This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence of a finite element method for degenerate two-phase flow in porous media

Vivette Girault Paris VI, visiting professor at Rice    Beatrice M. Rivière Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005. Supported in part by NSF-DMS    Loic Cappanera
Abstract

A finite element method with mass-lumping and flux upwinding, is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. The discrete saturation satisfies a maximum principle. Theoretical convergence is proved via a compactness argument. The proof is convoluted because of the degeneracy of the phase mobilities and the unboundedness of the capillary pressure.

1 Introduction

This work discretizes on a suitable mesh a degenerate two-phase flow system set in a polyhedral domain by a new finite element scheme that directly approximates the wetting phase pressure and saturation, similar to the formulation proposed in [18]. Mass lumping is used to compute the integrals and a suitable upwinding is used to compute the flux, guaranteeing that the discrete saturation satisfies a maximum principle. The resulting system of discrete equations is a finite element analogue of the finite volume scheme introduced and analyzed by Eymard et al in the seminal work [16]. From the point of view of implementation, the advantage of finite elements is that they only use nodal values and a single simplicial mesh. In particular, no orthogonality property is required between the faces and the lines joining the centers of control volumes. From a theoretical point of view, owing that the finite element scheme is based on functions, some steps in its convergence analysis are simpler, but nevertheless the major difficulty in the analysis consists in proving sufficient a priori estimates in spite of the degeneracy. By following closely [16], the degeneracy is remediated by reintroducing in the proofs discrete artificial pressures. From there, convergence of the numerical solutions is shown via a compactness argument.

Incompressible two-phase flow is a popular and important multiphase flow model in reservoirs for the oil and gas industry. Based on conservation laws at the continuum scale, the model assumes the existence of a representative elementary volume. Each wetting phase and non-wetting phase saturation satisfies a mass balance equation and each phase velocity follows the generalized Darcy law [25, 4]. The equations of the mathematical model read

t(φsw)(ηwpw)=fw(sin)q¯fw(sw)q¯,t(φso)(ηopo)=fo(sin)q¯fo(sw)q¯,pc(sw)=popw,sw+so=1,\begin{split}\partial_{t}(\varphi s_{w})-\nabla\cdot(\eta_{w}\nabla p_{w})&=f_{w}(s_{\mathrm{in}})\bar{q}-f_{w}(s_{w})\underline{q},\\ \partial_{t}(\varphi s_{o})-\nabla\cdot(\eta_{o}\nabla p_{o})&=f_{o}(s_{\mathrm{in}})\bar{q}-f_{o}(s_{w})\underline{q},\\ p_{c}(s_{w})=p_{o}-p_{w},&\quad s_{w}+s_{o}=1,\end{split} (1)

complemented by initial and boundary conditions. Here pw,sw,ηw,fwp_{w},s_{w},\eta_{w},f_{w}, (respectively, po,so,ηo,fop_{o},s_{o},\eta_{o},f_{o}), are the pressure, saturation, mobility and fractional flow of the wetting (respectively non-wetting) phase, φ\varphi is the porosity, sins_{\mathrm{in}} is a given input saturation, and q¯,q¯\bar{q},\underline{q} are given flow rates. The capillary pressure, pcp_{c}, is a given function that depends nonlinearly on the saturation. Because the phase mobilities are degenerate when they are evaluated at the residual phase saturations and the derivative of the capillary pressure is unbounded, this system of two coupled nonlinear partial differential equations has coefficients that vanish in parts of the domain; this degeneracy makes the numerical analysis challenging.

At the continuous level, this problem has several equivalent formulations, see [7]. They are linked to the choice of primary unknowns selected among wetting phase and non-wetting phase pressure and saturation, or capillary pressure [20, 5]. A good state of the art can be found in the reference [2]. Up to our knowledge, the mathematical analysis of the system of equations was first done in [21, 1]. An equivalent formulation of the model, based on Chavent’s global pressure that removes the degeneracy, was analyzed in [8, 9]. Since then, the global pressure formulation has been discretized and analyzed in many references [24, 10, 23], but unfortunately, this formulation is not used in engineering practice because the global pressure is not a physical unknown. Otherwise, with one exception, the numerical analysis of the discrete version of (1), has always been done under unrealistic assumptions that cannot be checked at the discrete level [13, 14]. Related to this line of work, the discretization of a degenerate parabolic equation has been studied in the literature [3, 28, 27, 17]. The only paper that performs the complete numerical analysis of the discrete degenerate two-phase flow system written as above (i.e., in the form used by engineers) is the analysis on finite volumes done in reference [16]. This motivates our extension of this work to finite elements.

The remaining part of this introduction makes precise problem (1). The numerical scheme is developed in Section 2. Because of the nonlinearity and degeneracy of its equations, existence of a discrete solution requires that the discrete wetting phase saturation satisfies a maximum principle. This is the first object of Section 3, the second one being basic a priori pressure estimates, after which existence is shown in Section 4. The most technical part, done in Section 5, is the derivation of an unconditional bound on an auxiliary pressure, which allows to use a compactness argument. Weak and strong convergences are proved in Section 6 and the equations satisfied by the limit are identified in Section 7, thus confirming existence of a solution of the weak formulation (16). Numerical results are presented in Section 8.

1.1 Model problem

Let ΩIRd\Omega\subset{\rm I\!R}^{d}, d=2d=2 or 33, be a bounded connected Lipschitz domain with boundary Ω\partial\Omega and unit exterior normal 𝒏{\boldsymbol{n}}, and let TT be a final time. With the last relation in (1), sws_{w} is the only unknown saturation; so we set s=sws=s_{w}, and rewrite (1) almost everywhere in Ω×]0,T[\Omega\times]0,T[ as

t(φs)(ηwpw)=fw(sin)q¯fw(s)q¯\displaystyle\partial_{t}(\varphi s)-\nabla\cdot(\eta_{w}\nabla p_{w})=f_{w}(s_{\mathrm{in}})\bar{q}-f_{w}(s)\underline{q} (2)
t(φs)(ηopo)=fo(sin)q¯fo(s)q¯,\displaystyle-\partial_{t}(\varphi s)-\nabla\cdot(\eta_{o}\nabla p_{o})=f_{o}(s_{\mathrm{in}})\bar{q}-f_{o}(s)\underline{q}, (3)

complemented by a natural boundary condition almost everywhere on Ω×]0,T[\partial\Omega\times]0,T[

ηwpw𝐧=0,ηopo𝐧=0,\eta_{w}\nabla p_{w}\cdot{\bf n}=0,\quad\eta_{o}\nabla p_{o}\cdot{\bf n}=0, (4)

and an initial condition almost everywhere in Ω\Omega

sw(,0)=sw0,0sw01.s_{w}(\cdot,0)=s_{w}^{0},\quad 0\leq s_{w}^{0}\leq 1. (5)

The fractional flows are related to the mobilities by

fw=ηwηw+ηo,fo=1fw.f_{w}=\frac{\eta_{w}}{\eta_{w}+\eta_{o}},\quad f_{o}=1-f_{w}. (6)

Recall that the phase saturations sum up to 1 and the phase pressures are related by

pc(sw)=popw.p_{c}(s_{w})=p_{o}-p_{w}. (7)

The first part of this work, up to Section 5.7, is done under the following basic assumptions:

Assumptions

  • The porosity φ\varphi is piecewise constant in space, independent of time, positive, bounded and uniformly bounded away from zero.

  • The mobility of the wetting phase ηw0\eta_{w}\geq 0 is continuous and increasing. The mobility of the non-wetting phase ηo0\eta_{o}\geq 0 is continuous and decreasing. This implies that the function fwf_{w} is increasing and the function fof_{o} is decreasing.

  • There is a positive constant η\eta_{\ast} such that

    ηw(s)+ηo(s)η,s[0,1].\eta_{w}(s)+\eta_{o}(s)\geq\eta_{\ast},\quad\forall s\in[0,1]. (8)
  • The capillary pressure pcp_{c} is a continuous, strictly decreasing function in W1,1(0,1)W^{1,1}(0,1).

  • The flow rates at the injection and production wells, q¯,q¯L2(Ω×]0,T[)\bar{q},\underline{q}\in L^{2}(\Omega\times]0,T[) satisfy

    q¯0,q¯0,Ωq¯=Ωq¯.\bar{q}\geq 0,\quad\underline{q}\geq 0,\quad\int_{\Omega}\bar{q}=\int_{\Omega}\underline{q}. (9)
  • The prescribed input saturation sins_{\mathrm{in}} satisfies almost everywhere in Ω×]0,T[\Omega\times]0,T[

    0sin1.0\leq s_{\mathrm{in}}\leq 1\color[rgb]{0,0,0}. (10)

Since pcp_{c}, ηα\eta_{\alpha}, fαf_{\alpha}, α=w,o\alpha=w,o are bounded above and below, it is convenient to extend them continuously by constants to IR{\rm I\!R}.

Although the numerical scheme studied below does not discretize the global pressure, following [16], its convergence proof uses a number of auxiliary functions related to the global pressure. First, we introduce the primitive gcg_{c} of pcp_{c},

x[0,1],gc(x)=x1pc(s)𝑑s.\forall x\in[0,1],\quad g_{c}(x)=\int_{x}^{1}p_{c}(s)ds. (11)

Since pcp_{c} is a continuous function on [0,1][0,1], the function gcg_{c} belongs to 𝒞1([0,1])\mathcal{C}^{1}([0,1]). Next, we introduce the auxiliary pressures pwgp_{wg}, pwop_{wo}, and gg,

x[0,1],pwg(x)=0xfo(s)pc(s)𝑑s,pog(x)=0xfw(s)pc(s)𝑑s,\forall x\in[0,1],\quad p_{wg}(x)=\int_{0}^{x}f_{o}(s)p_{c}^{\prime}(s)ds,\quad p_{og}(x)=\int_{0}^{x}f_{w}(s)p_{c}^{\prime}(s)ds, (12)
x[0,1],g(x)=0xηw(s)ηo(s)ηw(s)+ηo(s)pc(s)𝑑s.\forall x\in[0,1],\quad g(x)=-\int_{0}^{x}\frac{\eta_{w}(s)\eta_{o}(s)}{\eta_{w}(s)+\eta_{o}(s)}p^{\prime}_{c}(s)ds. (13)

Owing to (6),

x[0,1],pwg(x)+pog(x)=0xpc(s)𝑑s=pc(x)pc(0).\forall x\in[0,1],\quad p_{wg}(x)+p_{og}(x)=\int_{0}^{x}p_{c}^{\prime}(s)ds=p_{c}(x)-p_{c}(0). (14)

Moreover, the derivative of gg satisfies formally the identities

x[0,1],ηα(x)pαg(x)+g(x)=0,α=w,o.\forall x\in[0,1],\quad\eta_{\alpha\color[rgb]{0,0,0}}(x)p^{\prime}_{\alpha g}(x)+g^{\prime}(x)=0,\quad\alpha=w,o. (15)

1.2 Weak variational formulation

By multiplying (2) and (3) with a smooth function vv, say v𝒞1(Ω×[0,T])v\in{\mathcal{C}}^{1}(\Omega\times[0,T]) that vanishes at t=Tt=T, applying Green’s formula in time and space, and using the boundary and initial conditions (4) and (5), we formally derive a weak variational formulation

0TΩφstv+0TΩηwpwv=\displaystyle-\int_{0}^{T}\int_{\Omega}\varphi\,s\,\partial_{t}v+\int_{0}^{T}\int_{\Omega}\eta_{w}\nabla\,p_{w}\cdot\nabla\,v= Ωφs0v(0)+0TΩ(fw(sin)q¯fw(s)q¯)v,\displaystyle\int_{\Omega}\varphi\,s^{0}v(0)+\int_{0}^{T}\int_{\Omega}\big{(}f_{w}(s_{\mathrm{in}})\bar{q}-f_{w}(s)\underline{q}\big{)}v,
0TΩφstv+0TΩηopov=\displaystyle\int_{0}^{T}\int_{\Omega}\varphi\,s\,\partial_{t}v+\int_{0}^{T}\int_{\Omega}\eta_{o}\nabla\,p_{o}\cdot\nabla\,v= Ωφs0v(0)+0TΩ(fo(sin)q¯fo(s)q¯)v.\displaystyle-\int_{\Omega}\varphi\,s^{0}v(0)+\int_{0}^{T}\int_{\Omega}\big{(}f_{o}(s_{\mathrm{in}})\bar{q}-f_{o}(s)\underline{q}\big{)}v.

But in general, the pressures are not sufficiently smooth to make this formulation meaningful and following [7], by using (15), it is rewritten in terms of the artificial pressures,

0TΩφstv+0TΩ(ηw(pw+pwg(s))+g(s))v=Ωφs0v(0)+0TΩ(fw(sin)q¯fw(s)q¯)v,0TΩφstv+0TΩ(ηo(popog(s))g(s))v=Ωφs0v(0)+0TΩ(fo(sin)q¯fo(s)q¯)v.\begin{split}-\int_{0}^{T}\int_{\Omega}\varphi\,s\,\partial_{t}v+\int_{0}^{T}\int_{\Omega}\big{(}\eta_{w}&\nabla(p_{w}+p_{wg}(s))+\nabla\,g(s)\big{)}\cdot\nabla\,v=\int_{\Omega}\varphi\,s^{0}v(0)\\ &+\int_{0}^{T}\int_{\Omega}\big{(}f_{w}(s_{\mathrm{in}})\bar{q}-f_{w}(s)\underline{q}\big{)}v,\\ \int_{0}^{T}\int_{\Omega}\varphi\,s\,\partial_{t}v+\int_{0}^{T}\int_{\Omega}\big{(}\eta_{o}&\nabla(p_{o}-p_{og}(s))-\nabla\,g(s)\big{)}\cdot\nabla\,v=-\int_{\Omega}\varphi\,s^{0}v(0)\\ &+\int_{0}^{T}\int_{\Omega}\big{(}f_{o}(s_{\mathrm{in}})\bar{q}-f_{o}(s)\underline{q}\big{)}v.\end{split} (16)

The two formulas coincide when the pressures are slightly more regular. With the above assumptions, problem (16) has been analyzed in reference [1], where it is shown that it has a solution ss in L(Ω×]0,T[)L^{\infty}(\Omega\times]0,T[) with g(s)g(s) in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)), pαp_{\alpha}, α=w,o\alpha=w,o, in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[) with both pw+pwg(s)p_{w}+p_{wg}(s) and popog(s)p_{o}-p_{og}(s) in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)).

2 Scheme

From now on, we assume that Ω\Omega is a polygon (d=2d=2) or Lipschitz polyhedron (d=3d=3) so it can be entirely meshed.

2.1 Meshes and discretization spaces

The mesh 𝒯h{\mathcal{T}}_{h} is a regular family of simplices KK, with a constraint on the angle that will be used to enforce the maximum principle: each angle is not larger than π/2\pi/2, see [6]. This is easily constructed in 2D. In 3D, since we only investigate convergence we can embed the domain in a triangulated box. Moreover, since the porosity φ\varphi is a piecewise constant, to simplify we also assume that the mesh is such that φ\varphi is a constant per element. The parameter hh denotes the mesh size i.e., the maximum diameter of the simplices. On this mesh, we consider the standard finite element space of order one

Xh={vh𝒞0(Ω¯);K𝒯h,vh|K1}.X_{h}=\{v_{h}\in{\mathcal{C}}^{0}(\bar{\Omega})\,;\,\forall K\in{\mathcal{T}}_{h},v_{h}|_{K}\in{\mathbb{P}}_{1}\}. (17)

Thus the dimension of XhX_{h} is the number of nodes, say MM, of 𝒯h{\mathcal{T}}_{h}. Let ϕi\phi_{i} be the Lagrange basis function, that is piecewise linear, and takes the value 11 at node ii and the value 0 elsewhere. As usual, the Lagrange interpolation operator Ih(𝒞0(Ω¯);Xh)I_{h}\in{\mathcal{L}}({\mathcal{C}}^{0}(\bar{\Omega});X_{h}) is defined by

v𝒞0(Ω¯),Ih(v)=i=1Mviϕi,\forall v\in{\mathcal{C}}^{0}(\bar{\Omega}),\quad I_{h}(v)=\sum_{i=1}^{M}v_{i}\phi_{i}, (18)

where viv_{i} is the value of vv at the node of index ii. It is easy to see that under the mesh condition, we have

K,Kϕiϕj0,ij.\forall K,\quad\int_{K}\nabla\phi_{i}\cdot\nabla\phi_{j}\leq 0,\quad\forall i\neq j. (19)

For a given node ii, we denote by Δi\Delta_{i} the union of elements sharing the node ii and by 𝒩(i)\mathcal{N}(i) the set of indices of all the nodes in Δi\Delta_{i}. In the spirit of [19], we define

cij=ΔiΔj|ϕiϕj|,i,j.c_{ij}=\int_{\Delta_{i}\cap\Delta_{j}}|\nabla\phi_{i}\cdot\nabla\phi_{j}|,\quad\forall i,j. (20)

Recall that the trapezoidal rule on a triangle or a tetrahedron KK is

Kf1d+1|K|=1d+1fi,\int_{K}f\approx\frac{1}{d+1}|K|\sum_{\ell=1}^{d+1}f_{i_{\ell}},

where fif_{i_{\ell}} is the value of the function ff at the th\ell^{th} node (vertex), with global number ii_{\ell}, of KK. For any region 𝒪{\mathcal{O}}, the notation |𝒪||\mathcal{O}| means the measure (volume) of 𝒪\mathcal{O}.

We define

mi=1d+1KΔi|K|=1d+1|Δi|,m_{i}=\frac{1}{d+1}\sum_{K\in\Delta_{i}}|K|=\frac{1}{d+1}|\Delta_{i}|,

and taking into account the porosity φ\varphi, we define more generally

m~i(φ)=1d+1KΔiφ|K|K|,\tilde{m}_{i}(\varphi)=\frac{1}{d+1}\sum_{K\in\Delta_{i}}\varphi|_{K}|K|,

so that mi=m~i(1)m_{i}=\tilde{m}_{i}(1). It is well-known that the trapezoidal rule defines a norm on XhX_{h}, h\|\cdot\|_{h}, uniformly equivalent to the L2L^{2} norm. Let UhXhU_{h}\in X_{h} and write

Uh=i=1MUiϕi.U_{h}=\sum_{i=1}^{M}U^{i}\phi_{i}.

The discrete L2L^{2} norm associated with the trapezoidal rule is

Uhh=(i=1Mmi|Ui|2)12.\|U_{h}\|_{h}=\left(\sum_{i=1}^{M}m_{i}|U^{i}|^{2}\right)^{\frac{1}{2}}.

There exist positive constants C¯\underline{C} and C¯\overline{C}, independent of hh and MM, such that

UhXh,C¯UhL2(Ω)2Uhh2C¯UhL2(Ω)2.\forall U_{h}\in X_{h},\quad\underline{C}\,\|U_{h}\|^{2}_{L^{2}({\Omega})}\leq\|U_{h}\|^{2}_{h}\leq\overline{C}\,\|U_{h}\|^{2}_{L^{2}({\Omega})}. (21)

This is also true for other piecewise polynomial functions, but with possibly different constants. The scalar product associated with this norm is denoted by (,)h(\cdot,\cdot)_{h},

Uh,VhXh,(Uh,Vh)h=i=1MmiUiVi.\forall U_{h},V_{h}\in X_{h},\quad(U_{h},V_{h})_{h}=\sum_{i=1}^{M}m_{i}U^{i}V^{i}. (22)

By analogy, we introduce the notation

Uh,VhXh,(Uh,Vh)hφ=i=1Mm~i(φ)UiVi.\forall U_{h},V_{h}\in X_{h},\quad(U_{h},V_{h})^{\varphi}_{h}=\sum_{i=1}^{M}\tilde{m}_{i}(\varphi)U^{i}V^{i}. (23)

The assumptions on the porosity φ\varphi imply that (23) defines a weighted scalar product associated with the weighted norm hφ\|\cdot\|_{h}^{\varphi},

UhXh,Uhhφ=((Uh,Uh)hφ)12,\forall U_{h}\in X_{h},\quad\|U_{h}\|_{h}^{\varphi}=\big{(}(U_{h},U_{h})^{\varphi}_{h}\big{)}^{\frac{1}{2}},

that satisfies the analogue of (21), with the same constants C¯\underline{C} and C¯\overline{C},

UhXh,C¯(minΩφ)UhL2(Ω)2(Uhhφ)2C¯(maxΩφ)UhL2(Ω)2.\forall U_{h}\in X_{h},\quad\underline{C}\,(\min_{\Omega}\varphi)\,\|U_{h}\|^{2}_{L^{2}({\Omega})}\leq\big{(}\|U_{h}\|_{h}^{\varphi}\big{)}^{2}\leq\overline{C}\,(\max_{\Omega}\varphi)\,\|U_{h}\|^{2}_{L^{2}({\Omega})}. (24)

2.2 Motivation of the space discretization

While discretizing the time derivative is fairly straightforward, discretizing the space derivatives is more delicate because we need a scheme that is consistent and satisfies the maximum principle for the saturation. For the moment, we freeze the time variable and focus on consistency in space. First, we recall a standard property of functions of XhX_{h} on meshes satisfying (19).

Proposition 1.

Under condition (19), the following identities holds for all UhU_{h} and VhV_{h} in XhX_{h}, with cijc_{ij} defined in (20):

ΩUhVh=i=1MUiji,j𝒩(i)cij(VjVi)=12i=1Mji,j𝒩(i)cij(UjUi)(VjVi).\int_{\Omega}\nabla\,U_{h}\cdot\nabla\,V_{h}=-\sum_{i=1}^{M}U^{i}\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\big{(}V^{j}-V^{i}\big{)}=\frac{1}{2}\sum_{i=1}^{M}\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\big{(}U^{j}-U^{i}\big{)}\big{(}V^{j}-V^{i}\big{)}. (25)
Proof.

The first equality is obtained by using (19), (20) and the fact that

j=1Mϕj=1,\sum_{j=1}^{M}\phi_{j}=1,

as in [15] (Section 12.1). For the second part, we use the symmetry of cijc_{ij} and the anti-symmetry of VjViV^{j}-V^{i} to deduce that

i=1MUiji,j𝒩(i)cij(VjVi)=12i=1Mji,j𝒩(i)cij(UjUi)(VjVi),-\sum_{i=1}^{M}U^{i}\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\big{(}V^{j}-V^{i}\big{)}=\frac{1}{2}\sum_{i=1}^{M}\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\big{(}U^{j}-U^{i}\big{)}\big{(}V^{j}-V^{i}\big{)},

which is the desired result. ∎

Note that cijc_{ij} vanishes when j𝒩(i)j\notin{\mathcal{N}}(i). Therefore, when there is no ambiguity it is convenient to write the above double sums on ii and jj with ii and jj running from 11 to MM.

