This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence rates in homogenization of parabolic systems with locally periodic coefficients

Yao Xu***Supported partially by NNSF of China (No. 11971031). School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, CHINA [email protected], [email protected]
Abstract

In this paper we study the quantitative homogenization of second-order parabolic systems with locally periodic (in both space and time) coefficients. The O(ε)O(\varepsilon) scale-invariant error estimate in L2(0,T;L2dd1(Ω))L^{2}(0,T;L^{\frac{2d}{d-1}}(\Omega)) is established in C1,1C^{1,1} cylinders under minimum smoothness conditions on the coefficients. This process relies on critical estimates of smoothing operators. We also develop a new construction of flux correctors in the parabolic manner and a sharp estimate for temporal boundary layers.

keywords:
homogenization, parabolic systems, scale-invariant convergence rates, locally periodic coefficients
MSC:
[2010] 35B27

1 Introduction

Let Ω\Omega be a bounded Lipschitz domain in d\mathbb{R}^{d}, d2d\geq 2, and T>0T>0. We consider the sharp convergence rate in the homogenization of the initial-boundary value problem with locally periodic coefficients

{tuε+εuε=finΩ×(0,T),uε=gonΩ×(0,T),uε=honΩ×{t=0},\begin{cases}\partial_{t}u_{\varepsilon}+\mathcal{L}_{\varepsilon}u_{\varepsilon}=f&\mathrm{in}~{}\Omega\times(0,T),\\ u_{\varepsilon}=g&\mathrm{on}~{}\partial\Omega\times(0,T),\\ u_{\varepsilon}=h&\mathrm{on}~{}\Omega\times\{t=0\},\end{cases} (1.1)

where

ε:=xi[Aijαβ(x,t;xε,tε2)xj],ε>0,1i,jd,1α,βm.\mathcal{L}_{\varepsilon}:=-\frac{\partial}{\partial x_{i}}\Big{[}A_{ij}^{\alpha\beta}\Big{(}x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}\Big{)}\frac{\partial}{\partial x_{j}}\Big{]},\quad\varepsilon>0,~{}1\leq i,j\leq d,~{}1\leq\alpha,\beta\leq m. (1.2)

Note that the summation convention for repeated indices is used here and throughout the paper, and we may also omit the superscripts α,β\alpha,\beta if it is clear to understand. The coefficient matrix A(x,t;y,τ)=(Aijαβ(x,t;y,τ))A(x,t;y,\tau)=(A^{\alpha\beta}_{ij}(x,t;y,\tau)) defined on ΩT×d+1\Omega_{T}\times\mathbb{R}^{d+1} is assumed to be 11-periodic in (y,τ)(y,\tau), i.e.,

A(x,t;y+z,τ+s)=A(x,t;y,τ)forany(z,s)d+1,\displaystyle A(x,t;y+z,\tau+s)=A(x,t;y,\tau)\quad\mathrm{for~{}any}~{}(z,s)\in\mathbb{Z}^{d+1}, (1.3)

and satisfy the boundedness and ellipticity conditions

AL(ΩT×d+1)1/μ,Aijαβ(x,t;y,τ)ξiαξjβμ|ξ|2\displaystyle\begin{split}\|A\|_{L^{\infty}(\Omega_{T}\times\mathbb{R}^{d+1})}&\leq 1/\mu,\\ A^{\alpha\beta}_{ij}(x,t;y,\tau)\xi_{i}^{\alpha}\xi_{j}^{\beta}&\geq\mu|\xi|^{2}\end{split} (1.4)

for any ξd×m\xi\in\mathbb{R}^{d\times m} and a.e. (x,t;y,τ)ΩT×d+1(x,t;y,\tau)\in\Omega_{T}\times\mathbb{R}^{d+1}, where μ>0\mu>0 and ΩT:=Ω×(0,T)\Omega_{T}:=\Omega\times(0,T). We also assume that

A(ΩT;𝑳),A\in\mathscr{H}(\Omega_{T};\bm{L^{\infty}}), (1.5)

where (ΩT;𝑳)\mathscr{H}(\Omega_{T};\bm{L^{\infty}}) is defined in Section 2.1.

System (1.1) is a simplified model describing physical processes or chemical reactions taking place in composite materials, such as thermal conduction, the sulfate corrosion of concrete (see [5, 10, 17] for more complicated models). It applies to processes in heterogeneous media, while the strictly periodic model

tuεdiv(A(x/ε,t/ε2)uε)=f\partial_{t}u_{\varepsilon}-\mathrm{div}(A(x/\varepsilon,t/\varepsilon^{2})\nabla u_{\varepsilon})=f (1.6)

is only suitable for homogeneous phenomena. From a micro perspective, the microscopic pattern of system (1.1) is allowed to differ at different times and positions. Since real media in biomechanics and engineering are almost never homogeneous, (1.1) covers better what happens in practical applications.

System (1.1) contains two levels of scales, the macroscopic scales (x,t)(x,t) and the microscopic scales (x/ε,t/ε2)(x/\varepsilon,t/\varepsilon^{2}). Usually, variables (x,t)(x,t) in A(x,t;y,τ)A(x,t;y,\tau) are called macroscopic variables, denoting space-time positions, while (y,τ)(y,\tau) are microscopic variables representing fast variations at the microscopic structure. In both (1.1) and (1.6), the scales of fast variations in space and time match naturally, that is, they are consistent with the intrinsic scaling (x,t)(λx,λ2t)(x,t)\rightarrow(\lambda x,\lambda^{2}t) of second order parabolic equations. Generally, one may consider models where the microscopic scales are (x/ε,t/εk)(x/\varepsilon,t/\varepsilon^{k}) with 0<k<0<k<\infty. In the periodic setting (1.6), when k=2k=2 we say the scales are self-similar, and when k2k\neq 2 they are non-self-similar [14]. Only in the case where k=2k=2, the spatial scale and the temporal scale are homogenized simultaneously. More generally, problems with multiple (matching or mismatching) scales in space and time have also been introduced in [5, 15, 22, 11, 7] and their references, where the qualitative homogenization of different types of matches was discussed widely. However, to the author’s knowledge, quite few quantitative results have been known for parabolic equations with multiple scales. For recent results on the quantitative homogenization of elliptic systems with multiple scales, we refer to [27, 18] and references therein.

Although the homogenized equation for (1.1) has been derived early in [5], there is not much progress in the quantitative homogenization. The only notable literature is [22, 21], where, for equation (1.1) with time-independent coefficients, the authors established the O(ε1/2)O(\varepsilon^{1/2}) estimate of the operator exponential etεe^{-t\mathcal{L}_{\varepsilon}} to its limit in L2L^{2} for each t1t\geq 1. More recently, the rate in L2(ΩT)L^{2}(\Omega_{T}), as well as the full-scale Lipschitz estimates, for systems with non-self-similar scales is discussed widely under strong smoothness assumptions on the coefficients in [12]. We also refer to the series of work [2, 3, 4] for the qualitative pointwise convergence results of the same equation obtained by a probabilistic approach.

Under assumptions (1.4)–(1.5), the coefficient A(x,t;x/ε,t/ε2)A(x,t;x/\varepsilon,t/\varepsilon^{2}) of system (1.1) is measurable on ΩT\Omega_{T}. We also assume that f,g,hf,g,h satisfy suitable conditions so that problem (1.1) admits a unique weak solution uεu_{\varepsilon}. As is well known, uεu_{\varepsilon} converges to a function u0u_{0} weakly in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)) as ε0\varepsilon\rightarrow 0, where u0u_{0} is the solution of the homogenized problem given by

{tu0+0u0=finΩ×(0,T),u0=gonΩ×(0,T),u0=honΩ×{t=0},\begin{cases}\partial_{t}u_{0}+\mathcal{L}_{0}u_{0}=f&\mathrm{in}~{}\Omega\times(0,T),\\ u_{0}=g&\mathrm{on}~{}\partial\Omega\times(0,T),\\ u_{0}=h&\mathrm{on}~{}\Omega\times\{t=0\},\end{cases} (1.7)

and 0\mathcal{L}_{0} is a divergence type elliptic operator with variable coefficients determined by solving unit cell problems at each point of the domain (see Section 2.3).

Our main goal is to establish the optimal convergence rate of uεu_{\varepsilon} to u0u_{0}. Convergence rate is a core subject of homogenization and has aroused much interest in the past few years. So far, various results about convergence rates have been gained for parabolic systems with time-independent or time-dependent periodic coefficients. The reader may consult [28, 16, 13, 25, 20, 12] and their references. However, almost all these rates are in the sense of L2L^{2}. In this paper, we establish a scale-invariant result for system (1.1) in L2(0,T;Lp0(Ω))L^{2}(0,T;L^{p_{0}}(\Omega)) with p0=2dd1p_{0}=\frac{2d}{d-1} under quite general conditions.

Theorem 1.1.

Let Ω\Omega be a bounded C1,1C^{1,1} domain in d\mathbb{R}^{d}, d2d\geq 2 and T>0T>0. Assume that AA satisfies (1.4)–(1.5). Let uεu_{\varepsilon} and u0u_{0} be the weak solutions to problems (1.1) and (1.7), respectively. Suppose further u0L2(0,T;W2,q0(Ω))u_{0}\in L^{2}(0,T;W^{2,q_{0}}(\Omega)), tu0L2(0,T;Lq0(Ω))\partial_{t}u_{0}\in L^{2}(0,T;L^{q_{0}}(\Omega)) with q0:=2dd+1q_{0}:=\frac{2d}{d+1}. Then

uεu0L2(0,T;Lp0(Ω))Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))},\displaystyle\|u_{\varepsilon}-u_{0}\|_{L^{2}(0,T;L^{p_{0}}(\Omega))}\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}, (1.8)

where p0:=2dd1p_{0}:=\frac{2d}{d-1}, CC depends only on d,m,n,μ,Ω,Ad,m,n,\mu,\Omega,A and

uW˙1,q0(Ω)=uLdq0dq0(Ω)+uLq0(Ω).\displaystyle\|u\|_{\dot{W}^{1,q_{0}}(\Omega)}=\|u\|_{L^{\frac{dq_{0}}{d-q_{0}}}(\Omega)}+\|\nabla u\|_{L^{q_{0}}(\Omega)}.

Theorem 1.1 extends the result of [20], a similar error estimate for (1.6), to the locally periodic setting. It is remarkable that estimate (1.8) is scale-invariant under the parabolic rescaling u(x,t)λ2u(λx,λ2t)u(x,t)\rightarrow\lambda^{-2}u(\lambda x,\lambda^{2}t) and the constant CC in (1.8) is independent of the size of Ω\Omega. This estimate is more elegant than that of [20] given as (with g=0g=0)

uεu0L2(0,T;Lp0(Ω))Cε{u0L2(0,T;W2,q0(Ω))+fL2(0,T;Lq0(Ω))+hH1(Ω)},\|u_{\varepsilon}-u_{0}\|_{L^{2}(0,T;L^{p_{0}}(\Omega))}\leq C\varepsilon\{\|u_{0}\|_{L^{2}(0,T;W^{2,q_{0}}(\Omega))}+\|f\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}+\|h\|_{H^{1}(\Omega)}\},

where the scale of hH1(Ω)\|h\|_{H^{1}(\Omega)} does not coincide with the other terms when doing scaling. The earliest work on these kinds of scale-invariant results in homogenization should be attributed to Z. Shen who established the rate for elliptic systems with periodic coefficients in the noted book [23]. Later in [26, 27], the scale-invariant error estimates were extended to elliptic systems with stratified coefficients A(x,ρ(x)/ε)A(x,\rho(x)/\varepsilon) under rather general smoothness assumptions.

In one sense, the smoothness condition (1.5) means A(x,t;y,τ)A(x,t;y,\tau) is 11-order differentiable in xx and 12\frac{1}{2}-order differentiable in tt, which coincides with the regularity of general parabolic equations. Also the space (ΩT;𝑳)\mathscr{H}(\Omega_{T};\bm{L^{\infty}}) has the same scale as L(ΩT×𝕋d+1)L^{\infty}(\Omega_{T}\times\mathbb{T}^{d+1}). From the viewpoint of calculations, this smoothness condition is minimum to guarantee the O(ε)O(\varepsilon) error estimate.

Before describing the strategies and skills used in the paper, we introduce the notation

ϕε(x,t):=ϕ(x,t;x/ε,t/ε2),\displaystyle\phi^{\varepsilon}(x,t):=\phi(x,t;x/\varepsilon,t/\varepsilon^{2}), (1.9)

which gives

xi(ϕε(x,t))=(xiϕ)ε(x,t)+ε1(yiϕ)ε(x,t),t(ϕε(x,t))=(tϕ)ε(x,t)+ε2(τϕ)ε(x,t).\displaystyle\begin{split}\partial_{x_{i}}(\phi^{\varepsilon}(x,t))&=(\partial_{x_{i}}\phi)^{\varepsilon}(x,t)+\varepsilon^{-1}(\partial_{y_{i}}\phi)^{\varepsilon}(x,t),\\ \partial_{t}(\phi^{\varepsilon}(x,t))&=(\partial_{t}\phi)^{\varepsilon}(x,t)+\varepsilon^{-2}(\partial_{\tau}\phi)^{\varepsilon}(x,t).\end{split} (1.10)

The main difficulties of the paper are essentially caused by the feature of two scales. As seen in the formal asymptotic expansion

uε(x,t)=u0(x,t)+εχj(x,t;x/ε,t/ε2)ju0(x,t)+,\displaystyle u_{\varepsilon}(x,t)=u_{0}(x,t)+\varepsilon\chi_{j}(x,t;x/\varepsilon,t/\varepsilon^{2})\partial_{j}u_{0}(x,t)+\cdots,

the first-order term εχj(x,t;x/ε,t/ε2)ju0(x,t)\varepsilon\chi_{j}(x,t;x/\varepsilon,t/\varepsilon^{2})\partial_{j}u_{0}(x,t) may not even be measurable on ΩT\Omega_{T}, as χ\chi is not regular enough. To handle this problem, as in [27] for elliptic systems, we introduce the smoothing operator SεS_{\varepsilon} w.r.t. macroscopic variables (x,t)(x,t). It makes Sε(g)S_{\varepsilon}(g) smooth in (x,t)(x,t) for any g(x,t;y,τ)g(x,t;y,\tau) which is 11-periodic in (y,τ)(y,\tau), thereby ensuring the measurability of [Sε(g)]ε(x,t)=Sε(g)(x,t;x/ε,t/ε2)[S_{\varepsilon}(g)]^{\varepsilon}(x,t)=S_{\varepsilon}(g)(x,t;x/\varepsilon,t/\varepsilon^{2}). Moreover, by Fubini’s theorem this operator also helps us separate (y,τ)(y,\tau) from (x,t)(x,t) in the coupled form (x,t;x/ε,t/ε2)(x,t;x/\varepsilon,t/\varepsilon^{2}). On the other hand, since SεS_{\varepsilon} is introduced to gg auxiliarily, it is necessary to control the difference gSε(g)g-S_{\varepsilon}(g) (mostly in the case g=Ag=A). The idea is to write this difference into convolutions which act just like smoothing operators. In fact, it involves the differences in both space and time, namely,

gSε(g)=gSεt(g)+Sεt(g)Sε(g),\displaystyle g-S_{\varepsilon}(g)=g-S^{t}_{\varepsilon}(g)+S^{t}_{\varepsilon}(g)-S_{\varepsilon}(g),

where SεtS^{t}_{\varepsilon} is the smoothing operator w.r.t. tt only (see (3.2)). The latter term is the difference in space and, by Poincaré’s inequality, it could be dominated by the “convolution”

B(x,ε)|Sεt(xg)(ω,t;y,τ)||ωx|1d𝑑ω.\displaystyle\int_{B(x,\varepsilon)}|S^{t}_{\varepsilon}(\nabla_{x}g)(\omega,t;y,\tau)||\omega-x|^{1-d}d\omega.

The first term can be written formally into

g(x,t;y,τ)Sεt(g)(x,t;y,τ)=ε201g(x,ς;y,τ)tΦε2θ(tς)dςdθ,\displaystyle g(x,t;y,\tau)-S^{t}_{\varepsilon}(g)(x,t;y,\tau)=-\varepsilon^{2}\int_{0}^{1}\int_{\mathbb{R}}g(x,\varsigma;y,\tau)\cdot\partial_{t}\varPhi_{\varepsilon^{2}\theta}(t-\varsigma)d\varsigma d\theta,

where Φε2θ\Phi_{\varepsilon^{2}\theta} is a proper kernel. Both of these two terms can be controlled well by the critical estimates established in Section 3.1.

It should be pointed out that, due to the feature of the coefficient, the rate in L2(0,T;Lp0(Ω))L^{2}(0,T;L^{p_{0}}(\Omega)) involves many subtle inhomogeneous LtqLxpLτsLyrL^{q}_{t}L^{p}_{x}L^{s}_{\tau}L^{r}_{y}-type estimates of four-variable functions. This urges us to perform each step accurately in the right format, and by this reason, the process is much more delicate than that of elliptic problems in [27].

On the other hand, we introduce a new construction of flux correctors. In [13], flux correctors were constructed in an elliptic manner by lifting the function BijB_{ij} in both yy and τ\tau, which results in high regularity in τ\tau but low regularity in yy (especially for 𝔅(d+1)ij\mathfrak{B}_{(d+1)ij}). It does not work for higher-order parabolic systems, as more regularity in yy is required. Later, in [19] when dealing with higher-order systems, flux correctors were constructed by lifting the regularity w.r.t. space only. This provides enough regularity in yy, but no regularity in τ\tau. Neither of them is applicable to our setting, as the microscopic regularities involved are very subtle. To this end, we construct flux correctors in a parabolic manner, in which way the regularities of flux correctors are the same as and even better than correctors. This construction seems more natural and is also valid for higher-order systems.

Another novelty of the paper is a new estimate of temporal boundary layers. Compared to the method in [20], it provides better estimates but requires no restriction on gg and hh. The estimate is based on a sharp embedding result for u0u_{0} and it improves the estimate used in [14], where one half of the power of temporal layers was in fact lost.

We now describe the outline of the paper. Section 2 contains several parts of preliminaries. In Section 2.1, various vector-valued spaces of multi-variable functions are introduced, which are suitable tools to describe the properties of correctors and flux correctors. Section 2.2 provides some homogeneous Sobolev spaces. Next in Sections 2.3 and 2.4, correctors χ\chi and flux correctors 𝔅\mathfrak{B}, together with their regularities, are studied. Section 3.1 is devoted to a series of critical estimates for the smoothing operator SεS_{\varepsilon}. Afterwards, a sharp embedding result for u0u_{0} is built in Section 3.2, along with a corollary on the estimate of boundary layers.

These results are applied in Section 4 to establish the O(ε1/2)O(\varepsilon^{1/2}) rate in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)) and the O(ε)O(\varepsilon) rate in L2(0,T;Lp0(Ω))L^{2}(0,T;L^{p_{0}}(\Omega)). More precisely, the O(ε1/2)O(\varepsilon^{1/2}) estimate is established for the auxiliary function

wε=uεu0εSε(Sε(χ)Sε(u0)ηε)(x,t;xε,tε2)ε2xkSε(Sε(𝔅(d+1)kj)Sε(ju0)ηε)(x,t;xε,tε2),\displaystyle\begin{split}w_{\varepsilon}&=u_{\varepsilon}-u_{0}-\varepsilon S_{\varepsilon}(S_{\varepsilon}(\chi)S_{\varepsilon}(\nabla u_{0})\eta_{\varepsilon})(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}})\\ &\quad-\varepsilon^{2}\partial_{x_{k}}S_{\varepsilon}(S_{\varepsilon}(\mathfrak{B}_{(d+1)kj})S_{\varepsilon}(\partial_{j}u_{0})\eta_{\varepsilon})(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}),\end{split} (1.11)

where ηε\eta_{\varepsilon} is a cut-off function. Note that in this process those three SεS_{\varepsilon} in the last two terms of (1.11) play different roles: the first SεS_{\varepsilon} is mainly used to maintain the measurability on ΩT\Omega_{T} and control rapidly oscillating factors via Fubini’s theorem; the second operator helps us to reduce the smoothness assumption on AA in tt; and the third one reduces the regularities of u0u_{0} at the cost of the power of ε\varepsilon.

To derive the rate of uεu_{\varepsilon} to u0u_{0} stated in Theorem 1.1, we adopt the classical duality argument, where the solution of the dual problem satisfies LqL^{q}-LpL^{p} estimates in ΩT\Omega_{T}. The main challenge in this process lies in the term

|ΩT[AA^]ε(u0Sε(u0))[Sε(yχ~Kε(v0))]ε|,\displaystyle\Big{|}\iint_{\Omega_{T}}[A-\widehat{A}]^{\varepsilon}\cdot(\nabla u_{0}-S_{\varepsilon}(\nabla u_{0}))\cdot[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}\Big{|},

where χ\chi^{*} is the corrector of the dual problem. For this term, the technique used in [20] is no longer in force, since χ\chi^{*} is now a four-variable function and it does not have enough regularity to rearrange arbitrarily the order of integrals in mixed norms. Instead, the idea is, formally speaking, to transfer the gradient in yχ~\nabla_{y}\widetilde{\chi}^{*} to u0u_{0} by integrating by parts, which is carried out by a regularity lifting argument (see Lemma 3.7).

Throughout this paper, unless otherwise stated, we will use CC to denote any positive constant which may depend on d,m,μd,m,\mu. It should be understood that CC may differ from each other even in the same line. We also use the notation Ef:=(1/|E|)Ef\fint_{E}f:=(1/|E|)\int_{E}f for the integral average of ff over EE.

2 Preliminaries and correctors

In this section, we introduce briefly some vector-valued function spaces with mixed norms for four-variable functions. Correctors and flux correctors are also introduced.

2.1 Multi-variable function spaces

Recall that, a vector-valued function space is defined via the strong measurability. Precisely, given a measure space (E,μ)(E,\mu) and a Banach space (B,B)(B,\|\cdot\|_{B}), Lp(E;B)L^{p}(E;B) is the space of strongly measurable vector-valued functions from EE into BB satisfying hLp(E;B)<\|h\|_{L^{p}(E;B)}<\infty, where

hLp(E;B):={(EhBp𝑑μ)1/pifp<,esssupE{hB}ifp=.\displaystyle\|h\|_{L^{p}(E;B)}:=\begin{cases}\Big{(}\int_{E}\|h\|_{B}^{p}~{}d\mu\Big{)}^{1/p}&\mathrm{if}~{}p<\infty,\\[5.69046pt] \operatorname*{ess\,sup}\limits_{E}\{\|h\|_{B}\}&\mathrm{if}~{}p=\infty.\end{cases}

Here the strong measurability means that elements can be approximated almost everywhere by countably-valued functions. Following this framework, we introduce some vector-valued function spaces with mixed norms.

For k+k\in\mathbb{N^{+}}, we denote the kk-dimensional torus of length 11 by 𝕋k\mathbb{T}^{k}. Then functions of period 11 on k\mathbb{R}^{k} may be regarded as functions on 𝕋k\mathbb{T}^{k}. Detailedly, Lr(𝕋d+1)L^{r}(\mathbb{T}^{d+1}) and W1,r(𝕋d+1)W^{1,r}(\mathbb{T}^{d+1}) (1r1\leq r\leq\infty) are the subspaces of Llocr(d+1)L^{r}_{\mathrm{loc}}(\mathbb{R}^{d+1}) and Wloc1,r(d+1)W^{1,r}_{\mathrm{loc}}(\mathbb{R}^{d+1}) whose elements are 11-periodic, respectively. Moreover, L𝔪s(𝕋1;Lr(𝕋d))L_{\mathfrak{m}}^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d})) (1r,s)(1\leq r,s\leq\infty) denotes the anisotropic space of 11-periodic measurable functions on 𝕋d+1\mathbb{T}^{d+1} endowed with the norm Ls(𝕋1;Lr(𝕋d))\|\cdot\|_{L^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d}))} (see Section 2.1 in [27]). Note that the main distinction between L𝔪s(𝕋1;Lr(𝕋d))L_{\mathfrak{m}}^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d})) and Ls(𝕋1;Lr(𝕋d))L^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d})), the space of strongly measurable vector-valued functions from 𝕋1\mathbb{T}^{1} into Lr(𝕋d)L^{r}(\mathbb{T}^{d}), concentrates on the measurability of elements, and these two spaces are equivalent if r<r<\infty. Furthermore, if s=rs=r, L𝔪s(𝕋1;Lr(𝕋d))=Lr(𝕋d+1)L_{\mathfrak{m}}^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d}))=L^{r}(\mathbb{T}^{d+1}). For the sake of brevity, we may write

𝑳𝒓:=Lr(𝕋d+1),𝑾𝟏,𝒓:=W1,r(𝕋d+1),𝑳𝒔,𝒓:=L𝔪s(𝕋1;Lr(𝕋d)),\displaystyle\bm{L^{r}}:=L^{r}(\mathbb{T}^{d+1}),\quad\bm{W^{1,r}}:=W^{1,r}(\mathbb{T}^{d+1}),\quad\bm{L^{s,r}}:=L_{\mathfrak{m}}^{s}(\mathbb{T}^{1};L^{r}(\mathbb{T}^{d})), (2.1)

as the domain is invariant and the periodicity is always required. All of these spaces are equipped with the product measurability on 𝕋d+1\mathbb{T}^{d+1} and will be the ranges of vector-valued function spaces in our study.

Now set E=Ω×IE=\Omega\times I, where II is a finite closed interval and Ω\Omega is an open set of d\mathbb{R}^{d} for the moment. Given BB as any space in (2.1), we discuss about vector-valued function spaces from EE into BB with mixed norms. For 1p,q1\leq p,q\leq\infty, we say h(x,t;y,τ)h(x,t;y,\tau) belongs to Lq,p(E;B)L^{q,p}(E;B) if hh is strongly measurable from EE into BB and satisfies hLq,p(E;B)<\|h\|_{L^{q,p}(E;B)}<\infty, where

hLq,p(E;B):=hLq(I;Lp(Ω;B)).\|h\|_{L^{q,p}(E;B)}:=\|h\|_{L^{q}(I;L^{p}(\Omega;B))}.

