This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements

Buyang Li Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong. buyang.li@polyu.edu.hk
Abstract.

Dziuk’s surface finite element method for mean curvature flow has had significant impact on the development of parametric and evolving surface finite element methods for surface evolution equations and curvature flows. However, the convergence of Dziuk’s surface finite element method for mean curvature flow of closed surfaces still remains open since it was proposed in 1990. In this article, we prove convergence of Dziuk’s semidiscrete surface finite element method with high-order finite elements for mean curvature flow of closed surfaces. The proof utilizes the matrix-vector formulation of evolving surface finite element methods and a monotone structure of the nonlinear discrete surface Laplacian proved in this paper.

1. Introduction

We consider the evolution of a closed surface under mean curvature flow, moving with velocity v=Hnv=-Hn, where HH and nn are the mean curvature and outward unit normal vector of the surface. The surface at time t[0,T]t\in[0,T] can be described by

Γ(t)=Γ[X(,t)]={X(p,t):pΓ0},t[0,T],\Gamma(t)=\Gamma[X(\cdot,t)]=\{X(p,t):p\in\Gamma^{0}\},\quad t\in[0,T],

as the image of a flow map X:Γ0×[0,T]3X:\Gamma^{0}\times[0,T]\rightarrow{\mathbb{R}}^{3}, which is a smooth embedding at every time t[0,T]t\in[0,T] from a given closed initial surface Γ0\Gamma^{0} into 3{\mathbb{R}}^{3}, satisfying the following geometric evolution equation:

(1.1) {tX(p,t)=(ΔΓ[X(,t)]id)X(p,t)forpΓ0andt(0,T],X(p,0)=pforpΓ0,\displaystyle\left\{\begin{aligned} &\partial_{t}X(p,t)=(\Delta_{\Gamma[X(\cdot,t)]}{\rm id})\circ X(p,t)&&\mbox{for}\,\,\,p\in\Gamma^{0}\,\,\,\mbox{and}\,\,\,t\in(0,T],\\[5.0pt] &X(p,0)=p&&\mbox{for}\,\,\,p\in\Gamma^{0},\end{aligned}\right.

where ΔΓ[X(,t)]\Delta_{\Gamma[X(\cdot,t)]} denotes the Laplace–Beltrami operator on the surface Γ[X(,t)]\Gamma[X(\cdot,t)], and id{\rm id} is the identity function satisfying id(x)=x{\rm id}(x)=x for all x3x\in{\mathbb{R}}^{3}.

Numerical approximation to mean curvature flow by parametric finite element method was first considered by Dziuk [12] in 1990. The method determines the parametrization of the unknown surface by solving partial differential equations on a surface using the surface finite element method (FEM). The evolution of the nodes determines the approximate evolving surface. This idea has had significant influence on the development of surface FEMs for many different types of geometric evolution equations, and was systematically developed to the evolving surface FEMs in [15].

However, proving convergence of Dziuk’s method for mean curvature flow of closed surfaces remains still open. For curve shortening flow, convergence of semidiscrete FEM was proved in [13]; convergence of nonlinearly implicit and linearly implicit FEMs were proved in [27] and [24], respectively. Convergence of non-parametric FEMs for mean curvature flow of graph surfaces was proved by Deckelnick & Dziuk [5, 7], but the analysis cannot be extended to closed surfaces.

Many other techniques were also developed for approximating mean curvature flow. For example, Deckelnick & Dziuk [6] has introduced an artificial tangential velocity to reformulate curve shortening flow into a non-divergence form; Barrett, Garcke & Nürnberg introduced a parametric FEM based on a different variational formulation [3] and a parametric FEM based on choosing different test functions [4]; Elliott and Fritz [20] introduced DeTurck’s trick of re-parametrization into the computation of mean curvature flow, leading to a non-degenerate parabolic system in a non-divergence form, which generalizes the reformulation of Deckelnick & Dziuk in [6].

For all the methods mentioned above, convergence of semi- and fully discrete FEMs for mean curvature flow of closed surfaces remains open. Convergence of semidiscrete FEMs was proved for curve shortening flow in [6, 20], for anistropic curve shortening flow in [14, 25], for curve shortening flow coupled with reaction–diffusion in [2, 26], and for mean curvature flow of axisymmetric surfaces in [1] based on DeTurck’s trick. The only convergence result of surface FEMs for mean curvature flow of closed surfaces was in [22] for an equivalent system of equations governing the evolution of normal vector and mean curvature, instead of for the original equation (1.1) used by Dziuk [12] and many others.

In this paper, we prove convergence of Dziuk’s semidiscrete FEM for mean curvature flow of closed surfaces for sufficiently high-order finite elements. Our proof utilizes two ideas, i.e, the matrix-vector formulation of the evolving surface FEM and the monotone structure of the finite element discrete operator associated to ΔΓ[X]idX-\Delta_{\Gamma[X]}{\rm id}\circ X. The matrix-vector formulation was used in [23] in analysis of convergence of evolving surface FEMs for solution-driven surfaces; the monotone structure of the nonlinear finite element discrete operator associated to ΔΓ[X]idX-\Delta_{\Gamma[X]}{\rm id}\circ X was used in [24] for analysis of curve shortening flow.

In the following, we briefly explain the two ideas in proving convergence of Dziuk’s semidiscrete FEM for mean curvature flow of closed surfaces.

Let 𝐱0=(p1,,pN)T{\mathbf{x}}^{0}=(p_{1},\dots,p_{N})^{T} be the vector that collects all nodes pjΓ0p_{j}\in\Gamma^{0}, j=1,,N,j=1,\dots,N, in a triangulation of the initial surface Γ0\Gamma^{0} (with finite elements of degree kk). The nodal vector 𝐱0{\mathbf{x}}^{0} defines an approximate surface Γh0\Gamma_{h}^{0} that interpolates Γ0\Gamma^{0} at the nodes pjp_{j}. We evolve the vector 𝐱0{\mathbf{x}}^{0} in time and denote its position at time tt by 𝐱(t){\mathbf{x}}(t), which determines the approximate surface Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)] to mean curvature flow and satisfies an ordinary differential equation in the matrix-vector form (see Section 2 for details)

(1.2) 𝐌(𝐱)𝐱˙+𝐀(𝐱)𝐱=𝟎,\displaystyle{\bf M}({\mathbf{x}})\dot{\mathbf{x}}+{\bf A}({\mathbf{x}}){\mathbf{x}}={\bf 0},

with initial value 𝐱(0)=𝐱0{\mathbf{x}}(0)={\mathbf{x}}^{0}, where 𝐌(𝐱){\bf M}({\mathbf{x}}) and 𝐀(𝐱){\bf A}({\mathbf{x}}) are the mass and stiffness matrices on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}]. Equation (1.2) is the matrix-vector formulation of Dziuk’s semidiscrete FEM. Correspondingly, Dziuk’s linearly implicit parametric FEM in [12] is equivalent to the following linearly implicit Euler method for (1.2):

(1.3) 𝐌(𝐱n1)𝐱n𝐱n1τ+𝐀(𝐱n1)𝐱n=𝟎,\displaystyle{\bf M}({\mathbf{x}}^{n-1})\frac{{\mathbf{x}}^{n}-{\mathbf{x}}^{n-1}}{\tau}+{\bf A}({\mathbf{x}}^{n-1}){\mathbf{x}}^{n}={\bf 0},

where τ\tau denotes the stepsize of time discretization.

As mentioned in [2, 24], the main difficulty of numerical analysis for mean curvature flow (1.1) is the lack of full parabolicity, namely there does not exist a positive constant λ\lambda satisfying

(1.4) (ΔΓ[X]idXΔΓ[Y]idY)(XY)λ|Γ0(XY)|2,\displaystyle-(\Delta_{\Gamma[X]}{\rm id}\circ X-\Delta_{\Gamma[Y]}{\rm id}\circ Y)\cdot(X-Y)\geq\lambda|\nabla_{\Gamma^{0}}(X-Y)|^{2},

even if the two flow maps XX and YY are smooth and sufficiently close to each other. Similarly, if we denote by Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] the interpolated surface of exact surface Γ\Gamma, and denote by 𝐀(𝐱)\|\cdot\|_{{\bf A}({\mathbf{x}}^{*})} the discrete H1H^{1} semi-norm on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] defined by

𝐯𝐀(𝐱)2:=𝐀(𝐱)𝐯𝐯=Γh[𝐱]Γh[𝐱]vhΓh[𝐱]vh,\|{\bf v}\|_{{\bf A}({\mathbf{x}}^{*})}^{2}:={\bf A}({\mathbf{x}}^{*}){\bf v}\cdot{\bf v}=\int_{\Gamma_{h}[{\mathbf{x}}^{*}]}\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}v_{h}\cdot\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}v_{h},

with vhv_{h} denoting the finite element function on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] with nodal vector 𝐯{\bf v}, then there does not exist a positive constant λ\lambda satisfying

(1.5) (𝐀(𝐱)𝐱𝐀(𝐱)𝐱)(𝐱𝐱)λ𝐱𝐱𝐀(𝐱)2,\displaystyle\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}\cdot({\mathbf{x}}-{\mathbf{x}}^{*})\geq\lambda\|{\mathbf{x}}-{\mathbf{x}}^{*}\|_{{\bf A}({\mathbf{x}}^{*})}^{2},

even if the two vectors 𝐱{\mathbf{x}} and 𝐱{\mathbf{x}}^{*} are sufficiently close to each other. This is the main difficulty in analysis of Dziuk’s semidiscrete FEM for mean curvature flow of closed surfaces.

We overcome this difficulty by showing the following identity (a monotone structure):

(1.6) (𝐀(𝐱)𝐱𝐀(𝐱)𝐱)(𝐱𝐱)\displaystyle\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}\cdot({\mathbf{x}}-{\mathbf{x}}^{*}) =01Γhθ|(Γhθehθ)n^hθ|2dθ,\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta,

where ehθe^{\theta}_{h} is the finite element function with nodal vector

𝐞=𝐱𝐱{\mathbf{e}}={\mathbf{x}}-{\mathbf{x}}^{*}

on the intermediate finite element surface Γhθ=(1θ)Γh[𝐱]+θΓh[𝐱]\Gamma_{h}^{\theta}=(1-\theta)\Gamma_{h}[{\mathbf{x}}^{*}]+\theta\Gamma_{h}[{\mathbf{x}}], and n^hθ\hat{n}_{h}^{\theta} is the unit normal vector on Γhθ\Gamma_{h}^{\theta}. The identity (1.6) can be used to control the H1H^{1} semi-norm of the normal component of the error. It was known for closed curves and was used to analyze convergence of Dziuk’s linearly implicit FEM for curve shortening flow in [24]. We extend this approach to mean curvature flow of closed surfaces using the matrix-vector technique.

In addition to (1.6), we also show that

(𝐌(𝐱)𝐱˙𝐌(𝐱)𝐱˙)(𝐱𝐱)\displaystyle({\bf M}({\mathbf{x}})\dot{\mathbf{x}}-{\bf M}({\mathbf{x}}^{*})\dot{\mathbf{x}}^{*})\cdot({\mathbf{x}}-{\mathbf{x}}^{*})\geq 12ddt𝐞𝐌(𝐱)2cϵ1𝐞𝐌(𝐱)2\displaystyle\frac{1}{2}\frac{\text{d}}{\text{d}t}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})}^{2}-c\epsilon^{-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})}^{2}
(1.7) ϵ01Γhθ|(Γhθehθ)n^hθ|2dθ,\displaystyle-\epsilon\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta,

where ϵ\epsilon can be arbitrarily small and 𝐞𝐌(𝐱)\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})} is the discrete L2L^{2} norm on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}], defined by

𝐞𝐌(𝐱)2=Γh[𝐱]|eh|2,\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})}^{2}=\int_{\Gamma_{h}[{\mathbf{x}}]}|e_{h}|^{2},

with ehe_{h} being the finite element function on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] with nodal vector 𝐞{\mathbf{e}}. Hence, the last term in (1) can be absorbed by (1.6) in the error estimation, and Gronwall’s inequality can be applied to yield an error estimate.

To illustrate the idea clearly without complicating the problem, we focus on Dziuk’s semidiscrete FEM (instead of fully discrete FEMs). As we shall see, high-order finite elements of polynomial degree k6k\geq 6 are needed to bound the nonlinear terms in the error estimation, though the computations in [12] seem to work well with lower-order finite elements.

In the next section, we present rigorous description of the matrix-vector formulation of Dziuk’s semidiscrete FEM, and present the main theorem of this paper. The proof of the main theorem is presented in Section 3.

2. The main result

2.1. Basic notions and notation

If u(,t)u(\cdot,t) is a function defined on the surface Γ(t)=Γ[X(,t)]\Gamma(t)=\Gamma[X(\cdot,t)] for t[0,T]t\in[0,T], then the material derivative of uu with respect to the parametrization XX is defined as

tu(x,t)=ddtu(X(p,t),t) for x=X(p,t)Γ(t).\partial_{t}^{\bullet}u(x,t)=\frac{\text{d}}{\text{d}t}\,u(X(p,t),t)\quad\hbox{ for }\ x=X(p,t)\in\Gamma(t).

On any regular surface Γ3\Gamma\subset{\mathbb{R}}^{3}, for any function u:Γu:\Gamma\rightarrow{\mathbb{R}} we denote by Γu:Γ3\nabla_{\Gamma}u:\Gamma\rightarrow{\mathbb{R}}^{3} the surface tangential gradient as a 3-dimensional column vector. For a vector-valued function u=(u1,u2,u3)T:Γ3u=(u_{1},u_{2},u_{3})^{T}:\Gamma\rightarrow{\mathbb{R}}^{3}, we define Γu=(Γu1,Γu2,Γu3)\nabla_{\Gamma}u=(\nabla_{\Gamma}u_{1},\nabla_{\Gamma}u_{2},\nabla_{\Gamma}u_{3}), where each Γuj\nabla_{\Gamma}u_{j} is a 3-dimensional column vector. We denote by Γf\nabla_{\Gamma}\cdot f the surface divergence of a vector field ff on Γ\Gamma, and by ΔΓu=ΓΓu\Delta_{\Gamma}u=\nabla_{\Gamma}\cdot\nabla_{\Gamma}u the Laplace–Beltrami operator applied to uu; see [8] or [19, Appendix A] for these notions.

2.2. Triangulation

The given smooth initial surface Γ0\Gamma^{0} is partitioned into an admissible family of shape-regular and quasi-uniform triangulations 𝒯h\mathcal{T}_{h} with finite elements of degree kk and mesh size hh; see [15, 9] for the notion of admissible family of triangulations. For a fixed triangulation with mesh size hh, we denote by 𝐱0=(p1,,pN)T{\mathbf{x}}^{0}=(p_{1},\dots,p_{N})^{T} the vector that collects all nodes pjΓ0p_{j}\in\Gamma^{0}, j=1,,N,j=1,\dots,N, in the triangulation of Γ0\Gamma^{0} by finite elements of degree kk. The nodal vector 𝐱0{\mathbf{x}}^{0} defines an approximate surface Γh0\Gamma_{h}^{0} that interpolates Γ0\Gamma^{0} at the nodes pjp_{j}.

We consider the evolution of the nodal vector 𝐱=(x1,,xN)T{\mathbf{x}}=(x_{1},\cdots,x_{N})^{T} and denote its value at time tt by 𝐱(t){\mathbf{x}}(t), with initial condition 𝐱(0)=𝐱0{\mathbf{x}}(0)={\mathbf{x}}^{0}. By piecewise polynomial interpolation on the plane reference triangle that corresponds to every curved triangle of the triangulation, the nodal vector 𝐱(t){\mathbf{x}}(t) defines a closed surface denoted by

Γh(t)=Γh[𝐱(t)].\Gamma_{h}(t)=\Gamma_{h}[{\mathbf{x}}(t)].

There exists a unique finite element function Xh(,t)X_{h}(\cdot,t) of polynomial degree kk defined on the surface Γh[𝐱0]\Gamma_{h}[{\mathbf{x}}^{0}] satisfying

Xh(pj,t)=xj(t)forj=1,,N.X_{h}(p_{j},t)=x_{j}(t)\quad\mbox{for}\quad j=1,\dots,N.

This is the discrete flow map, which maps the initial surface Γh[𝐱0]\Gamma_{h}[{\mathbf{x}}^{0}] to Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)]. If w(,t)w(\cdot,t) is a function defined on Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)] for t[0,T]t\in[0,T], then the material derivative t,hw\partial_{t,h}^{\bullet}w on Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)] with respect to the discrete flow map XhX_{h} is defined by

t,hw(x,t)=ddtw(Xh(p,t),t)forx=Xh(p,t)Γh[𝐱(t)].\partial_{t,h}^{\bullet}w(x,t)=\frac{\text{d}}{\text{d}t}w(X_{h}(p,t),t)\quad\mbox{for}\,\,\,x=X_{h}(p,t)\in\Gamma_{h}[{\mathbf{x}}(t)].

2.3. Finite element spaces

The globally continuous finite element basis functions on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] are denoted by

ϕi[𝐱]:Γh[𝐱],i=1,,N,\phi_{i}[{\mathbf{x}}]:\Gamma_{h}[{\mathbf{x}}]\rightarrow{\mathbb{R}},\qquad i=1,\dotsc,N,

which satisfy

ϕi[𝐱](xj)=δij for all i,j=1,,N.\phi_{i}[{\mathbf{x}}](x_{j})=\delta_{ij}\quad\text{ for all }i,j=1,\dotsc,N.