As an immediate consequence of Proposition 1, we have, by taking Vh=UhV_{h}=U_{h},

UhXh,UhL2(Ω)=12(i,j=1Mcij|UjUi|2)12.\forall U_{h}\in X_{h},\quad\|\nabla\,U_{h}\|_{L^{2}({\Omega})}=\frac{1}{\sqrt{2}}\Big{(}\sum_{i,j=1}^{M}c_{ij}|U^{j}-U^{i}|^{2}\Big{)}^{\frac{1}{2}}. (26)

Now, we consider the case of the product of the gradients by a third function. Beforehand, we introduce the following notation: for indices ii and jj of two neighboring interior nodes, ΔiΔj\Delta_{i}\cap\Delta_{j} in two dimensions is the union of two triangles and in three dimensions the union of a number of tetrahedra bounded by a fixed constant, say LL, determined by the regularity of the mesh. We shall use the following notation

cij,K=K|ϕiϕj|,wK=1|K]Kw.c_{ij,K}=\int_{K}|\nabla\,\phi_{i}\cdot\nabla\,\phi_{j}|,\quad w_{K}=\frac{1}{|K]}\int_{K}w. (27)

Note that

KΔiΔjcij,K=cij.\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}=c_{ij}. (28)

Then we have the following proposition:

Proposition 2.

Let (19) hold. With the notation (27), the following identity holds for all ww in L1(Ω)L^{1}(\Omega):

Uh,VhXh,ΩwUhVh=i=1MUij=1M(KΔiΔjcij,KwK)(VjVi),\forall U_{h},V_{h}\in X_{h},\ \int_{\Omega}w\nabla\,U_{h}\cdot\nabla\,V_{h}=-\sum_{i=1}^{M}U^{i}\sum_{j=1}^{M}\Big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}w_{K}\Big{)}\big{(}V^{j}-V^{i}\big{)}, (29)
Proof.

It is easy to prove that

ΩwUhVh=i,j=1MdijUiVj,\int_{\Omega}w\color[rgb]{0,0,0}\nabla\,U_{h}\cdot\nabla\,V_{h}=\sum_{i,j=1}^{M}d_{ij}U^{i}V^{j}, (30)

where

dij=ΔiΔjw(ϕiϕj)=Ωw(ϕiϕj).d_{ij}=\int_{\Delta_{i}\cap\Delta_{j}}w(\nabla\,\phi_{i}\cdot\nabla\,\phi_{j})=\int_{\Omega}w(\nabla\,\phi_{i}\cdot\nabla\,\phi_{j}). (31)

Again, we have for any ii,

j=1Mdij=0,anddii=1jM,jidij,\sum_{j=1}^{M}d_{ij}=0,\quad\mbox{and}\quad d_{ii}=-\sum_{1\leq j\leq M,j\neq i}d_{ij},

and by substituting this equality into (30), we obtain

Ωw(UhVh)=i,j=1MUidij(VjVi).\int_{\Omega}w\big{(}\nabla\,U_{h}\cdot\nabla\,V_{h}\big{)}=\sum_{i,j=1}^{M}U^{i}d_{ij}\big{(}V^{j}-V^{i}\big{)}. (32)

But, in view of (27) and (31), and since ϕiϕj\nabla\,\phi_{i}\cdot\nabla\,\phi_{j} is a constant in each element KK contained in ΔiΔj\Delta_{i}\cap\Delta_{j},

dij=KΔiΔjcij,KwK,d_{ij}=-\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}w_{K}, (33)

and (29) follows by substituting this equation into (32). ∎

Note that dij=djid_{ij}=d_{ji} owing to (33). The first consequence of Proposition 2 is that the right-hand side of (29) is a consistent approximation of (w,uv)(w,\nabla\,u\cdot\nabla\,v).

Proposition 3.

Let (19) hold, let uu and vv belong to H2(Ω)H^{2}(\Omega) and ww to L(Ω)L^{\infty}(\Omega), and let Uh=IhuU_{h}=I_{h}u, Vh=IhvV_{h}=I_{h}v be defined by (18). Then, there exists a constant CC, independent of hh, MM, uu, vv, and ww, such that

|Ωwuv+i,j=1MUi(KΔiΔjcij,KwK)(VjVi)|ChwL(Ω)uH2(Ω)vH2(Ω).\Big{|}\int_{\Omega}w\nabla\,u\cdot\nabla\,v+\sum_{i,j=1}^{M}U^{i}\big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}w_{K}\big{)}\big{(}V^{j}-V^{i}\big{)}\Big{|}\\ \leq C\,h\,\|w\|_{L^{\infty}(\Omega)}\|u\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}. (34)
Proof.

In view of the identity (29), the left-hand side of (34) is bounded as follows:

|Ωw(uv\displaystyle\Big{|}\int_{\Omega}w\big{(}\nabla\,u\cdot\nabla\,v UhVh)|wL(Ω)\displaystyle-\nabla\,U_{h}\cdot\nabla\,V_{h}\big{)}\Big{|}\leq\|w\|_{L^{\infty}(\Omega)}
×((uUh)L2(Ω)vL2(Ω)+(vVh)L2(Ω)UhL2(Ω)).\displaystyle\times\Big{(}\|\nabla(u-U_{h})\|_{L^{2}(\Omega)}\|\nabla\,v\|_{L^{2}(\Omega)}+\|\nabla(v-V_{h})\|_{L^{2}(\Omega)}\|\nabla\,U_{h}\|_{L^{2}(\Omega)}\Big{)}.

From here, (34) is a consequence of standard finite element interpolation error. ∎

Now, if ww is in W1,(Ω)W^{1,\infty}(\Omega), then again, standard finite element approximation shows that there exists a constant CC, independent of hh, KΔiΔjK\subset\Delta_{i}\cap\Delta_{j}, and ww, such that

wKwL(K)Ch|w|W1,(K)Ch|w|W1,(Ω).\big{\|}w_{K}-w\big{\|}_{L^{\infty}(K)}\leq C\,h\,|w|_{W^{1,\infty}(K)}\leq C\,h\,|w|_{W^{1,\infty}(\Omega)}. (35)

As a consequence, we will show that in the error formula (34), the average wKw_{K} can be replaced by any value of ww in KK. Since all KK in ΔiΔj\Delta_{i}\cap\Delta_{j} share the edge, say eije_{ij}, whose end points are the nodes with indices ii and jj, then we can pick the value of ww at any point, say W~i,j\tilde{W}^{i,j}, of eije_{ij}. At this stage, we choose this value freely, but we prescribe that it be symmetrical with respect to ii and jj, i.e.,

W~i,j=W~j,i.\tilde{W}^{i,j}=\tilde{W}^{j,i}. (36)

Then we have the following approximation result.

Theorem 4.

With the assumption and notation of Proposition 3, there exists a constant C, independent of hh and MM, such that for all uu, and vv in H2(Ω)H^{2}(\Omega) and ww in W1,(Ω)W^{1,\infty}(\Omega),

Ωwuv=i,j=1MUicijW~i,j(VjVi)+R,\int_{\Omega}w\nabla\,u\cdot\nabla\,v=-\sum_{i,j=1}^{M}U^{i}c_{ij}\tilde{W}^{i,j}\big{(}V^{j}-V^{i}\big{)}+R, (37)

for any arbitrary value W~i,j\tilde{W}^{i,j} of ww in the common edge eije_{ij} satisfying (36), and the remainder RR satisfies

|R|Ch|w|W1,(Ω)uH2(Ω)vH2(Ω).|R|\leq C\,h\,|w|_{W^{1,\infty}(\Omega)}\|u\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}. (38)
Proof.

We infer from (28) and (29) that

Ωw(UhVh)=i,j=1MUi(VjVi)KΔiΔjcij,K(wKW~i,j)i,j=1MUicij(VjVi)W~i,j.\int_{\Omega}w\big{(}\nabla\,U_{h}\cdot\nabla\,V_{h}\big{)}=-\sum_{i,j=1}^{M}U^{i}\big{(}V^{j}-V^{i}\big{)}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}\big{(}w_{K}-\tilde{W}^{i,j}\big{)}-\sum_{i,j=1}^{M}U^{i}c_{ij}\big{(}V^{j}-V^{i}\big{)}\tilde{W}^{i,j}.

Let

Rij=KΔiΔjcij,K(wKW~i,j),R_{ij}=\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}\big{(}w_{K}-\tilde{W}^{i,j}\big{)},

which is symmetric in ii and jj by assumption (36). As in Proposition 1, the symmetry of RijR_{ij} and the anti-symmetry of VjViV^{j}-V^{i}, imply

i,j=1MUiRij(VjVi)12(i,j=1M|Rij|(UjUi)2)12(i,j=1M|Rij|(VjVi)2)12.-\sum_{i,j=1}^{M}U^{i}R_{ij}\big{(}V^{j}-V^{i}\big{)}\leq\frac{1}{2}\Big{(}\sum_{i,j=1}^{M}|R_{ij}|\big{(}U^{j}-U^{i}\big{)}^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{i,j=1}^{M}|R_{ij}|\big{(}V^{j}-V^{i}\big{)}^{2}\Big{)}^{\frac{1}{2}}. (39)

From the non negativity of cij,Kc_{ij,K}, (28), and (35), we infer that

|Rij|(KΔiΔjcij,K)Ch|w|W1,(Ω)=cijCh|w|W1,(Ω).|R_{ij}|\leq\Big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}\Big{)}C\,h\,|w|_{W^{1,\infty}(\Omega)}=c_{ij}C\,h\,|w|_{W^{1,\infty}(\Omega)}.

Hence, with (26) and standard finite element approximation,

|i,j=1MUiRij(VjVi)|Ch|w|W1,(Ω)UhL2(Ω)VhL2(Ω)Ch|w|W1,(Ω)uH2(Ω)vH2(Ω).\Big{|}\sum_{i,j=1}^{M}U^{i}R_{ij}\big{(}V^{j}-V^{i}\big{)}\Big{|}\leq C\,h\,|w|_{W^{1,\infty}(\Omega)}\|\nabla\,U_{h}\|_{L^{2}({\Omega})}\|\nabla\,V_{h}\|_{L^{2}({\Omega})}\leq C\,h\,|w|_{W^{1,\infty}(\Omega)}\|u\|_{H^{2}(\Omega)}\|v\|_{H^{2}(\Omega)}.

The result follows by combining this inequality with (34). ∎

The above considerations show that

i,j=1MUicijW~i,j(VjVi)is a consistent approximation ofΩwuv,-\sum_{i,j=1}^{M}U^{i}c_{ij}\tilde{W}^{i,j}\big{(}V^{j}-V^{i}\big{)}\ \mbox{is a consistent approximation of}\ \int_{\Omega}w\nabla\,u\cdot\nabla\,v,

for any symmetric choice of W~i,j\tilde{W}^{i,j} in eije_{ij}, the common edge of ΔiΔj\Delta_{i}\cap\Delta_{j}. This will lead to the upwinded space discretization in the next subsection, see also [23]. Furthermore, for all real numbers ViV^{i} and W~i,j\tilde{W}^{i,j} satisfying (36), 1i,jM1\leq i,j\leq M, the symmetry of cijc_{ij} and anti-symmetry of VjViV^{j}-V^{i} imply

i,j=1McijW~i,j(VjVi)=0.\sum_{i,j=1}^{M}c_{ij}\tilde{W}^{i,j}(V^{j}-V^{i})=0. (40)

2.3 Fully discrete scheme

Let τ=TN\tau=\frac{T}{N} be the time step, tn=nτt_{n}=n\tau, the discrete times, 0nN0\leq n\leq N. Regarding time, we shall use the standard L2L^{2} projection ρτ\rho_{\tau} defined on ]tn1,tn]]t_{n-1},t_{n}], for any function ff in L1(0,T)L^{1}(0,T), by

ρτ(f)n:=ρτ(f)|]tn1,tn]:=1τtn1tnf.\rho_{\tau}(f)^{n}:=\rho_{\tau}(f)|_{]t_{n-1},t_{n}]}:=\frac{1}{\tau}\int_{t_{n-1\color[rgb]{0,0,0}}}^{t_{n\color[rgb]{0,0,0}}}f. (41)

Regarding space, we shall use a standard element-by-element L2L^{2} projection ρh\rho_{h} as well as a nodal approximation operator rhr_{h} defined at each node 𝒙i{\boldsymbol{x}}_{i} for any function gL1(Ω)g\in L^{1}(\Omega) by

rh(g)(𝒙i)=1|Δi|Δig,1iM,r_{h}(g)({\boldsymbol{x}}_{i})=\frac{1}{|\Delta_{i}|}\int_{\Delta_{i}}g,\quad 1\leq i\leq M, (42)

and extended to Ω\Omega by rh(g)Xhr_{h}(g)\in X_{h}. The operator ρh\rho_{h} is defined for any ff in L1(Ω)L^{1}(\Omega) by ρh(f)|K=ρK(f)\rho_{h}(f)|_{K}=\rho_{K}(f) where, in any element KK,

ρK(f)=1|K|Kf.\rho_{K}(f)=\frac{1}{|K|}\int_{K}f. (43)

The initial saturation sw0s_{w}^{0} is approximated by the operator rhr_{h},

Sh0=rh(sw0).S_{h}^{0}=r_{h}(s_{w}^{0}). (44)

The input saturation sins_{\mathrm{in}} is approximated in space and time by

sin,h,τ=ρτ(rh(sin)).s_{\mathrm{in,h,\tau}}=\rho_{\tau}(r_{h}(s_{\mathrm{in}})). (45)

Clearly, (10) implies in space and time

0sin,h,τ1.0\leq s_{\mathrm{in,h,\color[rgb]{1,0,0}\tau\color[rgb]{0,0,0}}}\leq 1.

In order to preserve (9), the functions q¯\bar{q} and q¯\underline{q} are approximated by the functions q¯h,τ\bar{q}_{h,\tau} and q¯h,τ\underline{q}_{h,\tau} defined with rhr_{h} and corrected as follows:

q¯h,τ=ρτ(rh(q¯)1|Ω|Ω(rh(q¯)q¯)),q¯h,τ=ρτ(rh(q¯)1|Ω|Ω(rh(q¯)q¯)).\bar{q}_{h,\tau}=\rho_{\tau}\left(r_{h}(\bar{q})-\frac{1}{|\Omega|}\int_{\Omega}(r_{h}(\bar{q})-\bar{q})\right),\quad\underline{q}_{h,\tau}=\rho_{\tau}\left(r_{h}(\underline{q})-\frac{1}{|\Omega|}\int_{\Omega}(r_{h}(\underline{q})-\underline{q})\right). (46)

Since q¯h,τ\bar{q}_{h,\tau} and q¯h,τ\underline{q}_{h,\tau} are piecewise linears in space, they are exactly integrated by the trapezoidal rule and we easily derive from (9) and (46) that we have for all nn,

(q¯hn,1)h=(q¯hn,1)h.\big{(}\bar{q}_{h}^{n},1\big{)}_{h}=\big{(}\underline{q}_{h}^{n},1\big{)}_{h}. (47)

The set of primary unknowns is the discrete wetting phase saturation and the discrete wetting phase pressure, ShnS_{h}^{n} and Pw,hnP_{w,h}^{n}, defined pointwise at time tnt_{n} by:

Shn=i=1MSn,iϕi,Pw,hn=i=1MPwn,iϕi,1nN.S_{h}^{n}=\sum_{i=1}^{M}S^{n,i}\phi_{i},\quad P_{w,h}^{n}=\sum_{i=1}^{M}P_{w}^{n,i}\phi_{i},\quad 1\leq n\leq N.

Then the discrete non-wetting phase pressure Po,hnP_{o,h}^{n} defined by

Po,hn=i=1MPon,iϕi,1nN,P_{o,h}^{n}=\sum_{i=1}^{M}P_{o}^{n,i}\phi_{i},\quad 1\leq n\leq N,

is a secondary unknown. The upwind scheme we propose for discretizing (2)–(3) is inspired by the finite volume scheme introduced and analyzed by Eymard al in [16]. For each time step nn, 1nN1\leq n\leq N, the lines of the discrete equations are
m~i(φ)τ(Sn,iSn1,i)j=1Mcijηw(Swn,ij)(Pwn,jPwn,i)=mi(fw(sinn,i)q¯n,ifw(Sn,i)q¯n,i),\frac{\tilde{m}_{i}(\varphi)}{\tau}(S^{n,i}-S^{n-1,i})-\sum_{j=1}^{M}c_{ij}\eta_{w}(S^{n,ij}_{w})(P_{w}^{n,j}-P_{w}^{n,i})=m_{i}\left(f_{w}(s_{\mathrm{in}}^{n,i})\bar{q}^{n,i}-f_{w}(S^{n,i})\underline{q}^{n,i}\right), (48) m~i(φ)τ(Sn,iSn1,i)j=1Mcijηo(Son,ij)(Pon,jPon,i)=mi(fo(sinn,i)q¯n,ifo(Sn,i)q¯n,i),-\frac{\tilde{m}_{i}(\varphi)}{\tau}(S^{n,i}-S^{n-1,i})-\sum_{j=1}^{M}c_{ij}\eta_{o}(S^{n,ij}_{o})(P_{o}^{n,j}-P_{o}^{n,i})=m_{i}\left(f_{o}(s_{\mathrm{in}}^{n,i})\bar{q}^{n,i}-f_{o}(S^{n,i})\underline{q}^{n,i}\right), (49) Pon,iPwn,i=pc(Sn,i),1iM,P_{o}^{n,i}-P_{w}^{n,i}=p_{c}(S^{n,i}),\quad 1\leq i\leq M, (50) i=1MmiPwn,i=0.\sum_{i=1}^{M}m_{i}P_{w}^{n,i}=0. (51) Here ii runs from 11 to M1M-1 in (48) and from 11 to MM in (49); the upwind values Swn,ij,Son,ijS^{n,ij}_{w},S^{n,ij}_{o} are defined by

Swn,ij={Sn,iifPwn,i>Pwn,jSn,jifPwn,i<Pwn,jmax(Sn,i,Sn,j)ifPwn,i=Pwn,jS_{w}^{n,ij}=\left\{\begin{array}[]{c}S^{n,i}\quad\mbox{if}\quad P_{w}^{n,i}>P_{w}^{n,j}\\ S^{n,j}\quad\mbox{if}\quad P_{w}^{n,i}<P_{w}^{n,j}\\ \max(S^{n,i},S^{n,j})\quad\mbox{if}\quad P_{w}^{n,i}=P_{w}^{n,j}\end{array}\right. (52)
Son,ij={Sn,iifPon,i>Pon,jSn,jifPon,i<Pon,jmin(Sn,i,Sn,j)ifPon,i=Pon,jS_{o}^{n,ij}=\left\{\begin{array}[]{c}S^{n,i}\quad\mbox{if}\quad P_{o}^{n,i}>P_{o}^{n,j}\\ S^{n,j}\quad\mbox{if}\quad P_{o}^{n,i}<P_{o}^{n,j}\\ \min(S^{n,i},S^{n,j})\quad\mbox{if}\quad P_{o}^{n,i}=P_{o}^{n,j}\end{array}\right. (53)

We observe that

Swn,ij=Swn,ji,Son,ij=Son,ji,S_{w}^{n,ij}=S_{w}^{n,ji},\quad S_{o}^{n,ij}=S_{o}^{n,ji},

so that, if we interpret in (48) (respectively, (49)) ηw(Swn,ij)\eta_{w}(S^{n,ij}_{w}) (respectively, ηo(Son,ij)\eta_{o}(S^{n,ij}_{o})) as W~i,j\tilde{W}^{i,j}, then (36) and hence (40) hold.

Remark 5.

Before setting (48)–(51) in variational form, observe that:

1. The scheme (48)-(51) forms a square system in the primary unknowns, ShnS_{h}^{n} and PwnP_{w}^{n}.

2. Formula (48) is also valid for i=Mi=M. Indeed, we pass to the left-hand side the right-hand side of (48) and set AiA^{i} the resulting line of index ii. Let A~M\tilde{A}^{M} denote what should be the line of index MM, i.e.,

A~M=m~M(φ)τ(Sn,MSn1,M)\displaystyle\tilde{A}^{M}=\frac{\tilde{m}_{M}(\varphi)}{\tau}(S^{n,M}-S^{n-1,M})- j=1McMjηw(Swn,Mj)(Pwn,jPwn,M)\displaystyle\sum_{j=1}^{M}c_{Mj}\eta_{w}(S^{n,Mj}_{w})(P_{w}^{n,j}-P_{w}^{n,M})
mM(fw(sinn,M)q¯n,Mfw(Sn,M)q¯n,M).\displaystyle-m_{M}\big{(}f_{w}(s_{\mathrm{in}}^{n,M})\bar{q}^{n,M}-f_{w}(S^{n,M})\underline{q}^{n,M}\big{)}.

Then, in view of (40),

A~M=i=1M1Ai+A~M=i=1Mm~i(φ)τ(Sn,iSn1,i)i=1Mmi(fw(sinn,i)q¯n,ifw(Sn,i)q¯n,i).\tilde{A}^{M}=\sum_{i=1}^{M-1}A^{i}+\tilde{A}^{M}=\sum_{i=1}^{M}\frac{\tilde{m}_{i}(\varphi)}{\tau}(S^{n,i}-S^{n-1,i})-\sum_{i=1}^{M}m_{i}\big{(}f_{w}(s_{\mathrm{in}}^{n,i})\bar{q}^{n,i}-f_{w}(S^{n,i})\underline{q}^{n,i}\big{)}.

By summing in the same fashion the lines of (49), we obtain

i=1Mm~i(φ)τ(Sn,iSn1,i)=i=1Mmi(fo(sinn,i)q¯n,ifo(Sn,i)q¯n,i).\sum_{i=1}^{M}\frac{\tilde{m}_{i}(\varphi)}{\tau}(S^{n,i}-S^{n-1,i})=-\sum_{i=1}^{M}m_{i}\big{(}f_{o}(s_{\mathrm{in}}^{n,i})\bar{q}^{n,i}-f_{o}(S^{n,i})\underline{q}^{n,i}\big{)}.

A combination of these two equations yields

A~M=i=1Mmi((fw(sinn,i)+fo(sinn,i))q¯n,i(fw(Sn,i)+fo(Sn,i))q¯n,i)=i=1Mmi(q¯n,iq¯n,i)=0,\tilde{A}^{M}=-\sum_{i=1}^{M}m_{i}\Big{(}(f_{w}(s_{\mathrm{in}}^{n,i})+f_{o}(s_{\mathrm{in}}^{n,i}))\bar{q}^{n,i}-(f_{w}(S^{n,i})+f_{o}(S^{n,i}))\underline{q}^{n,i}\Big{)}=-\sum_{i=1}^{M}m_{i}(\bar{q}^{n,i}-\underline{q}^{n,i})=0,

by virtue of (6), the definition (41), and (9).

3. In (48) (respectively, (49)), any constant can be added to PwP_{w} (respectively, PoP_{o}), but in view of (50), the constant must be the same for both pressures. The last equation (51) is added to resolve this constant.