Note that Lq,p(E;B)L^{q,p}(E;B) is a Banach space under norm Lq,p(E;B)\|\cdot\|_{L^{q,p}(E;B)} and, if q=pq=p, Lq,p(E;B)=Lp(E;B)L^{q,p}(E;B)=L^{p}(E;B). We also point out that the elements of Lq,p(E;B)L^{q,p}(E;B) are measurable w.r.t. the Lebesgue (product) measure on E×d+1E\times\mathbb{R}^{d+1}. Moreover, if h(x,t;y,τ)L1(E;𝑳)h(x,t;y,\tau)\in L^{1}(E;\bm{L^{\infty}}), then h(x,t;xε,tε2)h(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}) is a measurable function of (x,t)(x,t) on EE, where we have regarded hh in h(x,t;xε,tε2)h(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}) to be its precise representative (see [27] for more details)

h(x,t;y,τ)={limr0{|(x,t;y,τ)(x,t;y,τ)|r}h(x,t;y,τ)𝑑x𝑑t𝑑y𝑑τif the limit exists,0otherwise.\displaystyle h^{*}(x,t;y,\tau)=\begin{cases}\lim\limits_{r\rightarrow 0}\fint_{\{|(x^{\prime},t^{\prime};y^{\prime},\tau^{\prime})-(x,t;y,\tau)|\leq r\}}h(x^{\prime},t^{\prime};y^{\prime},\tau^{\prime})dx^{\prime}dt^{\prime}dy^{\prime}d\tau^{\prime}&\textrm{if the limit exists,}\\ 0&\textrm{otherwise}.\end{cases}

To keep presentations simple, we may use the following notations for multiple integrals of h(x,t;y,τ)h(x,t;y,\tau) on E×𝕋d+1E\times\mathbb{T}^{d+1}:

hLyr(x,t;τ):=h(x,t;,τ)Lr(𝕋d),hLτ,ys,r(x,t):=h(x,t;,)𝑳𝒔,𝒓,hLx,τ,yp,s,r(Ω)(t):=h(,t;,)Lp(Ω;𝑳𝒔,𝒓),hLt,x,τ,yq,p,s,r(E):=hLq,p(E;𝑳𝒔,𝒓).\displaystyle\begin{split}\|h\|_{L^{r}_{y}}(x,t;\tau)&:=\|h(x,t;\cdot,\tau)\|_{L^{r}(\mathbb{T}^{d})},\quad\quad\|h\|_{L^{s,r}_{\tau,y}}(x,t):=\|h(x,t;\cdot,\cdot)\|_{\bm{L^{s,r}}},\\ \|h\|_{L^{p,s,r}_{x,\tau,y}(\Omega)}(t)&:=\|h(\cdot,t;\cdot,\cdot)\|_{L^{p}(\Omega;\bm{L^{s,r}})},\quad\|h\|_{L^{q,p,s,r}_{t,x,\tau,y}(E)}:=\|h\|_{L^{q,p}(E;\bm{L^{s,r}})}.\end{split} (2.2)

In particular, if h(x,t;y,τ)h(x,t;y,\tau) is independent of (y,τ)(y,\tau), we have

hLq,p(E)=hLq(I;Lp(Ω)).\|h\|_{L^{q,p}(E)}=\|h\|_{L^{q}(I;L^{p}(\Omega))}.

On the other hand, due to Fubini’s theorem, we can define the weak derivative w.r.t. variable xx as a distribution. Indeed, if h(x,t;y,τ)Lloc1(E×d+1)h(x,t;y,\tau)\in L^{1}_{\mathrm{loc}}(E\times\mathbb{R}^{d+1}), for a.e. (t;y,τ)(t;y,\tau), we define xh(,t;y,τ)\nabla_{x}h(\cdot,t;y,\tau) as a distribution on Ω\Omega by

xh(x,t;y,τ),ϕ(x)Ω=Ωh(x,t;y,τ)xϕ(x)𝑑xforϕC0(Ω).\displaystyle\langle\nabla_{x}h(x,t;y,\tau),\phi(x)\rangle_{\Omega}=-\int_{\Omega}h(x,t;y,\tau)\nabla_{x}\phi(x)~{}dx\quad\mathrm{for}~{}\phi\in C_{0}^{\infty}(\Omega).

Furthermore, for 0<σ<10<\sigma<1 and 1q<1\leq q<\infty, the fractional Sobolev-Slobodeckij space Wσ,q(I;X)W^{\sigma,q}(I;X) is defined to be the set of vector-valued function hh from II into Banach space XX satisfying hWσ,q(I;X):=hLq(I;X)+[h]Wσ,q(I;X)<\|h\|_{W^{\sigma,q}(I;X)}:=\|h\|_{L^{q}(I;X)}+[h]_{W^{\sigma,q}(I;X)}<\infty, where

[h]Wσ,q(I;X):=(IIh(t1)h(t2)Xq|t1t2|1+σq𝑑t1𝑑t2)1q.\displaystyle[h]_{W^{\sigma,q}(I;X)}:=\Big{(}\int_{I}\int_{I}\frac{\|h(t_{1})-h(t_{2})\|_{X}^{q}}{|t_{1}-t_{2}|^{1+\sigma q}}dt_{1}dt_{2}\Big{)}^{\frac{1}{q}}. (2.3)

Wσ,q(I;X)W^{\sigma,q}(I;X) is a Banach space under the norm Wσ,q(I;X)\|\cdot\|_{W^{\sigma,q}(I;X)}.

Lastly, we say h(E;B)h\in\mathscr{H}(E;B) if

[h](E;B):=[h]W12,2(I;L(Ω;B))+xhL,d(E;B)<.\displaystyle[h]_{\mathscr{H}(E;B)}:=[h]_{W^{\frac{1}{2},2}(I;L^{\infty}(\Omega;B))}+\|\nabla_{x}h\|_{L^{\infty,d}(E;B)}<\infty. (2.4)

Note that [](E;B)[\,\cdot\,]_{\mathscr{H}(E;B)} is a semi-norm. In a sense, h(E;B)h\in\mathscr{H}(E;B) means that hh has 12\frac{1}{2}-order derivative in time and 11-order derivative in space. If h(E;𝑳)h\in\mathscr{H}(E;\bm{L^{\infty}}), then h(x,t;xε,tε2)h(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}) and xh(x,t;xε,tε2)\nabla_{x}h(x,t;\frac{x}{\varepsilon},\frac{t}{\varepsilon^{2}}) are measurable functions on EE taking precise representatives into consideration.

2.2 Homogeneous Sobolev spaces

To make the estimates scale-invariant, we introduce the following homogeneous Sobolev spaces. Denote henceforth

p:=dpdpfor1p<d,p:=pp1for1p.\displaystyle p^{*}:=\frac{dp}{d-p}\quad\mathrm{for}~{}1\leq p<d,\qquad p^{\prime}:=\frac{p}{p-1}\quad\mathrm{for}~{}1\leq p\leq\infty.

For a domain Ωd\Omega\subset\mathbb{R}^{d} and 1p<d1\leq p<d, set

W˙1,p(Ω):={uLp(Ω):uLp(Ω)<}\displaystyle\dot{W}^{1,p}(\Omega):=\{u\in L^{p^{*}}(\Omega):\|\nabla u\|_{L^{p}(\Omega)}<\infty\}

endowed with the norm uW˙1,p(Ω)=uLp(Ω)+uLp(Ω)\|u\|_{\dot{W}^{1,p}(\Omega)}=\|u\|_{L^{p^{*}}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}. For 1p<1\leq p<\infty, set

W˙01,p(Ω):=the completion of Cc(Ω) under uLp(Ω).\displaystyle\dot{W}^{1,p}_{0}(\Omega):=\textrm{the completion of }C_{c}^{\infty}(\Omega)\textrm{ under }\|\nabla u\|_{L^{p}(\Omega)}.

Note that uLp(Ω)\|\nabla u\|_{L^{p}(\Omega)} is a norm in W˙01,p(Ω)\dot{W}^{1,p}_{0}(\Omega) and W˙1,p(d)=W˙01,p(d)\dot{W}^{1,p}(\mathbb{R}^{d})=\dot{W}^{1,p}_{0}(\mathbb{R}^{d}) for 1p<d1\leq p<d. For 1<p1<p\leq\infty, we denote by W˙1,p(Ω)\dot{W}^{-1,p}(\Omega) the dual space of W˙01,p(Ω)\dot{W}^{1,p^{\prime}}_{0}(\Omega). It is not hard to show that FW˙1,p(Ω)F\in\dot{W}^{-1,p}(\Omega) can be written into F=j=1dxjfjF=\sum_{j=1}^{d}\partial_{x_{j}}f_{j} for some fjLp(Ω)f_{j}\in L^{p}(\Omega).

2.3 Correctors and effective coefficients

For 1βm,1jd1\leq\beta\leq m,1\leq j\leq d, set Pjβ=Pjβ(y):=yjeβP_{j}^{\beta}=P_{j}^{\beta}(y):=y_{j}e^{\beta}, where eβ=(0,,1,,0)e^{\beta}=(0,\dots,1,\dots,0) with 11 in the β\beta-th position. According to the qualitative results of homogenization in [5], the matrix of correctors χjβ(x,t;y,τ)=(χjγβ(x,t;y,τ))\chi^{\beta}_{j}(x,t;y,\tau)=(\chi^{\gamma\beta}_{j}(x,t;y,\tau)) is given by the following system

{τχjβ(x,t;y,τ)+x,tχjβ(x,t;y,τ)=x,t(Pjβ)ind+1,χjβis 1-periodic in(y,τ)and𝕋d+1χjβ(x,t;y,τ)𝑑y𝑑τ=0for a.e. (x,t)ΩT,\begin{cases}\partial_{\tau}\chi_{j}^{\beta}(x,t;y,\tau)+\mathcal{L}^{x,t}\chi^{\beta}_{j}(x,t;y,\tau)=-\mathcal{L}^{x,t}(P_{j}^{\beta})\quad\mathrm{in}~{}\mathbb{R}^{d+1},\\ \chi^{\beta}_{j}~{}\textrm{is $1$-periodic in}~{}(y,\tau)~{}\textrm{and}~{}\int_{\mathbb{T}^{d+1}}\chi^{\beta}_{j}(x,t;y,\tau)~{}dyd\tau=0~{}\textrm{for a.e. }(x,t)\in\Omega_{T},\end{cases} (2.5)

where

x,t:=yk[Aklαγ(x,t;y,τ)yl],\displaystyle\mathcal{L}^{x,t}:=-\frac{\partial}{\partial y_{k}}\Big{[}A_{kl}^{\alpha\gamma}(x,t;y,\tau)\frac{\partial}{\partial y_{l}}\cdot\Big{]},

and x,tx,t play the role of parameters. By Fubini’s theorem, equation (2.5) is well-posed for a.e. (x,t)(x,t) under assumptions (1.3)–(1.4).

On the other hand, we can introduce the matrix of correctors χjβ\chi_{j}^{*\beta} for the operator t+ε-\partial_{t}+\mathcal{L}_{\varepsilon}^{*}, where ε\mathcal{L}^{*}_{\varepsilon} is the adjoint operator of ε\mathcal{L}_{\varepsilon}, given by (1.2) with AA replaced by its adjoint AA^{*}. Then χjβ\chi_{j}^{*\beta} solves the cell problem

τχjβ(x,t;y,τ)+(x,t)χjβ(x,t;y,τ)=(x,t)Pjβin𝕋d+1.\displaystyle-\partial_{\tau}\chi_{j}^{*\beta}(x,t;y,\tau)+(\mathcal{L}^{x,t})^{*}\chi^{*\beta}_{j}(x,t;y,\tau)=-(\mathcal{L}^{x,t})^{*}P_{j}^{\beta}\quad\mathrm{in}~{}\mathbb{T}^{d+1}. (2.6)

The matrix of effective coefficients for t+ε\partial_{t}+\mathcal{L}_{\varepsilon} is defined by

A^ijαβ(x,t):=𝕋d+1Aijαβ(x,t;y,τ)+Aikαγ(x,t;y,τ)ykχjγβ(x,t;y,τ)dydτ.\displaystyle\widehat{A}^{\alpha\beta}_{ij}(x,t):=\iint_{\mathbb{T}^{d+1}}A^{\alpha\beta}_{ij}(x,t;y,\tau)+A^{\alpha\gamma}_{ik}(x,t;y,\tau)\partial_{y_{k}}\chi^{\gamma\beta}_{j}(x,t;y,\tau)~{}dyd\tau. (2.7)

One can verify that A^\widehat{A} satisfies the ellipticity condition and (A^)=A^(\widehat{A})^{*}=\widehat{A^{*}}, where A^\widehat{A^{*}} is the matrix of effective coefficients for t+ε-\partial_{t}+\mathcal{L}_{\varepsilon}^{*}.

Inherited from AA, we have the following estimates on χ\chi.

Lemma 2.1.

Suppose that AA satisfies (1.3)– (1.4). Then

  • 1).

    there exists q¯>2\bar{q}>2, depending only on μ\mu, such that, for a.e. (x,t)ΩT(x,t)\in\Omega_{T}, χ(x,t;,)𝔹1:=Lq¯(𝕋1;W1,q¯(𝕋d))L(𝕋1;Lq¯(𝕋d))\chi(x,t;\cdot,\cdot)\in\mathbb{B}_{1}:=L^{\bar{q}}(\mathbb{T}^{1};W^{1,\bar{q}}(\mathbb{T}^{d}))\cap L^{\infty}(\mathbb{T}^{1};L^{\bar{q}}(\mathbb{T}^{d})), and it holds that

    χ(x,t)𝔹1C,xχ(x,t)𝔹1CxA(x,t)L(𝕋d+1),\displaystyle\|\chi(x,t)\|_{\mathbb{B}_{1}}\leq C,\quad\|\nabla_{x}\chi(x,t)\|_{\mathbb{B}_{1}}\leq C\|\nabla_{x}A(x,t)\|_{L^{\infty}(\mathbb{T}^{d+1})},

    and for a.e. x1,x2Ωx_{1},x_{2}\in\Omega, t1,t2[0,T]t_{1},t_{2}\in[0,T],

    χ(x1,t)χ(x2,t)𝔹1CA(x1,t)A(x2,t)L(𝕋d+1),χ(x,t1)χ(x,t2)𝔹1CA(x,t1)A(x,t2)L(𝕋d+1),\displaystyle\begin{split}\|\chi(x_{1},t)-\chi(x_{2},t)\|_{\mathbb{B}_{1}}\leq C\|A(x_{1},t)-A(x_{2},t)\|_{L^{\infty}(\mathbb{T}^{d+1})},\\ \|\chi(x,t_{1})-\chi(x,t_{2})\|_{\mathbb{B}_{1}}\leq C\|A(x,t_{1})-A(x,t_{2})\|_{L^{\infty}(\mathbb{T}^{d+1})},\end{split}

    where CC depends only on μ\mu;

  • 2).

    furthermore, if in addition AA satisfies (1.5), we have χL(ΩT;𝔹1)(ΩT;𝔹1)\chi\in L^{\infty}(\Omega_{T};\mathbb{B}_{1})\cap\mathscr{H}(\Omega_{T};\mathbb{B}_{1}) and

    χL(ΩT;𝔹1)C,[χ](ΩT;𝔹1)C[A](ΩT;𝑳).\displaystyle\|\chi\|_{L^{\infty}(\Omega_{T};\mathbb{B}_{1})}\leq C,\quad[\chi]_{\mathscr{H}(\Omega_{T};\mathbb{B}_{1})}\leq C[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}.
Proof.

The first part follows from Meyers-type estimate for parabolic systems in [6, 1] together with the equation of χ\chi. The second part mainly asserts the strong measurability of χ\chi and xχ\nabla_{x}\chi from ΩT\Omega_{T} into 𝔹1\mathbb{B}_{1}, which can be proved by approximating as Lemma 2.4 and Corollary 2.2 in [27]. We omit the details. ∎

Corollary 2.1.

Under assumptions (1.4)– (1.5), we have

A^ijαβ(x,t)W12,2(0,T;L(Ω))L(0,T;W1,d(Ω)).\widehat{A}^{\alpha\beta}_{ij}(x,t)\in W^{\frac{1}{2},2}(0,T;L^{\infty}(\Omega))\cap L^{\infty}(0,T;W^{1,d}(\Omega)).

2.4 Flux correctors

In this subsection, we introduce flux correctors for t+ε\partial_{t}+\mathcal{L}_{\varepsilon} in a new manner of parabolic type. Denote the indices ranging between 11 and d+1d+1 by underlined symbols, such as i¯\underaccent{\bar}{i}. In other words, i¯\underaccent{\bar}{i} may equal 1,,d+11,\dots,d+1. As like in [13, 20], for 1jd1\leq j\leq d, set

Bi¯jαβ(x,t;y,τ):={Ai¯jαβ(x,t;y,τ)+Ai¯kαγykχjγβ(x,t;y,τ)A^i¯jαβ(x,t),if1i¯d,χjαβ(x,t;y,τ),ifi¯=d+1.\displaystyle B^{\alpha\beta}_{\underaccent{\bar}{i}j}(x,t;y,\tau):=\begin{cases}A^{\alpha\beta}_{\underaccent{\bar}{i}j}(x,t;y,\tau)+A^{\alpha\gamma}_{\underaccent{\bar}{i}k}\partial_{y_{k}}\chi_{j}^{\gamma\beta}(x,t;y,\tau)-\widehat{A}^{\alpha\beta}_{\underaccent{\bar}{i}j}(x,t),&\mathrm{if}~{}1\leq\underaccent{\bar}{i}\leq d,\\ -\chi_{j}^{\alpha\beta}(x,t;y,\tau),&\mathrm{if}~{}\underaccent{\bar}{i}=d+1.\end{cases} (2.8)

Then

Bi¯jL(ΩT;𝑳𝒒¯)C,[Bi¯j](ΩT;𝑳𝒒¯)C[A](ΩT;𝑳)for 1i¯d+1,\displaystyle\|B_{\underaccent{\bar}{i}j}\|_{L^{\infty}(\Omega_{T};\bm{L^{\bar{q}}})}\leq C,\quad[B_{\underaccent{\bar}{i}j}]_{\mathscr{H}(\Omega_{T};\bm{L^{\bar{q}}})}\leq C[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}\quad\textrm{for }1\leq\underaccent{\bar}{i}\leq d+1,
and further yB(d+1)jL(ΩT;𝑳𝒒¯)C,[yB(d+1)j](ΩT;𝑳𝒒¯)C[A](ΩT;𝑳).\displaystyle\textrm{and further }\|\nabla_{y}B_{(d+1)j}\|_{L^{\infty}(\Omega_{T};\bm{L^{\bar{q}}})}\leq C,\quad[\nabla_{y}B_{(d+1)j}]_{\mathscr{H}(\Omega_{T};\bm{L^{\bar{q}}})}\leq C[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}.
Lemma 2.2.

There exist 𝔅k¯i¯jαβ(x,t;y,τ)\mathfrak{B}^{\alpha\beta}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}(x,t;y,\tau), 1i¯,k¯d+11\leq\underaccent{\bar}{i},\underaccent{\bar}{k}\leq d+1, 1jd1\leq j\leq d, 1α,βm1\leq\alpha,\beta\leq m, which are 11-periodic in (y,τ)(y,\tau), such that

yk𝔅ki¯jαβ(x,t;y,τ)+τ𝔅(d+1)i¯jαβ(x,t;y,τ)=Bi¯jαβ(x,t;y,τ)and𝔅k¯i¯jαβ=𝔅i¯k¯jαβ.\displaystyle\partial_{y_{k}}\mathfrak{B}^{\alpha\beta}_{k\underaccent{\bar}{i}j}(x,t;y,\tau)+\partial_{\tau}\mathfrak{B}^{\alpha\beta}_{(d+1)\underaccent{\bar}{i}j}(x,t;y,\tau)=B^{\alpha\beta}_{\underaccent{\bar}{i}j}(x,t;y,\tau)\quad\textrm{and}\quad\mathfrak{B}^{\alpha\beta}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}=-\mathfrak{B}^{\alpha\beta}_{\underaccent{\bar}{i}\underaccent{\bar}{k}j}.

Furthermore, there exists a constant CC, depending only on μ\mu, such that, for 1jd1\leq j\leq d,

𝔅k¯i¯jL(ΩT;𝔹1)C,[𝔅k¯i¯j](ΩT;𝔹1)C[A](ΩT;𝑳),\displaystyle\|\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}\|_{L^{\infty}(\Omega_{T};\mathbb{B}_{1})}\leq C,\quad[\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}]_{\mathscr{H}(\Omega_{T};\mathbb{B}_{1})}\leq C[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})},\quad if 1k¯,i¯d,\displaystyle\textrm{if }1\leq\underaccent{\bar}{k},\underaccent{\bar}{i}\leq d,
𝔅k¯i¯jL(ΩT;𝔹2)C,[𝔅k¯i¯j](ΩT;𝔹2)C[A](ΩT;𝑳),\displaystyle\|\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}\|_{L^{\infty}(\Omega_{T};\mathbb{B}_{2})}\leq C,\quad[\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}]_{\mathscr{H}(\Omega_{T};\mathbb{B}_{2})}\leq C[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})},\quad if k¯ or i¯=d+1,\displaystyle\textrm{if }\underaccent{\bar}{k}\textrm{ or }\underaccent{\bar}{i}=d+1,

where 𝔹1\mathbb{B}_{1} is given in Lemma 2.1 and

𝔹2:=Lq¯(𝕋1;W2,q¯(𝕋d))W1,q¯(𝕋1;Lq¯(𝕋d)).\mathbb{B}_{2}:=L^{\bar{q}}(\mathbb{T}^{1};W^{2,\bar{q}}(\mathbb{T}^{d}))\cap W^{1,\bar{q}}(\mathbb{T}^{1};L^{\bar{q}}(\mathbb{T}^{d})).
Proof.

To keep presentations simple, we suppress parameters x,tx,t and superscripts α,β\alpha,\beta.

For fixed i¯,j\underaccent{\bar}{i},j, observing that Bi¯j(y,τ)L2(𝕋d+1)B_{\underaccent{\bar}{i}j}(y,\tau)\in L^{2}(\mathbb{T}^{d+1}) and 𝕋d+1Bi¯j(y,τ)𝑑y𝑑τ=0\int_{\mathbb{T}^{d+1}}B_{\underaccent{\bar}{i}j}(y,\tau)dyd\tau=0, there exists fi¯jL2(𝕋1;H2(𝕋d))H1(𝕋1;L2(𝕋d))f_{\underaccent{\bar}{i}j}\in L^{2}(\mathbb{T}^{1};H^{2}(\mathbb{T}^{d}))\cap H^{1}(\mathbb{T}^{1};L^{2}(\mathbb{T}^{d})), solving the following parabolic problem in cell

{τfi¯jΔyfi¯j=Bi¯jind+1,fi¯j is 1-periodic in (y,τ), and 𝕋d+1fi¯j=0,\begin{cases}\partial_{\tau}f_{\underaccent{\bar}{i}j}-\Delta_{y}f_{\underaccent{\bar}{i}j}=B_{\underaccent{\bar}{i}j}\quad\mathrm{in}~{}\mathbb{R}^{d+1},\\ f_{\underaccent{\bar}{i}j}\textrm{ is 1-periodic in }(y,\tau),\textrm{ and }\int_{\mathbb{T}^{d+1}}f_{\underaccent{\bar}{i}j}=0,\end{cases} (2.9)

where Δy=i=1dyi2\Delta_{y}=\sum_{i=1}^{d}\partial_{y_{i}}^{2}. According to equations (2.5) and (2.9), we know

(τΔy)(ifij+τf(d+1)j)=iBij+τB(d+1)j=0ind+1.\displaystyle(\partial_{\tau}-\Delta_{y})(\partial_{i}f_{ij}+\partial_{\tau}f_{(d+1)j})=\partial_{i}B_{ij}+\partial_{\tau}B_{(d+1)j}=0\quad\mathrm{in~{}}\mathbb{R}^{d+1}.

Therefore, w=ifij+τf(d+1)jw=\partial_{i}f_{ij}+\partial_{\tau}f_{(d+1)j} solves the parabolic problem

{τwΔyw=0ind+1,w is 1-periodic in (y,τ) and 𝕋d+1w=0,\displaystyle\begin{cases}\partial_{\tau}w-\Delta_{y}w=0\quad\mathrm{in~{}}\mathbb{R}^{d+1},\\ w\textrm{ is }1\textrm{-periodic in }(y,\tau)\textrm{ and }\int_{\mathbb{T}^{d+1}}w=0,\end{cases}

which yields that

ifij+τf(d+1)j=0.\displaystyle\partial_{i}f_{ij}+\partial_{\tau}f_{(d+1)j}=0. (2.10)

For 1jd1\leq j\leq d, define

𝔅k¯i¯j={i¯fk¯jk¯fi¯j,if1k¯,i¯d,fi¯j+i¯f(d+1)j,ifk¯=d+1,1i¯d,fk¯jk¯f(d+1)j,if1k¯d,i¯=d+1,0,ifk¯=i¯=d+1.\displaystyle\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}=\begin{cases}\partial_{\underaccent{\bar}{i}}f_{\underaccent{\bar}{k}j}-\partial_{\underaccent{\bar}{k}}f_{\underaccent{\bar}{i}j},&\mathrm{if}~{}1\leq\underaccent{\bar}{k},\underaccent{\bar}{i}\leq d,\\ f_{\underaccent{\bar}{i}j}+\partial_{\underaccent{\bar}{i}}f_{(d+1)j},&\mathrm{if}~{}\underaccent{\bar}{k}=d+1,1\leq\underaccent{\bar}{i}\leq d,\\ -f_{\underaccent{\bar}{k}j}-\partial_{\underaccent{\bar}{k}}f_{(d+1)j},&\mathrm{if}~{}1\leq\underaccent{\bar}{k}\leq d,\underaccent{\bar}{i}=d+1,\\ 0,&\mathrm{if}~{}\underaccent{\bar}{k}=\underaccent{\bar}{i}=d+1.\end{cases}

Obviously, 𝔅k¯i¯j=𝔅i¯k¯j\mathfrak{B}_{\underaccent{\bar}{k}\underaccent{\bar}{i}j}=-\mathfrak{B}_{\underaccent{\bar}{i}\underaccent{\bar}{k}j}. Moreover, for 1i,jd1\leq i,j\leq d, by (2.5) and (2.10), it is easy to verify that

k𝔅kij+τ𝔅(d+1)ij=kifkjΔyfij+τfij+τif(d+1)j=Bij,\displaystyle\partial_{k}\mathfrak{B}_{kij}+\partial_{\tau}\mathfrak{B}_{(d+1)ij}=\partial_{k}\partial_{i}f_{kj}-\Delta_{y}f_{ij}+\partial_{\tau}f_{ij}+\partial_{\tau}\partial_{i}f_{(d+1)j}=B_{ij},

and

k𝔅k(d+1)j+τ𝔅(d+1)(d+1)j=kfkjΔyf(d+1)j=τf(d+1)jΔyf(d+1)j=B(d+1)j.\displaystyle\partial_{k}\mathfrak{B}_{k(d+1)j}+\partial_{\tau}\mathfrak{B}_{(d+1)(d+1)j}=-\partial_{k}f_{kj}-\Delta_{y}f_{(d+1)j}=\partial_{\tau}f_{(d+1)j}-\Delta_{y}f_{(d+1)j}=B_{(d+1)j}.

