This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coronal Properties of Low-Accreting AGNs using Swift, XMM-Newton and NuSTAR Observations

Arghajit Jana1, Arka Chatterjee2, Hsiang-Kuang Chang1, Prantik Nandi3, Rubinur K.4,5, Neeraj Kumari3, Sachindra Naik3, Samar Safi-Harb2, Claudio Ricci6,7
1 Institute of Astronomy, National Tsing Hua University, Hsinchu 300044, Taiwan
2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
3 Astronomy & Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 38009, India
4 National Centre for Radio Astrophysics - Tata Institute of Fundamental Research (NCRA-TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
5 Institute of Theoretical Astrophysics, University of Oslo, P.O box 1029 Blindern, 0315 OSLO, Norway
6 Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, Chile
7 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China
[email protected]@gmail.com
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

We studied the broadband X-ray spectra of Swift/BAT selected low-accreting AGNs using the observations from XMM-Newton, Swift, and NuSTAR in the energy range of 0.51500.5-150 keV. Our sample consists of 30 AGNs with Eddington ratio, λEdd<103\lambda_{\rm Edd}<10^{-3}. We extracted several coronal parameters from the spectral modelling, such as the photon index, hot electron plasma temperature, cutoff energy, and optical depth. We tested whether there exists any correlation/anti-correlation among different spectral parameters. We observe that the relation of hot electron temperature with the cutoff energy in the low accretion domain is similar to what is observed in the high accretion domain. We did not observe any correlation between the Eddington ratio and the photon index. We studied the compactness-temperature diagram and found that the cooling process for extremely low-accreting AGNs is complex. The jet luminosity is calculated from the radio flux, and observed to be related to the bolometric luminosity as LjetLbol0.7L_{\rm jet}\propto L_{\rm bol}^{0.7}, which is consistent with the standard radio-X-ray correlation.

keywords:
galaxies: active – galaxies: Seyfert – X-rays: galaxies – galaxies: quasars: supermassive black holes – accretion: accretion discs – black hole physics
pubyear: 2023pagerange: Coronal Properties of Low-Accreting AGNs using Swift, XMM-Newton and NuSTAR Observations14

1 Introduction

Active galactic nuclei (AGNs) are powered by the accreting supermassive black holes (SMBHs) that reside at the centre of most galaxies (Rees, 1984). The matter get accreted onto the SMBH, where the gravitational potential energy is converted into radiation, which is emitted over the entire electromagnetic spectrum. The X-rays are thought to be produced in a hot electron cloud, known as the corona, located in the vicinity of the black hole (Haardt & Maraschi, 1991; Narayan & Yi, 1994; Chakrabarti & Titarchuk, 1995; Done et al., 2007). The primary X-ray continuum is produced through the inverse-Comptonization (Sunyaev & Titarchuk, 1980, 1985; Haardt & Maraschi, 1991) of the seed UV photons from the standard accretion disc (Shakura & Sunyaev, 1973). The X-ray continuum can be reprocessed by the accretion disc and/or the molecular torus, which produces a reflection hump at 1540\sim 15-40 keV and an iron Kα\alpha line at 6.4\sim 6.4 keV (George & Fabian, 1991; Matt et al., 1991). Additionally, an excess in the soft X-ray energy band (<2<2 keV), known as soft-excess, is observed in several sources (Singh et al., 1985; Arnaud et al., 1985). The origin of the soft-excess is still debated, and some of the possible explanations proposed include blurred reflection from the inner disc (Lohfink et al., 2012), a warm corona (Mehdipour et al., 2011; Done et al., 2012), or a small number of scattering in a hot corona (Nandi et al., 2021).

In general, an AGN is classified as a low-luminosity AGN (LLAGN), if the bolometric luminosity is Lbol<1044L_{\rm bol}<10^{44} erg s-1(e.g., Gu & Cao, 2009). Recent studies have suggested that the mass-normalized accretion rate is the primary driver in the evolution of the circumnuclear gas in AGNs (e.g., Ricci et al., 2017a). It is believed that the accretion mechanism is different in the low-accreting AGNs (LAC-AGNs; Eddington ratio, λEdd=Lbol/LEdd<103\lambda_{\rm Edd}=L_{\rm bol}/L_{\rm Edd}<10^{-3}, where LEddL_{\rm Edd} is Eddington luminosity) from the high-accreting AGNs (HAC-AGNs; λEdd>103\lambda_{\rm Edd}>10^{-3}; e.g., Ho, 2009; Yang et al., 2015; Kawamuro et al., 2016).

Theory predicts that if the accretion rate falls below a critical level, the inner accretion flow changes from the geometrically thin, optically thick accretion disc (Shakura & Sunyaev, 1973) to an optically thin, radiatively inefficient accretion flow (Esin et al., 1997). The correlation between the λEdd\lambda_{\rm Edd} and photon index (Γ\Gamma) could be considered as an observational manifestation of such a theoretical claim. While a positive correlation has been found for high-luminosity AGNs (e.g., Shemmer et al., 2006, 2008), an anti-correlation is observed for low-luminosity AGNs (e.g., Ho, 2009; Gu & Cao, 2009). It is, therefore, widely believed that in LLAGNs, the standard thin accretion disc is replaced by a radiatively-inefficient accretion flow (e.g., Narayan et al., 1998; Quataert, 2001; Ho, 2009). The absence of the big-blue bump in the SED of these objects suggests that the thin accretion disc gets truncated at a large distance from the BH (e.g., Mason et al., 2012; Nemmen et al., 2014). Moreover, most LLAGNs do not show the broad iron K-line feature, suggesting that the standard disc does not get extended to the innermost region around the SMBH (e.g., Kawamuro et al., 2016; Younes et al., 2019).

In the case of the HAC-AGNs, the majority of the seed photons that produce the X-ray emission, are most likely thermal and originate in a standard accretion disc (e.g., Shakura & Sunyaev, 1973; Malkan & Sargent, 1982). However, for LAC-AGNs, the origin of the seed photons could be dominated by non-thermal processes, such as synchrotron emission occurring in the jet or within the corona (e.g., Yang et al., 2015). The size, shape, and geometry of the corona are highly debated. Various studies suggest that the X-ray corona is compact (10Rg\sim 10~{}R_{g}, where RgR_{g} is gravitational radius; e.g., McHardy et al., 2005; Chartas et al., 2009; Risaliti et al., 2011; Reis & Miller, 2013; Uttley et al., 2014) and located close to the black hole (310Rg\sim 3-10~{}R_{g}; e.g., Fabian et al., 2009; Kara et al., 2013; Zoghbi et al., 2012; Fabian et al., 2015, 2017). In the low-accreting AGNs (L<104LEddL<10^{-4}L_{\rm Edd}, where LEddL_{\rm Edd} is the Eddington luminosity; e.g., Reis & Miller, 2013), the hard X-rays could originate in a hot quasi-spherical accretion flow or in an extended corona (100Rg\sim 100~{}R_{g}).

The corona in AGN is typically characterized by the electron plasma temperature (kTekT_{\rm e}) and optical depth (τe\tau_{\rm e}). The electron temperature is directly related to the cutoff energy (EcutE_{\rm cut}), while the photon index is connected to both kTekT_{\rm e} and τe\tau_{\rm e} (e.g., Sunyaev & Titarchuk, 1980; Pozdnyakov et al., 1983; Petrucci et al., 2001). The photon index (Γ\Gamma) and the high energy cutoff (EcutE_{\rm cut}) can be inferred by X-ray spectroscopic analysis of AGN. The photon index has been studied over the past three decades. In contrast, the study of the high energy cutoff has been limited until more recent times due to the restricted bandpass of the X-ray facilities. Recently, the cutoff energy of the AGNs has been measured using various observatories with hard X-ray instruments, e.g., BeppoSAX (Dadina, 2007; Perola et al., 2002), INTEGRAL (de Rosa et al., 2012; Molina et al., 2009; Molina et al., 2013; Panessa et al., 2011), NuSTAR  (Baloković et al., 2020; Kamraj et al., 2018; Kamraj et al., 2022; Rani et al., 2019) and Swift  (Ricci et al., 2017a, 2018; Trakhtenbrot et al., 2017). In general, the cutoff energy is observed in a wide range of 50500\sim 50-500 keV (e.g., Ricci et al., 2017a, 2018; Baloković et al., 2020). Ricci et al. (2018) analyzed 838 BAT AGNs and found that the median of the cutoff energy, Ecut=160±41E_{\rm cut}=160\pm 41 keV for L/LEdd>0.1L/L_{\rm Edd}>0.1, and Ecut=370±51E_{\rm cut}=370\pm 51 keV for L/LEdd<0.1L/L_{\rm Edd}<0.1. They also found the median of the hot electron temperature and optical depth as kTe=105±18kT_{\rm e}=105\pm 18 keV and τe=0.25±0.06\tau_{\rm e}=0.25\pm 0.06, respectively.

While the coronal properties of the HAC-AGNs have been explored extensively in past (e.g., Ricci et al., 2017a, 2018; Hinkle & Mushotzky, 2021; Kamraj et al., 2018; Kamraj et al., 2022; Baloković et al., 2020; Rani et al., 2019), the low accretion domain has been considerably less explored (e.g., Younes et al., 2019). Several X-ray studies of LLAGNs have been performed to study the variation of the photon index (e.g., Kawamuro et al., 2016; Ho, 2009; Gu & Cao, 2009; Shemmer et al., 2008).

In the present paper, we study the coronal properties of low-accreting AGNs using broadband X-ray data obtained from NuSTAR  and Swift/BAT in the 31503-150 keV range. Using Comptonization models, we constrain the main coronal parameters and study possible trends among them. The paper is organized in the following way. First, in §2, we describe the sample selection and data reduction processes. Then, we discuss the analysis procedure in §3. Next, the results of our work are presented and discussed in §4. Finally, we summarize our findings in §5.

Table 1: Information on the selected sources
Name Swift Name Type R.A. (J2000) Decl.(J2000) Redshift log(MBH\log(M_{\rm BH}) Ref.
(1) NGC 454E J0114.4–5522 Seyfert 2 18.575 –55.401 0.0121 8.52±0.458.52\pm 0.45 1
(2) NGC 1052 J0241.3–0816 Seyfert 2 40.270 –8.256 0.005 8.96±0.298.96\pm 0.29 1
(3) NGC 2110 J0552.2–0727 Seyfert 2 88.046 –7.457 0.007 9.38 2
(4) NGC 2655 J0856.0+7812 Seyfert 2 133.90 78.20 0.0047 7.70±0.207.70\pm 0.20 3
(5) NGC 3079 J1001.7+5543 Seyfert 2 150.49 55.679 0.0037 8.27±0.308.27\pm 0.30 1
(6) NGC 3147 J1017.8+7340 Seyfert 2 155.45 73.41 0.0093 8.79 4
(7) NGC 3718 J1132.7+5301 LINER 1.9 173.22 53.02 0.0033 9.53 1
(8) NGC 3786 J1139.5–6526 Seyfert 1.9 174.94 31.96 0.0089 7.53 5
(9) NGC 3998 J1157.8+5529 LINER 1.9 179.48 55.45 0.0035 9.93±0.339.93\pm 0.33 1
(10) NGC 4102 J1206.2+5243 LINER 181.59 52.71 0.0028 8.75±0.338.75\pm 0.33 1
(11) NGC 4258 J1219.4+4720 Seyfert 1.9/LINER 184.75 47.29 0.0015 7.57±0.357.57\pm 0.35 1
(12) NGC 4579 J1237.5+1182 LINER 1.9 189.38 11.82 0.0051 8.10 6
(13) NGC 5033 J1313.6+3650B Seyfert 1.5 198.406 36.826 0.0029 7.86±0.357.86\pm 0.35 1
(14) NGC 5283 J1341.5+6742 Seyfert 2 205.299 67.691 0.010 8.87+0.308.87+0.30 1
(15) NGC 5290 J1345.5+4139 Seyfert 2 206.329 41.713 0.0080 7.76±0.317.76\pm 0.31 1
(16) NGC 5899 J1515.0+4205 Seyfert 2 228.788 42.063 0.0080 8.66±0.318.66\pm 0.31 1
(17) NGC 6232 J1643.2+7036 Seyfert 1 250.721 70.643 0.0148 7.43±0.527.43\pm 0.52 1
(18) NGC 7213 J2209.4–4711 Seyfert 1 332.33 –47.17 0.0058 7.99 5
(19) NGC 7674 J2328.1+0883 Seyfert 2 352.031 8.835 0.028 9.18 2
(20) Mrk 18 J0902.0+6007 Seyfert 2 135.493 60.152 0.0111 7.85±0.307.85\pm 0.30 1
(21) Mrk 273 J1344.7+5588 Seyfert 2 206.175 55.887 0.0379 9.02±0.049.02\pm 0.04 7
(22) ARP 102B J1719.7+4900 Seyfert 1 259.81 48.98 0.0242 8.92±0.348.92\pm 0.34 1
(23) ESO 253–003 J0525.3-4600 Seyfert 2 81.381 –45.965 0.042 9.84 2
(24) ESO 506–027 J1238.9–2720 Seyfert 2 189.722 –27.294 0.025 8.99±0.298.99\pm 0.29 1
(25) HE 1136–2304 J1139.0–2323 Seyfert 1.9 74.713 –23.360 0.027 9.39 2
(26) IGR J11366–6002 J1136.7+6738 Seyfert 1 174.104 67.645 0.014 8.56 2
(27) IC 4518A J1457.8–4308 Seyfert 2 224.460 –43.116 0.016 8.79 2
(28) UGC 12282 J2258.9+4054 Seyfert 1 344.696 40.918 0.017 9.80±0.359.80\pm 0.35 1
(29) LEDA 214543 J1650.5+0434 Seyfert 2 252.656 4.620 0.032 9.83±0.329.83\pm 0.32 1
(30) Z367–9 J1621.2+8104 Seyfert 2 244.927 81.062 0.027 9.82±0.329.82\pm 0.32 1

(1) Koss et al. (2017), (2) Koss2022, (3) Tully (1988), (4) Merloni et al. (2003) , (5) Woo & Urry (2002), (6) Younes et al. (2019), (7) U et al. (2013).

2 Sample and Data Reduction

2.1 Sample Selection

The primary aim of this work is to investigate the coronal properties of low-accreting AGNs. We chose our sample from the all-sky Swift/BAT hard X-ray survey111https://swift.gsfc.nasa.gov/results/bs105mon/ (Oh et al., 2018). The BAT survey was compiled for 105 months, and the spectra are stacked together. The survey has a sensitivity of 8.4×10128.4\times 10^{-12} erg cm-2 s-1  in 1419514-195 keV range, and is almost unbiased by obscuration up to NH1024cm2N_{\rm H}\sim 10^{24}\rm\,cm^{-2} (Ricci et al., 2015). Initially, we chose a sample of AGNs within the range of 1419514-195 keV, where the luminosity is less than 104510^{45} erg s-1. Our main goal is to select sources with an Eddington ratio <103<10^{-3}.

We selected all BAT AGNs with publicly available NuSTAR  observations. We also added XMM-Newton  or Swift/XRT observations for the soft X-ray band (0.5100.5-10 keV) to construct the spectra in a broad energy range of 0.51500.5-150 keV222Check Appendix A for details.. From the combined spectra, we performed spectral analysis to calculate the bolometric luminosity (LbolL_{\rm bol}) and Eddington ratio (λEdd\lambda_{\rm Edd}; see Section 3 for details). We selected sources with λEdd<103\lambda_{\rm Edd}<10^{-3} for our sample. We excluded several sources from our sample (with λEdd<103\lambda_{\rm Edd}<10^{-3}) due to low signal-to-noise ratio (SNR), e.g., NCG 660, NGC 3486, NGC 678, or the presence of other sources in the field of view, e.g., NGC 5194. In the case of NGC 5194, several ULXs have been detected in the NuSTAR  field. As NuSTAR  does not resolve them, the emission is not purely from the AGN (Brightman et al., 2018). Hence, we did not include NGC 5194 in our sample. The final sample consists of 30 sources and are tabulated in Table 1. In Figure 1, we show the distribution of Eddington ratio (λEdd\lambda_{\rm Edd}), black hole mass (MBHM_{\rm BH}), and bolometric luminosity (LbolL_{\rm bol}) of our sample, in the left, middle, and right panels, respectively. Our sample extends over three orders of magnitude for all three parameters.

Refer to caption
Refer to caption
Refer to caption
Figure 1: Histograms of Eddington ratio (λEdd\lambda_{\rm Edd}), super-massive black hole mass (MBHM_{\rm BH}), and bolometric luminosity (LbolL_{\rm bol}) are shown in the left, middle, and right panels, respectively.