As usual, it is convenient to associate time functions Sh,τS_{h,\tau}, Pα,h,τP_{\alpha,h,\tau} with the sequences indexed by nn. These are piecewise constant in time in ]0,T[]0,T[, for instance

Pα,h,τ(t,x)=Pα,hn(x),α=w,o,(t,x)Ω×]tn1,tn].P_{\alpha,h,\tau}(t,x)=P_{\alpha,h}^{n}(x),\ \alpha=w,o,\quad\forall(t,x)\in\Omega\times]t_{n-1},t_{n}]. (54)

In view of the material of the previous subsection, we introduce the following form:

Wh,Uh,Vh,ZhXh,[Zh,Wh;Vh,Uh]h=i,j=1MUicijW~ij(VjVi),\forall W_{h},U_{h},V_{h},Z_{h}\in X_{h},\ \ [Z_{h},W_{h};\color[rgb]{1,0,0}V_{h},U_{h}\color[rgb]{0,0,0}]_{h}=\sum_{i,j=1}^{M}U^{i}c_{ij}\tilde{W}^{ij}(V^{j}-V^{i}), (55)

where the first argument ZhZ_{h} indicates that the choice of W~ij\tilde{W}^{ij} depends on ZhZ_{h}. Such dependence, used for the upwinding, will be specified further on, but it is assumed from now on that W~ij\tilde{W}^{ij} satisfies (36). Considering (40), the form satisfies the following properties,

Zh,Wh,VhXh,[Zh,Wh;Vh,1]h=0,\forall Z_{h},W_{h},V_{h}\in X_{h},\quad[Z_{h},W_{h};\color[rgb]{1,0,0}V_{h},1\color[rgb]{0,0,0}]_{h}=0, (56)
Zh,Wh,VhXh,[Zh,Wh;Vh,Vh]h=12i,j=1McijW~ij(ViVj)2.\forall Z_{h},W_{h},V_{h}\in X_{h},\quad[Z_{h},W_{h};V_{h},V_{h}]_{h}=-\frac{1}{2}\sum_{i,j=1}^{M}c_{ij}\tilde{W}_{ij}(V^{i}-V^{j})^{2}. (57)

This last property is derived by the same argument as in proving (25).

With the above notation, and taking into account that (48) extends to i=Mi=M, the scheme (48)–(51) has the equivalent variational form. Starting from Sh0S_{h}^{0}, see (44),
find ShnS_{h}^{n}, PwhnP_{wh}^{n}, and Po,hnP_{o,h}^{n} in XhX_{h}, for 1nN1\leq n\leq N, solution of, for all θh\theta_{h} in XhX_{h}, 1τ(ShnShn1,θh)hφ[Pw,hn,Ih(ηw(Shn));Pw,hn,θh]h=(Ih(fw(sin,hn))q¯hnIh(fw(Shn))q¯hn,θh)h\frac{1}{\tau}(S_{h}^{n}-S_{h}^{n-1},\theta_{h})_{h}^{\varphi}-\big{[}P_{w,h}^{n},I_{h}(\eta_{w}(S_{h}^{n}));P_{w,h}^{n},\theta_{h}\big{]}_{h}=\big{(}I_{h}(f_{w}(s_{\mathrm{in},h}^{n}))\bar{q}_{h}^{n}-I_{h}(f_{w}(S_{h}^{n}))\underline{q}_{h}^{n},\theta_{h}\big{)}_{h} (58) 1τ(ShnShn1,θh)hφ[Po,hn,Ih(ηo(Shn));Po,hn,θh]h=(Ih(fo(sin,hn))q¯hnIh(fo(Shn))q¯hn,θh)h-\frac{1}{\tau}(S_{h}^{n}-S_{h}^{n-1},\theta_{h})_{h}^{\varphi}-\big{[}P_{o,h}^{n},I_{h}(\eta_{o}(S_{h}^{n}));P_{o,h}^{n},\theta_{h}\big{]}_{h}=\big{(}I_{h}(f_{o}(s_{\mathrm{in},h}^{n}))\bar{q}_{h}^{n}-I_{h}(f_{o}(S_{h}^{n}))\underline{q}_{h}^{n},\theta_{h}\big{)}_{h} (59) Po,hnPw,hn=Ih(pc(Shn)),P_{o,h}^{n}-P_{w,h}^{n}=I_{h}(p_{c}(S_{h}^{n})), (60) (Pw,hn,1)h=0,\big{(}P_{w,h}^{n},1\big{)}_{h}=0, (61) where the choice of ηw(Shn)\eta_{w}(S_{h}^{n}) in the left-hand side of (58) (respectively, ηo(Shn)\eta_{o}(S_{h}^{n}) in the left-hand side of (59)) is given by (52) (respectively (53)). Strictly speaking, the interpolation operator IhI_{h} is introduced in (58) and (59) because the forms are defined for functions of XhX_{h}, but for the sake of simplicity, since only nodal values are used, it may be dropped further on.

We shall see that under the above basic hypotheses, the discrete problem (58)–(61) has at least one solution. In the sequel, we shall use the following discrete auxiliary pressures (compare with (16)):

Uw,h,τ=Pw,h,τ+Ih(pwg(Sh,τ)),Uo,h,τ=Po,h,τIh(pog(Sh,τ)).U_{w,h,\tau}=P_{w,h,\tau}+I_{h}(p_{wg}(S_{h,\tau})),\quad U_{o,h,\tau}=P_{o,h,\tau}-I_{h}(p_{og}(S_{h,\tau})). (62)

The following theorem is the main result of this work:

Theorem 6.

Under the above basic hypotheses and the additional assumptions (140)–(142), the discrete solutions converge up to subsequences as follows:

lim(h,τ)(0,0)Sh,τ\displaystyle\lim_{(h,\tau)\to(0,0)}S_{h,\tau} =s strongly inL2(Ω×]0,T[),\displaystyle=s\quad\mbox{ strongly in}\ L^{2}(\Omega\times]0,T[),
lim(h,τ)(0,0)Uw,h,τ=pw+pwg(s),lim(h,τ)(0,0)Uo,h,τ\displaystyle\lim_{(h,\tau)\to(0,0)}U_{w,h,\tau}=p_{w}+p_{wg}(s),\quad\lim_{(h,\tau)\to(0,0)}U_{o,h,\tau} =popog(s), weakly inL2(0,T;H1(Ω)),\displaystyle=p_{o}-p_{og}(s),\quad\mbox{ weakly in}\ L^{2}(0,T;H^{1}(\Omega)),
lim(h,τ)(0,0)Pα,h,τ\displaystyle\lim_{(h,\tau)\to(0,0)}P_{\alpha,h,\tau} =pα, weakly inL2(Ω×]0,T[),α=w,o,\displaystyle=p_{\alpha},\quad\mbox{ weakly in}\ L^{2}(\Omega\times]0,T[),\alpha=w,o,

where pw+pwgp_{w}+p_{wg}, popwgp_{o}-p_{wg}, and ss solve the weak formulation (16).

The proof of the theorem requires several steps that are covered in the remaining of this work.

3 First a priori bounds

This section is devoted to basic a priori bounds used in proving existence of a discrete solution. Existence is fairly technical and will be postponed till Section 4. The first step is a key bound on the discrete saturation. In a second step, this bound will lead to a pressure estimate and in particular to a bound on the discrete analogue of auxiliary pressures.

3.1 Maximum principle

The scheme (48)–(51) satisfies the maximum principle property. The proof given below uses a standard argument as in [16].

Theorem 7.

The following bounds hold:

0Sh,τ1.0\leq S_{h,\tau}\leq 1. (63)
Proof.

As 0sw010\leq s_{w}^{0}\leq 1 almost everywhere, by construction (44), we immediately have

0minΩsw0Sh0maxΩsw01.0\leq\min_{\Omega}s_{w}^{0}\leq S_{h}^{0}\leq\max_{\Omega}s_{w}^{0}\leq 1.

The proof proceeds by contradiction. Assume that there is an index n1n\geq 1 such that

Shn11,Shn>1.S_{h}^{n-1}\leq 1,\quad S_{h}^{n}>1.

This means there is a node ii such that

Sn,i=ShnL(Ω)>1,S^{n,i}=\|S_{h}^{n}\|_{L^{\infty}(\Omega)}>1,

and thus

Sn,i>Sn1,i.S^{n,i}>S^{n-1,i}.

Dropping the index nn in the rest of the proof, (48) and (49) imply

ji,j𝒩(i)cijηw(Swij)(PwjPwi)+mi(fw(sini)q¯ifw(Si)q¯i)>0,\displaystyle\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{w}(S^{ij}_{w})(P_{w}^{j}-P_{w}^{i})+m_{i}\left(f_{w}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{w}(S^{i})\underline{q}^{i}\right)>0, (64)
ji,j𝒩(i)cijηo(Soij)(PojPoi)mi(fo(sini)q¯ifo(Si)q¯i)>0.\displaystyle-\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{o}(S^{ij}_{o})(P_{o}^{j}-P_{o}^{i})-m_{i}\left(f_{o}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{o}(S^{i})\underline{q}^{i}\right)>0. (65)

We first show that (64) holds true with SwijS^{ij}_{w} replaced by SiS^{i}. Indeed if Pwi>PwjP_{w}^{i}>P_{w}^{j}, then Swij=SiS_{w}^{ij}=S^{i}. If Pwi<PwjP_{w}^{i}<P_{w}^{j}, then Swij=SjS_{w}^{ij}=S^{j}, and as ηw\eta_{w} is increasing and by assumption, SjSiS^{j}\leq S^{i},

ηw(Swij)(PwjPwi)ηw(Si)(PwjPwi).\eta_{w}(S_{w}^{ij})(P_{w}^{j}-P_{w}^{i})\leq\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i}).

Finally, the term vanishes when Pwi=PwjP_{w}^{i}=P_{w}^{j}. Therefore we have in all cases

ji,j𝒩(i)cijηw(Si)(PwjPwi)+mi(fw(sini)q¯ifw(Si)q¯i)>0.\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i})+m_{i}\left(f_{w}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{w}(S^{i})\underline{q}^{i}\right)>0. (66)

A similar argument gives

ji,j𝒩(i)cijηo(Si)(PojPoi)mi(fo(sini)q¯ifo(Si)q¯i)>0.-\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{o}(S^{i})(P_{o}^{j}-P_{o}^{i})-m_{i}\left(f_{o}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{o}(S^{i})\underline{q}^{i}\right)>0. (67)

The substitution of (50) into (67) yields

ji,j𝒩(i)cijηo(Si)((PwjPwi)+(pc(Sj)pc(Si)))mi(fo(sini)q¯ifo(Si)q¯i)>0.-\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{o}(S^{i})\big{(}(P_{w}^{j}-P_{w}^{i})+(p_{c}(S^{j})-p_{c}(S^{i})\big{)})-m_{i}\left(f_{o}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{o}(S^{i})\underline{q}^{i}\right)>0. (68)

Since pcp_{c} is decreasing and SiSjS^{i}\geq S^{j}, the second term in the above sum is negative. This implies that

ji,j𝒩(i)cijηo(Si)(PwjPwi)mi(fo(sini)q¯ifo(Si)q¯i)>0.-\sum_{j\neq i,j\in{\mathcal{N}}(i)}c_{ij}\eta_{o}(S^{i})(P_{w}^{j}-P_{w}^{i})-m_{i}\left(f_{o}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{o}(S^{i})\underline{q}^{i}\right)>0. (69)

The sum on jj cancels by multiplying (66) by ηo(Si)\eta_{o}(S^{i}), (69) by ηw(Si)\eta_{w}(S^{i}), and adding the two. The sign is unchanged because either ηo(Si)\eta_{o}(S^{i}) or ηw(Si)\eta_{w}(S^{i}) is strictly positive. Hence,

miηo(Si)(fw(sini)q¯ifw(Si)q¯i)miηw(Si)(fo(sini)q¯ifo(Si)q¯i)>0.m_{i}\eta_{o}(S^{i})\left(f_{w}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{w}(S^{i})\underline{q}^{i}\right)-m_{i}\eta_{w}(S^{i})\left(f_{o}(s_{\mathrm{in}}^{i})\bar{q}^{i}-f_{o}(S^{i})\underline{q}^{i}\right)>0.

By definition of fwf_{w} and fof_{o}, this reduces to

ηo(Si)fw(sini)ηw(Si)fo(sini)>0.\eta_{o}(S^{i})f_{w}(s_{\mathrm{in}}^{i})-\eta_{w}(S^{i})f_{o}(s_{\mathrm{in}}^{i})>0. (70)

Now consider the function:

r(s)=ηo(s)fw(sini)ηw(s)fo(sini).r(s)=\eta_{o}(s)f_{w}(s_{\mathrm{in}}^{i})-\eta_{w}(s)f_{o}(s_{\mathrm{in}}^{i}). (71)

It is decreasing and r(sini)=0r(s_{\mathrm{in}}^{i})=0. Then, since Si>1siniS^{i}>1\geq s_{\mathrm{in}}^{i}, see (10), we have

r(Si)r(sini)=0,r(S^{i})\leq r(s_{\mathrm{in}}^{i})=0,

which contradicts (70). The proof of the lower bound in (63) follows the same lines. ∎

3.2 First pressure bounds

The following properties will be used frequently:

Lemma 8.

The fact that pcp_{c} is strictly decreasing and (50) yield the following:

Pwi>Pwj,andPoiPojimpliesSiSj,P_{w}^{i}>P_{w}^{j},\quad\mbox{and}\quad P_{o}^{i}\leq P_{o}^{j}\quad\mbox{implies}\quad S^{i}\geq S^{j}, (72)
IfPwi=Pwj,thenPoiPojif and only ifSiSj.\mbox{If}\ P_{w}^{i}=P_{w}^{j},\ \mbox{then}\ P_{o}^{i}\geq P_{o}^{j}\ \mbox{if and only if}\ S^{i}\leq S^{j}. (73)
IfPoi=Poj,thenPwiPwj,if and only ifSiSj.\mbox{If}\ P_{o}^{i}=P_{o}^{j},\ \mbox{then}\ P_{w}^{i}\leq P_{w}^{j},\ \mbox{if and only if}\ \quad S^{i}\leq S^{j}. (74)

Let us start with a lower bound that removes the degeneracy caused by the mobilities when they multiply the discrete pressures.

Lemma 9.

Let pwgp_{wg} and pogp_{og} be defined in (12). We have for all nn and any ii and jj

η(Uwn,jUwn,i)2ηw(Swn,ij)(Pwn,jPwn,i)2+ηo(Son,ij)(Pon,jPon,i)2.\eta_{\ast}(U_{w}^{n,j}-U_{w}^{n,i})^{2}\leq\eta_{w}(S_{w}^{n,ij})(P_{w}^{n,j}-P_{w}^{n,i})^{2}+\eta_{o}(S_{o}^{n,ij})(P_{o}^{n,j}-P_{o}^{n,i})^{2}. (75)
Proof.

To simplify the notation, we drop the superscript nn. The second mean formula for integrals gives

pwg(Sj)pwg(Si)=SiSjfo(s)pc(s)𝑑s=fo(ξ)(pc(Sj)pc(Si)),p_{wg}(S^{j})-p_{wg}(S^{i})=\int_{S^{i}}^{S^{j}}f_{o}(s)p_{c}^{\prime}(s)ds=f_{o}(\xi)(p_{c}(S^{j})-p_{c}(S^{i})), (76)

for some ξ\xi between SiS^{i} and SjS^{j}. Using (50) we write

UwjUwi=(1fo(ξ))(PwjPwi)+fo(ξ)(PojPoi)=fw(ξ)(PwjPwi)+fo(ξ)(PojPoi).U_{w}^{j}-U_{w}^{i}=(1-f_{o}(\xi))(P_{w}^{j}-P_{w}^{i})+f_{o}(\xi)(P_{o}^{j}-P_{o}^{i})=f_{w}(\xi)(P_{w}^{j}-P_{w}^{i})+f_{o}(\xi)(P_{o}^{j}-P_{o}^{i}).

Therefore since fw+fo=1f_{w}+f_{o}=1, we have

(UwjUwi)2ηw(ξ)ηw(ξ)+ηo(ξ)(PwjPwi)2+ηo(ξ)ηw(ξ)+ηo(ξ)(PojPoi)2.(U_{w}^{j}-U_{w}^{i})^{2}\leq\frac{\eta_{w}(\xi)}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{w}^{j}-P_{w}^{i})^{2}+\frac{\eta_{o}(\xi)}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{o}^{j}-P_{o}^{i})^{2}. (77)

We now consider six cases.

1) If Pwi>PwjP_{w}^{i}>P_{w}^{j} and PoiPojP_{o}^{i}\leq P_{o}^{j}, then ηw(Swij)=ηw(Si)\eta_{w}(S_{w}^{ij})=\eta_{w}(S^{i}) and ηo(Soij)=ηo(Sj)\eta_{o}(S_{o}^{ij})=\eta_{o}(S^{j}) when Poi<PojP_{o}^{i}<P_{o}^{j}; when Poi=PojP_{o}^{i}=P_{o}^{j}, the value of ηo\eta_{o} does not matter. From (72) we then have SiSjS^{i}\geq S^{j}. Since ηw\eta_{w} is increasing, ηw(ξ)ηw(Si)\eta_{w}(\xi)\leq\eta_{w}(S^{i}) and since ηo\eta_{o} is decreasing, ηo(ξ)ηo(Sj)\eta_{o}(\xi)\leq\eta_{o}(S^{j}). Thus we have

(UwjUwi)2ηw(Swij)ηw(ξ)+ηo(ξ)(PwjPwi)2+ηo(Soij)ηw(ξ)+ηo(ξ)(PojPoi)2,(U_{w}^{j}-U_{w}^{i})^{2}\leq\frac{\eta_{w}(S_{w}^{ij})}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{w}^{j}-P_{w}^{i})^{2}+\frac{\eta_{o}(S_{o}^{ij})}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{o}^{j}-P_{o}^{i})^{2},

and with (8)

(UwjUwi)21η(ηw(Swij)(PwjPwi)2+ηo(Soij)(PojPoi)2).(U_{w}^{j}-U_{w}^{i})^{2}\leq\frac{1}{\eta_{\ast}}\left(\eta_{w}(S_{w}^{ij})(P_{w}^{j}-P_{w}^{i})^{2}+\eta_{o}(S_{o}^{ij})(P_{o}^{j}-P_{o}^{i})^{2}\right). (78)

2) If Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j} , then ηw(Swij)=ηw(Si)\eta_{w}(S_{w}^{ij})=\eta_{w}(S^{i}) and ηo(Soij)=ηo(Si)\eta_{o}(S_{o}^{ij})=\eta_{o}(S^{i}). From

ηo(Si)(pc(Sj)pc(Si))=(ηo(Si)+ηw(Si))SiSjfo(Si)pc(s)𝑑s,\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))=(\eta_{o}(S^{i})+\eta_{w}(S^{i}))\int_{S^{i}}^{S^{j}}f_{o}(S^{i})p_{c}^{\prime}(s)ds,

and (76), we derive

ηo(Si)(pc(Sj)pc(Si))\displaystyle\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))- (ηo(Si)+ηw(Si))(pwg(Sj)pwg(Si))\displaystyle(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(p_{wg}(S^{j})-p_{wg}(S^{i}))
=(ηo(Si)+ηw(Si))SiSj(fo(Si)fo(s))pc(s)𝑑s.\displaystyle=(\eta_{o}(S^{i})+\eta_{w}(S^{i}))\int_{S^{i}}^{S^{j}}(f_{o}(S^{i})-f_{o}(s))p_{c}^{\prime}(s)ds.

As pcp_{c} and fof_{o} are decreasing, the above right-hand side is negative. Hence

ηo(Si)(pc(Sj)pc(Si))(ηo(Si)+ηw(Si))(pwg(Sj)pwg(Si))0.\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))-(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(p_{wg}(S^{j})-p_{wg}(S^{i}))\leq 0. (79)

We multiply (79) by (PojPoi)+(PwjPwi)<0(P_{o}^{j}-P_{o}^{i})+(P_{w}^{j}-P_{w}^{i})<0 and use (50),

(ηo(Si)(pc(Sj)pc(Si))(ηo(Si)+ηw(Si))(pwg(Sj)pwg(Si)))(2(PwjPwi)+pc(Sj)pc(Si))0.\big{(}\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))-(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(p_{wg}(S^{j})-p_{wg}(S^{i}))\big{)}\left(2(P_{w}^{j}-P_{w}^{i})+p_{c}(S^{j})-p_{c}(S^{i})\right)\geq 0.

By expanding and using the next inequality implied by (76), if fo(ξ)0f_{o}(\xi)\neq 0,

(pwg(Sj)pwg(Si))(pc(Sj)pc(Si))(pwg(Sj)pwg(Si))2,(p_{wg}(S^{j})-p_{wg}(S^{i}))(p_{c}(S^{j})-p_{c}(S^{i}))\geq(p_{wg}(S^{j})-p_{wg}(S^{i}))^{2},

we obtain

ηo(Si)(pc(Sj)pc(Si))2+2ηo(Si)(pc(Sj)pc(Si))(PwjPwi)\displaystyle\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))^{2}+2\eta_{o}(S^{i})(p_{c}(S^{j})-p_{c}(S^{i}))(P_{w}^{j}-P_{w}^{i})\geq
(ηo(Si)+ηw(Si))(pwg(Sj)pwg(Si))(2(PwjPwi)+pwg(Sj)pwg(Si)).\displaystyle(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(p_{wg}(S^{j})-p_{wg}(S^{i}))\left(2(P_{w}^{j}-P_{w}^{i})+p_{wg}(S^{j})-p_{wg}(S^{i})\right).

When (ηo(Si)+ηw(Si))(PwjPwi)2(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(P_{w}^{j}-P_{w}^{i})^{2} is added to both sides, this becomes

ηw(Si)(PwjPwi)2+ηo(Si)(PojPoi)2(ηo(Si)+ηw(Si))(UwjUwi)2,\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i})^{2}+\eta_{o}(S^{i})(P_{o}^{j}-P_{o}^{i})^{2}\geq(\eta_{o}(S^{i})+\eta_{w}(S^{i}))(U_{w}^{j}-U_{w}^{i})^{2},

and (8) implies the desired result. It remains to consider the case fo(ξ)=0f_{o}(\xi)=0, i.e., pwg(Sj)=pwg(Si)p_{wg}(S^{j})=p_{wg}(S^{i}). If ηo(Si)0\eta_{o}(S^{i})\neq 0, then (79) yields

pc(Sj)pc(Si)0which impliesPoiPojPwiPwj,p_{c}(S^{j})-p_{c}(S^{i})\leq 0\ \mbox{which implies}\ P_{o}^{i}-P_{o}^{j}\geq P_{w}^{i}-P_{w}^{j},

and we deduce immediately

ηw(Si)(PwjPwi)2+ηo(Si)(PojPoi)2(ηw(Si)+ηo(Si))(PwjPwi)2η(PwjPwi)2.\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i})^{2}+\eta_{o}(S^{i})(P_{o}^{j}-P_{o}^{i})^{2}\geq(\eta_{w}(S^{i})+\eta_{o}(S^{i}))(P_{w}^{j}-P_{w}^{i})^{2}\geq\eta_{\ast}(P_{w}^{j}-P_{w}^{i})^{2}.

When ηo(Si)=0\eta_{o}(S^{i})=0, we have trivially

ηw(Si)(PwjPwi)2+ηo(Si)(PojPoi)2=ηw(Si)(PwjPwi)2η(PwjPwi)2.\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i})^{2}+\eta_{o}(S^{i})(P_{o}^{j}-P_{o}^{i})^{2}=\eta_{w}(S^{i})(P_{w}^{j}-P_{w}^{i})^{2}\geq\eta_{\ast}(P_{w}^{j}-P_{w}^{i})^{2}.