Lastly, the regularity estimates on 𝔅\mathfrak{B} follow from Meyers-type estimate for parabolic systems [6, 1] as well as Lemma 2.1 and Corollary 2.1. We omit the details. ∎

3 Smoothing operators and boundary layers

In this section, we establish several estimates for the macroscopic smoothing operators SεS_{\varepsilon} in order to deal with the oscillating functions of the form ϕ(x,t;x/ε,t/ε2)\phi(x,t;x/\varepsilon,t/\varepsilon^{2}) derived from multi-variable function ϕ(x,t;y,τ)\phi(x,t;y,\tau) which is 11-periodic in (y,τ)(y,\tau). We also provide a result on temporal boundary layers.

3.1 Macroscopic smoothing operators for multi-variable functions

Suppose φ1C0((1/2,1/2)),φ2C0(B(0,1/2))\varphi_{1}\in C_{0}^{\infty}((-1/2,1/2)),\varphi_{2}\in C_{0}^{\infty}(B(0,1/2)), where B(0,1/2)B(0,1/2) is the ball in d\mathbb{R}^{d} of radius 1/21/2 centered at the origin 0, such that

φi0,i=1,2andφ1(s)𝑑s=1,dφ2(z)𝑑z=1.\displaystyle\varphi_{i}\geq 0,~{}i=1,2\quad\mathrm{and}\quad\int_{\mathbb{R}}\varphi_{1}(s)~{}ds=1,\quad\int_{\mathbb{R}^{d}}\varphi_{2}(z)~{}dz=1. (3.1)

For ε>0\varepsilon>0, let φ1,ε(s)=ε2φ1(s/ε2)\varphi_{1,\varepsilon}(s)=\varepsilon^{-2}\varphi_{1}(s/\varepsilon^{2}), φ2,ε(z)=εdφ2(z/ε)\varphi_{2,\varepsilon}(z)=\varepsilon^{-d}\varphi_{2}(z/\varepsilon). For a multi-variable function ϕ(x,t;y,τ)\phi(x,t;y,\tau) on d+1×d+1\mathbb{R}^{d+1}\times\mathbb{R}^{d+1}, set

Sεt(ϕ)(x,t;y,τ):=ϕ(x,ts;y,τ)φ1,ε(s)𝑑s,Sεx(ϕ)(x,t;y,τ):=dϕ(xz,t;y,τ)φ2,ε(z)𝑑z,\displaystyle\begin{split}S^{t}_{\varepsilon}(\phi)(x,t;y,\tau)&:=\int_{\mathbb{R}}\phi(x,t-s;y,\tau)\varphi_{1,\varepsilon}(s)ds,\\ S^{x}_{\varepsilon}(\phi)(x,t;y,\tau)&:=\int_{\mathbb{R}^{d}}\phi(x-z,t;y,\tau)\varphi_{2,\varepsilon}(z)dz,\end{split} (3.2)

which are smoothing operators w.r.t. tt and xx, respectively. In the following, we use the abbreviation

Sε:=SεtSεx=SεxSεt,\displaystyle S_{\varepsilon}:=S^{t}_{\varepsilon}\circ S^{x}_{\varepsilon}=S^{x}_{\varepsilon}\circ S^{t}_{\varepsilon},

and more briefly,

ϕ~:=Sε(ϕ).\displaystyle\widetilde{\phi}:=S_{\varepsilon}(\phi). (3.3)

Furthermore, we may omit the subscript ε\varepsilon when ε=1\varepsilon=1. We remark that SεS_{\varepsilon} is commutative with all the partial derivatives w.r.t. xx, tt, yy and τ\tau.

Before stating the properties of SεS_{\varepsilon}, we introduce the notations

Ωδ:={xΩ:dist(x,Ω)<δ}\displaystyle\Omega_{\delta}:=\{x\in\Omega:\textrm{dist}(x,\partial\Omega)<\delta\}

for the spatial boundary layer, and

ΩTk,ε:=[Ωkε×(0,T)][Ω×(0,kε2)][Ω×(Tkε2,T)]\displaystyle\Omega_{T}^{k,\varepsilon}:=[\Omega_{k\varepsilon}\times(0,T)]\cup[\Omega\times(0,k\varepsilon^{2})]\cup[\Omega\times(T-k\varepsilon^{2},T)]

for the spatiotemporal boundary layer in ΩT\Omega_{T}, where δ,k>0\delta,k>0.

Lemma 3.1.

Let T>0T>0 and h(τ):h(\tau):\mathbb{R}\rightarrow\mathbb{R} be 11-periodic. Then for any εT\varepsilon\leq\sqrt{T},

0T|h(tε2)|𝑑tCT𝕋1|h(τ)|𝑑τ,\displaystyle\int_{0}^{T}|h(\frac{t}{\varepsilon^{2}})|dt\leq CT\int_{\mathbb{T}^{1}}|h(\tau)|d\tau, (3.4)

where CC is a constant.

Moreover, suppose g(t;τ)Lq1(;Ls1(𝕋1))g(t;\tau)\in L^{q_{1}}(\mathbb{R};L^{s_{1}}(\mathbb{T}^{1})), f(t,τ)Lq2(;Ls2(𝕋1))f(t,\tau)\in L^{q_{2}}(\mathbb{R};L^{s_{2}}(\mathbb{T}^{1})) with 1q<1\leq q<\infty, 1q1+1q2=1s1+1s2=1q\frac{1}{q_{1}}+\frac{1}{q_{2}}=\frac{1}{s_{1}}+\frac{1}{s_{2}}=\frac{1}{q}. We have for ε>0\varepsilon>0,

[Sεt(g)Sεt(f)]εLq(ε2,Tε2)CgLq1(0,T;Ls1(𝕋1))fLq2(0,T;Ls2(𝕋1)).\displaystyle\|[S^{t}_{\varepsilon}(g)\cdot S^{t}_{\varepsilon}(f)]^{\varepsilon}\|_{L^{q}(\varepsilon^{2},T-\varepsilon^{2})}\leq C\|g\|_{L^{q_{1}}(0,T;L^{s_{1}}(\mathbb{T}^{1}))}\|f\|_{L^{q_{2}}(0,T;L^{s_{2}}(\mathbb{T}^{1}))}. (3.5)
Proof.

Estimate (3.4) follows from the change of variables. For (3.5), by considering g𝟏(0,T)×g\cdot\mathbf{1}_{(0,T)\times\mathbb{R}} and f𝟏(0,T)×f\cdot\mathbf{1}_{(0,T)\times\mathbb{R}} instead, it is sufficient to prove the whole space case. By rescaling, we also suppose that ε=1\varepsilon=1 and omit the subscript ε\varepsilon.

Set G(t1,t2;τ)=g(t1;τ)f(t2;τ)G(t_{1},t_{2};\tau)=g(t_{1};\tau)\cdot f(t_{2};\tau) and denote

St1St2(G)(t,τ):=G(ς1,ς2;τ)φ1(tς1)φ1(tς2)𝑑ς2𝑑ς1.\displaystyle S^{t_{1}}\otimes S^{t_{2}}(G)(t,\tau):=\int_{\mathbb{R}}\int_{\mathbb{R}}G(\varsigma_{1},\varsigma_{2};\tau)\varphi_{1}(t-\varsigma_{1})\varphi_{1}(t-\varsigma_{2})d\varsigma_{2}d\varsigma_{1}. (3.6)

Then St(g)(t;τ)St(f)(t;τ)=St1St2(G)(t;τ)S^{t}(g)(t;\tau)\cdot S^{t}(f)(t;\tau)=S^{t_{1}}\otimes S^{t_{2}}(G)(t;\tau). By Fubini’s theorem and Hölder’s inequality,

|St1St2(G)(t;t)|q𝑑tC|ς1t|12|ς2t|12|G(ς1,ς2;t)|q𝑑ς2𝑑ς1𝑑tC|ς1ς2|1|ς2t|12|G(ς1,ς2;t)|q𝑑t𝑑ς1𝑑ς2C|ς1ς2|1G(ς1,ς2;)Lq(𝕋1)q𝑑ς1𝑑ς2CgLq1(;Ls1(𝕋1))qfLq2(;Ls2(𝕋1))q,\displaystyle\begin{split}\int_{\mathbb{R}}|S^{t_{1}}\otimes S^{t_{2}}(G)(t;t)|^{q}dt&\leq C\int_{\mathbb{R}}\fint_{|\varsigma_{1}-t|\leq\frac{1}{2}}\fint_{|\varsigma_{2}-t|\leq\frac{1}{2}}|G(\varsigma_{1},\varsigma_{2};t)|^{q}d\varsigma_{2}d\varsigma_{1}dt\\ &\leq C\int_{\mathbb{R}}\int_{|\varsigma_{1}-\varsigma_{2}|\leq 1}\int_{|\varsigma_{2}-t|\leq\frac{1}{2}}|G(\varsigma_{1},\varsigma_{2};t)|^{q}dtd\varsigma_{1}d\varsigma_{2}\\ &\leq C\int_{\mathbb{R}}\int_{|\varsigma_{1}-\varsigma_{2}|\leq 1}\|G(\varsigma_{1},\varsigma_{2};\cdot)\|_{L^{q}(\mathbb{T}^{1})}^{q}d\varsigma_{1}d\varsigma_{2}\\ &\leq C\|g\|_{L^{q_{1}}(\mathbb{R};L^{s_{1}}(\mathbb{T}^{1}))}^{q}\|f\|_{L^{q_{2}}(\mathbb{R};L^{s_{2}}(\mathbb{T}^{1}))}^{q},\end{split} (3.7)

where we have used (3.4) in the third inequality and Hölder’s inequality in the last step. The proof is completed. ∎

Lemma 3.2.

Let Ω\Omega be a Lipschitz domain in d\mathbb{R}^{d}, T>0T>0 and 1p,q<1\leq p,q<\infty. Suppose gLq1,p1(d+1;𝐋𝐬𝟏,𝐫𝟏)g\in L^{q_{1},p_{1}}(\mathbb{R}^{d+1};\bm{L^{s_{1},r_{1}}}), fLq2,p2(d+1;𝐋𝐬𝟐,𝐫𝟐)f\in L^{q_{2},p_{2}}(\mathbb{R}^{d+1};\bm{L^{s_{2},r_{2}}}) with 1p1+1p2=1r1+1r2=1p\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{1}{p}, 1q1+1q2=1q\frac{1}{q_{1}}+\frac{1}{q_{2}}=\frac{1}{q}. Let 1s=1s1+1s2\frac{1}{s}=\frac{1}{s_{1}}+\frac{1}{s_{2}}. If smax{p,q}s\geq\max\{p,q\}, then for ε>0\varepsilon>0,

[Sε(g)Sε(f)]εLq,p(ΩTΩT1,ε)CgLq1,p1(ΩT;𝑳𝒔𝟏,𝒓𝟏)fLq2,p2(ΩT;𝑳𝒔𝟐,𝒓𝟐),\|[S_{\varepsilon}(g)\cdot S_{\varepsilon}(f)]^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\|g\|_{L^{q_{1},p_{1}}(\Omega_{T};\bm{L^{s_{1},r_{1}}})}\|f\|_{L^{q_{2},p_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})},

where CC depends only on dd.

Specially, if f1f\equiv 1 on ΩT\Omega_{T} and smax{p,q}s\geq\max\{p,q\}, we have

[Sε(g)]εLq,p(ΩTΩT1,ε)CgLq,p(ΩT;𝑳𝒔,𝒑).\|[S_{\varepsilon}(g)]^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\|g\|_{L^{q,p}(\Omega_{T};\bm{L^{s,p}})}.
Proof.

By rescaling and introducing invisible characteristic functions, it is sufficient to prove the case where ε=1\varepsilon=1 and ΩT=d+1\Omega_{T}=\mathbb{R}^{d+1}. For each tt fixed, it follows from Fubini’s theorem and Hölder’s inequality that

[S(g)S(f)](x,t;x,t)Lxp(d)\displaystyle\|[S(g)S(f)](x,t;x,t)\|_{L^{p}_{x}(\mathbb{R}^{d})} C(d|ωξ|1|ξx|12|St(g)(ω,t;x,t)St(f)(ξ,t;x,t)|p𝑑x𝑑ω𝑑ξ)1p\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\int_{|\omega-\xi|\leq 1}\int_{|\xi-x|\leq\frac{1}{2}}|S^{t}(g)(\omega,t;x,t)\cdot S^{t}(f)(\xi,t;x,t)|^{p}dxd\omega d\xi\Big{)}^{\frac{1}{p}}
C(d|ωξ|1St(g)Lyr1p(ω,t;t)𝑑ωSt(f)Lyr2p(ξ,t;t)𝑑ξ)1p\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\int_{|\omega-\xi|\leq 1}\|S^{t}(g)\|_{L^{r_{1}}_{y}}^{p}(\omega,t;t)d\omega\cdot\|S^{t}(f)\|_{L^{r_{2}}_{y}}^{p}(\xi,t;t)d\xi\Big{)}^{\frac{1}{p}}
CSt1St2(G)(t;t),\displaystyle\leq CS^{t_{1}}\otimes S^{t_{2}}(G)(t;t),

where we have applied Minkowski’s inequality to take the integrals of StS^{t} outside in the last inequality and notations (2.2) and (3.6) were used with

G(ς1,ς2;τ)=(d|ωξ|1gLyr1p(ω,ς1;τ)𝑑ωfLyr2p(ξ,ς2;τ)𝑑ξ)1/p.G(\varsigma_{1},\varsigma_{2};\tau)=\Big{(}\int_{\mathbb{R}^{d}}\int_{|\omega-\xi|\leq 1}\|g\|_{L^{r_{1}}_{y}}^{p}(\omega,\varsigma_{1};\tau)d\omega\cdot\|f\|_{L^{r_{2}}_{y}}^{p}(\xi,\varsigma_{2};\tau)d\xi\Big{)}^{1/p}.

Then calculations similar to (3.7) imply that

[S(g)S(f)]1Lq,p(d+1)CSt1St2(G)(t;t)Lq()C(|ς1ς2|1G(ς1,ς2;)Lq(𝕋1)q𝑑ς1𝑑ς2)1/q.\displaystyle\begin{split}\|[S(g)S(f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}&\leq C\|S^{t_{1}}\otimes S^{t_{2}}(G)(t;t)\|_{L^{q}(\mathbb{R})}\\ &\leq C\Big{(}\int_{\mathbb{R}}\int_{|\varsigma_{1}-\varsigma_{2}|\leq 1}\|G(\varsigma_{1},\varsigma_{2};\cdot)\|_{L^{q}(\mathbb{T}^{1})}^{q}d\varsigma_{1}d\varsigma_{2}\Big{)}^{1/q}.\end{split} (3.8)

By Minkowski’s inequality and Hölder’s inequality, it is not hard to see that for smax{p,q}s\geq\max\{p,q\}

G(ς1,ς2;)Lq(𝕋1)G(ς1,ς2;)Ls(𝕋1)gLx,τ,yp1,s1,r1(d)(ς1)fLx,τ,yp2,s2,r2(d)(ς2).\displaystyle\|G(\varsigma_{1},\varsigma_{2};\cdot)\|_{L^{q}(\mathbb{T}^{1})}\leq\|G(\varsigma_{1},\varsigma_{2};\cdot)\|_{L^{s}(\mathbb{T}^{1})}\leq\|g\|_{L^{p_{1},s_{1},r_{1}}_{x,\tau,y}(\mathbb{R}^{d})}(\varsigma_{1})\cdot\|f\|_{L^{p_{2},s_{2},r_{2}}_{x,\tau,y}(\mathbb{R}^{d})}(\varsigma_{2}).

Substituting the last inequality into (3.8) and applying Hölder’s inequality, we complete the proof. ∎

Remark 3.1.

Lemma 3.2 continues to hold even if φ1,φ2\varphi_{1},\varphi_{2} do not satisfy (3.1). In particular, we have for smax{p,q}s\geq\max\{p,q\}

[xSε(h)]εLq,p(ΩTΩT1,ε)=ε1[(φ2)εSεt(h)]εLq,p(ΩTΩT1,ε)Cε1hLq,p(ΩT;𝑳𝒔,𝒑),\displaystyle\|[\nabla_{x}S_{\varepsilon}(h)]^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}=\varepsilon^{-1}\|[(\nabla\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(h)]^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\varepsilon^{-1}\|h\|_{L^{q,p}(\Omega_{T};\bm{L^{s,p}})},

where (φ2)ε(x)=εd(φ2)(x/ε)(\nabla\varphi_{2})_{\varepsilon}(x)=\varepsilon^{-d}(\nabla\varphi_{2})(x/\varepsilon).

Lemma 3.3.

Let Ω\Omega be a Lipschitz domain in d\mathbb{R}^{d}, T>0T>0 and 1p,q<1\leq p,q<\infty. Suppose that xgLq1,p1(ΩT;𝐋)\nabla_{x}g\in L^{q_{1},p_{1}}(\Omega_{T};\bm{L^{\infty}}), gW12,qˇ1(0,T;Lpˇ1(Ω;𝐋))g\in W^{\frac{1}{2},\check{q}_{1}}(0,T;L^{\check{p}_{1}}(\Omega;\bm{L^{\infty}})), fLq2,p2(ΩT;𝐋𝐬𝟐,𝐫𝟐)Lqˇ2,pˇ2(ΩT;𝐋𝐬𝟐,𝐫𝟐)f\in L^{q_{2},p_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})\cap L^{\check{q}_{2},\check{p}_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}}), hLq3,p3(ΩT;𝐋𝐬𝟑,𝐫𝟑)Lqˇ3,pˇ3(ΩT;𝐋𝐬𝟑,𝐫𝟑)h\in L^{q_{3},p_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})\cap L^{\check{q}_{3},\check{p}_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}}), where pi,pˇi,qi,qˇip_{i},\check{p}_{i},q_{i},\check{q}_{i} satisfy 1p=1p1+1p2+1p3=1pˇ1+1pˇ2+1pˇ3\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=\frac{1}{\check{p}_{1}}+\frac{1}{\check{p}_{2}}+\frac{1}{\check{p}_{3}}, 1q=1q1+1q2+1q3=1qˇ1+1qˇ2+1qˇ3\frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{q_{2}}+\frac{1}{q_{3}}=\frac{1}{\check{q}_{1}}+\frac{1}{\check{q}_{2}}+\frac{1}{\check{q}_{3}}. Let 1r=1r2+1r3\frac{1}{r}=\frac{1}{r_{2}}+\frac{1}{r_{3}}, 1s=1s2+1s3\frac{1}{s}=\frac{1}{s_{2}}+\frac{1}{s_{3}}. If rpr\geq p and smax{p,q}s\geq\max\{p,q\}, then for ε>0\varepsilon>0,

{[Sε(g)Sε(f)Sε(gf)]Sε(h)}εLq,p(ΩTΩT1,ε)Cε{xgLq1,p1(ΩT;𝑳)fLq2,p2(ΩT;𝑳𝒔𝟐,𝒓𝟐)hLq3,p3(ΩT;𝑳𝒔𝟑,𝒓𝟑)+[g]W12,qˇ1(0,T;Lpˇ1(Ω;𝑳))fLqˇ2,pˇ2(ΩT;𝑳𝒔𝟐,𝒓𝟐)hLqˇ3,pˇ3(ΩT;𝑳𝒔𝟑,𝒓𝟑)},\displaystyle\begin{split}&\quad\|\{[S_{\varepsilon}(g)\cdot S_{\varepsilon}(f)-S_{\varepsilon}(g\cdot f)]\cdot S_{\varepsilon}(h)\}^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\\ &\leq C\varepsilon\{\|\nabla_{x}g\|_{L^{q_{1},p_{1}}(\Omega_{T};\bm{L^{\infty}})}\cdot\|f\|_{L^{q_{2},p_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\cdot\|h\|_{L^{q_{3},p_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}\\ &\qquad+[g]_{W^{\frac{1}{2},\check{q}_{1}}(0,T;L^{\check{p}_{1}}(\Omega;\bm{L^{\infty}}))}\cdot\|f\|_{L^{\check{q}_{2},\check{p}_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\cdot\|h\|_{L^{\check{q}_{3},\check{p}_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}\},\end{split}

where [g]W12,qˇ1(0,T;Lpˇ1(Ω;𝐋))[g]_{W^{\frac{1}{2},\check{q}_{1}}(0,T;L^{\check{p}_{1}}(\Omega;\bm{L^{\infty}}))} is given by (2.3) and CC depends only on dd.

Proof.

To keep the process simple, we prove the case where ΩT=d+1\Omega_{T}=\mathbb{R}^{d+1} and h1h\equiv 1. The proof of the general case is similar. Without loss of generality, we also suppose that ε=1\varepsilon=1 by rescaling and gg is independent of (y,τ)(y,\tau). Observe that

[S(g)S(f)S(gf)]1Lq,p(d+1)\displaystyle\|[S(g)\cdot S(f)-S(g\cdot f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})} [Sx(St(g))Sx(St(f))Sx(St(g)St(f))]1Lq,p(d+1)\displaystyle\leq\|[S^{x}(S^{t}(g))\cdot S^{x}(S^{t}(f))-S^{x}(S^{t}(g)\cdot S^{t}(f))]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}
+[Sx(St(g)St(f)St(gf))]1Lq,p(d+1),\displaystyle\qquad+\|[S^{x}(S^{t}(g)\cdot S^{t}(f)-S^{t}(g\cdot f))]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})},

where the superscript 11 has the same meaning as (1.9).

For the first term, let HLp(d)H\in L^{p^{\prime}}(\mathbb{R}^{d}). By using the Poincaré’s inequality

B(x,r)|u(y)u(z)|𝑑yCrdB(x,r)|u(y)||yz|1d𝑑y\displaystyle\int_{B(x,r)}|u(y)-u(z)|dy\leq Cr^{d}\int_{B(x,r)}|\nabla u(y)||y-z|^{1-d}dy (3.9)

for any uC1(B(x,r))u\in C^{1}(B(x,r)) and zB(x,r)z\in B(x,r), one can obtain

|d[Sx(St(g))Sx(St(f))Sx(St(g)St(f))](x,t;x,t)H(x)𝑑x|\displaystyle\quad\Big{|}\int_{\mathbb{R}^{d}}[S^{x}(S^{t}(g))\cdot S^{x}(S^{t}(f))-S^{x}(S^{t}(g)\cdot S^{t}(f))](x,t;x,t)\cdot H(x)dx\Big{|}
Cd|ξx|12|St(f)(ξ,t;x,t)||ωx|12|St(xg)(ω,t)||ωξ|1d𝑑ω𝑑ξ|H(x)|𝑑x\displaystyle\leq C\int_{\mathbb{R}^{d}}\int_{|\xi-x|\leq\frac{1}{2}}|S^{t}(f)(\xi,t;x,t)|\int_{|\omega-x|\leq\frac{1}{2}}|S^{t}(\nabla_{x}g)(\omega,t)||\omega-\xi|^{1-d}d\omega d\xi\cdot|H(x)|dx
Cd|ωξ|1|St(xg)(ω,t)||ωξ|1d𝑑ω|ξx|12|St(f)(ξ,t;x,t)||H(x)|𝑑x𝑑ξ\displaystyle\leq C\int_{\mathbb{R}^{d}}\int_{|\omega-\xi|\leq 1}|S^{t}(\nabla_{x}g)(\omega,t)||\omega-\xi|^{1-d}d\omega\cdot\int_{|\xi-x|\leq\frac{1}{2}}|S^{t}(f)(\xi,t;x,t)||H(x)|dxd\xi
Cdd|St(xg)(ω,t)|ϕ(ωξ)𝑑ωSt(f)Lyp(ξ,t;t)HLp(B(ξ,12))𝑑ξ\displaystyle\leq C\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}|S^{t}(\nabla_{x}g)(\omega,t)|\phi(\omega-\xi)d\omega\cdot\|S^{t}(f)\|_{L^{p}_{y}}(\xi,t;t)\|H\|_{L^{p^{\prime}}(B(\xi,\frac{1}{2}))}d\xi
C(dd|St(xg)(ω,t)|pϕ(ωξ)St(f)Lypp(ξ,t;t)𝑑ω𝑑ξ)1/pHLp(d),\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}|S^{t}(\nabla_{x}g)(\omega,t)|^{p}\phi(\omega-\xi)\|S^{t}(f)\|_{L^{p}_{y}}^{p}(\xi,t;t)d\omega d\xi\Big{)}^{1/p}\|H\|_{L^{p^{\prime}}(\mathbb{R}^{d})},

where Fubini’s theorem as well as Hölder’s inequality was used and ϕ(z)=|z|1d𝟏{|z|1}\phi(z)=|z|^{1-d}\mathbf{1}_{\{|z|\leq 1\}}. Since HLp(d)H\in L^{p^{\prime}}(\mathbb{R}^{d}) is arbitrary, this implies that

[Sx(St(g))Sx(St(f))Sx(St(g)St(f))](x,t;x,t)Lxp(d)\displaystyle\quad\|[S^{x}(S^{t}(g))\cdot S^{x}(S^{t}(f))-S^{x}(S^{t}(g)\cdot S^{t}(f))](x,t;x,t)\|_{L^{p}_{x}(\mathbb{R}^{d})}
C(dd|St(xg)(ω,t)|pϕ(ωξ)St(f)Lypp(ξ,t;t)𝑑ω𝑑ξ)1/p\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}|S^{t}(\nabla_{x}g)(\omega,t)|^{p}\phi(\omega-\xi)\|S^{t}(f)\|_{L^{p}_{y}}^{p}(\xi,t;t)d\omega d\xi\Big{)}^{1/p}
CSt1St2(G)(t;t),\displaystyle\leq CS^{t_{1}}\otimes S^{t_{2}}(G)(t;t),

where we have applied Minkowski’s inequality to take the integrals of StS^{t} outside and

G(ς1,ς2;τ)=(dd|xg(ω,ς1)|pϕ(ωξ)fLypp(ξ,ς2;τ)𝑑ω𝑑ξ)1/p.\displaystyle G(\varsigma_{1},\varsigma_{2};\tau)=\Big{(}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}|\nabla_{x}g(\omega,\varsigma_{1})|^{p}\phi(\omega-\xi)\|f\|_{L^{p}_{y}}^{p}(\xi,\varsigma_{2};\tau)d\omega d\xi\Big{)}^{1/p}.

