1. In this limit we can use the following approximation for Bessel’s functions555See, e.g. I. S. Gradsteyn & I. M. Ryzhik, Table of Integral, Series, and Products, translated, corrected and enlarged by A. Jeffrey (Academic Press, New York, 1980): formula 8.453.1.:

jl(ρ){cos(b)cos[ν(tanbb)π/4]/(νsinb)ρ>ν,0ρ<ν,\displaystyle j_{l}(\rho)\rightarrow\left\{\begin{array}[]{cc}\cos(b)\cos\left[\nu(\tan b-b)-\pi/4\right]/(\nu\sqrt{\sin b})&\rho>\nu\,,\\ 0&\rho<\nu\,,\end{array}\right. (6.10)

where νl+1/2\nu\equiv l+1/2, and cosbν/ρ\cos b\equiv\nu/\rho, with 0bπ/20\leq b\leq\pi/2. Besides, for ρ>ν1\rho>\nu\gg 1 the phase ν(tanbb)\nu(\tan b-b) is a function of ρ\rho that grows very fast, then the derivatives of Bessel’s functions only acts in its phase:

jl(ρ){cos(b)sinbsin[ν(tanbb)π/4]/νρ>ν,0ρ<ν.\displaystyle j^{\prime}_{l}(\rho)\rightarrow\left\{\begin{array}[]{cc}-\cos(b)\sqrt{\sin b}\sin\left[\nu(\tan b-b)-\pi/4\right]/\nu&\rho>\nu\,,\\ 0&\rho<\nu\,.\end{array}\right. (6.13)

Using these approximations in Eq. (6.7) and changing the variable from qq to b=cos1(ν/qrls)b=\cos^{-1}(\nu/qr_{ls}), we obtain

CTT,lS\displaystyle C_{TT,l}^{S} =\displaystyle= 16π2T02νrls30π/2dbcos2b\displaystyle\frac{16\pi^{2}T_{0}^{2}\nu}{r_{ls}^{3}}\int_{0}^{\pi/2}\frac{db}{\cos^{2}b} (6.14)
×[((νrlscosb)+~(νrlscosb))cos[ν(tanbb)π/4]\displaystyle\times\left[\left({\cal F}\left(\frac{\nu}{r_{ls}\cos b}\right)+\tilde{{\cal F}}\left(\frac{\nu}{r_{ls}\cos b}\right)\right)\cos[\nu(\tan b-b)-\pi/4]\right.
sinb(𝒢(νrlscosb)+𝒢~(νrlscosb))sin[ν(tanbb)π/4]]2.\displaystyle-\left.\sin b\left({\cal G}\left(\frac{\nu}{r_{ls}\cos b}\right)+\tilde{{\cal G}}\left(\frac{\nu}{r_{ls}\cos b}\right)\right)\sin[\nu(\tan b-b)-\pi/4]\right]^{2}\,.

When ν1\nu\gg 1, the functions cos[ν(tanbb)π/4]\cos[\nu(\tan b-b)-\pi/4] and sin[ν(tanbb)π/4]\sin[\nu(\tan b-b)-\pi/4] oscillate very rapidly, then the squared average of its values are 1/21/2, while the averaged cross terms are zero. Using lνl\approx\nu, and changing the integration variable from bb to β=1/cosb\beta=1/\cos b, the Eq. (6.14) becomes

l(l+1)CTT,lS\displaystyle l(l+1)C_{TT,l}^{S} =\displaystyle= 8π2T02l3rls31βdββ21\displaystyle\frac{8\pi^{2}T_{0}^{2}l^{3}}{r_{ls}^{3}}\int_{1}^{\infty}\frac{\beta d\beta}{\sqrt{\beta^{2}-1}} (6.15)
×[((lβrls)+~(lβrls))2+β21β2(𝒢(lβrls)+𝒢~(lβrls))2].\displaystyle\times\left[\left({\cal F}\left(\frac{l\beta}{r_{ls}}\right)+\tilde{{\cal F}}\left(\frac{l\beta}{r_{ls}}\right)\right)^{2}+\frac{\beta^{2}-1}{\beta^{2}}\left({\cal G}\left(\frac{l\beta}{r_{ls}}\right)+\tilde{{\cal G}}\left(\frac{l\beta}{r_{ls}}\right)\right)^{2}\right]\,.

Note that dA=rlsR~lsd_{A}=r_{ls}\tilde{R}_{ls} is the angular diameter distance of the last scattering surface. To calculate the CMB power spectrum, we need to know the value of B~˙q\dot{\tilde{B}}_{q}. We use the off diagonal equation from Delta sector to obtain it. This gives:

A~˙q=A˙qF+AqF˙2a2(ρ+p)δuqa2(ρ~+p~)δuq(ρ+p)δu~q,\dot{\tilde{A}}_{q}=\dot{A}_{q}F+A_{q}\dot{F}-2a^{2}(\rho+p)\delta u_{q}-a^{2}(\tilde{\rho}+\tilde{p})\delta u_{q}-(\rho+p)\delta\tilde{u}_{q}\,, (6.16)

so if we use this equation with the definition of Ψ~\tilde{\Psi}

Ψ~˙q=12(3A~˙qq2B~˙q),\dot{\tilde{\Psi}}_{q}=\frac{1}{2}(3\dot{\tilde{A}}_{q}-q^{2}\dot{\tilde{B}}_{q}), (6.17)

it allow us to find B~˙\dot{\tilde{B}}. Now we will use the approximation of that perturbations of gravitation field are dominated by perturbations of dark matter density. In this regime A˙q(tls)=0\dot{A}_{q}(t_{ls})=0 and in the synchronous gauge, the velocity perturbations for Dark matter are zero, then

A~˙q(tls)=Aq(tls)F˙(tls),\dot{\tilde{A}}_{q}(t_{ls})=A_{q}(t_{ls})\dot{F}(t_{ls})\;, (6.18)

and

B~˙q(tls)=3q2Aq(tls)F˙(tls)2Ψ~˙q(tls)q2B~¨q(tls)=3q2Aq(tls)F¨(tls)2Ψ~¨q(tls)q2,\dot{\tilde{B}}_{q}(t_{ls})=\frac{3}{q^{2}}A_{q}(t_{ls})\dot{F}(t_{ls})-\frac{2\dot{\tilde{\Psi}}_{q}(t_{ls})}{q^{2}}\Rightarrow\ddot{\tilde{B}}_{q}(t_{ls})=\frac{3}{q^{2}}A_{q}(t_{ls})\ddot{F}(t_{ls})-\frac{2\ddot{\tilde{\Psi}}_{q}(t_{ls})}{q^{2}}\,, (6.19)

where

q2Aq\displaystyle q^{2}A_{q} =\displaystyle= 8πGa2δρDq2Ha2Ψ˙q\displaystyle 8\pi Ga^{2}\delta\rho_{Dq}-2Ha^{2}\dot{\Psi}_{q} (6.20)
=\displaystyle= 3H2a2δDq2Ha2Ψ˙q.\displaystyle 3H^{2}a^{2}\delta_{Dq}-2Ha^{2}\dot{\Psi}_{q}\;.

In GR B˙q=2Ψ˙q/q2\dot{B}_{q}=-2\dot{\Psi}_{q}/q^{2}, and Ψ˙qt1/3\dot{\Psi}_{q}\propto t^{-1/3} implies B¨q=2Ψ˙q/3tq2\ddot{B}_{q}=2\dot{\Psi}_{q}/3tq^{2}. Therefore,the usual form factors are:

(q)\displaystyle{\cal F}(q) =\displaystyle= 13δγq(tls)+Ψ˙q(tls)q2(aDG(tls)a˙DG(tls)23aDG2(tls)tls),\displaystyle\frac{1}{3}\delta_{\gamma q}(t_{ls})+\frac{\dot{\Psi}_{q}(t_{ls})}{q^{2}}\left(a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})-\frac{2}{3}\frac{a_{DG}^{2}(t_{ls})}{t_{ls}}\right)\,, (6.21)
𝒢(q)\displaystyle{\cal G}(q) =\displaystyle= qδuγq(tls)(1+3F(tls))aDG(tls)+aDG(tls)Ψ˙q(tls)q.\displaystyle-q\frac{\delta u_{\gamma q}(t_{ls})}{(1+3F(t_{ls}))a_{DG}(t_{ls})}+\frac{a_{DG}(t_{ls})\dot{\Psi}_{q}(t_{ls})}{q}\,. (6.22)

where we have used δTq/T¯=δργq/4ρ¯γ=δγq/3\delta T_{q}/\bar{T}=\delta\rho_{\gamma q}/4\bar{\rho}_{\gamma}=\delta_{\gamma q}/3. Nevertheless, for the “delta” contribution, Ψ~˙q\dot{\tilde{\Psi}}_{q} and Ψ~¨q\ddot{\tilde{\Psi}}_{q} satisfy the same relation than the standard case. Due to our decomposition, the tilde expresions are

~(q)\displaystyle\tilde{{\cal F}}(q) =\displaystyle= 32Aq(tls)q2(aDG2(tls)F¨(tls)+aDG(tls)a˙DG(tls)F˙(tls))\displaystyle-\frac{3}{2}\frac{A_{q}(t_{ls})}{q^{2}}(a_{DG}^{2}(t_{ls})\ddot{F}(t_{ls})+a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})\dot{F}(t_{ls})) (6.23)
+\displaystyle+ Ψ~˙q(tls)q2(aDG(tls)a˙DG(tls)23aDG2(tls)tls),\displaystyle\frac{\dot{\tilde{\Psi}}_{q}(t_{ls})}{q^{2}}\left(a_{DG}(t_{ls})\dot{a}_{DG}(t_{ls})-\frac{2}{3}\frac{a_{DG}^{2}(t_{ls})}{t_{ls}}\right)\,,
𝒢~(q)\displaystyle\tilde{{\cal G}}(q) =\displaystyle= qδu~γq(tls)(1+3F(tls))aDG(tls)+aDG(tls)Ψ~˙q(tls)q.\displaystyle-q\frac{\delta\tilde{u}_{\gamma q}(t_{ls})}{(1+3F(t_{ls}))a_{DG}(t_{ls})}+\frac{a_{DG}(t_{ls})\dot{\tilde{\Psi}}_{q}(t_{ls})}{q}\,. (6.24)