The pullback of ϕi[𝐱]\phi_{i}[{\mathbf{x}}] from any curved triangle on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] to the reference plane triangle is a polynomial of degree kk. It is known that the basis functions ϕj[𝐱(t)]\phi_{j}[{\mathbf{x}}(t)], j=1,,Nj=1,\dots,N, have the following transport property (see [15])

(2.8) t,hϕj[𝐱(t)]=0onΓh[𝐱(t)],j=1,,N.\displaystyle\partial_{t,h}^{\bullet}\phi_{j}[{\mathbf{x}}(t)]=0\quad\mbox{on}\,\,\,\Gamma_{h}[{\mathbf{x}}(t)],\,\,\,j=1,\dots,N.

The finite element space on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] is defined as

Sh(Γh[𝐱])=span{j=1Nvjϕj[𝐱]:vj3},S_{h}(\Gamma_{h}[{\mathbf{x}}])=\textnormal{span}\bigg{\{}\sum_{j=1}^{N}v_{j}\phi_{j}[{\mathbf{x}}]:v_{j}\in{\mathbb{R}}^{3}\bigg{\}},

where each vjv_{j} is a 33-dimensional column vector.

2.4. Interpolated surface and lift onto the exact surface

In order to compare functions on the exact surface Γ[X(,t)]\Gamma[X(\cdot,t)] with functions on the approximate surface Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)], we introduce the interpolated surface Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}^{*}(t)], where 𝐱(t){\mathbf{x}}^{*}(t) denotes the nodal vector collecting the nodes xj(t)=X(pj,t)x_{j}^{*}(t)=X(p_{j},t), j=1,,Nj=1,\dots,N, moving along with the exact surface.

For any point xΓh[𝐱(t)]x\in\Gamma_{h}[{\mathbf{x}}^{*}(t)] there exists a unique lifted point xlΓ[X(,t)]x^{l}\in\Gamma[X(\cdot,t)], which was defined for linear and higher-order surface approximations in [11] and [9], respectively. The lift operator is one-to-one and onto. As a result, any function ww on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] can be lifted to a function wlw^{l} on Γ\Gamma, defined as.

wl(xl)=w(x).w^{l}(x^{l})=w(x).

Let δh(x)\delta_{h}(x) be the quotient between the continuous and interpolated surface measures, i.e., dA(xl)=δh(x)dAh(x)\text{d}A(x^{l})=\delta_{h}(x)\text{d}A_{h}(x). Then the following inequality holds (cf. [21, Lemma 5.2]):

(2.9) 1δhL(Γh)chk+1.\displaystyle\|1-\delta_{h}\|_{L^{\infty}(\Gamma_{h}^{*})}\leq ch^{k+1}.

If we denote by Ih:C(Γ[X(,t)])Sh(Γh[𝐱(t)])I_{h}:C(\Gamma[X(\cdot,t)])\rightarrow S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}(t)]) the standard Lagrange interpolation operator, then the lifted Lagrange interpolation (Ihv)l(I_{h}v)^{l} approximates a function vv on Γ[X(,t)]\Gamma[X(\cdot,t)] with optimal-order accuracy (cf. [9, Proposition 2.7]), i.e.,

(2.10) v(Ihv)lL2(Γ[X(,t)])CvHk+1(Γ[X(,t)])hk+1.\displaystyle\|v-(I_{h}v)^{l}\|_{L^{2}(\Gamma[X(\cdot,t)])}\leq C\|v\|_{H^{k+1}(\Gamma[X(\cdot,t)])}h^{k+1}.

We denote by n^h\hat{n}_{h}^{*} the normal vector on Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}^{*}(t)] and denote by n^h,l\hat{n}_{h}^{*,l} its lift onto Γ[X(,t)]\Gamma[X(\cdot,t)]. Then n^h,l\hat{n}_{h}^{*,l} approximates the normal vector nn on Γ[X(,t)]\Gamma[X(\cdot,t)] with the following accuracy (cf. [9, Propositions 2.3]):

(2.11) n^h,lnL(Γ[X(,t)])Chk.\displaystyle\|\hat{n}_{h}^{*,l}-n\|_{L^{\infty}(\Gamma[X(\cdot,t)])}\leq Ch^{k}.

2.5. The main result

The mean curvature flow equation (1.1) can be equivalently written as

(2.12) {tid=ΔΓ[X(,t)]idonΓ[X(,t)],fort(0,T],Γ[X(,0)]=Γ0.\displaystyle\left\{\begin{aligned} &\partial_{t}^{\bullet}{\rm id}=\Delta_{\Gamma[X(\cdot,t)]}{\rm id}&&\mbox{on}\,\,\,\Gamma[X(\cdot,t)],\,\,\,\mbox{for}\,\,\,t\in(0,T],\\[5.0pt] &\Gamma[X(\cdot,0)]=\Gamma^{0}.\end{aligned}\right.

Correspondingly, the semidiscrete evolving surface FEM for mean curvature flow is to find a nodal vector 𝐱(t){\mathbf{x}}(t), t[0,T]t\in[0,T], such that the corresponding approximate surface Γh[𝐱(t)]\Gamma_{h}[{\mathbf{x}}(t)] satisfies the following weak form:

(2.13) {Γh[𝐱(t)]tidvh+Γh[𝐱(t)]Γh[𝐱(t)]id:Γh[𝐱(t)]vh=0vhSh(Γh[𝐱(t)]),t(0,T],𝐱(0)=𝐱0.\displaystyle\left\{\begin{aligned} &\int_{\Gamma_{h}[{\mathbf{x}}(t)]}\partial_{t}^{\bullet}{\rm id}\cdot v_{h}+\int_{\Gamma_{h}[{\mathbf{x}}(t)]}\nabla_{\Gamma_{h}[{\mathbf{x}}(t)]}{\rm id}:\nabla_{\Gamma_{h}[{\mathbf{x}}(t)]}v_{h}=0\\[5.0pt] &\hskip 100.0pt\quad\forall\,v_{h}\in S_{h}(\Gamma_{h}[{\mathbf{x}}(t)]),\,\,\,t\in(0,T],\\[5.0pt] &{\mathbf{x}}(0)={\mathbf{x}}^{0}.\end{aligned}\right.

The mass matrix 𝐌(𝐱){\bf M}({\mathbf{x}}) and stiffness matrix 𝐀(𝐱){\bf A}({\mathbf{x}}) on the surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] consist of block components

𝐌ij(𝐱)=I3Γh[𝐱]ϕi[𝐱]ϕj[𝐱]and𝐀ij(𝐱)=I3Γh[𝐱]Γh[𝐱]ϕi[𝐱]Γh[𝐱]ϕj[𝐱],\displaystyle{\bf M}_{ij}({\mathbf{x}})=I_{3}\int_{\Gamma_{h}[{\mathbf{x}}]}\phi_{i}[{\mathbf{x}}]\phi_{j}[{\mathbf{x}}]\quad\mbox{and}\quad{\bf A}_{ij}({\mathbf{x}})=I_{3}\int_{\Gamma_{h}[{\mathbf{x}}]}\nabla_{\Gamma_{h}[{\mathbf{x}}]}\phi_{i}[{\mathbf{x}}]\cdot\nabla_{\Gamma_{h}[{\mathbf{x}}]}\phi_{j}[{\mathbf{x}}],

for i,j=1,,Ni,j=1,\dots,N, where I3I_{3} is the 3×33\times 3 identity matrix. Substituting

id=j=1Nxj(t)ϕj[𝐱]andvh=ϕi[𝐱]{\rm id}=\sum_{j=1}^{N}x_{j}(t)\phi_{j}[{\mathbf{x}}]\quad\mbox{and}\quad v_{h}=\phi_{i}[{\mathbf{x}}]

into (2.13) and using the transport property (2.8), we obtain the following matrix-vector form of the semidiscrete FEM:

(2.14) {𝐌(𝐱)𝐱˙+𝐀(𝐱)𝐱=𝟎,𝐱(0)=𝐱0.\displaystyle\left\{\begin{aligned} &{\bf M}({\mathbf{x}})\dot{\mathbf{x}}+{\bf A}({\mathbf{x}}){\mathbf{x}}={\bf 0},\\ &{\mathbf{x}}(0)={\mathbf{x}}^{0}.\end{aligned}\right.

The main result of this paper is the following theorem.

Theorem 2.1.

Consider the semidiscrete FEM (2.14) with finite elements of degree kk. Suppose that the mean curvature flow problem (1.1) admits an exact solution XX that is sufficiently smooth on the time interval t[0,T]t\in[0,T], and that the flow map X(,t):Γ0Γ[X(,t)]3X(\cdot,t):\Gamma^{0}\rightarrow\Gamma[X(\cdot,t)]\subset{\mathbb{R}}^{3} is non-degenerate so that Γ[X(,t)]\Gamma[X(\cdot,t)] is a regular surface for every t[0,T]t\in[0,T]. Then, there exists a constant h0>0h_{0}>0 such that for all mesh sizes hh0h\leq h_{0} the following error bound holds when k6k\geq 6:

(2.15) maxt[0,T]Xhl(,t)X(,t)L2(Γ0)chk1,\displaystyle\max_{t\in[0,T]}\|X_{h}^{l}(\cdot,t)-X(\cdot,t)\|_{L^{2}(\Gamma^{0})}\leq ch^{k-1},
(2.16) maxt[0,T]𝐱(t)𝐱(t)chk2,\displaystyle\max_{t\in[0,T]}\|{\mathbf{x}}(t)-{\mathbf{x}}^{*}(t)\|_{\infty}\leq ch^{k-2},

where Xhl(,t)X_{h}^{l}(\cdot,t) denotes the lift of the approximate flow map Xh(,t)X_{h}(\cdot,t) from Γh[𝐱0]\Gamma_{h}[{\mathbf{x}}^{0}] onto Γ0\Gamma^{0}, and the constant cc is independent of hh.

3. Proof of Theorem 2.1

Throughout, we denote by cc a generic positive constant that takes different values on different occurrences.

3.1. Preliminaries

We denote by 𝐞=(e1,,eN)T=𝐱𝐱{\mathbf{e}}=(e_{1},\cdots,e_{N})^{T}={\mathbf{x}}-{\mathbf{x}}^{*} the vector consisting of the errors of numerical solutions at the nodes, and denote by

eh=j=1Nejϕj[𝐱]e_{h}=\sum_{j=1}^{N}e_{j}\phi_{j}[{\mathbf{x}}^{*}]

the finite element error function on surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}].

Let t[0,T]t^{*}\in[0,T] be the maximal time such that the solution of (2.14) exists and the following inequality hold (with coefficient 11):

(3.17) eh(,t)L2(Γh[𝐱(t)])h4\displaystyle\|e_{h}(\cdot,t)\|_{L^{2}(\Gamma_{h}[{\mathbf{x}}^{*}(t)])}\leq h^{4} for t[0,t].\displaystyle\textrm{ for }\quad t\in[0,t^{*}].

Since eh(,0)=0e_{h}(\cdot,0)=0, it follows that t>0t^{*}>0, as the solution 𝐱{\mathbf{x}} of the ordinary differential equation (2.14) exists locally in time and is continuous in time. In the following, we prove the stated error bounds for t[0,t]t\in[0,t^{*}]. Then we show that tt^{*} actually coincides with TT.

The smoothness and non-degeneracy of the flow map X(,t):Γ0Γ(t)X(\cdot,t):\Gamma^{0}\rightarrow\Gamma(t) guarantees that it is locally close to an invertible linear transformation with bounded gradient uniformly with respect to hh. Hence, it preserves the admissibility of grids with sufficiently small mesh width hh0h\leq h_{0}. This guarantees that the triangulations determined by the nodes xj(t)=X(pj,t)x_{j}^{*}(t)=X(p_{j},t) remain admissible uniformly for t[0,T]t\in[0,T] and hh0h\leq h_{0}, and the interpolated flow map Xh(,t)X_{h}^{*}(\cdot,t) and its inverse are bounded in W1,(Γh[𝐱0])W^{1,\infty}(\Gamma_{h}[{\mathbf{x}}^{0}]) (uniformly in hh). Then (3.17) implies, through inverse inequality,

(3.18) eh(,t)W1,(Γh[𝐱(t)])ch2\displaystyle\|e_{h}(\cdot,t)\|_{W^{1,\infty}(\Gamma_{h}[{\mathbf{x}}^{*}(t)])}\leq ch^{2} for t[0,t].\displaystyle\textrm{ for }\quad t\in[0,t^{*}].
Remark 3.1.

The powers of hh in (3.17) and (3.18) are needed to bound the nonlinear terms in the error estimation. For example, (3.17) is used to prove the W1,W^{1,\infty} boundedness of the numerical velocity in (3.3), which is used in bounding the nonlinear term in (3.3); inequality (3.18) is used in estimating the nonlinear terms in (3.4), (3.4) and (3.4). The powers of hh in (3.17) and (3.18) require high-order finite elements of degree k6k\geq 6 in view of our error estimate (2.15) — the power of hh in (2.15) should be strictly bigger than 44 in order to absorb the constant cc in the derivation of (3.17). This is done in (3.61) for sufficiently small hh.

Since Xh(,t)=Xh(,t)+eh(,t)Xh(,t)X_{h}(\cdot,t)=X_{h}^{*}(\cdot,t)+e_{h}(\cdot,t)\circ X_{h}^{*}(\cdot,t) and Xh(,t)X_{h}^{*}(\cdot,t) is bounded in W1,(Γh[𝐱0])W^{1,\infty}(\Gamma_{h}[{\mathbf{x}}^{0}]) (uniformly in hh), the estimate above guarantees that the approximate flow map Xh(,t):Γh[𝐱0]Γh[𝐱(t)]X_{h}(\cdot,t):\Gamma_{h}[{\mathbf{x}}^{0}]\rightarrow\Gamma_{h}[{\mathbf{x}}(t)] and its inverse are bounded in W1,(Γh[𝐱0])W^{1,\infty}(\Gamma_{h}[{\mathbf{x}}^{0}]) uniformly with respect to hh. Since deformation is the gradient of position, the boundedness of Xh(,t)X_{h}(\cdot,t) in W1,(Γh[𝐱0])W^{1,\infty}(\Gamma_{h}[{\mathbf{x}}^{0}]) (uniformly with respect to hh) guarantees that the mesh on the approximate surface is not degenerate. Moreover, we can define an intermediate surface

(3.19) Γhθ:=Γh[𝐱θ]with nodal vector 𝐱θ=(1θ)𝐱+θ𝐱.\displaystyle\Gamma_{h}^{\theta}:=\Gamma_{h}[{\mathbf{x}}^{\theta}]\quad\mbox{with nodal vector\,\, ${\mathbf{x}}^{\theta}=(1-\theta){\mathbf{x}}^{*}+\theta{\mathbf{x}}.$}

The estimate (3.18) also guarantees that the intermediate surface Γhθ\Gamma_{h}^{\theta} is well defined with non-degenerate mesh, with

Γh1=Γh[𝐱]andΓh0=Γh=Γh[𝐱].\Gamma_{h}^{1}=\Gamma_{h}[{\mathbf{x}}]\quad\mbox{and}\quad\Gamma_{h}^{0}=\Gamma_{h}^{*}=\Gamma_{h}[{\mathbf{x}}^{*}].

The argument above is standard and was used in [22].

For any nodal vector 𝐰=(w1,,wN)T{\mathbf{w}}=(w_{1},\dots,w_{N})^{T} with wj3w_{j}\in{\mathbb{R}}^{3}, we define a finite element function

whθ=j=1Nwjϕj[𝐱θ]Sh(Γhθ)w_{h}^{\theta}=\sum_{j=1}^{N}w_{j}\phi_{j}[{\mathbf{x}}^{\theta}]\in S_{h}(\Gamma_{h}^{\theta})

on the intermediate surface Γhθ\Gamma_{h}^{\theta}. In particular,

ehθ=j=1Nejϕj[𝐱θ]e_{h}^{\theta}=\sum_{j=1}^{N}e_{j}\phi_{j}[{\mathbf{x}}^{\theta}]

is the finite element error function on the surface Γhθ\Gamma_{h}^{\theta}. As θ\theta changes from 0 to 11, the surface Γhθ\Gamma_{h}^{\theta} moves with velocity ehθ=j=1Nejϕj[𝐱θ]e_{h}^{\theta}=\sum_{j=1}^{N}e_{j}\phi_{j}[{\mathbf{x}}^{\theta}] (with respect to θ\theta). When θ=0\theta=0 we simply denote

(3.20) eh=eh0,\displaystyle e_{h}^{*}=e_{h}^{0},

which is a function on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}]. The lift of ehSh[Γh]e_{h}^{*}\in S_{h}[\Gamma_{h}^{*}] onto Γ\Gamma is denoted by eh,le_{h}^{*,l}.

On the intermediate surface Γhθ\Gamma_{h}^{\theta} we define the following discrete L2L^{2} norm and H1H^{1} semi-norm:

(3.21) 𝐰𝐌(𝐱θ)2=𝐰T𝐌(𝐱θ)𝐰=whθL2(Γhθ)2,\displaystyle\|{\mathbf{w}}\|_{{\mathbf{M}}({\mathbf{x}}^{\theta})}^{2}={\mathbf{w}}^{T}{\mathbf{M}}({\mathbf{x}}^{\theta}){\mathbf{w}}=\|w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}^{2},
(3.22) 𝐰𝐀(𝐱θ)2=𝐰T𝐀(𝐱θ)𝐰=ΓhθwhθL2(Γhθ)2.\displaystyle\|{\mathbf{w}}\|_{{\mathbf{A}}({\mathbf{x}}^{\theta})}^{2}={\mathbf{w}}^{T}{\mathbf{A}}({\mathbf{x}}^{\theta}){\mathbf{w}}=\|\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}^{2}.
Lemma 3.1.