3) If PwiPwjP_{w}^{i}\leq P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j} , then ηw(Swij)=ηw(Sj)\eta_{w}(S_{w}^{ij})=\eta_{w}(S^{j}) and ηo(Soij)=ηo(Si)\eta_{o}(S_{o}^{ij})=\eta_{o}(S^{i}) in the case of a strict inequality; also SiSjS^{i}\leq S^{j}. Then (77) and the monotonic properties of ηw\eta_{w} and ηo\eta_{o} yield (75). If Pwi=PwjP_{w}^{i}=P_{w}^{j}, then according to (73), SiSjS^{i}\leq S^{j} and the same conclusion holds.

4) If PwiPwjP_{w}^{i}\leq P_{w}^{j} and Poi=PojP_{o}^{i}=P_{o}^{j}, then from (74), we have SiSjS^{i}\leq S^{j} and with (77)

(UwjUwi)2ηw(ξ)ηw(ξ)+ηo(ξ)(PwjPwi)2ηw(Swij)ηw(ξ)+ηo(ξ)(PwjPwi)2,(U_{w}^{j}-U_{w}^{i})^{2}\leq\frac{\eta_{w}(\xi)}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{w}^{j}-P_{w}^{i})^{2}\leq\frac{\eta_{w}(S_{w}^{ij})}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{w}^{j}-P_{w}^{i})^{2},

which is the desired result.

5) Similarly, if Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}, then from (73), we have SjSiS^{j}\leq S^{i} and with (77)

(UwjUwi)2ηo(ξ)ηw(ξ)+ηo(ξ)(PojPoi)2ηo(Soij)ηw(ξ)+ηo(ξ)(PojPoi)2.(U_{w}^{j}-U_{w}^{i})^{2}\leq\frac{\eta_{o}(\xi)}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{o}^{j}-P_{o}^{i})^{2}\leq\frac{\eta_{o}(S_{o}^{ij})}{\eta_{w}(\xi)+\eta_{o}(\xi)}(P_{o}^{j}-P_{o}^{i})^{2}.

6) If Pwi<PwjP_{w}^{i}<P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}, (75) follows from the second case by switching ii and jj. ∎

The pressure bound in the next theorem is the one that arises naturally from the left-hand side of (58) and (59).

Theorem 10.

There exists a constant CC, independent of hh and τ\tau, such that

τn=1Ni,j=1Mcij(ηw(Swn,ij)(Pwn,iPwn,j)2+ηo(Son,ij)(Pon,iPon,j)2)C.\tau\sum_{n=1}^{N}\sum_{i,j=1}^{M}c_{ij}\big{(}\eta_{w}(S_{w}^{n,ij})(P_{w}^{n,i}-P_{w}^{n,j})^{2}+\eta_{o}(S_{o}^{n,ij})(P_{o}^{n,i}-P_{o}^{n,j})^{2}\big{)}\leq C. (80)
Proof.

We test (58) by Pw,hnP_{w,h}^{n}, (59) by Po,hnP_{o,h}^{n}, add the two equations, multiply by τ\tau and sum over nn from 11 to NN. By using (60) and (57), we obtain

n=1N(ShnShn1,Ihpc(Shn))hφ+12n=1Nτα=w,oi,j=1Mcijηα(Sαn,ij)(Pαn,iPαn,j)2=n=1Nτα=w,o(fα(sin,hn)q¯hnfα(Shn)q¯hn,Pα,hn)h.\begin{split}-\sum_{n=1}^{N}\big{(}S_{h}^{n}-S_{h}^{n-1},I_{h}p_{c}(S_{h}^{n})\big{)}_{h}^{\varphi}+\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{\alpha=w,o}\sum_{i,j=1}^{M}c_{ij}\eta_{\alpha}(S_{\alpha}^{n,ij})(P_{\alpha}^{n,i}-P_{\alpha}^{n,j})^{2}\\ =\sum_{n=1}^{N}\tau\sum_{\alpha=w,o}\big{(}f_{\alpha}(s_{\mathrm{in},h}^{n})\bar{q}_{h}^{n}-f_{\alpha}(S_{h}^{n})\underline{q}_{h}^{n},P_{\alpha,h}^{n}\big{)}_{h}.\end{split} (81)

Following [16], the first term in (81) is treated with the primitive gcg_{c} of pcp_{c}, see (11). Indeed, by the mean-value theorem, there exists ξ\xi between Sn,iS^{n,i} and Sn1,iS^{n-1,i} such that

gc(Sn,i)gc(Sn1,i)=(Sn,iSn1,i)pc(ξ).g_{c}(S^{n,i})-g_{c}(S^{n-1,i})=-(S^{n,i}-S^{n-1,i})p_{c}(\xi).

As the function pcp_{c} is decreasing, then pc(ξ)pc(Sn,i)p_{c}(\xi)\geq p_{c}(S^{n,i}) when Sn,iSn1,iS^{n,i}\geq S^{n-1,i} and pc(ξ)pc(Sn,i)p_{c}(\xi)\leq p_{c}(S^{n,i}) when Sn,iSn1,iS^{n,i}\leq S^{n-1,i}. In both cases, we have

gc(Sn,i)gc(Sn1,i)(Sn,iSn1,i)pc(Sn,i),g_{c}(S^{n,i})-g_{c}(S^{n-1,i})\leq-(S^{n,i}-S^{n-1,i})p_{c}(S^{n,i}),

and owing that φ\varphi is positive and constant in time, (81) can be replaced by the inequality

(gc(ShN)gc(Sh0),1)hφ+12n=1Nτα=w,oi,j=1Mcijηα(Sαn,ij)(Pαn,iPαn,j)2n=1Nτα=w,o(fα(sin,hn)q¯hnfα(Shn)q¯hn,Pα,hn)h.\begin{split}\big{(}g_{c}(S_{h}^{N})-g_{c}(S_{h}^{0}),1\big{)}_{h}^{\varphi}&+\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{\alpha=w,o}\sum_{i,j=1}^{M}c_{ij}\eta_{\alpha}(S_{\alpha}^{n,ij})(P_{\alpha}^{n,i}-P_{\alpha}^{n,j})^{2}\\ &\leq\sum_{n=1}^{N}\tau\sum_{\alpha=w,o}\big{(}f_{\alpha}(s_{\mathrm{in},h}^{n})\bar{q}_{h}^{n}-f_{\alpha}(S_{h}^{n})\underline{q}_{h}^{n},P_{\alpha,h}^{n}\big{)}_{h}.\end{split} (82)

As the first term in the above left-hand side is bounded, owing to the continuity of gcg_{c} and boundedness of Sh,τS_{h,\tau}, it suffices to handle the right-hand side. Let us drop the superscript nn and treat one term in the time sum. Following again [16], in view of Lemma 9 we use the auxiliary pressures pwgp_{wg} and pwop_{wo}, defined in (12). Clearly, (14) and (50) imply

Pwi+pwg(Si)+pog(Si)+pc(0)=Poi,i.P_{w}^{i}+p_{wg}(S^{i})+p_{og}(S^{i})+p_{c}(0)=P_{o}^{i},\quad\forall i. (83)

Using this, a generic term, say YY, in the right-hand side of (82) can be expressed as

Y=\displaystyle Y= (q¯hq¯h,Uw,h)h+(fo(sin,h)q¯hfo(Sh)q¯h,pc(0))h\displaystyle\big{(}\bar{q}_{h}-\underline{q}_{h},U_{w,h}\big{)}_{h}+\big{(}f_{o}(s_{\mathrm{in},h})\bar{q}_{h}-f_{o}(S_{h})\underline{q}_{h},p_{c}(0)\big{)}_{h}
+(fo(sin,h)q¯hfo(Sh)q¯h,pog(Sh))h(fw(sin,h)q¯hfw(Sh)q¯h,pwg(Sh))h=T1++T4.\displaystyle+\big{(}f_{o}(s_{\mathrm{in},h})\bar{q}_{h}-f_{o}(S_{h})\underline{q}_{h},p_{og}(S_{h})\big{)}_{h}-\big{(}f_{w}(s_{\mathrm{in},h})\bar{q}_{h}-f_{w}(S_{h})\underline{q}_{h},p_{wg}(S_{h})\big{)}_{h}=T_{1}+\cdots+T_{4}.

We now bound each term TiT_{i}. For T1T_{1}, (47) implies that any constant β\beta can be added to Uw,hU_{w,h}, in particular β\beta can be chosen so that the sum has zero mean value in Ω\Omega. Hence, considering the generalized Poincaré inequality

vH1(Ω),vL2(Ω)C(|Ωv|+vL2(Ω)),\forall v\in H^{1}(\Omega),\quad\|v\|_{L^{2}(\Omega)}\leq C\big{(}\big{|}\int_{\Omega}v\big{|}+\|\nabla\,v\|_{L^{2}(\Omega)}\big{)}, (84)

with a constant CC, depending only on the domain Ω\Omega, we have

Uw,h+βhCUw,h+βL2(Ω)CUw,hL2(Ω),\|U_{w,h}+\beta\|_{h}\leq C\|U_{w,h}+\beta\|_{L^{2}(\Omega)}\leq C\|\nabla\,U_{w,h}\|_{L^{2}(\Omega)},

with another constant CC. Then Young’s inequality yields

|T1|C22ηq¯hq¯hh2+η4Uw,hL2(Ω)2,|T_{1}|\leq\frac{C^{2}}{2\eta_{\ast}}\|\bar{q}_{h}-\underline{q}_{h}\|^{2}_{h}+\frac{\eta_{\ast}}{4}\|\nabla\,U_{w,h}\|_{L^{2}(\Omega)}^{2},

and with Lemma 9, this becomes

|T1|C22ηq¯hq¯hh2+14i,j=1Mcij(ηw(Sij)(PwjPwi)2+ηo(Sij)(PojPoi)2).|T_{1}|\leq\frac{C^{2}}{2\eta_{\ast}}\|\bar{q}_{h}-\underline{q}_{h}\|^{2}_{h}+\frac{1}{4}\sum_{i,j=1}^{M}c_{ij}\left(\eta_{w}(S^{ij})(P_{w}^{j}-P_{w}^{i})^{2}+\eta_{o}(S^{ij})(P_{o}^{j}-P_{o}^{i})^{2}\right).

The term T2T_{2} is easily bounded since pc(0)p_{c}(0) is a number, and so are the terms T3T_{3} and T4T_{4}, in view of the boundedness of the saturation and the continuity of pogp_{og} and pwgp_{wg}. We thus have

|T2+T3+T4|C(q¯hL1(Ω)+q¯hL1(Ω)).|T_{2}+T_{3}+T_{4}|\leq C(\|\bar{q}_{h}\|_{L^{1}(\Omega)}+\|\underline{q}_{h}\|_{L^{1}(\Omega)}).

Then substituting these bounds for each nn into (82), we obtain

14τn=1Ni,j=1Mcij(ηw(Swn,ij)(Pwn,iPwn,j)2\displaystyle\frac{1}{4}\tau\sum_{n=1}^{N}\sum_{i,j=1}^{M}c_{ij}\big{(}\eta_{w}(S_{w}^{n,ij})(P_{w}^{n,i}-P_{w}^{n,j})^{2} +ηo(Son,ij)(Pon,iPon,j)2)C(q¯h,τq¯h,τL2(Ω×]0,T[)2\displaystyle+\eta_{o}(S_{o}^{n,ij})(P_{o}^{n,i}-P_{o}^{n,j})^{2}\big{)}\leq C\big{(}\|\bar{q}_{h,\tau}-\underline{q}_{h,\tau}\|^{2}_{L^{2}({\Omega}\times]0,T[)}
+q¯h,τL1(Ω×]0,T[)+q¯h,τL1(Ω×]0,T[)),\displaystyle+\|\bar{q}_{h,\tau}\|_{L^{1}({\Omega}\times]0,T[)}+\|\underline{q}_{h,\tau}\|_{L^{1}({\Omega}\times]0,T[)}\big{)},

thus proving (80). ∎

By combining Theorem 10 with Lemma 9, we immediately derive a bound on the discrete auxiliary pressures. The bound (85) with α=o\alpha=o follows from the same with α=w\alpha=w, (14), and (50).

Theorem 11.

We have for α=w,o\alpha=w,o

ηUα,h,τL2(Ω×]0,T[)2C,\eta_{\ast}\|\nabla\,U_{\alpha,h,\tau}\|^{2}_{L^{2}({\Omega}\times]0,T[)}\leq C, (85)

with the constant CC of (80).

4 Existence of numerical solution

We fix n1n\geq 1 and assume there exists a solution (Shn1,Pw,hn1)(S_{h}^{n-1},P_{w,h}^{n-1}) at time tn1t^{n-1} with 0Shn110\leq S_{h}^{n-1}\leq 1. We want to show existence of a solution (Shn,Pw,hn)(S_{h}^{n},P_{w,h}^{n}) by means of the topological degree [11, 12].

Let θ\theta be a constant parameter in [0,1][0,1]. For any continuous function f:[0,1]IRf:[0,1]\rightarrow{\rm I\!R}, we define the transformed function f~:[0,1]IR\widetilde{f}:[0,1]\rightarrow{\rm I\!R} by

s[0,1],f~(s)=f(ts+(1t)θ).\forall s\in[0,1],\quad\widetilde{f}(s)=f(ts+(1-t)\theta).

Since θ\theta is fixed, when t=0t=0, f~(s)=f(θ)\widetilde{f}(s)=f(\theta), a constant independent of ss. Now, (61) implies that any solution Pw,h,τP_{w,h,\tau} of (58)–(61) belongs to the following subspace X0,hX_{0,h} of XhX_{h},

X0,h={ΛhXh;ΩΛh=0}.X_{0,h}=\{\Lambda_{h}\in X_{h};\int_{\Omega}\Lambda_{h}=0\}. (86)

This suggests to define the mapping :[0,1]×Xh×X0,hXh×X0,h\mathcal{F}:[0,1]\times X_{h}\times X_{0,h}\rightarrow X_{h}\times X_{0,h} by

(t,ζ,Λ)=(Ah,Ah+Bh),\mathcal{F}(t,\zeta,\Lambda)=(A_{h},A_{h}+B_{h}),

where AhA_{h}, respectively BhB_{h}, solves for all ΘhXh\Theta_{h}\in X_{h},

(Ah,Θh)=1τ(ζhShn1,Θh)hφ[Λh,Ih(ηw~(ζh));Λh,Θh]h(Ih(fw~(sin,hn))tq¯hnIh(fw~(ζh))tq¯hn,Θh)h,\begin{split}(A_{h},\Theta_{h})=\frac{1}{\tau}(\zeta_{h}-S_{h}^{n-1},\Theta_{h})_{h}^{\varphi}-\big{[}\Lambda_{h},I_{h}(\widetilde{\eta_{w}}(\zeta_{h}));\Lambda_{h},\Theta_{h}\big{]}_{h}\\ -\big{(}I_{h}(\widetilde{f_{w}}(s_{\mathrm{in},h}^{n}))t\bar{q}_{h}^{n}-I_{h}(\widetilde{f_{w}}(\zeta_{h}))t\underline{q}_{h}^{n},\Theta_{h}\big{)}_{h},\end{split} (87)
(Bh,Θh)=1τ(ζhShn1,Θh)hφ[Po,h,Ih(ηo~(ζh));Po,h,Θh]h(Ih(fo~(sin,hn))tq¯hnIh(fo~(ζh))tq¯hn,Θh)h,\begin{split}(B_{h},\Theta_{h})=-\frac{1}{\tau}(\zeta_{h}-S_{h}^{n-1},\Theta_{h})_{h}^{\varphi}-\big{[}P_{o,h},I_{h}(\widetilde{\eta_{o}}(\zeta_{h}));P_{o,h},\Theta_{h}\big{]}_{h}\\ -\big{(}I_{h}(\widetilde{f_{o}}(s_{\mathrm{in},h}^{n}))t\bar{q}_{h}^{n}-I_{h}(\widetilde{f_{o}}(\zeta_{h}))t\underline{q}_{h}^{n},\Theta_{h}\big{)}_{h},\end{split} (88)

and Po,hP_{o,h} is defined by

Po,h=ΛhIh(pc~(ζh)).P_{o,h}=\Lambda_{h}-I_{h}(\widetilde{p_{c}}(\zeta_{h})). (89)

The choice of ηw~(ζh)\widetilde{\eta_{w}}(\zeta_{h}) in (87) (respectively ηo~(ζh)\widetilde{\eta_{o}}(\zeta_{h}) in (88)) is given by (52) (respectively (53)) where Λh\Lambda_{h} plays the role of Pw,hP_{w,h} and Po,hP_{o,h} is defined in (89). As in (52) and (53), it leads us to introduce the variables ζwij\zeta_{w}^{ij} and ζoij\zeta_{o}^{ij} for all 1i,jM1\leq i,j\leq M. Clearly, (87)–(89) determine uniquely AhA_{h} and BhB_{h}, and it is easy to check that Ah+BhA_{h}+B_{h} belongs to X0,hX_{0,h}.

The mapping t(t,ζh,Λh)t\mapsto\mathcal{F}(t,\zeta_{h},\Lambda_{h}) is continuous. Indeed, since the space has finite dimension, we only need to check continuity of the upwinding. By splitting xx into its positive and negative part, x=x++xx=x^{+}+x^{-}, the upwind term, say ηw~(ζwij)(PwjPwi)\widetilde{\eta_{w}}(\zeta_{w}^{ij})(P_{w}^{j}-P_{w}^{i}) reads

ηw~(ζwij)(PwjPwi)=ηw(tζi+(1t)θ)((PwjPwi))+ηw(tζj+(1t)θ)((PwjPwi)+),\widetilde{\eta_{w}}(\zeta_{w}^{ij})(P_{w}^{j}-P_{w}^{i})=\eta_{w}(t\zeta^{i}+(1-t)\theta)\big{(}(P_{w}^{j}-P_{w}^{i})_{-}\big{)}+\eta_{w}(t\zeta^{j}+(1-t)\theta)\big{(}(P_{w}^{j}-P_{w}^{i})_{+}\big{)},

which is continuous with respect to tt.

We remark that (1,ζh,Λh)=𝟎\mathcal{F}(1,\zeta_{h},\Lambda_{h})={\bf 0} implies that (ζh,Λh)(\zeta_{h},\Lambda_{h}) solves (58)–(61). Conversely, if (ζh,Λh)(\zeta_{h},\Lambda_{h}) solves (58)–(61) then (1,ζh,Λh)=𝟎\mathcal{F}(1,\zeta_{h},\Lambda_{h})={\bf 0}. Thus showing existence of a solution to the problem (58)–(61) is equivalent to showing existence of a zero of (1,ζh,Λh)\mathcal{F}(1,\zeta_{h},\Lambda_{h}). Before proving existence of a zero, we use the estimates established in the previous section to determine an a priori bound of any zero (ζh,Λh)(\zeta_{h},\Lambda_{h}) of (1,ζh,Λh)\mathcal{F}(1,\zeta_{h},\Lambda_{h}).

4.1 A priori bounds on (ζh,Λh)(\zeta_{h},\Lambda_{h})

In the following we consider t[0,1]t\in[0,1] and (ζh,Λh)Xh×X0,h(\zeta_{h},\Lambda_{h})\in X_{h}\times X_{0,h} that satisfy

(t,ζh,Λh)=𝟎.\mathcal{F}(t,\zeta_{h},\Lambda_{h})={\bf 0}. (90)

We first show that ζh\zeta_{h} satisfies a maximum principle.

Proposition 12.

The following bounds hold for all (t,ζh,Λh)(t,\zeta_{h},\Lambda_{h}) satisfying (90):

0ζh1.0\leq\zeta_{h}\leq 1. (91)
Proof.

Either t]0,1]t\in]0,1] or t=0t=0. The proof for t]0,1]t\in]0,1] follows closely the argument used in proving Theorem 7 and is left to the reader. For t=0t=0 we proceed again by contradiction. Assume first that ζhL(Ω)>1\|\zeta_{h}\|_{L^{\infty}(\Omega)}>1, i.e., there is a node ii such that

ζi=ζhL(Ω)>1Sn1,i.\zeta^{i}=\|\zeta_{h}\|_{L^{\infty}(\Omega)}>1\geq S^{n-1,i}.

As t=0t=0, (90) reduces to

jicijηw(θ)(ΛiΛj)>0,jicijηo(θ)(ΛiΛj)>0,1iM.\sum_{j\neq i}c_{ij}\eta_{w}(\theta)(\Lambda^{i}-\Lambda^{j})>0,\qquad-\sum_{j\neq i}c_{ij}\eta_{o}(\theta)(\Lambda^{i}-\Lambda^{j})>0,\qquad\forall 1\leq i\leq M.

Since ηo\eta_{o} and ηw\eta_{w} are non-negative functions satisfying (8), the inequalities above yield a contradiction. A similar argument is used to show that ζh0\zeta_{h}\geq 0. ∎

Next we show the following bound on Λh\Lambda_{h}.

Proposition 13.

There is a constant CC such that for all t[0,1]t\in[0,1] we have

ηi,j=1Mcij(ΛjΛi+pwg(tζj+(1t)θ)pwg(tζi+(1t)θ))2C.\displaystyle\eta_{\ast}\sum_{i,j=1}^{M}c_{ij}\left(\Lambda^{j}-\Lambda^{i}+p_{wg}(t\zeta^{j}+(1-t)\theta)-p_{wg}(t\zeta^{i}+(1-t)\theta)\right)^{2}\leq C. (92)
Proof.

The proof follows closely that of Theorem 11. First we show there exists a constant C1C_{1} independent of tt such that

i,j=1Mcij(ηw(tζwij+(1t)θ)(ΛjΛi)2+ηo(tζoij+(1t)θ)(Po,hjPo,hi)2C1,\displaystyle\sum_{i,j=1}^{M}c_{ij}\Big{(}\eta_{w}(t\zeta_{w}^{ij}+(1-t)\theta)(\Lambda^{j}-\Lambda^{i})^{2}+\eta_{o}(t\zeta_{o}^{ij}+(1-t)\theta)(P_{o,h}^{j}-P_{o,h}^{i})^{2}\leq C_{1},

with Po,hP_{o,h} defined in (89). This bound is obtained via arguments similar to those used in proving Theorem 10. The main difference is that the formula is neither summed over nn nor multiplied by the time step τ\tau. As a consequence, the constant C1C_{1} includes a term of the form τ1gcL(Ω)\tau^{-1}\|g_{c}\|_{L^{\infty}({\Omega})} arising from the bound of the discrete time derivative. To finish the proof we must show that

η(ΛjΛi+pwg(tζj+(1t)θ)pwg(tζi+(1t)θ))2ηw(tζij+(1t)θ)(ΛjΛi)2\displaystyle\eta_{\ast}\left(\Lambda^{j}-\Lambda^{i}+p_{wg}(t\zeta^{j}+(1-t)\theta)-p_{wg}(t\zeta^{i}+(1-t)\theta)\right)^{2}\leq\eta_{w}(t\zeta^{ij}+(1-t)\theta)(\Lambda^{j}-\Lambda^{i})^{2}
+ηo(tζoij+(1t)θ)(PojPoi)2.\displaystyle+\eta_{o}(t\zeta_{o}^{ij}+(1-t)\theta)(P_{o}^{j}-P_{o}^{i})^{2}.