Unfortunately, due to all the approximations we have used, we need to add some corrections to the solutions of the GR sector. After that, we will be able to find the numerical solutions for DG perturbations.
The first consideration is that in the set of equations presented in the matter era, we have used R=3ρ¯B/4ργ=0R=3\bar{\rho}_{B}/4\rho_{\gamma}=0, which is not valid in this era. Corrections to the solutions can be calculated using WKB approximation for perturbations666see Section 6.3: Scalar perturbations-long wavelengths, Cosmology, Weinberg.[40]. The second consideration that we must included in the solution of photons perturbations is the so-called Silk damping777see Section 6.4: Scalar perturbations-short wavelengths, Cosmology, Weinberg.[42, 43], which takes into account viscosity and heat conduction of the relativistic medium. Moreover, the transition from opaque to a transparent Universe at the last scattering moment was not instantaneous, but it could be considered a gaussian. This effect is known as Landau damping888see Section 7.2: Temperature multipole coefficients: Scalar modes, Cosmology, Weinberg.. We must recall that the physical geometry now is described by YDG(t)=aDG(t)/aDG(t=0)Y_{DG}(t)=a_{DG}(t)/a_{DG}(t=0), so the expression for both Silk and Landau effects have to be expressed in this geometry. With these considerations, the solutions of perturbations are given by:

Ψ˙q(tls)\displaystyle\dot{\Psi}_{q}(t_{ls}) =\displaystyle= 3q2tlsqo𝒯(κ)5a2(tls),\displaystyle-\frac{3q^{2}t_{ls}{\cal R}_{q}^{o}{\cal T}(\kappa)}{5a^{2}(t_{ls})}\,, (6.25)
δγq(tls)\displaystyle\delta_{\gamma q}(t_{ls}) =\displaystyle= 3qo5[𝒯(κ)(1+3Rls)(1+Rls)1/4eq2dD2/als2\displaystyle\frac{3{\cal R}_{q}^{o}}{5}\left[{\cal T}(\kappa)(1+3R_{ls})-(1+R_{ls})^{-1/4}e^{-q^{2}d^{2}_{D}/a_{ls}^{2}}\right. (6.26)
×\displaystyle\times 𝒮(κ)cos(0tlsqdt3(1+R(t))a(t)+Δ(κ))],\displaystyle\left.{\cal S}(\kappa)\cos\left(\int_{0}^{t_{ls}}\frac{qdt}{\sqrt{3(1+R(t))}a(t)}+\Delta(\kappa)\right)\right]\,,
δuγq(tls)\displaystyle\delta u_{\gamma q}(t_{ls}) =\displaystyle= 3qo5[tls𝒯(κ)+a(tls)3q(1+Rls)3/4eq2dD2/als2\displaystyle\frac{3{\cal R}_{q}^{o}}{5}\left[-t_{ls}{\cal T}(\kappa)+\frac{a(t_{ls})}{\sqrt{3}q(1+R_{ls})^{3/4}}e^{-q^{2}d^{2}_{D}/a_{ls}^{2}}\right. (6.27)
×\displaystyle\times 𝒮(κ)sin(0tlsqdt3(1+R(t))a(t)+Δ(κ))],\displaystyle\left.{\cal S}(\kappa)\sin\left(\int_{0}^{t_{ls}}\frac{qdt}{\sqrt{3(1+R(t))}a(t)}+\Delta(\kappa)\right)\right]\,,

Here we used an approximation given by aDG(tls)a(tls)t2/3a_{DG}(t_{ls})\approx a(t_{ls})\propto t^{2/3}, the error of this approximation is of the order 104%10^{-4}\%.

Ψ˙q(tls)\displaystyle\dot{\Psi}_{q}(t_{ls}) =\displaystyle= 3q2tlsqo𝒯(κ)5aDG2(tls),\displaystyle-\frac{3q^{2}t_{ls}{\cal R}_{q}^{o}{\cal T}(\kappa)}{5a_{DG}^{2}(t_{ls})}\,, (6.28)
δγq(tls)\displaystyle\delta_{\gamma q}(t_{ls}) =\displaystyle= 3qo5[𝒯(κ)(1+3Rls)(1+Rls)1/4eq2dD2/aDG2(tls)\displaystyle\frac{3{\cal R}_{q}^{o}}{5}\left[{\cal T}(\kappa)(1+3R_{ls})-(1+R_{ls})^{-1/4}e^{-q^{2}d^{2}_{D}/a^{2}_{DG}(t_{ls})}\right. (6.29)
×\displaystyle\times 𝒮(κ)cos(q0tlsdt3(1+R(t))aDG(t)+Δ(κ))],\displaystyle\left.{\cal S}(\kappa)\cos\left(q\int_{0}^{t_{ls}}\frac{dt}{\sqrt{3(1+R(t))}a_{DG}(t)}+\Delta(\kappa)\right)\right]\,,
δuγq(tls)\displaystyle\delta u_{\gamma q}(t_{ls}) =\displaystyle= 3qo5[tls𝒯(κ)+aDG(tls)3q(1+Rls)3/4eq2dD2/aDG2(tls)\displaystyle\frac{3{\cal R}_{q}^{o}}{5}\left[-t_{ls}{\cal T}(\kappa)+\frac{a_{DG}(t_{ls})}{\sqrt{3}q(1+R_{ls})^{3/4}}e^{-q^{2}d^{2}_{D}/a_{DG}^{2}(t_{ls})}\right. (6.30)
×\displaystyle\times 𝒮(κ)sin(q0tlsdt3(1+R(t))aDG(t)+Δ(κ))],\displaystyle\left.{\cal S}(\kappa)\sin\left(q\int_{0}^{t_{ls}}\frac{dt}{\sqrt{3(1+R(t))}a_{DG}(t)}+\Delta(\kappa)\right)\right]\,,