2.2 Data Reduction

2.2.1 NuSTAR

NuSTAR  is a hard X-ray focusing telescope with two identical modules, FPMA and FPMB, and operates in the 3783-78 keV energy range (Harrison et al., 2013). We obtained NuSTAR  data from NASA’s HEASARC archive333https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl. The data were reprocessed with the NuSTAR  Data Analysis Software (NuSTARDAS444https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/, version 1.4.1). We generated clean event files with the nupipeline task, using standard filtering criteria. The data were calibrated using the latest calibration data files available in the NuSTAR calibration database555http://heasarc.gsfc.nasa.gov/FTP/caldb/data/nustar/fpm/. The source and background products were extracted by considering circular regions with 60 arcsec, and 90 arcsec radii, centered at the source coordinates and away from the source, respectively. The spectra were extracted using the nuproduct task and then rebinned to ensure that they had at least 20 counts per bin by using the grppha task. For each source, we used the NuSTAR  observation with the longest exposure, except for NGC 3718 for which we co-added the spectra from four continuous observations to improve the SNR using the FTOOL task addascaspec.

2.3 Swift

The 0.580.5-8 keV Swift/XRT spectra were generated using the standard online tools provided by the UK Swift Science Data Centre (Evans et al., 2009)666https://www.swift.ac.uk/user_objects/. We utilized the Swift/XRT spectra for 17 objects when the simultaneous observations were available with NuSTAR. For five objects, we stacked several XRT spectra together to achieve a good SNR.

The 1415014-150 keV Swift/BAT spectra and response matrices were obtained from the 105-month Swift-BAT All-sky Hard X-Ray Survey777https://swift.gsfc.nasa.gov/results/bs105mon/.

2.3.1 XMM-Newton

We used XMM-Newton (Jansen et al., 2001) EPIC/PN observations in the 0.5100.5-10 keV energy range in our analysis. The data files were reduced using the Standard Analysis Software (SAS) version 20.0.0. The raw PN event files were processed using epchain task. We checked for particle background flare in the 101210-12 keV energy range. The Good Time Interval file was generated using the SAS task tabgtigen. The source and background spectra were extracted from a circular region of 30\arcsec centred at the position of the optical counterpart and from a circular region of 30\arcsec radius away from the source, respectively. The background region is selected in the same CCD where no other X-ray sources are present. Using especget task, we generated the source and background spectra. We checked for pileup using the epatplot task. We did not find any source that suffered from the pileup.

We used XMM-Newton  spectra for 13 objects. For eight sources, the XMM-Newton  observations were made simultaneously with the NuSTAR. For the rest five sources, we used non-simultaneous observations. For the non-simultaneous observations with XMM-Newton, and NuSTAR, we checked for spectral variability. The spectral variability is presented in detail in Section A. The detailed observation log is tabulated in Table 2.

Table 2: Observation Log
Object NuSTAR ID Date Exp XMM-Newton Date Exp
(yyyy-dd-mm) (ks) or XRT ID (yyyy-dd-mm) (ks)
NGC 454E 60061009002 2016-02-14 24 00080016001 2016-02-14 6
NGC 1052 60061027002 2013-02-14 16 0790980101X∗ 2017-01-17 71
NGC 2110 60061061002 2012-10-05 15 0145670101X∗ 2003-03-05 60
NGC 2655 60160341004 2016-11-10 16 00081037001–02 2016-11-02 – 03 7
NGC 3079 60061097002 2013-11-12 22 00080030001 2013-11-12 7
NGC 3147 60101032002 2015-12-27 49 0405020601X∗ 2006-06-10 18
NGC 3718 60301031002 2017-10-24 25 0795730101X 2017-10-24 38
60301031004 2017-10-27 90
60301031006 2017-10-30 57
60301031008 2017-11-03 57
NGC 3786 60061349002 2014-06-09 22 00080684001 2014-06-09 4
NGC 3998 60201050002 2016-10-25 104 0790840101X 2016-10-26 25
NGC 4102 60160472002 2015-11-19 21 00081110001 2015-11-09 7
NGC 4258 60101046002 2015-11-16 55 00081700001 2015-11-16 2
NGC 4579 60201051002 2016-12-06 117 0790840201X 2016-12-06 23
NGC 5033 60601023002 2020-12-08 104 0871020101X 2020-12-10 21
NGC 5283 60465006002 2018-11-17 33 00088264001 2018-11-17 7
NGC 5290 60160554002 2021-07-28 19 00011388002– 2019-05-07 9
00011388007 to 2020-05-26
NGC 5899 60061348002 2014-04-08 24 00080683001 2014-04-08 7
NGC 6232 60061328002 2013-08-17 18 00080537001–02 2013-08-17 – 18 7
NGC 7213 60001031002 2014-10-05 102 00080811001 2014-10-06 2
NGC 7674 60001151002 2014-09-30 52 0200660101X∗ 2004-06-02 10
Mrk 18 60061088002 2013-12-15 20 00080406001 2013-12-15 7
Mrk 273 60002028002 2013-11-04 70 0722610201X 2013-11-04 23
ARP 102B 60160662002 2015-11-24 22 00081204001 2015-11-24 7
ESO 253–003 60101014002 2015-08-21 23 0762920501X 2015-08-19 27
ESO 506–027 60469006002 2019-06-26 19 0312191801X∗ 2006-01-24 12
HE 1136–2304 80002031003 2014-07-02 64 0741260101X 2014-07-02 110
IC 4518A 60061260002 2013-08-02 8 00080141001 2013-08-02 7
IGC J11366–6002 60061213002 2014-10-29 22 00080058001–02 2014-10-29 – 30 7
UGC 12282 60160812002 2019-11-18 29 00081292001 2019-11-18 7
LEDA 96373 60061073002 2014-07-31 22 00080382001 2014-07-31 4
LEDA 214543 60061273002 2017-02-06 21 00080172001 2017-02-06 6
Z 367–9 60061270002 2014-12-21 30 00080158001– 2014-09-22 13
00080158002 2014-12-21

X mark the XMM-Newton  observations. indicate non-simultaneous observations of NuSTAR  and XMM-Newton.

Refer to caption
Figure 2: Top panel: Representative spectrum of NGC 4579. The black, red, and green circles represent the data from the FPMA, FPMB, and BAT instruments, respectively. The distributions of χ\chi are shown in the middle and bottom panels, obtained from fitting the data with (a) Model-1a, (b) Model-1b, (c) Model-2a, and Model-2d, respectively.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Confidence contours between the photon index (Γ\Gamma) and cutoff energy (EcutE_{\rm cut}) are shown for NGC 454E (top left), NGC 3147 (top middle), NGC 3998 (top right), NGC 4102 (bottom left), NGC 7213 (bottom middle), and HE 1136–2304 (bottom right). The red, green, and blue contours represent 1 σ\sigma, 2σ2~{}\sigma, and 3 σ\sigma levels, respectively.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Confidence contours between the photon index (Γ\Gamma) and hot electron temperature (kTekT_{\rm e}) are shown for NGC 454E (top left), NGC 3147 (top middle), NGC 3998 (top right), NGC 4102 (bottom left), NGC 7213 (bottom middle), and HE 1136–2304 (bottom right). The red, green, and blue contours represent 1 σ\sigma, 2σ2~{}\sigma, and 3 σ\sigma levels, respectively.
Refer to caption
Refer to caption
Refer to caption
Figure 5: Histograms of cutoff energy (EcutE_{\rm cut}), hot electron plasma temperature (kTekT_{\rm e}), and optical depth (τe\tau_{\rm e}) are shown in the left, middle, and right panels, respectively. The dark green bars represent the constrained parameters. The light green and yellow bars represent the lower limit and upper limit of the parameters, respectively.
Refer to caption
Figure 6: The photon index (Γ\Gamma) is plotted as a function of the Eddington ratio (λEdd\lambda_{\rm Edd}). The linear regression analysis gives Γ=(0.04±0.03)logλEdd+(1.59±0.13)\Gamma=(-0.04\pm 0.03)\log\lambda_{\rm Edd}+(1.59\pm 0.13). The red line represents the best-fit of the linear regression analysis.
Refer to caption
Figure 7: Relation between the hot electron temperature (kTekT_{\rm e}) and cutoff energy (EcutE_{\rm cut}) is shown. The solid red line represents the best fit to the data. The best fit is Ecut=(2.10±0.12)kTe+(29.4±12.1)E_{\rm cut}=(2.10\pm 0.12)kT_{\rm e}+(29.4\pm 12.1). Two green solid lines represent the relation Ecut=2kTeE_{\rm cut}=2kT_{\rm e} and Ecut=3kTeE_{\rm cut}=3kT_{\rm e}.

3 Analysis

3.1 Spectral Analysis

The spectral analysis of combined spectra in the 0.51500.5-150 keV range was performed in xspec v12.10 (Arnaud, 1996). For our analysis, we adopted the cross-section from Verner et al. (1996), and angr abundances (Anders & Grevesse, 1989). We used cross-normalization constants between the FPMA, FPMB, and BAT (Madsen et al., 2015; Madsen et al., 2017) instruments while carrying out simultaneous spectral fitting.

We started X-ray spectral modelling using an absorbed power law model with a cutoff at high energy. In xspec, the model reads as zphabs*zcutoff. We also added another component in the model for the absorption due to the Compton scattering, modelled with cabs. A component for the scattered primary emission, modelled with constant*zcutoff was added (e.g., Gupta et al., 2021). For the reprocessed emission, we used the convolution model reflect888https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node297.html (Magdziarz & Zdziarski, 1995). Reflect is a generalization of the widely used pexrav model. It describes the reflection from a cold, neutral semi-infinite slab. The model parameters are reflection fraction (RR), inclination angle (ii), iron abundance (AFeA_{\rm Fe}), and metal abundances (AMA_{\rm M}). We also added a Gaussian function at 6.4\sim 6.4 keV to incorporate the iron K-line emission. For the soft-excess emission, we added a blackbody model. However, one can also use the powerlaw to approximate the soft-excess (e.g., Nandi et al., 2021). The model setup (hereafter Model-1a) reads in XSPEC as,

Const1*phabs1*(zphabs2*cabs*reflect*zcutoffpl1 + Gauss + const2*cutoffpl2 + blackbody).

where, phabs1 represents the Galactic absorption and is calculated using NH999https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl tools of FTOOLs (HI4PI Collaboration et al., 2016). Const1 represents the cross-normalization factor between the FPMA, FPMB, and BAT. The zphabs2*cabs*zcutoffpl1 represents the absorbed direct primary emission. const2*cutoffpl represents the scattered primary emission, while const2 is the scattering fraction (fScatf_{\rm Scat}). The photon index (Γ\Gamma), cutoff energy (EcutE_{\rm cut}), normalization of cutoffpl1 and zcutoffpl2 are linked together. The column densities of the cabs and zphabs2 models are tied together and represent the line-of-sight obscuration towards the AGN. We fixed the AFeA_{\rm Fe} and AMA_{\rm M} at the Solar values, i.e., 1 and the inclination angle at 60°  in our analysis. We allowed the Gaussian parameters to vary freely. However, when we could not constrain, we fixed the line energy at 6.4 keV and line width at 0.01, 0.05, or 0.1 keV, depending on the initial fitting.

We obtained good fits for all the sources using Model-1a. We noticed that the soft-excess is present in seven sources, namely, NGC 2655, NGC 4102, NGC 4258, NGC 5033, NGC 5290, NGC 7213, and HE 1136–2304. The spectra of the rest 23 sources can be fitted without the blackbody component in Model-1a. The scattered emission is present in 15 sources in our sample. The photon index (Γ\Gamma) and cutoff energy (EcutE_{\rm cut}) were obtained from the fitting. The hot electron temperature of the corona (kTekT_{\rm e}) can be calculated from the cutoff energy, using the empirical relation Ecut=2kTeE_{\rm cut}=2kT_{\rm e} (for τe<1\tau_{\rm e}<1) or Ecut=3kTeE_{\rm cut}=3kT_{\rm e} (for τe>>1\tau_{\rm e}>>1) (Petrucci et al., 2001). Instead of this, one may also use Comptonization models such as compTT (Titarchuk, 1994) or nthcomp (Zdziarski et al., 1996, 1999) to obtain the hot electron temperature. To use the Comptonization model to probe the corona, we replaced cutoffpl with the nthcomp in the Model-1a. The spectral model reads in XSPEC as (hereafter Model-1b),

Const1*phabs1*(zphabs2*cabs*reflect*nthcomp + Gaussian + const2*nthcomp + blackbody).

During the spectral fitting, we froze the seed photon temperature of nthcomp component at 10 eV, which is a reasonable assumption for the SMBH with MBH>107M_{\rm BH}>10^{7} MM_{\odot}(e.g., Shakura & Sunyaev, 1973; Makishima et al., 2000). We verified that the variations of the seed photon temperature from 5 eV to 20 eV did not affect the spectral fitting. We obtained good fits for all the sources with Model-1b. Table 5 shows the results obtained by applying Model-1a and Model-1b in our spectral fitting.

Next, we replaced reflect with a torus-based physically motivated model borus101010https://sites.astro.caltech.edu/~mislavb/download/ (Baloković et al., 2018) in Model-1a. The borus02  model consists of a spherical homogeneous torus with two polar cutouts in a conical shape. The torus covering factor and the inclination angle are the free parameters in the model. The borus02  model also allows us to separate the line of sight column density (NHlosN_{\rm H}^{\rm los}) from the torus/obscuring material column density (NHtorN_{\rm H}^{\rm tor}). We did not require the Gaussian function while fitting with the borus02  model, as borus02  self-consistently calculates the Fe kα\alpha and Fe Kβ\beta lines. In our fitting, we also fixed the torus covering factor at 0.5 and the inclination angle at 60°. The spectral model reads in XSPEC as (hereafter Model-2a),

Const1*phabs1*(zphabs2*cabs*zcutoffpl1 + borus02 + const2*cutoffpl2 + blackbody).

The Model-2a gave us a good fit for all the sources in our sample. We obtained NHlosN_{\rm H}^{\rm los}, NHtorN_{\rm H}^{\rm tor}, Γ\Gamma and EcutE_{\rm cut} from the spectral modelling with Model-2a. As in the case of Model-1, to probe the corona with the Comptonized model, we replaced cutoffpl and borus02, with nthcomp and borus12 models, respectively, in Model-2a. In the borus12 model, the primary emission is described by nthcomp, replacing the cutoffpl model. The torus structure and geometry remain the same. This spectral model reads as (hereafter Model-2b),

Const1*phabs1*(zphabs2*cabs*nthcomp + borus12 + const2*nthcomp + blackbody).

During fitting with the borus02  model, we linked Γ\Gamma, EcutE_{\rm cut} and normalization of cutoffpl1, cutoffpl2, and borus02  together. The spectral analysis with the borus12 model returned with a good fit for all the sources. Table 7 shows the results obtained from our spectral fitting by applying Model-2a and Model-2b. Figure 2 shows the representative spectrum of NGC 4507 in the top panel. In the middle and bottom panels, the χ\chi distributions are shown while using Model-1 and Model-2, respectively.

To estimate the uncertainties in the parameters, we ran the steppar command in XSPEC. The uncertainties are estimated at 68%, 90%, and 99% confidence levels. We quoted uncertainties at 90% confidence level throughout the paper unless mentioned otherwise. We show confidence contours between the Γ\Gamma and the EcutE_{\rm cut} in Figure 3 for NGC 454E, NGC 3147, NGC 3998, NGC 4102, NGC 7213, and HE 1136–2304 obtained from the fitting with Model-2a. Figure 4 shows the confidence contours between the Γ\Gamma and the kTekT_{\rm e}, obtained from the spectral analysis of data with Model-2b for NGC 454E, NGC 3147, NGC 3998, NGC 4102, NGC 7213, and HE 1136–2304. In Figure 3 (Figure 4), we selected six sources randomly to show that EcutE_{\rm cut} (kTekT_{\rm e}) could not be constrained in all sources. Detailed spectral analysis result is tabulated in Table 7.

We also ran Markov Chain Monte Carlo (MCMC) in XSPEC111111https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node43.html to calculate the uncertainty. Using the Goodman–Weare algorithm, the chains were run with eight walkers for a total of 10610^{6} steps. We discarded first 10000 steps of the chains, assuming them to be in the “burn-in” phase. Figure 14 shows the posterior distribution of the spectral parameters and errors obtained with the Model-2a and Model-2b in the left and right panels, respectively, for NGC 5033.

3.2 Estimation of Parameters

The spectral analysis is carried out with four different models, with the differences in the choice of the primary continuum (cutoffpl or nthcomp), and reprocessed emission (reflect or borus). We obtained similar results with all four models. The common parameters in all four models are Γ\Gamma and NHlosN_{\rm H}^{\rm los}. The mean value of Γ\Gamma is obtained to be 1.73±0.051.73\pm 0.05, 1.73±0.061.73\pm 0.06, 1.74±0.041.74\pm 0.04, and 1.75±0.041.75\pm 0.04, from Model-1a, Model-1b, Model-2a, and Model-2b, respectively. The mean value of NHlosN_{\rm H}^{\rm los}  is found to be log\log NHlosN_{\rm H}^{\rm los}  23.39±0.0823.39\pm 0.08, 23.38±0.1023.38\pm 0.10, 23.40±0.0923.40\pm 0.09, and 23.40±0.1023.40\pm 0.10 from the spectral fitting with the Model-1a, Model-1b, Model-2a, and Model-2b, respectively. The mean values of EcutE_{\rm cut} and kTekT_{\rm e} are also similar within uncertainties from different models. As Model-1 and Model-2 returned similar values of the spectral parameters, we used the spectral results from Model-2 in the rest of the paper or mentioned otherwise.