In the above setting, the following identities hold:

(3.23) 𝐰T(𝐌(𝐱)𝐌(𝐱))𝐳=01Γhθwhθ(Γhθehθ)zhθdθ,\displaystyle{\mathbf{w}}^{T}({\mathbf{M}}({\mathbf{x}})-{\mathbf{M}}({\mathbf{x}}^{*})){\mathbf{z}}=\ \int_{0}^{1}\int_{\Gamma_{h}^{\theta}}w_{h}^{\theta}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})z_{h}^{\theta}\;\text{d}\theta,
𝐰T(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)\displaystyle{\bf w}^{T}\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}
(3.24) =01Γhθ(Γhθwhθ:(DΓhθehθ)Γhθid+Γhθwhθ:Γhθehθ)dθ,\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{(}\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:(D_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\nabla_{\Gamma_{h}^{\theta}}{\rm id}+\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\bigg{)}\;\text{d}\theta,

where A:B=tr(ATB)A:B={\rm tr}(A^{T}B) for two 3×33\times 3 matrices AA and BB, and

DΓhθehθ=tr(Eθ)I3(Eθ+(Eθ)T)withEθ=Γhθehθ.D_{\Gamma_{h}^{\theta}}e_{h}^{\theta}=\textnormal{tr}(E^{\theta})I_{3}-(E^{\theta}+(E^{\theta})^{T})\quad\mbox{with}\quad E^{\theta}=\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}.
Proof.

Identity (3.23) was proved in [23, Lemma 4.1]. Identity (3.1) can be proved as follows.

Let 𝐰=(w1,,wN)T{\bf w}=(w_{1},\cdots,w_{N})^{T} and denote wθ=j=1Nwjϕj[𝐱θ]w^{\theta}=\sum_{j=1}^{N}w_{j}\phi_{j}[{\mathbf{x}}^{\theta}] to be the finite element function on the surface Γhθ\Gamma_{h}^{\theta} with nodal vector 𝐰{\bf w}, where 𝐱θ{\mathbf{x}}^{\theta} is defined in (3.19). As θ\theta changes from 0 to 11, the surface Γhθ\Gamma_{h}^{\theta} moves with velocity ehθ=j=1Nejϕj[𝐱θ]e_{h}^{\theta}=\sum_{j=1}^{N}e_{j}\phi_{j}[{\mathbf{x}}^{\theta}] with respect to θ\theta and θwθ=0\partial_{\theta}^{\bullet}w^{\theta}=0. By using the fundamental theorem of calculus and the Leibniz formula, we have

𝐰T(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)\displaystyle{\bf w}^{T}\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}
=\displaystyle= Γh1Γh1wh1:Γh1idΓh0Γh0wh0:Γh0id\displaystyle\ \int_{\Gamma_{h}^{1}}\!\!\!\nabla_{\Gamma_{h}^{1}}w_{h}^{1}:\nabla_{\Gamma_{h}^{1}}{\rm id}-\int_{\Gamma_{h}^{0}}\!\!\!\nabla_{\Gamma_{h}^{0}}w_{h}^{0}:\nabla_{\Gamma_{h}^{0}}{\rm id}
=\displaystyle= 01(ddθΓhθΓhθwhθ:Γhθid)dθ\displaystyle\int_{0}^{1}\bigg{(}\frac{\text{d}}{\text{d}\theta}\int_{\Gamma_{h}^{\theta}}\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}{\rm id}\bigg{)}\text{d}\theta
=\displaystyle= 01Γhθ((Γhθehθ)Γhθwhθ:ΓhθidΓhθwhθ:(Γhθehθ+(Γhθehθ)T)Γhθid\displaystyle\ \int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{(}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}{\rm id}-\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}+(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})^{T})\nabla_{\Gamma_{h}^{\theta}}{\rm id}
+Γhθθwhθ:Γhθid+Γhθwhθ:Γhθθid)dθ,\displaystyle\hskip 50.0pt+\nabla_{\Gamma_{h}^{\theta}}\partial_{\theta}^{\bullet}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}{\rm id}+\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}\partial_{\theta}^{\bullet}{\rm id}\bigg{)}\;\text{d}\theta,

where the last equality was essentially proved in [15, eq (2.11)]. By using the notation EθE^{\theta} and DΓhθehθD_{\Gamma_{h}^{\theta}}e_{h}^{\theta} in Lemma 3.1, and using the identities

θwθ=0andθid=ehθ,\partial_{\theta}^{\bullet}w^{\theta}=0\quad\mbox{and}\quad\partial_{\theta}^{\bullet}{\rm id}=e_{h}^{\theta},

we obtain (3.1). ∎

The following lemma combines [23, Lemmas 4.2 and 4.3] and [22, Lemma 7.3].

Lemma 3.2.

In the above setting, if

Γh[𝐱]ehL(Γh[𝐱])12,\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}e_{h}^{*}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}\leq\tfrac{1}{2},

then for 0θ10\leq\theta\leq 1 and 1p1\leq p\leq\infty the finite element function

whθ=j=1Nwjϕj[𝐱θ]onΓhθw_{h}^{\theta}=\sum_{j=1}^{N}w_{j}\phi_{j}[{\mathbf{x}}^{\theta}]\quad\mbox{on}\quad\Gamma_{h}^{\theta}

satisfies the following norm equivalence:

whθLp(Γhθ)cpwh0Lp(Γh[𝐱]),\displaystyle\|w_{h}^{\theta}\|_{L^{p}(\Gamma_{h}^{\theta})}\leq c_{p}\,\|w_{h}^{0}\|_{L^{p}(\Gamma_{h}[{\mathbf{x}}^{*}])},
ΓhθwhθLp(Γhθ)cpΓh[𝐱]wh0Lp(Γh[𝐱]),\displaystyle\|\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}\|_{L^{p}(\Gamma_{h}^{\theta})}\leq c_{p}\,\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}w_{h}^{0}\|_{L^{p}(\Gamma_{h}[{\mathbf{x}}^{*}])},

where cpc_{p} is an constant independent of 0θ10\leq\theta\leq 1 and hh, with c=2c_{\infty}=2.

For sufficiently small hh, (3.18) guarantees that

Γh[𝐱]eh0L(Γh[𝐱])=Γh[𝐱]ehL(Γh[𝐱])14.\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}e_{h}^{0}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}=\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}e_{h}^{*}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}\leq\frac{1}{4}.

Then Lemma 3.2 implies that

(3.25) ΓhθehθL(Γhθ)12,0θ1.\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{\infty}(\Gamma_{h}^{\theta})}\leq\frac{1}{2},\qquad 0\leq\theta\leq 1.

By using this result in Lemma 3.1, together with the definition of the discrete L2L^{2} and H1H^{1} norms in (3.21)–(3.22), we obtain the following result (as in (7.7) of [22]):

(3.26) The norms 𝐌(𝐱θ)\|\cdot\|_{{\mathbf{M}}({\mathbf{x}}^{\theta})} are hh-uniformly equivalent for 0θ10\leq\theta\leq 1,
and so are the norms 𝐀(𝐱θ)\|\cdot\|_{{\mathbf{A}}({\mathbf{x}}^{\theta})}.

3.2. The monotone structure

Note that the interpolated nodal vector 𝐱{\mathbf{x}}^{*} satisfies equation (2.14) up to some defect 𝐝{\bf d}, i.e.,

(3.27) 𝐌(𝐱)𝐱˙+𝐀(𝐱)𝐱=𝐌(𝐱)𝐝,\displaystyle{\bf M}({\mathbf{x}}^{*})\dot{\mathbf{x}}^{*}+{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}={\bf M}({\mathbf{x}}^{*}){\bf d},

where the defect satisfies the following estimate (to be proved in Section 5):

(3.28) 𝐝𝐌(𝐱)Chk1.\displaystyle\|{\bf d}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\leq Ch^{k-1}.

Subtracting (3.27) from (2.14), we obtain the error equation

(3.29) 𝐌(𝐱)𝐞˙+𝐀(𝐱)𝐱𝐀(𝐱)𝐱=(𝐌(𝐱)𝐌(𝐱))𝐱˙𝐌(𝐱)𝐝.\displaystyle{\bf M}({\mathbf{x}})\dot{\mathbf{e}}+{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}=-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}-{\bf M}({\mathbf{x}}^{*}){\bf d}.

By using Lemma 3.1, we have

(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)(𝐱𝐱)\displaystyle\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}\cdot({\mathbf{x}}-{\mathbf{x}}^{*})
=01Γhθ(Γhθehθ:(DΓhθehθ)Γhθid+Γhθehθ:Γhθehθ)dθ\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}:(D_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\nabla_{\Gamma_{h}^{\theta}}{\rm id}+\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\bigg{)}\;\text{d}\theta
(3.30) =01Γhθ(Γhθehθ:[(DΓhθehθ)Pθ+Γhθehθ])dθ,\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}:[(D_{\Gamma_{h}^{\theta}}e_{h}^{\theta})P^{\theta}+\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}]\bigg{)}\;\text{d}\theta,

where DΓhθehθ=tr(Eθ)I3(Eθ+(Eθ)T)D_{\Gamma_{h}^{\theta}}e_{h}^{\theta}=\textnormal{tr}(E^{\theta})I_{3}-(E^{\theta}+(E^{\theta})^{T}) is defined in Lemma 3.1, and we have used the identity

Γhθid=I3n^hθ(n^hθ)T=:Pθ,\nabla_{\Gamma_{h}^{\theta}}{\rm id}=I_{3}-\hat{n}_{h}^{\theta}(\hat{n}_{h}^{\theta})^{T}=:P^{\theta},

with n^hθ\hat{n}_{h}^{\theta} denoting the unit normal vector on Γhθ\Gamma_{h}^{\theta} (thus n^hθSh(Γhθ)\hat{n}_{h}^{\theta}\notin S_{h}(\Gamma_{h}^{\theta})).

Note that PθP^{\theta} is a symmetric projection matrix satisfying

PθEθ=Eθ,(Eθ)TPθ=(Eθ)Tandtr(Pθ(Eθ)T)=tr((Eθ)TPθ)=tr(PθEθ)=tr(Eθ).P^{\theta}E^{\theta}=E^{\theta},\,\,\,(E^{\theta})^{T}P^{\theta}=(E^{\theta})^{T}\,\,\,\mbox{and}\,\,\,{\rm tr}(P^{\theta}(E^{\theta})^{T})={\rm tr}((E^{\theta})^{T}P^{\theta})={\rm tr}(P^{\theta}E^{\theta})={\rm tr}(E^{\theta}).

By using the properties above and the expression of DΓhθehθD_{\Gamma_{h}^{\theta}}e_{h}^{\theta}, we furthermore reduce (3.2) to

(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)(𝐱𝐱)\displaystyle\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}\cdot({\mathbf{x}}-{\mathbf{x}}^{*})
=01Γhθ[tr((Eθ)T(tr(Eθ)I3Eθ(Eθ)T)Pθ)+tr((Eθ)TEθ)]dθ\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{[}{\rm tr}\Big{(}(E^{\theta})^{T}({\rm tr}(E^{\theta})I_{3}-E^{\theta}-(E^{\theta})^{T})P^{\theta}\Big{)}+{\rm tr}((E^{\theta})^{T}E^{\theta})\bigg{]}\;\text{d}\theta
=01Γhθ[tr(tr(Eθ)(Eθ)TPθ(Eθ)TEθPθ(Eθ)T(Eθ)TPθ)+tr((Eθ)TEθ)]dθ\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{[}{\rm tr}({\rm tr}(E^{\theta})(E^{\theta})^{T}P^{\theta}-(E^{\theta})^{T}E^{\theta}P^{\theta}-(E^{\theta})^{T}(E^{\theta})^{T}P^{\theta})+{\rm tr}((E^{\theta})^{T}E^{\theta})\bigg{]}\;\text{d}\theta
(3.31) =01Γhθ[tr(Eθ)2tr(EθEθ)+tr((Eθ)TEθ(IPθ))]dθ.\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{[}{\rm tr}(E^{\theta})^{2}-{\rm tr}(E^{\theta}E^{\theta})+{\rm tr}((E^{\theta})^{T}E^{\theta}(I-P^{\theta}))\bigg{]}\;\text{d}\theta.

Then we use the following lemma, of which the proof is presented in Section 4.

Lemma 3.3.

In the above setting, the following identity holds:

(3.32) Γhθ[tr(Eθ)2tr(EθEθ)]=0.\displaystyle\int_{\Gamma_{h}^{\theta}}\big{[}{\rm tr}(E^{\theta})^{2}-{\rm tr}(E^{\theta}E^{\theta})\big{]}=0.

By applying Lemma 3.3 to (3.2), we obtain

(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)(𝐱𝐱)\displaystyle\big{(}{\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}\big{)}\cdot({\mathbf{x}}-{\mathbf{x}}^{*}) =01Γhθtr((Eθ)TEθ(IPθ))dθ\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}{\rm tr}((E^{\theta})^{T}E^{\theta}(I-P^{\theta}))\;\text{d}\theta
(3.33) =01Γhθ|(Γhθehθ)n^hθ|2dθ.\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta.

This is the key identity to be used in our error estimation. This identity reflects the monotone structure of the discrete nonlinear operator from 𝐱{\mathbf{x}} to 𝐀(𝐱)𝐱{\bf A}({\mathbf{x}}){\mathbf{x}}.

3.3. Error estimation

Testing (3.29) by 𝐞{\mathbf{e}} and using (3.2), we obtain

𝐌(𝐱)𝐞˙𝐞+01Γhθ|(Γhθehθ)n^hθ|2dθ\displaystyle{\bf M}({\mathbf{x}})\dot{\mathbf{e}}\cdot{\mathbf{e}}+\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta
(3.34) =(𝐌(𝐱)𝐌(𝐱))𝐱˙𝐞𝐌(𝐱)𝐝𝐞.\displaystyle=-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\mathbf{e}}-{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\mathbf{e}}.

This can be equivalently formulated as

ddt(12𝐌(𝐱)𝐞𝐞)+01Γhθ|(Γhθehθ)n^hθ|2dθ\displaystyle\frac{\text{d}}{\text{d}t}\bigg{(}\frac{1}{2}{\bf M}({\mathbf{x}}){\mathbf{e}}\cdot{\mathbf{e}}\bigg{)}+\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta
(3.35) =12𝐌˙(𝐱)𝐞𝐞(𝐌(𝐱)𝐌(𝐱))𝐱˙𝐞𝐌(𝐱)𝐝𝐞.\displaystyle=\frac{1}{2}\dot{\bf M}({\mathbf{x}}){\mathbf{e}}\cdot{\mathbf{e}}-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\mathbf{e}}-{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\mathbf{e}}.

Let v=Hnv=-Hn be the velocity of the exact surface Γ\Gamma, and let vjv_{j}^{*} be the velocity of the exact surface at the jjth interpolation node. We define

vh=j=1Nvjϕj[𝐱]=j=1Nx˙jϕj[𝐱],v_{h}^{*}=\sum_{j=1}^{N}v_{j}^{*}\phi_{j}[{\mathbf{x}}^{*}]=\sum_{j=1}^{N}\dot{x}_{j}^{*}\phi_{j}[{\mathbf{x}}^{*}],

which is the interpolation of vv onto Sh(Γh[𝐱])S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]). Let vh,lv_{h}^{*,l} be the lift of vhv_{h}^{*} onto the exact surface Γ\Gamma, and denote

vh,θ=j=1Nvjϕj[𝐱θ]=j=1Nx˙jϕj[𝐱θ],v_{h}^{*,\theta}=\sum_{j=1}^{N}v_{j}^{*}\phi_{j}[{\mathbf{x}}^{\theta}]=\sum_{j=1}^{N}\dot{x}_{j}^{*}\phi_{j}[{\mathbf{x}}^{\theta}],

which is a finite element function on the surface Γhθ\Gamma_{h}^{\theta}.

Let vh=j=1Nx˙jϕj[𝐱]v_{h}=\sum_{j=1}^{N}\dot{x}_{j}\phi_{j}[{\mathbf{x}}] be the velocity of the approximate surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}], and let

vhθ=j=1Nx˙jϕj[𝐱θ].v_{h}^{\theta}=\sum_{j=1}^{N}\dot{x}_{j}\phi_{j}[{\mathbf{x}}^{\theta}].