By (8), this is trivially satisfied when t=0t=0. When t]0,1]t\in]0,1], the argument is the same as in the proof of Lemma 9. ∎

Propositions 12 and 13 are combined to obtain a bound on ζhh+Λhh\|\zeta_{h}\|_{h}+\|\Lambda_{h}\|_{h}.

Proposition 14.

There exists a constant R1>0R_{1}>0, independent of t[0,1]t\in[0,1], such that any solution (ζh,Λh)(\zeta_{h},\Lambda_{h}) of (90) satisfies

ζhh+ΛhhR1.\|\zeta_{h}\|_{h}+\|\Lambda_{h}\|_{h}\leq R_{1}. (93)
Proof.

According to Proposition 12, there exists a constant C1C_{1} independent of tt such that

ζhhC1.\|\zeta_{h}\|_{h}\leq C_{1}.

To establish a bound on Λhh\|\Lambda_{h}\|_{h}, we infer from (12) that the function |pwg||p_{wg}| is bounded by pc(0)pc(1)p_{c}(0)-p_{c}(1) because fof_{o} is bounded by one and pcp_{c} is a decreasing function. Thus (92) implies that there exists a constant C2C_{2} independent of tt that satisfies

i,j=1Mcij(ΛjΛi)2C2,i.e.,ΛhL2(Ω)C22,\displaystyle\sum_{i,j=1}^{M}c_{ij}\left(\Lambda^{j}-\Lambda^{i}\right)^{2}\leq C_{2},\quad\mbox{i.e.,}\ \|\nabla\Lambda_{h}\|_{L^{2}(\Omega)}\leq\frac{\sqrt{C_{2}}}{\sqrt{2}}, (94)

owing to (26). As ΛhX0,h\Lambda_{h}\in X_{0,h}, the generalized Poincaré inequality (84) shows there exists a constant C3C_{3} independent of tt such that

ΛhL2(Ω)C3.\|\Lambda_{h}\|_{L^{2}(\Omega)}\leq C_{3}.

Then the equivalence of norm (21) yields

ΛhhC4,\|\Lambda_{h}\|_{h}\leq C_{4},

and (93) follows by setting R1=C1+C4R_{1}=C_{1}+C_{4}, a constant independent of tt. ∎

4.2 Proof of existence

For any R>0R>0, let BRB_{R} denote the ball

BR={(ζh,Λh)Xh×X0,h:ζhh+ΛhhR},B_{R}=\{(\zeta_{h},\Lambda_{h})\in X_{h}\times X_{0,h}:\,\|\zeta_{h}\|_{h}+\|\Lambda_{h}\|_{h}\leq R\}, (95)

and let R0=R1+1R_{0}=R_{1}+1, where R1R_{1} is the constant of (93). Since all solutions (ζh,Λh)(\zeta_{h},\Lambda_{h}) of (90) are in the ball BR1B_{R_{1}}, this function has no zero on the boundary BR0\partial B_{R_{0}}. Existence of a solution of (58)–(61) follows from the following result:

Theorem 15.

The equation (1,ζh,Λh)=𝟎\mathcal{F}(1,\zeta_{h},\Lambda_{h})={\bf 0} has at least one solution (ζh,Λh)BR0(\zeta_{h},\Lambda_{h})\in B_{R_{0}}.

Proof.

The proof proceeds in two steps.
First, we show that the system with t=0t=0 has a solution:

(0,ζh,Λh)=0.\mathcal{F}(0,\zeta_{h},\Lambda_{h})=0.

This is a square linear system in finite dimension, so existence is equivalent to uniqueness. Thus we assume that it has two solutions, and for convenience, we still denote by (ζh,Λh)(\zeta_{h},\Lambda_{h}) the difference between the two solutions. The system reads

m~iτζhiji,j𝒩(i)cijηw(θ)(ΛjΛi)=0,1iM,\displaystyle\frac{\tilde{m}_{i}}{\tau}\zeta_{h}^{i}-\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}\eta_{w}(\theta)(\Lambda^{j}-\Lambda^{i})=0,\quad 1\leq i\leq M, (96)
m~iτζhiji,j𝒩(i)cijηo(θ)(ΛjΛi)=0,1iM,\displaystyle-\frac{\tilde{m}_{i}}{\tau}\zeta_{h}^{i}-\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}\eta_{o}(\theta)(\Lambda^{j}-\Lambda^{i})=0,\quad 1\leq i\leq M, (97)
imiΛi=0.\displaystyle\sum_{i}m_{i}\Lambda^{i}=0. (98)

We add the first two equations, multiply by Λi\Lambda^{i}, and sum over i. Then (26) and (57) imply that Λh\Lambda_{h} is a constant and finally (98) shows that this constant is zero. This yields ζh=0\zeta_{h}=0.

Next, we argue on the topological degree. Since the topological degree of a linear map is the sign of its determinant, we have

d((0,ζh,Λh),BR0,0)0.d(\mathcal{F}(0,\zeta_{h},\Lambda_{h}),B_{R_{0}},0)\neq 0.

We also know that d((t,ζh,Λh),BR0,0)d(\mathcal{F}(t,\zeta_{h},\Lambda_{h}),B_{R_{0}},0) is independent of tt since the mapping t(t,ζh,Λh)t\mapsto\mathcal{F}(t,\zeta_{h},\Lambda_{h}) is continuous and for every t[0,1]t\in[0,1], if (t,ζh,Λh)=0\mathcal{F}(t,\zeta_{h},\Lambda_{h})=0, then (ζh,Λh)(\zeta_{h},\Lambda_{h}) does not belong to BR0\partial B_{R_{0}}. Therefore we have

d((1,ζh,Λh),BR0,0)=d((0,ζh,Λh),BR0,0)0.d(\mathcal{F}(1,\zeta_{h},\Lambda_{h}),B_{R_{0}},0)=d(\mathcal{F}(0,\zeta_{h},\Lambda_{h}),B_{R_{0}},0)\neq 0.

This implies that (1,ζh,Λh)\mathcal{F}(1,\zeta_{h},\Lambda_{h}) has a zero (ζh,Λh)BR0(\zeta_{h},\Lambda_{h})\in B_{R_{0}}. ∎

5 Additional pressure estimates

The pressure estimates (80) and (85) are not sufficient to pass to the limit in the scheme (58)–(61). These are nonlinear equations and we need strong convergences that do not stem directly from (80) and (85). Following [16], we propose to derive a bound for the gradient of gg, see (13), at s=Sh,τs=S_{h,\tau}. Then, under suitable assumptions on the behavior of ηw\eta_{w}^{\prime}, ηo\eta_{o}^{\prime}, and pcp_{c}^{\prime}, we shall prove the strong convergence of g(Sh,τ)g(S_{h,\tau}) in L2(Ω×]0,T[)L^{2}({\Omega}\times]0,T[) and in turn the strong convergence of Sh,τS_{h,\tau} in L2(Ω×]0,T[)L^{2}({\Omega}\times]0,T[).

Estimating the gradient of g(Sh,τ)g(S_{h,\tau}) is a long and intricate process; it is based on the fact that

|g(Sn,j)g(Sn,i)|2C(fw(Sn,i)fw(Sn,j))(g(Sn,i)g(Sn,j)),|g(S^{n,j})-g(S^{n,i})|^{2}\leq C\big{(}f_{w}(S^{n,i})-f_{w}(S^{n,j})\big{)}\big{(}g(S^{n,i})-g(S^{n,j})\big{)},

see (157). Therefore, we must derive a bound for the product of the gradients of gg and fwf_{w}. This is split into several steps.

5.1 A preliminary inequality

Our starting step is the following inequality:

Proposition 16.

There exists a constant C1C_{1} independent of hh and τ\tau such that

n=1Nτα=o,w[Pα,hn,ηα(Sα,hn);fα(Shn),Pα,hn]h=R1,-\sum_{n=1}^{N}\tau\sum_{\alpha=o,w}\big{[}P_{\alpha,h}^{n},\eta_{\alpha}(S_{\alpha,h}^{n});f_{\alpha}(S_{h}^{n}),P_{\alpha,h}^{n}\big{]}_{h}=R_{1}, (99)

where the remainder R1R_{1} satisfies |R1|C1|R_{1}|\leq C_{1}.

Proof.

By testing (58) with Ihfw(Shn)I_{h}f_{w}(S_{h}^{n}) and (59) with Ihfo(Shn)I_{h}f_{o}(S_{h}^{n}), adding the resulting equalities, and multiplying by τ\tau, we obtain

n=1N(ShnShn1,fw(Shn)fo(Shn))hφn=1Nτα=o,w[Pα,hn,ηα(Sα,hn);fα(Shn),Pα,hn]h=0T((q¯h,τ,α=o,wfα(sin,h,τ)fα(Sh,τ))h(q¯h,τ,α=o,w(fα(Sh,τ))2)h)4q¯L1(Ω×]0,T[),\begin{split}\sum_{n=1}^{N}&\big{(}S_{h}^{n}-S_{h}^{n-1},f_{w}(S_{h}^{n})-f_{o}(S_{h}^{n})\big{)}_{h}^{\varphi}-\sum_{n=1}^{N}\tau\sum_{\alpha=o,w}\big{[}P_{\alpha,h}^{n},\eta_{\alpha}(S_{\alpha,h}^{n});f_{\alpha}(S_{h}^{n}),P_{\alpha,h}^{n}\big{]}_{h}\\ &=\int_{0}^{T}\Big{(}\big{(}\bar{q}_{h,\tau},\sum_{\alpha=o,w}f_{\alpha}(s_{\mathrm{in},h,\tau})f_{\alpha}(S_{h,\tau})\big{)}_{h}-\big{(}\underline{q}_{h,\tau},\sum_{\alpha=o,w}(f_{\alpha}(S_{h,\tau}))^{2}\big{)}_{h}\Big{)}\leq 4\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)},\end{split} (100)

in view of (6) and (9). To control the time difference of Sh,τS_{h,\tau}, we introduce the global flux defined by

x[0,1],G(x)=0x(fw(s)fo(s))𝑑s,\forall x\in[0,1],\quad G(x)=\int_{0}^{x}\big{(}f_{w}(s)-f_{o}(s)\big{)}ds, (101)

and we write

(ShnShn1)(fw(Shn)fo(Shn))=(ShnShn1)G(Shn).(S_{h}^{n}-S_{h}^{n-1})\big{(}f_{w}(S_{h}^{n})-f_{o}(S_{h}^{n})\big{)}=(S_{h}^{n}-S_{h}^{n-1})G^{\prime}(S_{h}^{n}).

But by (6), G(x)=2fw(x)1G^{\prime}(x)=2f_{w}(x)-1 is increasing. Hence, considering that

G(Shn)G(Shn1)=(ShnShn1)G(c),G(S_{h}^{n})-G(S_{h}^{n-1})=(S_{h}^{n}-S_{h}^{n-1})G^{\prime}(c),

for some cc between ShnShn1S_{h}^{n}-S_{h}^{n-1}, we easily check that

G(Shn)G(Shn1)(ShnShn1)G(Shn).G(S_{h}^{n})-G(S_{h}^{n-1})\leq(S_{h}^{n}-S_{h}^{n-1})G^{\prime}(S_{h}^{n}).

Thus, the properties of φ\varphi imply

n=1N(ShnShn1,fw(Shn)fo(Shn))hφ(G(ShN),1)hφ(G(Sh0),1)hφ.\sum_{n=1}^{N}\big{(}S_{h}^{n}-S_{h}^{n-1},f_{w}(S_{h}^{n})-f_{o}(S_{h}^{n})\big{)}_{h}^{\varphi}\geq(G(S_{h}^{N}),1)_{h}^{\varphi}-(G(S_{h}^{0}),1)_{h}^{\varphi}.

But the boundedness of Sh,τS_{h,\tau}, the continuity of fαf_{\alpha}, and the properties of φ\varphi imply

|(G(ShN),1)hφ(G(Sh0),1)hφ|C,\big{|}(G(S_{h}^{N}),1)_{h}^{\varphi}-(G(S_{h}^{0}),1)_{h}^{\varphi}\big{|}\leq C^{\prime},

with a constant CC^{\prime} independent of hh and τ\tau. By substituting these inequalities into (100) we derive (99) with C1=4q¯L1(Ω×]0,T[)+CC_{1}=4\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}+C^{\prime}. ∎

5.2 Some discrete total flux inequalities

In this section, it is convenient to work directly on the scheme (48)–(49). For each index ii, the sum of the equations (48) and (49) give, for 1iM1\leq i\leq M and 1nN1\leq n\leq N,

ji,j𝒩(i)cij[ηw(Swn,ij)(Pwn,jPwn,i)+ηo(Son,ij)(Pon,jPon,i)]=mi(q¯n,iq¯n,i).-\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}\Big{[}\eta_{w}(S_{w}^{n,ij})(P_{w}^{n,j}-P_{w}^{n,i})+\eta_{o}(S_{o}^{n,ij})(P_{o}^{n,j}-P_{o}^{n,i})\Big{]}=m_{i}(\bar{q}^{n,i}-\underline{q}^{n,i}).

Following [16], this suggests to define a discrete anti-symmetric upwinded total flux,

Fn,ij=ηw(Swn,ij)(Pwn,jPwn,i)ηo(Son,ij)(Pon,jPon,i);F^{n,ij}=-\eta_{w}(S_{w}^{n,ij})(P_{w}^{n,j}-P_{w}^{n,i})-\eta_{o}(S_{o}^{n,ij})(P_{o}^{n,j}-P_{o}^{n,i}); (102)

it satisfies

ji,j𝒩(i)cijFn,ij=mi(q¯n,iq¯n,i).\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}F^{n,ij}=m_{i}(\bar{q}^{n,i}-\underline{q}^{n,i}). (103)

This identity yields a first bound for the discrete total flux.

Proposition 17.

The discrete total flux Fn,ijF^{n,ij} satisfies the following bounds for α=w,o\alpha=w,o:

|n=1Nτi,j=1Mfα2(Sn,i)cijFn,ij|2q¯L1(Ω×]0,T[).\big{|}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}f_{\alpha}^{2}(S^{n,i})c_{ij}F^{n,ij}\big{|}\leq 2\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}. (104)
Proof.

The statement follows by multiplying (103) with τfα2(Sn,i)\tau\,f_{\alpha}^{2}(S^{n,i}), and summing

n=1Nτi,j=1Mfα2(Sn,i)cijFn,ij=n=1Nτi=1Mmifα2(Sn,i)(q¯n,iq¯n,i)2q¯L1(Ω×]0,T[).\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}f_{\alpha}^{2}(S^{n,i})c_{ij}F^{n,ij}=\sum_{n=1}^{N}\tau\sum_{i=1}^{M}m_{i}f_{\alpha}^{2}(S^{n,i})(\bar{q}^{n,i}-\underline{q}^{n,i})\leq 2\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}.

To simplify some of the calculations below, it is convenient to drop the time superscript nn, when there is no ambiguity, and restore it when needed.

By using the relation (7), Fi,jF^{i,j} can also be written as

Fij=(ηw(Swij)+ηo(Soij))(PwjPwi)ηo(Soij)(pc(Sj)pc(Si))=(ηw(Swij)+ηo(Soij))(PojPoi)+ηw(Swij)(pc(Sj)pc(Si)).\begin{split}F^{ij}=&-\big{(}\eta_{w}(S_{w}^{ij})+\eta_{o}(S_{o}^{ij})\big{)}(P_{w}^{j}-P_{w}^{i})-\eta_{o}(S_{o}^{ij})(p_{c}(S^{j})-p_{c}(S^{i}))\\ =&-\big{(}\eta_{w}(S_{w}^{ij})+\eta_{o}(S_{o}^{ij})\big{)}(P_{o}^{j}-P_{o}^{i})+\eta_{w}(S_{w}^{ij})(p_{c}(S^{j})-p_{c}(S^{i})).\end{split} (105)

In order to insert it into (99), we bring forward FijF^{ij} in the expressions for ηα(Sαij)(PαjPαi)\eta_{\alpha}(S_{\alpha}^{ij})(P_{\alpha}^{j}-P_{\alpha}^{i}), α=w,o\alpha=w,o. Starting from the identity

ηw(Swij)(PwjPwi)=fw(Swij)[(ηw(Swij)+ηo(Soij))(PwjPwi)+ηo(Soij)(pc(Sj)pc(Si))\displaystyle\eta_{w}(S_{w}^{ij})(P_{w}^{j}-P_{w}^{i})=f_{w}(S_{w}^{ij})\Big{[}\big{(}\eta_{w}(S_{w}^{ij})+\eta_{o}(S_{o}^{ij})\big{)}(P_{w}^{j}-P_{w}^{i})+\eta_{o}(S_{o}^{ij})(p_{c}(S^{j})-p_{c}(S^{i}))
ηo(Soij)(pc(Sj)pc(Si))+(ηo(Swij)ηo(Soij))(PwjPwi)],\displaystyle-\eta_{o}(S_{o}^{ij})(p_{c}(S^{j})-p_{c}(S^{i}))+\big{(}\eta_{o}(S_{w}^{ij})-\eta_{o}(S_{o}^{ij})\big{)}(P_{w}^{j}-P_{w}^{i})\Big{]},

the expression (105) leads to

ηw(Swij)(PwjPwi)=fw(Swij)[Fijηo(Soij)(pc(Sj)pc(Si))+(ηo(Swij)ηo(Soij))(PwjPwi)].\eta_{w}(S_{w}^{ij})(P_{w}^{j}-P_{w}^{i})=f_{w}(S_{w}^{ij})\Big{[}-F^{ij}-\eta_{o}(S_{o}^{ij})(p_{c}(S^{j})-p_{c}(S^{i}))+\big{(}\eta_{o}(S_{w}^{ij})-\eta_{o}(S_{o}^{ij})\big{)}(P_{w}^{j}-P_{w}^{i})\Big{]}. (106)

Similarly,

ηo(Soij)(PojPoi)=fo(Soij)[Fij+ηw(Swij)(pc(Sj)pc(Si))+(ηw(Soij)ηw(Swij))(PojPoi)].\eta_{o}(S_{o}^{ij})(P_{o}^{j}-P_{o}^{i})=f_{o}(S_{o}^{ij})\Big{[}-F^{ij}+\eta_{w}(S_{w}^{ij})(p_{c}(S^{j})-p_{c}(S^{i}))+\big{(}\eta_{w}(S_{o}^{ij})-\eta_{w}(S_{w}^{ij})\big{)}(P_{o}^{j}-P_{o}^{i})\Big{]}. (107)

We also introduce the anti-symmetric quantities that collect the terms other than FijF^{ij} in (106) and (107),

Cwij=ηo(Soij)(pc(Sj)pc(Si))(ηo(Swij)ηo(Soij))(PwjPwi),C_{w}^{ij}=\eta_{o}(S_{o}^{ij})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}-\big{(}\eta_{o}(S_{w}^{ij})-\eta_{o}(S_{o}^{ij})\big{)}(P_{w}^{j}-P_{w}^{i}), (108)
Coij=ηw(Swij)(pc(Sj)pc(Si))(ηw(Soij)ηw(Swij))(PojPoi).C_{o}^{ij}=-\eta_{w}(S_{w}^{ij})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}-\big{(}\eta_{w}(S_{o}^{ij})-\eta_{w}(S_{w}^{ij})\big{)}(P_{o}^{j}-P_{o}^{i}). (109)

With this notation, we have

ηα(Sαij)(PαjPαi)=fα(Sαij)[FijCαij],α=w,o.\eta_{\alpha}(S_{\alpha}^{ij})(P_{\alpha}^{j}-P_{\alpha}^{i})=f_{\alpha}(S_{\alpha}^{ij})\big{[}-F^{ij}-C_{\alpha}^{ij}\big{]},\ \alpha=w,o.

Thus, the term that is summed over ii in (99) has the expression

α=w,ofα(Si)ji,j𝒩(i)cijηα(Sαij)(PαjPαi)=α=w,ofα(Si)ji,j𝒩(i)cijfα(Sαij)(Fij+Cαij).-\sum_{\alpha=w,o}f_{\alpha}(S^{i})\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}\eta_{\alpha}(S_{\alpha}^{ij})(P_{\alpha}^{j}-P_{\alpha}^{i})=\sum_{\alpha=w,o}f_{\alpha}(S^{i})\sum_{j\neq i,j\in\mathcal{N}(i)}c_{ij}f_{\alpha}(S_{\alpha}^{ij})\big{(}F^{ij}+C_{\alpha}^{ij}\big{)}. (110)

Now, we reintroduce the superscript nn and to simplify, we set

A1,i,n=α=w,ofα(Sn,i)j=1Mcijfα(Sαn,ij)Fn,ij,A_{1,i,n}=\sum_{\alpha=w,o}f_{\alpha}(S^{n,i})\sum_{j=1}^{M}c_{ij}f_{\alpha}(S_{\alpha}^{n,ij})F^{n,ij}, (111)
Aα,i,n=fα(Sn,i)j=1Mcijfα(Sαn,ij)Cαn,ij.A_{\alpha,i,n}=f_{\alpha}(S^{n,i})\sum_{j=1}^{M}c_{ij}f_{\alpha}(S_{\alpha}^{n,ij})C_{\alpha}^{n,ij}. (112)

With this notation, our next proposition is derived by substituting (110)–(112) into (99).

Proposition 18.

We have, with the remainder R1R_{1} of (99),

n=1Nτi=1MA1,i,n+n=1Nτi=1Mα=w,oAα,i,n=R1.\sum_{n=1}^{N}\tau\sum_{i=1}^{M}A_{1,i,n}+\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{\alpha=w,o}A_{\alpha,i,n}=R_{1}. (113)

We must transform suitably each term in this sum to bring forward gg. Let us start with the first term of (113), i.e., the combination of the discrete total flux.

5.3 Combination of the discrete total flux

To simplify, let A1A_{1} denote the first term,

A1=n=1Nτi,j=1Mα=w,o[fα(Sn,i)cijfα(Sαn,ij)Fn,ij].A_{1}=\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\sum_{\alpha=w,o}\Big{[}f_{\alpha}(S^{n,i})c_{ij}f_{\alpha}(S_{\alpha}^{n,ij})F^{n,ij}\Big{]}.

Inspired by (104), we introduce the difference

A2=A1n=1Nτi,j=1M(fw2(Sn,i)+fo2(Sn,i))cijFn,ij.A_{2}=A_{1}-\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\big{(}f_{w}^{2}(S^{n,i})+f_{o}^{2}(S^{n,i})\big{)}c_{ij}F^{n,ij}.