For 24 sources, we used black hole mass from the BAT AGN Spectroscopic Survey (BASS; Koss et al., 2017, 2022; Ricci et al., 2017a). For the remaining six sources, we searched for the black hole mass in the literature (see Table 1). From the spectral fitting, we estimated the intrinsic luminosity (LintL_{\rm int}) of the sources in the 2102-10 keV energy range. The bolometric luminosity is obtained by using the bolometric correction factor 10 (Vasudevan & Fabian, 2009). We calculated the Eddington ratio as λEdd=Lbol/LEdd\lambda_{\rm Edd}=L_{\rm bol}/L_{\rm Edd}, where LEddL_{\rm Edd} is the Eddington luminosity and given by, LEdd=1.3×1038(MBH/M)L_{\rm Edd}=1.3\times 10^{38}~{}(M_{\rm BH}/M_{\odot}) erg s-1.

The Γ\Gamma, kTekT_{\rm e} and EcutE_{\rm cut} were obtained from the spectral fitting. The optical depth of the corona is estimated by using the following relation (Zdziarski et al., 1996),

τe32+94+3θ(Γ1)(Γ+2),\tau_{\rm e}\approx-\frac{3}{2}+\sqrt{\frac{9}{4}+\frac{3}{\theta(\Gamma-1)(\Gamma+2)}}, (1)

where, θ=kTe/mec2\theta=kT_{\rm e}/m_{e}c^{2} is the dimensionless temperature.

The dimensionless compactness parameter is calculated using the following equation (e.g., Fabian et al., 2015, 2017),

l=4πmpmeRgRXLXLEdd,l=4\pi\frac{m_{p}}{m_{e}}\frac{R_{g}}{R_{\rm X}}\frac{L_{\rm X}}{L_{\rm Edd}}, (2)

where, RXR_{\rm X} is coronal size, and LXL_{\rm X} is the coronal luminosity in the 0.12000.1-200 keV energy range. The 0.12000.1-200 keV luminosity is calculated from the extrapolation of the best-fitted model. In this work, we used RX=10RgR_{\rm X}=10~{}R_{\rm g} (e.g., Fabian et al., 2015).

In the Compton cloud, the seed photons are up-scattered by the hot electrons and gain energy (e.g., Sunyaev & Titarchuk, 1980, 1985). The mean of the energy gained by photons per scattering can be estimated by the Compton-y parameter, y=4θmax(τe,τe2)y=4\theta~{}{\rm max}(\tau_{\rm e},\tau_{\rm e}^{2}) (e.g., Rybicki & Lightman, 1979). On the other hand, the total energy gain also depends on the number of scattering of the photons before escaping the medium. The average number of scattering (NSN_{\rm S}) is given by, NS=y/θN_{\rm S}=y/\theta.

A strong jet is expected in a low-accreting regime (Fender & Belloni, 2004). In general, the radio luminosity (LRL_{\rm R}) is considered a good proxy of the jet luminosity (LjetL_{\rm jet}; e.g., Fender & Belloni, 2004). We collected jet luminosity (LjetL_{\rm jet} or LRL_{\rm R} at 1.41.4 GHz) of sources from the NASA Extragalactic Database (NED) archive121212https://ned.ipac.caltech.edu/.

We estimated several spectral parameters of our sample. The detailed results are presented in Table 9.

3.3 Correlations among coronal parameters

Correlations among several coronal parameters have been extensively studied in the past (e.g., Ricci et al., 2017a; Kamraj et al., 2018). Here, we explored such co-dependencies among various spectral parameters. We employed Pearson, Spearman, and Kendall rank correlations to understand the relations among numerous parameters vis-á-vis the accretion mechanism around the LAC-AGNs. The results of our correlation study are tabulated in Table 3. Overall, all three correlation studies yield similar results. In total, we examined 30 correlations from our study. We considered the correlation is significant if the p-value is less than 0.010.01. For nine pairs of parameters, we found the corresponding p-value as <0.01<0.01. We found a strong anti-correlation between kTekT_{\rm e} and EcutE_{\rm cut}. The NSN_{\rm S} is observed to be strongly correlated with kTekT_{\rm e} and EcutE_{\rm cut}. We found moderate anti-correlations and correlations for three pairs of parameters each.

4 Results and Discussion

We studied a sample of AGNs with low Eddington ratio (λEdd<103\lambda_{\rm Edd}<10^{-3}) to understand their coronal properties at low accretion regime. In our study, we used combined XMM-Newton, Swift, and NuSTAR  spectra in the 0.51500.5-150 keV energy range. From the spectral study, we obtained diverse spectral parameters and correlations among them.

4.1 Constraints on the Coronal Parameters

The corona is characterized by several parameters, namely the photon index (Γ\Gamma), hot electron temperature (kTekT_{\rm e}), cutoff energy (EcutE_{\rm cut}), and optical depth (τe\tau_{\rm e}). We obtained Γ\Gamma, kTekT_{\rm e} and EcutE_{\rm cut} from the spectral analysis, while τe\tau_{\rm e} is obtained using Equation 1. Figure 5 shows the distribution of EcutE_{\rm cut}, kTekT_{\rm e} and τe\tau_{\rm e} in our sample.

We are able to constrain EcutE_{\rm cut} in 22 sources out of a total of 30 sources considered in our sample. The EcutE_{\rm cut} is distributed in a wide range of 50500\sim 50-500 keV in our sample. The broad parameter space of EcutE_{\rm cut} is consistent with the other recent studies (e.g., Ricci et al., 2018; Baloković et al., 2020; Hinkle & Mushotzky, 2021). We found that the lower limit of EcutE_{\rm cut} is below 50 keV for two sources when EcutE_{\rm cut} is not constrained. The median value of EcutE_{\rm cut} for our sample is found to be 238±93238\pm 93 keV with mean <Ecut>=241±84<E_{\rm cut}>=241\pm 84 keV, when EcutE_{\rm cut} is constrained. However, these values do not represent the whole sample, as the sources with the unconstrained EcutE_{\rm cut} are not considered.

To constrain the mean and median of the whole sample, we performed 1000 Monte Carlo simulations for each value of EcutE_{\rm cut}. For each simulation, the values of EcutE_{\rm cut} are substituted with the values selected randomly from a Gaussian distribution with the standard deviation given by the uncertainty. The lower limits (L) are substituted with the values randomly selected from a uniform distribution in the interval of [L, EC,maxE_{\rm C,max}], where EC,max=1000E_{\rm C,max}=1000 keV. For each run, we calculated the median of all values and used the mean of 1000 simulations (see, Ricci et al., 2017a, 2018, for details). We find that the mean of EcutE_{\rm cut} is 284±102284\pm 102 KeV, while the median is 267±110267\pm 110 keV. Our results are consistent with the results of Ricci et al. (2017a, 2018) and the studies of the cosmic X-ray background, which suggest that the mean cutoff energy of AGNs should be 300\lesssim 300 keV (e.g., Gilli et al., 2007; Ueda et al., 2014; Ananna et al., 2020).

Using Model-2, we additionally constrained kTekT_{\rm e} for those 22 sources. We found a lower limit for the other eight sources. Analogous to EcutE_{\rm cut}, kTekT_{\rm e} was also obtained in a broad range between 10300\sim 10-300 keV which was found in other studies (e.g., Tortosa et al., 2018; Akylas & Georgantopoulos, 2021). We obtained the lower limit of kTekT_{\rm e} as 1515 keV for IC 4518A, which is the lowest value among the sources in our samples. We calculated the mean and median of kTekT_{\rm e} by running 1000 Monte Carlo simulations, as mentioned in the previous paragraph. We considered the maximum value of kTekT_{\rm e} as 500 keV for the sources with the lower limit in the simulation. We found the mean value of our samples as <kTe>=126±54<kT_{\rm e}>=126\pm 54 keV with a median at 110±45110\pm 45 keV.

As τe\tau_{\rm e} is calculated using kTekT_{\rm e}, we also derived upper limits on τe\tau_{\rm e} for six observations. Excluding the upper limits, τe\tau_{\rm e} is observed to vary within the range of 0.53\sim 0.5-3. The mean of the optical depth is estimated to be <τe>=1.77±0.76<\tau_{\rm e}>=1.77\pm 0.76 with median τe=1.47±0.58\tau_{\rm e}=1.47\pm 0.58 in our sample.

The corona remains hot for low mass accretion rate AGNs as the cooling is inefficient. The hot corona also leads to high EcutE_{\rm cut} and optically thin medium (τe<1\tau_{\rm e}<1). Ricci et al. (2018) found the median of cutoff energy, Ecut=160±41E_{\rm cut}=160\pm 41 keV for λEdd>0.1\lambda_{\rm Edd}>0.1, and Ecut=370±51E_{\rm cut}=370\pm 51 keV for L/LEdd<0.1L/L_{\rm Edd}<0.1. As we explored an even lower Eddington ratio (λEdd<0.001\lambda_{\rm Edd}<0.001) regime, the median of the cutoff energy is expected to be higher. However, this was not observed for our sample of low Eddington ratio AGN.

4.2 Dependence of the coronal properties on the Eddington ratio

In the current work, we studied a sample of AGNs with low λEdd\lambda_{\rm Edd} to understand the coronal properties in the low accretion regime. The ΓλEdd\Gamma-\lambda_{\rm Edd} relation has been studied widely in the past (e.g., Gu & Cao, 2009; Yang et al., 2015). A positive correlation is observed in HAC-AGN (e.g., Brightman et al., 2013; Risaliti et al., 2009; Shemmer et al., 2006, 2008; Jana et al., 2020; Jana et al., 2021) while a negative correlation is found in the LLAGNs (e.g., Gu & Cao, 2009; Younes et al., 2011; Hernández-García et al., 2013). The accretion mechanism differs in the low accretion state from the high accretion state. The opposite correlation indicates that the accretion mechanisms in different luminosity states are distinct.

The thin disc-corona model naturally explains the positive correlation in the high accretion state (e.g., Yang et al., 2015). In the high accreting regime (λEdd>103\lambda_{\rm Edd}>10^{-3}), as the accretion rate increases, the number of seed photons increases, which cools the corona efficiently, producing the soft spectra. Contrary to that, the negative correlation in the low accretion state (λEdd<103\lambda_{\rm Edd}<10^{-3}) could be explained with a hybrid truncated thin disc associated with hot accretion flow/corona and jet models (e.g., Gardner & Done, 2013; Qiao & Liu, 2013; Yang et al., 2015). In this scenario, due to the lack of matter supply, the inner disc evaporates into a hot accretion flow or corona (e.g., Esin et al., 1997; Yuan & Narayan, 2014; Yang et al., 2015). As the mass accretion rate (or λEdd\lambda_{\rm Edd}) increases, the electron density and magnetic field strength increase, which in turn increases the synchrotron self-absorption depth. The self-absorbed synchrotron emission provides the seed photons for Comptonization. In this case, the hard X-ray flux (LXL_{\rm X}) increases more rapidly than the seed photon flux (LseedL_{\rm seed}), which implies a negative correlation of Lseed/LXL_{\rm seed}/L_{\rm X} with LXL_{\rm X}. This leads to the negative correlation of the Γ\Gamma and LXL_{X} or λEdd\lambda_{\rm Edd} (e.g., Yang et al., 2015). If the accretion rate further reduces (λEdd<106.5\lambda_{\rm Edd}<10^{-6.5}), the synchrotron emission from the jet dominates, leading to a saturation of the photon index at Γ2\Gamma\sim 2 (e.g., Plotkin et al., 2013; Yang et al., 2015).

In our sample, λEdd\lambda_{\rm Edd} spans the range 106.5<λEdd<10310^{-6.5}<\lambda_{\rm Edd}<10^{-3}, where a negative correlation of ΓλEdd\Gamma-\lambda_{\rm Edd} is expected. However, we did not find a significant correlation between Γ\Gamma and λEdd\lambda_{\rm Edd}. The Pearson correlation coefficient between ΓλEdd\Gamma-\lambda_{\rm Edd} is 0.22-0.22 with p-value 0.24. Figure 6 shows the variation of Γ\Gamma with the λEdd\lambda_{\rm Edd}. The solid red line represents the best linear fit. Using the linear regression method, we obtained Γ=(0.04±0.03)logλEdd+(1.59±0.13)\Gamma=(-0.04\pm 0.03)\log\lambda_{\rm Edd}+(1.59\pm 0.13). The observed relation is weaker than the one found in previous studies. For examples, Gu & Cao (2009) found Γ=(0.09±0.03)logλEdd+(1.55±0.07)\Gamma=(-0.09\pm 0.03)\log\lambda_{\rm Edd}+(1.55\pm 0.07), Younes et al. (2011) observed Γ=(0.31±0.06)logλEdd+(0.11±0.40)\Gamma=(-0.31\pm 0.06)\log\lambda_{\rm Edd}+(0.11\pm 0.40), Jang et al. (2014) pointed Γ=(0.18±0.04)logλEdd+(0.66±0.25)\Gamma=(-0.18\pm 0.04)\log\lambda_{\rm Edd}+(0.66\pm 0.25), and She et al. (2018) obtained Γ=(0.15±0.05)logλEdd+(1.0±0.03)\Gamma=(-0.15\pm 0.05)\log\lambda_{\rm Edd}+(1.0\pm 0.03). Most of the previous studies were conducted using Chandra  or XMM-Newton  observations, which have a limited band-pass. Trakhtenbrot et al. (2017) found a shallower slope of the ΓλEdd\Gamma-\lambda_{\rm Edd} correlation with respect to previous studies, when considering the results obtained by broad-band X-ray spectroscopy. In the current work, we used high-quality broad-band spectra, though our sample is limited to 30 sources. Thus, we are unable to make a firm conclusion on the correlation/anti-correlation of λEddΓ\lambda_{\rm Edd}-\Gamma. Recently, Diaz et al. (2023) studied a sample of LLAGNs and found similar results. They argued that due to the small number of sources, they did not find a statistically significant correlation of ΓλEdd\Gamma-\lambda_{\rm Edd}. We also inspected whether other spectral parameters are correlated with the λEdd\lambda_{\rm Edd} and did not observe any correlation between λEdd\lambda_{\rm Edd} and kTekT_{\rm e}, τe\tau_{\rm e} or EcutE_{\rm cut}.

4.3 Dependency of the Coronal Properties on the kTekT_{\rm e}

We found that kTekT_{\rm e} and EcutE_{\rm cut} are strongly correlated (see Table 3) in our sample. The linear fitting yields Ecut=(2.10±0.12)kTe+(29.4±12.1)E_{\rm cut}=(2.10\pm 0.12)kT_{\rm e}+(29.4\pm 12.1). Figure 7 shows that all the 22 sources with constrained EcutE_{\rm cut} and kTekT_{\rm e} lie within the Ecut=2kTeE_{\rm cut}=2kT_{\rm e} and Ecut=3kTeE_{\rm cut}=3kT_{\rm e} lines. This agrees with the empirical approximation of Ecut23kTeE_{\rm cut}\approx 2-3~{}kT_{\rm e} (Petrucci et al., 2001). However, Middei et al. (2019) argued that the empirical relation only holds for low τe\tau_{\rm e} and low kTekT_{\rm e}. They suggested that if the origin of X-rays is other than the thermal Comptonization, for example, synchrotron self Comptonization, the relation Ecut23kTeE_{\rm cut}\sim 2-3~{}kT_{\rm e} may not hold. The deviation from this relation has been observed in a few sources (e.g., Pal et al., 2022). We tested this relation from the spectral modelling with the reflect model (Model-1a & Model-1b). We obtained Ecut=(2.18±0.16)kTe+(25.±17.2)E_{\rm cut}=(2.18\pm 0.16)kT_{\rm e}+(25.\pm 17.2), which is similar to the findings with the borus model (Model-2a & Model-2b). Nonetheless, our study found Ecut2kTeE_{\rm cut}\approx 2~{}kT_{\rm e} is an acceptable approximation for the LAC-AGNs.

We obtained a weak positive correlation between kTekT_{\rm e} and Γ\Gamma, with the Pearson correlation coefficient of 0.340.34 with a p-value of 0.010.01. For purely thermal Comptonization, a negative correlation between kTekT_{\rm e} and Γ\Gamma is expected. However, if there are non-thermal seed photons, e.g., synchrotron emission from a jet, a negative correlation may not hold (e.g., Yang et al., 2015). Nonetheless, the observed relation indicates a complex process for the X-ray emission other than thermal Comptonization.