Then the nodal vector associated to the finite element function vh0vhSh(Γh[𝐱])v_{h}^{0}-v_{h}^{*}\in S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]) is 𝐞˙\dot{\mathbf{e}}, and by using the norm equivalence in Lemma 3.2,

Γh[𝐱]vhL(Γh[𝐱])\displaystyle\|\nabla_{\Gamma_{h}[{\mathbf{x}}]}\cdot v_{h}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}])}\leq cΓh[𝐱]vhL(Γh[𝐱])\displaystyle c\|\nabla_{\Gamma_{h}[{\mathbf{x}}]}v_{h}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}])}
\displaystyle\leq cΓh[𝐱]vh0L(Γh[𝐱])\displaystyle c\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}v_{h}^{0}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}
\displaystyle\leq cΓh[𝐱](vh0vh)L(Γh[𝐱])+cΓh[𝐱]vhL(Γh[𝐱])\displaystyle c\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}(v_{h}^{0}-v_{h}^{*})\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}+c\|\nabla_{\Gamma_{h}[{\mathbf{x}}^{*}]}v_{h}^{*}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}])}
\displaystyle\leq ch2vh0vhL2(Γh[𝐱])+c(inverse inequality)\displaystyle ch^{-2}\|v_{h}^{0}-v_{h}^{*}\|_{L^{2}(\Gamma_{h}[{\mathbf{x}}^{*}])}+c\quad\mbox{(inverse inequality)}
=\displaystyle= ch2𝐞˙𝐌(𝐱)+c\displaystyle ch^{-2}\|\dot{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}+c
\displaystyle\leq ch4𝐞𝐌(𝐱)+chk3+c\displaystyle ch^{-4}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}+ch^{k-3}+c
(3.36) \displaystyle\leq c,\displaystyle c,

where the last inequality uses (3.17) and k3k\geq 3, and the second to last inequality can be proved as follows. Testing (3.29) with 𝐰{\bf w}, we obtain

(3.37) 𝐌(𝐱)𝐞˙𝐰\displaystyle{\mathbf{M}}({\mathbf{x}}^{*})\dot{\mathbf{e}}\cdot{\bf w} =(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)𝐰(𝐌(𝐱)𝐌(𝐱))𝐱˙𝐰𝐌(𝐱)𝐝𝐰.\displaystyle=-({\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*})\cdot{\bf w}-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\bf w}-{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\bf w}.

By using Lemma 3.1, we have

(𝐀(𝐱)𝐱𝐀(𝐱)𝐱)𝐰\displaystyle-({\bf A}({\mathbf{x}}){\mathbf{x}}-{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*})\cdot{\bf w}
=01Γhθ(Γhθwhθ:(DΓhθehθ)Γhθid+Γhθwhθ:Γhθehθ)dθ\displaystyle=-\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}\bigg{(}\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:(D_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\nabla_{\Gamma_{h}^{\theta}}{\rm id}+\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}:\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\bigg{)}\;\text{d}\theta
01cΓhθwhθL2(Γhθ)ΓhθehθL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}c\|\nabla_{\Gamma_{h}^{\theta}}w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
01ch2whθL2(Γhθ)ehθL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}ch^{-2}\|w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
(3.38) =ch2𝐰𝐌(𝐱)𝐞𝐌(𝐱).\displaystyle=ch^{-2}\|{\bf w}\|_{{\bf M}({\mathbf{x}}^{*})}\|{\mathbf{e}}\|_{{\bf M}({\mathbf{x}}^{*})}.

By denoting x˙hθ=j=1Nx˙jϕj[𝐱θ]\dot{x}_{h}^{\theta}=\sum_{j=1}^{N}\dot{x}_{j}^{*}\phi_{j}[{\mathbf{x}}^{\theta}], we have

(𝐌(𝐱)𝐌(𝐱)𝐱˙𝐰\displaystyle-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*})\dot{\mathbf{x}}^{*}\cdot{\bf w} =01Γhθ(Γhθehθ)whθx˙hθdθ\displaystyle=-\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})w_{h}^{\theta}\cdot\dot{x}_{h}^{\theta}\,\text{d}\theta
01cwhθL2(Γhθ)ΓhθehθL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}c\|w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
01ch1whθL2(Γhθ)ehθL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}ch^{-1}\|w_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
(3.39) =ch1𝐰𝐌(𝐱)𝐞𝐌(𝐱).\displaystyle=ch^{-1}\|{\bf w}\|_{{\bf M}({\mathbf{x}}^{*})}\|{\mathbf{e}}\|_{{\bf M}({\mathbf{x}}^{*})}.

By using the estimate (3.28) for the defect 𝐝{\bf d}, we have

(3.40) 𝐌(𝐱)𝐝𝐰\displaystyle{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\bf w} c𝐝𝐌(𝐱)𝐰𝐌(𝐱)chk1𝐰𝐌(𝐱).\displaystyle\leq c\|{\bf d}\|_{{\bf M}({\mathbf{x}}^{*})}\|{\bf w}\|_{{\bf M}({\mathbf{x}}^{*})}\leq ch^{k-1}\|{\bf w}\|_{{\bf M}({\mathbf{x}}^{*})}.

Substituting (3.3)–(3.40) into (3.37) and choosing 𝐰=𝐞˙{\bf w}=\dot{\mathbf{e}}, we obtain

𝐞˙𝐌(𝐱)c(hk1+h2𝐞𝐌(𝐱)).\|\dot{\mathbf{e}}\|_{{\bf M}({\mathbf{x}}^{*})}\leq c(h^{k-1}+h^{-2}\|{\mathbf{e}}\|_{{\bf M}({\mathbf{x}}^{*})}).

This proves the second to last inequality of (3.3).

Recall that the finite element function on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}] with the nodal vector 𝐞{\mathbf{e}} is denoted by eh1e_{h}^{1}. By using (3.3), the first term on the right-hand side of (3.3) can be estimated as follows:

12𝐌˙(𝐱)𝐞𝐞=\displaystyle\frac{1}{2}\dot{\bf M}({\mathbf{x}}){\mathbf{e}}\cdot{\mathbf{e}}= 12Γh[𝐱](Γh[𝐱]vh)eh1eh1(this can be obtained from [15, (2.9)])\displaystyle\frac{1}{2}\int_{\Gamma_{h}[{\mathbf{x}}]}(\nabla_{\Gamma_{h}[{\mathbf{x}}]}\cdot v_{h})e_{h}^{1}\cdot e_{h}^{1}\quad\mbox{(this can be obtained from \cite[cite]{[\@@bibref{}{DziukElliott_ESFEM}{}{}, (2.9)]})}
\displaystyle\leq cΓh[𝐱]vhL(Γh[𝐱])eh1L2(Γh[𝐱])2\displaystyle c\|\nabla_{\Gamma_{h}[{\mathbf{x}}]}\cdot v_{h}\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}])}\|e_{h}^{1}\|_{L^{2}(\Gamma_{h}[{\mathbf{x}}])}^{2}
\displaystyle\leq c𝐞𝐌(𝐱)2\displaystyle c\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})}^{2}
(3.41) \displaystyle\leq c𝐞𝐌(𝐱)2,\displaystyle c\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2},

where the norm equivalence in (3.26) is used.

The third term on the right-hand side of (3.3) satisfies

(3.42) 𝐌(𝐱)𝐝𝐞\displaystyle-{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\mathbf{e}}\leq c𝐝𝐌(𝐱)𝐞𝐌(𝐱)chk1𝐞𝐌(𝐱).\displaystyle c\|{\bf d}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\leq ch^{k-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}.

We decompose the second term on the right-hand side of (3.3) into several terms as follows:

(𝐌(𝐱)𝐌(𝐱))𝐱˙𝐞\displaystyle-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\mathbf{e}}
=01Γhθ(Γhθehθ)vh,θehθdθ\displaystyle=-\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})v_{h}^{*,\theta}\cdot e_{h}^{\theta}\;\text{d}\theta
=01(Γhθ(Γhθehθ)vh,θehθΓh(Γheh)vheh)dθ\displaystyle=-\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{\theta}}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})v_{h}^{*,\theta}\cdot e_{h}^{\theta}-\int_{\Gamma_{h}^{*}}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})v_{h}^{*}\cdot e_{h}^{*}\bigg{)}\;\text{d}\theta
01(Γh(Γheh)vhehΓ(Γheh)lvh,leh,l)dθ\displaystyle\quad-\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{*}}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})v_{h}^{*}\cdot e_{h}^{*}-\int_{\Gamma}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})^{l}v_{h}^{*,l}\cdot e_{h}^{*,l}\bigg{)}\;\text{d}\theta
01Γ[(Γheh)lΓeh,l]vh,leh,ldθ\displaystyle\quad-\int_{0}^{1}\int_{\Gamma}\big{[}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})^{l}-\nabla_{\Gamma}\cdot e_{h}^{*,l}\big{]}v_{h}^{*,l}\cdot e_{h}^{*,l}\;\text{d}\theta
01Γ(Γeh,l)(vh,lv)eh,ldθ\displaystyle\quad-\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})(v_{h}^{*,l}-v)\cdot e_{h}^{*,l}\;\text{d}\theta
+01Γ(Γeh,l)Hneh,ldθ(we have substituted v=Hn here)\displaystyle\quad+\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})Hn\cdot e_{h}^{*,l}\text{d}\theta\quad\mbox{(we have substituted $v=-Hn$ here)}
(3.43) =:J1+J2+J3+J4+01Γ(Γeh,l)Hneh,ldθ.\displaystyle=:J_{1}+J_{2}+J_{3}+J_{4}+\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})Hn\cdot e_{h}^{*,l}\text{d}\theta.

The purpose of transforming from Γhθ\Gamma_{h}^{\theta} to Γ\Gamma (namely to be able to replace vv with HnHn) is to perform integration by parts on the last term of (3.3). This would yield (Γeh,l)n(\nabla_{\Gamma}e_{h}^{*,l})n, which is the only term that contains the partial derivative of eh,le_{h}^{*,l} on the right-hand side. The term (Γeh,l)n(\nabla_{\Gamma}e_{h}^{*,l})n can be furthermore converted to (Γhθehθ)n^hθ(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta} (which can be absorbed by the left-hand side of (3.3)) after transforming Γ\Gamma back to Γhθ\Gamma_{h}^{\theta}, as shown in the following estimates.

The last term in (3.3) can be estimated as follows. Using the integration by parts formula (cf. [16, Section 2.3])

ΓfΓφ=ΓfHnφΓΓfφ,\int_{\Gamma}f\,\nabla_{\Gamma}\cdot\varphi=\int_{\Gamma}f\,Hn\cdot\varphi-\int_{\Gamma}\nabla_{\Gamma}f\cdot\varphi,

we have

01Γ(Γeh,l)Hneh,ldθ\displaystyle\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})Hn\cdot e_{h}^{*,l}\text{d}\theta
=01Γ|Hneh,l|201Γeh,lΓ(Hneh,l)dθ\displaystyle=\int_{0}^{1}\int_{\Gamma}|Hn\cdot e_{h}^{*,l}|^{2}-\int_{0}^{1}\int_{\Gamma}e_{h}^{*,l}\cdot\nabla_{\Gamma}(Hn\cdot e_{h}^{*,l})\text{d}\theta
=01Γ|Hneh,l|2dθ01Γ(eh,lΓH)neh,ldθ01ΓHeh,l(Γn)eh,ldθ\displaystyle=\int_{0}^{1}\int_{\Gamma}|Hn\cdot e_{h}^{*,l}|^{2}\text{d}\theta-\int_{0}^{1}\int_{\Gamma}(e_{h}^{*,l}\cdot\nabla_{\Gamma}H)n\cdot e_{h}^{*,l}\text{d}\theta-\int_{0}^{1}\int_{\Gamma}He_{h}^{*,l}\cdot(\nabla_{\Gamma}n)e_{h}^{*,l}\,\text{d}\theta
01ΓHeh,l(Γeh,l)ndθ\displaystyle\quad-\int_{0}^{1}\int_{\Gamma}He_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\,n\,\text{d}\theta
ceh,lL2(Γ)201ΓHeh,l(Γeh,l)ndθ.\displaystyle\leq c\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}^{2}-\int_{0}^{1}\int_{\Gamma}He_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\,n\,\text{d}\theta.

Recall that n^h\hat{n}_{h}^{*} denotes the normal vector on Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] and n^h,l\hat{n}_{h}^{*,l} is the lift of n^h\hat{n}_{h}^{*} onto Γ\Gamma. By introducing HhSh(Γh[𝐱])H_{h}^{*}\in S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]) to be the finite element interpolation of HH, and denoting by Hh,lH_{h}^{*,l} the lift of HhH_{h}^{*} to the surface Γ\Gamma, the inequality above furthermore implies that

01Γ(Γeh,l)Hneh,ldθ\displaystyle\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})Hn\cdot e_{h}^{*,l}\text{d}\theta
ceh,lL2(Γ)201Γ(HHh,l)eh,l(Γeh,l)ndθ\displaystyle\leq c\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}^{2}-\int_{0}^{1}\int_{\Gamma}(H-H_{h}^{*,l})e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\,n\,\text{d}\theta
01ΓHh,leh,l(Γeh,l)(nn^h,l)dθ01ΓHh,leh,l(Γeh,l)n^h,ldθ\displaystyle\quad-\int_{0}^{1}\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})(n-\hat{n}_{h}^{*,l})\,\text{d}\theta-\int_{0}^{1}\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}\,\text{d}\theta
ceh,lL2(Γ)2+chk+1eh,lL2(Γ)Γeh,lL2(Γ)\displaystyle\leq c\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}^{2}+ch^{k+1}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)}
+chkeh,lL2(Γ)Γeh,lL2(Γ)01ΓHh,leh,l(Γeh,l)n^h,ldθ,\displaystyle\quad+ch^{k}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)}-\int_{0}^{1}\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}\,\text{d}\theta,

where the last inequality uses the interpolation error estimate (2.10)–(2.11). By using the norm equivalence eh,lL2(Γ)ehL2(Γh)\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}\sim\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})} and Γeh,lL2(Γ)ΓhehL2(Γh)\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)}\sim\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})} in Lemma 3.2, and using the inverse inequality of finite element functions, we obtain from the above inequality

01Γ(Γeh,l)Hneh,ldθ\displaystyle\int_{0}^{1}\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})Hn\cdot e_{h}^{*,l}\text{d}\theta
cehL2(Γh)201ΓHh,leh,l(Γeh,l)n^h,ldθ\displaystyle\leq c\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}-\int_{0}^{1}\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}\,\text{d}\theta
=cehL2(Γh)2+01(ΓhHheh(Γheh)n^hΓHh,leh,l(Γeh,l)n^h,l)dθ\displaystyle=c\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}+\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{*}}H_{h}^{*}e_{h}^{*}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})\hat{n}_{h}^{*}-\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}\bigg{)}\,\text{d}\theta
+01(ΓhθHh,θehθ(Γhθehθ)n^h,θΓhHheh(Γheh)n^h)dθ\displaystyle\quad+\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{*,\theta}-\int_{\Gamma_{h}^{*}}H_{h}^{*}e_{h}^{*}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})\hat{n}_{h}^{*}\bigg{)}\,\text{d}\theta
+01ΓhθHh,θehθ(Γhθehθ)(n^hθn^h,θ)dθ\displaystyle\quad+\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})(\hat{n}_{h}^{\theta}-\hat{n}_{h}^{*,\theta})\,\text{d}\theta
01ΓhθHh,θehθ(Γhθehθ)n^hθdθ\displaystyle\quad-\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}\,\text{d}\theta
=cehL2(Γh)2+J5+J6+J7+J8,\displaystyle=c\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}+J_{5}+J_{6}+J_{7}+J_{8},

where Hh,θH_{h}^{*,\theta} is defined as the finite element function on Γhθ\Gamma_{h}^{\theta} with the same nodal vector as HhH_{h}^{*}. Substituting this into (3.3) yields

(3.44) (𝐌(𝐱)𝐌(𝐱))𝐱˙𝐞\displaystyle-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\mathbf{e}} cehL2(Γh)2+m=18Jm.\displaystyle\leq c\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}+\sum_{m=1}^{8}J_{m}.