where

dD2=dSilk2+dLandau2,\displaystyle d^{2}_{D}=d^{2}_{Silk}+d^{2}_{Landau}\,, (6.31)
dSilk2=YDG2(tls)0tlstγ6YDG2(1+R){1615+R2(1+R)}𝑑t,\displaystyle d^{2}_{Silk}=Y_{DG}^{2}(t_{ls})\int_{0}^{t_{ls}}\frac{t_{\gamma}}{6Y_{DG}^{2}(1+R)}\left\{\frac{16}{15}+\frac{R^{2}}{(1+R)}\right\}dt\,, (6.32)
dLandau2=σt26(1+Rls),\displaystyle d^{2}_{Landau}=\frac{\sigma_{t}^{2}}{6(1+R_{ls})}\,, (6.33)

where tγt_{\gamma} is the mean free time for photons and R=3ρ¯B/4ρ¯γ=3h2ΩBYDG/4h2ΩγR=3\bar{\rho}_{B}/4\bar{\rho}_{\gamma}=3h^{2}\Omega_{B}Y_{DG}/4h^{2}\Omega_{\gamma}.
In order to evaluate the Silk damping, we have

tγ=1neσTc,t_{\gamma}=\frac{1}{n_{e}\sigma_{T}c}\,, (6.34)

where nen_{e} is the number density of electrons and σT\sigma_{T} is the Thomson cross section.

On the other hand

q0rlscs𝑑r\displaystyle q\int_{0}^{r_{ls}}c_{s}dr =\displaystyle= q0tlsdt3(1+R(t))aDG(t)qrlsSH\displaystyle q\int_{0}^{t_{ls}}\frac{dt}{\sqrt{3(1+R(t))}a_{DG}(t)}\equiv qr^{SH}_{ls} (6.35)
=\displaystyle= qaDG(tls)(aDG(tls)rlsSH)=qaDG(tls)dH(tls)\displaystyle\frac{q}{a_{DG}(t_{ls})}\cdot(a_{DG}(t_{ls})r_{ls}^{SH})=\frac{q}{a_{DG}(t_{ls})}\cdot d_{H}(t_{ls})

where csc_{s} is the speed of sound, rlsSHr^{SH}_{ls} is the sound horizon radial coordinate and dHd_{H} is the horizon distance.

With all this approximation, the transfers functions were simplified to the following expressions:

(q)\displaystyle{\cal F}(q) =\displaystyle= 13δγq(tls)+aDG2(tls)Ψ˙q(tls)3q2tls,\displaystyle\frac{1}{3}\delta_{\gamma q}(t_{ls})+\frac{a^{2}_{DG}(t_{ls})\dot{\Psi}_{q}(t_{ls})}{3q^{2}t_{ls}}\,, (6.36)
𝒢(q)\displaystyle{\cal G}(q) =\displaystyle= qδuγq(tls)(1+3F(tls))aDG(tls)+aDG(tls)Ψ˙q(tls)q,\displaystyle-q\frac{\delta u_{\gamma q}(t_{ls})}{(1+3F(t_{ls}))a_{DG}(t_{ls})}+\frac{a_{DG}(t_{ls})\dot{\Psi}_{q}(t_{ls})}{q}\,, (6.37)

where Aq(tls)=qo𝒯(κ)A_{q}(t_{ls})={\cal R}_{q}^{o}{\cal T}(\kappa). Then, wee replaced the GR solutions and we get