Similar to the arguments of Lemma 3.2, we obtain

[Sx(St(g)St(f)St(gf))]1Lq,p(d+1)\displaystyle\|[S^{x}(S^{t}(g)\cdot S^{t}(f)-S^{t}(g\cdot f))]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})} CSt1St2(G)(t;t)Lq()\displaystyle\leq C\|S^{t_{1}}\otimes S^{t_{2}}(G)(t;t)\|_{L^{q}(\mathbb{R})}
CxgLt,xq1,p1(d+1)fLt,x,τ,yq2,p2,s,r(d+1)\displaystyle\leq C\|\nabla_{x}g\|_{L^{q_{1},p_{1}}_{t,x}(\mathbb{R}^{d+1})}\|f\|_{L^{q_{2},p_{2},s,r}_{t,x,\tau,y}(\mathbb{R}^{d+1})}

for smax{p,q}s\geq\max\{p,q\}, where Young’s inequality is used in the second step and CC depends only on dd.

To deal with the second term, note that

|St(g)St(f)St(gf)|(x,t;y,τ)\displaystyle\quad|S^{t}(g)\cdot S^{t}(f)-S^{t}(g\cdot f)|(x,t;y,\tau)
C|f(x,ς1;y,τ)|φ1(tς1)|ς2t|12|g(x,ς1)g(x,ς2)|𝑑ς2𝑑ς1\displaystyle\leq C\int_{\mathbb{R}}|f(x,\varsigma_{1};y,\tau)|\cdot\varphi_{1}(t-\varsigma_{1})\cdot\fint_{|\varsigma_{2}-t|\leq\frac{1}{2}}|g(x,\varsigma_{1})-g(x,\varsigma_{2})|d\varsigma_{2}d\varsigma_{1}
C|f(x,ς1;y,τ)|φ1(tς1)|ς2ς1|1|g(x,ς1)g(x,ς2)|𝑑ς2𝑑ς1\displaystyle\leq C\int_{\mathbb{R}}|f(x,\varsigma_{1};y,\tau)|\cdot\varphi_{1}(t-\varsigma_{1})\cdot\fint_{|\varsigma_{2}-\varsigma_{1}|\leq 1}|g(x,\varsigma_{1})-g(x,\varsigma_{2})|d\varsigma_{2}d\varsigma_{1}
=CSt(|f|G),\displaystyle=CS^{t}(|f|\cdot G),

where

G(x,t)=|ςt|1|g(x,t)g(x,ς)|𝑑ς.G(x,t)=\fint_{|\varsigma-t|\leq 1}|g(x,t)-g(x,\varsigma)|d\varsigma.

Therefore, it follows from Lemma 3.2 that, for smax{p,q}s\geq\max\{p,q\},

[Sx(St(g)St(f)St(gf))]1Lq,p(d+1)\displaystyle\|[S^{x}(S^{t}(g)\cdot S^{t}(f)-S^{t}(g\cdot f))]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})} C[S(|f|G)]1Lq,p(d+1)\displaystyle\leq C\|[S(|f|\cdot G)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}
CGLqˇ1,pˇ1(d+1)fLqˇ2,pˇ2(d+1;𝑳𝒔,𝒑).\displaystyle\leq C\|G\|_{L^{\check{q}_{1},\check{p}_{1}}(\mathbb{R}^{d+1})}\|f\|_{L^{\check{q}_{2},\check{p}_{2}}(\mathbb{R}^{d+1};\bm{L^{s,p}})}.

Moreover, by Hölder’s inequality,

GLqˇ1,pˇ1(d+1)\displaystyle\|G\|_{L^{\check{q}_{1},\check{p}_{1}}(\mathbb{R}^{d+1})} (|ςt|1g(,t)g(,ς)Lpˇ1(d)qˇ1𝑑ς𝑑t)1/qˇ1\displaystyle\leq\Big{(}\int_{\mathbb{R}}\fint_{|\varsigma-t|\leq 1}\|g(\cdot,t)-g(\cdot,\varsigma)\|_{L^{\check{p}_{1}}(\mathbb{R}^{d})}^{\check{q}_{1}}d\varsigma dt\Big{)}^{1/\check{q}_{1}}
(|ςt|1g(,t)g(,ς)Lpˇ1(d)qˇ1|tς|1+qˇ1/2𝑑ς𝑑t)1/qˇ1\displaystyle\leq\Big{(}\int_{\mathbb{R}}\int_{|\varsigma-t|\leq 1}\frac{\|g(\cdot,t)-g(\cdot,\varsigma)\|_{L^{\check{p}_{1}}(\mathbb{R}^{d})}^{\check{q}_{1}}}{|t-\varsigma|^{1+{\check{q}_{1}}/2}}d\varsigma dt\Big{)}^{1/\check{q}_{1}}
[g]W12,qˇ1(;Lpˇ1(d)),\displaystyle\leq[g]_{W^{\frac{1}{2},\check{q}_{1}}(\mathbb{R};L^{\check{p}_{1}}(\mathbb{R}^{d}))},

which implies that

[Sx(St(g)St(f)St(gf))]1Lq,p(d+1)C[g]W12,qˇ1(;Lpˇ1(d))fLqˇ2,pˇ2(d+1;𝑳𝒔,𝒓).\displaystyle\|[S^{x}(S^{t}(g)\cdot S^{t}(f)-S^{t}(g\cdot f))]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}\leq C[g]_{W^{\frac{1}{2},\check{q}_{1}}(\mathbb{R};L^{\check{p}_{1}}(\mathbb{R}^{d}))}\|f\|_{L^{\check{q}_{2},\check{p}_{2}}(\mathbb{R}^{d+1};\bm{L^{s,r}})}.

By combining the estimates of these two terms above, we accomplish the proof. ∎

Lemma 3.4.

Let the assumptions of Lemma 3.3 hold. Suppose further p1>1p_{1}>1, pˇ1=\check{p}_{1}=\infty, rpr\geq p and 1r1d+1p2+1p3\frac{1}{r}\leq\frac{1}{d}+\frac{1}{p_{2}}+\frac{1}{p_{3}}, smax{p,q}s\geq\max\{p,q\} and 1s<12+1qˇ2+1qˇ3\frac{1}{s}<\frac{1}{2}+\frac{1}{\check{q}_{2}}+\frac{1}{\check{q}_{3}}. Then for ε>0\varepsilon>0,

[(gSε(g))Sε(f)Sε(h)]εLq,p(ΩTΩT1,ε)\displaystyle\quad\|[(g-S_{\varepsilon}(g))\cdot S_{\varepsilon}(f)\cdot S_{\varepsilon}(h)]^{\varepsilon}\|_{L^{q,p}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}
Cε{xgLq1,p1(ΩT;𝑳)fLq2,p2(ΩT;𝑳𝒔𝟐,𝒓𝟐)hLq3,p3(ΩT;𝑳𝒔𝟑,𝒓𝟑)\displaystyle\leq C\varepsilon\{\|\nabla_{x}g\|_{L^{q_{1},p_{1}}(\Omega_{T};\bm{L^{\infty}})}\cdot\|f\|_{L^{q_{2},p_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\cdot\|h\|_{L^{q_{3},p_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}
+[g]W12,qˇ1(0,T;L(Ω;𝑳))fLqˇ2,pˇ2(ΩT;𝑳𝒔𝟐,𝒓𝟐)hLqˇ3,pˇ3(ΩT;𝑳𝒔𝟑,𝒓𝟑)},\displaystyle\qquad+[g]_{W^{\frac{1}{2},\check{q}_{1}}(0,T;L^{\infty}(\Omega;\bm{L^{\infty}}))}\cdot\|f\|_{L^{\check{q}_{2},\check{p}_{2}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\cdot\|h\|_{L^{\check{q}_{3},\check{p}_{3}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}\},

where CC depends only on d,q,p1,qˇ1,sd,q,p_{1},\check{q}_{1},s.

Proof.

As in the proof of Lemma 3.3, we prove the case where ΩT=d+1\Omega_{T}=\mathbb{R}^{d+1} and h1h\equiv 1, in which case p3=pˇ3=q3=qˇ3=p_{3}=\check{p}_{3}=q_{3}=\check{q}_{3}=\infty and 1p=1p1+1p2=1pˇ2\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{\check{p}_{2}}, 1q=1q1+1q2=1qˇ1+1qˇ2\frac{1}{q}=\frac{1}{q_{1}}+\frac{1}{q_{2}}=\frac{1}{\check{q}_{1}}+\frac{1}{\check{q}_{2}}. Without loss of generality, we also suppose that ε=1\varepsilon=1 and gg is independent of (y,τ)(y,\tau). Note that

[(gS(g))S(f)]1Lq,p(d+1)[(gSt(g))S(f)]1Lq,p(d+1)+[St(gSx(g))S(f)]1Lq,p(d+1).\displaystyle\begin{split}&\|[(g-S(g))\cdot S(f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}\leq\|[(g-S^{t}(g))\cdot S(f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}\\ &\qquad\qquad+\|[S^{t}(g-S^{x}(g))\cdot S(f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}.\end{split} (3.10)

For the second term, we focus on the case pdp\leq d, as the case p>dp>d is simple (see [27]). Let HLp(d)H\in L^{p^{\prime}}(\mathbb{R}^{d}), where p=pp1p^{\prime}=\frac{p}{p-1}. For each tt fixed, it follows from inequality (3.9) and Fubini’s theorem

|dSt(gSx(g))(x,t)S(f)(x,t;x,t)H(x)𝑑x|\displaystyle\quad\Big{|}\int_{\mathbb{R}^{d}}S^{t}(g-S^{x}(g))(x,t)\cdot S(f)(x,t;x,t)\cdot H(x)dx\Big{|}
Cd|ξx|12|ωx|12|St(xg)(ω,t)||ωx|1d𝑑ω|St(f)(ξ,t;x,t)H(x)|𝑑ξ𝑑x\displaystyle\leq C\int_{\mathbb{R}^{d}}\int_{|\xi-x|\leq\frac{1}{2}}\int_{|\omega-x|\leq\frac{1}{2}}|S^{t}(\nabla_{x}g)(\omega,t)||\omega-x|^{1-d}d\omega\cdot|S^{t}(f)(\xi,t;x,t)H(x)|d\xi dx
Cd𝑑ξdd|St(xg)(ω,t)|𝟏|ωξ|1|ωx|1d|St(f)(ξ,t;x,t)H(x)|𝟏|xξ|1𝑑x𝑑ω\displaystyle\leq C\int_{\mathbb{R}^{d}}d\xi\cdot\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}|S^{t}(\nabla_{x}g)(\omega,t)|\mathbf{1}_{|\omega-\xi|\leq 1}\cdot|\omega-x|^{1-d}\cdot|S^{t}(f)(\xi,t;x,t)H(x)|\mathbf{1}_{|x-\xi|\leq 1}dxd\omega
CdSt(xg)(,t)Lp1(B(ξ,1))St(f)(ξ,t;,t)H()LP(B(ξ,1))𝑑ξ\displaystyle\leq C\int_{\mathbb{R}^{d}}\|S^{t}(\nabla_{x}g)(\cdot,t)\|_{L^{p_{1}}(B(\xi,1))}\|S^{t}(f)(\xi,t;\cdot,t)H(\cdot)\|_{L^{P}(B(\xi,1))}d\xi
CdSt(xg)(,t)Lp1(B(ξ,1))St(f)Lyr(ξ,t;t)HLp(B(ξ,2))𝑑ξ\displaystyle\leq C\int_{\mathbb{R}^{d}}\|S^{t}(\nabla_{x}g)(\cdot,t)\|_{L^{p_{1}}(B(\xi,1))}\cdot\|S^{t}(f)\|_{L^{r}_{y}}(\xi,t;t)\cdot\|H\|_{L^{p^{\prime}}(B(\xi,2))}d\xi
C(dSt(xg)(,t)Lp1(B(ξ,1))pSt(f)Lyrp(ξ,t;t)𝑑ξ)1/pHLp(d),\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\|S^{t}(\nabla_{x}g)(\cdot,t)\|_{L^{p_{1}}(B(\xi,1))}^{p}\cdot\|S^{t}(f)\|_{L^{r}_{y}}^{p}(\xi,t;t)d\xi\Big{)}^{1/p}\cdot\|H\|_{L^{p^{\prime}}(\mathbb{R}^{d})},

where 1P=1d+1p1=1d+1p2+1p1r+1p\frac{1}{P}=\frac{1}{d}+\frac{1}{p_{1}^{\prime}}=\frac{1}{d}+\frac{1}{p_{2}}+\frac{1}{p^{\prime}}\geq\frac{1}{r}+\frac{1}{p^{\prime}} and we have used the Hardy-Littlewood-Sobolev inequality as well as Hölder’s inequality. By duality, this leads to

[St(gSx(g))S(f)]1Lxp(d)\displaystyle\|[S^{t}(g-S^{x}(g))\cdot S(f)]^{1}\|_{L^{p}_{x}(\mathbb{R}^{d})} C(dSt(xg)(,t)Lp1(B(ξ,1))pSt(f)Lyrp(ξ,t;t)𝑑ξ)1/p\displaystyle\leq C\Big{(}\int_{\mathbb{R}^{d}}\|S^{t}(\nabla_{x}g)(\cdot,t)\|_{L^{p_{1}}(B(\xi,1))}^{p}\cdot\|S^{t}(f)\|_{L^{r}_{y}}^{p}(\xi,t;t)d\xi\Big{)}^{1/p}
CSt1St2(G)(t;t),\displaystyle\leq CS^{t_{1}}\otimes S^{t_{2}}(G)(t;t),

where

G(ς1,ς2;τ)=(dxg(,ς1)Lp1(B(ξ,1))pfLyrp(ξ,ς2;τ)𝑑ξ)1/p.\displaystyle G(\varsigma_{1},\varsigma_{2};\tau)=\Big{(}\int_{\mathbb{R}^{d}}\|\nabla_{x}g(\cdot,\varsigma_{1})\|_{L^{p_{1}}(B(\xi,1))}^{p}\cdot\|f\|_{L^{r}_{y}}^{p}(\xi,\varsigma_{2};\tau)d\xi\Big{)}^{1/p}.

Following the arguments of Lemma 3.2, we conclude

[St(gSx(g))S(f)]1Lq,p(d+1)CSt1St2(G)(t;t)Lq()CxgLt,xq1,p1(d+1)fLt,x,τ,yq2,p2,s,r(d+1)\displaystyle\begin{split}\|[S^{t}(g-S^{x}(g))\cdot S(f)]^{1}\|_{L^{q,p}(\mathbb{R}^{d+1})}&\leq C\|S^{t_{1}}\otimes S^{t_{2}}(G)(t;t)\|_{L^{q}(\mathbb{R})}\\ &\leq C\|\nabla_{x}g\|_{L^{q_{1},p_{1}}_{t,x}(\mathbb{R}^{d+1})}\|f\|_{L^{q_{2},p_{2},s,r}_{t,x,\tau,y}(\mathbb{R}^{d+1})}\end{split} (3.11)

for smax{p,q}s\geq\max\{p,q\}. This gives the estimate for the second term.

To deal with the first term in the r.h.s. of (3.10), we prove a special case of the desired estimate, that is,

(gSt(g))[St(f)]1Lq()C[g]W12,qˇ1()fLqˇ2(;Ls(𝕋)),\displaystyle\|(g-S^{t}(g))\cdot[S^{t}(f)]^{1}\|_{L^{q}(\mathbb{R})}\leq C[g]_{W^{\frac{1}{2},\check{q}_{1}}(\mathbb{R})}\|f\|_{L^{\check{q}_{2}}(\mathbb{R};L^{s}(\mathbb{T}))}, (3.12)

where gg is independent of x,y,τx,y,\tau and ff is independent of x,yx,y. The vector-valued case can be proved in the same manner. Since gg can be approximated by smooth functions, we just suppose gg itself is smooth, in which case we write

g(t)St(g)(t)\displaystyle g(t)-S^{t}(g)(t) =(g(t)g(tς))φ1(ς)𝑑ς=01tg(tθς)ςdθφ1(ς)dς\displaystyle=\int_{\mathbb{R}}(g(t)-g(t-\varsigma))\varphi_{1}(\varsigma)d\varsigma=\int_{\mathbb{R}}\int_{0}^{1}\partial_{t}g(t-\theta\varsigma)\cdot\varsigma d\theta\varphi_{1}(\varsigma)d\varsigma
=01tg(ξ)Φθ(tξ)dξdθ,\displaystyle=-\int_{0}^{1}\int_{\mathbb{R}}\partial_{t}g(\xi)\cdot\varPhi_{\theta}(t-\xi)d\xi d\theta,

where Φ(ς)=ςφ1(ς)\varPhi(\varsigma)=\varsigma\varphi_{1}(\varsigma) and Φθ()=1θΦ(θ)\varPhi_{\theta}(\cdot)=\frac{1}{\theta}\varPhi(\frac{\cdot}{\theta}). For HLq()H\in L^{q^{\prime}}(\mathbb{R}), it holds that

(gSt(g))St(f)(t;t)H(t)𝑑t\displaystyle\quad\int_{\mathbb{R}}(g-S^{t}(g))\cdot S^{t}(f)(t;t)\cdot H(t)dt
=01××tg(ξ)Φθ(tξ)dξf(ς;t)H(t)φ1(tς)dςdtdθ\displaystyle=-\int_{0}^{1}\iiint_{\mathbb{R}\times\mathbb{R}\times\mathbb{R}}\partial_{t}g(\xi)\cdot\varPhi_{\theta}(t-\xi)d\xi f(\varsigma;t)H(t)\varphi_{1}(t-\varsigma)d\varsigma dtd\theta
=01××g(ξ)tΦθ(tξ)dξf(ς;t)H(t)φ1(tς)dtdςdθ.\displaystyle=-\int_{0}^{1}\iiint_{\mathbb{R}\times\mathbb{R}\times\mathbb{R}}g(\xi)\cdot\partial_{t}\varPhi_{\theta}(t-\xi)d\xi f(\varsigma;t)H(t)\varphi_{1}(t-\varsigma)dtd\varsigma d\theta.

For each θ\theta and ς\varsigma fixed, we can cover the interval (ς12,ς+12)(\varsigma-\frac{1}{2},\varsigma+\frac{1}{2}) by finite intervals [ti,ti+1][t_{i},t_{i+1}] of length θ\theta and obtain

|g(ξ)tΦθ(tξ)f(ς;t)H(t)φ1(tς)dξdt|\displaystyle\quad\Big{|}\int_{\mathbb{R}}\int_{\mathbb{R}}g(\xi)\partial_{t}\varPhi_{\theta}(t-\xi)f(\varsigma;t)H(t)\varphi_{1}(t-\varsigma)d\xi dt\Big{|}
=|ititi+1(g(ξ)titi+1g)tΦθ(tξ)f(ς;t)H(t)φ1(tς)dξdt|\displaystyle=\Big{|}\sum_{i}\int_{t_{i}}^{t_{i+1}}\int_{\mathbb{R}}(g(\xi)-\fint_{t_{i}}^{t_{i+1}}g)\partial_{t}\varPhi_{\theta}(t-\xi)f(\varsigma;t)H(t)\varphi_{1}(t-\varsigma)d\xi dt\Big{|}
ititi+1titi+1|g(ξ)g(ζ)||ξζ|1/2+1/qˇ1𝑑ζθ12+1qˇ1|tΦθ(tξ)||f(ς;t)H(t)|𝑑t𝑑ξ\displaystyle\leq\sum_{i}\int_{\mathbb{R}}\int_{t_{i}}^{t_{i+1}}\fint_{t_{i}}^{t_{i+1}}\frac{|g(\xi)-g(\zeta)|}{|\xi-\zeta|^{1/2+1/\check{q}_{1}}}d\zeta\cdot\theta^{\frac{1}{2}+\frac{1}{\check{q}_{1}}}\cdot|\partial_{t}\varPhi_{\theta}(t-\xi)|\cdot|f(\varsigma;t)H(t)|dtd\xi
θ12ititi+1(titi+1|g(ξ)g(ζ)|qˇ1|ξζ|qˇ1/2+1𝑑ζ)1/qˇ1|(tΦ)θ(tξ)||f(ς;t)H(t)|𝑑t𝑑ξ\displaystyle\leq\theta^{-\frac{1}{2}}\sum_{i}\int_{\mathbb{R}}\int_{t_{i}}^{t_{i+1}}\Big{(}\int_{t_{i}}^{t_{i+1}}\frac{|g(\xi)-g(\zeta)|^{\check{q}_{1}}}{|\xi-\zeta|^{\check{q}_{1}/2+1}}d\zeta\Big{)}^{1/\check{q}_{1}}\cdot|(\partial_{t}\varPhi)_{\theta}(t-\xi)|\cdot|f(\varsigma;t)H(t)|dtd\xi
θ12ς1ς+1(ς1ς+1|g(ξ)g(ζ)|qˇ1|ξζ|qˇ1/2+1𝑑ζ)1/qˇ1|(tΦ)θ(tξ)||f(ς;t)H(t)|𝑑t𝑑ξ\displaystyle\leq\theta^{-\frac{1}{2}}\int_{\mathbb{R}}\int_{\varsigma-1}^{\varsigma+1}\Big{(}\int_{\varsigma-1}^{\varsigma+1}\frac{|g(\xi)-g(\zeta)|^{\check{q}_{1}}}{|\xi-\zeta|^{\check{q}_{1}/2+1}}d\zeta\Big{)}^{1/\check{q}_{1}}\cdot|(\partial_{t}\varPhi)_{\theta}(t-\xi)|\cdot|f(\varsigma;t)H(t)|dtd\xi
θ12(ς1ς+1|g(ξ)g(ζ)|qˇ1|ξζ|qˇ1/2+1𝑑ζ𝑑ξ)1/qˇ1(tΦ)θLPf(ς;)H()Lsqs+q(ς1,ς+1)\displaystyle\leq\theta^{-\frac{1}{2}}\Big{(}\int_{\mathbb{R}}\int_{\varsigma-1}^{\varsigma+1}\frac{|g(\xi)-g(\zeta)|^{\check{q}_{1}}}{|\xi-\zeta|^{\check{q}_{1}/2+1}}d\zeta d\xi\Big{)}^{1/\check{q}_{1}}\|(\partial_{t}\varPhi)_{\theta}\|_{L^{P}}\|f(\varsigma;\cdot)H(\cdot)\|_{L^{\frac{sq^{\prime}}{s+q^{\prime}}}(\varsigma-1,\varsigma+1)}
Cθ12+1P1(ς1ς+1|g(ξ)g(ζ)|qˇ1|ξζ|qˇ1/2+1𝑑ζ𝑑ξ)1/qˇ1f(ς;)Ls(𝕋)HLq(ς1,ς+1),\displaystyle\leq C\theta^{-\frac{1}{2}+\frac{1}{P}-1}\Big{(}\int_{\mathbb{R}}\int_{\varsigma-1}^{\varsigma+1}\frac{|g(\xi)-g(\zeta)|^{\check{q}_{1}}}{|\xi-\zeta|^{\check{q}_{1}/2+1}}d\zeta d\xi\Big{)}^{1/\check{q}_{1}}\cdot\|f(\varsigma;\cdot)\|_{L^{s}(\mathbb{T})}\cdot\|H\|_{L^{q^{\prime}}(\varsigma-1,\varsigma+1)},

where (tΦ)θ()=1θtΦ(θ)(\partial_{t}\varPhi)_{\theta}(\cdot)=\frac{1}{\theta}\partial_{t}\varPhi(\frac{\cdot}{\theta}) and we have used Young’s inequality with 1qˇ1+1P+1s+1q=2\frac{1}{\check{q}_{1}}+\frac{1}{P}+\frac{1}{s}+\frac{1}{q^{\prime}}=2 in the fifth step. Note that P<2P<2. Thus, integrating w.r.t. θ\theta and ς\varsigma and applying Hölder’s inequality, we conclude

|(gSt(g))St(f)(t;t)H(t)𝑑t|C[g]W12,qˇ1()fLqˇ2(;Ls(𝕋))HLq(),\displaystyle\Big{|}\int_{\mathbb{R}}(g-S^{t}(g))\cdot S^{t}(f)(t;t)\cdot H(t)dt\Big{|}\leq C[g]_{W^{\frac{1}{2},\check{q}_{1}}(\mathbb{R})}\|f\|_{L^{\check{q}_{2}}(\mathbb{R};L^{s}(\mathbb{T}))}\|H\|_{L^{q^{\prime}}(\mathbb{R})},

which gives exactly (3.12).

The desired result follows from (3.10) and (3.11)–(3.12). ∎

Corollary 3.1.