Clearly, A2A_{2} collects the discrepancies arising from the upwinding,

A2=n=1Nτi,j=1Mα=w,o[fα(Sn,i)cij(fα(Sαn,ij)fα(Sn,i))Fn,ij].A_{2}=\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\sum_{\alpha=w,o}\Big{[}f_{\alpha}(S^{n,i})c_{ij}\big{(}f_{\alpha}(S_{\alpha}^{n,ij})-f_{\alpha}(S^{n,i})\big{)}F^{n,ij}\Big{]}. (114)

As (104) yields

A1=A2+R2,with|R2|4q¯L1(Ω×]0,T[),A_{1}=A_{2}+R_{2},\quad\mbox{with}\ |R_{2}|\leq 4\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}, (115)

a bound for A1A_{1} stems from a bound for A2A_{2}. To this end, in view of (114), it is useful to consider the four subsets of indices j𝒩(i),jij\in\mathcal{N}(i),j\neq i, union and intersection:

𝒩w(i)={j𝒩(i);Pwn,j>Pwn,i},𝒩o(i)={j𝒩(i);Pon,j>Pon,i}𝒩w,S(i)={j𝒩(i),ji;Pwn,j=Pwn,i,Sn,jSn,i},𝒩o,S(i)={j𝒩(i),ji;Pon,j=Pon,i,Sn,jSn,i},𝒰𝒩(i)=𝒩w(i)𝒩o(i)𝒩w,S(i)𝒩o,S(i),𝒩(i)={j𝒩(i);Pwn,i>Pwn,jandPon,i>Pon,j}.\begin{split}&\mathcal{N}_{w}(i)=\{j\in\mathcal{N}(i)\,;\,P_{w}^{n,j}>P_{w}^{n,i}\},\quad\mathcal{N}_{o}(i)=\{j\in\mathcal{N}(i)\,;\,P_{o}^{n,j}>P_{o}^{n,i}\}\\ &\mathcal{N}_{w,S}(i)=\{j\in\mathcal{N}(i),j\neq i\,;\,P_{w}^{n,j}=P_{w}^{n,i},S^{n,j}\geq S^{n,i}\},\\ &\mathcal{N}_{o,S}(i)=\{j\in\mathcal{N}(i),j\neq i\,;\,P_{o}^{n,j}=P_{o}^{n,i},S^{n,j}\leq S^{n,i}\},\\ &\mathcal{UN}(i)=\mathcal{N}_{w}(i)\cup\mathcal{N}_{o}(i)\cup\mathcal{N}_{w,S}(i)\cup\mathcal{N}_{o,S}(i),\\ &\mathcal{N}_{\mathcal{F}}(i)=\{j\in\mathcal{N}(i)\,;\,P_{w}^{n,i}>P_{w}^{n,j}\ \mbox{and}\ P_{o}^{n,i}>P_{o}^{n,j}\}.\end{split} (116)

Strictly speaking, these subsets should we written with the superscript nn, but we omit it for the sake of simplicity. Then we have the following bound for A2A_{2}:

Proposition 19.

There exists a constant C2C_{2}, independent of hh and τ\tau, such that

A2=12n=1Nτi=1Mj𝒰𝒩(i)cij(fw(Sn,j)fw(Sn,i))2Fn,ij+R3,A_{2}=-\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{j\in\mathcal{UN}(i)}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}^{2}F^{n,ij}+R_{3}, (117)

where the remainder R3R_{3} satisfies

|R3|C2=2q¯L1(Ω×]0,T[).|R_{3}|\leq C_{2}=2\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}.
Proof.

Let us drop the superscript nn. By definition, fw(Swij)fw(Si)=0f_{w}(S_{w}^{ij})-f_{w}(S^{i})=0 when Pwi>PwjP_{w}^{i}>P_{w}^{j} and when Pwi=PwjP_{w}^{i}=P_{w}^{j} and Si>SjS^{i}>S^{j}. Similarly, fo(Soij)fo(Si)=0f_{o}(S_{o}^{ij})-f_{o}(S^{i})=0 when Poi>PojP_{o}^{i}>P_{o}^{j} and when Poi=PojP_{o}^{i}=P_{o}^{j} and Sn,i<SjS^{n,i}<S^{j}. Therefore, the nnth term in A2A_{2}, say a2a_{2}, reduces to

a2=i=1Mα=w,ofα(Si)j𝒩α(i)𝒩α,S(i)cij(fα(Sj)fα(Si))Fij.a_{2}=\sum_{i=1}^{M}\sum_{\alpha=w,o}f_{\alpha}(S^{i})\sum_{j\in\mathcal{N}_{\alpha}(i)\cup\mathcal{N}_{\alpha,S}(i)}c_{ij}\big{(}f_{\alpha}(S^{j})-f_{\alpha}(S^{i})\big{)}F^{ij}.

By expanding the products, this can be written

a2=12i=1Mα=w,oj𝒩α(i)𝒩α,S(i)cij(fα2(Si)fα2(Sj)+(fα(Si)fα(Sj))2)Fij.a_{2}=-\frac{1}{2}\sum_{i=1}^{M}\sum_{\alpha=w,o}\sum_{j\in\mathcal{N}_{\alpha}(i)\cup\mathcal{N}_{\alpha,S}(i)}c_{ij}\big{(}f_{\alpha}^{2}(S^{i})-f_{\alpha}^{2}(S^{j})+(f_{\alpha}(S^{i})-f_{\alpha}(S^{j}))^{2}\big{)}F^{ij}. (118)

Since cijc_{ij} vanishes when jj is not a neighbor of ii, we have, by interchanging ii and jj and using the anti-symmetry of FijF^{ij} and the symmetry of cijc_{ij},

i=1Mj𝒩w(i)cijfw2(Sj)Fij=i=1,j=1,Pwj<PwiMcijfw2(Si)Fij.-\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{w}(i)}c_{ij}f_{w}^{2}(S^{j})F^{ij}=\sum_{i=1,j=1,P_{w}^{j}<P_{w}^{i}}^{M}c_{ij}f_{w}^{2}(S^{i})F^{ij}. (119)

Similarly,

i=1Mj𝒩w,S(i)cijfw2(Sj)Fij=i=1,j=1,Pwi=Pwj,SiSjMcijfw2(Si)Fij.-\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{w,S}(i)}c_{ij}f_{w}^{2}(S^{j})F^{ij}=\sum_{i=1,j=1,P_{w}^{i}=P_{w}^{j},S^{i}\geq S^{j}}^{M}c_{ij}f_{w}^{2}(S^{i})F^{ij}. (120)

Hence

12i=1Mj𝒩w(i)cij(fw2(Si)fw2(Sj))Fij=12i=1,j=1,PwiPwjMcijfw2(Si)Fij,-\frac{1}{2}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{w}(i)}c_{ij}\big{(}f_{w}^{2}(S^{i})-f_{w}^{2}(S^{j}))F^{ij}=-\frac{1}{2}\sum_{i=1,j=1,P_{w}^{i}\neq P_{w}^{j}}^{M}c_{ij}f_{w}^{2}(S^{i})F^{ij},

and

12i=1Mj𝒩w,S(i)cij(fw2(Si)fw2(Sj))Fij=12i=1,j=1,Pwi=PwjMcijfw2(Si)Fij,-\frac{1}{2}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{w,S}(i)}c_{ij}\big{(}f_{w}^{2}(S^{i})-f_{w}^{2}(S^{j})\big{)}F^{ij}=-\frac{1}{2}\sum_{i=1,j=1,P_{w}^{i}=P_{w}^{j}}^{M}c_{ij}f_{w}^{2}(S^{i})F^{ij},

because there is no contribution from the indices i,ji,j such that Pwi=Pwj,Si=SjP_{w}^{i}=P_{w}^{j},S^{i}=S^{j} since in this case the factor Fij=0F^{ij}=0. The same is true for the non-wetting phase. Thus

12α=w,oi=1Mj𝒩α(i)𝒩α,S(i)cij(fα2(Si)fα2(Sj))Fij=12α=w,oi=1,j=1Mcijfα2(Si)Fij.-\frac{1}{2}\sum_{\alpha=w,o}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{\alpha}(i)\cup\mathcal{N}_{\alpha,S}(i)}c_{ij}\big{(}f_{\alpha}^{2}(S^{i})-f_{\alpha}^{2}(S^{j})\big{)}F^{ij}=-\frac{1}{2}\sum_{\alpha=w,o}\sum_{i=1,j=1}^{M}c_{ij}f_{\alpha}^{2}(S^{i})F^{ij}.

By comparing with (104), we see that

|12n=1Nτi=1Mα=w,oj𝒩α(i)𝒩α,S(i)cij(fα2(Sn,i)fα2(Sn,j))Fn,ij|2q¯L1(Ω×]0,T[).\big{|}\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{\alpha=w,o}\sum_{j\in\mathcal{N}_{\alpha}(i)\cup\mathcal{N}_{\alpha,S}(i)}c_{ij}\big{(}f_{\alpha}^{2}(S^{n,i})-f_{\alpha}^{2}(S^{n,j})\big{)}F^{n,ij}\big{|}\leq 2\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}. (121)

This and the equality

(fo(Sn,j)fo(Sn,i))2=(fw(Sn,j)fw(Sn,i))2,\big{(}f_{o}(S^{n,j})-f_{o}(S^{n,i})\big{)}^{2}=\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}^{2},

readily imply (117). ∎

Now, we set

Aij=cij(fw(Sj)fw(Si))2Fij,a3=12i=1Mj𝒰𝒩(i)Aij.A^{ij}=c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}^{2}F^{ij},\quad a_{3}=-\frac{1}{2}\sum_{i=1}^{M}\sum_{j\in\mathcal{UN}(i)}A^{ij}. (122)

The next proposition simplifies the expression for a3a_{3}.

Proposition 20.

We have

a3=i=1Mj𝒩(i)cij(fw(Sj)fw(Si))2Fij.a_{3}=\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{\mathcal{F}}(i)}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}^{2}F^{ij}. (123)
Proof.

By expanding the indices in the set 𝒰𝒩(i)\mathcal{UN}(i), interchanging the indices ii and jj, and using the anti-symmetry of AijA^{ij}, we derive

a3=12((α=w,oPαi>PαjAij)+Pwi=Pwj,SjSiAij+Poi=Poj,SiSjAij).a_{3}=\frac{1}{2}\Big{(}\big{(}\sum_{\alpha=w,o}\sum_{P_{\alpha}^{i}>P_{\alpha}^{j}}A^{ij}\big{)}+\sum_{P_{w}^{i}=P_{w}^{j},S^{j}\leq S^{i}}A^{ij}+\sum_{P_{o}^{i}=P_{o}^{j},S^{i}\leq S^{j}}A^{ij}\Big{)}.

Now, we split the first two sums above as follows:

α=w,oPαi>PαjAij=2Pwi>Pwj,Poi>PojAij+Pwi>Pwj,PoiPojAij+Poi>Poj,PwiPwjAij.\sum_{\alpha=w,o}\sum_{P_{\alpha}^{i}>P_{\alpha}^{j}}A^{ij}=2\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}>P_{o}^{j}}A^{ij}+\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}\leq P_{o}^{j}}A^{ij}+\sum_{P_{o}^{i}>P_{o}^{j},P_{w}^{i}\leq P_{w}^{j}}A^{ij}.

This leads to

a3=j𝒩(i)Aij+12(Pwi>Pwj,PoiPojAij+Poi>Poj,PwiPwjAij+Pwi=Pwj,SjSiAij+Poi=Poj,SiSjAij).a_{3}=\sum_{j\in\mathcal{N}_{\mathcal{F}}(i)}A^{ij}+\frac{1}{2}\Big{(}\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}\leq P_{o}^{j}}A^{ij}+\sum_{P_{o}^{i}>P_{o}^{j},P_{w}^{i}\leq P_{w}^{j}}A^{ij}+\sum_{P_{w}^{i}=P_{w}^{j},S^{j}\leq S^{i}}A^{ij}+\sum_{P_{o}^{i}=P_{o}^{j},S^{i}\leq S^{j}}A^{ij}\Big{)}.

The anti-symmetry of AijA^{ij} gives

Pwi>Pwj,PoiPojAij=Pwj>Pwi,Poj<PoiAijPwj>Pwi,Poj=PoiAij.\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}\leq P_{o}^{j}}A^{ij}=-\sum_{P_{w}^{j}>P_{w}^{i},P_{o}^{j}<P_{o}^{i}}A^{ij}-\sum_{P_{w}^{j}>P_{w}^{i},P_{o}^{j}=P_{o}^{i}}A^{ij}.

By substituting and applying twice again the anti-symmetry of AijA^{ij}, we derive

a3=j𝒩(i)Aij+12(Poi>Poj,Pwi=PwjAij+Pwi>Pwj,Poi=PojAijPwi=Pwj,SiSjAijPoi=Poj,SjSiAij).a_{3}=\sum_{j\in\mathcal{N}_{\mathcal{F}}(i)}A^{ij}+\frac{1}{2}\Big{(}\sum_{P_{o}^{i}>P_{o}^{j},P_{w}^{i}=P_{w}^{j}}A^{ij}+\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}=P_{o}^{j}}A^{ij}-\sum_{P_{w}^{i}=P_{w}^{j},S^{i}\leq S^{j}}A^{ij}-\sum_{P_{o}^{i}=P_{o}^{j},S^{j}\leq S^{i}}A^{ij}\Big{)}. (124)

Note that

Poi>Poj,Pwi=PwjAij=PoiPoj,Pwi=PwjAij,\sum_{P_{o}^{i}>P_{o}^{j},P_{w}^{i}=P_{w}^{j}}A^{ij}=\sum_{P_{o}^{i}\geq P_{o}^{j},P_{w}^{i}=P_{w}^{j}}A^{ij},

since the additional term is zero. Therefore, in view of first (73) and next (74),

Poi>Poj,Pwi=PwjAij=Pwi=Pwj,SiSjAij,Pwi>Pwj,Poi=PojAij=Poi=Poj,SiSjAij.\sum_{P_{o}^{i}>P_{o}^{j},P_{w}^{i}=P_{w}^{j}}A^{ij}=\sum_{P_{w}^{i}=P_{w}^{j},S^{i}\leq S^{j}}A^{ij},\quad\sum_{P_{w}^{i}>P_{w}^{j},P_{o}^{i}=P_{o}^{j}}A^{ij}=\sum_{P_{o}^{i}=P_{o}^{j},S^{i}\geq S^{j}}A^{ij}.

Thus all terms multiplying 12\frac{1}{2} in (124) are cancelled and we recover (123). ∎

By applying (115) and Propositions 19 and 20, A1A_{1} has the following expression:

Proposition 21.

We have

n=1Nτi,j=1Mα=w,o[fα(Sn,i)cijfα(Sαn,ij)Fn,ij]=n=1Nτi=1Mj𝒩(i)cij(fw(Sn,j)fw(Sn,i))2Fn,ij+R4,\begin{split}\sum_{n=1}^{N}\tau&\sum_{i,j=1}^{M}\sum_{\alpha=w,o}\Big{[}f_{\alpha}(S^{n,i})c_{ij}f_{\alpha}(S_{\alpha}^{n,ij})F^{n,ij}\Big{]}\\ &=\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{j\in\mathcal{N}_{\mathcal{F}}(i)}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}^{2}F^{n,ij}+R_{4},\end{split} (125)

where

|R4|6q¯L1(Ω×]0,T[).|R_{4}|\leq 6\,\|\bar{q}\|_{L^{1}({\Omega}\times]0,T[)}. (126)

This settles the contribution of the first term of (113); the second terms are handled in the next subsection.

5.4 Terms involving the capillary pressure and mobility

These are the terms Aα,i,nA_{\alpha,i,n} defined in (112). By virtue of the anti-symmetry of CijC^{ij}, we can write for α=w,o\alpha=w,o

i,j=1Mfα(Si)cijfα(Sαij)Cαij=12i,j=1M(fα(Sj)fα(Si))cijfα(Sαij)Cαij.\sum_{i,j=1}^{M}f_{\alpha}(S^{i})c_{ij}f_{\alpha}(S_{\alpha}^{ij})\,C_{\alpha}^{ij}=-\frac{1}{2}\sum_{i,j=1}^{M}\big{(}f_{\alpha}(S^{j})-f_{\alpha}(S^{i})\big{)}c_{ij}f_{\alpha}(S_{\alpha}^{ij})\,C_{\alpha}^{ij}. (127)

Owing to (6), the term with α=o\alpha=o in the right-hand side is 12i,j=1M(fw(Sj)fw(Si))cijfo(Soij)Coij\frac{1}{2}\sum_{i,j=1}^{M}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}c_{ij}f_{o}(S_{o}^{ij})\,C_{o}^{ij}. Therefore,

α=w,oi=1MAα,i,n=12i,j=1Mcij(fw(Sn,j)fw(Sn,i))(fw(Swn,ij)Cwn,ij+fo(Son,ij)Con,ij).\sum_{\alpha=w,o}\sum_{i=1}^{M}A_{\alpha,i,n}=\frac{1}{2}\sum_{i,j=1}^{M}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}-f_{w}(S_{w}^{n,ij})\,C_{w}^{n,ij}+f_{o}(S_{o}^{n,ij})\,C_{o}^{n,ij}\big{)}. (128)

Let KijK^{ij} denote the symmetric term

Kij:=cij(fw(Sn,j)fw(Sn,i))(fw(Swn,ij)Cwn,ij+fo(Son,ij)Con,ij);K^{ij}:=c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}-f_{w}(S_{w}^{n,ij})\,C_{w}^{n,ij}+f_{o}(S_{o}^{n,ij})\,C_{o}^{n,ij}\big{)};

by virtue of this symmetry, we have

α=w,oi=1MAα,i,n=Pwn,i>Pwn,jKn,ij+12Pwn,i=Pwn,jKn,ij.\sum_{\alpha=w,o}\sum_{i=1}^{M}A_{\alpha,i,n}=\sum_{P_{w}^{n,i}>P_{w}^{n,j}}K^{n,ij}+\frac{1}{2}\sum_{P_{w}^{n,i}=P_{w}^{n,j}}K^{n,ij}. (129)

5.5 Combining all terms

By substituting (125) and (129) into (113), we obtain the next lemma.

Lemma 22.

We have

n=1Nτα=o,w[Pα,hn,ηα(Sα,hn);fα(Shn),Pα,hn]h=n=1Nτ[i=1M(j𝒩(i)cij(fw(Sn,j)fw(Sn,i))2Fn,ijPwn,i>Pwn,jcij(fw(Sn,j)fw(Sn,i))(fw(Swn,ij)Cwn,ijfo(Son,ij)Con,ij)12Pwn,i=Pwn,jcij(fw(Sn,j)fw(Sn,i))(fw(Swn,ij)Cwn,ijfo(Son,ij)Con,ij))]+R4.\begin{split}-\sum_{n=1}^{N}&\tau\sum_{\alpha=o,w}\big{[}P_{\alpha,h}^{n},\eta_{\alpha}(S_{\alpha,h}^{n});f_{\alpha}(S_{h}^{n}),P_{\alpha,h}^{n}\big{]}_{h}=\sum_{n=1}^{N}\tau\Big{[}\sum_{i=1}^{M}\Big{(}\sum_{j\in\mathcal{N}_{\mathcal{F}}(i)}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}^{2}F^{n,ij}\\ &-\sum_{P_{w}^{n,i}>P_{w}^{n,j}}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}f_{w}(S_{w}^{n,ij})\,C_{w}^{n,ij}-f_{o}(S_{o}^{n,ij})\,C_{o}^{n,ij}\big{)}\\ &-\frac{1}{2}\sum_{P_{w}^{n,i}=P_{w}^{n,j}}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}f_{w}(S_{w}^{n,ij})\,C_{w}^{n,ij}-f_{o}(S_{o}^{n,ij})\,C_{o}^{n,ij}\big{)}\Big{)}\Big{]}+R_{4}.\end{split} (130)

with R4R_{4} bounded by (126).

Thus, to bring forward gg, we must suitably combine the terms of the above sum over ii, and this is done by examining all pairs of indices (i,j)(i,j) involved in (130), i.e., the pairs of indices in the following sets: (i) Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}, (ii) Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}, (iii) Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi=PojP_{o}^{i}=P_{o}^{j}, (iv) Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}, (v) Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}. Note that the sixth case that would be Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi=PojP_{o}^{i}=P_{o}^{j} brings no information because it implies that Si=SjS^{i}=S^{j}.

For the argument below, we shall use the following intermediate result.

Proposition 23.

For each indices ii and jj, there exist (non unique) points α\alpha and α\alpha^{\prime} between SiS^{i} and SjS^{j} such that

g(Sj)g(Si)=ηo(α)fw(α)(pc(Sj)pc(Si))=ηw(α)fo(α)(pc(Sj)pc(Si)).g(S^{j})-g(S^{i})=-\eta_{o}(\alpha)f_{w}(\alpha)\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}=-\eta_{w}(\alpha^{\prime})f_{o}(\alpha^{\prime})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}. (131)
Proof.

By the definition (13),

g(Sj)g(Si)=SiSjηo(x)fw(x)pc(x)𝑑x=SiSjηw(x)fo(x)pc(x)𝑑x.g(S^{j})-g(S^{i})=-\int_{S^{i}}^{S^{j}}\eta_{o}(x)f_{w}(x)p^{\prime}_{c}(x)\,dx=-\int_{S^{i}}^{S^{j}}\eta_{w}(x)f_{o}(x)p^{\prime}_{c}(x)\,dx. (132)

Since the functions ηofw\eta_{o}f_{w} and ηwfo\eta_{w}f_{o} are continuous and do not change sign between SiS^{i} and SjS^{j}, (131) follows from the second mean formula for integrals. ∎

To simplify, the superscript nn is dropped.

5.5.1 The case Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}

The following holds:

Proposition 24.

Let Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}; then the factor of τ\tau in (130) satisfies

cij(fw(Sj)fw(Si))((fw(Sj)fw(Si))Fij(fw(Si)Cwijfo(Si)Coij))cij(fw(Sj)fw(Si))(g(Sj)g(Si)).\begin{split}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}&\Big{(}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}F^{ij}-\big{(}f_{w}(S^{i})C_{w}^{ij}-f_{o}(S^{i})C_{o}^{ij}\big{)}\Big{)}\\ &\geq c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}g(S^{j})-g(S^{i})\big{)}.\end{split} (133)
Proof.

Let EijE^{ij} denote the left-hand side of (133). In the case Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}, an expansion of FijF^{ij}, and CαijC_{\alpha}^{ij} yields

Eij==cij(fw(Sj)fw(Si))2(ηw(Si)+ηo(Si))(PwjPwi)cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))(ηo(Si)(fw(Sj)fw(Si))+2ηw(Si)ηo(Si)ηw(Si)+ηo(Si)).\begin{split}E^{ij}=&=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}^{2}\big{(}\eta_{w}(S^{i})+\eta_{o}(S^{i})\big{)}\big{(}P_{w}^{j}-P_{w}^{i}\big{)}\\ &-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\Big{(}\eta_{o}(S^{i})\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}+2\frac{\eta_{w}(S^{i})\eta_{o}(S^{i})}{\eta_{w}(S^{i})+\eta_{o}(S^{i})}\Big{)}.\end{split}

As Pwi>PwjP_{w}^{i}>P_{w}^{j}, the first line in the above right-hand side is nonnegative and hence

Eijcij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(Si)(fw(Sj)+fw(Si)).E^{ij}\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(S^{i})\big{(}f_{w}(S^{j})+f_{w}(S^{i})\big{)}.

Now, either SiSjS^{i}\leq S^{j} or Si>SjS^{i}>S^{j}. If SiSjS^{i}\leq S^{j}, then fw(Sj)fw(Si)f_{w}(S^{j})\geq f_{w}(S^{i}) and pc(Sj)pc(Si)p_{c}(S^{j})\leq p_{c}(S^{i}) because fwf_{w} is increasing and pcp_{c} is decreasing. This implies in particular that

Eijcij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(Si)fw(Sj)cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(x)fw(x),\begin{split}E^{ij}\geq&-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(S^{i})f_{w}(S^{j})\\ &\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(x)f_{w}(x),\end{split}

for any xx between SiS^{i} and SjS^{j}. Then (133) follows from the first part of (131).