(q)\displaystyle{\cal F}(q) =\displaystyle= qo5[3𝒯(qdT/aDG(tls))Rls(1+Rls)1/4eq2dD2/aDG2(tls)\displaystyle\frac{{\cal R}_{q}^{o}}{5}\left[3{\cal T}(qd_{T}/a_{DG}(t_{ls}))R_{ls}-(1+R_{ls})^{-1/4}e^{-q^{2}d^{2}_{D}/a^{2}_{DG}(t_{ls})}\right. (6.38)
×\displaystyle\times 𝒮(qdT/aDG(tls))cos(qdH/aDG(tls)+Δ(qdT/aDG(tls)))],\displaystyle\left.{\cal S}(qd_{T}/a_{DG}(t_{ls}))\cos\left(qd_{H}/a_{DG}(t_{ls})+\Delta(qd_{T}/a_{DG}(t_{ls}))\right)\right]\,,
𝒢(q)\displaystyle{\cal G}(q) =\displaystyle= 3qo5(1+Rls)3/4eq2dD2/aDG2(tls)\displaystyle\frac{\sqrt{3}{\cal R}_{q}^{o}}{5(1+R_{ls})^{3/4}}e^{-q^{2}d^{2}_{D}/a^{2}_{DG}(t_{ls})} (6.39)
×\displaystyle\times 𝒮(qdT/aDG(tls))sin(qdH/aDG(tls)+Δ(qdT/aDG(tls))),\displaystyle{\cal S}(qd_{T}/a_{DG}(t_{ls}))\sin\left(qd_{H}/a_{DG}(t_{ls})+\Delta(qd_{T}/a_{DG}(t_{ls}))\right)\,,

where κ=qdT/als\kappa=qd_{T}/a_{ls} (defined in eq. (4.36)) and

dT(tls)c2aDG(tls)aEQHEQ=caDG(tls)ΩRH0ΩM=caDG(tls)100hC(C+1).d_{T}(t_{ls})\equiv c\frac{\sqrt{2}a_{DG}(t_{ls})}{a_{EQ}H_{EQ}}=c\frac{a_{DG}(t_{ls})\sqrt{\Omega_{R}}}{H_{0}\Omega_{M}}=c\frac{a_{DG}(t_{ls})}{100h}\sqrt{C(C+1)}\,. (6.40)

The final consideration that we must include is that due to the reionization of hydrogen at zreion=10z_{reion}=10 by ultraviolet light coming from the first generation of massive stars, photons of the CMB have a probability of being scattered 1exp(τreion)1-\exp(-\tau_{reion}). CMB has two contributions. The non-scattered photons provide the first contribution, where we have to correct by a factor given by exp(τreion)\exp(-\tau_{reion}). The scattered photons provide the second contribution, but the reionization occurs at zzLz\ll z_{L} affecting only low lls. We are not interested in this effect, and therefore we will not include it. Measurements shows that in GR exp(2τreion)0.8\exp(-2\tau_{reion})\approx 0.8.

On the other hand, we will use a standard parametrization of q0{\cal R}_{q}^{0} given by

|q0|2=N2q3(q/R0κ)ns1,|{\cal R}_{q}^{0}|^{2}=N^{2}q^{-3}\left(\frac{q/R_{0}}{\kappa_{\cal R}}\right)^{n_{s}-1}\,, (6.41)

where nsn_{s} could vary with the wave number. It is usual to take κ=0.05\kappa_{\cal R}=0.05 Mpc-1.

Note that dA(tls)=rlsaDG(tls)d_{A}(t_{ls})=r_{ls}a_{DG}(t_{ls}) is the angular diameter distance of the last scattering surface.

dA(tls)\displaystyle d_{A}(t_{ls}) =\displaystyle= caDG(tls)tlst0dtaDG(t)=caDG(t0)1+zlstlst0dtaDG(t)=c11+zlstlst0dtYDG(t)\displaystyle ca_{DG}(t_{ls})\int_{t_{ls}}^{t_{0}}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}=c\frac{a_{DG}(t_{0})}{1+z_{ls}}\int_{t_{ls}}^{t_{0}}\frac{dt^{\prime}}{a_{DG}(t^{\prime})}=c\frac{1}{1+z_{ls}}\int_{t_{ls}}^{t_{0}}\frac{dt^{\prime}}{Y_{DG}(t^{\prime})} (6.42)
=\displaystyle= c11+zlsYls1dYYDG(Y)dtdY=dL(tls)(1+zls)2.\displaystyle c\frac{1}{1+z_{ls}}\int_{Y_{ls}}^{1}\frac{dY^{\prime}}{Y_{DG}(Y^{\prime})}\frac{dt}{dY^{\prime}}=\frac{d_{L}(t_{ls})}{(1+z_{ls})^{2}}\,.

This is consistent with the luminosity distance definition[34]. Then, when we set q=βl/rlsq=\beta l/r_{ls} we get

|βl/rls0|2\displaystyle|{\cal R}_{\beta l/r_{ls}}^{0}|^{2} =\displaystyle= N2(βlrls)3(βlκrls)ns1=N2(βlrls)3(βlaDG(tls)κrlsaDG(tls))ns1\displaystyle N^{2}\left(\frac{\beta l}{r_{ls}}\right)^{-3}\left(\frac{\beta l}{\kappa_{\cal R}r_{ls}}\right)^{n_{s}-1}=N^{2}\left(\frac{\beta l}{r_{ls}}\right)^{-3}\left(\frac{\beta la_{DG}(t_{ls})}{\kappa_{\cal R}r_{ls}a_{DG}(t_{ls})}\right)^{n_{s}-1}
=\displaystyle= N2(βlrls)3(βlaDG(tls)κdA(tls))ns1N2(βlrls)3(βllR)ns1.\displaystyle N^{2}\left(\frac{\beta l}{r_{ls}}\right)^{-3}\left(\frac{\beta la_{DG}(t_{ls})}{\kappa_{\cal R}d_{A}(t_{ls})}\right)^{n_{s}-1}\equiv N^{2}\left(\frac{\beta l}{r_{ls}}\right)^{-3}\left(\frac{\beta l}{l_{R}}\right)^{n_{s}-1}\,.