Suppose the assumptions of Lemma 3.4 hold and ψCc(ΩT)\psi\in C^{\infty}_{c}(\Omega_{T}). Then for ε>0\varepsilon>0,

  • 1).

    if 1p2q1\leq p\leq 2\leq q\leq\infty, s>2s>2,

    [gSε(f)Sε(gf)]εψL1(ΩTΩT1,ε)Cε[g](ΩT;𝑳){fL2,p(ΩT;𝑳𝒔,𝟐)ψL2,p(ΩT)+fL2qq2,2(ΩT;𝑳𝒔,𝟐)ψLq,2(ΩT)},\displaystyle\begin{split}&\quad\|[g\cdot S_{\varepsilon}(f)-S_{\varepsilon}(g\cdot f)]^{\varepsilon}\cdot\psi\|_{L^{1}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\varepsilon[g]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}\\ &\qquad\cdot\{\|f\|_{L^{2,p^{*}}(\Omega_{T};\bm{L^{s,2}})}\|\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+\|f\|_{L^{\frac{2q}{q-2},2}(\Omega_{T};\bm{L^{s,2}})}\|\psi\|_{L^{q,2}(\Omega_{T})}\},\end{split} (3.13)

    where [](ΩT;𝑳)[\,\cdot\,]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})} is given as (2.4) and CC depends only on d,q,sd,q,s;

  • 2).

    if 1p2q1\leq p\leq 2\leq q\leq\infty, s>2s>2,

    {Sε([gSε(h)Sε(gh)]f)}εψL1(ΩTΩT1,ε)Cε[g](ΩT;𝑳)hL(ΩT;𝑳𝒔,𝟐){fL2,p(ΩT;𝑳)ψL2,p(ΩT)+fL2qq2,2(ΩT;𝑳)ψLq,2(ΩT)},\displaystyle\begin{split}&\quad\|\{S_{\varepsilon}([g\cdot S_{\varepsilon}(h)-S_{\varepsilon}(g\cdot h)]\cdot f)\}^{\varepsilon}\cdot\psi\|_{L^{1}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\varepsilon[g]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}\\ &\qquad\cdot\|h\|_{L^{\infty}(\Omega_{T};\bm{L^{s,2}})}\cdot\{\|f\|_{L^{2,p^{*}}(\Omega_{T};\bm{L^{\infty}})}\|\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+\|f\|_{L^{\frac{2q}{q-2},2}(\Omega_{T};\bm{L^{\infty}})}\|\psi\|_{L^{q,2}(\Omega_{T})}\},\end{split} (3.14)

    where CC depends only on d,q,sd,q,s;

  • 3).

    for p0=2dd1p_{0}=\frac{2d}{d-1}, q0=2dd+1q_{0}=\frac{2d}{d+1}, if s>1s>1, r1r\geq 1,

    [{gSε(f)Sε(gf)}Sε(h)]εL1(ΩTΩT1,ε)Cε[g](ΩT;𝑳){fL2,q0(ΩT;𝑳𝒔𝟐,𝒓𝟐)hL2,p0(ΩT;𝑳𝒔𝟑,𝒓𝟑)+fL4,2(ΩT;𝑳𝒔𝟐,𝒓𝟐)hL4,2(ΩT;𝑳𝒔𝟑,𝒓𝟑)},\displaystyle\begin{split}&\quad\|[\{g\cdot S_{\varepsilon}(f)-S_{\varepsilon}(g\cdot f)\}\cdot S_{\varepsilon}(h)]^{\varepsilon}\|_{L^{1}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\leq C\varepsilon[g]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}\\ &\cdot\{\|f\|_{L^{2,q_{0}^{*}}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\|h\|_{L^{2,p_{0}}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}+\|f\|_{L^{4,2}(\Omega_{T};\bm{L^{s_{2},r_{2}}})}\|h\|_{L^{4,2}(\Omega_{T};\bm{L^{s_{3},r_{3}}})}\},\end{split} (3.15)

    where CC depends only on d,sd,s.

Proof.

To show (3.13), note that

[gSε(f)Sε(gf)]εψL1\displaystyle\quad\|[g\cdot S_{\varepsilon}(f)-S_{\varepsilon}(g\cdot f)]^{\varepsilon}\cdot\psi\|_{L^{1}}
[gSε(f)Sεt(gSεx(f))]εψL1+[Sεt(gSεx(f)Sεx(gf))]εψL1\displaystyle\leq\|[g\cdot S_{\varepsilon}(f)-S^{t}_{\varepsilon}(g\cdot S_{\varepsilon}^{x}(f))]^{\varepsilon}\cdot\psi\|_{L^{1}}+\|[S^{t}_{\varepsilon}(g\cdot S^{x}_{\varepsilon}(f)-S^{x}_{\varepsilon}(g\cdot f))]^{\varepsilon}\cdot\psi\|_{L^{1}}
[gSε(f)Sεt(gSεx(f))]εLq,2ψLq,2+[Sεt(gSεx(f)Sεx(gf))]εL2,pψL2,p,\displaystyle\leq\|[g\cdot S_{\varepsilon}(f)-S^{t}_{\varepsilon}(g\cdot S_{\varepsilon}^{x}(f))]^{\varepsilon}\|_{L^{q^{\prime},2}}\|\psi\|_{L^{q,2}}+\|[S^{t}_{\varepsilon}(g\cdot S^{x}_{\varepsilon}(f)-S^{x}_{\varepsilon}(g\cdot f))]^{\varepsilon}\|_{L^{2,p}}\|\psi\|_{L^{2,p^{\prime}}},

both of which can be handled in the same way as in the proof of Lemmas 3.3 and 3.4. We omit the details. Estimates (3.14) and (3.15) can be derived similarly. ∎

Lemma 3.5.

Suppose XX is a Banach space and gW12,r(0,T;X)g\in W^{\frac{1}{2},r}(0,T;X), 1<r<1<r<\infty. Then

tSεt(g)Lr(ε22,Tε22;X)Cε1[g]W12,r(0,T;X),\displaystyle\|\partial_{t}S^{t}_{\varepsilon}(g)\|_{L^{r}(\frac{\varepsilon^{2}}{2},T-\frac{\varepsilon^{2}}{2};X)}\leq C\varepsilon^{-1}[g]_{W^{\frac{1}{2},r}(0,T;X)},

where Sεt(g)S^{t}_{\varepsilon}(g) is defined in the sense of Bochner integral and CC depends only on rr.

Proof.

For each t(ε2/2,Tε2/2)t\in(\varepsilon^{2}/2,T-\varepsilon^{2}/2),

tSεt(g)(t)=ε2(tφ1)ε(tς)g(ς)𝑑ς=ε2(tφ1)ε(tς){g(ς)g(t)}𝑑ς,\displaystyle\partial_{t}S^{t}_{\varepsilon}(g)(t)=\varepsilon^{-2}\int_{\mathbb{R}}(\partial_{t}\varphi_{1})_{\varepsilon}(t-\varsigma)\cdot g(\varsigma)d\varsigma=\varepsilon^{-2}\int_{\mathbb{R}}(\partial_{t}\varphi_{1})_{\varepsilon}(t-\varsigma)\cdot\{g(\varsigma)-g(t)\}d\varsigma,

where (tφ1)ε(ς)=ε2tφ1(ς/ε2)(\partial_{t}\varphi_{1})_{\varepsilon}(\varsigma)=\varepsilon^{-2}\partial_{t}\varphi_{1}(\varsigma/\varepsilon^{2}) and we have used the fact that (tφ1)ε=0\int_{\mathbb{R}}(\partial_{t}\varphi_{1})_{\varepsilon}=0. This, together with the fact supp(tφ1)ε(ε2/2,ε2/2)\mathrm{supp}(\partial_{t}\varphi_{1})_{\varepsilon}\subset(-\varepsilon^{2}/2,\varepsilon^{2}/2), implies that for t(ε2/2,Tε2/2)t\in(\varepsilon^{2}/2,T-\varepsilon^{2}/2)

tSεt(g)(t)X\displaystyle\|\partial_{t}S^{t}_{\varepsilon}(g)(t)\|_{X} ε20T|(tφ1)ε(tς)|g(ς)g(t)X𝑑ς\displaystyle\leq\varepsilon^{-2}\int_{0}^{T}|(\partial_{t}\varphi_{1})_{\varepsilon}(t-\varsigma)|\cdot\|g(\varsigma)-g(t)\|_{X}d\varsigma
ε2(0T|(tφ1)ε(tς)|r|tς|(12+1r)r𝑑ς)1r(0Tg(ς)g(t)Xr|ςt|1+r/2𝑑ς)1r\displaystyle\leq\varepsilon^{-2}\Big{(}\int_{0}^{T}|(\partial_{t}\varphi_{1})_{\varepsilon}(t-\varsigma)|^{r^{\prime}}|t-\varsigma|^{(\frac{1}{2}+\frac{1}{r})r^{\prime}}d\varsigma\Big{)}^{\frac{1}{r^{\prime}}}\cdot\Big{(}\int_{0}^{T}\frac{\|g(\varsigma)-g(t)\|_{X}^{r}}{|\varsigma-t|^{1+r/2}}d\varsigma\Big{)}^{\frac{1}{r}}
Cε1(0Tg(ς)g(t)Xr|ςt|1+r/2𝑑ς)1r.\displaystyle\leq C\varepsilon^{-1}\Big{(}\int_{0}^{T}\frac{\|g(\varsigma)-g(t)\|_{X}^{r}}{|\varsigma-t|^{1+r/2}}d\varsigma\Big{)}^{\frac{1}{r}}.

The desired result follows directly. ∎

Lemma 3.6.

(i). Suppose f(x,t)Lq(;Lp(d))f(x,t)\in L^{q}(\mathbb{R};L^{p}(\mathbb{R}^{d})), 1p,q1\leq p,q\leq\infty. Then for any pp1p\leq p_{1}\leq\infty,

Sεx(f)Lq(;Lp1(d))Cεdp1dpfLq(;Lp(d)),\displaystyle\|S^{x}_{\varepsilon}(f)\|_{L^{q}(\mathbb{R};L^{p_{1}}(\mathbb{R}^{d}))}\leq C\varepsilon^{\frac{d}{p_{1}}-\frac{d}{p}}\|f\|_{L^{q}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}, (3.16)

where CC depends only on d,p,p1d,p,p_{1}, and for any qq1q\leq q_{1}\leq\infty,

Sεt(f)Lq1(;Lp(d))Cε2q12qfLq(;Lp(d)),\displaystyle\|S^{t}_{\varepsilon}(f)\|_{L^{q_{1}}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}\leq C\varepsilon^{\frac{2}{q_{1}}-\frac{2}{q}}\|f\|_{L^{q}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}, (3.17)

where CC depends only on d,q,q1d,q,q_{1}.

(ii). Suppose fL2(;W2,q(d))f\in L^{2}(\mathbb{R};W^{2,q}(\mathbb{R}^{d})) and tfL2(;Lq(d))\partial_{t}f\in L^{2}(\mathbb{R};L^{q}(\mathbb{R}^{d})). If 1p<1\leq p<\infty and max{1,dpd+p}qp\max\{1,\frac{dp}{d+p}\}\leq q\leq p, or p=p=\infty and d(=dpd+p)<qd(=\frac{dp}{d+p})<q\leq\infty, then

fSε(f)L2(;Lp(d))Cε1+dpdq{2fL2(;Lq(d))+tfL2(;Lq(d))},\displaystyle\|\nabla f-S_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}\leq C\varepsilon^{1+\frac{d}{p}-\frac{d}{q}}\{\|\nabla^{2}f\|_{L^{2}(\mathbb{R};L^{q}(\mathbb{R}^{d}))}+\|\partial_{t}f\|_{L^{2}(\mathbb{R};L^{q}(\mathbb{R}^{d}))}\}, (3.18)

where CC depends only on d,p,qd,p,q.

Proof.

Estimates (3.16) and (3.17) are direct results of Young’s inequality. We emphasize that (3.16) is valid for any φ2C0(B(0,1/2))\varphi_{2}\in C_{0}^{\infty}(B(0,1/2)), even if assumption (3.1) is not satisfied. To show (3.18), we write

fSε(f)L2(;Lp(d))fSεx(f)L2(;Lp(d))+Sεx(f)Sε(f)L2(;Lp(d)).\displaystyle\|\nabla f-S_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}\leq\|\nabla f-S^{x}_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}+\|S^{x}_{\varepsilon}(\nabla f)-S_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}.

For the first term, by rescaling and Young’s inequality, one can show that ([27])

fSεx(f)L2(;Lp(d))Cε1+dpdq2fL2(;Lq(d)).\displaystyle\|\nabla f-S^{x}_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}\leq C\varepsilon^{1+\frac{d}{p}-\frac{d}{q}}\|\nabla^{2}f\|_{L^{2}(\mathbb{R};L^{q}(\mathbb{R}^{d}))}. (3.19)

On the other hand, it follows from inequality (3.9) that

|Sεx(f)(t)Sε(f)(t)|C{|ςt|ε22}|Sεx(f)(t)Sεx(f)(ς)|𝑑ςCε2{|ςt|ε22}|tSεx(f)(ς)|𝑑ς,\displaystyle\begin{split}|S^{x}_{\varepsilon}(\nabla f)(t)-S_{\varepsilon}(\nabla f)(t)|&\leq C\fint_{\{|\varsigma-t|\leq\frac{\varepsilon^{2}}{2}\}}|S^{x}_{\varepsilon}(\nabla f)(t)-S^{x}_{\varepsilon}(\nabla f)(\varsigma)|d\varsigma\\ &\leq C\varepsilon^{2}\fint_{\{|\varsigma-t|\leq\frac{\varepsilon^{2}}{2}\}}|\partial_{t}S^{x}_{\varepsilon}(\nabla f)(\varsigma)|d\varsigma,\end{split}

which, together with (3.16), yields

Sεx(f)Sε(f)L2(;Lp(d))\displaystyle\|S^{x}_{\varepsilon}(\nabla f)-S_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))} Cε{|ςt|ε22}|(φ2)ε(tf)(ς)|dςL2(;Lp(d))\displaystyle\leq C\varepsilon\Big{\|}\fint_{\{|\varsigma-t|\leq\frac{\varepsilon^{2}}{2}\}}|(\nabla\varphi_{2})_{\varepsilon}*(\partial_{t}f)(\varsigma)|d\varsigma\Big{\|}_{L^{2}(\mathbb{R};L^{p}(\mathbb{R}^{d}))}
Cε1+dpdqtfL2(;Lq(d)).\displaystyle\leq C\varepsilon^{1+\frac{d}{p}-\frac{d}{q}}\|\partial_{t}f\|_{L^{2}(\mathbb{R};L^{q}(\mathbb{R}^{d}))}.

This completes the proof. ∎

In particular, for q0=2dd+1q_{0}=\frac{2d}{d+1}, we have the following estimates

Sεx(f)L2(d+1)Cε1/2fL2(;Lq0(d)),fSε(f)L2(d+1)Cε1/2{2fL2(;Lq0(d))+tfL2(;Lq0(d))}.\displaystyle\begin{split}\|S^{x}_{\varepsilon}(f)\|_{L^{2}(\mathbb{R}^{d+1})}&\leq C\varepsilon^{-1/2}\|f\|_{L^{2}(\mathbb{R};L^{q_{0}}(\mathbb{R}^{d}))},\\ \|\nabla f-S_{\varepsilon}(\nabla f)\|_{L^{2}(\mathbb{R}^{d+1})}&\leq C\varepsilon^{1/2}\{\|\nabla^{2}f\|_{L^{2}(\mathbb{R};L^{q_{0}}(\mathbb{R}^{d}))}+\|\partial_{t}f\|_{L^{2}(\mathbb{R};L^{q_{0}}(\mathbb{R}^{d}))}\}.\end{split} (3.20)
Lemma 3.7.

Let gL(ΩT;𝐋𝟐)g\in L^{\infty}(\Omega_{T};\bm{L^{2}}), tfL2(0,T;Lq0(Ω))\partial_{t}f\in L^{2}(0,T;L^{q_{0}}(\Omega)), fL2(0,T;W˙1,q0(Ω))\nabla f\in L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega)), and hL2(0,T;Lp0(Ω))h\in L^{2}(0,T;L^{p_{0}}(\Omega)). Suppose further supp(h)ΩTΩT2,ε\mathrm{supp}(h)\subset\Omega_{T}\setminus\Omega_{T}^{2,\varepsilon}. Then for ε>0\varepsilon>0,

|ΩT(fSε(f))[Sε(gh)]ε𝑑x𝑑t|\displaystyle\quad\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(g\cdot h)]^{\varepsilon}dxdt\Big{|}
Cε{2fL2,q0(ΩT)+tfL2,q0(ΩT)}gL(ΩT;𝑳𝟐)hL2,p0(ΩT),\displaystyle\leq C\varepsilon\{\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|g\|_{L^{\infty}(\Omega_{T};\bm{L^{2}})}\cdot\|h\|_{L^{2,p_{0}}(\Omega_{T})},

where CC depends only on dd.

Proof.

We apply a regularity lifting argument of parabolic type to gg. Write g=g1+g2g=g_{1}+g_{2}, where

g2(x,t)=𝕋d+1g(x,t;y,τ)𝑑y𝑑τ,\displaystyle g_{2}(x,t)=\int_{\mathbb{T}^{d+1}}g(x,t;y,\tau)dyd\tau,

such that, 𝕋d+1g1(x,t;,)=0\int_{\mathbb{T}^{d+1}}g_{1}(x,t;\cdot,\cdot)=0 for each (x,t)(x,t). Let u(x,t;y,τ)u(x,t;y,\tau) be the solution to

{τuΔyu=g1ind+1,u is 1-periodic in (y,τ), and 𝕋d+1u(x,t;,)=0,\begin{cases}\partial_{\tau}u-\Delta_{y}u=g_{1}\quad\mathrm{in}~{}\mathbb{R}^{d+1},\\ u\textrm{ is 1-periodic in }(y,\tau),\textrm{ and }\int_{\mathbb{T}^{d+1}}u(x,t;\cdot,\cdot)=0,\end{cases}

which satisfies that, for each (x,t)(x,t)

u(x,t;,)L2(𝕋1;H2(𝕋d))H1(𝕋1;L2(𝕋d))Cg1(x,t;,)L2(𝕋d+1)Cg(x,t;,)L2(𝕋d+1).\displaystyle\|u(x,t;\cdot,\cdot)\|_{L^{2}(\mathbb{T}^{1};H^{2}(\mathbb{T}^{d}))\cap H^{1}(\mathbb{T}^{1};L^{2}(\mathbb{T}^{d}))}\leq C\|g_{1}(x,t;\cdot,\cdot)\|_{L^{2}(\mathbb{T}^{d+1})}\leq C\|g(x,t;\cdot,\cdot)\|_{L^{2}(\mathbb{T}^{d+1})}.

Set Gk=ykuG_{k}=-\partial_{y_{k}}u for 1kd1\leq k\leq d, and Gd+1=uG_{d+1}=u. Then 1kdykGk+τGd+1=g1\sum_{1\leq k\leq d}\partial_{y_{k}}G_{k}+\partial_{\tau}G_{d+1}=g_{1} and for each (x,t)(x,t)

1kdGkL2(𝕋1;H1(𝕋d))𝑳,𝟐+Gd+1L2(𝕋1;H2(𝕋d))H1(𝕋1;L2(𝕋d))CgL2(𝕋d+1),\displaystyle\sum_{1\leq k\leq d}\|G_{k}\|_{L^{2}(\mathbb{T}^{1};H^{1}(\mathbb{T}^{d}))\cap\bm{L^{\infty,2}}}+\|G_{d+1}\|_{L^{2}(\mathbb{T}^{1};H^{2}(\mathbb{T}^{d}))\cap H^{1}(\mathbb{T}^{1};L^{2}(\mathbb{T}^{d}))}\leq C\|g\|_{L^{2}(\mathbb{T}^{d+1})},

which, by interpolation, yields that

1kdGkL(ΩT;𝑳𝟒,𝒑𝟎)+yGd+1L(ΩT;𝑳𝟒,𝒑𝟎)CgL(ΩT;𝑳𝟐),\displaystyle\sum_{1\leq k\leq d}\|G_{k}\|_{L^{\infty}(\Omega_{T};\bm{L^{4,p_{0}}})}+\|\nabla_{y}G_{d+1}\|_{L^{\infty}(\Omega_{T};\bm{L^{4,p_{0}}})}\leq C\|g\|_{L^{\infty}(\Omega_{T};\bm{L^{2}})}, (3.21)

where 2p042\leq p_{0}\leq 4 as d2d\geq 2. Therefore, with this expression of gg, we have

|ΩT(fSε(f))[Sε(gh)]ε𝑑x𝑑t||ΩT(fSε(f))[Sε(ykGkh)]ε𝑑x𝑑t|\displaystyle\quad\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(g\cdot h)]^{\varepsilon}dxdt\Big{|}\leq\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(\partial_{y_{k}}G_{k}\cdot h)]^{\varepsilon}dxdt\Big{|}
+|ΩT(fSε(f))[Sε(τGd+1h)]ε𝑑x𝑑t|+|ΩT(fSε(f))[Sε(g2h)]ε𝑑x𝑑t|\displaystyle+\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(\partial_{\tau}G_{d+1}\cdot h)]^{\varepsilon}dxdt\Big{|}+\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(g_{2}\cdot h)]^{\varepsilon}dxdt\Big{|}
K1+K2+K3.\displaystyle\doteq K_{1}+K_{2}+K_{3}.

Here we have omitted the summation w.r.t. kk from 11 to dd.

For K1K_{1}, it follows from (1.10) and integration by parts that

K1\displaystyle K_{1} =ε|ΩT(fSε(f)){k[Sε(Gkh)]ε[xkSε(Gkh)]ε}𝑑x𝑑t|\displaystyle=\varepsilon\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot\{\partial_{k}[S_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}-[\partial_{x_{k}}S_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}\}dxdt\Big{|}
ε|ΩTk(fSε(f))[Sε(Gkh)]εdxdt|\displaystyle\leq\varepsilon\Big{|}\iint_{\Omega_{T}}\partial_{k}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[S_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}dxdt\Big{|}
+ε|ΩT(fSε(f))[xkSε(Gkh)]ε𝑑x𝑑t|\displaystyle\qquad+\varepsilon\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[\partial_{x_{k}}S_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}dxdt\Big{|}
Cε2fL2,q0(ΩT)[Sε(Gkh)]εL2,p0(ΩT)\displaystyle\leq C\varepsilon\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}\|[S_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}\|_{L^{2,p_{0}}(\Omega_{T})}
+fSε(f)L2,q0(ΩTΩT1,ε)[(kφ2)εSεt(Gkh)]εL2,p0(ΩT)\displaystyle\qquad+\|\nabla f-S_{\varepsilon}(\nabla f)\|_{L^{2,q_{0}}(\Omega_{T}\setminus\Omega_{T}^{1,\varepsilon})}\cdot\|[(\partial_{k}\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(G_{k}\cdot h)]^{\varepsilon}\|_{L^{2,p_{0}}(\Omega_{T})}
Cε{2fL2,q0(ΩT)+tfL2,q0(ΩT)}GkhL2,p0(ΩT;𝑳𝒑𝟎)\displaystyle\leq C\varepsilon\{\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|G_{k}\cdot h\|_{L^{2,p_{0}}(\Omega_{T};\bm{L^{p_{0}}})}
Cε{2fL2,q0(ΩT)+tfL2,q0(ΩT)}gL(ΩT;𝑳𝟐)hL2,p0(ΩT),\displaystyle\leq C\varepsilon\{\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|g\|_{L^{\infty}(\Omega_{T};\bm{L^{2}})}\cdot\|h\|_{L^{2,p_{0}}(\Omega_{T})},

where we have applied Lemma 3.2 and (3.18) in the fourth step as well as (3.21) in the last one. Similarly,

K2\displaystyle K_{2} =ε2|ΩT(fSε(f)){t[Sε(Gd+1h)]ε[tSε(Gd+1h)]ε}𝑑x𝑑t|\displaystyle=\varepsilon^{2}\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot\{\partial_{t}[S_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}-[\partial_{t}S_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}\}dxdt\Big{|}
ε2|ΩTt(fSε(f))[Sε(Gd+1h)]εdxdt|\displaystyle\leq\varepsilon^{2}\Big{|}\iint_{\Omega_{T}}\partial_{t}(f-S_{\varepsilon}(f))\cdot\nabla[S_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}dxdt\Big{|}
+ε2|ΩT(fSε(f))[tSε(Gd+1h)]ε𝑑x𝑑t|\displaystyle\qquad+\varepsilon^{2}\Big{|}\iint_{\Omega_{T}}(\nabla f-S_{\varepsilon}(\nabla f))\cdot[\partial_{t}S_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}dxdt\Big{|}
εΩT|t(fSε(f))||[(xφ2)εSεt(Gd+1h)]ε+[Sε(yGd+1h)]ε|𝑑x𝑑t\displaystyle\leq\varepsilon\iint_{\Omega_{T}}|\partial_{t}(f-S_{\varepsilon}(f))|\cdot|[(\nabla_{x}\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}+[S_{\varepsilon}(\nabla_{y}G_{d+1}\cdot h)]^{\varepsilon}|dxdt
+ΩT|fSε(f)||[(tφ1)εSεx(Gd+1h)]ε|𝑑x𝑑t\displaystyle\qquad+\iint_{\Omega_{T}}|\nabla f-S_{\varepsilon}(\nabla f)|\cdot|[(\partial_{t}\varphi_{1})_{\varepsilon}*S^{x}_{\varepsilon}(G_{d+1}\cdot h)]^{\varepsilon}|dxdt
Cε{tfL2,q0(ΩT)+2fL2,q0(ΩT)}gL(ΩT;𝑳𝟐)hL2,p0(ΩT),\displaystyle\leq C\varepsilon\{\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|g\|_{L^{\infty}(\Omega_{T};\bm{L^{2}})}\cdot\|h\|_{L^{2,p_{0}}(\Omega_{T})},

where (tφ1)ε(t)=ε2(tφ1)(t/ε2)(\partial_{t}\varphi_{1})_{\varepsilon}(t)=\varepsilon^{-2}(\partial_{t}\varphi_{1})(t/\varepsilon^{2}). Lastly, it is easy to see from Hölder’s inequality and (3.18)

K3\displaystyle K_{3} Cε{2fL2,q0(ΩT)+tfL2,q0(ΩT)}g2L(ΩT)hL2,p0(ΩT)\displaystyle\leq C\varepsilon\{\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|g_{2}\|_{L^{\infty}(\Omega_{T})}\cdot\|h\|_{L^{2,p_{0}}(\Omega_{T})}
Cε{2fL2,q0(ΩT)+tfL2,q0(ΩT)}gL(ΩT;𝑳𝟐)hL2,p0(ΩT).\displaystyle\leq C\varepsilon\{\|\nabla^{2}f\|_{L^{2,q_{0}}(\Omega_{T})}+\|\partial_{t}f\|_{L^{2,q_{0}}(\Omega_{T})}\}\cdot\|g\|_{L^{\infty}(\Omega_{T};\bm{L^{2}})}\cdot\|h\|_{L^{2,p_{0}}(\Omega_{T})}.

By combining the estimates of K1K_{1}-K3K_{3}, we obtain the desired result. ∎

3.2 Embeddings and boundary layers

In this subsection, we establish some embedding results for functions on ΩT\Omega_{T} and derive the estimates of boundary layers.

Lemma 3.8 ([23, 27]).