3.4. Estimation of JmJ_{m}, m=1,,8m=1,\dots,8

J1=\displaystyle J_{1}= 01(Γhθ(Γhθehθ)vh,θehθΓh(Γheh)vheh)dθ\displaystyle-\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{\theta}}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})v_{h}^{*,\theta}\cdot e_{h}^{\theta}-\int_{\Gamma_{h}^{*}}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})v_{h}^{*}\cdot e_{h}^{*}\bigg{)}\;\text{d}\theta
=\displaystyle= 010θ(ddσΓhσ(Γhσehσ)vh,σehσ)dσdθ(Newton–Leibniz rule)\displaystyle-\int_{0}^{1}\int_{0}^{\theta}\bigg{(}\frac{\text{d}}{\text{d}\sigma}\int_{\Gamma_{h}^{\sigma}}(\nabla_{\Gamma_{h}^{\sigma}}\cdot e_{h}^{\sigma})v_{h}^{*,\sigma}\cdot e_{h}^{\sigma}\bigg{)}\text{d}\sigma\text{d}\theta\quad\,\mbox{(Newton--Leibniz rule)}
=\displaystyle= 01(1σ)(ddσΓhσ(Γhσehσ)vh,σehσ)dσ(order of integration is changed)\displaystyle-\int_{0}^{1}(1-\sigma)\bigg{(}\frac{\text{d}}{\text{d}\sigma}\int_{\Gamma_{h}^{\sigma}}(\nabla_{\Gamma_{h}^{\sigma}}\cdot e_{h}^{\sigma})v_{h}^{*,\sigma}\cdot e_{h}^{\sigma}\bigg{)}\text{d}\sigma\quad\mbox{(order of integration is changed)}
=\displaystyle= 01(1θ)(ddθΓhθ(Γhθehθ)vh,θehθ)dθ(σ is changed to θ)\displaystyle-\int_{0}^{1}(1-\theta)\bigg{(}\frac{\text{d}}{\text{d}\theta}\int_{\Gamma_{h}^{\theta}}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})v_{h}^{*,\theta}\cdot e_{h}^{\theta}\bigg{)}\text{d}\theta\quad\,\,\,\mbox{($\sigma$ is changed to $\theta$)}
(3.45) =\displaystyle= 01[(1θ)Γhθ(θ(Γhθehθ)vh,θehθ+|Γhθehθ|2vh,θehθ)]dθ.\displaystyle-\int_{0}^{1}\bigg{[}(1-\theta)\int_{\Gamma_{h}^{\theta}}\bigg{(}\partial_{\theta}^{\bullet}(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})v_{h}^{*,\theta}\cdot e_{h}^{\theta}+|\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta}|^{2}v_{h}^{*,\theta}\cdot e_{h}^{\theta}\bigg{)}\bigg{]}\text{d}\theta.

where the last inequality uses the properties θvh,θ=θehθ=0\partial_{\theta}^{\bullet}v_{h}^{*,\theta}=\partial_{\theta}^{\bullet}e_{h}^{\theta}=0, and the fact that the surface Γhθ\Gamma_{h}^{\theta} moves with velocity ehθe_{h}^{\theta} with respect to θ\theta. By using the identity (cf. [18, Lemma 2.6])

θ(Γhθehθ)=Γhθθehθtr[(Γhθehθn^hθ(n^hθ)T(Γhθehθ)T)Γhθehθ]\displaystyle\partial_{\theta}^{\bullet}\big{(}\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta}\big{)}=\nabla_{\Gamma_{h}^{\theta}}\cdot\partial_{\theta}^{\bullet}e_{h}^{\theta}-{\rm tr}\bigg{[}\Big{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}-\hat{n}_{h}^{\theta}(\hat{n}_{h}^{\theta})^{T}(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})^{T}\Big{)}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\bigg{]}
(3.46) =tr[(Γhθehθn^hθ(n^hθ)T(Γhθehθ)T)Γhθehθ](since θehθ=0),\displaystyle=-{\rm tr}\bigg{[}\Big{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}-\hat{n}_{h}^{\theta}(\hat{n}_{h}^{\theta})^{T}(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})^{T}\Big{)}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\bigg{]}\quad\mbox{(since $\partial_{\theta}^{\bullet}e_{h}^{\theta}=0$)},

we find that

J1\displaystyle J_{1}\leq 01cΓhθehθL(Γhθ)ΓhθehθL2(Γhθ)ehθL2(Γhθ)dθ\displaystyle\int_{0}^{1}c\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{\infty}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
\displaystyle\leq 01ch2ΓhθehθL2(Γhθ)ehθL2(Γhθ)dθ(estimate (3.18) is used)\displaystyle\int_{0}^{1}ch^{2}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta\quad\mbox{(estimate \eqref{eq:assumed bounds - W1infty} is used)}
\displaystyle\leq 01chehθL2(Γhθ)2dθ(inverse inequality)\displaystyle\int_{0}^{1}ch\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}^{2}\text{d}\theta\quad\mbox{(inverse inequality)}
(3.47) =\displaystyle= ch𝐞𝐌(𝐱)2.(norm equivalence (3.26))\displaystyle ch\|{\bf e}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}.\quad\,\,\mbox{(norm equivalence \eqref{norm-equiv})}

Let xlx^{l} denote the lift of xΓhx\in\Gamma_{h}^{*} onto Γ\Gamma. By using (2.9) we have

J2\displaystyle J_{2} =(Γh(Γheh)vhehΓ(Γheh)lvh,leh,l)\displaystyle=-\bigg{(}\int_{\Gamma_{h}^{*}}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})v_{h}^{*}\cdot e_{h}^{*}-\int_{\Gamma}(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})^{l}v_{h}^{*,l}\cdot e_{h}^{*,l}\bigg{)}
=Γh(1δh)(Γheh)vheh\displaystyle=-\int_{\Gamma_{h}^{*}}(1-\delta_{h})(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})v_{h}^{*}\cdot e_{h}^{*}
c1δhL(Γh)ΓhehL2(Γh)vhL(Γh)ehL2(Γh)\displaystyle\leq c\|1-\delta_{h}\|_{L^{\infty}(\Gamma_{h}^{*})}\|\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|v_{h}^{*}\|_{L^{\infty}(\Gamma_{h}^{*})}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}
chk+1ΓhehL2(Γh)ehL2(Γh)\displaystyle\leq ch^{k+1}\|\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}
chkehL2(Γh)2\displaystyle\leq ch^{k}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}
(3.48) =chk𝐞𝐌(𝐱)2,\displaystyle=ch^{k}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2},

where we have used inverse inequality in the second to last inequality.

For the exact surface Γ=Γ(t)\Gamma=\Gamma(t), we denote by d(x)d(x) the signed distance from xx to Γ\Gamma, defined by

d(x)={|xxl|ifx3\Ω,|xxl|ifxΩ.d(x)=\left\{\begin{aligned} &|x-x^{l}|&&\mbox{if}\,\,\,x\in{\mathbb{R}}^{3}\backslash\Omega,\\ &-|x-x^{l}|&&\mbox{if}\,\,\,x\in\Omega.\end{aligned}\right.

Let =Γn\mathcal{H}=\nabla_{\Gamma}n be the Weingarten matrix on Γ\Gamma. Then the following identity holds (for example, see [17, Remark 4.1]):

Γheh(x)=Ph(x)(Id(x)(xl))Γeh,l(xl),\displaystyle\nabla_{\Gamma_{h}^{*}}e_{h}^{*}(x)=P_{h}(x)(I-d(x)\mathcal{H}(x^{l}))\nabla_{\Gamma}e_{h}^{*,l}(x^{l}),

where Ph(x)=I3n^h(x)n^h(x)TP_{h}(x)=I_{3}-\hat{n}_{h}^{*}(x)\hat{n}_{h}^{*}(x)^{T}, with n^h\hat{n}_{h}^{*} denoting the normal vector on Γh\Gamma_{h}^{*}. Hence, denoting P(xl)=I3n^(xl)n^(xl)TP(x^{l})=I_{3}-\hat{n}(x^{l})\hat{n}(x^{l})^{T}, we have

|(Γheh)l(xl)Γeh,l(xl)|\displaystyle|(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}(x^{l})-\nabla_{\Gamma}e_{h}^{*,l}(x^{l})|
=|Ph(x)(Id(x)(xl))Γeh,l(xl)P(xl)Γeh,l(xl)|\displaystyle=\Big{|}P_{h}(x)(I-d(x)\mathcal{H}(x^{l}))\nabla_{\Gamma}e_{h}^{*,l}(x^{l})-P(x^{l})\nabla_{\Gamma}e_{h}^{*,l}(x^{l})\Big{|}
=|[(Ph(x)P(xl))(Id(x)(xl))d(x)P(xl)(xl)]Γeh,l(xl)|\displaystyle=\Big{|}\big{[}(P_{h}(x)-P(x^{l}))(I-d(x)\mathcal{H}(x^{l}))-d(x)P(x^{l})\mathcal{H}(x^{l})\big{]}\nabla_{\Gamma}e_{h}^{*,l}(x^{l})\Big{|}
(chk+chk+1)|Γeh,l(xl)|\displaystyle\leq(ch^{k}+ch^{k+1})|\nabla_{\Gamma}e_{h}^{*,l}(x^{l})|
(3.49) chk|Γeh,l(xl)|.\displaystyle\leq ch^{k}|\nabla_{\Gamma}e_{h}^{*,l}(x^{l})|.

where the second to last inequality uses estimate (2.11) in estimating Ph(x)P(xl)P_{h}(x)-P(x^{l}), and uses |d(x)|chk+1|d(x)|\leq ch^{k+1} (see [21, Lemma 5.2]). For sufficiently small hh, the inequality above furthermore implies, via using the triangle inequality,

(3.50) Γeh,lL2(Γ)\displaystyle\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)} c(Γheh)lL2(Γ)cΓhehL2(Γh),\displaystyle\leq c\|(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}\|_{L^{2}(\Gamma)}\leq c\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})},

where we have used the norm equivalence between (Γheh)lL2(Γ)\|(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}\|_{L^{2}(\Gamma)} and ΓhehL2(Γh)\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})} as shown in Lemma 3.2. By using the two results above, we have

J3\displaystyle J_{3} =Γ[(Γheh)lΓeh,l]vh,leh,l\displaystyle=-\int_{\Gamma}[(\nabla_{\Gamma_{h}^{*}}\cdot e_{h}^{*})^{l}-\nabla_{\Gamma}\cdot e_{h}^{*,l}]v_{h}^{*,l}\cdot e_{h}^{*,l}
chkΓeh,lL2(Γ)vh,lL(Γ)eh,lL2(Γ)\displaystyle\leq ch^{k}\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|v_{h}^{*,l}\|_{L^{\infty}(\Gamma)}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}
chk1ehL2(Γh)2\displaystyle\leq ch^{k-1}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}
=chk1𝐞𝐌(𝐱)2,\displaystyle=ch^{k-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2},

where we have used inverse inequality in the second to last inequality.

Since the lifted Lagrange interpolation vh,lv_{h}^{*,l} has optimal-order accuracy in approximating vv, as shown in (2.10), it follows that

J4=Γ(Γeh,l)(vh,lv)eh,l\displaystyle J_{4}=-\int_{\Gamma}(\nabla_{\Gamma}\cdot e_{h}^{*,l})(v_{h}^{*,l}-v)\cdot e_{h}^{*,l} cvh,lvL(Γ)Γeh,lL2(Γ)eh,lL2(Γ)\displaystyle\leq c\|v_{h}^{*,l}-v\|_{L^{\infty}(\Gamma)}\|\nabla_{\Gamma}\cdot e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}
chk+1Γeh,lL2(Γ)eh,lL2(Γ)\displaystyle\leq ch^{k+1}\|\nabla_{\Gamma}\cdot e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}
chk+1ΓehL2(Γh)ehL2(Γh)\displaystyle\leq ch^{k+1}\|\nabla_{\Gamma}\cdot e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}
chkehL2(Γh)2\displaystyle\leq ch^{k}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}
=chk𝐞𝐌(𝐱)2.\displaystyle=ch^{k}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}.

Recall that HhH_{h}^{*} is the finite element interpolation of HH onto Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}] and Hh,lH_{h}^{*,l} is the lift of HhH_{h}^{*} onto the surface Γ\Gamma. By using (2.9) and (3.4), we can estimate J5J_{5} similarly as J3J_{3}, i.e.,

J5\displaystyle J_{5} =ΓhHheh(Γheh)n^hΓHh,leh,l(Γeh,l)n^h,l\displaystyle=\int_{\Gamma_{h}^{*}}H_{h}^{*}e_{h}^{*}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})\hat{n}_{h}^{*}-\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}
=Γδh1Hh,leh,l(Γheh)ln^h,lΓHh,leh,l(Γeh,l)n^h,l\displaystyle=\int_{\Gamma}\delta_{h}^{-1}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}\hat{n}_{h}^{*,l}-\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma}e_{h}^{*,l})\hat{n}_{h}^{*,l}
=Γ(δh11)Hh,leh,l(Γheh)ln^h,l+ΓHh,leh,l[(Γheh)lΓeh,l]n^h,l\displaystyle=\int_{\Gamma}(\delta_{h}^{-1}-1)H_{h}^{*,l}e_{h}^{*,l}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}\hat{n}_{h}^{*,l}+\int_{\Gamma}H_{h}^{*,l}e_{h}^{*,l}\cdot[(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})^{l}-\nabla_{\Gamma}e_{h}^{*,l}]\hat{n}_{h}^{*,l}
chk+1eh,lL2(Γ)Γheh,lL2(Γ)+chkeh,lL2(Γ)Γheh,lL2(Γ)\displaystyle\leq ch^{k+1}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*,l}\|_{L^{2}(\Gamma)}+ch^{k}\|e_{h}^{*,l}\|_{L^{2}(\Gamma)}\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*,l}\|_{L^{2}(\Gamma)}
chk+1ehL2(Γh)ΓhehL2(Γh)+chkehL2(Γh)ΓhehL2(Γh)\displaystyle\leq ch^{k+1}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}+ch^{k}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}
chk1ehL2(Γh)2\displaystyle\leq ch^{k-1}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}^{2}
(3.51) =chk1𝐞𝐌(𝐱)2,\displaystyle=ch^{k-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2},

where we have used inverse inequality in the second to last inequality.

Recall that Hh,θH_{h}^{*,\theta} is finite element function on Γhθ\Gamma_{h}^{\theta} with the same nodal vector as the interpolated finite element function HhH_{h}^{*}. Since eh0=ehe_{h}^{0}=e_{h}^{*}, as defined in (3.20), it follows that

J6\displaystyle J_{6} =01(ΓhθHh,θehθ(Γhθehθ)n^h,θΓhHheh(Γheh)n^h)dθ\displaystyle=\int_{0}^{1}\bigg{(}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{*,\theta}-\int_{\Gamma_{h}^{*}}H_{h}^{*}e_{h}^{*}\cdot(\nabla_{\Gamma_{h}^{*}}e_{h}^{*})\hat{n}_{h}^{*}\bigg{)}\,\text{d}\theta
=010θddσΓhσHh,σehσ(Γhσehσ)n^h,σdσdθ\displaystyle=\int_{0}^{1}\int_{0}^{\theta}\frac{\text{d}}{\text{d}\sigma}\int_{\Gamma_{h}^{\sigma}}H_{h}^{*,\sigma}e_{h}^{\sigma}\cdot(\nabla_{\Gamma_{h}^{\sigma}}e_{h}^{\sigma})\hat{n}_{h}^{*,\sigma}\text{d}\sigma\text{d}\theta
=01σ1ddσΓhσHh,σehσ(Γhσehσ)n^h,σdθdσ(order of integration is changed)\displaystyle=\int_{0}^{1}\int_{\sigma}^{1}\frac{\text{d}}{\text{d}\sigma}\int_{\Gamma_{h}^{\sigma}}H_{h}^{*,\sigma}e_{h}^{\sigma}\cdot(\nabla_{\Gamma_{h}^{\sigma}}e_{h}^{\sigma})\hat{n}_{h}^{*,\sigma}\text{d}\theta\text{d}\sigma\quad\,\mbox{(order of integration is changed)}
=01(1σ)ddσΓhσHh,σehσ(Γhσehσ)n^h,σdσ\displaystyle=\int_{0}^{1}(1-\sigma)\frac{\text{d}}{\text{d}\sigma}\int_{\Gamma_{h}^{\sigma}}H_{h}^{*,\sigma}e_{h}^{\sigma}\cdot(\nabla_{\Gamma_{h}^{\sigma}}e_{h}^{\sigma})\hat{n}_{h}^{*,\sigma}\text{d}\sigma
=01(1θ)ddθΓhθHh,θehθ(Γhθehθ)n^h,θdθ(σ is changed to θ)\displaystyle=\int_{0}^{1}(1-\theta)\frac{\text{d}}{\text{d}\theta}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{*,\theta}\text{d}\theta\quad\,\,\,\mbox{($\sigma$ is changed to $\theta$)}
=01(1θ)Γhθ(Hh,θehθθ(Γhθehθ)n^h,θ+(Γhθehθ)Hh,θehθ(Γhθehθ)n^h,θ)dθ,\displaystyle=\int_{0}^{1}(1-\theta)\int_{\Gamma_{h}^{\theta}}\Big{(}H_{h}^{*,\theta}e_{h}^{\theta}\cdot\partial_{\theta}^{\bullet}(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{*,\theta}+(\nabla_{\Gamma_{h}^{\theta}}\cdot e_{h}^{\theta})H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{*,\theta}\Big{)}\text{d}\theta,

where the last equality uses the facts that θHh,θ=θehθ=θnh,θ=0\partial_{\theta}^{\bullet}H_{h}^{*,\theta}=\partial_{\theta}^{\bullet}e_{h}^{\theta}=\partial_{\theta}^{\bullet}n_{h}^{*,\theta}=0 and the surface Γhθ\Gamma_{h}^{\theta} moves with velocity ehθe_{h}^{\theta} with respect to θ\theta. By substituting the identity (cf. [18, Lemma 2.6]),

θ(Γhθehθ)=Γhθθehθ(Γhθehθn^hθ(n^hθ)T(Γhθehθ)T)Γhθehθ\displaystyle\partial_{\theta}^{\bullet}\big{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\big{)}=\nabla_{\Gamma_{h}^{\theta}}\partial_{\theta}^{\bullet}e_{h}^{\theta}-\Big{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}-\hat{n}_{h}^{\theta}(\hat{n}_{h}^{\theta})^{T}(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})^{T}\Big{)}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}
(3.52) =(Γhθehθn^hθ(n^hθ)T(Γhθehθ)T)Γhθehθ(since θehθ=0)\displaystyle=-\Big{(}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}-\hat{n}_{h}^{\theta}(\hat{n}_{h}^{\theta})^{T}(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})^{T}\Big{)}\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\quad\mbox{(since $\partial_{\theta}^{\bullet}e_{h}^{\theta}=0$)}

into the above expression of J6J_{6}, we obtain

J6\displaystyle J_{6} 01cΓhθehθL(Γhθ)ΓhθehθL2(Γhθ)ehθL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}c\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{\infty}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
01ch2ΓhθehθL2(Γhθ)ehθL2(Γhθ)dθ(estimate (3.18) is used)\displaystyle\leq\int_{0}^{1}ch^{2}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta\quad\mbox{(estimate \eqref{eq:assumed bounds - W1infty} is used)}
01chehθL2(Γhθ)2dθ(inverse inequality)\displaystyle\leq\int_{0}^{1}ch\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}^{2}\text{d}\theta\quad\mbox{(inverse inequality)}
(3.53) =ch𝐞𝐌(𝐱)2.\displaystyle=ch\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}.