Using a similar computations for the other distances, the final form of the form factors are given by

(q)\displaystyle{\cal F}(q) =\displaystyle= qo5[3𝒯(βl/lT)Rls(1+Rls)1/4eβ2l2/lD2\displaystyle\frac{{\cal R}_{q}^{o}}{5}\left[3{\cal T}(\beta l/l_{T})R_{ls}-(1+R_{ls})^{-1/4}e^{-\beta^{2}l^{2}/l_{D}^{2}}\right. (6.43)
×\displaystyle\times 𝒮(βl/lT)cos(βl/lH+Δ(βl/lT))],\displaystyle\left.{\cal S}(\beta l/l_{T})\cos\left(\beta l/l_{H}+\Delta(\beta l/l_{T})\right)\right]\,,
𝒢(q)\displaystyle{\cal G}(q) =\displaystyle= 3qo5(1+Rls)3/4eβ2l2/lD2𝒮(βl/lT)sin(βl/lH+Δ(βl/lT)),\displaystyle\frac{\sqrt{3}{\cal R}_{q}^{o}}{5(1+R_{ls})^{3/4}}e^{-\beta^{2}l^{2}/l_{D}^{2}}{\cal S}(\beta l/l_{T})\sin\left(\beta l/l_{H}+\Delta(\beta l/l_{T})\right)\,, (6.44)

where

lR=κdA(tls)aDG(tls),lH=dA(tls)dH(tls),lT=dA(tls)dT(tls),lD=dA(tls)dD(tls).l_{R}=\frac{\kappa_{{\cal R}}d_{A}(t_{ls})}{a_{DG}(t_{ls})}\,,\;\;l_{H}=\frac{d_{A}(t_{ls})}{d_{H}(t_{ls})}\,,\;\;l_{T}=\frac{d_{A}(t_{ls})}{d_{T}(t_{ls})}\,,\;\;l_{D}=\frac{d_{A}(t_{ls})}{d_{D}(t_{ls})}\;. (6.45)

To summarize, for reasonably large values of ll (say l>20l>20), CMB multipoles are given by

l(l+1)CTT,lS2π\displaystyle\frac{l(l+1)C_{TT,l}^{S}}{2\pi} =\displaystyle= 4πT02l3exp(2τreion)rls31βdββ21\displaystyle\frac{4\pi T_{0}^{2}l^{3}\exp(-2\tau_{reion})}{r_{ls}^{3}}\int_{1}^{\infty}\frac{\beta d\beta}{\sqrt{\beta^{2}-1}} (6.46)
×\displaystyle\times [(F(lβrls)+F~(lβrls))2+β21β2(G(lβrls)+G~(lβrls))2].\displaystyle\left[\left(F\left(\frac{l\beta}{r_{ls}}\right)+\tilde{F}\left(\frac{l\beta}{r_{ls}}\right)\right)^{2}+\frac{\beta^{2}-1}{\beta^{2}}\left(G\left(\frac{l\beta}{r_{ls}}\right)+\tilde{G}\left(\frac{l\beta}{r_{ls}}\right)\right)^{2}\right]\,.

Numerical solutions and other considerations should be included to compute the solution for the perturbations; however, this will be part of future work. It is remarkable the structure of eq. (6.46), where the delta sector contributes additively inside the integral. If we set all delta sector equal to zero, we recover the result directly for scalar temperature-temperature multipole coefficients in GR given by Weinberg.

7 Conclusions

We discussed the implications of the first law of thermodynamics using the modified geometry of this model. We distinguished the physical densities from the GR densities in terms of which scale factor they dilute. However, knowing the solutions of the GR sector is enough for us to know about the behavior of the physical densities. Also, if we consider that the number of photons is conserved after the moment of decoupling, the black body distribution should keep the form, and that means that temperature is redshifted with the modified scale factor YDGY_{DG}. Finally, we stated the anzatz that the moment of equality between radiation and matter was the same in GR and in DG and we showed it implications in some parameters of the theory.
We had developed the theory of perturbations for Delta Gravity and its gauge transformations. Following Weinberg[40], we used the Synchronous gauge which leaves a residual gauge transformation which can be used to set δuD=0\delta u_{D}=0 (and also δu~D=0\delta\tilde{u}_{D}=0).
Then we computed the equations for cosmological perturbations using the hydrodynamic approximation, which we solved for the radiation era, while for a matter-dominated Universe, we presented the equations with the respective initial conditions. However, we did not solve them here because this will be part of a future work.
As in GR, we found an expression for temperature fluctuations in DG, studying the photon propagation in an effective metric, from the moment of the last scattering until now. We found that those temperature fluctuations can be split into three independent terms: an early term which only depends on the moment of the last scattering tlst_{ls}. An ISW term that includes the evolution of gravitational fields from the last scattering to the present and a late-term which depends on the actual value for those fields. We compute the gauge transformations which leaves 𝐠i0=0{\bf g}_{i0}=0, and we found that those three terms are separately gauge invariants. Then, we derived the TT multipole coefficients for scalar modes, where we found that DG affects additively, which could have an observational effect that could be compared with Plank results and give a physical meaning for the so-called “delta matter”.
With the full scalar expression for the CMB Power Spectrum coefficients, we can find the shape of the spectrum. In order to achieve it, we have to determine the best cosmological parameters that can describe the observational spectrum given by Planck [1]. The determination of the cosmological parameters could be demanding (from a computational point of view), but if we constraints the cosmological parameters with the SNe-Ia analysis [35] the determination of the CMB Power Spectrum in DG could be more comfortable. In the context of the controversy about the H0H_{0} value [7] and other problems as the curvature measurements [9] or the possibility of a Universe with less Dark Energy [17], this work could provide an alternative to solve the today cosmological puzzle. Future work in this line is being carried out.