Suppose uL2(0,T;W˙1,p(Ω))u\in L^{2}(0,T;\dot{W}^{1,p}(\Omega)), 2dd+2pq0=2dd+1\frac{2d}{d+2}\leq p\leq q_{0}=\frac{2d}{d+1}. Then

uL2(Ωδ×(0,T))Cδ1+d2dpuL2(0,T;W˙1,p(Ω)),\displaystyle\|u\|_{L^{2}(\Omega_{\delta}\times(0,T))}\leq C\delta^{1+\frac{d}{2}-\frac{d}{p}}\|u\|_{L^{2}(0,T;\dot{W}^{1,p}(\Omega))},

where CC depends only on the Lipschitz character of Ω\Omega.

Lemma 3.9.

Let Ω\Omega be a bounded Lipschitz domain in d\mathbb{R}^{d}, d2d\geq 2. Suppose uL2(0,T;W˙1,p(Ω))\nabla u\in L^{2}(0,T;\dot{W}^{1,p}(\Omega)) and tuL2(0,T;Lp(Ω))\partial_{t}u\in L^{2}(0,T;L^{p}(\Omega)), where 2dd+2p<2\frac{2d}{d+2}\leq p<2, p>1p>1. Then

uLq(0,T;L2(Ω))C{uL2(0,T;W˙1,p(Ω))+tuL2(0,T;Lp(Ω))},\displaystyle\|\nabla u\|_{L^{q}(0,T;L^{2}(\Omega))}\leq C\{\|\nabla u\|_{L^{2}(0,T;\dot{W}^{1,p}(\Omega))}+\|\partial_{t}u\|_{L^{2}(0,T;L^{p}(\Omega))}\},

where 2q=dpd2\frac{2}{q}=\frac{d}{p}-\frac{d}{2} and CC depends only on d,pd,p and the Lipschitz character of Ω\Omega.

Proof.

By setting v=uv=\nabla u, it is sufficient to show

vLq(0,T;L2(Ω))C{vL2(0,T;W˙1,p(Ω))+tvL2(0,T;W˙1,p(Ω))}.\displaystyle\|v\|_{L^{q}(0,T;L^{2}(\Omega))}\leq C\{\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\Omega))}+\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\Omega))}\}.

Since Ω\partial\Omega is Lipschitz, there exists a linear extension operator PP, such that, PP is bounded from W˙1,p(Ω)\dot{W}^{1,p}(\Omega) into W˙1,p(d)\dot{W}^{1,p}(\mathbb{R}^{d}) with compact support and, at the same time, bounded from W˙1,p(Ω)\dot{W}^{-1,p}(\Omega) into W˙1,p(d)\dot{W}^{-1,p}(\mathbb{R}^{d}). Denoting P(v)P(v) still by vv, we have

vL2(0,T;W˙1,p(d))+tvL2(0,T;W˙1,p(d))C{vL2(0,T;W˙1,p(Ω))+tvL2(0,T;W˙1,p(Ω))}.\displaystyle\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}+\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}\leq C\{\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\Omega))}+\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\Omega))}\}.

Therefore, it is sufficient to prove the case where Ω=d\Omega=\mathbb{R}^{d}.

To do this, denote F=tvΔvL2(0,T;W˙1,p(d))F=\partial_{t}v-\Delta v\in L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d})) and write it into F=xjfjF=\partial_{x_{j}}f_{j}, where fjL2(0,T;Lp(d))f_{j}\in L^{2}(0,T;L^{p}(\mathbb{R}^{d})). Set

v1(t)=0te(ts)Δxjfj(s)ds,v_{1}(t)=\int_{0}^{t}e^{(t-s)\Delta}\partial_{x_{j}}f_{j}(s)ds,

which solves

tv1Δv1=F,v1(0)=0.\displaystyle\partial_{t}v_{1}-\Delta v_{1}=F,\quad v_{1}(0)=0.

By the calculation of heat kernel and the maximal regularity, we have

v1Lq(0,T;L2(d))+tv1L2(0,T;W˙1,p(d))+v1L2(0,T;W˙1,p(d))CFL2(0,T;W˙1,p(d)).\displaystyle\|v_{1}\|_{L^{q}(0,T;L^{2}(\mathbb{R}^{d}))}+\|\partial_{t}v_{1}\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}+\|v_{1}\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}\leq C\|F\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}.

For the remaining part v2=vv1v_{2}=v-v_{1}, it holds that tv2Δv2=0\partial_{t}v_{2}-\Delta v_{2}=0 and

tv2L2(0,T;W˙1,p(d))+v2L2(0,T;W˙1,p(d))C{tvL2(0,T;W˙1,p(d))+vL2(0,T;W˙1,p(d))}.\displaystyle\|\partial_{t}v_{2}\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}+\|v_{2}\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}\leq C\{\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}+\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}\}.

By the trace method of interpolation, we know

v2C([0,T];X)C{tvL2(0,T;W˙1,p(d))+vL2(0,T;W˙1,p(d))},\displaystyle\|v_{2}\|_{C([0,T];X)}\leq C\{\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}+\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}\},

where X=(W˙1,p(d),W˙1,p(d))12,2=B˙p,20(d)X=(\dot{W}^{1,p}(\mathbb{R}^{d}),\dot{W}^{-1,p}(\mathbb{R}^{d}))_{\frac{1}{2},2}=\dot{B}^{0}_{p,2}(\mathbb{R}^{d}) and B˙p,20(d)\dot{B}^{0}_{p,2}(\mathbb{R}^{d}) is the homogeneous Besov space. Denote wj=Δ˙jv2w_{j}=\dot{\Delta}_{j}v_{2}, where Δ˙j\dot{\Delta}_{j} is the standard homogeneous dyadic blocks of Littlewood-Paley decomposition. Then v2=jwjv_{2}=\sum_{j\in\mathbb{Z}}w_{j}, v2(0)B˙p,20=(wj(0)Lp)jl2\|v_{2}(0)\|_{\dot{B}^{0}_{p,2}}=\|(\|w_{j}(0)\|_{L^{p}})_{j\in\mathbb{Z}}\|_{l^{2}} and

twjΔwj=0,wj(0)Lp(d),\displaystyle\partial_{t}w_{j}-\Delta w_{j}=0,\quad w_{j}(0)\in L^{p}(\mathbb{R}^{d}),

which, by the calculation of heat kernel, gives that

wjLq(0,T;L2(d))Cwj(0)Lp(d).\displaystyle\|w_{j}\|_{L^{q}(0,T;L^{2}(\mathbb{R}^{d}))}\leq C\|w_{j}(0)\|_{L^{p}(\mathbb{R}^{d})}.

Noticing that q2q\geq 2, this implies that

v2Lq(0,T;L2)\displaystyle\|v_{2}\|_{L^{q}(0,T;L^{2})} =v2^Lq(0,T;L2)=jwj^Lq(0,T;L2)(j|wj^|2)1/2Lq(0,T;L2)\displaystyle=\|\hat{v_{2}}\|_{L^{q}(0,T;L^{2})}=\|\sum\nolimits_{j}\hat{w_{j}}\|_{L^{q}(0,T;L^{2})}\leq\|\Big{(}\sum\nolimits_{j}|\hat{w_{j}}|^{2}\Big{)}^{1/2}\|_{L^{q}(0,T;L^{2})}
(jwj^Lq(0,T;L2)2)1/2Cwj(0)Lpl2=Cv2(0)B˙p,20\displaystyle\leq\Big{(}\sum\nolimits_{j}\|\hat{w_{j}}\|_{L^{q}(0,T;L^{2})}^{2}\Big{)}^{1/2}\leq C\|\|w_{j}(0)\|_{L^{p}}\|_{l^{2}}=C\|v_{2}(0)\|_{\dot{B}^{0}_{p,2}}
C{tvL2(0,T;W˙1,p(d))+vL2(0,T;W˙1,p(d))},\displaystyle\leq C\{\|\partial_{t}v\|_{L^{2}(0,T;\dot{W}^{-1,p}(\mathbb{R}^{d}))}+\|v\|_{L^{2}(0,T;\dot{W}^{1,p}(\mathbb{R}^{d}))}\},

where we have used the fact that suppwj^suppwj^=\mathrm{supp}\hat{w_{j}}\cap\mathrm{supp}\hat{w_{j^{\prime}}}=\emptyset if |jj|2|j-j^{\prime}|\geq 2. Combining the estimates of v1v_{1} and v2v_{2}, we obtain the desired result for vv. ∎

By Hölder’s inequality, Lemma 3.9 implies immediately the following estimate for temporal boundary layers.

Corollary 3.2.

Under the assumptions of Lemma 3.9, we have for any s[0,Tδ2]s\in[0,T-\delta^{2}]

uL2(Ω×(s,s+δ2))Cδ1+d2dp{uL2(0,T;W˙1,p(Ω))+tuL2(0,T;Lp(Ω))},\displaystyle\|\nabla u\|_{L^{2}(\Omega\times(s,s+\delta^{2}))}\leq C\delta^{1+\frac{d}{2}-\frac{d}{p}}\{\|\nabla u\|_{L^{2}(0,T;\dot{W}^{1,p}(\Omega))}+\|\partial_{t}u\|_{L^{2}(0,T;L^{p}(\Omega))}\},

where CC depends only on d,pd,p and the Lipschitz character of Ω\Omega.

4 Convergence rates

This section is devoted to establishing the sharp convergence rate for problem (1.1). We always assume that ΩC1,1\partial\Omega\in C^{1,1} henceforward.

Suppose ηε:=η1,εη2,ε\eta_{\varepsilon}:=\eta_{1,\varepsilon}\cdot\eta_{2,\varepsilon}, where η1,ε\eta_{1,\varepsilon} and η2,ε\eta_{2,\varepsilon} are two smooth cut-off functions on (0,T)(0,T) and Ω\Omega, respectively, such that, 0η1,ε,η2,ε10\leq\eta_{1,\varepsilon},\eta_{2,\varepsilon}\leq 1 and

supp(η1,ε)(4ε2,T4ε2),η1,ε=1 in (5ε2,T5ε2),|(η1,ε)|C/ε2,η2,ε=0 on Ω4ε,η2,ε=1 on ΩΩ5ε,|η2,ε|C/ε.\displaystyle\begin{split}&\mathrm{supp}(\eta_{1,\varepsilon})\subset(4\varepsilon^{2},T-4\varepsilon^{2}),\quad\eta_{1,\varepsilon}=1\textrm{ in }(5\varepsilon^{2},T-5\varepsilon^{2}),\quad|(\eta_{1,\varepsilon})^{\prime}|\leq C/\varepsilon^{2},\\ &\eta_{2,\varepsilon}=0\textrm{ on }\Omega_{4\varepsilon},\quad\eta_{2,\varepsilon}=1\textrm{ on }\Omega\setminus\Omega_{5\varepsilon},\quad|\nabla\eta_{2,\varepsilon}|\leq C/\varepsilon.\end{split} (4.1)

Let uεu_{\varepsilon} and u0u_{0} be the solutions to problems (1.1) and (1.7) respectively. For the sake of simplicity, we extend u0u_{0} onto d×(0,T)\mathbb{R}^{d}\times(0,T), such that,

tu0L2(0,T;Lq0(d))+u0L2(0,T;W2,q0(d))Ctu0L2(0,T;Lq0(Ω))+u0L2(0,T;W2,q0(Ω)).\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\mathbb{R}^{d}))}+\|u_{0}\|_{L^{2}(0,T;W^{2,q_{0}}(\mathbb{R}^{d}))}\leq C\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}+\|u_{0}\|_{L^{2}(0,T;W^{2,q_{0}}(\Omega))}.

By equations (1.1) and (1.7), we calculate that

(t+ε)(uεu0)=div{(A^Aε)u0}\displaystyle\quad(\partial_{t}+\mathcal{L}_{\varepsilon})(u_{\varepsilon}-u_{0})=-\textrm{div}\{(\widehat{A}-A^{\varepsilon})\nabla u_{0}\}
=div{A^u0Aεu0Aε[Sε(yχ~Kε(u0))]ε}div{Aε[Sε(yχ~Kε(u0))]ε},\displaystyle=-\textrm{div}\{\widehat{A}\nabla u_{0}-A^{\varepsilon}\nabla u_{0}-A^{\varepsilon}[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}-\mathrm{div}\{A^{\varepsilon}[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\},

where Kε():=Sε()ηεK_{\varepsilon}(\cdot):=S_{\varepsilon}(\cdot)\eta_{\varepsilon} with SεS_{\varepsilon} defined in Section 3.1 and notation (3.3) was used in χ~\widetilde{\chi}. Note that we have regarded χ\chi as functions on d+1×d+1\mathbb{R}^{d+1}\times\mathbb{R}^{d+1} having value 0 outside of ΩT\Omega_{T}, due to the cut-off effect of KεK_{\varepsilon} (see (4.1)). Recalling that y\nabla_{y} is commutative with the smoothing operator SεS_{\varepsilon}, we deduce from (1.10) that

div{Aε[Sε(yχ~Kε(u0))]ε}\displaystyle-\mathrm{div}\{A^{\varepsilon}[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\} =div{Aε[ySε(χ~Kε(u0))]ε}\displaystyle=-\mathrm{div}\{A^{\varepsilon}[\nabla_{y}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}
=ε(ε[Sε(χ~Kε(u0))]ε)+div{Aεε[xSε(χ~Kε(u0))]ε}.\displaystyle=\mathcal{L}_{\varepsilon}(\varepsilon[S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon})+\mathrm{div}\{A^{\varepsilon}\varepsilon[\nabla_{x}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}.

Thus, by setting 𝐁ε=(𝐁ε,iα)\mathbf{B}_{\varepsilon}=(\mathbf{B}_{\varepsilon,i}^{\alpha}), 1id,1αm1\leq i\leq d,1\leq\alpha\leq m, where

𝐁ε,iα(x,t;y,τ):=Aijαβju0β+AikαγSε(ykχ~jγβKε(ju0β))A^ijαβju0β,\displaystyle\mathbf{B}^{\alpha}_{\varepsilon,i}(x,t;y,\tau):=A^{\alpha\beta}_{ij}\partial_{j}u^{\beta}_{0}+A^{\alpha\gamma}_{ik}S_{\varepsilon}(\partial_{y_{k}}\widetilde{\chi}^{\gamma\beta}_{j}K_{\varepsilon}(\partial_{j}u^{\beta}_{0}))-\widehat{A}^{\alpha\beta}_{ij}\partial_{j}u^{\beta}_{0},

it follows that

(t+ε)(uεu0ε[Sε(χ~Kε(u0))]ε)=div{(𝐁ε)ε}+div{Aεε[xSε(χ~Kε(u0))]ε}εt([Sε(χ~Kε(u0))]ε)=i{(𝐁ε,i)ε[Sε(B~ijKε(ju0))]ε}+i{[Sε(B~ijKε(ju0))]ε}+div{Aεε[xSε(χ~Kε(u0))]ε}εt([Sε(χ~Kε(u0))]ε),\displaystyle\begin{split}&\quad(\partial_{t}+\mathcal{L}_{\varepsilon})(u_{\varepsilon}-u_{0}-\varepsilon[S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon})\\ &=\mathrm{div}\{(\mathbf{B}_{\varepsilon})^{\varepsilon}\}+\mathrm{div}\{A^{\varepsilon}\varepsilon[\nabla_{x}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}-\varepsilon\partial_{t}([S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon})\\ &=\partial_{i}\{(\mathbf{B}_{\varepsilon,i})^{\varepsilon}-[S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}+\partial_{i}\{[S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &\quad+\mathrm{div}\{A^{\varepsilon}\varepsilon[\nabla_{x}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}-\varepsilon\partial_{t}([S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}),\end{split} (4.2)

where (Bijαβ)(B_{ij}^{\alpha\beta}) is defined by (2.8). We emphasize that

𝐁ε,iSε(B~ijKε(ju0))=Aijju0Sε(A~ijKε(ju0))+AikSε(ykχ~jKε(ju0))Sε[Sε(Aikykχj)Kε(ju0)]A^ijju0+Sε(Sε(A^ij)Kε(ju0)),\displaystyle\begin{split}&\mathbf{B}_{\varepsilon,i}-S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))=A_{ij}\partial_{j}u_{0}-S_{\varepsilon}(\widetilde{A}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))+A_{ik}S_{\varepsilon}(\partial_{y_{k}}\widetilde{\chi}_{j}K_{\varepsilon}(\partial_{j}u_{0}))\\ &\qquad-S_{\varepsilon}[S_{\varepsilon}(A_{ik}\partial_{y_{k}}\chi_{j})K_{\varepsilon}(\partial_{j}u_{0})]-\widehat{A}_{ij}\partial_{j}u_{0}+S_{\varepsilon}(S_{\varepsilon}(\widehat{A}_{ij})K_{\varepsilon}(\partial_{j}u_{0})),\end{split} (4.3)

where the main difference between 𝐁ε\mathbf{B}_{\varepsilon} and Sε(B~Kε(u0))S_{\varepsilon}(\widetilde{B}K_{\varepsilon}(\nabla u_{0})) focuses on the smoothing acts of SεS_{\varepsilon}.

Noticing that χj=B(d+1)j\chi_{j}=-B_{(d+1)j}, by Lemma 2.2, we write

i{[Sε(B~ijKε(ju0))]ε}εt([Sε(χ~Kε(u0))]ε)\displaystyle\quad\partial_{i}\{[S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}-\varepsilon\partial_{t}([S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon})
=i{[Sε([yk𝔅~kij+τ𝔅~(d+1)ij]Kε(ju0))]ε}+t{ε[Sε(yk𝔅~k(d+1)jKε(ju0))]ε}\displaystyle=\partial_{i}\{[S_{\varepsilon}([\partial_{y_{k}}\widetilde{\mathfrak{B}}_{kij}+\partial_{\tau}\widetilde{\mathfrak{B}}_{(d+1)ij}]K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}+\partial_{t}\{\varepsilon[S_{\varepsilon}(\partial_{y_{k}}\widetilde{\mathfrak{B}}_{k(d+1)j}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}
=i{[ykSε(𝔅~kijKε(ju0))]ε}+i{[τSε(𝔅~(d+1)ijKε(ju0))]ε}\displaystyle=\partial_{i}\{[\partial_{y_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}+\partial_{i}\{[\partial_{\tau}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}
+t{ε[ykSε(𝔅~k(d+1)jKε(ju0))]ε},\displaystyle\quad+\partial_{t}\{\varepsilon[\partial_{y_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{k(d+1)j}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\},

where we have also used the fact that 𝔅(d+1)(d+1)j=0\mathfrak{B}_{(d+1)(d+1)j}=0 in the first equality, as well as the commutativity between SεS_{\varepsilon} and the partial derivatives w.r.t. (y,τ)(y,\tau) in the second one. In view of (1.10), together with the skew-symmetry of 𝔅\mathfrak{B} in Lemma 2.2, this yields that

i{[Sε(B~ijKε(ju0))]ε}εt([Sε(χ~Kε(u0))]ε)=i{εk([Sε(𝔅~kijKε(ju0))]ε)ε[xkSε(𝔅~kijKε(ju0))]ε}+i{ε2t([Sε(𝔅~(d+1)ijKε(ju0))]ε)ε2[tSε(𝔅~(d+1)ijKε(ju0))]ε}+t{ε2k([Sε(𝔅~k(d+1)jKε(ju0))]ε)ε2[xkSε(𝔅~k(d+1)jKε(ju0))]ε}=εi{[xkSε(𝔅~kijKε(ju0))]ε}ε2i{[tSε(𝔅~(d+1)ijKε(ju0))]ε}ε2t{[xkSε(𝔅~k(d+1)jKε(ju0))]ε}.\displaystyle\begin{split}&\quad\partial_{i}\{[S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}-\varepsilon\partial_{t}([S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon})\\ &=\partial_{i}\{\varepsilon\partial_{k}([S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon})-\varepsilon[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &\quad+\partial_{i}\{\varepsilon^{2}\partial_{t}([S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon})-\varepsilon^{2}[\partial_{t}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &\quad+\partial_{t}\{\varepsilon^{2}\partial_{k}([S_{\varepsilon}(\widetilde{\mathfrak{B}}_{k(d+1)j}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon})-\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{k(d+1)j}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &=-\varepsilon\partial_{i}\{[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}-\varepsilon^{2}\partial_{i}\{[\partial_{t}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &\quad-\varepsilon^{2}\partial_{t}\{[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{k(d+1)j}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}.\end{split} (4.4)

Therefore, by defining

wε:=uεu0ε[Sε(χ~Kε(u0))]εε2[xkSε(𝔅~(d+1)kjKε(ju0))]ε,\displaystyle w_{\varepsilon}:=u_{\varepsilon}-u_{0}-\varepsilon[S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}-\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}, (4.5)

and combining (4.2) and (4.4), we finally get

(t+ε)wε=i{(𝐁ε,i)ε[Sε(B~ijKε(ju0))]ε}+div{Aεε[xSε(χ~Kε(u0))]ε}+div{Aε(ε2[xkSε(𝔅~(d+1)kjKε(ju0))]ε)}εi{[xkSε(𝔅~kijKε(ju0))]ε}ε2i{[tSε(𝔅~(d+1)ijKε(ju0))]ε}.\displaystyle\begin{split}&(\partial_{t}+\mathcal{L}_{\varepsilon})w_{\varepsilon}=\partial_{i}\{(\mathbf{B}_{\varepsilon,i})^{\varepsilon}-[S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}+\mathrm{div}\{A^{\varepsilon}\varepsilon[\nabla_{x}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\}\\ &\qquad+\mathrm{div}\{A^{\varepsilon}\nabla(\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon})\}-\varepsilon\partial_{i}\{[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}\\ &\qquad\qquad-\varepsilon^{2}\partial_{i}\{[\partial_{t}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\}.\end{split} (4.6)
Lemma 4.1.

Let Ω\Omega be a bounded Lipschitz domain in d\mathbb{R}^{d} and 0<εT0<\varepsilon\leq\sqrt{T}. Assume that AA satisfies (1.4)–(1.5). Let wεw_{\varepsilon} be defined by (4.5) with Kε()=Sε()ηεK_{\varepsilon}(\cdot)=S_{\varepsilon}(\cdot)\eta_{\varepsilon}. Then for any ψL2(0,T;C01(Ω))\psi\in L^{2}(0,T;C_{0}^{1}(\Omega)) and 1p2q1\leq p\leq 2\leq q\leq\infty,

|0Ttwε,ψH1(Ω)×H01(Ω)+ΩTAεwεψ|Cu0Sε(u0)L2,p(ΩTΩT4,ε)ψL2,p(ΩT)\displaystyle\Big{|}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},\psi\rangle_{H^{-1}(\Omega)\times H^{1}_{0}(\Omega)}+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla\psi\Big{|}\leq C\|\nabla u_{0}-S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cu0L2(ΩT6,ε)ψL2(ΩT6,ε)+Cε{Sε(u0)L2,p(ΩTΩT4,ε)+Sε(2u0)L2,p(ΩTΩT4,ε)\displaystyle+C\|\nabla u_{0}\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}\|\nabla\psi\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}+C\varepsilon\big{\{}\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+\|S_{\varepsilon}(\nabla^{2}u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}
+(φ2)εtu0L2,p(ΩTΩT4,ε)}ψL2,p(ΩT)+CεSε(u0)L2qq2,2(ΩTΩT4,ε)ψLq,2(ΩT),\displaystyle+\|(\nabla\varphi_{2})_{\varepsilon}*\partial_{t}u_{0}\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\big{\}}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+C\varepsilon\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}, (4.7)

where (φ2)ε(x)=εdφ2(xε)(\nabla\varphi_{2})_{\varepsilon}(x)=\varepsilon^{-d}\nabla\varphi_{2}(\frac{x}{\varepsilon}) and CC depends only on dd, μ\mu, qq, [A](ΩT;𝐋)[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}.

Proof.

According to (4.6), we have

|0Ttwε,ψH1(Ω)×H01(Ω)+ΩTAεwεψ|\displaystyle\quad\Big{|}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},\psi\rangle_{H^{-1}(\Omega)\times H^{1}_{0}(\Omega)}+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla\psi\Big{|}
|ΩT[𝐁ε,iSε(B~ijKε(ju0))]εiψ|+CεΩT|[xSε(χ~Kε(u0))]ε||ψ|\displaystyle\leq\Big{|}\iint_{\Omega_{T}}[\mathbf{B}_{\varepsilon,i}-S_{\varepsilon}(\widetilde{B}_{ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\partial_{i}\psi\Big{|}+C\varepsilon\iint_{\Omega_{T}}|[\nabla_{x}S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|
+εΩT|[xkSε(𝔅~kijKε(ju0))]εiψ|+Cε2ΩT|([xkSε(𝔅~(d+1)kjKε(ju0))]ε)||ψ|\displaystyle\quad+\varepsilon\iint_{\Omega_{T}}|[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{kij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\partial_{i}\psi|+C\varepsilon^{2}\iint_{\Omega_{T}}|\nabla([\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon})||\nabla\psi|
+ε2ΩT|[tSε(𝔅~(d+1)ijKε(ju0))]εiψ|I1+I2+I3+I4+I5,\displaystyle\quad+\varepsilon^{2}\iint_{\Omega_{T}}|[\partial_{t}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)ij}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\partial_{i}\psi|\doteq I_{1}+I_{2}+I_{3}+I_{4}+I_{5}, (4.8)

where CC depends only on μ\mu.