We calculated the average number of scatterings the photons suffered before escaping the Compton cloud (see § 3.2). We find that NsN_{\rm s} is anti-correlated with Γ\Gamma having a Pearson correlation coefficient of 0.65-0.65 with p<0.01p<0.01, as presented in the earlier works (e.g., Sunyaev & Titarchuk, 1980; Pozdnyakov et al., 1983). NSN_{\rm S} is also found to be strongly anti-correlated with kTekT_{\rm e} and EcutE_{\rm cut}. The Pearson correlation index is obtained to be 0.85-0.85 with the p-value of <0.01<0.01 for kTekT_{\rm e}, and 0.85-0.85 with the p-value of <0.01<0.01 for EcutE_{\rm cut}, respectively. This is expected as a high kTekT_{\rm e} would lead the corona to be optically thin, hence, the lower value of NSN_{\rm S}. The anti-correlation between NSN_{\rm S} and kTekT_{\rm e} is also consistent with the previous simulations (e.g., Chatterjee et al., 2017a, b). Compton scattering could induce X-ray polarization. The variation in the polarization caused by repeated scatterings could be detected above the minimum detectable polarization with the ongoing Imaging X-ray Polarimetry Explorer (Weisskopf et al., 2016) or future X-ray polarimetry missions, such as XPoSat.

Refer to caption
Figure 8: Compactness-temperature (lθl-\theta) diagram for our sample. Solid black and red lines correspond to pair production lines for slab and hemispherical geometries from Stern et al. (1995), respectively. The solid magenta line represents the pair production line from Svensson (1984). The orange dash-dot, green dashed-dot, and magenta dashed lines represent the region where electron-electron coupling, electron-proton coupling, and bremsstrahlung cooling dominate, respectively. The blue circles, red triangles, and green diamonds represent the AGNs with 3>logλEdd>4-3>\log\lambda_{\rm Edd}>-4, 4>logλEdd>5-4>\log\lambda_{\rm Edd}>-5, and logλEdd<5\log\lambda_{\rm Edd}<-5, respectively. The arrows represent the lower limit.

4.4 The lθl-\theta Plane

We constructed the compactness-temperature (lθl-\theta) diagram in Figure 8. Solid black and red lines correspond to the pair production lines for slab and hemispherical geometries from Stern et al. (1995). The solid magenta line represents the pair production line from Svensson (1984). The compactness (ll) is calculated using Equation 2.

The pair production is thought to be a fundamental process in AGN coronae due to photon-photon collisions (e.g., Svensson, 1982a, b; Guilbert et al., 1983). This process could, in fact, lead to a runway pair production, which might act as a thermostat for the corona (e.g., Bisnovatyi-Kogan et al., 1971; Svensson, 1984; Zdziarski, 1985; Fabian et al., 2015, 2017). If that were the case, then the AGN would be expected to lie below the pair line. We found that all the sources are located below the theoretical pair lines for slab and hemispherical geometry. The sources in our sample are located around the electron-electron (eee^{-}-e^{-}) and electron-proton (epe^{-}-p) coupling lines, which could indicate the processes responsible for the cooling. We also found that three sources lie below the bremsstrahlung cooling line (tB=tCt_{\rm B}=t_{\rm C}). All three sources, namely NGC 3718, NGC 3998, and UGC 12282, have λEdd<105\lambda_{\rm Edd}<10^{-5} and, as the Eddington ratio is directly proportional to the compactness, which leads to the low compactness (Ricci et al., 2018).

Refer to caption
Figure 9: Histogram of the line of sight column density of our sample. The blue and cyan colours represent the constrained value and upper limit of NHN_{\rm H}, respectively.

4.5 Obscuration Properties

The covering factor of the circumnuclear obscuring materials has been found to decrease with increasing accretion rates (e.g., Ueda et al., 2003; Treister et al., 2008). However, recent work has shown that the obscuring material in nearby AGN is regulated by the Eddington ratio (Ricci et al., 2017b). It has been found that the covering factor is 85%\sim 85\% for λEdd104101.5\lambda_{\rm Edd}\sim 10^{-4}-10^{-1.5}, and sharply decreases at λEdd>101.5\lambda_{\rm Edd}>10^{-1.5} (Ricci et al., 2017b). The obscuring material is expected to disappear at very low accretion rates (e.g., Elitzur, 2008) due to the lack of outflowing material (e.g., Elitzur, 2008). Ricci et al. (2022) suggested that an inactive AGN (λEdd<<104\lambda_{\rm Edd}<<10^{-4}) starts accreting following an inflow of gas and dust (see also Ricci et al., 2017b). This increases both NHN_{\rm H} and λEdd\lambda_{\rm Edd}. When λEdd\lambda_{\rm Edd} reaches a critical value (λEdd101.5\lambda_{\rm Edd}\sim 10^{-1.5}), the radiation pressure blows away the obscuring material. The AGN spends some time as unobscured (NH<1022N_{\rm H}<10^{22} cm-2) before moving back to the low λEdd\lambda_{\rm Edd} state with low NHN_{\rm H}.

Figure 9 shows the histogram of our sample’s line of sight column density. In our sample, we found that nine sources are unobscured (NHlosN_{\rm H}^{\rm los}<1022<10^{22} cm-2) and 21 sources are obscured (NHlosN_{\rm H}^{\rm los}>1022>10^{22} cm-2). Among the 21 obscured sources, two sources are Compton-thick (NHlosN_{\rm H}^{\rm los}>1024>10^{24} cm-2) and 19 sources are Compton-thin (NHlosN_{\rm H}^{\rm los}=102224=10^{22-24} cm-2). We found two unobscured sources and one obscured source (one of them in CT) in an extremely low accretion region (λEdd<105\lambda_{\rm Edd}<10^{-5}). On the other hand, at 105<λEdd<10310^{-5}<\lambda_{\rm Edd}<10^{-3}, we observed that seven sources are unobscured, and 20 sources are obscured. If we move towards the low accretion region (λEdd<5\lambda_{\rm Edd}<-5), the fraction of obscured sources drops from 739+8\sim 73^{+8}_{-9}% to 3920+23%\sim 39^{+23}_{-20}\%131313The fractions are computed following Cameron (2011), and the reported uncertainties represent the 16th and 84th quantiles of a binomial distribution.. The increasing fraction of unobscured sources towards the low-accretion regime supports the Eddington ratio regulated unification model (e.g., Ricci et al., 2017b, 2022).

We obtained the average density of the obscuring material (NHtorN_{\rm H}^{\rm tor}), which is responsible for the reprocessing emission. The median of NHtorN_{\rm H}^{\rm tor} is found to be logNHtor=24.22±0.45\log N_{\rm H}^{\rm tor}=24.22\pm 0.45, which is higher than the NHlosN_{\rm H}^{\rm los}. The median of the line of sight column density is logNHlos=23.02±0.08\log N_{\rm H}^{\rm los}=23.02\pm 0.08. We plot the variation of NHtorN_{\rm H}^{\rm tor} as a function of λEdd\lambda_{\rm Edd} in Figure 10. The linear regression analysis found that logNHtor=(0.34±0.04)logλEdd+(25.5±0.5)\log N_{\rm H}^{\rm tor}=(0.34\pm 0.04)\log{\lambda_{\rm Edd}}+(25.5\pm 0.5), suggesting a positive relation between λEdd\lambda_{\rm Edd} and NHtorN_{\rm H}^{\rm tor}. This suggests that at low Eddington ratio, the average column density decreases. Diaz et al. (2023) also found a similar relation between NHtorN_{\rm H}^{\rm tor} and λEdd\lambda_{\rm Edd}. The relation between NHtorN_{\rm H}^{\rm tor} and λEdd\lambda_{\rm Edd} also supports the Eddington ratio regulated unification and growth model (e.g., Ricci et al., 2022).

Refer to caption
Figure 10: The variation of average density of the obscuring material (NHtorN_{\rm H}^{\rm tor}) as a function of the Eddington ratio (λEdd\lambda_{\rm Edd}). The red line represent the linear best-fit.

4.6 Reprocessed Emission

We obtained the reflection parameter (RR) from Model-1a and Model-1b. From our analysis, it is found that RR could be constrained only in 7 sources out of a total of 30 sources. As in case of EcutE_{\rm cut} and kTekT_{\rm e}, we calculated the mean of RR by running 1000 Monte Carlo simulations, with the range of RR between 0 to 10. We found the mean <R>=0.25±0.08<R>=0.25\pm 0.08 with a median of 0.26±0.090.26\pm 0.09. Ricci et al. (2017a) found a higher value of median of RR as 0.53±0.090.53\pm 0.09 with a sample of 838 BAT AGNs. Our finding is consistent with the fact that the low-accreting AGNs show weak reflection (e.g., Younes et al., 2011; Ptak et al., 2004).

We modelled the Fe K-emission line with a Gaussian function while fitting the data with Model-1. Out of total of 30 sources, a Gaussian line is required in 28 objects. We did not find the iron Kα\alpha line for two sources: NGC 3147 and NGC 3998. We could constrain the equivalent width (EW) for 19 sources. We tested the so-called ‘X-ray Baldwin effect’, i.e., the correlation of EW with the X-ray luminosity in our sample (Iwasawa & Taniguchi, 1993). Figure 11 shows the EW of Fe Kα\alpha line as a function of X-ray luminosity (LX,44L_{\rm X,44}). The linear regression analysis returned as logEW=(0.12±0.09)logLX,44+(2.1±0.1)\log{\rm EW}=(-0.12\pm 0.09)\log L_{\rm X,44}+(2.1\pm 0.1), where EW and LX,44L_{X,44} are in the unit of eV, and 104410^{44} erg s-1, respectively. This relation is consistent with the previous studies of the X-ray Baldwin effect (e.g., Bianchi et al., 2007; Ricci et al., 2013). We also checked the relation of EW with λEdd\lambda_{\rm Edd}. The linear best-fit result returned with logEW=(0.15±0.10)logλEdd+(1.74±0.52).\log{\rm EW}=(-0.15\pm 0.10)\log\lambda_{\rm Edd}+(1.74\pm 0.52). Our result is consistent with the previous studies (e.g., Ricci et al., 2013). The observed relation suggests that the reprocessing mechanism of LAC-AGNs is similar to the HAC-AGNs.

We did not find any correlation or anti-correlation of EW with the L210L_{\rm 2-10} keV, LX,44L_{\rm X,44}, and λEdd\lambda_{\rm Edd}. The small sample size could be the reason for not observing any correlation/anti-correlation of EW with other parameters.

Refer to caption
Figure 11: X-ray Baldwin effect. The EW of iron Kα\alpha line is plotted as a function of 2102-10 keV X-ray luminosity (LX,44L_{\rm X,44}). The EW and LX,44L_{X,44} are in the unit of eV, and 104410^{44} erg s-1, respectively. The red line represent the linear best-fit, with logEW=(0.12±0.09)logLX,44+(2.1±0.1).\log{\rm EW}=(-0.12\pm 0.09)\log L_{\rm X,44}+(2.1\pm 0.1).
Refer to caption
Figure 12: Histogram of the observed jet luminosity (LjetL_{\rm jet}) and bolometric luminosity (LbolL_{\rm bol}). The red dashed and solid blue lines represent the LjetL_{\rm jet} and LbolL_{\rm bol}, respectively.

4.7 Jet

In LAC-AGNs X-ray radiation is believed to be produced in a radiatively inefficient flow (e.g., Narayan & Yi, 1994; Quataert, 2001; Nemmen et al., 2014), or from the base of the jet (e.g., Markoff et al., 2001; Falcke et al., 2004). The observed jet luminosity (LjetL_{\rm jet})141414LjetL_{\rm jet} is calculated from the LRL_{\rm R}. is tabulated in Table 3. Figure 12 shows the histogram plots for the LbolL_{\rm bol} and the LjetL_{\rm jet} of our sample. The red dashed, and solid blue lines represent the LjetL_{\rm jet} and LbolL_{\rm bol}, respectively. We observed that the LjetL_{\rm jet} is higher than the LbolL_{\rm bol}151515The LbolL_{\rm bol} is calculated from the 2102-10 keV X-ray luminosity (see § 3) for every source in our sample. The LjetL_{\rm jet} is found to be 03\sim 0-3 orders of magnitude higher than the LbolL_{\rm bol}. If we consider 5%\sim 5\% power of the jet is radiated away (e.g., Blandford & Königl, 1979; Fender, 2001), the total jet power (QjetQ_{\rm jet}) would be 04\sim 0-4 orders of magnitude higher than the bolometric luminosity (LbolL_{\rm bol}). This is not uncommon for LLAGNs: Nagar et al. (2005) studied a sample of LLAGNs and found QjetQ_{\rm jet} (also LjetL_{\rm jet}) exceeds the LbolL_{\rm bol} by 04.50-4.5 magnitude with a mean around three orders in their sample. This study suggests that the jet luminosity greatly surpasses the accretion power in the LAC-AGNs.

Refer to caption
Figure 13: Variation of the jet luminosity LjetL_{\rm jet} as a function of Eddington ratio (λEdd\lambda_{\rm Edd}). The solid red line represents the best fit with linear regression. The slope of the fit is 0.68±0.120.68\pm 0.12.

Figure 13 shows the variation of the jet luminosity (LjetL_{\rm jet}) with the bolometric luminosity (LbolL_{\rm bol}). The solid red line represents the best linear fit log(Ljet)=(0.68±0.12)log(Lbol)+(12.7±8.1)\log(L_{\rm jet})=(0.68\pm 0.12)\log(L_{\rm bol})+(12.7\pm 8.1) from the linear regression analysis. This relation is consistent with the standard radio-X-ray correlation of coefficient of 0.60.7\sim 0.6-0.7 (e.g., Corbel et al., 2000, 2003; Merloni et al., 2003; Gallo et al., 2003, 2014; Körding et al., 2006). The standard correlation is the relation between the radio and X-ray flux in the low hard state of black holes. Thus, the similar relation of LjetLbolL_{\rm jet}-L_{\rm bol} for the present sample indicates a radiatively inefficient accretion flow in the LAC-AGNs.

Table 3: Correlation among different parameters.
Pearson Correlation Spearman Correlation Kendall Correlation
Parameter-1 Parameter-2 ρ\rho p R p τ\tau p
λEdd\lambda_{\rm Edd} Γ\Gamma –0.22 0.24 –0.16 0.40 –0.12 0.36
λEdd\lambda_{\rm Edd} EcutE_{\rm cut} –0.02 0.90 0.01 0.99 –0.01 0.94
λEdd\lambda_{\rm Edd} kTekT_{\rm e} –0.07 0.71 –0.01 0.95 –0.02 0.89
λEdd\lambda_{\rm Edd} τe\tau_{\rm e} 0.18 0.33 –0.02 0.90 –0.03 0.84
λEdd\lambda_{\rm Edd} MBHM_{\rm BH} –0.45 <0.01 –0.46 0.01 –0.32 0.02
kTekT_{\rm e} Γ\Gamma 0.34 0.01 0.40 0.02 0.29 0.02
kTekT_{\rm e} EcutE_{\rm cut} 0.97 <0.01 0.95 <0.01 0.85 <0.01
Γ\Gamma EcutE_{\rm cut} 0.32 0.08 0.40 0.03 0.28 0.03
Γ\Gamma τe\tau_{\rm e} –0.64 <0.01 –0.56 <0.01 –0.41 <0.01
MBHM_{\rm BH} τe\tau_{\rm e} –0.11 0.61 –0.04 0.83 0.01 0.93
MBHM_{\rm BH} kTekT_{\rm e} 0.04 0.84 0.03 0.87 0.03 0.86
MBHM_{\rm BH} EcutE_{\rm cut} –0.07 0.69 –0.02 0.92 –0.02 0.91
LbolL_{\rm bol} MBHM_{\rm BH} 0.49 <0.01 0.51 <0.01 0.40 <0.01
LbolL_{\rm bol} Γ\Gamma –0.21 0.26 –0.23 0.22 –0.017 0.18
LbolL_{\rm bol} kTekT_{\rm e} –0.11 0.56 –0.07 0.70 –0.06 0.62
LbolL_{\rm bol} EcutE_{\rm cut} –0.10 0.59 –0.07 0.71 –0.06 0.68
LbolL_{\rm bol} τe\tau_{\rm e} 0.09 0.64 0.13 0.49 0.09 0.49
LbolL_{\rm bol} λEdd\lambda_{\rm Edd} 0.46 <0.01 0.41 <0.01 0.29 0.01
λEdd\lambda_{\rm Edd} NHN_{\rm H} 0.08 0.68 –0.12 0.52 –0.09 0.49
LbolL_{\rm bol} NHN_{\rm H} 0.06 0.76 0.02 0.90 0.01 0.99
NSN_{\rm S} Γ\Gamma –0.65 <0.01 –0.56 <0.01 –0.41 <0.01
NSN_{\rm S} kTekT_{\rm e} –0.85 <0.01 -0.97 <0.01 –0.89 <0.01
NSN_{\rm S} EcutE_{\rm cut} –0.84 <0.01 –0.91 <0.01 -0.76 <0.01
NSN_{\rm S} λ\lambda 0.19 0.31 –0.02 0.90 –0.03 0.84
NSN_{\rm S} LbolL_{\rm bol} 0.11 0.57 0.13 0.49 0.09 0.50
NSN_{\rm S} MBHM_{\rm BH} –0.08 0.66 –0.04 0.83 0.01 0.93
LbolL_{\rm bol} LjetL_{\rm jet} 0.60 <0.01 0.61 <0.01 0.49 <0.01
EWEW LbolL_{\rm bol} –0.58 0.01 –0.52 0.02 –0.39 0.02
EWEW λEdd\lambda_{\rm Edd} –0.25 0.29 –0.14 0.54 –0.11 0.55
EWEW LX,44L_{\rm X,44} –0.45 0.06 –0.31 0.06 –0.44 0.05

5 Conclusion and Summary

We studied 30 low-accreting AGNs (λEdd<103\lambda_{\rm Edd}<10^{-3}) using combined Swift, XMM-Newton, and NuSTAR  data in 0.51500.5-150 keV range. For the spectral analysis, we used the convolution model reflect and torus-based physically motivated borus model combined with either the cutoffpl or the nthcomp model for the continuum. Several parameters, namely the photon index, cutoff energy, and hot electron temperature of the corona, are estimated directly from the spectral fitting. Other parameters, such as the optical depth, the number of scatterings, and compactness, are calculated using spectral parameters. We inspected correlations among several parameters to understand the accretion dynamics in the low accreting region.