Let idΓh{\rm id}_{\Gamma_{h}^{*}} be the restriction of the identity function to the surface Γh\Gamma_{h}^{*}, and note that the surface Γhθ\Gamma_{h}^{\theta} has parametrization idΓh+θeh{\rm id}_{\Gamma_{h}^{*}}+\theta e_{h}^{*} defined on Γh\Gamma_{h}^{*}. Hence, Γhθ\Gamma_{h}^{\theta} has parametrization idΓhl+θeh,l{\rm id}_{\Gamma_{h}^{*}}^{l}+\theta e_{h}^{*,l} defined on Γ\Gamma. Let ϕ\phi be a local parametrization of the surface Γ\Gamma in a chart, and let ϕ~=(idΓhl+θeh,l)ϕ=idΓhlϕ+(θeh,l)ϕ\widetilde{\phi}=({\rm id}_{\Gamma_{h}^{*}}^{l}+\theta e_{h}^{*,l})\circ\phi={\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi+(\theta e_{h}^{*,l})\circ\phi. Then

n^hθϕ~=1ϕ~×2ϕ~|1ϕ~×2ϕ~|andn^h,θϕ~=n^hidΓhlϕ=1(idΓhlϕ)×2(idΓhlϕ)|1(idΓhlϕ)×2(idΓhlϕ)|.\displaystyle\hat{n}_{h}^{\theta}\circ\widetilde{\phi}=\frac{\partial_{1}\widetilde{\phi}\times\partial_{2}\widetilde{\phi}}{|\partial_{1}\widetilde{\phi}\times\partial_{2}\widetilde{\phi}|}\quad\mbox{and}\quad\hat{n}_{h}^{*,\theta}\circ\widetilde{\phi}=\hat{n}_{h}^{*}\circ{\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi=\frac{\partial_{1}({\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)\times\partial_{2}({\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)}{|\partial_{1}({\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)\times\partial_{2}({\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)|}.

Since the exact surface is non-degenerate, we have c1|1ϕ×2ϕ|c2c_{1}\leq|\partial_{1}\phi\times\partial_{2}\phi|\leq c_{2}. Hence,

|n^hθϕ~n^h,θϕ~|c|1(ϕ~idΓhlϕ)|+c|2(ϕ~idΓhlϕ)|\displaystyle|\hat{n}_{h}^{\theta}\circ\widetilde{\phi}-\hat{n}_{h}^{*,\theta}\circ\widetilde{\phi}|\leq c|\partial_{1}(\widetilde{\phi}-{\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)|+c|\partial_{2}(\widetilde{\phi}-{\rm id}_{\Gamma_{h}^{*}}^{l}\circ\phi)| cθ|(eh,lϕ)|\displaystyle\leq c\theta|\nabla(e_{h}^{*,l}\circ\phi)|
cθ|(Γeh,l)ϕ||ϕ|.\displaystyle\leq c\theta|(\nabla_{\Gamma}e_{h}^{*,l})\circ\phi||\nabla\phi|.

This implies that

(3.54) n^hθn^h,θL2(Γhθ)cΓeh,lL2(Γ)cΓhehL2(Γh)\displaystyle\|\hat{n}_{h}^{\theta}-\hat{n}_{h}^{*,\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\leq c\|\nabla_{\Gamma}e_{h}^{*,l}\|_{L^{2}(\Gamma)}\leq c\|\nabla_{\Gamma_{h}^{*}}e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})} ch1ehL2(Γh),\displaystyle\leq ch^{-1}\|e_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})},

where the second to last inequality is obtained from (3.50). By using the estimate above, we have

J7\displaystyle J_{7} =01ΓhθHh,θehθΓhθehθ(n^hθn^h,θ)dθ\displaystyle=\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\cdot(\hat{n}_{h}^{\theta}-\hat{n}_{h}^{*,\theta})\,\text{d}\theta
01cehθL2(Γhθ)ΓhθehθL(Γhθ)n^hθn^h,θL2(Γhθ)dθ\displaystyle\leq\int_{0}^{1}c\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{\infty}(\Gamma_{h}^{\theta})}\|\hat{n}_{h}^{\theta}-\hat{n}_{h}^{*,\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
01cehθL2(Γhθ)ΓhθehθL(Γhθ)h1ehθL2(Γhθ)dθ(estimate (3.54) is used)\displaystyle\leq\int_{0}^{1}c\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta}\|_{L^{\infty}(\Gamma_{h}^{\theta})}h^{-1}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta\quad\mbox{(estimate \eqref{ntheta-nstar} is used)}
01chehθL2(Γhθ)2dθ(estimate (3.18) is used)\displaystyle\leq\int_{0}^{1}ch\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}^{2}\text{d}\theta\quad\mbox{(estimate \eqref{eq:assumed bounds - W1infty} is used)}
(3.55) ch𝐞𝐌(𝐱)2.\displaystyle\leq ch\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}.

Finally,

J8\displaystyle J_{8} =01ΓhθHh,θehθ(Γhθehθ)n^hθdθ\displaystyle=-\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}H_{h}^{*,\theta}e_{h}^{\theta}\cdot(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}\,\text{d}\theta
c01ehθL2(Γhθ)(Γhθehθ)n^hθL2(Γhθ)dθ\displaystyle\leq c\int_{0}^{1}\|e_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}\|_{L^{2}(\Gamma_{h}^{\theta})}\text{d}\theta
(3.56) c𝐞𝐌(𝐱)(01Γhθ|(Γhθehθ)n^hθ|2dθ)12\displaystyle\leq c\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\bigg{(}\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta\bigg{)}^{\frac{1}{2}}

Substituting the estimates of JmJ_{m}, m=1,,8m=1,\dots,8, into (3.44), we have

(3.57) (𝐌(𝐱)𝐌(𝐱))𝐱˙𝐞\displaystyle-({\bf M}({\mathbf{x}})-{\bf M}({\mathbf{x}}^{*}))\dot{\mathbf{x}}^{*}\cdot{\mathbf{e}} cϵ1𝐞𝐌(𝐱)2+ϵ01Γhθ|(Γhθehθ)n^hθ|2dθ.\displaystyle\leq c\epsilon^{-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}+\epsilon\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta.
Remark 3.2.

The estimates (3.3) and (3.57) together imply the result (1) mentioned in the introduction section.

Then, substituting (3.3)–(3.42) and (3.57) into (3.3), we obtain

ddt𝐞𝐌(𝐱)2+201Γhθ|(Γhθehθ)n^hθ|2dθ\displaystyle\frac{\text{d}}{\text{d}t}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}})}^{2}+2\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta
(3.58) ch2k2+cϵ1𝐞𝐌(𝐱)2+2ϵ01Γhθ|(Γhθehθ)n^hθ|2dθ,\displaystyle\leq ch^{2k-2}+c\epsilon^{-1}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}+2\epsilon\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta,

where ϵ\epsilon can be an arbitrary positive number between 0 and 11. By choosing ϵ=12\epsilon=\frac{1}{2} and integrating the inequality above in time, we have

(3.59) 𝐞(s)𝐌(𝐱)2+0s01Γhθ|(Γhθehθ)n^hθ|2dθdtch2k2+c0s𝐞(t)𝐌(𝐱)2dt,\displaystyle\|{\mathbf{e}}(s)\|_{{\mathbf{M}}({\mathbf{x}})}^{2}+\int_{0}^{s}\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta\text{d}t\leq ch^{2k-2}+c\int_{0}^{s}\|{\mathbf{e}}(t)\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}\text{d}t,

which holds for all s(0,t]s\in(0,t^{*}]. Since 𝐞(s)𝐌(𝐱)\|{\mathbf{e}}(s)\|_{{\mathbf{M}}({\mathbf{x}})} is equivalent to 𝐞(s)𝐌(𝐱)\|{\mathbf{e}}(s)\|_{{\mathbf{M}}({\mathbf{x}}^{*})}, as explained in (3.26), applying Gronwall’s inequality yields

maxt[0,t]𝐞𝐌(𝐱)2+0t01Γhθ|(Γhθehθ)n^hθ|2dθdtch2k2.\displaystyle\max_{t\in[0,t^{*}]}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}^{2}+\int_{0}^{t^{*}}\int_{0}^{1}\int_{\Gamma_{h}^{\theta}}|(\nabla_{\Gamma_{h}^{\theta}}e_{h}^{\theta})\hat{n}_{h}^{\theta}|^{2}\text{d}\theta\text{d}t\leq ch^{2k-2}.

Hence,

(3.60) maxt[0,t]eh(,t)L2(Γh[𝐱(t)])=maxt[0,t]𝐞𝐌(𝐱)chk1.\displaystyle\max_{t\in[0,t^{*}]}\|e_{h}(\cdot,t)\|_{L^{2}(\Gamma_{h}[{\mathbf{x}}^{*}(t)])}=\max_{t\in[0,t^{*}]}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\leq ch^{k-1}.

When k6k\geq 6 and hh sufficiently small, this implies

(3.61) maxt[0,t]eh(,t)L2(Γh[𝐱(t)])=maxt[0,t]𝐞𝐌(𝐱)12h4.\displaystyle\max_{t\in[0,t^{*}]}\|e_{h}(\cdot,t)\|_{L^{2}(\Gamma_{h}[{\mathbf{x}}^{*}(t)])}=\max_{t\in[0,t^{*}]}\|{\mathbf{e}}\|_{{\mathbf{M}}({\mathbf{x}}^{*})}\leq\frac{1}{2}h^{4}.

If t<Tt^{*}<T then the inequality above furthermore implies that the solution can be extended to time t+ϵht^{*}+\epsilon_{h} for some sufficiently small ϵh\epsilon_{h} such that (3.17) holds. The maximality of tt^{*} for (3.17) implies that t=Tt^{*}=T.

Hence, (3.60) holds with t=Tt^{*}=T. This also implies, via inverse inequality,

maxt[0,T]eh(,t)L(Γh[𝐱(t)])chk2.\displaystyle\max_{t\in[0,T]}\|e_{h}(\cdot,t)\|_{L^{\infty}(\Gamma_{h}[{\mathbf{x}}^{*}(t)])}\leq ch^{k-2}.

This proves (2.16). Since XhXh=eh(,t)XhX_{h}-X_{h}^{*}=e_{h}(\cdot,t)\circ X_{h}^{*}, (3.60) also implies

XhXhL2(Γh(𝐱0))chk1.\|X_{h}-X_{h}^{*}\|_{L^{2}(\Gamma_{h}({\mathbf{x}}^{0}))}\leq ch^{k-1}.

Lifting this onto Γ0\Gamma_{0} yields

XhlXh,lL2(Γ0)chk1.\|X_{h}^{l}-X_{h}^{*,l}\|_{L^{2}(\Gamma^{0})}\leq ch^{k-1}.

Then, using the triangle inequality and the interpolation error estimate (2.10), we obtain

XhlXL2(Γ0)XhlXh,lL2(Γ0)+Xh,lXL2(Γ0)chk1.\|X_{h}^{l}-X\|_{L^{2}(\Gamma^{0})}\leq\|X_{h}^{l}-X_{h}^{*,l}\|_{L^{2}(\Gamma^{0})}+\|X_{h}^{*,l}-X\|_{L^{2}(\Gamma^{0})}\leq ch^{k-1}.

This completes the proof of Theorem 2.1.

4. Proof of Lemma 3.3

In this section we prove Lemma 3.3, which is used in the proof of Theorem 2.1. Note that Γhθ\Gamma_{h}^{\theta} is the boundary of a bounded Lipschitz domain. We first prove the result for a smooth surface and then extend it to a general Lipschitz surface through approximating it by smooth surfaces.

Proposition 4.1.

Let Γ\Gamma_{\!\star} be a bounded, closed and smooth surface and let eH1(Γ)3e\in H^{1}(\Gamma_{\!\star})^{3}. Then

(4.62) Γ[tr(Γe)2tr(ΓeΓe)]=0.\displaystyle\int_{\Gamma_{\!\star}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}}e)^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}}e\nabla_{\Gamma_{\!\star}}e)\Big{]}=0.
Proof.

We denote Γf=(D¯1f,D¯2f,D¯3f)T\nabla_{\Gamma_{\!\star}}f=({\underline{D}}_{1}f,{\underline{D}}_{2}f,{\underline{D}}_{3}f)^{T} and use the following formula of integration by parts (cf. [16, Definition 2.11])

(4.63) ΓfD¯iφ=ΓD¯ifφ+ΓfφHni.\displaystyle\int_{\Gamma_{\!\star}}f{\underline{D}}_{i}\varphi=-\int_{\Gamma_{\!\star}}{\underline{D}}_{i}f\varphi+\int_{\Gamma_{\!\star}}f\varphi Hn_{i}.

If e=(e1,e2,e3)TH2(Γ)3e=(e^{1},e^{2},e^{3})^{T}\in H^{2}(\Gamma_{\!\star})^{3}, then

Γ[tr(Γe)2tr(ΓeΓe)]\displaystyle\int_{\Gamma_{\!\star}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}}e)^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}}e\nabla_{\Gamma_{\!\star}}e)\Big{]}
=Γ[(D¯1e1+D¯2e2+D¯3e3)2D¯iejD¯jei]\displaystyle=\int_{\Gamma_{\!\star}}\bigg{[}({\underline{D}}_{1}e^{1}+{\underline{D}}_{2}e^{2}+{\underline{D}}_{3}e^{3})^{2}-{\underline{D}}_{i}e^{j}{\underline{D}}_{j}e^{i}\bigg{]}
=Γ(D¯1e1+D¯2e2+D¯3e3)2\displaystyle=\int_{\Gamma_{\!\star}}({\underline{D}}_{1}e^{1}+{\underline{D}}_{2}e^{2}+{\underline{D}}_{3}e^{3})^{2}
Γ(|D¯1e1|2+|D¯2e2|2+|D¯3e3|2+2D¯1e2D¯2e1+2D¯1e3D¯3e1+2D¯2e3D¯3e2)\displaystyle\quad\,-\int_{\Gamma_{\!\star}}(|{\underline{D}}_{1}e^{1}|^{2}+|{\underline{D}}_{2}e^{2}|^{2}+|{\underline{D}}_{3}e^{3}|^{2}+2{\underline{D}}_{1}e^{2}{\underline{D}}_{2}e^{1}+2{\underline{D}}_{1}e^{3}{\underline{D}}_{3}e^{1}+2{\underline{D}}_{2}e^{3}{\underline{D}}_{3}e^{2})
=Γ2[(D¯1e1D¯2e2D¯1e2D¯2e1)+(D¯1e1D¯3e3D¯1e3D¯3e1)+(D¯2e2D¯3e3D¯2e3D¯3e2)].\displaystyle=\int_{\Gamma_{\!\star}}2\bigg{[}({\underline{D}}_{1}e^{1}{\underline{D}}_{2}e^{2}-{\underline{D}}_{1}e^{2}{\underline{D}}_{2}e^{1})+({\underline{D}}_{1}e^{1}{\underline{D}}_{3}e^{3}-{\underline{D}}_{1}e^{3}{\underline{D}}_{3}e^{1})+({\underline{D}}_{2}e^{2}{\underline{D}}_{3}e^{3}-{\underline{D}}_{2}e^{3}{\underline{D}}_{3}e^{2})\bigg{]}.

By using (4.63) and the formula (cf. [16, Lemma2.6]):

D¯iD¯ju=D¯jD¯iu+HniD¯juHnjD¯iu,{\underline{D}}_{i}{\underline{D}}_{j}u={\underline{D}}_{j}{\underline{D}}_{i}u+Hn_{i}{\underline{D}}_{j}u-Hn_{j}{\underline{D}}_{i}u,

we have

Γ(D¯ieiD¯jejD¯iejD¯jei)\displaystyle\int_{\Gamma_{\!\star}}({\underline{D}}_{i}e^{i}{\underline{D}}_{j}e^{j}-{\underline{D}}_{i}e^{j}{\underline{D}}_{j}e^{i})
=Γ(eiD¯iD¯jej+HnieiD¯jejD¯iejD¯jei)\displaystyle=\int_{\Gamma_{\!\star}}(-e^{i}{\underline{D}}_{i}{\underline{D}}_{j}e^{j}+Hn_{i}e^{i}{\underline{D}}_{j}e^{j}-{\underline{D}}_{i}e^{j}{\underline{D}}_{j}e^{i})
=Γ(eiD¯jD¯iejHnieiD¯jej+HnjeiD¯iej+HnieiD¯jejD¯iejD¯jei)\displaystyle=\int_{\Gamma_{\!\star}}(-e^{i}{\underline{D}}_{j}{\underline{D}}_{i}e^{j}-Hn_{i}e^{i}{\underline{D}}_{j}e^{j}+Hn_{j}e^{i}{\underline{D}}_{i}e^{j}+Hn_{i}e^{i}{\underline{D}}_{j}e^{j}-{\underline{D}}_{i}e^{j}{\underline{D}}_{j}e^{i})
=Γ(D¯jeiD¯iejHnjeiD¯iejHnieiD¯jej+HnjeiD¯iej+HnieiD¯jejD¯iejD¯jei)\displaystyle=\int_{\Gamma_{\!\star}}({\underline{D}}_{j}e^{i}{\underline{D}}_{i}e^{j}-Hn_{j}e^{i}{\underline{D}}_{i}e^{j}-Hn_{i}e^{i}{\underline{D}}_{j}e^{j}+Hn_{j}e^{i}{\underline{D}}_{i}e^{j}+Hn_{i}e^{i}{\underline{D}}_{j}e^{j}-{\underline{D}}_{i}e^{j}{\underline{D}}_{j}e^{i})
=0.\displaystyle=0.