Firstly, by (4.3), we have

𝐁εSε(B~Kε(u0))=(AA^)u0Sε(Sε(AA^)Kε(u0))+ASε(yχ~Kε(u0))\displaystyle\quad\mathbf{B}_{\varepsilon}-S_{\varepsilon}(\widetilde{B}K_{\varepsilon}(\nabla u_{0}))=(A-\widehat{A})\nabla u_{0}-S_{\varepsilon}(S_{\varepsilon}(A-\widehat{A})K_{\varepsilon}(\nabla u_{0}))+AS_{\varepsilon}(\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0}))
Sε[Sε(Ayχ)Kε(u0)]\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-S_{\varepsilon}[S_{\varepsilon}(A\nabla_{y}\chi)\cdot K_{\varepsilon}(\nabla u_{0})]
=(AA^)[u0Sε(Kε(u0))]+(AA^)Sε(Kε(u0))Sε[Sε(AA^)Kε(u0)]\displaystyle=(A-\widehat{A})[\nabla u_{0}-S_{\varepsilon}(K_{\varepsilon}(\nabla u_{0}))]+(A-\widehat{A})S_{\varepsilon}(K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}[S_{\varepsilon}(A-\widehat{A})K_{\varepsilon}(\nabla u_{0})]
+ASε(yχ~Kε(u0))Sε[Sε(Ayχ)Kε(u0)],\displaystyle\qquad+AS_{\varepsilon}(\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}[S_{\varepsilon}(A\nabla_{y}\chi)\cdot K_{\varepsilon}(\nabla u_{0})],

which, by the definition of KεK_{\varepsilon}, yields that

I1\displaystyle I_{1} CΩT|u0Sε(Sε(u0)ηε)||ψ|\displaystyle\leq C\iint_{\Omega_{T}}|\nabla u_{0}-S_{\varepsilon}(S_{\varepsilon}(\nabla u_{0})\eta_{\varepsilon})||\nabla\psi|
+ΩT|(AA^)Sε(Kε(u0))Sε(Sε(AA^)Kε(u0))||ψ|\displaystyle\quad+\iint_{\Omega_{T}}|(A-\widehat{A})S_{\varepsilon}(K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}(S_{\varepsilon}(A-\widehat{A})K_{\varepsilon}(\nabla u_{0}))||\nabla\psi|
+ΩT|[ASε(yχ~Kε(u0))Sε(Sε(Ayχ)Kε(u0))]ε||ψ|\displaystyle\quad+\iint_{\Omega_{T}}|[AS_{\varepsilon}(\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}(S_{\varepsilon}(A\nabla_{y}\chi)\cdot K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|
I11+I12+I13.\displaystyle\doteq I_{11}+I_{12}+I_{13}.

It is not hard to see that I11I_{11} can be bounded by

Cu0Sε(u0)L2,p(ΩTΩT4,ε)ψL2,p(ΩT)+Cu0L2(ΩT6,ε)ψL2(ΩT6,ε).\displaystyle C\|\nabla u_{0}-S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+C\|\nabla u_{0}\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}\|\nabla\psi\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}.

Then we turn to I13I_{13}, as I12I_{12} can be handled in the same manner and has the same estimate. Precisely, I13I_{13} can be dominated by

ΩT|[ASε(yχ~Kε(u0))Sε(Ayχ~Kε(u0))]ε||ψ|\displaystyle\iint_{\Omega_{T}}|[AS_{\varepsilon}(\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}(A\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|
+ΩT|{Sε([Ayχ~Sε(Ayχ)]Kε(u0))}ε||ψ|,\displaystyle\quad+\iint_{\Omega_{T}}|\{S_{\varepsilon}([A\nabla_{y}\widetilde{\chi}-S_{\varepsilon}(A\nabla_{y}\chi)]\cdot K_{\varepsilon}(\nabla u_{0}))\}^{\varepsilon}||\nabla\psi|,

which, by applying estimates (3.13) and (3.14) to these two terms respectively, yields that

I13\displaystyle I_{13} Cε{yχ~Kε(u0)L2,p(ΩT;𝑳𝒒¯)+Kε(u0)L2,p(ΩT)}ψL2,p(ΩT)\displaystyle\leq C\varepsilon\{\|\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T};\bm{L^{\bar{q}}})}+\|K_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T})}\}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cε{yχ~Kε(u0)L2qq2,2(ΩT;𝑳𝒒¯)+Kε(u0)L2qq2,2(ΩT)}ψLq,2(ΩT)\displaystyle\qquad+C\varepsilon\{\|\nabla_{y}\widetilde{\chi}\cdot K_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T};\bm{L^{\bar{q}}})}+\|K_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T})}\}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}
Cε{Sε(u0)L2,p(ΩTΩT4,ε)ψL2,p(ΩT)+Sε(u0)L2qq2,2(ΩTΩT4,ε)ψLq,2(ΩT)},\displaystyle\leq C\varepsilon\{\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}\},

where Lemma 2.1 was also used and CC depends only on dd, μ\mu, qq, [A](ΩT;𝑳)[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}. Therefore, I1I_{1} can be bounded by

Cu0Sε(u0)L2,p(ΩTΩT4,ε)ψL2,p(ΩT)+Cu0L2(ΩT6,ε)ψL2(ΩT6,ε)\displaystyle\quad C\|\nabla u_{0}-S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+C\|\nabla u_{0}\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}\|\nabla\psi\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}
+Cε{Sε(u0)L2,p(ΩTΩT4,ε)ψL2,p(ΩT)+Sε(u0)L2qq2,2(ΩTΩT4,ε)ψLq,2(ΩT)}.\displaystyle+C\varepsilon\{\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}+\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}\}.

For I2I_{2}, by the definitions of Sε,KεS_{\varepsilon},K_{\varepsilon}, and Lemmas 2.1, 3.2, we have

I2\displaystyle I_{2} CεΩT|{Sε[xχ~Sε(u0)ηε+χ~Sε(2u0)ηε+χ~Sε(u0)ηε]}ε||ψ|\displaystyle\leq C\varepsilon\iint_{\Omega_{T}}|\{S_{\varepsilon}[\nabla_{x}\widetilde{\chi}S_{\varepsilon}(\nabla u_{0})\eta_{\varepsilon}+\widetilde{\chi}S_{\varepsilon}(\nabla^{2}u_{0})\eta_{\varepsilon}+\widetilde{\chi}S_{\varepsilon}(\nabla u_{0})\nabla\eta_{\varepsilon}]\}^{\varepsilon}||\nabla\psi|
Cε{xχ~Sε(u0)ηεL2,p(ΩT;𝑳𝟐,𝒑)+χ~Sε(2u0)ηεL2,p(ΩT;𝑳𝟐,𝒑)}ψL2,p(ΩT)\displaystyle\leq C\varepsilon\{\|\nabla_{x}\widetilde{\chi}S_{\varepsilon}(\nabla u_{0})\eta_{\varepsilon}\|_{L^{2,p}(\Omega_{T};\bm{L^{2,p}})}+\|\widetilde{\chi}S_{\varepsilon}(\nabla^{2}u_{0})\eta_{\varepsilon}\|_{L^{2,p}(\Omega_{T};\bm{L^{2,p}})}\}\cdot\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cu0L2(Ω6ε×(0,T))ψL2(Ω6ε×(0,T))\displaystyle\quad+C\|\nabla u_{0}\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}\|\nabla\psi\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}
Cε{Sε(u0)L2,p(ΩTΩT4,ε)+Sε(2u0)L2,p(ΩTΩT4,ε)}ψL2,p(ΩT)\displaystyle\leq C\varepsilon\{\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+\|S_{\varepsilon}(\nabla^{2}u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\}\cdot\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cu0L2(Ω6ε×(0,T))ψL2(Ω6ε×(0,T)),\displaystyle\quad+C\|\nabla u_{0}\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}\|\nabla\psi\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))},

where we have used the fact that Sε[χ~Sε(u0)ηε]=Sε[χ~Sε(u0)ηε]𝟏Ω6εS_{\varepsilon}[\widetilde{\chi}S_{\varepsilon}(\nabla u_{0})\nabla\eta_{\varepsilon}]=S_{\varepsilon}[\widetilde{\chi}S_{\varepsilon}(\nabla u_{0})\nabla\eta_{\varepsilon}]\mathbf{1}_{\Omega_{6\varepsilon}}, and CC depends only on dd, μ\mu, [A](ΩT;𝑳)[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}. Similarly, I3I_{3} has the same bound as I2I_{2}.

To handle I4I_{4}, we write

I4\displaystyle I_{4} Cε2ΩT{|[xxkSε(𝔅~(d+1)kjKε(ju0))]ε|+ε1|[yxkSε(𝔅~(d+1)kjKε(ju0))]ε|}|ψ|\displaystyle\leq C\varepsilon^{2}\iint_{\Omega_{T}}\{|[\nabla_{x}\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}|+\varepsilon^{-1}|[\nabla_{y}\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}|\}|\nabla\psi|
Cε2ΩT|[x2Sε(𝔅~d+1Kε(u0))]ε||ψ|+CεΩT|[xSε(y𝔅~d+1Kε(u0))]ε||ψ|,\displaystyle\leq C\varepsilon^{2}\iint_{\Omega_{T}}|[\nabla_{x}^{2}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|+C\varepsilon\iint_{\Omega_{T}}|[\nabla_{x}S_{\varepsilon}(\nabla_{y}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|,

where we have used (1.10) and the notation 𝔅d+1=(𝔅(d+1)kj)\mathfrak{B}_{d+1}=(\mathfrak{B}_{(d+1)kj}). By using the arguments of I2I_{2} together with Lemma 2.2 and Remark 3.1, it follows that

I4\displaystyle I_{4} CεΩT|{(φ2)εSεt(x[𝔅~d+1Kε(u0)])}ε||ψ|+|{Sε(x[y𝔅~d+1Kε(u0)])}ε||ψ|\displaystyle\leq C\varepsilon\iint_{\Omega_{T}}|\{(\nabla\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(\nabla_{x}[\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0})])\}^{\varepsilon}||\nabla\psi|+|\{S_{\varepsilon}(\nabla_{x}[\nabla_{y}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0})])\}^{\varepsilon}||\nabla\psi|
Cε{Sε(u0)L2,p(ΩTΩT4,ε)+Sε(2u0)L2,p(ΩTΩT4,ε)}ψL2,p(ΩT)\displaystyle\leq C\varepsilon\{\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,p^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+\|S_{\varepsilon}(\nabla^{2}u_{0})\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\}\cdot\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cu0L2(Ω6ε×(0,T))ψL2(Ω6ε×(0,T)).\displaystyle\quad+C\|\nabla u_{0}\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}\|\nabla\psi\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}.

For the last term, we have

I5\displaystyle I_{5} ε2ΩT|[Sε(t𝔅~d+1Kε(u0))+Sε(𝔅~d+1tKε(u0))]ε||ψ|\displaystyle\leq\varepsilon^{2}\iint_{\Omega_{T}}|[S_{\varepsilon}(\partial_{t}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0}))+S_{\varepsilon}(\widetilde{\mathfrak{B}}_{d+1}\partial_{t}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|
ε2ΩT|[Sε(t𝔅~d+1Kε(u0))]ε||ψ|+ε2ΩT|[Sε(𝔅~d+1Sε(tu0)ηε)]ε||ψ|\displaystyle\leq\varepsilon^{2}\iint_{\Omega_{T}}|[S_{\varepsilon}(\partial_{t}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||\nabla\psi|+\varepsilon^{2}\iint_{\Omega_{T}}|[S_{\varepsilon}(\widetilde{\mathfrak{B}}_{d+1}\nabla S_{\varepsilon}(\partial_{t}u_{0})\eta_{\varepsilon})]^{\varepsilon}||\nabla\psi|
+ε2ΩT|[Sε(𝔅~d+1Sε(u0)tηε)]ε||ψ|I51+I52+I53,\displaystyle\quad+\varepsilon^{2}\iint_{\Omega_{T}}|[S_{\varepsilon}(\widetilde{\mathfrak{B}}_{d+1}S_{\varepsilon}(\nabla u_{0})\partial_{t}\eta_{\varepsilon})]^{\varepsilon}||\nabla\psi|\doteq I_{51}+I_{52}+I_{53},

where we have used the fact

tKε(u0)=Sε(tu0)ηε+Sε(u0)tηε=Sε(tu0)ηε+Sε(u0)tηε.\displaystyle\partial_{t}K_{\varepsilon}(\nabla u_{0})=S_{\varepsilon}(\nabla\partial_{t}u_{0})\eta_{\varepsilon}+S_{\varepsilon}(\nabla u_{0})\partial_{t}\eta_{\varepsilon}=\nabla S_{\varepsilon}(\partial_{t}u_{0})\eta_{\varepsilon}+S_{\varepsilon}(\nabla u_{0})\partial_{t}\eta_{\varepsilon}.

To bound I51I_{51}, we apply Lemmas 2.2, 3.2 and 3.5 to obtain

I51Cε2t𝔅~d+1Kε(u0)Lq,2(ΩT;𝑳𝟐)ψLq,2(ΩT)CεSε(u0)L2qq2,2(ΩTΩT4,ε)ψLq,2(ΩT),\displaystyle I_{51}\leq C\varepsilon^{2}\|\partial_{t}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0})\|_{L^{q^{\prime},2}(\Omega_{T};\bm{L^{2}})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}\leq C\varepsilon\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})},

where CC depends only on dd, μ\mu, [A](ΩT;𝑳)[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})}. Moreover, it follows from Lemmas 2.2 and 3.2 that

I52\displaystyle I_{52} Cε2𝔅~d+1Sε(tu0)ηεL2,p(ΩT;𝑳𝟐,𝒑)ψL2,p(ΩT)\displaystyle\leq C\varepsilon^{2}\|\widetilde{\mathfrak{B}}_{d+1}\nabla S_{\varepsilon}(\partial_{t}u_{0})\eta_{\varepsilon}\|_{L^{2,p}(\Omega_{T};\bm{L^{2,p}})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
Cε(φ2)εtu0L2,p(ΩTΩT4,ε)ψL2,p(ΩT),\displaystyle\leq C\varepsilon\|(\nabla\varphi_{2})_{\varepsilon}*\partial_{t}u_{0}\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})},

where (φ2)ε(x)=εdφ2(xε)(\nabla\varphi_{2})_{\varepsilon}(x)=\varepsilon^{-d}\nabla\varphi_{2}(\frac{x}{\varepsilon}) and CC depends only on dd, μ\mu. On the other hand,

I53\displaystyle I_{53} =ε2ΩT|[Sε(𝔅~d+1Sε(u0)tηε𝟏(0,5ε2)(T5ε2,T))]ε||ψ|\displaystyle=\varepsilon^{2}\iint_{\Omega_{T}}|[S_{\varepsilon}(\widetilde{\mathfrak{B}}_{d+1}S_{\varepsilon}(\nabla u_{0})\partial_{t}\eta_{\varepsilon}\cdot\mathbf{1}_{(0,5\varepsilon^{2})\cup(T-5\varepsilon^{2},T)})]^{\varepsilon}||\nabla\psi|
Cu0L2(Ω×[(0,6ε2)(T6ε2,T)])ψL2(Ω×[(0,6ε2)(T6ε2,T)]),\displaystyle\leq C\|\nabla u_{0}\|_{L^{2}(\Omega\times[(0,6\varepsilon^{2})\cup(T-6\varepsilon^{2},T)])}\|\nabla\psi\|_{L^{2}(\Omega\times[(0,6\varepsilon^{2})\cup(T-6\varepsilon^{2},T)])},

where we have applied Lemma 3.2 in the second step. As a result, I5I_{5} can be bounded by

CεSε(u0)L2qq2,2(ΩTΩT4,ε)ψLq,2(ΩT)+Cε(φ2)εtu0L2,p(ΩTΩT4,ε)ψL2,p(ΩT)\displaystyle C\varepsilon\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\frac{2q}{q-2},2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{q,2}(\Omega_{T})}+C\varepsilon\|(\nabla\varphi_{2})_{\varepsilon}*\partial_{t}u_{0}\|_{L^{2,p}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\|\nabla\psi\|_{L^{2,p^{\prime}}(\Omega_{T})}
+Cu0L2(Ω×[(0,6ε2)(T6ε2,T)])ψL2(Ω×[(0,6ε2)(T6ε2,T)]).\displaystyle+C\|\nabla u_{0}\|_{L^{2}(\Omega\times[(0,6\varepsilon^{2})\cup(T-6\varepsilon^{2},T)])}\|\nabla\psi\|_{L^{2}(\Omega\times[(0,6\varepsilon^{2})\cup(T-6\varepsilon^{2},T)])}.

By combining (4.8) and the estimates of I1I_{1}I5I_{5}, we conclude the desired estimate. ∎

Theorem 4.1.

Suppose the assumptions of Lemma 4.1 hold. Then for 2dd+2qq0=2dd+1\frac{2d}{d+2}\leq q\leq q_{0}=\frac{2d}{d+1},

wεL2(0,T;H1(Ω))Cε1+d2dq{u0L2(0,T;W˙1,q(Ω))+tu0L2(0,T;Lq(Ω))},\|w_{\varepsilon}\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C\varepsilon^{1+\frac{d}{2}-\frac{d}{q}}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q}(\Omega))}\},

where CC depends only on d,μ,q,[A](ΩT;𝐋)d,\mu,q,[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})} and the Lipschitz character of Ω\Omega. In particular,

wεL2(0,T;H1(Ω))Cε1/2{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}.\|w_{\varepsilon}\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C\varepsilon^{1/2}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}.
Proof.

Note that wε(t)H01(Ω)w_{\varepsilon}(t)\in H^{1}_{0}(\Omega) for all t[0,T]t\in[0,T] and wε(0)=0w_{\varepsilon}(0)=0. By setting p=q=2p=q=2 and ψ=wε\psi=w_{\varepsilon} in (4.7), we have

wεL2(0,T;H1(Ω))Cu0Sε(u0)L2(ΩTΩT4,ε)+Cu0L2(ΩT6,ε)+CεSε(u0)L2,2(ΩTΩT4,ε)+CεSε(2u0)L2(ΩTΩT4,ε)+Cε(φ2)εtu0L2(ΩTΩT4,ε)+CεSε(u0)L,2(ΩTΩT4,ε)J1+J2+J3+J4+J5+J6.\displaystyle\begin{split}&\|w_{\varepsilon}\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C\|\nabla u_{0}-S_{\varepsilon}(\nabla u_{0})\|_{L^{2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+C\|\nabla u_{0}\|_{L^{2}(\Omega_{T}^{6,\varepsilon})}+C\varepsilon\|S_{\varepsilon}(\nabla u_{0})\|_{L^{2,2^{*}}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\\ &+C\varepsilon\|S_{\varepsilon}(\nabla^{2}u_{0})\|_{L^{2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+C\varepsilon\|(\nabla\varphi_{2})_{\varepsilon}*\partial_{t}u_{0}\|_{L^{2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}+C\varepsilon\|S_{\varepsilon}(\nabla u_{0})\|_{L^{\infty,2}(\Omega_{T}\setminus\Omega_{T}^{4,\varepsilon})}\\ &\doteq J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}.\end{split}

By Lemma 3.6, it is not hard to see that

J1+J3+J4+J5Cε1+d2dq{u0L2(0,T;W˙1,q(Ω))+tu0L2(0,T;Lq(Ω))}.\displaystyle J_{1}+J_{3}+J_{4}+J_{5}\leq C\varepsilon^{1+\frac{d}{2}-\frac{d}{q}}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q}(\Omega))}\}.

Similarly, it follows from Lemmas 3.6 and 3.9 that for 2r=dqd2\frac{2}{r}=\frac{d}{q}-\frac{d}{2}

J6Cε12ru0Lr(0,T;L2(Ω))Cε1+d2dq{u0L2(0,T;W˙1,q(Ω))+tu0L2(0,T;Lq(Ω))}.\displaystyle J_{6}\leq C\varepsilon^{1-\frac{2}{r}}\|\nabla u_{0}\|_{L^{r}(0,T;L^{2}(\Omega))}\leq C\varepsilon^{1+\frac{d}{2}-\frac{d}{q}}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q}(\Omega))}\}.

On the other hand, thanks to Lemma 3.8 and Corollary 3.2, we have

J2C{u0L2(Ω6ε×(0,T))+u0L2(Ω×[(0,6ε2)(T6ε2,T)])}Cε1+d2dq{u0L2(0,T;W˙1,q(Ω))+tu0L2(0,T;Lq(Ω))}.\displaystyle\begin{split}J_{2}&\leq C\{\|\nabla u_{0}\|_{L^{2}(\Omega_{6\varepsilon}\times(0,T))}+\|\nabla u_{0}\|_{L^{2}(\Omega\times[(0,6\varepsilon^{2})\cup(T-6\varepsilon^{2},T)])}\}\\ &\leq C\varepsilon^{1+\frac{d}{2}-\frac{d}{q}}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q}(\Omega))}\}.\end{split} (4.9)

This completes the proof. ∎

Corollary 4.1.

Suppose the assumptions of Lemma 4.1 hold. Then for any ψL2(0,T;C01(Ω))\psi\in L^{2}(0,T;C_{0}^{1}(\Omega)),

|0Ttwε,ψH1(Ω)×H01(Ω)+ΩTAεwεψ|Cε1/2{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}ψL2(ΩT).\displaystyle\begin{split}&\quad\Big{|}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},\psi\rangle_{H^{-1}(\Omega)\times H^{1}_{0}(\Omega)}+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla\psi\Big{|}\\ &\leq C\varepsilon^{1/2}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|\nabla\psi\|_{L^{2}(\Omega_{T})}.\end{split}

Now we prove the optimal O(ε)O(\varepsilon)-convergence rate in L2(0,T;Lp0(Ω))L^{2}(0,T;L^{p_{0}}(\Omega)) stated in Theorem 1.1. We first introduce the dual problem. For FC0(ΩT)F\in C_{0}^{\infty}(\Omega_{T}), let vεv_{\varepsilon} (ε0\varepsilon\geq 0) be the weak solution to the following problem

{tvε+εvε=FinΩ×(0,T),vε=0onΩ×(0,T),vε=0onΩ×{t=T},\begin{cases}-\partial_{t}v_{\varepsilon}+\mathcal{L}^{*}_{\varepsilon}v_{\varepsilon}=F&\mathrm{in}~{}\Omega\times(0,T),\\ v_{\varepsilon}=0&\mathrm{on}~{}\partial\Omega\times(0,T),\\ v_{\varepsilon}=0&\mathrm{on}~{}\Omega\times\{t=T\},\end{cases} (4.10)

where ε\mathcal{L}_{\varepsilon}^{*} is the adjoint operator of ε\mathcal{L}_{\varepsilon} (ε0\varepsilon\geq 0). By setting v^ε(s)=vε(s)\widehat{v}_{\varepsilon}(s)=v_{\varepsilon}(-s), one can see that v^ε\widehat{v}_{\varepsilon} solves

{sv^ε+^εv^ε=F^inΩ×(T,0),v^ε=0onΩ×(T,0),v^ε=0onΩ×{s=T},\begin{cases}\partial_{s}\widehat{v}_{\varepsilon}+\widehat{\mathcal{L}}^{*}_{\varepsilon}\widehat{v}_{\varepsilon}=\widehat{F}&\mathrm{in}~{}\Omega\times(-T,0),\\ \widehat{v}_{\varepsilon}=0&\mathrm{on}~{}\partial\Omega\times(-T,0),\\ \widehat{v}_{\varepsilon}=0&\mathrm{on}~{}\Omega\times\{s=-T\},\end{cases} (4.11)

where ^ε\widehat{\mathcal{L}}^{*}_{\varepsilon} is the operator given by (1.2) with A(x,t;y,τ)A(x,t;y,\tau) replaced by A(x,t;y,τ)A^{*}(x,-t;y,-\tau) and F^(x,s)=F(x,s)\widehat{F}(x,s)=F(x,-s). Observe that A(x,t;y,τ)A^{*}(x,-t;y,-\tau) satisfies the same conditions on Ω×(T,0)\Omega\times(-T,0) as AA. Thus, the process and results discussed above for problem (1.1) remain valid for problem (4.11), thereby holding for problem (4.10). Especially, the correctors χ\chi^{*} and flux correctors 𝔅\mathfrak{B}^{*} could be introduced for the operator t+ε-\partial_{t}+\mathcal{L}_{\varepsilon}^{*} (see also (2.6)).

Define

ϖε=vεv0ε[Sε(χ~Kε(v0))]εε2[xkSε(𝔅~(d+1)kjKε(jv0))]ε.\displaystyle\varpi_{\varepsilon}=v_{\varepsilon}-v_{0}-\varepsilon[S_{\varepsilon}(\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}-\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}^{*}K_{\varepsilon}(\partial_{j}v_{0}))]^{\varepsilon}. (4.12)

Then ϖε\varpi_{\varepsilon} has the same estimates as wεw_{\varepsilon}. As like Theorem 4.1, we have,

Corollary 4.2.

Let ϖε\varpi_{\varepsilon} be defined by (4.12). Then

ϖεL2(0,T;H1(Ω))Cε1/2{v0L2(0,T;W˙1,q0(Ω))+tv0L2(0,T;Lq0(Ω))},\displaystyle\|\varpi_{\varepsilon}\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C\varepsilon^{1/2}\{\|\nabla v_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\},

where CC depends only on d,μ,[A](ΩT;𝐋)d,\mu,[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})} and the Lipschitz character of Ω\Omega.

Lemma 4.2.

Suppose Ω\Omega is a bounded C1,1C^{1,1} domain in d\mathbb{R}^{d} and AA satisfies (1.4)–(1.5). Let v0v_{0} be the solution to problem (4.10) with ε=0\varepsilon=0. Then

v0L2(0,T;W2,q0(Ω))+tv0L2(0,T;Lq0(Ω))CFL2(0,T;Lq0(Ω)),\displaystyle\|v_{0}\|_{L^{2}(0,T;W^{2,q_{0}}(\Omega))}+\|\partial_{t}v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\leq C\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}, (4.13)

where CC depends only on d,μ,Ω,xAL,d(ΩT;𝐋)d,\mu,\Omega,\|\nabla_{x}A\|_{L^{\infty,d}(\Omega_{T};\bm{L^{\infty}})} and the VMOx\mathrm{VMO}_{x} character ϱ\varrho of A^\widehat{A} given by (4.15). Consequently,

v0L2(ΩT6,ε)Cε1/2FL2(0,T;Lq0(Ω)).\displaystyle\|\nabla v_{0}\|_{L^{2}(\Omega^{6,\varepsilon}_{T})}\leq C\varepsilon^{1/2}\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}. (4.14)
Proof.

Due to Corollary 2.1, A^W12,2(0,T;L(Ω))L(0,T;W1,d(Ω))\widehat{A}\in W^{\frac{1}{2},2}(0,T;L^{\infty}(\Omega))\cap L^{\infty}(0,T;W^{1,d}(\Omega)). We claim that A^\widehat{A} satisfies the so-called VMOx\mathrm{VMO}_{x} condition

limR0ϱ(R)=0,\lim_{R\rightarrow 0}\varrho(R)=0,

where

ϱ(R):=sup0<r<RsupB(x,r)Ωt(0,Tr2)tt+r2B(x,r)B(x,r)|A^(ω,ς)A^(z,ς)|𝑑ω𝑑z𝑑ς.\displaystyle\varrho(R):=\sup_{0<r<R}\sup_{\begin{subarray}{c}B(x,r)\subset\Omega\\ t\in(0,T-r^{2})\end{subarray}}\fint_{t}^{t+r^{2}}\fint_{B(x,r)}\fint_{B(x,r)}|\widehat{A}(\omega,\varsigma)-\widehat{A}(z,\varsigma)|d\omega dzd\varsigma. (4.15)

Indeed, let N+N\in\mathbb{N}^{+} and we decompose [0,T)[0,T) into NN intervals Ek=[kT/N,(k+1)T/N)E_{k}=[kT/N,(k+1)T/N), k=0,,N1k=0,\dots,N-1. Set

𝔄N(x,t)=EkA^(x,ς)𝑑ςiftEk,k=0,,K1.\displaystyle\mathfrak{A}_{N}(x,t)=\fint_{E_{k}}\widehat{A}(x,\varsigma)d\varsigma\quad\mathrm{if~{}}t\in E_{k},\quad k=0,\dots,K-1.