We summarize our work as follows.

  1. 1.

    We studied 30 low-accreting AGNs (λEdd<103\lambda_{\rm Edd}<10^{-3}) using combined Swift, XMM-Newton, and NuSTAR  data to understand the accretion properties at low accretion region.

  2. 2.

    We did not find any significant correlation between the photon index (Γ\Gamma) and Eddington ratio (λEdd\lambda_{\rm Edd}), contrary to the previous studies in the low-accretion domain.

  3. 3.

    We found that the hot electron temperature (kTekT_{\rm e}) is related to the cutoff energy (EcutE_{\rm cut}) as Ecut=(2.10±0.12)kTe+(29.4±12.1)E_{\rm cut}=(2.10\pm 0.12)kT_{\rm e}+(29.4\pm 12.1).

  4. 4.

    We noticed that all the sources are located well below the pair production line in the compactness-temperature (lθl-\theta) diagram. We note that the cooling process is complex in the low accretion region.

  5. 5.

    We observed the so-called ‘X-ray Baldwin effect’ in low-accretion regime. The EW of the Fe Kα\alpha line is found to be related with the X-ray luminosity (LX,44L_{\rm X,44}) and Eddington ratio (λEdd\lambda_{\rm Edd}) as logEW=(0.12±0.09)logLX,44+(2.1±0.1)\log{\rm EW}=(-0.12\pm 0.09)\log L_{\rm X,44}+(2.1\pm 0.1) and logEW=(0.15±0.10)logλEdd+(1.74±0.52)\log{\rm EW}=(-0.15\pm 0.10)\log\lambda_{\rm Edd}+(1.74\pm 0.52).

  6. 6.

    The jet luminosity (LjetL_{\rm jet}) is related with the bolometric luminosity as LjetLbol0.7L_{\rm jet}\propto L_{\rm bol}^{0.7}. This relation is consistent with the standard radio-X-ray correlation for Galactic black hole X-ray binary in the Low hard state. This supports the presence of a radiatively inefficient accretion flow in the LAC-AGNs.

  7. 7.

    We observed that the fraction of the unobscured sources increases as the Eddington ratio decreases. This support the Eddington ratio regulated unification model of AGNs.

In this work, we studied the coronal properties of AGNs with the Eddington ratio ranges in λEdd106.5103\lambda_{\rm Edd}\sim 10^{-6.5}-10^{-3}. In the future, we will add more AGNs to our sample with an even lower Eddington ratio. Future broadband hard X-ray missions, such as HEX-P (Madsen et al., 2018), could allow us to constrain EcutE_{\rm cut} with better accuracy and expand our understanding of such systems profoundly. On the other hand, the large effective area and high throughput of Colibrì (Heyl et al., 2019; Caiazzo et al., 2019) would be able to extend the population of LLAGNs as well as provide crucial information related to the line of sight NHN_{H} distribution (Ricci et al., 2017b) of them.

Acknowledgements

We thank the anonymous reviewers for their constructive suggestions which helped to improve the paper. AJ and HK acknowledge the support of the grant from the Ministry of Science and Technology of Taiwan with the grand number MOST 110-2811-M-007-500 and MOST 111-2811-M-007-002. HK acknowledge the support of the grant from the Ministry of Science and Technology of Taiwan with the grand number MOST 110-2112-M-007-020 and MOST-111-2112-M-007-019. AC and SSH are supported by the Canadian Space Agency and the Natural Sciences and Engineering Research Council of Canada. CR acknowledges support from the Fondecyt Iniciacion grant 11190831 and ANID BASAL project FB210003. Research at Physical Research Laboratory is supported by the Department of Space, Government of India, for this work. This research has made use of data and/or software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and the High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. This work has made use of data obtained from the NuSTAR mission, a project led by Caltech, funded by NASA and managed by NASA/JPL, and has utilised the NuSTARDAS software package, jointly developed by the ASDC, Italy and Caltech, USA. This research has made use of observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work made use of XRT data supplied by the UK Swift Science Data Centre at the University of Leicester, UK.

Data Availability

We used archival data of NuSTAR  observatories for this work. All the models used in this work, are publicly available. Appropriate links are given in the text.

References

  • Akylas & Georgantopoulos (2021) Akylas A., Georgantopoulos I., 2021, A&A, 655, A60
  • Ananna et al. (2020) Ananna T. T., Treister E., Urry C. M., Ricci C., Hickox R. C., Padmanabhan N., Marchesi S., Kirkpatrick A., 2020, ApJ, 889, 17
  • Anders & Grevesse (1989) Anders E., Grevesse N., 1989, Geochimica Cosmochimica Acta, 53, 197
  • Arnaud (1996) Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, Astronomical Society of the Pacific Conference Series Vol. 101, Astronomical Data Analysis Software and Systems V. p. 17
  • Arnaud et al. (1985) Arnaud K. A., et al., 1985, MNRAS, 217, 105
  • Baloković et al. (2018) Baloković M., et al., 2018, ApJ, 854, 42
  • Baloković et al. (2020) Baloković M., et al., 2020, ApJ, 905, 41
  • Bianchi et al. (2007) Bianchi S., Guainazzi M., Matt G., Fonseca Bonilla N., 2007, A&A, 467, L19
  • Bisnovatyi-Kogan et al. (1971) Bisnovatyi-Kogan G. S., Zel’dovich Y. B., Syunyaev R. A., 1971, Soviet Ast., 15, 17
  • Blandford & Königl (1979) Blandford R. D., Königl A., 1979, ApJ, 232, 34
  • Brightman et al. (2013) Brightman M., et al., 2013, MNRAS, 433, 2485
  • Brightman et al. (2018) Brightman M., et al., 2018, ApJ, 867, 110
  • Caiazzo et al. (2019) Caiazzo I., et al., 2019, Unveiling the secrets of black holes and neutron stars with high-throughput, high-energy resolution X-ray spectroscopy, doi:10.5281/zenodo.3824441, https://doi.org/10.5281/zenodo.3824441
  • Cameron (2011) Cameron E., 2011, Publ. Astron. Soc. Australia, 28, 128
  • Chakrabarti & Titarchuk (1995) Chakrabarti S., Titarchuk L. G., 1995, ApJ, 455, 623
  • Chartas et al. (2009) Chartas G., Kochanek C. S., Dai X., Poindexter S., Garmire G., 2009, ApJ, 693, 174
  • Chatterjee et al. (2017a) Chatterjee A., Chakrabarti S. K., Ghosh H., 2017a, MNRAS, 465, 3902
  • Chatterjee et al. (2017b) Chatterjee A., Chakrabarti S. K., Ghosh H., 2017b, MNRAS, 472, 1842
  • Corbel et al. (2000) Corbel S., Fender R. P., Tzioumis A. K., Nowak M., McIntyre V., Durouchoux P., Sood R., 2000, A&A, 359, 251
  • Corbel et al. (2003) Corbel S., Nowak M. A., Fender R. P., Tzioumis A. K., Markoff S., 2003, A&A, 400, 1007
  • Dadina (2007) Dadina M., 2007, A&A, 461, 1209
  • Diaz et al. (2023) Diaz Y., et al., 2023, A&A, 669, A114
  • Done et al. (2007) Done C., Gierliński M., Kubota A., 2007, A&ARv, 15, 1
  • Done et al. (2012) Done C., Davis S. W., Jin C., Blaes O., Ward M., 2012, MNRAS, 420, 1848
  • Elitzur (2008) Elitzur M., 2008, New Astron. Rev., 52, 274
  • Esin et al. (1997) Esin A. A., McClintock J. E., Narayan R., 1997, ApJ, 489, 865
  • Evans et al. (2009) Evans P. A., et al., 2009, MNRAS, 397, 1177
  • Fabian et al. (2009) Fabian A. C., et al., 2009, Nature, 459, 540
  • Fabian et al. (2015) Fabian A. C., Lohfink A., Kara E., Parker M. L., Vasudevan R., Reynolds C. S., 2015, MNRAS, 451, 4375
  • Fabian et al. (2017) Fabian A. C., Lohfink A., Belmont R., Malzac J., Coppi P., 2017, MNRAS, 467, 2566
  • Falcke et al. (2004) Falcke H., Körding E., Markoff S., 2004, A&A, 414, 895
  • Fender (2001) Fender R. P., 2001, MNRAS, 322, 31
  • Fender & Belloni (2004) Fender R., Belloni T., 2004, Annual Review of Astronomy and Astrophysics, 42, 317
  • Foreman-Mackey (2016) Foreman-Mackey D., 2016, The Journal of Open Source Software, 1, 24
  • Gallo et al. (2003) Gallo E., Fender R. P., Pooley G. G., 2003, MNRAS, 344, 60
  • Gallo et al. (2014) Gallo E., et al., 2014, MNRAS, 445, 290
  • Gardner & Done (2013) Gardner E., Done C., 2013, MNRAS, 434, 3454
  • George & Fabian (1991) George I. M., Fabian A. C., 1991, MNRAS, 249, 352
  • Gilli et al. (2007) Gilli R., Comastri A., Hasinger G., 2007, A&A, 463, 79
  • Gu & Cao (2009) Gu M., Cao X., 2009, MNRAS, 399, 349
  • Guilbert et al. (1983) Guilbert P. W., Fabian A. C., Rees M. J., 1983, MNRAS, 205, 593
  • Gupta et al. (2021) Gupta K. K., et al., 2021, MNRAS, 504, 428
  • HI4PI Collaboration et al. (2016) HI4PI Collaboration et al., 2016, A&A, 594, A116
  • Haardt & Maraschi (1991) Haardt F., Maraschi L., 1991, ApJ, 380, L51
  • Harrison et al. (2013) Harrison F. A., et al., 2013, ApJ, 770, 103
  • Hernández-García et al. (2013) Hernández-García L., González-Martín O., Márquez I., Masegosa J., 2013, A&A, 556, A47
  • Heyl et al. (2019) Heyl J., et al., 2019, in Bulletin of the American Astronomical Society. p. 175
  • Hinkle & Mushotzky (2021) Hinkle J. T., Mushotzky R., 2021, MNRAS, 506, 4960
  • Ho (2009) Ho L. C., 2009, ApJ, 699, 626
  • Iwasawa & Taniguchi (1993) Iwasawa K., Taniguchi Y., 1993, ApJ, 413, L15
  • Jana et al. (2020) Jana A., Chatterjee A., Kumari N., Nandi P., Naik S., Patra D., 2020, MNRAS, 499, 5396
  • Jana et al. (2021) Jana A., Kumari N., Nandi P., Naik S., Chatterjeee A., Jaisawal G. K., Hayasaki K., Ricci C., 2021, arXiv e-prints, p. arXiv:2107.11127
  • Jang et al. (2014) Jang I., Gliozzi M., Hughes C., Titarchuk L., 2014, MNRAS, 443, 72
  • Jansen et al. (2001) Jansen F., et al., 2001, A&A, 365, L1
  • Kamraj et al. (2018) Kamraj N., Harrison F. A., Baloković M., Lohfink A., Brightman M., 2018, ApJ, 866, 124
  • Kamraj et al. (2022) Kamraj N., et al., 2022, ApJ, 927, 42
  • Kara et al. (2013) Kara E., Fabian A. C., Cackett E. M., Uttley P., Wilkins D. R., Zoghbi A., 2013, MNRAS, 434, 1129
  • Kawamuro et al. (2016) Kawamuro T., Ueda Y., Tazaki F., Terashima Y., Mushotzky R., 2016, ApJ, 831, 37
  • Körding et al. (2006) Körding E. G., Fender R. P., Migliari S., 2006, MNRAS, 369, 1451
  • Koss et al. (2017) Koss M., et al., 2017, ApJ, 850, 74
  • Koss et al. (2022) Koss M. J., et al., 2022, ApJS, 261, 2
  • Lohfink et al. (2012) Lohfink A. M., Reynolds C. S., Miller J. M., Brenneman L. W., Mushotzky R. F., Nowak M. A., Fabian A. C., 2012, ApJ, 758, 67
  • Madsen et al. (2015) Madsen K. K., et al., 2015, ApJS, 220, 8
  • Madsen et al. (2017) Madsen K. K., Forster K., Grefenstette B. W., Harrison F. A., Stern D., 2017, ApJ, 841, 56
  • Madsen et al. (2018) Madsen K. K., et al., 2018, in den Herder J.-W. A., Nikzad S., Nakazawa K., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. p. 106996M, doi:10.1117/12.2314117
  • Magdziarz & Zdziarski (1995) Magdziarz P., Zdziarski A. A., 1995, MNRAS, 273, 837
  • Makishima et al. (2000) Makishima K., et al., 2000, ApJ, 535, 632
  • Malkan & Sargent (1982) Malkan M. A., Sargent W. L. W., 1982, ApJ, 254, 22
  • Markoff et al. (2001) Markoff S., Falcke H., Fender R., 2001, A&A, 372, L25
  • Mason et al. (2012) Mason R. E., et al., 2012, AJ, 144, 11
  • Matt et al. (1991) Matt G., Perola G. C., Piro L., 1991, A&A, 247, 25
  • McHardy et al. (2005) McHardy I. M., Gunn K. F., Uttley P., Goad M. R., 2005, MNRAS, 359, 1469
  • Mehdipour et al. (2011) Mehdipour M., et al., 2011, A&A, 534, A39
  • Merloni et al. (2003) Merloni A., Heinz S., di Matteo T., 2003, MNRAS, 345, 1057
  • Middei et al. (2019) Middei R., Bianchi S., Marinucci A., Matt G., Petrucci P. O., Tamborra F., Tortosa A., 2019, A&A, 630, A131
  • Molina et al. (2009) Molina M., et al., 2009, MNRAS, 399, 1293
  • Molina et al. (2013) Molina M., Bassani L., Malizia A., Stephen J. B., Bird A. J., Bazzano A., Ubertini P., 2013, MNRAS, 433, 1687
  • Nagar et al. (2005) Nagar N. M., Falcke H., Wilson A. S., 2005, A&A, 435, 521
  • Nandi et al. (2021) Nandi P., Chatterjee A., Chakrabarti S. K., Dutta B. G., 2021, MNRAS, 506, 3111
  • Narayan & Yi (1994) Narayan R., Yi I., 1994, ApJ, 428, L13
  • Narayan et al. (1998) Narayan R., Mahadevan R., Grindlay J. E., Popham R. G., Gammie C., 1998, ApJ, 492, 554
  • Nemmen et al. (2014) Nemmen R. S., Storchi-Bergmann T., Eracleous M., 2014, MNRAS, 438, 2804
  • Oh et al. (2018) Oh K., et al., 2018, ApJS, 235, 4
  • Pal et al. (2022) Pal I., Stalin C. S., Mallick L., Rani P., 2022, arXiv e-prints, p. arXiv:2203.02007
  • Panessa et al. (2011) Panessa F., et al., 2011, MNRAS, 417, 2426
  • Perola et al. (2002) Perola G. C., Matt G., Cappi M., Fiore F., Guainazzi M., Maraschi L., Petrucci P. O., Piro L., 2002, A&A, 389, 802
  • Petrucci et al. (2001) Petrucci P. O., et al., 2001, ApJ, 556, 716
  • Plotkin et al. (2013) Plotkin R. M., Gallo E., Jonker P. G., 2013, ApJ, 773, 59
  • Pozdnyakov et al. (1983) Pozdnyakov L. A., Sobol I. M., Syunyaev R. A., 1983, APSPR, 2, 189
  • Ptak et al. (2004) Ptak A., Terashima Y., Ho L. C., Quataert E., 2004, ApJ, 606, 173
  • Qiao & Liu (2013) Qiao E., Liu B. F., 2013, ApJ, 764, 2
  • Quataert (2001) Quataert E., 2001, in Peterson B. M., Pogge R. W., Polidan R. S., eds, Astronomical Society of the Pacific Conference Series Vol. 224, Probing the Physics of Active Galactic Nuclei. p. 71
  • Rani et al. (2019) Rani P., Stalin C. S., Goswami K. D., 2019, MNRAS, 484, 5113
  • Rees (1984) Rees M. J., 1984, ARA&A, 22, 471
  • Reis & Miller (2013) Reis R. C., Miller J. M., 2013, ApJ, 769, L7
  • Ricci et al. (2013) Ricci C., Paltani S., Awaki H., Petrucci P. O., Ueda Y., Brightman M., 2013, A&A, 553, A29
  • Ricci et al. (2015) Ricci C., Ueda Y., Koss M. J., Trakhtenbrot B., Bauer F. E., Gandhi P., 2015, ApJ, 815, L13
  • Ricci et al. (2017a) Ricci C., et al., 2017a, ApJS, 233, 17
  • Ricci et al. (2017b) Ricci C., et al., 2017b, Nature, 549, 488
  • Ricci et al. (2018) Ricci C., et al., 2018, MNRAS, 480, 1819
  • Ricci et al. (2022) Ricci C., et al., 2022, ApJ, 938, 67
  • Risaliti et al. (2009) Risaliti G., Young M., Elvis M., 2009, ApJ, 700, L6
  • Risaliti et al. (2011) Risaliti G., Nardini E., Salvati M., Elvis M., Fabbiano G., Maiolino R., Pietrini P., Torricelli-Ciamponi G., 2011, MNRAS, 410, 1027
  • Rybicki & Lightman (1979) Rybicki G. B., Lightman A. P., 1979, Radiative processes in astrophysics
  • Shakura & Sunyaev (1973) Shakura N. I., Sunyaev R. A., 1973, A&A, 500, 33
  • She et al. (2018) She R., Ho L. C., Feng H., Cui C., 2018, ApJ, 859, 152
  • Shemmer et al. (2006) Shemmer O., Brandt W. N., Netzer H., Maiolino R., Kaspi S., 2006, ApJ, 646, L29
  • Shemmer et al. (2008) Shemmer O., Brandt W. N., Netzer H., Maiolino R., Kaspi S., 2008, ApJ, 682, 81
  • Singh et al. (1985) Singh K. P., Garmire G. P., Nousek J., 1985, ApJ, 297, 633
  • Stern et al. (1995) Stern B. E., Poutanen J., Svensson R., Sikora M., Begelman M. C., 1995, ApJ, 449, L13
  • Sunyaev & Titarchuk (1980) Sunyaev R. A., Titarchuk L. G., 1980, A&A, 500, 167
  • Sunyaev & Titarchuk (1985) Sunyaev R. A., Titarchuk L. G., 1985, A&A, 143, 374
  • Svensson (1982a) Svensson R., 1982a, ApJ, 258, 321
  • Svensson (1982b) Svensson R., 1982b, ApJ, 258, 335
  • Svensson (1984) Svensson R., 1984, MNRAS, 209, 175
  • Titarchuk (1994) Titarchuk L., 1994, ApJ, 434, 570
  • Tortosa et al. (2018) Tortosa A., Bianchi S., Marinucci A., Matt G., Petrucci P. O., 2018, A&A, 614, A37
  • Trakhtenbrot et al. (2017) Trakhtenbrot B., et al., 2017, MNRAS, 470, 800
  • Treister et al. (2008) Treister E., Krolik J. H., Dullemond C., 2008, ApJ, 679, 140
  • Tully (1988) Tully R. B., 1988, Nearby galaxies catalog
  • U et al. (2013) U V., et al., 2013, ApJ, 775, 115
  • Ueda et al. (2003) Ueda Y., Akiyama M., Ohta K., Miyaji T., 2003, ApJ, 598, 886
  • Ueda et al. (2014) Ueda Y., Akiyama M., Hasinger G., Miyaji T., Watson M. G., 2014, ApJ, 786, 104
  • Uttley et al. (2014) Uttley P., Cackett E. M., Fabian A. C., Kara E., Wilkins D. R., 2014, A&ARv, 22, 72
  • Vasudevan & Fabian (2009) Vasudevan R. V., Fabian A. C., 2009, MNRAS, 392, 1124
  • Verner et al. (1996) Verner D. A., Ferland G. J., Korista K. T., Yakovlev D. G., 1996, ApJ, 465, 487
  • Weisskopf et al. (2016) Weisskopf M. C., et al., 2016, in den Herder J.-W. A., Takahashi T., Bautz M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. p. 990517, doi:10.1117/12.2235240
  • Woo & Urry (2002) Woo J.-H., Urry C. M., 2002, ApJ, 579, 530
  • Yang et al. (2015) Yang Q.-X., Xie F.-G., Yuan F., Zdziarski A. A., Gierliński M., Ho L. C., Yu Z., 2015, MNRAS, 447, 1692
  • Younes et al. (2011) Younes G., Porquet D., Sabra B., Reeves J. N., 2011, A&A, 530, A149
  • Younes et al. (2019) Younes G., Ptak A., Ho L. C., Xie F.-G., Terasima Y., Yuan F., Huppenkothen D., Yukita M., 2019, ApJ, 870, 73
  • Yuan & Narayan (2014) Yuan F., Narayan R., 2014, ARA&A, 52, 529
  • Zdziarski (1985) Zdziarski A. A., 1985, ApJ, 289, 514
  • Zdziarski et al. (1996) Zdziarski A. A., Johnson W. N., Magdziarz P., 1996, MNRAS, 283, 193
  • Zdziarski et al. (1999) Zdziarski A. A., Lubiński P., Smith D. A., 1999, MNRAS, 303, L11
  • Zoghbi et al. (2012) Zoghbi A., Fabian A. C., Reynolds C. S., Cackett E. M., 2012, MNRAS, 422, 129
  • de Rosa et al. (2012) de Rosa A., et al., 2012, MNRAS, 420, 2087