This proves (4.62) for eH2(Γ)3e\in H^{2}(\Gamma_{\!\star})^{3}. Since H2(Γ)3H^{2}(\Gamma_{\!\star})^{3} is dense in H1(Γ)3H^{1}(\Gamma_{\!\star})^{3}, it follows that (4.62) also holds for eH1(Γ)3e\in H^{1}(\Gamma_{\!\star})^{3}. ∎

By using Proposition 4.1, we prove the following result, which implies Lemma 3.3.

Proposition 4.2.

If Γ\Gamma_{\!\star} is the boundary of a bounded Lipschitz domain Ω\Omega, then for eH1(Γ)3e\in H^{1}(\Gamma_{\!\star})^{3} the following identity holds:

(4.64) Γ[tr(Γe)2tr(ΓeΓe)]=0.\displaystyle\int_{\Gamma_{\!\star}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}}e)^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}}e\nabla_{\Gamma_{\!\star}}e)\Big{]}=0.
Proof.

In the following, we show that there exists a sequence of smooth functions w~nC(3)3\tilde{w}^{n}\in C^{\infty}({\mathbb{R}}^{3})^{3} such that w~n\tilde{w}^{n} converges to ee in H1(Γ)H^{1}(\Gamma_{\!\star}) as nn\rightarrow\infty, and a sequence of smooth domains Ωm\Omega_{m} with smooth boundary Γm\Gamma_{\!\star}^{m} such that ΓmΓ\Gamma_{\!\star}^{m}\rightarrow\Gamma_{\!\star} as mm\rightarrow\infty. By using the result of Proposition 4.1, we have

(4.65) Γm[tr(Γmw~n)2tr(Γmw~nΓmw~n)]=0.\displaystyle\int_{\Gamma_{\!\star}^{m}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})\Big{]}=0.

By taking mm\rightarrow\infty in the equality above, we shall prove the following result:

(4.66) Γ[tr(Γw~n)2tr(Γw~nΓw~n)]=0.\displaystyle\int_{\Gamma_{\!\star}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}}\tilde{w}^{n})^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}}\tilde{w}^{n})\Big{]}=0.

This would prove the desired result for the smooth function w~nW1,(3)3\tilde{w}^{n}\in W^{1,\infty}({\mathbb{R}}^{3})^{3}. Since w~ne\tilde{w}^{n}\rightarrow e in H1(Γ)H^{1}(\Gamma_{\!\star}), letting n0n\rightarrow 0 in (4.66) yields the desired result (4.64).

First, we consider a partition of unity ϕjC0(3)\phi_{j}\in C^{\infty}_{0}({\mathbb{R}}^{3}), j=1,,Jj=1,\dots,J, such that j=1Jϕj=1\sum_{j=1}^{J}\phi_{j}=1 in a neighborhood of Γ\Gamma_{\star} and each ϕj\phi_{j} has compact support in an open ball BjB_{j} in which the surface ΓBj\Gamma_{\star}\cap B_{j} can be represented by a Lipschitz graph after a rotation QjQ_{j}:

(4.67) ΓBj={Qjx:x3=φj(x1,x2),(x1,x2)Dj},\displaystyle\Gamma_{\star}\cap B_{j}=\{Q_{j}x:x_{3}=\varphi_{j}(x_{1},x_{2}),\,\,\,(x_{1},x_{2})\in D_{j}\},
(4.68) BjΩ{Qjx:x3>φj(x1,x2),(x1,x2)Dj},\displaystyle B_{j}\cap\Omega\subset\{Q_{j}x:x_{3}>\varphi_{j}(x_{1},x_{2}),\,\,\,(x_{1},x_{2})\in D_{j}\},
(4.69) Bj\Ω¯{Qjx:x3<φj(x1,x2),(x1,x2)Dj},\displaystyle B_{j}\backslash\overline{\Omega}\subset\{Q_{j}x:x_{3}<\varphi_{j}(x_{1},x_{2}),\,\,\,(x_{1},x_{2})\in D_{j}\},

where φj\varphi_{j} is a Lipschitz continuous function on DjD_{j}, which is a bounded domain in 2{\mathbb{R}}^{2}. Hence,

e=j=1JeϕjonΓ.e=\sum_{j=1}^{J}e\phi_{j}\quad\mbox{on}\quad\Gamma_{\star}.

For the Lipschitz domain Ω\Omega, there exists a sequence of domains Ωm\Omega_{m}, m=1,2,m=1,2,\dots, with smooth boundary Γm\Gamma_{\!\star}^{m} such that ΓmΓ\Gamma_{\!\star}^{m}\rightarrow\Gamma_{\!\star} as mm\rightarrow\infty in the following sense (see [10, Theorem 5.1]):

(4.70) ΓmBj={Qjx:x3=φjm(x1,x2),(x1,x2)Dj},\displaystyle\Gamma_{\star}^{m}\cap B_{j}=\{Q_{j}x:x_{3}=\varphi_{j}^{m}(x_{1},x_{2}),\,\,\,(x_{1},x_{2})\in D_{j}\},

where φjm\varphi_{j}^{m}, m=1,2,m=1,2,\dots, is a sequence of functions converging to φj\varphi_{j} strongly in both L(Dj)L^{\infty}(D_{j}) and W1,p(Dj)W^{1,p}(D_{j}) for all p[1,)p\in[1,\infty), and φjm\nabla\varphi_{j}^{m} converges to φj\nabla\varphi_{j} weakly in L(Dj)3L^{\infty}(D_{j})^{3} (φjm\nabla\varphi_{j}^{m} is bounded in L(Dj)3L^{\infty}(D_{j})^{3} as mm\rightarrow\infty).

Next, on the two-dimensional region DjD_{j}, we define Φj(x1,x2)=(x1,x2,φj(x1,x2))T3\Phi_{j}(x_{1},x_{2})=(x_{1},x_{2},\varphi_{j}(x_{1},x_{2}))^{T}\in{\mathbb{R}}^{3} and

(4.71) wj(x1,x2)=(eϕj)(QjΦj)(x1,x2)for(x1,x2)Dj.\displaystyle w_{j}(x_{1},x_{2})=(e\phi_{j})\circ(Q_{j}\Phi_{j})(x_{1},x_{2})\quad\mbox{for}\,\,\,(x_{1},x_{2})\in D_{j}.

Then QjΦj:DjΓBjQ_{j}\Phi_{j}:D_{j}\rightarrow\Gamma_{\star}\cap B_{j} is a parametrization of ΓBj\Gamma_{\star}\cap B_{j} and wjH01(Dj)3w_{j}\in H^{1}_{0}(D_{j})^{3}. We can approximate wjw_{j} in H1(Dj)3H^{1}(D_{j})^{3} by a sequence of smooth functions wjnC(2)3w_{j}^{n}\in C^{\infty}({\mathbb{R}}^{2})^{3} with compact supports inside DjD_{j}. These functions have natural extensions to w¯jnC(3)3\overline{w}_{j}^{n}\in C^{\infty}({\mathbb{R}}^{3})^{3}, i.e.,

(4.72) w¯jn(x1,x2,x3)=wjn(x1,x2)χα(x3)for(x1,x2,x3)3,\displaystyle\overline{w}_{j}^{n}(x_{1},x_{2},x_{3})=w_{j}^{n}(x_{1},x_{2})\chi_{\alpha}(x_{3})\quad\mbox{for}\,\,\,(x_{1},x_{2},x_{3})\in{\mathbb{R}}^{3},

where χα(x3)\chi_{\alpha}(x_{3}) is a one-dimensional smooth cut-off function which satisfies

(4.73) χα(0)=1,χα(0)=0andχα(x3)=0for|x3|>α.\displaystyle\chi_{\alpha}(0)=1,\quad\chi_{\alpha}^{\prime}(0)=0\quad\mbox{and}\quad\chi_{\alpha}(x_{3})=0\quad\mbox{for}\quad|x_{3}|>\alpha.

Then we can define a smooth function w^jnC(3)3\hat{w}_{j}^{n}\in C^{\infty}({\mathbb{R}}^{3})^{3} (with compact support in BjB_{j}) that approximates eϕje\phi_{j} in H1(ΓBj)H^{1}(\Gamma_{\star}\cap B_{j}), i.e.,

(4.74) w~jn(Qjx)=w¯jn(x1,x2,x3φjn(x1,x2))for(x1,x2,x3)T3.\displaystyle\tilde{w}_{j}^{n}(Q_{j}x)=\overline{w}_{j}^{n}(x_{1},x_{2},x_{3}-\varphi_{j}^{n}(x_{1},x_{2}))\quad\mbox{for}\,\,\,(x_{1},x_{2},x_{3})^{T}\in{\mathbb{R}}^{3}.

By choosing a sufficiently small α\alpha, the extended functions w~jnC(3)3\tilde{w}_{j}^{n}\in C^{\infty}({\mathbb{R}}^{3})^{3} have compact supports in BjB_{j}. Since QjΦj:DjΓBjQ_{j}\Phi_{j}:D_{j}\rightarrow\Gamma_{\star}\cap B_{j} is a parametrization of ΓBj\Gamma_{\star}\cap B_{j}, it follows that “w~jn\tilde{w}_{j}^{n} converges to eϕje\phi_{j} in H1(ΓBj)H^{1}(\Gamma_{\star}\cap B_{j})” if and only if “w~jn(QjΦj)\tilde{w}_{j}^{n}\circ(Q_{j}\Phi_{j}) converges to (eϕj)(QjΦj)(e\phi_{j})\circ(Q_{j}\Phi_{j}) in H1(Dj)H^{1}(D_{j})”. In view of the definitions in (4.71)–(4.72) and (4.74), we have

w~jn(QjΦj)(x1,x2)(eϕj)(QjΦj)(x1,x2)\displaystyle\tilde{w}_{j}^{n}\circ(Q_{j}\Phi_{j})(x_{1},x_{2})-(e\phi_{j})\circ(Q_{j}\Phi_{j})(x_{1},x_{2})
=wjn(x1,x2)χα(φj(x1,x2)φjn(x1,x2))wj(x1,x2)\displaystyle=w_{j}^{n}(x_{1},x_{2})\chi_{\alpha}(\varphi_{j}(x_{1},x_{2})-\varphi_{j}^{n}(x_{1},x_{2}))-w_{j}(x_{1},x_{2})
(4.75) =wjn(x1,x2)[χα(φj(x1,x2)φjn(x1,x2))1]+[wjn(x1,x2)wj(x1,x2)].\displaystyle=w_{j}^{n}(x_{1},x_{2})[\chi_{\alpha}(\varphi_{j}(x_{1},x_{2})-\varphi_{j}^{n}(x_{1},x_{2}))-1]+[w_{j}^{n}(x_{1},x_{2})-w_{j}(x_{1},x_{2})].

Since φjn\varphi_{j}^{n} converges to φj\varphi_{j} in L(Dj)W1,p(Dj)L^{\infty}(D_{j})\cap W^{1,p}(D_{j}) as nn\rightarrow\infty for arbitrary p[1,)p\in[1,\infty) (see the statement below (4.70)), and wjnw_{j}^{n} converges to wjw_{j} in H1(Dj)Lp(Dj)H^{1}(D_{j})\hookrightarrow L^{p}(D_{j}) for all p[1,)p\in[1,\infty) (this is how wjnw_{j}^{n} is defined), from (4) it is straightforward to verify that w~jn(QjΦj)\tilde{w}_{j}^{n}\circ(Q_{j}\Phi_{j}) converges to (eϕj)(QjΦj)(e\phi_{j})\circ(Q_{j}\Phi_{j}) in H1(Dj)H^{1}(D_{j}). As a result, w~jn\tilde{w}_{j}^{n} converges to eϕje\phi_{j} in H1(ΓBj)H^{1}(\Gamma_{\star}\cap B_{j}). Therefore,

w~n=j=1Jw~jn,n=1,2,,\tilde{w}^{n}=\sum_{j=1}^{J}\tilde{w}_{j}^{n},\quad n=1,2,\dots,

is a sequence of functions in C(3)3C^{\infty}({\mathbb{R}}^{3})^{3} that converges to e=j=1Jeϕje=\sum_{j=1}^{J}e\phi_{j} in H1(Γ)H^{1}(\Gamma_{\!\star}) as nn\rightarrow\infty.

Finally, we prove that taking mm\rightarrow\infty in (4.65) would yield (4.66). This would complete the proof of Proposition 4.2. To this end, we consider the decomposition

Γm[tr(Γmw~n)2tr(Γmw~nΓmw~n)]\displaystyle\int_{\Gamma_{\!\star}^{m}}\Big{[}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})^{2}-{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})\Big{]}
(4.76) =j=1JΓmBjtr(Γmw~n)2ϕjj=1JΓmBjtr(Γmw~nΓmw~n)ϕj\displaystyle=\sum_{j=1}^{J}\int_{\Gamma_{\!\star}^{m}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})^{2}\phi_{j}-\sum_{j=1}^{J}\int_{\Gamma_{\!\star}^{m}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})\phi_{j}

and prove the following two results:

(4.77) limm0ΓmBjtr(Γmw~n)2ϕj=ΓBjtr(Γw~n)2ϕj\displaystyle\lim_{m\rightarrow 0}\int_{\Gamma_{\!\star}^{m}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})^{2}\phi_{j}=\int_{\Gamma_{\!\star}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}}\tilde{w}^{n})^{2}\phi_{j} for every j,\displaystyle\mbox{for every $j$},
(4.78) limm0ΓmBjtr(Γmw~nΓmw~n)ϕj=ΓBjtr(Γw~nΓw~n)ϕj\displaystyle\lim_{m\rightarrow 0}\int_{\Gamma_{\!\star}^{m}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})\phi_{j}=\int_{\Gamma_{\!\star}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}}\tilde{w}^{n}\nabla_{\Gamma_{\!\star}}\tilde{w}^{n})\phi_{j} for every j.\displaystyle\mbox{for every $j$}.

Let Φjm(x1,x2)=(x1,x2,φjm(x1,x2))T3\Phi_{j}^{m}(x_{1},x_{2})=(x_{1},x_{2},\varphi_{j}^{m}(x_{1},x_{2}))^{T}\in{\mathbb{R}}^{3}. Then Φjm\Phi_{j}^{m} is a parametrization of the surface ΓmBj\Gamma_{\star}^{m}\cap B_{j} after a rotation by QjQ_{j}. By using this parametrization, the left-hand side of (4.77) can be written as

(4.79) ΓmBjtr(Γmw~n)2ϕj\displaystyle\int_{\Gamma_{\!\star}^{m}\cap B_{j}}{\rm tr}(\nabla_{\Gamma_{\!\star}^{m}}\tilde{w}^{n})^{2}\phi_{j}
=Djtr(i,=12gi(Φjm)w~n(QjΦjm)xxiΦjm)2(ϕjΦjm)1+|φjm|2dx1dx2.\displaystyle=\int_{D_{j}}{\rm tr}\Big{(}\sum_{i,\ell=1}^{2}g^{i\ell}(\nabla\Phi_{j}^{m})\frac{\partial\tilde{w}^{n}(Q_{j}\Phi_{j}^{m})}{\partial x_{\ell}}\otimes\partial_{x_{i}}\Phi_{j}^{m}\Big{)}^{2}(\phi_{j}\circ\Phi_{j}^{m})\sqrt{1+|\nabla\varphi_{j}^{m}|^{2}}\,\text{d}x_{1}\text{d}x_{2}.

where gi(Φjm)g^{i\ell}(\nabla\Phi_{j}^{m}) is the inverse matrix of the Riemannian metric tensor gi(Φjm)g_{i\ell}(\nabla\Phi_{j}^{m}), i.e.,

gi(Φjm)=xiΦjmxΦjm,i,=1,2.g_{i\ell}(\nabla\Phi_{j}^{m})=\partial_{x_{i}}\Phi_{j}^{m}\cdot\partial_{x_{\ell}}\Phi_{j}^{m},\quad i,\ell=1,2.

Since Φjm\Phi_{j}^{m} converges to Φj\Phi_{j} in L(Dj)W1,p(Dj)L^{\infty}(D_{j})\cap W^{1,p}(D_{j}) as mm\rightarrow\infty for all p[1,)p\in[1,\infty), it follows that gi(Φjm)g_{i\ell}(\nabla\Phi_{j}^{m}) converges to gi(Φj)g_{i\ell}(\nabla\Phi_{j}) in Lp(Dj)L^{p}(D_{j}) for all p[1,)p\in[1,\infty). Furthermore, since

det(gi(Φjm))=1+|φjm|2\det(g_{i\ell}(\nabla\Phi_{j}^{m}))=1+|\nabla\varphi_{j}^{m}|^{2}

is bounded from both below and above (because φjm\nabla\varphi_{j}^{m} is bounded in L(Dj)3L^{\infty}(D_{j})^{3} as mm\rightarrow\infty), it follows that the inverse matrix gi(Φjm)g^{i\ell}(\nabla\Phi_{j}^{m}) also converges, i.e.,

(4.80) gi(Φjm)g^{i\ell}(\nabla\Phi_{j}^{m}) converges to gi(Φj)g^{i\ell}(\nabla\Phi_{j}) in Lp(Dj)L^{p}(D_{j}) for all p[1,)p\in[1,\infty) as mm\rightarrow\infty.