Then 𝔄N\mathfrak{A}_{N} is finitely-valued w.r.t. tt and 𝔄N(,t)W1,d(Ω)\mathfrak{A}_{N}(\cdot,t)\in W^{1,d}(\Omega) for each tt. By using inequality (3.9), together with Hölder’s inequality, we calculate that

B(x,r)B(x,r)|𝔄N(ω,t)𝔄N(z,t)|𝑑ω𝑑z\displaystyle\fint_{B(x,r)}\fint_{B(x,r)}|\mathfrak{A}_{N}(\omega,t)-\mathfrak{A}_{N}(z,t)|d\omega dz CdB(x,r)B(x,r)|𝔄N(y,t)||yz|1d𝑑y𝑑z\displaystyle\leq C_{d}\fint_{B(x,r)}\int_{B(x,r)}|\nabla\mathfrak{A}_{N}(y,t)||y-z|^{1-d}dydz
C𝔄N(,t)Ld(B(x,r)),\displaystyle\leq C\|\nabla\mathfrak{A}_{N}(\cdot,t)\|_{L^{d}(B(x,r))},

which yields that 𝔄N(,t)\mathfrak{A}_{N}(\cdot,t) is a VMO function on Ω\Omega for each tt. Since 𝔄N\mathfrak{A}_{N} is finitely-valued, we have

limR0sup0<r<RsupB(x,r)Ωt(0,T)B(x,r)B(x,r)|𝔄N(ω,t)𝔄N(z,t)|𝑑ω𝑑z=0.\displaystyle\lim_{R\rightarrow 0}\sup_{0<r<R}\sup_{\begin{subarray}{c}B(x,r)\subset\Omega\\ t\in(0,T)\end{subarray}}\fint_{B(x,r)}\fint_{B(x,r)}|\mathfrak{A}_{N}(\omega,t)-\mathfrak{A}_{N}(z,t)|d\omega dz=0. (4.16)

Moreover, since A^W12,2(0,T;L(Ω))\widehat{A}\in W^{\frac{1}{2},2}(0,T;L^{\infty}(\Omega)), it holds that

limr0supt(0,Tr2)[A^]W12,2(t,t+r2;L(Ω))=0.\displaystyle\lim_{r\rightarrow 0}\sup_{t\in(0,T-r^{2})}[\widehat{A}]_{W^{\frac{1}{2},2}(t,t+r^{2};L^{\infty}(\Omega))}=0. (4.17)

For 0<r<R0<r<R, B(x,r)ΩB(x,r)\subset\Omega,

supt(0,Tr2)tt+r2B(x,r)B(x,r)|A^(ω,ς)A^(z,ς)|𝑑ω𝑑z𝑑ς\displaystyle\quad\sup_{t\in(0,T-r^{2})}\fint_{t}^{t+r^{2}}\fint_{B(x,r)}\fint_{B(x,r)}|\widehat{A}(\omega,\varsigma)-\widehat{A}(z,\varsigma)|d\omega dzd\varsigma
supt(0,Tr2)tt+r2[2B(x,r)|A^(ω,ς)𝔄N(ω,ς)|𝑑ω+B(x,r)B(x,r)|𝔄N(ω,ς)𝔄N(z,ς)|𝑑ω𝑑z]𝑑ς\displaystyle\leq\sup_{t\in(0,T-r^{2})}\fint_{t}^{t+r^{2}}\Big{[}2\fint_{B(x,r)}|\widehat{A}(\omega,\varsigma)-\mathfrak{A}_{N}(\omega,\varsigma)|d\omega+\fint_{B(x,r)}\fint_{B(x,r)}|\mathfrak{A}_{N}(\omega,\varsigma)-\mathfrak{A}_{N}(z,\varsigma)|d\omega dz\Big{]}d\varsigma
4supt(0,Tr2)tt+r2tt+r2A^(,ς1)A^(,ς2)L(Ω)𝑑ς1𝑑ς2\displaystyle\leq 4\sup_{t\in(0,T-r^{2})}\fint_{t}^{t+r^{2}}\fint_{t}^{t+r^{2}}\|\widehat{A}(\cdot,\varsigma_{1})-\widehat{A}(\cdot,\varsigma_{2})\|_{L^{\infty}(\Omega)}d\varsigma_{1}d\varsigma_{2}
+supt(0,T)B(x,r)B(x,r)|𝔄N(ω,t)𝔄N(z,t)|𝑑ω𝑑z\displaystyle\qquad\qquad+\sup_{t\in(0,T)}\fint_{B(x,r)}\fint_{B(x,r)}|\mathfrak{A}_{N}(\omega,t)-\mathfrak{A}_{N}(z,t)|d\omega dz
Csupt(0,Tr2)[A^]W12,2(t,t+r2;L(Ω))+supt(0,T)B(x,r)B(x,r)|𝔄N(ω,t)𝔄N(z,t)|𝑑ω𝑑z,\displaystyle\leq C\sup_{t\in(0,T-r^{2})}[\widehat{A}]_{W^{\frac{1}{2},2}(t,t+r^{2};L^{\infty}(\Omega))}+\sup_{t\in(0,T)}\fint_{B(x,r)}\fint_{B(x,r)}|\mathfrak{A}_{N}(\omega,t)-\mathfrak{A}_{N}(z,t)|d\omega dz,

which, together with (4.16)–(4.17), yields that limR0ϱ(R)=0\lim_{R\rightarrow 0}\varrho(R)=0.

Now, thanks to LqL^{q}-LpL^{p} estimates of non-divergence type parabolic systems with VMOx\mathrm{VMO}_{x} coefficients in C1,1C^{1,1} cylinders (see [9] and references therein for the problems on the whole space and half space, from which one can deduce the estimates for bounded cylinders), we have

tv0L2(0,T;Lq0(Ω))+v0L2(0,T;W2,q0(Ω))C{FL2(0,T;Lq0(Ω))+A^v0L2(0,T;Lq0(Ω))}\displaystyle\quad\|\partial_{t}v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}+\|v_{0}\|_{L^{2}(0,T;W^{2,q_{0}}(\Omega))}\leq C\{\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}+\|\nabla\widehat{A}\nabla v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}
C{FL2(0,T;Lq0(Ω))+A^L(0,T;Ld(Ω))v0L2(0,T;Lq0(Ω))}CFL2(0,T;Lq0(Ω)),\displaystyle\leq C\{\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}+\|\nabla\widehat{A}\|_{L^{\infty}(0,T;L^{d}(\Omega))}\|\nabla v_{0}\|_{L^{2}(0,T;L^{q_{0}^{*}}(\Omega))}\}\leq C\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},

where we have also used LqL^{q}-LpL^{p} estimates of divergence type parabolic systems with VMOx\mathrm{VMO}_{x} coefficients [8] in the last inequality, and CC depends only on d,μ,Ω,ϱ,xAL,d(ΩT;𝑳)d,\mu,\Omega,\varrho,\|\nabla_{x}A\|_{L^{\infty,d}(\Omega_{T};\bm{L^{\infty}})}. This gives (4.13). (4.14) now follows from the same argument as (4.9). ∎

Armed with the previous results, we are now prepared to prove Theorem 1.1 by using the duality argument initiated in [24]. See also [13].

Proof of Theorem 1.1.

By interpolation, we deduce from Lemmas 2.1 and 2.2 that

χ,𝔅L(ΩT;𝑳𝟒,𝒑𝟎).\chi,\mathfrak{B}\in L^{\infty}(\Omega_{T};\bm{L^{4,p_{0}}}).

Note that 2p042\leq p_{0}\leq 4, as d2d\geq 2. Then Lemma 3.2, together with Remark 3.1, implies that

ε[Sε(χ~Kε(u0))]εL2,p0(ΩT)+ε2[xkSε(𝔅~(d+1)kjKε(ju0))]εL2,p0(ΩT)\displaystyle\quad\varepsilon\|[S_{\varepsilon}(\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}\|_{L^{2,p_{0}}(\Omega_{T})}+\varepsilon^{2}\|[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}K_{\varepsilon}(\partial_{j}u_{0}))]^{\varepsilon}\|_{L^{2,p_{0}}(\Omega_{T})}
Cε{χ~L(ΩT;𝑳𝒑𝟎)+𝔅~d+1L(ΩT;𝑳𝒑𝟎)}u0L2,p0(ΩT)\displaystyle\leq C\varepsilon\{\|\widetilde{\chi}\|_{L^{\infty}(\Omega_{T};\bm{L^{p_{0}}})}+\|\widetilde{\mathfrak{B}}_{d+1}\|_{L^{\infty}(\Omega_{T};\bm{L^{p_{0}}})}\}\|\nabla u_{0}\|_{L^{2,p_{0}}(\Omega_{T})}
Cεu0L2(0,T;W˙1,q0(Ω)).\displaystyle\leq C\varepsilon\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}.

Thus, it is sufficient to bound wεL2,p0(ΩT)\|w_{\varepsilon}\|_{L^{2,p_{0}}(\Omega_{T})}. To do this, let vεv_{\varepsilon} be the solution of problem (4.10) and ϖε\varpi_{\varepsilon} be given by (4.12). Then we have

ΩTwεF𝑑x𝑑t=0Ttwε,vε+ΩTAεwεvε\displaystyle\quad\iint_{\Omega_{T}}w_{\varepsilon}\cdot Fdxdt=\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},v_{\varepsilon}\rangle+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla v_{\varepsilon}
=(0Ttwε,ϖε+ΩTAεwεϖε)+(0Ttwε,v0+ΩTAεwεv0)\displaystyle=\Big{(}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},\varpi_{\varepsilon}\rangle+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla\varpi_{\varepsilon}\Big{)}+\Big{(}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},v_{0}\rangle+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla v_{0}\Big{)}
+(0Ttwε,ϖεvεv0+ΩTAεwε(ϖεvεv0))Q1+Q2+Q3.\displaystyle\quad+\Big{(}\int_{0}^{T}\langle\partial_{t}w_{\varepsilon},\varpi_{\varepsilon}-v_{\varepsilon}-v_{0}\rangle+\iint_{\Omega_{T}}A^{\varepsilon}\nabla w_{\varepsilon}\cdot\nabla(\varpi_{\varepsilon}-v_{\varepsilon}-v_{0})\Big{)}\doteq Q_{1}+Q_{2}+Q_{3}. (4.18)

For Q1Q_{1}, by Corollaries 4.1 and 4.2, we have

Q1Cε1/2{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}ϖL2(ΩT)Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}{v0L2(0,T;W˙1,q0(Ω))+tv0L2(0,T;Lq0(Ω))}Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)),\displaystyle\begin{split}&\quad Q_{1}\leq C\varepsilon^{1/2}\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|\nabla\varpi\|_{L^{2}(\Omega_{T})}\\ &\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\{\|\nabla v_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\\ &\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},\end{split}

where we have used estimate (4.13) in the last inequality, and CC depends only on dd, μ\mu, Ω\Omega, [A](ΩT;𝑳)[A]_{\mathscr{H}(\Omega_{T};\bm{L^{\infty}})} and the VMOx\mathrm{VMO}_{x} character of A^\widehat{A} (which can be reduced to the character of AA).

To bound Q2Q_{2}, we use (4.7) with p=q0,q=4p=q_{0},q=4 to obtain

Q2\displaystyle Q_{2} C{ε1/2v0L2(ΩT6,ε)+εv0L2,p0(ΩT)+εψL4,2(ΩT)}\displaystyle\leq C\{\varepsilon^{1/2}\|\nabla v_{0}\|_{L^{2}(\Omega^{6,\varepsilon}_{T})}+\varepsilon\|\nabla v_{0}\|_{L^{2,p_{0}}(\Omega_{T})}+\varepsilon\|\nabla\psi\|_{L^{4,2}(\Omega_{T})}\}
{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}\displaystyle\qquad\cdot\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,{q_{0}}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}
Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)),\displaystyle\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},

where we have used estimates (3.20), (4.9) and Lemma 3.9 in the first inequality, as well as (4.13)–(4.14) in the last one.

To deal with Q3Q_{3}, we start from (4.8) with

ψ=ε[Sε(χ~Kε(v0))]ε+ε2[xkSε(𝔅~(d+1)kjKε(jv0))]ε.\psi=\varepsilon[S_{\varepsilon}(\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}+\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}^{*}K_{\varepsilon}(\partial_{j}v_{0}))]^{\varepsilon}.

Note that the latter term in ψ\psi can be written into

ε2[xkSε(𝔅~(d+1)kjKε(jv0))]ε=ε[(kφ2)εSεt(𝔅~(d+1)kjKε(jv0))]ε,\varepsilon^{2}[\partial_{x_{k}}S_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}^{*}K_{\varepsilon}(\partial_{j}v_{0}))]^{\varepsilon}=\varepsilon[(\partial_{k}\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(\widetilde{\mathfrak{B}}_{(d+1)kj}^{*}K_{\varepsilon}(\partial_{j}v_{0}))]^{\varepsilon},

which has the same form as the former one, and 𝔅d+1\mathfrak{B}_{d+1}^{*} is more regular than χ\chi^{*}. This means the latter term can be handled in the same way as the former one. Similarly, taking the former term as the test function into (4.8), we find

(ε[Sε(χ~Kε(v0))]ε)=[(φ2)εSεt(χ~Kε(v0))]ε+[Sε(yχ~Kε(v0))]ε,\displaystyle\nabla(\varepsilon[S_{\varepsilon}(\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon})=[(\nabla\varphi_{2})_{\varepsilon}*S^{t}_{\varepsilon}(\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}+[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon},

where these two terms are in the same form and χ~\widetilde{\chi}^{*} is more regular than yχ~\nabla_{y}\widetilde{\chi}^{*}. Thus, in view of I1I5I_{1}-I_{5} in the proof of Lemma 4.1, the key is to bound

Q31\displaystyle Q_{31} =|ΩT[AA^]ε(u0Sε(u0))[Sε(yχ~Kε(v0))]ε|,\displaystyle=\Big{|}\iint_{\Omega_{T}}[A-\widehat{A}]^{\varepsilon}(\nabla u_{0}-S_{\varepsilon}(\nabla u_{0}))\cdot[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}\Big{|},
Q32\displaystyle Q_{32} =ΩT|[ASε(yχ~Kε(u0))Sε(Ayχ~Kε(u0))]ε||[Sε(yχ~Kε(v0))]ε|,\displaystyle=\iint_{\Omega_{T}}|[AS_{\varepsilon}(\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))-S_{\varepsilon}(A\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0}))]^{\varepsilon}||[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}|,
Q33\displaystyle Q_{33} =ε2ΩT|{Sε[t𝔅~d+1Kε(u0)+𝔅~d+1Sε(tu0)ηε]}ε||[Sε(yχ~Kε(v0))]ε|.\displaystyle=\varepsilon^{2}\iint_{\Omega_{T}}|\{S_{\varepsilon}[\partial_{t}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0})+\widetilde{\mathfrak{B}}_{d+1}\nabla S_{\varepsilon}(\partial_{t}u_{0})\eta_{\varepsilon}]\}^{\varepsilon}||[S_{\varepsilon}(\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0}))]^{\varepsilon}|.

The rest terms can be handled in the same manner. Especially, the terms of boundary layers can be estimated by (4.9) and (4.14).

To bound Q31Q_{31}, we write

Q31\displaystyle Q_{31} |ΩT(u0Sε(u0)){(AA^)Sε[yχ~Kε(v0)]Sε[(AA^)yχ~Kε(v0)]}ε|\displaystyle\leq\Big{|}\iint_{\Omega_{T}}(\nabla u_{0}-S_{\varepsilon}(\nabla u_{0}))\cdot\{(A^{*}-\widehat{A}^{*})S_{\varepsilon}[\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})]-S_{\varepsilon}[(A^{*}-\widehat{A}^{*})\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})]\}^{\varepsilon}\Big{|}
+|ΩT(u0Sε(u0)){Sε[(AA^)yχ~Kε(v0)]}ε|,\displaystyle\qquad+\Big{|}\iint_{\Omega_{T}}(\nabla u_{0}-S_{\varepsilon}(\nabla u_{0}))\cdot\{S_{\varepsilon}[(A^{*}-\widehat{A}^{*})\cdot\nabla_{y}\widetilde{\chi}^{*}\cdot K_{\varepsilon}(\nabla v_{0})]\}^{\varepsilon}\Big{|},

where the second term can be handled by Lemma 3.7. For the first term, one can see from estimate (3.13) that it can be bounded by

Cε{u0L2,p0(ΩT)+u0L4,2(ΩT)}\displaystyle\quad C\varepsilon\{\|\nabla u_{0}\|_{L^{2,p_{0}}(\Omega_{T})}+\|\nabla u_{0}\|_{L^{4,2}(\Omega_{T})}\}
{yχ~Kε(v0)L2,q0(ΩT;𝑳𝒒¯)+yχ~Kε(v0)L4,2(ΩT;𝑳𝒒¯)}\displaystyle\qquad\qquad\cdot\{\|\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})\|_{L^{2,q_{0}^{*}}(\Omega_{T};\bm{L^{\bar{q}}})}+\|\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})\|_{L^{4,2}(\Omega_{T};\bm{L^{\bar{q}}})}\}
Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}{v0L2(0,T;W˙1,q0(Ω))+tv0L2(0,T;Lq0(Ω))},\displaystyle\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\{\|\nabla v_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}v_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\},

where Lemma 3.9 was also used. Therefore, it follows from estimate (4.13) that

Q31Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)).\displaystyle Q_{31}\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}.

For Q32Q_{32}, by using (3.15), we see that

Q32\displaystyle Q_{32} Cε{yχ~Kε(u0)L2,q0(ΩT;𝑳𝒒¯)yχ~Kε(v0)L2,p0(ΩT;𝑳𝒒¯)\displaystyle\leq C\varepsilon\{\|\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0})\|_{L^{2,q_{0}^{*}}(\Omega_{T};\bm{L^{\bar{q}}})}\|\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})\|_{L^{2,p_{0}}(\Omega_{T};\bm{L^{\bar{q}}})}
+yχ~Kε(u0)L4,2(ΩT;𝑳𝒒¯)yχ~Kε(v0)L4,2(ΩT;𝑳𝒒¯)}\displaystyle\qquad+\|\nabla_{y}\widetilde{\chi}K_{\varepsilon}(\nabla u_{0})\|_{L^{4,2}(\Omega_{T};\bm{L^{\bar{q}}})}\|\nabla_{y}\widetilde{\chi}^{*}K_{\varepsilon}(\nabla v_{0})\|_{L^{4,2}(\Omega_{T};\bm{L^{\bar{q}}})}\}
Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)),\displaystyle\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},

where Lemmas 2.1, 3.9 and 4.2 were used and CC depends only on d,μ,Ωd,\mu,\Omega, [A]𝒲σ,d(ΩT;𝑳)[A]_{\mathscr{W}^{\sigma,d}(\Omega_{T};\bm{L^{\infty}})}, the VMOx\mathrm{VMO}_{x} character of A^\widehat{A}. To deal with Q33Q_{33}, by Lemma 3.2, we have

Q33\displaystyle Q_{33} Cε2t𝔅~d+1Kε(u0)L4/3,2(ΩT;𝑳𝟐)v0L4,2(ΩT)\displaystyle\leq C\varepsilon^{2}\|\partial_{t}\widetilde{\mathfrak{B}}_{d+1}K_{\varepsilon}(\nabla u_{0})\|_{L^{4/3,2}(\Omega_{T};\bm{L^{2}})}\|\nabla v_{0}\|_{L^{4,2}(\Omega_{T})}
+Cε2𝔅~d+1Sε(tu0)ηεL2,q0(ΩT;𝑳𝟐)v0L2,p0(ΩT)\displaystyle\qquad+C\varepsilon^{2}\|\widetilde{\mathfrak{B}}_{d+1}\nabla S_{\varepsilon}(\partial_{t}u_{0})\eta_{\varepsilon}\|_{L^{2,q_{0}}(\Omega_{T};\bm{L^{2}})}\|\nabla v_{0}\|_{L^{2,p_{0}}(\Omega_{T})}
Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)),\displaystyle\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},

where we have also used Lemmas 2.2, 3.5, 3.9 and 4.2. Consequently, we have

Q3Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)).\displaystyle Q_{3}\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}.

In view of the estimates of Q1,Q2,Q3Q_{1},Q_{2},Q_{3} and (4.18), we get

|ΩTwεF𝑑x𝑑t|Cε{u0L2(0,T;W˙1,q0(Ω))+tu0L2(0,T;Lq0(Ω))}FL2(0,T;Lq0(Ω)),\displaystyle\Big{|}\iint_{\Omega_{T}}w_{\varepsilon}\cdot Fdxdt\Big{|}\leq C\varepsilon\{\|\nabla u_{0}\|_{L^{2}(0,T;\dot{W}^{1,q_{0}}(\Omega))}+\|\partial_{t}u_{0}\|_{L^{2}(0,T;L^{q_{0}}(\Omega))}\}\cdot\|F\|_{L^{2}(0,T;L^{q_{0}}(\Omega))},

which, by duality, yields the desired result. The proof is completed. ∎

Acknowledgements

The author is much obliged to Professor Zhongwei Shen for the guidance.

References

  • [1] S. N. Armstrong, A. Bordas, J. C. Mourrat, Quantitative stochastic homogenization and regularity theory of parabolic equations, Anal. PDE 11 (2018) 1945–2014.
  • [2] A. Benchérif-Madani, E. Pardoux, Locally periodic homogenization, Asymptot. Anal. 39 (2004) 263–279.
  • [3] A. Benchérif-Madani, E. Pardoux, Homogenization of a diffusion with locally periodic coefficients, in: Séminaire de Probabilités XXXVIII, volume 1857 of Lecture Notes in Math., Springer, Berlin, 2005, pp. 363–392.
  • [4] A. Benchérif-Madani, E. Pardoux, Homogenization of a semilinear parabolic PDE with locally periodic coefficients: a probabilistic approach, ESAIM Probab. Stat. 11 (2007) 385–411.
  • [5] A. Bensoussan, J. L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, 1978.
  • [6] S. Campanato, LpL^{p} regularity for weak solutions of parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) 65–85.
  • [7] T. Danielsson, P. Johnsen, Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales, preprint, arXiv:1908.05892 (2019) 1–28.
  • [8] H. Dong, D. Kim, LpL_{p} solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations 40 (2011) 357–389.
  • [9] H. Dong, D. Kim, On LpL_{p}-estimates for elliptic and parabolic equations with ApA_{p} weights, Trans. Amer. Math. Soc. 370 (2018) 5081–5130.
  • [10] T. Fatima, N. Arab, E. P. Zemskov, A. Muntean, Homogenization of a reaction-diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, J. Engrg. Math. 69 (2011) 261–276.
  • [11] L. Flodén, A. Holmbom, M. Olsson Lindberg, J. Persson, Homogenization of parabolic equations with an arbitrary number of scales in both space and time, J. Appl. Math. (2014) 16 pp.
  • [12] J. Geng, W. Niu, Homogenization of locally periodic parabolic operators with non-self-similar scales, preprint, arXiv:2103.01418 (2021) 1–40.
  • [13] J. Geng, Z. Shen, Convergence rates in parabolic homogenization with time-dependent periodic coefficients, J. Funct. Anal. 272 (2017) 2092–2113.
  • [14] J. Geng, Z. Shen, Homogenization of parabolic equations with non-self-similar scales, Arch. Ration. Mech. Anal. 236 (2020) 145–188.
  • [15] A. Holmbom, N. Svanstedt, N. Wellander, Multiscale convergence and reiterated homogenization of parabolic problems, Appl. Math. 50 (2005) 131–151.
  • [16] Y. M. Meshkova, T. A. Suslina, Homogenization of initial boundary value problems for parabolic systems with periodic coefficients, Appl. Anal. 95 (2016) 1736–1775.
  • [17] A. Muntean, T. L. van Noorden, Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity, European J. Appl. Math. 24 (2013) 657–677.
  • [18] W. Niu, Z. Shen, Y. Xu, Quantitative estimates in reiterated homogenization, J. Funct. Anal. 279 (2020) 108759, 39.
  • [19] W. Niu, Y. Xu, Convergence rates in homogenization of higher-order parabolic systems, Discrete Contin. Dyn. Syst. Series A 38 (2018) 4203–4229.
  • [20] W. Niu, Y. Xu, A refined convergence result in homogenization of second order parabolic systems, J. Differential Equations 266 (2019) 8294–8319.
  • [21] S. E. Pastukhova, Estimates in homogenization of parabolic equations with locally periodic coefficients, Asymptot. Anal. 66 (2010) 207–228.
  • [22] S. E. Pastukhova, R. N. Tikhomirov, Estimates for locally periodic and reiterated homogenization: parabolic equations, Dokl. Akad. Nauk 428 (2009) 166–170.
  • [23] Z. Shen, Periodic Homogenization of Elliptic Systems, Advances in Partial Differential Equations, No. 269, Birkhäuser Basel, 2018.
  • [24] T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: L2L^{2}-operator error estimates, Mathematika 59 (2013) 463–476.
  • [25] Q. Xu, S. Zhou, Quantitative estimates in homogenization of parabolic systems of elasticity in Lipschitz cylinders, preprint, arXiv:1705.01479 (2017) 1–37.
  • [26] Y. Xu, W. Niu, Periodic homogenization of elliptic systems with stratified structure, Discrete Contin. Dyn. Syst. Series A 39 (2019) 2295–2323.
  • [27] Y. Xu, W. Niu, Homogenization of elliptic systems with stratified structure revisited, Comm. Partial Differential Equations 45 (2020) 655–689.
  • [28] V. V. Zhikov, S. E. Pastukhova, Estimates of homogenization for a parabolic equation with periodic coefficients, Russ. J. Math. Phys. 13 (2006) 224–237.