Appendix A Spectral Variability for Non-Simultaneous Data

We used XMM-Newton  observations for 12 sources in our sample. Five of these 12 XMM-Newton  observations were not made simultaneously with the NuSTAR. We checked if there is any spectral variability between the XMM-Newton  and NuSTAR  data for non-simultaneous observations. We performed joint fitting of XMM-Newton  and NuSTAR  data in common energy range, i.e., in 3103-10 keV range to check the variability. We used simple absorbed powerlaw model, along with a Gaussian component, for the Fe K-line. We allowed Γ\Gamma and powerlaw normalization vary freely between two data sets. We find that Γ\Gamma does not vary more than 10% between the XMM-Newton, and NuSTAR  observations for each of the five objects, while powerlaw normalization changes. The change in the powerlaw normalization can be taken care of by using ‘cross normalization’ factor. As Γ\Gamma did not vary more than 10%, we used XMM-Newton  data with the NuSTAR  data for non-simultaneous observations.

Similar to the non-simultaneous XMM-Newton  data, we also checked for spectral variability while adding the time-integrated BAT spectra with the NuSTAR  spectra. We fitted the joint NuSTAR+BAT data in the common energy range (i.e. 157815-78 keV) with a cutoff powerlaw model. The spectral parameters (Γ\Gamma and EcutE_{\rm cut}) are found to be consistent (within  10%) for both NuSTAR  and BAT spectra in the 15–78 keV energy range.

Appendix B Addition of Time-Integrated BAT Spectra

We used 105-months BAT data for the spectra analysis. The BAT spectra were added with the NuSTAR  and XMM-Newton  or XRT data, which were obtained in short timescale (10100\sim 10-100 ks). For individual sources, there is a possibility that the spectral state of AGN could change in the BAT timescale, so it may not be appropriate to add BAT spectra with the pointed observations of NuSTAR  and XMM-Newton. However, as the current work focus on the statistical properties of LAC-AGNs, the addition of time-integrated BAT data do not change the overall findings. We checked that if spectral analysis with and without the BAT spectra and the correlation properties of various spectral parameters remains the same. The addition of the BAT data allow us to probe the spectra up to 150 keV which it improves the uncertainty of the spectral parameters.

Appendix C Spectral Analysis Result

Table 4: Spectral Analysis Result with Model-1a and Model-1b.

Columns: (1) Source Name, (2) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (3) photon index (Γ\Gamma), (4) cut-off energy (EcutE_{\rm cut}) in keV, (5) reflection fraction (RR),

(6) χ2\chi^{2}/degrees of freedom for Model-1a, (7) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (8) photon index (Γ\Gamma), (9) hot electron plasma temperature (kTekT_{\rm e})

in keV, (10) reflection fraction (RR), (11) χ2\chi^{2}/degrees of freedom for Model-2.

Columns (2-5) represent the spectral parameters obtained from Model-1a, while columns (6-10) represent the results obtained with Model-1b.

Model-1a Model-1b
Object log\logNHlosN_{\rm H}^{\rm los} Γ\Gamma EcutE_{\rm cut} RR χ2\chi^{2}/dof log\logNHlosN_{\rm H}^{\rm los} Γ\Gamma kTekT_{\rm e} RR χ2\chi^{2}/dof
log\log(cm-2) (keV) log\log(cm-2) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
NGC 454E 23.580.09+0.0623.58^{+0.06}_{-0.09} 1.800.05+0.071.80^{+0.07}_{-0.05} >352>352 >0.91>0.91 231/207 23.580.09+0.0623.58^{+0.06}_{-0.09} 1.780.08+0.051.78^{+0.05}_{-0.08} >165>165 >0.94>0.94 236/209
NGC 1052 23.160.04+0.0323.16^{+0.03}_{-0.04} 1.710.06+0.041.71^{+0.04}_{-0.06} 254113+152254^{+152}_{-113} >1.33>1.33 939/968 23.170.05+0.0323.17^{+0.03}_{-0.05} 1.700.04+0.051.70^{+0.05}_{-0.04} 8739+4287^{+42}_{-39} >1.44>1.44 819/890
NGC 2110 22.590.01+0.0222.59^{+0.02}_{-0.01} 1.680.04+0.051.68^{+0.05}_{-0.04} 21847+35218^{+35}_{-47} <0.04<0.04 2356/2226 22.580.02+0.0222.58^{+0.02}_{-0.02} 1.690.06+0.051.69^{+0.05}_{-0.06} 7315+3273^{+32}_{-15} <0.07<0.07 2365/2226
NGC 2655 23.230.16+0.3723.23^{+0.37}_{-0.16} 1.510.08+0.061.51^{+0.06}_{-0.08} >44>44 >0.48>0.48 116/122 23.220.14+0.2623.22^{+0.26}_{-0.14} 1.500.09+0.061.50^{+0.06}_{-0.09} >23>23 >0.49>0.49 119/122
NGC 3079 24.240.07+0.1224.24^{+0.12}_{-0.07} 1.810.09+0.051.81^{+0.05}_{-0.09} 16458+82164^{+82}_{-58} >1.45>1.45 274/296 24.240.08+0.1324.24^{+0.13}_{-0.08} 1.810.08+0.051.81^{+0.05}_{-0.08} 5212+2252^{+22}_{-12} >1.44>1.44 275/296
NGC 3147 22.090.06+0.0622.09^{+0.06}_{-0.06} 1.900.06+0.041.90^{+0.04}_{-0.06} 39544+167395^{+167}_{-44} 0.410.22+0.340.41^{+0.34}_{-0.22} 621/579 22.090.07+0.0622.09^{+0.06}_{-0.07} 1.910.05+0.041.91^{+0.04}_{-0.05} 15631+74156^{+74}_{-31} 0.410.45+0.350.41^{+0.35}_{-0.45} 619/579
NGC 3718 21.940.04+0.0521.94^{+0.05}_{-0.04} 1.840.06+0.041.84^{+0.04}_{-0.06} 26781+117267^{+117}_{-81} <0.18<0.18 1282/1238 21.950.03+0.0321.95^{+0.03}_{-0.03} 1.830.04+0.031.83^{+0.03}_{-0.04} 11542+60115^{+60}_{-42} <0.16<0.16 1285/1238
NGC 3786 21.830.09+0.2621.83^{+0.26}_{-0.09} 1.640.08+0.051.64^{+0.05}_{-0.08} 18675+102186^{+102}_{-75} 1.040.24+0.571.04^{+0.57}_{-0.24} 182/185 21.830.13+0.3121.83^{+0.31}_{-0.13} 1.710.06+0.051.71^{+0.05}_{-0.06} 8122+3881^{+38}_{-22} 1.030.39+0.561.03^{+0.56}_{-0.39} 181/185
NGC 3998 20.0020.00^{*} 1.860.05+0.081.86^{+0.08}_{-0.05} 25282+117252^{+117}_{-82} <0.01<0.01 1512/1565 20.0020.00^{*} 1.860.04+0.051.86^{+0.05}_{-0.04} 10216+54102^{+54}_{-16} <0.01<0.01 1519/1565
NGC 4102 23.850.09+0.1023.85^{+0.10}_{-0.09} 1.680.07+0.051.68^{+0.05}_{-0.07} 20143+72201^{+72}_{-43} >0.44>0.44 401/361 23.860.08+0.0923.86^{+0.09}_{-0.08} 1.670.06+0.061.67^{+0.06}_{-0.06} 722+4372^{+43}_{-2} >0.45>0.45 399/361
NGC 4258 23.000.06+0.1023.00^{+0.10}_{-0.06} 1.770.07+0.051.77^{+0.05}_{-0.07} 391121+167391^{+167}_{-121} <0.15<0.15 792/884 23.000.06+0.0923.00^{+0.09}_{-0.06} 1.780.06+0.051.78^{+0.05}_{-0.06} 14943+82149^{+82}_{-43} <0.19<0.19 866/884
NGC 4579 20.0020.00^{*} 1.960.05+0.061.96^{+0.06}_{-0.05} 45895+122458^{+122}_{-95} <0.01<0.01 1647/1663 20.0020.00^{*} 1.960.04+0.061.96^{+0.06}_{-0.04} 19563+91195^{+91}_{-63} <0.01<0.01 1649/1663
NGC 5033 21.670.13+0.1821.67^{+0.18}_{-0.13} 1.760.08+0.051.76^{+0.05}_{-0.08} 20161+168201^{+168}_{-61} <0.18<0.18 1364/1379 21.710.09+0.2021.71^{+0.20}_{-0.09} 1.760.08+0.041.76^{+0.04}_{-0.08} 6819+1868^{+18}_{-19} <0.19<0.19 1369/1369
NGC 5283 23.100.03+0.0223.10^{+0.02}_{-0.03} 1.770.08+0.051.77^{+0.05}_{-0.08} 9121+2391^{+23}_{-21} 0.690.12+0.420.69^{+0.42}_{-0.12} 428/425 23.100.03+0.0223.10^{+0.02}_{-0.03} 1.780.07+0.051.78^{+0.05}_{-0.07} 450+1345^{+13}_{-0} 0.710.19+0.450.71^{+0.45}_{-0.19} 428/423
NGC 5290 22.120.09+0.0822.12^{+0.08}_{-0.09} 1.760.07+0.041.76^{+0.04}_{-0.07} 26088+103260^{+103}_{-88} 0.570.43+0.380.57^{+0.38}_{-0.43} 515/603 22.130.09+0.1422.13^{+0.14}_{-0.09} 1.760.08+0.051.76^{+0.05}_{-0.08} 10415+61104^{+61}_{-15} 0.600.38+0.340.60^{+0.34}_{-0.38} 522/608
NGC 5899 22.940.07+0.0722.94^{+0.07}_{-0.07} 1.740.10+0.061.74^{+0.06}_{-0.10} 11525+43115^{+43}_{-25} <0.52<0.52 326/396 22.940.07+0.0622.94^{+0.06}_{-0.07} 1.740.08+0.051.74^{+0.05}_{-0.08} 4512+2245^{+22}_{-12} <0.59<0.59 334/396
NGC 6232 23.530.16+0.3223.53^{+0.32}_{-0.16} 1.440.10+0.061.44^{+0.06}_{-0.10} >55>55 >0.68>0.68 143/141 23.530.14+0.3023.53^{+0.30}_{-0.14} 1.430.10+0.041.43^{+0.04}_{-0.10} >21>21 >0.71>0.71 145/141
NGC 7213 21.810.07+0.1221.81^{+0.12}_{-0.07} 1.870.05+0.031.87^{+0.03}_{-0.05} 26656+217266^{+217}_{-56} <0.05<0.05 1204/1201 21.810.06+0.1421.81^{+0.14}_{-0.06} 1.870.08+0.051.87^{+0.05}_{-0.08} 11132+103111^{+103}_{-32} <0.07<0.07 1199/1201
NGC 7674 23.610.11+0.2323.61^{+0.23}_{-0.11} 1.640.09+0.041.64^{+0.04}_{-0.09} >47>47 >0.74>0.74 114/106 23.610.11+0.2623.61^{+0.26}_{-0.11} 1.620.09+0.051.62^{+0.05}_{-0.09} >20>20 >0.69>0.69 118/106
Mrk 18 23.160.10+0.1023.16^{+0.10}_{-0.10} 1.740.10+0.091.74^{+0.09}_{-0.10} >277>277 >0.66>0.66 76/73 23.150.09+0.1023.15^{+0.10}_{-0.09} 1.750.04+0.081.75^{+0.08}_{-0.04} >88>88 >0.64>0.64 76/73
Mrk 273 23.430.03+0.0623.43^{+0.06}_{-0.03} 1.700.09+0.051.70^{+0.05}_{-0.09} >238>238 >0.71>0.71 499/442 23.430.04+0.0623.43^{+0.06}_{-0.04} 1.690.09+0.061.69^{+0.06}_{-0.09} >135>135 >0.70>0.70 502/442
ARP 102B 21.730.14+0.3921.73^{+0.39}_{-0.14} 1.720.09+0.051.72^{+0.05}_{-0.09} 8828+2588^{+25}_{-28} >0.84>0.84 259/281 21.740.16+0.4121.74^{+0.41}_{-0.16} 1.720.09+0.061.72^{+0.06}_{-0.09} 3510+2235^{+22}_{-10} >0.77>0.77 256/284
ESO 253–003 23.040.14+0.1123.04^{+0.11}_{-0.14} 1.410.09+0.051.41^{+0.05}_{-0.09} 367174+108367^{+108}_{-174} 0.850.22+0.350.85^{+0.35}_{-0.22} 378/327 23.040.15+0.1323.04^{+0.13}_{-0.15} 1.420.08+0.051.42^{+0.05}_{-0.08} 13841+100138^{+100}_{-41} 0.860.29+0.410.86^{+0.41}_{-0.29} 383/327
ESO 506–027 23.800.04+0.0723.80^{+0.07}_{-0.04} 1.670.08+0.051.67^{+0.05}_{-0.08} 330175+156330^{+156}_{-175} 0.860.27+0.410.86^{+0.41}_{-0.27} 385/342 23.800.05+0.0723.80^{+0.07}_{-0.05} 1.670.04+0.061.67^{+0.06}_{-0.04} 12542+76125^{+76}_{-42} 0.850.23+0.450.85^{+0.45}_{-0.23} 379/342
HE 1136–2304 21.080.12+0.0821.08^{+0.08}_{-0.12} 1.650.09+0.051.65^{+0.05}_{-0.09} 23145+75231^{+75}_{-45} <0.15<0.15 2768/2559 21.080.07+0.0821.08^{+0.08}_{-0.07} 1.650.04+0.031.65^{+0.03}_{-0.04} 10121+45101^{+45}_{-21} <0.13<0.13 2774/2559
IC 4518A 23.210.06+0.1123.21^{+0.11}_{-0.06} 1.540.06+0.061.54^{+0.06}_{-0.06} >41>41 >0.77>0.77 199/208 23.210.07+0.1123.21^{+0.11}_{-0.07} 1.550.07+0.061.55^{+0.06}_{-0.07} >19>19 >0.81>0.81 198/208
IGR J11366 21.860.07+0.0621.86^{+0.06}_{-0.07} 1.950.05+0.041.95^{+0.04}_{-0.05} 12622+35126^{+35}_{-22} 0.420.34+0.410.42^{+0.41}_{-0.34} 495/516 21.890.08+0.0521.89^{+0.05}_{-0.08} 1.960.06+0.081.96^{+0.08}_{-0.06} 5915+7659^{+76}_{-15} 0.450.34+0.390.45^{+0.39}_{-0.34} 502/516
Table 5: continued