Note that

w~n(QjΦjm(x1,x2))x\displaystyle\frac{\partial\tilde{w}^{n}(Q_{j}\Phi_{j}^{m}(x_{1},x_{2}))}{\partial x_{\ell}} =(w~nxq(QjΦjm)(x1,x2))Qj,qΦjm(x1,x2)x,\displaystyle=\Big{(}\frac{\partial\tilde{w}^{n}}{\partial x_{q}}\circ(Q_{j}\Phi_{j}^{m})(x_{1},x_{2})\Big{)}Q_{j,q}\frac{\partial\Phi_{j}^{m}(x_{1},x_{2})}{\partial x_{\ell}},
w~n(QjΦj(x1,x2))x\displaystyle\frac{\partial\tilde{w}^{n}(Q_{j}\Phi_{j}(x_{1},x_{2}))}{\partial x_{\ell}} =(w~nxq(QjΦj)(x1,x2))Qj,qΦj(x1,x2)x,\displaystyle=\Big{(}\frac{\partial\tilde{w}^{n}}{\partial x_{q}}\circ(Q_{j}\Phi_{j})(x_{1},x_{2})\Big{)}Q_{j,q}\frac{\partial\Phi_{j}(x_{1},x_{2})}{\partial x_{\ell}},

where Qj,qQ_{j,q} denotes the qqth row of QjQ_{j}. Since w~nxqC(3)3\displaystyle\frac{\partial\tilde{w}^{n}}{\partial x_{q}}\in C^{\infty}({\mathbb{R}}^{3})^{3} for fixed nn and Φjm\Phi_{j}^{m} converges to Φj\Phi_{j} in L(Dj)W1,p(Dj)L^{\infty}(D_{j})\cap W^{1,p}(D_{j}) for all p[1,)p\in[1,\infty) as mm\rightarrow\infty, it follows that

(4.81) [w~n(QjΦjm)]x\displaystyle\frac{\partial[\tilde{w}^{n}\circ(Q_{j}\Phi_{j}^{m})]}{\partial x_{\ell}} converges to [w~n(QjΦj)]x\displaystyle\frac{\partial[\tilde{w}^{n}\circ(Q_{j}\Phi_{j})]}{\partial x_{\ell}} in Lp(Dj)L^{p}(D_{j}) for all p[1,)p\in[1,\infty) as mm\rightarrow\infty.

Since ϕj\phi_{j} is smooth and Φjm\Phi_{j}^{m} converges to Φj\Phi_{j} in L(Dj)L^{\infty}(D_{j}) as mm\rightarrow\infty, it follows that

(4.82) ϕjΦjm\phi_{j}\circ\Phi_{j}^{m} converges to ϕjΦj\phi_{j}\circ\Phi_{j} in L(Dj)L^{\infty}(D_{j}) as mm\rightarrow\infty.

Then, substituting (4.80), (4.81) and (4.82) into the right-hand side of (4.79) and taking limit mm\rightarrow\infty, we obtain (4.77). The proof of (4.78) is similar and omitted.

Substituting (4.77)–(4.78) into (4) yields the desired result (4.66). This completes the proof of Proposition 4.2. ∎

5. Proof of the defect’s estimate (3.28)

In this section we prove (3.28), which is used in the proof of Theorem 2.1. We rewrite equation (1.1) into

(5.83) tid=ΔΓ[X(,t)]idonΓ[X(,t)],t(0,T].\displaystyle\partial_{t}^{\bullet}{\rm id}=\Delta_{\Gamma[X(\cdot,t)]}{\rm id}\quad\mbox{on}\,\,\,\Gamma[X(\cdot,t)],\,\,\,\forall\,t\in(0,T].

Let whSh(Γh[𝐱])w_{h}\in S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]) be a finite element function on the interpolated surface Γh[𝐱]\Gamma_{h}[{\mathbf{x}}^{*}], and let whlH1(Γ)w_{h}^{l}\in H^{1}(\Gamma) be the lift of whw_{h} onto the exact surface Γ=Γ[X(,t)]\Gamma=\Gamma[X(\cdot,t)]. Then, testing (5.83) by whlw_{h}^{l}, we obtain

(5.84) Γtidwhl+ΓΓidΓwhl=0whSh(Γh[𝐱]).\displaystyle\int_{\Gamma}\partial_{t}^{\bullet}{\rm id}\cdot w_{h}^{l}+\int_{\Gamma}\nabla_{\Gamma}{\rm id}\cdot\nabla_{\Gamma}w_{h}^{l}=0\quad\forall\,w_{h}\in S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]).

This can be furthermore written as

(5.85) Γht,hidwh+ΓhΓhidΓhwh=Γhdhwh,whSh(Γh[𝐱]),\displaystyle\int_{\Gamma_{h}^{*}}\partial_{t,h}^{\bullet}{\rm id}\cdot w_{h}+\int_{\Gamma_{h}^{*}}\nabla_{\Gamma_{h}^{*}}{\rm id}\cdot\nabla_{\Gamma_{h}^{*}}w_{h}=\int_{\Gamma_{h}^{*}}d_{h}\cdot w_{h},\quad\forall\,w_{h}\in S_{h}(\Gamma_{h}[{\mathbf{x}}^{*}]),

where dhSh(Γh)d_{h}\in S_{h}(\Gamma_{h}^{*}) is the unique finite element function determined by the relation

Γhdhwh=\displaystyle\int_{\Gamma_{h}^{*}}d_{h}\cdot w_{h}= (Γht,hidwhΓtidwhl)\displaystyle\bigg{(}\int_{\Gamma_{h}^{*}}\partial_{t,h}^{\bullet}{\rm id}\cdot w_{h}-\int_{\Gamma}\partial_{t}^{\bullet}{\rm id}\cdot w_{h}^{l}\bigg{)}
+(ΓhΓhidΓhwhΓΓidΓwhl)\displaystyle+\bigg{(}\int_{\Gamma_{h}^{*}}\nabla_{\Gamma_{h}^{*}}{\rm id}\cdot\nabla_{\Gamma_{h}^{*}}w_{h}-\int_{\Gamma}\nabla_{\Gamma}{\rm id}\cdot\nabla_{\Gamma}w_{h}^{l}\bigg{)}
=\displaystyle= :1(wh)+2(wh).\displaystyle\!:\mathcal{E}_{1}(w_{h})+\mathcal{E}_{2}(w_{h}).

In the matrix-vector form, (5.85) can be equivalently written as

(5.86) 𝐌(𝐱)𝐱˙+𝐀(𝐱)𝐱=𝐌(𝐱)𝐝,\displaystyle{\bf M}({\mathbf{x}}^{*})\dot{\mathbf{x}}^{*}+{\bf A}({\mathbf{x}}^{*}){\mathbf{x}}^{*}={\bf M}({\mathbf{x}}^{*}){\bf d},

with 𝐝{\bf d} being the nodal vector of the finite element function dhSh(Γh)d_{h}\in S_{h}(\Gamma_{h}^{*}).

Note that t,hid=vh\partial_{t,h}^{\bullet}{\rm id}=v_{h}^{*} on Γh\Gamma_{h}^{*} and tid=v\partial_{t}^{\bullet}{\rm id}=v on Γ\Gamma, where vhv_{h}^{*} and vv are the velocity of the surfaces Γh\Gamma_{h}^{*} and Γ\Gamma, respectively. In particular, vhv_{h}^{*} is the Lagrange interpolation of vv. Hence, by using (2.10) and (2.9),

1(wh)\displaystyle\mathcal{E}_{1}(w_{h}) =ΓhvhwhΓvwhl\displaystyle=\int_{\Gamma_{h}^{*}}v_{h}^{*}\cdot w_{h}-\int_{\Gamma}v\cdot w_{h}^{l}
=(ΓhvhwhΓvh,lwhl)+Γ(vh,lv)whl\displaystyle=\bigg{(}\int_{\Gamma_{h}^{*}}v_{h}^{*}\cdot w_{h}-\int_{\Gamma}v_{h}^{*,l}\cdot w_{h}^{l}\bigg{)}+\int_{\Gamma}(v_{h}^{*,l}-v)\cdot w_{h}^{l}
=Γh(1δh)vhwh+Γ(vh,lv)whl\displaystyle=\int_{\Gamma_{h}^{*}}(1-\delta_{h})v_{h}^{*}\cdot w_{h}+\int_{\Gamma}(v_{h}^{*,l}-v)\cdot w_{h}^{l}
chk+1vhL2(Γh)whL2(Γh)+chk+1whlL2(Γ)\displaystyle\leq ch^{k+1}\|v_{h}^{*}\|_{L^{2}(\Gamma_{h}^{*})}\|w_{h}\|_{L^{2}(\Gamma_{h}^{*})}+ch^{k+1}\|w_{h}^{l}\|_{L^{2}(\Gamma)}
chk+1whL2(Γh).\displaystyle\leq ch^{k+1}\|w_{h}\|_{L^{2}(\Gamma_{h}^{*})}.

Let idΓh{\rm id}_{\Gamma_{h}^{*}} and idΓ{\rm id}_{\Gamma} be the identity function restricted to Γh\Gamma_{h}^{*} and Γ\Gamma, respectively, and let idΓhl{\rm id}_{\Gamma_{h}^{*}}^{l} be the lifted function on Γ\Gamma. Then

2(wh)=\displaystyle\mathcal{E}_{2}(w_{h})= ΓhΓhidΓhΓhwhΓΓidΓΓwhl\displaystyle\int_{\Gamma_{h}^{*}}\nabla_{\Gamma_{h}^{*}}{\rm id}_{\Gamma_{h}^{*}}\cdot\nabla_{\Gamma_{h}^{*}}w_{h}-\int_{\Gamma}\nabla_{\Gamma}{\rm id}_{\Gamma}\cdot\nabla_{\Gamma}w_{h}^{l}
=\displaystyle= (ΓhΓhidΓhΓhwhΓΓidΓhlΓwhl)+ΓΓ(idΓhlidΓ)Γwhl\displaystyle\bigg{(}\int_{\Gamma_{h}^{*}}\nabla_{\Gamma_{h}^{*}}{\rm id}_{\Gamma_{h}^{*}}\cdot\nabla_{\Gamma_{h}^{*}}w_{h}-\int_{\Gamma}\nabla_{\Gamma}{\rm id}_{\Gamma_{h}^{*}}^{l}\cdot\nabla_{\Gamma}w_{h}^{l}\bigg{)}+\int_{\Gamma}\nabla_{\Gamma}({\rm id}_{\Gamma_{h}^{*}}^{l}-{\rm id}_{\Gamma})\cdot\nabla_{\Gamma}w_{h}^{l}
\displaystyle\leq chk+1ΓhidΓhL2(Γh)ΓhwhL2(Γh)+chkΓhwhL2(Γh)\displaystyle ch^{k+1}\|\nabla_{\Gamma_{h}^{*}}{\rm id}_{\Gamma_{h}^{*}}\|_{L^{2}(\Gamma_{h}^{*})}\|\nabla_{\Gamma_{h}^{*}}w_{h}\|_{L^{2}(\Gamma_{h}^{*})}+ch^{k}\|\nabla_{\Gamma_{h}^{*}}w_{h}\|_{L^{2}(\Gamma_{h}^{*})}
\displaystyle\leq chkΓhidΓhL2(Γh)whL2(Γh)+chk1whL2(Γh),\displaystyle ch^{k}\|\nabla_{\Gamma_{h}^{*}}{\rm id}_{\Gamma_{h}^{*}}\|_{L^{2}(\Gamma_{h}^{*})}\|w_{h}\|_{L^{2}(\Gamma_{h}^{*})}+ch^{k-1}\|w_{h}\|_{L^{2}(\Gamma_{h}^{*})},

where the second to last inequality again uses [21, Lemma 5.2]. This proves that

|Γhdhwh|chk1whL2(Γh).\bigg{|}\int_{\Gamma_{h}^{*}}d_{h}\cdot w_{h}\bigg{|}\leq ch^{k-1}\|w_{h}\|_{L^{2}(\Gamma_{h}^{*})}.

In the matrix-vector form, this can be equivalently written as

|𝐌(𝐱)𝐝𝐰|chk1𝐰𝐌(𝐱)|{\bf M}({\mathbf{x}}^{*}){\bf d}\cdot{\bf w}|\leq ch^{k-1}\|{\bf w}\|_{{\bf M}({\mathbf{x}}^{*})}

Hence, by choosing 𝐰=𝐝{\bf w}={\bf d} in the inequality above, we obtain

𝐝𝐌(𝐱)chk1.\|{\bf d}\|_{{\bf M}({\mathbf{x}}^{*})}\leq ch^{k-1}.

This proves the defect’s estimate (3.28).

6. Concluding remarks

The main contribution of this paper is the discovery of the structure (1.6) and its application to proving the convergence of Dziuk’s semidiscrete FEM for mean curvature flow of closed surfaces with sufficiently high-order finite elements.

The following additional difficulty would appear in the analysis of linearly implicit time discretisation:

(6.87) (𝐀(𝐱n1)𝐱n𝐀(𝐱,n1)𝐱,n)(𝐱n𝐱,n)\displaystyle\big{(}{\bf A}({\mathbf{x}}^{n-1}){\mathbf{x}}^{n}-{\bf A}({\mathbf{x}}^{*,n-1}){\mathbf{x}}^{*,n}\big{)}\cdot({\mathbf{x}}^{n}-{\mathbf{x}}^{*,n})

is no longer in the form of the left-hand side of (1.6) due to the shift of superscript indices. Hence, additional terms would appear in converting (6.87) to the form of the left-hand side of (1.6). Those additional terms may be bounded by using the approach in [24] under a certain grid-ratio condition.

It is straightforward to verify that both (3.2) and Proposition 4.1 can be extended to higher dimensions, i.e., for mean curvature flow of dd-dimensional hypersurfaces in d+1{\mathbb{R}}^{d+1} with d2d\geq 2. As a result, the monotone structure and the convergence proof can be generalised to this case. However, the monotone structure of mean curvature flow of two-dimensional surfaces in higher codimension is not obvious from the current proof, and therefore the convergence of evolving surface FEMs in this case still remains open.

Convergence of Dziuk’s semidiscrete FEM with low-order finite elements, as well as the parametric FEMs of Barrett, Garcke & Nürnberg [3, 4], remain open for mean curvature flow of closed surfaces. Efficient numerical methods for the non-divergence parabolic system constructed from DeTurck’s trick in [20], allowing singularity to appear in the numerical simulation of closed surfaces, is still challenging.


Acknowledgement

I would like to thank Prof. Christian Lubich for reading the manuscript and providing many valuable comments and suggestions.

References

  • [1] J. W. Barrett, K. Deckelnick, and R. Nürnberg. A finite element error analysis for axisymmetric mean curvature flow. arXiv:1911.05398, 2019.
  • [2] J. W. Barrett, K. Deckelnick, and V. Styles. Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve. SIAM J. Numer. Anal., 55(2):1080–1100, 2017.
  • [3] J. W. Barrett, H. Garcke, and R. Nürnberg. On the parametric finite element approximation of evolving hypersurfaces in 3{\mathbb{R}}^{3}. J. Comput. Phys., 227(9):4281–4307, 2008.
  • [4] J. W. Barrett, H. Garcke, and R. Nürnberg. Numerical approximation of gradient flows for closed curves in d\mathbb{R}^{d}. IMA J. Numer. Anal., 30(1):4–60, 2010.
  • [5] K. Deckelnick and G. Dziuk. Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math., 72(2):197–222, 1995.
  • [6] K. Deckelnick and G. Dziuk. On the approximation of the curve shortening flow. In Calculus of variations, applications and computations (Pont-à-Mousson, 1994), volume 326 of Pitman Res. Notes Math. Ser., pages 100–108. Longman Sci. Tech., Harlow, 1995.
  • [7] K. Deckelnick and G. Dziuk. Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound., 2(4):341–359, 2000.
  • [8] K. Deckelnick, G. Dziuk, and C. M. Elliott. Computation of geometric partial differential equations and mean curvature flow. Acta Numerica, 14:139–232, 2005.
  • [9] A. Demlow. Higher–order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–807, 2009.
  • [10] P. Doktor. Approximation of domains with Lipschitzian boundary. Časopis pro pěstování matematiky, 101(3):237–255, 1976.
  • [11] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. Partial differential equations and calculus of variations, Lecture Notes in Math., 1357, Springer, Berlin, pages 142–155, 1988.
  • [12] G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58(1):603–611, 1990.
  • [13] G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci., 4(4):589–606, 1994.
  • [14] G. Dziuk. Discrete anisotropic curve shortening flow. SIAM J. Numer. Anal., 36(6):1808–1830, 1999.
  • [15] G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27(2):262–292, 2007.
  • [16] G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta Numerica, 22:289–396, 2013.
  • [17] G. Dziuk and C. M. Elliott. L2L^{2}-estimates for the evolving surface finite element method. Math. Comp., 82(281):1–24, 2013.
  • [18] G. Dziuk, D. Kröner, and T. Müller. Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound., 15(2):203–236, 2013.
  • [19] K. Ecker. Regularity theory for mean curvature flow. Springer, 2012.
  • [20] C. M. Elliott and H. Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal., 37(2):543–603, 2017.
  • [21] B. Kovács. High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal., 38(1):430–459, 2018.
  • [22] B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math., 143:797–853, 2019.
  • [23] B. Kovács, B. Li, C. Lubich, and C. Power Guerra. Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math., 137(3):643–689, 2017.
  • [24] B. Li. Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow. SIAM J. Numer. Anal., 58(4):2315–2333, 2020.
  • [25] P. Pozzi. Anisotropic curve shortening flow in higher codimension. Math. Meth. Appl. Sci., 30(11):1243–1281, 2007.
  • [26] P. Pozzi and B. Stinner. Curve shortening flow coupled to lateral diffusion. Numer. Math., 135:1171–1205, 2017.
  • [27] R. Rusu. Numerische analysis für den Krümmungsfluß und den Willmorefluß. PhD Thesis, University of Freiburg, Freiburg, 2006.