Acknowledgments

The author CR was supported by Conicyt PhD Fellowship No. 21150314, Fondecyt 1150390 and CONICYT-PIA-ACT14177. Marco San Martín was supported by Conicyt PhD Fellowship No. 21170604, Fondecyt 1150390 and CONICYT-PIA-ACT14177. J. Alfaro is partially supported by Fondecyt 1150390 and CONICYT-PIA-ACT14177.

References

  • [1] N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” 2018.
  • [2] A. G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant,” Astrophys. J., vol. 826, no. 1, p. 56, 2016.
  • [3] M. Ata et al., “The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2,” Monthly Notices of the Royal Astronomical Society, vol. 473, pp. 4773–4794, 10 2017.
  • [4] D. Nelson, A. Pillepich, S. Genel, M. Vogelsberger, V. Springel, P. Torrey, V. Rodriguez-Gomez, D. Sijacki, G. Snyder, B. Griffen, F. Marinacci, L. Blecha, L. Sales, D. Xu, and L. Hernquist, “The illustris simulation: Public data release,” Astronomy and Computing, vol. 13, pp. 12 – 37, 2015.
  • [5] M. Boylan-Kolchin, V. Springel, S. D. M. White, A. Jenkins, and G. Lemson, “Resolving cosmic structure formation with the Millennium-II Simulation,” Mnras, vol. 398, pp. 1150–1164, Sept. 2009.
  • [6] G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, and J. L. Weiland, “Elucidating λ\lambdacdm: Impact of baryon acoustic oscillation measurements on the hubble constant discrepancy,” The Astrophysical Journal, vol. 853, p. 119, jan 2018.
  • [7] A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. W. MacKenty, J. B. Bowers, K. I. Clubb, A. V. Filippenko, D. O. Jones, and B. E. Tucker, “New parallaxes of galactic cepheids from spatially scanning the hubble space telescope : Implications for the hubble constant,” The Astrophysical Journal, vol. 855, no. 2, p. 136, 2018.
  • [8] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond λ\lambdaCDM,” The Astrophysical Journal, vol. 876, p. 85, may 2019.
  • [9] E. Di Valentino, A. Melchiorri, and J. Silk, “Planck evidence for a closed Universe and a possible crisis for cosmology,” Nature Astronomy, vol. 4, pp. 196,203, Feb. 2020.
  • [10] R. A. Battye, T. Charnock, and A. Moss, “Tension between the power spectrum of density perturbations measured on large and small scales,” Phys. Rev. D, vol. 91, p. 103508, May 2015.
  • [11] S. Birrer, T. Treu, C. E. Rusu, V. Bonvin, C. D. Fassnacht, J. H. H. Chan, A. Agnello, A. J. Shajib, G. C.-F. Chen, M. Auger, F. Courbin, S. Hilbert, D. Sluse, S. H. Suyu, K. C. Wong, P. Marshall, B. C. Lemaux, and G. Meylan, “H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant,” Monthly Notices of the Royal Astronomical Society, vol. 484, pp. 4726–4753, 01 2019.
  • [12] R. Wojtak, A. Knebe, W. A. Watson, I. T. Iliev, S. Heß, D. Rapetti, G. Yepes, and S. Gottlöber, “Cosmic variance of the local Hubble flow in large-scale cosmological simulations,” Monthly Notices of the Royal Astronomical Society, vol. 438, pp. 1805–1812, 12 2013.
  • [13] A. G. Riess, W. Yuan, S. Casertano, L. M. Macri, and D. Scolnic, “The accuracy of the hubble constant measurement verified through cepheid amplitudes,” The Astrophysical Journal, vol. 896, p. L43, jun 2020.
  • [14] J. S. Wang and F. Y. Wang, “Probing the anisotropic expansion from supernovae and grbs in a model-independent way,” Monthly Notices of the Royal Astronomical Society, vol. 443, no. 2, pp. 1680–1687, 2014.
  • [15] Colin, Jacques, Mohayaee, Roya, Rameez, Mohamed, and Sarkar, Subir, “Evidence for anisotropy of cosmic acceleration,” A&A, vol. 631, p. L13, 2019.
  • [16] Z. Q. Sun and F. Y. Wang, “Probing the isotropy of cosmic acceleration using different supernova samples,” The European Physical Journal C, vol. 79, Sept. 2019.