Spectral Analysis Result with Model-1a and Model-1b.

Columns: (1) Source Name, (2) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (3) photon index (Γ\Gamma), (4) cut-off energy (EcutE_{\rm cut}) in keV, (5) reflection fractio (RR),

(6) χ2\chi^{2}/degrees of freedom for Model-1a, (7) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (8) photon index (Γ\Gamma), (9) hot electron plasma temperature (kTekT_{\rm e})

in keV, (10) reflection fraction (RR), (11) χ2\chi^{2}/degrees of freedom for Model-2.

Columns (2-5) represent the spectral parameters obtained from Model-1a, while columns (6-10) represent the results obtained with Model-1b.

Model-1a Model-1b
Object log\logNHlosN_{\rm H}^{\rm los} Γ\Gamma EcutE_{\rm cut} RR χ2\chi^{2}/dof log\logNHlosN_{\rm H}^{\rm los} Γ\Gamma kTekT_{\rm e} RR χ2\chi^{2}/dof
log\log(cm-2) (keV) log\log(cm-2) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
UGC 12292 24.200.04+0.1024.20^{+0.10}_{-0.04} 1.670.09+0.061.67^{+0.06}_{-0.09} >62>62 >0.64>0.64 135/122 24.190.05+0.1024.19^{+0.10}_{-0.05} 1.670.09+0.051.67^{+0.05}_{-0.09} >40>40 >0.67>0.67 142/122
LEDA 214543 22.400.07+0.1222.40^{+0.12}_{-0.07} 1.720.05+0.031.72^{+0.03}_{-0.05} 9833+4598^{+45}_{-33} >0.77>0.77 465/545 22.400.08+0.1422.40^{+0.14}_{-0.08} 1.720.06+0.031.72^{+0.03}_{-0.06} 3911+1939^{+19}_{-11} >0.72>0.72 472/545
Z367–9 23.260.04+0.0723.26^{+0.07}_{-0.04} 1.840.05+0.051.84^{+0.05}_{-0.05} 17071+108170^{+108}_{-71} >0.64>0.64 234/229 23.260.06+0.0823.26^{+0.08}_{-0.06} 1.840.08+0.051.84^{+0.05}_{-0.08} 5221+3852^{+38}_{-21} >0.63>0.63 235/229
Table 6: Spectral Analysis Result with Model-2a and Model-2b

Columns: (1) Source Name, (2) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (3) logarithm of average column density of the obscuring materials (NHtorN_{\rm H}^{\rm tor}),

(4) photon index (Γ\Gamma), (5) cut-off energy (EcutE_{\rm cut}) in keV, (6) χ2\chi^{2}/degrees of freedom for Model-2a, (7) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (8)

logarithm of average column density of the obscuring materials (NHtorN_{\rm H}^{\rm tor}), (9) photon index (Γ\Gamma), (10) hot electron plasma temperature of the corona (kTekT_{\rm e}) in keV,

(11) χ2\chi^{2}/degrees of freedom for Model-2b.

Columns (2-5) represent the spectral parameters obtained from Model-2a, while columns (6-10) represent the results obtained with Model-2b.

Model-2a Model-2b
Object log\logNHlosN_{\rm H}^{\rm los} log\logNHtorN_{\rm H}^{\rm tor} Γ\Gamma EcutE_{\rm cut} χ2\chi^{2}/dof log\logNHlosN_{\rm H}^{\rm los} log\logNHtorN_{\rm H}^{\rm tor} Γ\Gamma kTekT_{\rm e} χ2\chi^{2}/dof
log\log(cm-2) log(cm-2) (keV) log\log(cm-2) log\log (cm-2) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
NGC 454E 23.610.03+0.0323.61^{+0.03}_{-0.03} 24.541.35+0.9124.54^{+0.91}_{-1.35} 1.770.05+0.051.77^{+0.05}_{-0.05} >287>287 233/207 23.610.03+0.0323.61^{+0.03}_{-0.03} 24.521.26+0.9524.52^{+0.95}_{-1.26} 1.770.01+0.031.77^{+0.03}_{-0.01} >111>111 235/209
NGC 1052 23.170.03+0.0323.17^{+0.03}_{-0.03} 23.870.25+0.2223.87^{+0.22}_{-0.25} 1.730.03+0.021.73^{+0.02}_{-0.03} 267125+148267^{+148}_{-125} 936/968 23.170.04+0.0323.17^{+0.03}_{-0.04} 23.800.21+0.2823.80^{+0.28}_{-0.21} 1.720.02+0.021.72^{+0.02}_{-0.02} 9133+4591^{+45}_{-33} 814/890
NGC 2110 22.590.02+0.0122.59^{+0.01}_{-0.02} 22.660.31+0.1622.66^{+0.16}_{-0.31} 1.660.01+0.011.66^{+0.01}_{-0.01} 22928+28229^{+28}_{-28} 2292/2226 22.600.01+0.0222.60^{+0.02}_{-0.01} 22.660.52+0.2622.66^{+0.26}_{-0.52} 1.740.01+0.011.74^{+0.01}_{-0.01} 8910+1589^{+15}_{-10} 2320/2226
NGC 2655 23.230.14+0.3923.23^{+0.39}_{-0.14} 23.590.81+0.5623.59^{+0.56}_{-0.81} 1.520.03+0.051.52^{+0.05}_{-0.03} >49>49 110/122 23.230.13+0.3723.23^{+0.37}_{-0.13} 23.590.86+0.6223.59^{+0.62}_{-0.86} 1.530.05+0.041.53^{+0.04}_{-0.05} >19>19 113/122
NGC 3079 24.260.06+0.0824.26^{+0.08}_{-0.06} 24.640.16+0.3524.64^{+0.35}_{-0.16} 1.840.04+0.031.84^{+0.03}_{-0.04} 11029+52110^{+52}_{-29} 262/296 24.270.06+0.0924.27^{+0.09}_{-0.06} 24.620.21+0.3424.62^{+0.34}_{-0.21} 1.850.04+0.061.85^{+0.06}_{-0.04} 3910+1739^{+17}_{-10} 268/297
NGC 3147 22.090.05+0.0622.09^{+0.06}_{-0.05} 24.750.88+1.7424.75^{+1.74}_{-0.88} 1.900.04+0.041.90^{+0.04}_{-0.04} 41038+152410^{+152}_{-38} 612/579 22.110.05+0.0622.11^{+0.06}_{-0.05} 24.760.92+1.8124.76^{+1.81}_{-0.92} 1.920.06+0.061.92^{+0.06}_{-0.06} 18929+65189^{+65}_{-29} 610/579
NGC 3718 21.950.04+0.0421.95^{+0.04}_{-0.04} 22.720.72+1.6722.72^{+1.67}_{-0.72} 1.870.02+0.021.87^{+0.02}_{-0.02} 29674+105296^{+105}_{-74} 1261/1238 21.960.03+0.0321.96^{+0.03}_{-0.03} 22.780.87+1.5422.78^{+1.54}_{-0.87} 1.890.02+0.011.89^{+0.01}_{-0.02} 14248+65142^{+65}_{-48} 1276/1238
NGC 3786 21.840.07+0.2421.84^{+0.24}_{-0.07} 24.710.81+0.6824.71^{+0.68}_{-0.81} 1.730.04+0.031.73^{+0.03}_{-0.04} 19282+109192^{+109}_{-82} 164/185 21.830.09+0.2021.83^{+0.20}_{-0.09} 24.720.47+0.7424.72^{+0.74}_{-0.47} 1.730.03+0.041.73^{+0.04}_{-0.03} 9235+4592^{+45}_{-35} 165/185
NGC 3998 20.0020.00^{*} 22.910.18+0.2422.91^{+0.24}_{-0.18} 1.900.03+0.041.90^{+0.04}_{-0.03} 27666+143276^{+143}_{-66} 1493/1565 20.0020.00^{*} 22.900.19+0.2822.90^{+0.28}_{-0.19} 1.900.02+0.021.90^{+0.02}_{-0.02} 13221+92132^{+92}_{-21} 1496/1565
NGC 4102 23.850.08+0.0923.85^{+0.09}_{-0.08} 25.510.64+25.0025.51^{+25.00}_{-0.64} 1.700.03+0.031.70^{+0.03}_{-0.03} 20645+74206^{+74}_{-45} 397/361 23.860.08+0.0823.86^{+0.08}_{-0.08} 25.510.76+25.0025.51^{+25.00}_{-0.76} 1.690.03+0.011.69^{+0.01}_{-0.03} 749+5374^{+53}_{-9} 396/261
NGC 4258 23.000.06+0.0823.00^{+0.08}_{-0.06} 23.540.71+0.4523.54^{+0.45}_{-0.71} 1.810.02+0.021.81^{+0.02}_{-0.02} 448128+158448^{+158}_{-128} 779/884 23.000.06+0.0823.00^{+0.08}_{-0.06} 23.560.73+0.5223.56^{+0.52}_{-0.73} 1.820.03+0.041.82^{+0.04}_{-0.03} 19745+66197^{+66}_{-45} 856/884
NGC 4579 20.0020.00^{*} 23.800.12+0.1723.80^{+0.17}_{-0.12} 1.960.05+0.041.96^{+0.04}_{-0.05} 41077+131410^{+131}_{-77} 1646/1663 20.0020.00^{*} 23.780.15+0.1223.78^{+0.12}_{-0.15} 1.980.02+0.031.98^{+0.03}_{-0.02} 19058+88190^{+88}_{-58} 1649/1663
NGC 5033 21.680.10+0.1621.68^{+0.16}_{-0.10} 23.800.09+0.0923.80^{+0.09}_{-0.09} 1.780.03+0.031.78^{+0.03}_{-0.03} 20866+175208^{+175}_{-66} 1363/1379 21.720.09+0.1321.72^{+0.13}_{-0.09} 23.800.07+0.1023.80^{+0.10}_{-0.07} 1.820.02+0.021.82^{+0.02}_{-0.02} 7121+1571^{+15}_{-21} 1365/1379
NGC 5283 23.100.03+0.0323.10^{+0.03}_{-0.03} 24.180.34+0.5824.18^{+0.58}_{-0.34} 1.790.04+0.031.79^{+0.03}_{-0.04} 8215+2482^{+24}_{-15} 422/425 23.100.03+0.0323.10^{+0.03}_{-0.03} 24.200.45+0.6624.20^{+0.66}_{-0.45} 1.820.04+0.041.82^{+0.04}_{-0.04} 398+1439^{+14}_{-8} 423/423
NGC 5290 22.130.08+0.0822.13^{+0.08}_{-0.08} 24.020.68+0.5424.02^{+0.54}_{-0.68} 1.750.04+0.031.75^{+0.03}_{-0.04} 24792+109247^{+109}_{-92} 512/603 22.140.08+0.1222.14^{+0.12}_{-0.08} 24.040.78+0.5924.04^{+0.59}_{-0.78} 1.750.03+0.041.75^{+0.04}_{-0.03} 10718+56107^{+56}_{-18} 493/608
NGC 5899 22.950.07+0.0722.95^{+0.07}_{-0.07} 24.890.49+25.0024.89^{+25.00}_{-0.49} 1.760.03+0.041.76^{+0.04}_{-0.03} 12222+35122^{+35}_{-22} 306/396 22.940.07+0.0722.94^{+0.07}_{-0.07} 24.910.45+25.0024.91^{+25.00}_{-0.45} 1.760.04+0.031.76^{+0.03}_{-0.04} 4810+1548^{+15}_{-10} 308/396
NGC 6232 23.570.15+0.3223.57^{+0.32}_{-0.15} 25.150.51+25.0025.15^{+25.00}_{-0.51} 1.460.04+0.051.46^{+0.05}_{-0.04} >48>48 144/141 23.570.15+0.3223.57^{+0.32}_{-0.15} 25.140.59+25.0025.14^{+25.00}_{-0.59} 1.450.04+0.041.45^{+0.04}_{-0.04} >21>21 146/141
NGC 7213 21.810.08+0.1421.81^{+0.14}_{-0.08} 23.450.18+0.1423.45^{+0.14}_{-0.18} 1.910.05+0.061.91^{+0.06}_{-0.05} 31248+262312^{+262}_{-48} 1215/1201 21.820.07+0.1321.82^{+0.13}_{-0.07} 23.460.22+0.1623.46^{+0.16}_{-0.22} 1.900.10+0.101.90^{+0.10}_{-0.10} 14616+165146^{+165}_{-16} 1188/1201
NGC 7674 23.610.10+0.2523.61^{+0.25}_{-0.10} 24.571.02+25.5024.57^{+25.50}_{-1.02} 1.620.09+0.061.62^{+0.06}_{-0.09} >37>37 115/106 23.610.11+0.2823.61^{+0.28}_{-0.11} 24.560.94+25.0024.56^{+25.00}_{-0.94} 1.610.08+0.091.61^{+0.09}_{-0.08} >18>18 120/106
Mrk 18 23.160.09+0.1023.16^{+0.10}_{-0.09} 25.012.73+25.0025.01^{+25.00}_{-2.73} 1.790.03+0.041.79^{+0.04}_{-0.03} >320>320 79/73 23.150.08+0.0923.15^{+0.09}_{-0.08} 25.512.67+25.0025.51^{+25.00}_{-2.67} 1.780.05+0.081.78^{+0.08}_{-0.05} >88>88 81/73
Mrk 273 23.430.04+0.0523.43^{+0.05}_{-0.04} 24.260.46+0.8224.26^{+0.82}_{-0.46} 1.710.05+0.031.71^{+0.03}_{-0.05} >252>252 502/442 23.430.04+0.0523.43^{+0.05}_{-0.04} 24.420.52+0.7824.42^{+0.78}_{-0.52} 1.710.02+0.031.71^{+0.03}_{-0.02} >142>142 500/442
ARP 102B 21.750.16+0.4721.75^{+0.47}_{-0.16} 24.690.54+0.6824.69^{+0.68}_{-0.54} 1.750.03+0.041.75^{+0.04}_{-0.03} 8414+2284^{+22}_{-14} 251/281 21.770.12+0.5921.77^{+0.59}_{-0.12} 24.650.58+0.7624.65^{+0.76}_{-0.58} 1.760.06+0.041.76^{+0.04}_{-0.06} 319+1331^{+13}_{-9} 252/284
ESO 253–003 23.040.15+0.1023.04^{+0.10}_{-0.15} 24.060.25+0.3524.06^{+0.35}_{-0.25} 1.440.04+0.041.44^{+0.04}_{-0.04} 386205+112386^{+112}_{-205} 381/327 23.040.17+0.1023.04^{+0.10}_{-0.17} 24.080.24+0.2924.08^{+0.29}_{-0.24} 1.450.04+0.051.45^{+0.05}_{-0.04} 14837+106148^{+106}_{-37} 388/342
ESO 506–027 23.800.04+0.0723.80^{+0.07}_{-0.04} 24.150.41+0.6524.15^{+0.65}_{-0.41} 1.690.02+0.041.69^{+0.04}_{-0.02} 363159+138363^{+138}_{-159} 386/342 23.800.05+0.0723.80^{+0.07}_{-0.05} 24.120.56+0.7524.12^{+0.75}_{-0.56} 1.690.05+0.041.69^{+0.04}_{-0.05} 13856+78138^{+78}_{-56} 384/342
HE 1136–2304 21.080.03+0.0821.08^{+0.08}_{-0.03} 23.150.12+0.1523.15^{+0.15}_{-0.12} 1.670.09+0.091.67^{+0.09}_{-0.09} 25652+92256^{+92}_{-52} 2754/2559 21.110.06+0.0721.11^{+0.07}_{-0.06} 23.200.17+0.2123.20^{+0.21}_{-0.17} 1.670.03+0.051.67^{+0.05}_{-0.03} 11638+44116^{+44}_{-38} 2752/2559
IC 4518A 23.210.07+0.1023.21^{+0.10}_{-0.07} 24.760.30+0.5324.76^{+0.53}_{-0.30} 1.550.09+0.041.55^{+0.04}_{-0.09} >35>35 198/208 23.200.07+0.1223.20^{+0.12}_{-0.07} 24.730.45+0.6524.73^{+0.65}_{-0.45} 1.560.05+0.041.56^{+0.04}_{-0.05} >15>15 195/208
IGR J11366 21.880.04+0.0721.88^{+0.07}_{-0.04} 24.300.25+0.3224.30^{+0.32}_{-0.25} 1.940.06+0.061.94^{+0.06}_{-0.06} 10919+32109^{+32}_{-19} 487/516 21.890.04+0.0621.89^{+0.06}_{-0.04} 24.270.24+0.3624.27^{+0.36}_{-0.24} 1.960.06+0.061.96^{+0.06}_{-0.06} 5813+8058^{+80}_{-13} 495/516

fixed during analysis.