If Si>SjS^{i}>S^{j}, then fw(Sj)fw(Si)0f_{w}(S^{j})-f_{w}(S^{i})\leq 0, pc(Sj)pc(Si)0p_{c}(S^{j})-p_{c}(S^{i})\geq 0, and we infer from (7) that EijE^{ij} reads

Eij=cij(fw(Sj)fw(Si))[(ηw(Si)+ηo(Si))(fw(Sj)fw(Si))(PoiPoj)+(fw(Sj)fw(Si))(ηw(Si)+ηo(Si))(pc(Sj)pc(Si))+(pc(Si)pc(Sj))(ηo(Si)(fw(Sj)fw(Si))+2ηw(Si)ηo(Si)ηw(Si)+ηo(Si))].\begin{split}E^{ij}=&c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\Big{[}\big{(}\eta_{w}(S^{i})+\eta_{o}(S^{i})\big{)}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}P_{o}^{i}-P_{o}^{j}\big{)}\\ &+\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}\eta_{w}(S^{i})+\eta_{o}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\\ &+\big{(}p_{c}(S^{i})-p_{c}(S^{j})\big{)}\Big{(}\eta_{o}(S^{i})\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}+2\frac{\eta_{w}(S^{i})\eta_{o}(S^{i})}{\eta_{w}(S^{i})+\eta_{o}(S^{i})}\Big{)}\Big{]}.\end{split}

Since PoiPoj>0P_{o}^{i}-P_{o}^{j}>0, the first line in the above right-hand side is nonnegative, and thus

Eijcij(fw(Si)fw(Sj))(pc(Sj)pc(Si))[(fw(Si)fw(Sj))(ηw(Si)+ηo(Si))+(fw(Sj)fw(Si))ηo(Si)+2ηw(Si)ηo(Si)ηw(Si)+ηo(Si)],\begin{split}E^{ij}\geq&c_{ij}\big{(}f_{w}(S^{i})-f_{w}(S^{j})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\Big{[}\big{(}f_{w}(S^{i})-f_{w}(S^{j})\big{)}\big{(}\eta_{w}(S^{i})+\eta_{o}(S^{i})\big{)}\\ &+\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\eta_{o}(S^{i})+2\frac{\eta_{w}(S^{i})\eta_{o}(S^{i})}{\eta_{w}(S^{i})+\eta_{o}(S^{i})}\Big{]},\end{split}

which reduces to

Eijcij(fw(Si)fw(Sj))(pc(Sj)pc(Si))ηw(Si)(fo(Sj)+fo(Si)).E^{ij}\geq c_{ij}\big{(}f_{w}(S^{i})-f_{w}(S^{j})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(S^{i})\big{(}f_{o}(S^{j})+f_{o}(S^{i})\big{)}.

This leads for instance to

Eijcij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(Si)fo(Sj)cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(x)fo(x),\begin{split}E^{ij}\geq&-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(S^{i})f_{o}(S^{j})\\ &\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(x)f_{o}(x),\end{split}

for any xx between SiS^{i} and SjS^{j}. Then (133) follows from the second part of (131). ∎

5.5.2 The case Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}

We have

Proposition 25.

Let Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}; then the factor of τ\tau in (130) satisfies

cij(fw(Sj)fw(Si))(fw(Si)Cwijfo(Sj)Coij)cij(fw(Sj)fw(Si))(g(Sj)g(Si)).-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}f_{w}(S^{i})C_{w}^{ij}-f_{o}(S^{j})C_{o}^{ij}\big{)}\geq c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}g(S^{j})-g(S^{i})\big{)}. (134)
Proof.

Let EijE^{ij} denote the left-hand side of (134). We have PwjPwi<0P_{w}^{j}-P_{w}^{i}<0 and PojPoi>0P_{o}^{j}-P_{o}^{i}>0. Then Swij=SiS_{w}^{ij}=S^{i} and Soij=SjS_{o}^{ij}=S^{j}; also SjSiS^{j}\leq S^{i} which implies that ηw(Sj)ηw(Si)\eta_{w}(S^{j})\leq\eta_{w}(S^{i}) and ηo(Sj)ηo(Si)\eta_{o}(S^{j})\geq\eta_{o}(S^{i}). The expression for CαijC_{\alpha}^{ij} becomes (see (108) and (109))

Cwij=ηo(Sj)(pc(Sj)pc(Si))(ηo(Si)ηo(Sj))(PwjPwi),C_{w}^{ij}=\eta_{o}(S^{j})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}-\big{(}\eta_{o}(S^{i})-\eta_{o}(S^{j})\big{)}(P_{w}^{j}-P_{w}^{i}),
Coij=ηw(Si)(pc(Sj)pc(Si))(ηw(Sj)ηw(Si))(PojPoi).C_{o}^{ij}=-\eta_{w}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}-\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}(P_{o}^{j}-P_{o}^{i}).

Hence

Eij=cij(fw(Sj)fw(Si))(fw(Si)(ηo(Sj)(pc(Sj)pc(Si))+(ηo(Sj)ηo(Si))(PwjPwi))+fo(Sj)(ηw(Si)(pc(Sj)pc(Si))+(ηw(Sj)ηw(Si))(PojPoi)))=cij(fw(Sj)fw(Si))((PojPoi)(fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si)))+(pc(Sj)pc(Si))(fw(Si)ηo(Si)+fo(Sj)ηw(Si)))=cij(fw(Sj)fw(Si))((PojPoi)(fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si)))+(pc(Sj)pc(Si))ηw(Si)(fo(Si)+fo(Sj))).\begin{split}E^{ij}=&-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\Big{(}f_{w}(S^{i})\big{(}\eta_{o}(S^{j})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}+\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}(P_{w}^{j}-P_{w}^{i})\big{)}\\ &+f_{o}(S^{j})\big{(}\eta_{w}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}+\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}(P_{o}^{j}-P_{o}^{i}))\Big{)}\\ &=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\Big{(}(P_{o}^{j}-P_{o}^{i})\big{(}f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{)}\\ &+\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\big{(}f_{w}(S^{i})\eta_{o}(S^{i})+f_{o}(S^{j})\eta_{w}(S^{i})\big{)}\Big{)}\\ &=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\Big{(}(P_{o}^{j}-P_{o}^{i})\big{(}f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{)}\\ &+\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(S^{i})\big{(}f_{o}(S^{i})+f_{o}(S^{j})\big{)}\Big{)}.\end{split}

It follows from the above considerations that

cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(Si)(fo(Si)+fo(Sj))cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(Si)fo(Sj))cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(x)fo(x)),\begin{split}-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})&\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(S^{i})\big{(}f_{o}(S^{i})+f_{o}(S^{j})\big{)}\\ &\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(S^{i})f_{o}(S^{j})\big{)}\\ &\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(x)f_{o}(x)\big{)},\end{split}

for any xx between SiS^{i} and SjS^{j}. Now, the sign of the factor

fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si))f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}

is not clear. If it is nonnegative, then the whole term

cij(fw(Sj)fw(Si))(PojPoi)(fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si)))-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}(P_{o}^{j}-P_{o}^{i})\big{(}f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{)}

is also nonnegative,

Eijcij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηw(x)fo(x)).E^{ij}\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{w}(x)f_{o}(x)\big{)}.

and (134) follows from (131). If

fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si))<0,f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}<0,

then we rewrite EijE^{ij} in terms of PwP_{w},

Eij=cij(fw(Sj)fw(Si))[(PwjPwi)(fw(Si)(ηo(Sj)ηo(Si))+fo(Sj)(ηw(Sj)ηw(Si))+(pc(Sj)pc(Si))(fw(Sj)ηo(Sj)+ηw(Sj)fo(Sj))].\begin{split}E^{ij}=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}&\Big{[}(P_{w}^{j}-P_{w}^{i})\big{(}f_{w}(S^{i})\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}+f_{o}(S^{j})\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\\ &+\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\big{(}f_{w}(S^{j})\eta_{o}(S^{j})+\eta_{w}(S^{j})f_{o}(S^{j})\big{)}\Big{]}.\end{split}

Since the first line is now nonnegative, we infer

Eij\displaystyle E^{ij}\geq cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(Sj)(fw(Sj)+fw(Si))\displaystyle-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(S^{j})\big{(}f_{w}(S^{j})+f_{w}(S^{i})\big{)}
cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(x)fw(x),\displaystyle\geq-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(x)f_{w}(x),

again for any xx between SiS^{i} and SjS^{j}, and the result follows from (131). ∎

5.5.3 The case Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi=PojP_{o}^{i}=P_{o}^{j}

In this case, pc(Sj)pc(Si)>0p_{c}(S^{j})-p_{c}(S^{i})>0, SjSiS^{j}\leq S^{i}, and we have the following result:

Proposition 26.

Let Pwi>PwjP_{w}^{i}>P_{w}^{j} and Poi=PojP_{o}^{i}=P_{o}^{j}; then the factor of τ\tau in (130) satisfies

cij(fw(Sj)fw(Si))(fw(Si)Cwijfo(Sj)Coij)cij(fw(Sj)fw(Si))(g(Sj)g(Si)).-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}f_{w}(S^{i})C_{w}^{ij}-f_{o}(S^{j})C_{o}^{ij}\big{)}\geq c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}g(S^{j})-g(S^{i})\big{)}. (135)
Proof.

Let EijE^{ij} denote the left-hand side of (135). We have Cwij=ηo(Si)(pc(Sj)pc(Si))C_{w}^{ij}=\eta_{o}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)} and Coij=ηw(Si)(pc(Sj)pc(Si))C_{o}^{ij}=-\eta_{w}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}. Hence

Eij=cij(fw(Sj)fw(Si))(fw(Si)ηo(Si)+fo(Sj)ηw(Si))(pc(Sj)pc(Si))\displaystyle E^{ij}=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}f_{w}(S^{i})\eta_{o}(S^{i})+f_{o}(S^{j})\eta_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}
=cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))(ηo(Si)fw(Si)+ηw(Si)fo(Sj)).\displaystyle=-c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\big{(}\eta_{o}(S^{i})f_{w}(S^{i})+\eta_{w}(S^{i})f_{o}(S^{j})\big{)}.

From here, (135) is derived as in the end of the proof of Proposition 25. ∎

5.5.4 The case Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}

In this case, pc(Sj)pc(Si)p_{c}(S^{j})\leq p_{c}(S^{i}) and SjSiS^{j}\geq S^{i}. We have the following result:

Proposition 27.

Let Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi>PojP_{o}^{i}>P_{o}^{j}; then the factor of τ\tau in (130) satisfies

12cij(fw(Sj)fw(Si))(fw(Sj)Cwijfo(Si)Coij)12cij(fw(Sj)fw(Si))(g(Sj)g(Si)).-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}f_{w}(S^{j})C_{w}^{ij}-f_{o}(S^{i})C_{o}^{ij}\big{)}\geq\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}g(S^{j})-g(S^{i})\big{)}. (136)
Proof.

In this case, Cwij=ηo(Si)(pc(Sj)pc(Si))C_{w}^{ij}=\eta_{o}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)} and Coij=ηw(Si)(pc(Sj)pc(Si))C_{o}^{ij}=-\eta_{w}(S^{i})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}. Then the left-hand side EijE^{ij} of (136) is

Eij=\displaystyle E^{ij}= 12cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))(fw(Sj)ηo(Si)+fo(Si)ηw(Si))\displaystyle-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\big{(}f_{w}(S^{j})\eta_{o}(S^{i})+f_{o}(S^{i})\eta_{w}(S^{i})\big{)}
12cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))fw(Sj)ηo(Si),\displaystyle\geq-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}f_{w}(S^{j})\eta_{o}(S^{i}),

and the proof of (136) proceeds as above. ∎

5.5.5 The case Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}

In this case, pc(Sj)pc(Si)p_{c}(S^{j})\geq p_{c}(S^{i}) and hence SiSjS^{i}\geq S^{j}. We have the following result:

Proposition 28.

Let Pwi=PwjP_{w}^{i}=P_{w}^{j} and Poi<PojP_{o}^{i}<P_{o}^{j}; then the factor of τ\tau in (130) satisfies

12cij(fw(Sj)fw(Si))(fw(Si)Cwijfo(Sj)Coij)12cij(fw(Sj)fw(Si))(g(Sj)g(Si)).-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}f_{w}(S^{i})C_{w}^{ij}-f_{o}(S^{j})C_{o}^{ij}\big{)}\\ \geq\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}g(S^{j})-g(S^{i})\big{)}. (137)
Proof.

In this case, Cwij=ηo(Sj)(pc(Sj)pc(Si))C_{w}^{ij}=\eta_{o}(S^{j})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)} and Coij=ηw(Sj)(pc(Sj)pc(Si))C_{o}^{ij}=-\eta_{w}(S^{j})\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}. Then the left-hand side EijE^{ij} of (136) is

Eij=\displaystyle E^{ij}= 12cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))(fw(Si)ηo(Sj)+fo(Sj)ηw(Sj))\displaystyle-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\big{(}f_{w}(S^{i})\eta_{o}(S^{j})+f_{o}(S^{j})\eta_{w}(S^{j})\big{)}
12cij(fw(Sj)fw(Si))(pc(Sj)pc(Si))ηo(Sj)fw(Si),\displaystyle\geq-\frac{1}{2}c_{ij}\big{(}f_{w}(S^{j})-f_{w}(S^{i})\big{)}\big{(}p_{c}(S^{j})-p_{c}(S^{i})\big{)}\eta_{o}(S^{j})f_{w}(S^{i}),

and the proof of (137) ends as above. ∎

5.6 Auxiliary bound for the gradient of gg

The following theorem is the first outcome of this section.

Theorem 29.

There exists a constant CC, independent of hh and τ\tau, such that

|0TΩ(Ih(fα(Sh,τ)))(Ih(g(Sh,τ)))|C,α=w,o.\Big{|}\int_{0}^{T}\int_{\Omega}\nabla(I_{h}(f_{\alpha}(S_{h,\tau})))\cdot\nabla(I_{h}(g(S_{h,\tau})))\Big{|}\leq C,\quad\alpha=w,o. (138)
Proof.

Owing to (6), it suffices to prove (138) when α=w\alpha=w. By applying Propositions 2428 to Lemma 22 and combining with Proposition 16, we readily derive that

n=1Nτi=1Mj𝒩(i),Pwn,iPwn,jcij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i))C,\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i),P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}\geq P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}}c_{ij}\big{(}f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\big{(}g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\leq C, (139)

with a constant CC independent of hh and τ\tau. Therefore, (138) will follow if we bound the summand for all jj such that Pwn,i<Pwn,jP_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}<P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}. But the symmetry of the summand implies that

i=1Mj𝒩(i),Pwn,i<Pwn,j\displaystyle\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i),P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}<P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}} cij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i))\displaystyle c_{ij}\big{(}f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\big{(}g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}
=i=1Mj𝒩(i),Pwn,i>Pwn,jcij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i)).\displaystyle=\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i),P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}>P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}}c_{ij}\big{(}f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\big{(}g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}.

Hence

Ω(Ih(fw(Shn)))\displaystyle\int_{\Omega}\nabla(I_{h}(f_{w}(S_{h}^{n})))\cdot (Ih(g(Shn)))=2i=1Mj𝒩(i),Pwn,i>Pwn,jcij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i))\displaystyle\nabla(I_{h}(g(S_{h}^{n})))=2\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i),P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}>P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}}c_{ij}\big{(}f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\big{(}g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}
+i=1Mj𝒩(i),Pwn,i=Pwn,jcij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i)),\displaystyle+\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i),P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i}=P_{w}^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j}}c_{ij}\big{(}f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-f_{w}(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)}\big{(}g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}j})-g(S^{\color[rgb]{1,0,0}n,\color[rgb]{0,0,0}i})\big{)},

and (138), with another constant CC, follows by substituting this equality into (139). ∎

5.7 Bound for the gradient of gg

In order to deduce from (138) a direct bound for the gradient of gg, we need to sharpen the assumptions on the mobility.

5.7.1 Assumptions on the mobility

Here we assume that

ηw(0)=ηo(1)=0,\eta_{w}(0)=\eta_{o}(1)=0,

and ηαW1,(0,1)\eta_{\alpha}\in W^{1,\infty}(0,1), α=w,o\alpha=w,o. Furthermore, we assume that, for all x]0,1[x\in]0,1[,

αwxθw1ηw(x)1αwxθw1,θw1,0<αw1,\alpha_{w}x^{\theta_{w}-1}\leq\eta^{\prime}_{w}(x)\leq\frac{1}{\alpha_{w}}x^{\theta_{w}-1},\quad\theta_{w}\geq 1,0<\alpha_{w}\leq 1, (140)
αo(1x)θo1ηo(x)1αo(1x)θo1,θo1,0<αo1,\alpha_{o}(1-x)^{\theta_{o}-1}\leq-\eta^{\prime}_{o}(x)\leq\frac{1}{\alpha_{o}}(1-x)^{\theta_{o}-1},\quad\theta_{o}\geq 1,0<\alpha_{o}\leq 1, (141)
1α3xβ31(1x)β41pc(x)α3xβ31(1x)β41,β3,β4>0,0<α31.\frac{1}{\alpha_{3}}x^{\beta_{3}-1}(1-x)^{\beta_{4}-1}\geq-p_{c}^{\prime}(x)\geq\alpha_{3}x^{\beta_{3}-1}(1-x)^{\beta_{4}-1},\quad\beta_{3},\beta_{4}>0,0<\alpha_{3}\leq 1. (142)

From (140) and (141), we deduce respectively, for all x]0,1[x\in]0,1[,

αwθwxθwηw(x)1αwθwxθw,\frac{\alpha_{w}}{\theta_{w}}x^{\theta_{w}}\leq\eta_{w}(x)\leq\frac{1}{\alpha_{w}\theta_{w}}x^{\theta_{w}}, (143)
αoθo(1x)θoηo(x)1αoθo(1x)θo.\frac{\alpha_{o}}{\theta_{o}}(1-x)^{\theta_{o}}\leq\eta_{o}(x)\leq\frac{1}{\alpha_{o}\theta_{o}}(1-x)^{\theta_{o}}. (144)

The sum of these two inequalities reads for all x]0,1[x\in]0,1[,

αwθwxθw+αoθo(1x)θoηw(x)+ηo(x)1αwθwxθw+1αoθo(1x)θo.\frac{\alpha_{w}}{\theta_{w}}x^{\theta_{w}}+\frac{\alpha_{o}}{\theta_{o}}(1-x)^{\theta_{o}}\leq\eta_{w}(x)+\eta_{o}(x)\leq\frac{1}{\alpha_{w}\theta_{w}}x^{\theta_{w}}+\frac{1}{\alpha_{o}\theta_{o}}(1-x)^{\theta_{o}}.

Let \ell denote the lower bound in this inequality. It is easy to check that \ell is a nonnegative continuous function of xx on [0,1][0,1], hence uniformly continuous. Therefore, it is bounded and as it does not vanish in this interval, it is bounded away from zero. Thus there exists a positive constant CminC_{\rm min} such that

x[0,1],Cmin(x):=αwθwxθw+αoθo(1x)θoCmax,\forall x\in[0,1],\quad C_{\rm min}\leq\ell(x):=\frac{\alpha_{w}}{\theta_{w}}x^{\theta_{w}}+\frac{\alpha_{o}}{\theta_{o}}(1-x)^{\theta_{o}}\leq C_{\rm max}, (145)

where

Cmax=maxx[0,1](1αwθwxθw+1αoθo(1x)θo).C_{\rm max}={\rm max}_{x\in[0,1]}\Big{(}\frac{1}{\alpha_{w}\theta_{w}}x^{\theta_{w}}+\frac{1}{\alpha_{o}\theta_{o}}(1-x)^{\theta_{o}}\Big{)}. (146)

5.7.2 Properties of the derivatives of fwf_{w} and gg

By definition, we have

g(x)=ηw(x)ηo(x)ηw(x)+ηo(x)pc(x),g^{\prime}(x)=-\frac{\eta_{w}(x)\eta_{o}(x)}{\eta_{w}(x)+\eta_{o}(x)}p_{c}^{\prime}(x),

which is positive in ]0,1[]0,1[. Considering (8), (143), and (144), we infer

g(x)1ηα31αwθw1αoθoxθw1+β3(1x)θo1+β4,g^{\prime}(x)\leq\frac{1}{\eta_{\ast}\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}x^{\theta_{w}-1+\beta_{3}}(1-x)^{\theta_{o}-1+\beta_{4}}, (147)

thus implying that gg^{\prime} is a bounded function, i.e., gg is Lipschitz continuous. Note that the Lipschitz constant LL of gg is bounded by

L1αα31αwθw1αoθomaxx[0,1](xθw1+β3(1x)θo1+β4).L\leq\frac{1}{\alpha\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}{\rm max}_{x\in[0,1]}\big{(}x^{\theta_{w}-1+\beta_{3}}(1-x)^{\theta_{o}-1+\beta_{4}}\big{)}. (148)

On the other hand, (142)–(145) yield for all x]0,1[x\in]0,1[,

g(x)α3Cmaxαwθwαoθoxθw1+β3(1x)θo1+β4>0.g^{\prime}(x)\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}x^{\theta_{w}-1+\beta_{3}}(1-x)^{\theta_{o}-1+\beta_{4}}>0. (149)

Thus gW1,(0,1)g\in W^{1,\infty}(0,1) is a strictly monotonic increasing function on [0,1][0,1] with range [0,β][0,\beta] for some β>0\beta>0, hence invertible with inverse g1W1,(0,β)g^{-1}\in W^{1,\infty}(0,\beta).

Now, we turn to fwf_{w}. By definition, we have

fw(x)=1(ηw(x)+ηo(x))2(ηo(x)ηw(x)ηw(x)ηo(x)).f^{\prime}_{w}(x)=\frac{1}{(\eta_{w}(x)+\eta_{o}(x))^{2}}\big{(}\eta_{o}(x)\eta^{\prime}_{w}(x)-\eta_{w}(x)\eta^{\prime}_{o}(x)\big{)}. (150)

The inequalities (140)–(145) imply that

fw(x)1Cmax2αoαw[1θoxθw1(1x)θo+1θwxθw(1x)θo1].f^{\prime}_{w}(x)\geq\frac{1}{C_{\rm max}^{2}}\alpha_{o}\alpha_{w}\big{[}\frac{1}{\theta_{o}}x^{\theta_{w}-1}(1-x)^{\theta_{o}}+\frac{1}{\theta_{w}}x^{\theta_{w}}(1-x)^{\theta_{o}-1}\big{]}.