  • [17] Y. Kang, Y.-W. Lee, Y.-L. Kim, C. Chung, and C. H. Ree, “Early-type host galaxies of type ia supernovae. II. evidence for luminosity evolution in supernova cosmology,” The Astrophysical Journal, vol. 889, p. 8, jan 2020.
  • [18] W. D. Kenworthy, D. Scolnic, and A. Riess, “The local perspective on the hubble tension: Local structure does not impact measurement of the hubble constant,” The Astrophysical Journal, vol. 875, p. 145, apr 2019.
  • [19] T. de Jaeger, B. E. Stahl, W. Zheng, A. V. Filippenko, A. G. Riess, and L. Galbany, “A measurement of the Hubble constant from Type II supernovae,” Monthly Notices of the Royal Astronomical Society, 06 2020. staa1801.
  • [20] E. Di Valentino, A. Melchiorri, and O. Mena, “Can interacting dark energy solve the H0{H}_{0} tension?,” Phys. Rev. D, vol. 96, p. 043503, Aug 2017.
  • [21] K. L. Pandey, T. Karwal, and S. Das, “Alleviating the H0H_{0} and σ8\sigma_{8} anomalies with a decaying dark matter model,” 2 2019.
  • [22] R.-Y. Guo, J.-F. Zhang, and X. Zhang, “Can the h0 tension be resolved in extensions to λ\lambdaCDM cosmology?,” Journal of Cosmology and Astroparticle Physics, vol. 2019, pp. 054–054, feb 2019.
  • Tsujikawa [2010] Tsujikawa, S. 2010, in Lectures on Cosmology (Springer Berlin Heidelberg), 99–145
  • Weinberg [1979] —. 1979, in General Relativity: an Einstein Centenary Survey, ed. S. Hawking & W. Israel (Cambridge: Cambridge University Press), 790.
  • Zeldovich [1967] Zeldovich, Y. B. 1967, JETP Lett., 6, 316.
  • Sakharov [1968] Sakharov, A. D. 1968, Soviet Physics Doklady, 12, 1040.
  • Klein [1974] Klein, O. 1974, Physica Scripta, 9, 69. http://stacks.iop.org/1402-4896/9/i=2/a=001.
  • Adler [1982] Adler, S. L. 1982, Reviews of Modern Physics, 54, 729
  • Litim [2004] Litim, D. F. 2004, Physical Review Letters, 92
  • Reuter & Saueressig [2010] Reuter, M., & Saueressig, F. 2010, in Geometric and topological methods for quantum field theory, 288–329
  • Ambjørn et al. [2000] Ambjørn, J., Jurkiewicz, J., & Loll, R. 2000, Physical Review Letters, 85, 924
  • [32] J. Alfaro, “Delta-gravity and dark energy,” Physics Letters B, vol. 709, no. 1, pp. 101 – 105, 2012.
  • [33] J. Alfaro and P. Gonzalez, “Cosmology in Delta-Gravity,” Class. Quant. Grav., vol. 30, p. 085002, 2013.
  • [34] J. Alfaro and P. González, “δ\delta Gravity: Dark Sector, Post-Newtonian Limit and Schwarzschild Solution,” Universe, vol. 5, no. 5, p. 96, 2019.
  • [35] J. Alfaro, M. San Martín, and J. Sureda, “An accelerating universe without lambda: Delta gravity using monte carlo,” Universe, vol. 5, no. 2, 2019.
  • [36] U. Seljak and M. Zaldarriaga, “A line-of-sight integration approach to cosmic microwave background anisotropies,” ApJ, vol. 469, p. 437, Oct. 1996.
  • [37] M. Zaldarriaga, U. Seljak, and E. Bertschinger, “Integral solution for the microwave background anisotropies in nonflat universes,” ApJ, vol. 494, pp. 491–502, Feb. 1998.
  • [38] A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of cosmic microwave background anisotropies in closed friedmann-robertson-walker models,” The Astrophysical Journal, vol. 538, pp. 473–476, aug 2000.
  • [39] V. Mukhanov, ““CMB-Slow” or How to Determine Cosmological Parameters by Hand?,” International Journal of Theoretical Physics, vol. 43, pp. 623,668, Mar. 2004.
  • [40] S. Weinberg, Cosmology. Cosmology, OUP Oxford, 2008.
  • [41] E. M. Lifshitz, “On the gravitational stability of the expanding universe,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, vol. 16, pp. 587–602, Jan. 1946.
  • [42] J. Silk, “When were Galaxies and Galaxy Clusters formed?,” Nature, vol. 218, pp. 453,454, May 1968.
  • [43] N. Kaiser, “Small-angle anisotropy of the microwave background radiation in the adiabatic theory,” Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 1169–1180, Mar. 1983.