Table 7: continued

Spectral Analysis Result with Model-2a & Model-2b.

Columns: (1) Source Name, (2) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (3) logarithm of average column density of the obscuring materials (NHtorN_{\rm H}^{\rm tor}),

(4) photon index (Γ\Gamma), (5) cut-off energy (EcutE_{\rm cut}) in keV, (6) χ2\chi^{2}/degrees of freedom for Model-2a, (7) logarithm of line-of-sight of column density (NHlosN_{\rm H}^{\rm los}), (8)

logarithm of average column density of the obscuring materials (NHtorN_{\rm H}^{\rm tor}), (9) photon index (Γ\Gamma), (10) hot electron plasma temperature of the corona (kTekT_{\rm e}) in keV,

(11) χ2\chi^{2}/degrees of freedom for Model-2b.

Columns (2-5) represent the spectral parameters obtained from Model-2a, while columns (6-10) represent the results obtained with Model-2b.

Model-2a Model-2b
Object log\logNHlosN_{\rm H}^{\rm los} log\logNHtorN_{\rm H}^{\rm tor} Γ\Gamma EcutE_{\rm cut} χ2\chi^{2}/dof log\logNHlosN_{\rm H}^{\rm los} log\logNHtorN_{\rm H}^{\rm tor} Γ\Gamma kTekT_{\rm e} χ2\chi^{2}/dof
log\log(cm-2) log(cm-2) (keV) log\log(cm-2) log\log (cm-2) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
UGC 12282 24.200.05+0.0824.20^{+0.08}_{-0.05} 24.820.59+0.4524.82^{+0.45}_{-0.59} 1.690.06+0.041.69^{+0.04}_{-0.06} >57>57 137/122 24.210.06+0.1024.21^{+0.10}_{-0.06} 24.830.85+0.7524.83^{+0.75}_{-0.85} 1.680.05+0.031.68^{+0.03}_{-0.05} >39>39 144/122
LEDA214543 22.390.07+0.1022.39^{+0.10}_{-0.07} 24.560.36+0.4524.56^{+0.45}_{-0.36} 1.710.04+0.021.71^{+0.02}_{-0.04} 10629+52106^{+52}_{-29} 452/545 22.390.07+0.1022.39^{+0.10}_{-0.07} 24.560.35+0.4824.56^{+0.48}_{-0.35} 1.710.05+0.051.71^{+0.05}_{-0.05} 3610+2136^{+21}_{-10} 467/545
Z367–9 23.270.04+0.0723.27^{+0.07}_{-0.04} 24.100.46+0.7224.10^{+0.72}_{-0.46} 1.860.02+0.031.86^{+0.03}_{-0.02} 17579+114175^{+114}_{-79} 232/229 23.270.05+0.0823.27^{+0.08}_{-0.05} 24.050.52+0.6824.05^{+0.68}_{-0.52} 1.880.05+0.041.88^{+0.04}_{-0.05} 5625+4156^{+41}_{-25} 233/229

fixed during analysis.

Table 8: Important Parameters

Columns: (1) Source Name, (2) logarithm of the bolometric luminosity, (3) logarithm of the Eddington ratio, (4) dimensionless temperature,

(5) optical depth of the hot electron plasma, (6) compactness parameter, (7) number of scattering of the seed photons in the Compton cloud,

(8) logarithm of the jet luminosity.

Object logLbol\log~{}L_{\rm bol} logλEdd\log\lambda_{\rm Edd} θ\theta τe\tau_{\rm e} ll NSN_{\rm S} logLjet\log~{}L_{\rm jet}
log\log (erg s-1) log\log (erg s-1)
(1) (2) (3) (4) (5) (6) (7)
NGC 454E 43.05±0.0243.05\pm 0.02 3.584±0.472-3.584\pm 0.472 >0.23>0.23 <1.33<1.33 0.600.40+1.170.60^{+1.17}_{-0.40} >2>2 44.23±0.0344.23\pm 0.03
NGC 1052 42.63±0.0142.63\pm 0.01 4.444±0.304-4.444\pm 0.304 0.180.06+0.090.18^{+0.09}_{-0.06} 1.420.61+0.411.42^{+0.41}_{-0.61} 0.080.04+0.080.08^{+0.08}_{-0.04} 62+26^{+2}_{-2} 44.78±0.0844.78\pm 0.08
NGC 2110 43.37±0.0243.37\pm 0.02 4.124±0.121-4.124\pm 0.121 0.170.02+0.030.17^{+0.03}_{-0.02} 1.410.15+0.171.41^{+0.17}_{-0.15} 0.170.04+0.050.17^{+0.05}_{-0.04} 61+16^{+1}_{-1} 44.66±0.0444.66\pm 0.04
NGC 2655 41.97±0.0141.97\pm 0.01 3.844±0.208-3.844\pm 0.208 >0.03>0.03 <7.72<7.72 0.330.13+0.200.33^{+0.20}_{-0.13} >23>23 43.78±0.0343.78\pm 0.03
NGC 3079 42.54±0.0242.54\pm 0.02 3.844±0.321-3.844\pm 0.321 0.080.02+0.030.08^{+0.03}_{-0.02} 2.280.63+0.572.28^{+0.57}_{-0.63} 0.330.17+0.360.33^{+0.36}_{-0.17} 92+29^{+2}_{-2} 44.37±0.0444.37\pm 0.04
NGC 3147 42.68±0.0242.68\pm 0.02 4.224±0.122-4.224\pm 0.122 0.370.06+0.130.37^{+0.13}_{-0.06} 0.620.15+0.160.62^{+0.16}_{-0.15} 0.140.03+0.040.14^{+0.04}_{-0.03} 21+12^{+1}_{-1} 44.25±0.0344.25\pm 0.03
NGC 3718 41.52±0.0241.52\pm 0.02 6.124±0.122-6.124\pm 0.122 0.280.09+0.130.28^{+0.13}_{-0.09} 0.820.35+0.230.82^{+0.23}_{-0.35} 0.0020.001+0.0010.002^{+0.001}_{-0.001} 31+33^{+3}_{-1} 42.40±0.0942.40\pm 0.09
NGC 3786 42.18±0.0242.18\pm 0.02 3.464±0.118-3.464\pm 0.118 0.180.07+0.090.18^{+0.09}_{-0.07} 1.390.66+0.421.39^{+0.42}_{-0.66} 0.790.19+0.250.79^{+0.25}_{-0.19} 62+36^{+3}_{-2} 43.55±0.0543.55\pm 0.05
NGC 3998 42.30±0.0242.30\pm 0.02 5.744±0.241-5.744\pm 0.241 0.260.04+0.140.26^{+0.14}_{-0.04} 0.860.15+0.280.86^{+0.28}_{-0.15} 0.0040.002+0.0030.004^{+0.003}_{-0.002} 32+13^{+1}_{-2} 43.43±0.0543.43\pm 0.05
NGC 4102 42.42±0.0142.42\pm 0.01 4.444±0.344-4.444\pm 0.344 0.140.02+0.090.14^{+0.09}_{-0.02} 1.720.24+0.551.72^{+0.55}_{-0.24} 0.080.04+0.100.08^{+0.10}_{-0.04} 72+17^{+1}_{-2} 43.67±0.0243.67\pm 0.02
NGC 4258 41.39±0.0341.39\pm 0.03 4.294±0.382-4.294\pm 0.382 0.390.09+0.130.39^{+0.13}_{-0.09} 0.680.19+0.170.68^{+0.17}_{-0.19} 0.120.07+0.160.12^{+0.16}_{-0.07} 21+12^{+1}_{-1} 43.59±0.0343.59\pm 0.03
NGC 4579 42.65±0.0242.65\pm 0.02 3.564±0.121-3.564\pm 0.121 0.370.11+0.170.37^{+0.17}_{-0.11} 0.580.23+0.180.58^{+0.18}_{-0.23} 0.630.15+0.200.63^{+0.20}_{-0.15} 21+12^{+1}_{-1} 43.75±0.0443.75\pm 0.04
NGC 5033 42.15±0.0242.15\pm 0.02 3.824±0.373-3.824\pm 0.373 0.140.04+0.030.14^{+0.03}_{-0.04} 1.520.49+0.241.52^{+0.24}_{-0.49} 0.350.20+0.460.35^{+0.46}_{-0.20} 61+26^{+2}_{-1} 42.39±0.0542.39\pm 0.05
NGC 5283 43.01±0.0143.01\pm 0.01 3.974±0.311-3.974\pm 0.311 0.080.02+0.030.08^{+0.03}_{-0.02} 2.350.51+0.542.35^{+0.54}_{-0.51} 0.250.13+0.250.25^{+0.25}_{-0.13} 92+29^{+2}_{-2} 43.48±0.0543.48\pm 0.05
NGC 5290 42.83±0.0242.83\pm 0.02 3.044±0.334-3.044\pm 0.334 0.210.04+0.110.21^{+0.11}_{-0.04} 1.210.24+0.391.21^{+0.39}_{-0.24} 2.091.11+2.372.09^{+2.37}_{-1.11} 52+15^{+1}_{-2} 43.74±0.0443.74\pm 0.04
NGC 5899 43.16±0.0243.16\pm 0.02 3.614±0.334-3.614\pm 0.334 0.090.02+0.030.09^{+0.03}_{-0.02} 2.160.50+0.442.16^{+0.44}_{-0.50} 0.560.30+0.640.56^{+0.64}_{-0.30} 92+29^{+2}_{-2} 43.78±0.0443.78\pm 0.04
NGC 6232 42.48±0.0142.48\pm 0.01 3.064±0.527-3.064\pm 0.527 >0.04>0.04 <5.98<5.98 1.991.40+4.761.99^{+4.76}_{-1.40} >23>23 44.33±0.0344.33\pm 0.03
NGC 7213 43.06±0.0143.06\pm 0.01 3.044±0.111-3.044\pm 0.111 0.290.03+0.240.29^{+0.24}_{-0.03} 0.790.15+0.360.79^{+0.36}_{-0.15} 2.090.47+0.602.09^{+0.60}_{-0.47} 32+13^{+1}_{-2} 44.27±0.0644.27\pm 0.06
NGC 7674 43.15±0.0443.15\pm 0.04 4.144±0.141-4.144\pm 0.141 >0.04>0.04 <6.02<6.02 0.170.05+0.060.17^{+0.06}_{-0.05} >20>20 45.75±0.0345.75\pm 0.03
Mrk 18 42.82±0.0242.82\pm 0.02 3.144±0.318-3.144\pm 0.318 >0.17>0.17 <1.98<1.98 1.660.86+1.801.66^{+1.80}_{-0.86} >2>2 43.94±0.0443.94\pm 0.04
Table 9: continued

Important Parameters Object logLbol\log~{}L_{\rm bol} logλEdd\log\lambda_{\rm Edd} θ\theta τe\tau_{\rm e} ll NSN_{\rm S} logLjet\log~{}L_{\rm jet} log\log (erg s-1) log\log (erg s-1) (1) (2) (3) (4) (5) (6) (7) Mrk 273 43.68±0.0243.68\pm 0.02 3.454±0.062-3.454\pm 0.062 >0.28>0.28 <1.11<1.11 0.810.11+0.120.81^{+0.12}_{-0.11} >2>2 45.69±0.0345.69\pm 0.03 ARP 102B 43.58±0.0243.58\pm 0.02 3.454±0.363-3.454\pm 0.363 0.060.02+0.030.06^{+0.03}_{-0.02} 2.920.98+0.722.92^{+0.72}_{-0.98} 0.810.45+1.050.81^{+1.05}_{-0.45} 123+412^{+4}_{-3} 45.28±0.0345.28\pm 0.03 ESO 253–003 43.83±0.0243.83\pm 0.02 4.124±0.124-4.124\pm 0.124 0.270.05+210.27^{+21}_{-0.05} 1.570.42+1.101.57^{+1.10}_{-0.42} 0.170.04+0.060.17^{+0.06}_{-0.04} 84+28^{+2}_{-4} 46.44±0.1446.44\pm 0.14 ESO 506–027 44.07±0.0244.07\pm 0.02 3.034±0.314-3.034\pm 0.314 0.270.11+0.150.27^{+0.15}_{-0.11} 1.070.63+0.371.07^{+0.37}_{-0.63} 2.131.09+2.222.13^{+2.22}_{-1.09} 42+34^{+3}_{-2} 45.02±0.0445.02\pm 0.04 HE 1136–2304 44.25±0.0244.25\pm 0.02 3.254±0.121-3.254\pm 0.121 0.230.05+0.090.23^{+0.09}_{-0.05} 1.260.32+0.331.26^{+0.33}_{-0.32} 1.290.31+0.411.29^{+0.41}_{-0.31} 51+15^{+1}_{-1} 44.28±0.0444.28\pm 0.04 IC 4518A 43.37±0.0243.37\pm 0.02 3.304±0.125-3.304\pm 0.125 >0.03>0.03 <6.67<6.67 1.150.28+0.361.15^{+0.36}_{-0.28} >26>26 45.26±0.1045.26\pm 0.10 IGR J11366–3602 43.42±0.0243.42\pm 0.02 3.484±0.121-3.484\pm 0.121 0.110.03+0.160.11^{+0.16}_{-0.03} 1.530.42+0.811.53^{+0.81}_{-0.42} 0.760.18+0.240.76^{+0.24}_{-0.18} 63+26^{+2}_{-3} - UGC 12282 42.65±0.0242.65\pm 0.02 5.264±0.371-5.264\pm 0.371 >0.08>0.08 <2.91<2.91 0.020.01+0.010.02^{+0.01}_{-0.01} >12>12 43.89±0.0243.89\pm 0.02 LEDA214543 44.31±0.0244.31\pm 0.02 3.634±0.338-3.634\pm 0.338 0.070.02+0.040.07^{+0.04}_{-0.02} 2.790.87+0.882.79^{+0.88}_{-0.87} 0.540.29+0.640.54^{+0.64}_{-0.29} 114+311^{+3}_{-4} 43.72±0.0543.72\pm 0.05 Z367–9 43.56±0.0143.56\pm 0.01 4.374±0.332-4.374\pm 0.332 0.110.05+0.080.11^{+0.08}_{-0.05} 1.701.02+0.631.70^{+0.63}_{-1.02} 0.100.05+0.110.10^{+0.11}_{-0.05} 72+47^{+4}_{-2} 43.80±0.1043.80\pm 0.10

Appendix D Corner Plot

Refer to caption
Refer to caption
Figure 14: Posterior distribution of the spectral parameters obtained from the MCMC analysis with the Model-1 and Model-2, in the left and right panel, respectively. Plotting was performed using corner plot (Foreman-Mackey, 2016). Central dashed lines correspond to the peak values whereas 1σ1\sigma confidence levels are represented by dashed lines on either sides.