Thus,

x[0,34],fw(x)αoαwCmax2θo(14)θoxθw1,\forall x\in[0,\frac{3}{4}],\quad f^{\prime}_{w}(x)\geq\frac{\alpha_{o}\alpha_{w}}{C_{\rm max}^{2}\theta_{o}}\big{(}\frac{1}{4}\big{)}^{\theta_{o}}x^{\theta_{w}-1}, (151)

and

x[14,1],fw(x)αoαwCmax2θw(14)θw(1x)θo1.\forall x\in[\frac{1}{4},1],\quad f^{\prime}_{w}(x)\geq\frac{\alpha_{o}\alpha_{w}}{C_{\rm max}^{2}\theta_{w}}\big{(}\frac{1}{4}\big{)}^{\theta_{w}}(1-x)^{\theta_{o}-1}. (152)

Let us use these results to compare gg^{\prime} and fwf_{w}^{\prime}. It follows from (147) that

x[0,34],g(x)(1αα31αwθw1αoθoθoCmax2αoαw)αoαwCmax2θoxθw1,\forall x\in[0,\frac{3}{4}],\quad g^{\prime}(x)\leq\Big{(}\frac{1}{\alpha\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}\frac{\theta_{o}C_{\rm max}^{2}}{\alpha_{o}\alpha_{w}}\Big{)}\frac{\alpha_{o}\alpha_{w}}{C_{\rm max}^{2}\theta_{o}}x^{\theta_{w}-1},

and by setting

C1=(1αα31αwθw1αoθo4θoθoCmax2αoαw)C_{1}=\Big{(}\frac{1}{\alpha\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}4^{\theta_{o}}\frac{\theta_{o}C_{\rm max}^{2}}{\alpha_{o}\alpha_{w}}\Big{)}

and comparing with (151), we obtain

x[0,34],g(x)C1fw(x).\forall x\in[0,\frac{3}{4}],\quad g^{\prime}(x)\leq C_{1}f^{\prime}_{w}(x). (153)

Similarly,

x[14,1],g(x)(1αα31αwθw1αoθoθwCmax2αoαw)αoαwCmax2θw(1x)θo1,\forall x\in[\frac{1}{4},1],\quad g^{\prime}(x)\leq\Big{(}\frac{1}{\alpha\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}\frac{\theta_{w}C_{\rm max}^{2}}{\alpha_{o}\alpha_{w}}\Big{)}\frac{\alpha_{o}\alpha_{w}}{C_{\rm max}^{2}\theta_{w}}(1-x)^{\theta_{o}-1},

so that, by setting

C2=(1αα31αwθw1αoθo4θwθwCmax2αoαw)C_{2}=\Big{(}\frac{1}{\alpha\alpha_{3}}\frac{1}{\alpha_{w}\theta_{w}}\frac{1}{\alpha_{o}\theta_{o}}4^{\theta_{w}}\frac{\theta_{w}C_{\rm max}^{2}}{\alpha_{o}\alpha_{w}}\Big{)}

and comparing with (152), we deduce

x[14,1],g(x)C2fw(x).\forall x\in[\frac{1}{4},1],\quad g^{\prime}(x)\leq C_{2}f^{\prime}_{w}(x). (154)

This leads to the desired relation between the derivative of fwf_{w} and gg:

x[0,1],g(x)Cfw(x),\forall x\in[0,1],\quad g^{\prime}(x)\leq Cf^{\prime}_{w}(x), (155)

where C=max(C1,C2)C={\rm max}(C_{1},C_{2}).

The main result of this section follows by combining (155) with (138).

Theorem 30.

Under the assumptions (140)–(142) on the derivatives of the mobilities and capillary pressure, there exists a constant CC, independent of hh and τ\tau, such that

(Ih(g(Sh,τ)))L2(Ω×]0,T[)C.\|\nabla(I_{h}(g(S_{h,\tau})))\|_{L^{2}(\Omega\times]0,T[)}\leq C. (156)
Proof.

Let (i,j)(i,j) be any pair of indices. If Sn,iSn,jS^{n,i}\leq S^{n,j}, then by (155),

fw(Sn,j)fw(Sn,i)=Sn,iSn,jfw(x)𝑑xCSn,iSn,jg(x)𝑑x=C(g(Sn,j)g(Sn,i)).f_{w}(S^{n,j})-f_{w}(S^{n,i})=\int_{S^{n,i}}^{S^{n,j}}f^{\prime}_{w}(x)\,dx\geq C\int_{S^{n,i}}^{S^{n,j}}g^{\prime}(x)\,dx=C(g(S^{n,j})-g(S^{n,i})).

As gg is increasing, we have g(Sn,j)g(Sn,i)0g(S^{n,j})-g(S^{n,i})\geq 0. Therefore

(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i))C|g(Sn,j)g(Sn,i)|2.\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}g(S^{n,j})-g(S^{n,i})\big{)}\geq C|g(S^{n,j})-g(S^{n,i})|^{2}. (157)

By changing both signs, the same result holds when Sn,j<Sn,iS^{n,j}<S^{n,i}. Then (156) follows from (138). ∎

6 Convergence

The interpolants of pαg(Sh,τ)p_{\alpha g}(S_{h,\tau}), g(Sh,τ)g(S_{h,\tau}), and pc(Sh,τ)p_{c}(S_{h,\tau}) play an important part in this work, see Theorems 11 and 30, and (60). Therefore, we begin by studying convergence properties first of Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) and Ih(pαg(Sh,τ))I_{h}(p_{\alpha\color[rgb]{0,0,0}g}(S_{h,\tau})), α=w,o\alpha=w,o, and next Ih(pc(Sh,τ))I_{h}(p_{c}(S_{h,\tau})). Some results will stem from an interesting relation between differences in values of Sh,τS_{h,\tau} and g(Sh,τ)g(S_{h,\tau}).

6.1 Properties of Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) and Ih(pαg(Sh,τ))I_{h}(p_{\alpha\color[rgb]{0,0,0}g}(S_{h,\tau})), α=w,o\alpha=w,o

6.1.1 Convergence properties of Ih(g(Sh,τ))I_{h}(g(S_{h,\tau}))

Let KK be an element of 𝒯h{\mathcal{T}}_{h} with vertices 𝒂i{\boldsymbol{a}}_{i}, 1id+11\leq i\leq d+1 (local numbers); then

K|g(Sh,τ)(tn)|2=K|g(i=1d+1Sn,iϕi)|2.\int_{K}|g(S_{h,\tau})(t_{n})|^{2}=\int_{K}|g(\sum_{i=1}^{d+1}S^{n,i}\phi_{i})|^{2}.

As 0Sn,i,ϕi10\leq S^{n,i},\phi_{i}\leq 1 and gg is increasing, we have

0i=1d+1Sn,iϕii=1d+1Sn,i,g(i=1d+1Sn,iϕi)i=1d+1g(Sn,i).0\leq\sum_{i=1}^{d+1}S^{n,i}\phi_{i}\leq\sum_{i=1}^{d+1}S^{n,i},\quad g(\sum_{i=1}^{d+1}S^{n,i}\phi_{i})\leq\sum_{i=1}^{d+1}g(S^{n,i}).

Hence

K|g(Sh,τ)(tn)|2(d+1)|K|i=1d+1(g(Sn,i))2.\int_{K}|g(S_{h,\tau})(t_{n})|^{2}\leq(d+1)|K|\sum_{i=1}^{d+1}(g(S^{n,i}))^{2}.

As a consequence, there exist constants CC, DD, EE, independent of nn, hh and τ\tau, such that

g(Sh,τ)(tn)L2(Ω)CIh(g(Sh,τ)(tn))hDIh(g(Sh,τ)(tn))hφEIh(g(Sh,τ)(tn))L2(Ω),\|g(S_{h,\tau})(t_{n})\|_{L^{2}(\Omega)}\leq C\|I_{h}(g(S_{h,\tau})(t_{n}))\|_{h}\leq D\|I_{h}(g(S_{h,\tau})(t_{n}))\|_{h}^{\varphi}\leq E\|I_{h}(g(S_{h,\tau})(t_{n}))\|_{L^{2}(\Omega)}, (158)

owing to (21) and (24). These inequalities carry over to the norm in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[).

Now, let us prove the following convergence property of Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})).

Lemma 31.

Under the assumptions of Theorem 30, we have

lim(h,τ)(0,0)g(Sh,τ)Ih(g(Sh,τ))L2(Ω×]0,T[)=0.\lim_{(h,\tau)\to(0,0)}\|g(S_{h,\tau})-I_{h}(g(S_{h,\tau}))\|_{L^{2}({\Omega}\times]0,T[)}=0. (159)
Proof.

For any 𝒙{\boldsymbol{x}} in any element KK of 𝒯h{\mathcal{T}}_{h}, we have

Ih(g(Sh,τ))(𝒙,tn)g(Sh,τ)(𝒙,tn)=i=1d+1g(Sn,i)ϕi(𝒙)g(i=1d+1Sn,iϕi(𝒙)).I_{h}(g(S_{h,\tau}))({\boldsymbol{x}},t_{n})-g(S_{h,\tau})({\boldsymbol{x}},t_{n})=\sum_{i=1}^{d+1}g(S^{n,i})\phi_{i}({\boldsymbol{x}})-g\big{(}\sum_{i=1}^{d+1}S^{n,i}\phi_{i}({\boldsymbol{x}})\big{)}.

As Sh,τS_{h,\tau} is a polynomial of degree one in KK, it attains its maximum and its minimum in space at vertices of KK, say g(Sn,)g(S^{n,\ell}) and g(Sn,r)g(S^{n,r}) are its maximum and minimum respectively. Thus, recalling that gg is a nonnegative monotonically increasing function,

i=1d+1g(Sn,i)ϕi(𝒙)g(Sn,),g(i=1d+1Sn,iϕi(𝒙))g(Sn,r).\sum_{i=1}^{d+1}g(S^{n,i})\phi_{i}({\boldsymbol{x}})\leq g(S^{n,\ell}),\quad g\big{(}\sum_{i=1}^{d+1}S^{n,i}\phi_{i}({\boldsymbol{x}})\big{)}\geq g(S^{n,r}).

Hence

Ih(g(Sh,τ))g(Sh,τ)L2(Ω×]0,T[)2n=1NτK𝒯h|K||g(Sn,)g(Sn,r)|2.\|I_{h}(g(S_{h,\tau}))-g(S_{h,\tau})\|^{2}_{L^{2}({\Omega}\times]0,T[)}\leq\sum_{n=1}^{N}\tau\sum_{K\in{\mathcal{T}}_{h}}|K||g(S^{n,\ell})-g(S^{n,r})|^{2}. (160)

For any node ii, let

κi=Max|K|,\kappa_{i}={\rm Max}\,|K|,

where the maximum is taken over all elements KK in Δi\Delta_{i}. Then we can readily check that

n=1NτK𝒯h|K||g(Sn,)g(Sn,r)|2Cn=1Nτi=1Mκij𝒩(i)|g(Sn,j)g(Sn,i)|2,\sum_{n=1}^{N}\tau\sum_{K\in{\mathcal{T}}_{h}}|K||g(S^{n,\ell})-g(S^{n,r})|^{2}\leq C\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\kappa_{i}\sum_{j\in\mathcal{N}(i)}\big{|}g(S^{n,j})-g(S^{n,i})\big{|}^{2},

where CC is a bound for the maximum number of elements that share a common edge, bound independent of hh and τ\tau by virtue of the regularity of the mesh. Now, recall the classical formula in each dd-simplex KK,

K|ϕiϕj|=1d2|Fi||Fj||K||𝒏i𝒏j|,\int_{K}|\nabla\,\phi_{i}\cdot\nabla\,\phi_{j}|=\frac{1}{d^{2}}\frac{|F_{i}||F_{j}|}{|K|}|{\boldsymbol{n}}_{i}\cdot{\boldsymbol{n}}_{j}|, (161)

where FiF_{i} is the face opposite to the vertex 𝒂i{\boldsymbol{a}}_{i} and 𝒏i{\boldsymbol{n}}_{i} is the exterior (to KK) unit normal to the face FiF_{i}. The regularity of the mesh implies that there exists a constant c0c_{0}, independent of hh and τ\tau, such that

|𝒏i𝒏j|c0.|{\boldsymbol{n}}_{i}\cdot{\boldsymbol{n}}_{j}|\geq c_{0}.

Hence, using again the regularity of the mesh, we obtain

K|ϕiϕj|ChKd2,\int_{K}|\nabla\,\phi_{i}\cdot\nabla\,\phi_{j}|\geq C\,h_{K}^{d-2},

and denoting by ρij\rho_{ij} the minimum of hKh_{K} for all KK in ΔiΔj\Delta_{i}\cap\Delta_{j}, we deduce

cijCρijd2,c_{ij}\geq C\rho_{ij}^{d-2}, (162)

with another constant CC independent of hh and τ\tau. By collecting these results, we derive

Ih(g(Sh,τ))g(Sh,τ)L2(Ω×]0,T[)2Cn=1Nτi=1Mκij𝒩(i)(1ρijd2)cij|g(Sn,j)g(Sn,i)|2.\|I_{h}(g(S_{h,\tau}))-g(S_{h,\tau})\|^{2}_{L^{2}({\Omega}\times]0,T[)}\leq C\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\kappa_{i}\sum_{j\in\mathcal{N}(i)}\big{(}\frac{1}{\rho_{ij}^{d-2}}\big{)}c_{ij}\big{|}g(S^{n,j})-g(S^{n,i})\big{|}^{2}. (163)

With another application of the regularity of the mesh, this becomes

Ih(g(Sh,τ))g(Sh,τ)L2(Ω×]0,T[)2Ch2(Ih(g(Sh,τ)))L2(Ω×]0,T[)2,\|I_{h}(g(S_{h,\tau}))-g(S_{h,\tau})\|^{2}_{L^{2}({\Omega}\times]0,T[)}\leq Ch^{2}\|\nabla(I_{h}(g(S_{h,\tau})))\|^{2}_{L^{2}({\Omega}\times]0,T[)}, (164)

(note that the power of hh is independent of the dimension) and the limit (159) follows from Theorem 30. ∎

6.1.2 Relation between g(Sn,j)g(Sn,i)g(S^{n,j})-g(S^{n,i}) and Sn,jSn,iS^{n,j}-S^{n,i}

Here, we derive an upper bound for Sn,jSn,iS^{n,j}-S^{n,i} in terms of g(Sn,j)g(Sn,i)g(S^{n,j})-g(S^{n,i}).

Lemma 32.

Under the assumptions (140)–(142) on the derivatives of the mobilities and capillary pressure, there exists a constant CC, independent of hh and τ\tau, such that for all ii, jj, and nn

|Sn,jSn,i|C|g(Sn,j)g(Sn,i)|1r,|S^{n,j}-S^{n,i}|\leq C\,|g(S^{n,j})-g(S^{n,i})|^{\frac{1}{r}}, (165)

where r=max(θo+β4,θw+β3)>1r=\rm{max}(\theta_{o}+\beta_{4},\theta_{w}+\beta_{3})>1.

Proof.

To simplify, we set c=Sn,ic=S^{n,i}, d=Sn,jd=S^{n,j} and assume c<dc<d. From (149), it follows that

g(d)g(c)α3Cmaxαwθwαoθocdxθw+β31(1x)θo+β41.g(d)-g(c)\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}\int_{c}^{d}x^{\theta_{w}+\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}. (166)

For the sake of brevity, we do not specify the constant factor in (166) and write

g(d)g(c)C1cdxθw+β31(1x)θo+β41.g(d)-g(c)\geq C_{1}\int_{c}^{d}x^{\theta_{w}+\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}.

Now, we argue according to the positions of cc and dd. There are four cases.

1) If 18c78\frac{1}{8}\leq c\leq\frac{7}{8}, then (166) gives

g(d)g(c)\displaystyle g(d)-g(c) C1(18)θw+β31cd(1x)θo+β41\displaystyle\geq C_{1}\big{(}\frac{1}{8}\big{)}^{\theta_{w}+\beta_{3}-1}\int_{c}^{d}(1-x)^{\theta_{o}+\beta_{4}-1}
=C1(18)θw+β311θo+β4((1c)θo+β4(1d)θo+β4).\displaystyle=C_{1}\big{(}\frac{1}{8}\big{)}^{\theta_{w}+\beta_{3}-1}\frac{1}{\theta_{o}+\beta_{4}}\Big{(}(1-c)^{\theta_{o}+\beta_{4}}-(1-d)^{\theta_{o}+\beta_{4}}\Big{)}.

But

(1c)θo+β4(1d)θo+β4\displaystyle(1-c)^{\theta_{o}+\beta_{4}}-(1-d)^{\theta_{o}+\beta_{4}} =(1c)θo+β41(dc)+(1d)((1c)θo+β41(1d)θo+β41)\displaystyle=(1-c)^{\theta_{o}+\beta_{4}-1}(d-c)+(1-d)\big{(}(1-c)^{\theta_{o}+\beta_{4}-1}-(1-d)^{\theta_{o}+\beta_{4}-1}\big{)}
(dc)(18)θo+β41.\displaystyle\geq(d-c)\big{(}\frac{1}{8}\big{)}^{\theta_{o}+\beta_{4}-1}.

Hence

g(d)g(c)C1θo+β4(18)θw+β3+θo+β42(dc).g(d)-g(c)\geq\frac{C_{1}}{\theta_{o}+\beta_{4}}\big{(}\frac{1}{8}\big{)}^{\theta_{w}+\beta_{3}+\theta_{o}+\beta_{4}-2}(d-c). (167)

2) If c>78c>\frac{7}{8}, then d>78d>\frac{7}{8} and (166) gives

g(d)g(c)C1(78)θw+β311θo+β4((1c)θo+β4(1d)θo+β4).g(d)-g(c)\geq C_{1}\big{(}\frac{7}{8}\big{)}^{\theta_{w}+\beta_{3}-1}\frac{1}{\theta_{o}+\beta_{4}}\Big{(}(1-c)^{\theta_{o}+\beta_{4}}-(1-d)^{\theta_{o}+\beta_{4}}\Big{)}.

Let us set a=1da=1-d, b=dcb=d-c γ=θo+β41>0\gamma=\theta_{o}+\beta_{4}-1>0. We can also write

(1c)θo+β4(1d)θo+β4=aγ+1((1+ba)γ+11).(1-c)^{\theta_{o}+\beta_{4}}-(1-d)^{\theta_{o}+\beta_{4}}=a^{\gamma+1}\Big{(}\big{(}1+\frac{b}{a}\big{)}^{\gamma+1}-1\Big{)}.

It is easy to check that the function

x(1+x)γ+11xγ+1x\mapsto(1+x)^{\gamma+1}-1-x^{\gamma+1}

vanishes at x=0x=0 and is strictly monotonic increasing, hence is strictly positive for x>0x>0. Hence

aγ+1((1+ba)γ+11)>aγ+1(ba)γ+1=bγ+1.a^{\gamma+1}\Big{(}\big{(}1+\frac{b}{a}\big{)}^{\gamma+1}-1\Big{)}>a^{\gamma+1}\big{(}\frac{b}{a}\big{)}^{\gamma+1}=b^{\gamma+1}.

Thus

(1c)θo+β4(1d)θo+β4(dc)θo+β4,(1-c)^{\theta_{o}+\beta_{4}}-(1-d)^{\theta_{o}+\beta_{4}}\geq(d-c)^{\theta_{o}+\beta_{4}},

and

g(d)g(c)C1(78)θw+β311θo+β4(dc)θo+β4.g(d)-g(c)\geq C_{1}\big{(}\frac{7}{8}\big{)}^{\theta_{w}+\beta_{3}-1}\frac{1}{\theta_{o}+\beta_{4}}(d-c)^{\theta_{o}+\beta_{4}}. (168)

3) If c<18c<\frac{1}{8} and d<78d<\frac{7}{8}, then the integrand 1x1d>181-x\geq 1-d>\frac{1}{8} and by the above argument,

g(d)g(c)C1(18)θo+β411θw+β3(dθw+β3cθw+β3)C1(18)θo+β411θw+β3(dc)θw+β3.\begin{split}g(d)-g(c)&\geq C_{1}\big{(}\frac{1}{8}\big{)}^{\theta_{o}+\beta_{4}-1}\frac{1}{\theta_{w}+\beta_{3}}\Big{(}d^{\theta_{w}+\beta_{3}}-c^{\theta_{w}+\beta_{3}}\Big{)}\\ &\geq C_{1}\big{(}\frac{1}{8}\big{)}^{\theta_{o}+\beta_{4}-1}\frac{1}{\theta_{w}+\beta_{3}}(d-c)^{\theta_{w}+\beta_{3}}.\end{split} (169)

4) If c<18c<\frac{1}{8} and d>78d>\frac{7}{8}, then c<16(dc)<12(dc)<dc<\frac{1}{6}(d-c)<\frac{1}{2}(d-c)<d. Therefore, we can write

g(d)g(c)C116(dc)12(dc)xθw+β31(1x)θo+β41C1(12)θo+β411θw+β3((12(dc))θw+β3(16(dc))θw+β3)C1(12)θo+θw+β3+β411θw+β3(1(13)θw+β3)(dc)θw+β3.\begin{split}g(d)-g(c)&\geq C_{1}\int_{\frac{1}{6}(d-c)}^{\frac{1}{2}(d-c)}x^{\theta_{w}+\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}\\ &\geq C_{1}\big{(}\frac{1}{2}\big{)}^{\theta_{o}+\beta_{4}-1}\frac{1}{\theta_{w}+\beta_{3}}\Big{(}\big{(}\frac{1}{2}(d-c)\big{)}^{\theta_{w}+\beta_{3}}-\big{(}\frac{1}{6}(d-c)\big{)}^{\theta_{w}+\beta_{3}}\Big{)}\\ &\geq C_{1}\big{(}\frac{1}{2}\big{)}^{\theta_{o}+\theta_{w}+\beta_{3}+\beta_{4}-1}\frac{1}{\theta_{w}+\beta_{3}}\Big{(}1-\big{(}\frac{1}{3}\big{)}^{\theta_{w}+\beta_{3}}\Big{)}(d-c)^{\theta_{w}+\beta_{3}}.\end{split} (170)

Since dc1d-c\leq 1, θo+β4>1\theta_{o}+\beta_{4}>1, and θw+β3>1\theta_{w}+\beta_{3}>1, we have in all cases

g(d)g(c)C2(dc)max(θo+β4,θw+β3),g(d)-g(c)\geq C_{2}(d-c)^{{\rm max}(\theta_{o}+\beta_{4},\theta_{w}+\beta_{3})},

where C2C_{2} is the minimum of the constant factors in (167)–(170). ∎

The convergence to zero of the differences Ih(pαg(Sh,τ))pαg(Sh,τ)I_{h}(p_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}g}(S_{h,\tau}))-p_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}g}(S_{h,\tau}), α=w,o\alpha=w,o, follows from this lemma and Theorem 30.

Lemma 33.

Under the assumptions (140)–(142) on the derivatives of the mobilities and capillary pressure, there exists a constant CC, independent of hh and τ\tau, such that

Ih(pαg(Sh,τ))pαg(Sh,τ)L2(Ω×]0,T[)Chγα,α=w,o,\|I_{h}(p_{\alpha g}(S_{h,\tau}))-p_{\alpha g}(S_{h,\tau})\|_{L^{2}(\Omega\times]0,T[)}\leq C\,h^{\gamma_{\alpha}},\ \alpha=w,o, (171)

where γw=β3r\gamma_{w}=\frac{\beta_{3}}{r}, γo=β4r\gamma_{o}=\frac{\beta_{4}}{r} and in both cases, rr is the exponent of Lemma 32.

Proof.

Let us start with α=w\alpha=w. Arguing as in the proof of Lemma 31, with pwg-p_{wg} (monotonic increasing) instead of gg, the analogue of (163) holds for pwg(Sh,τ)-p_{wg}(S_{h,\tau}), with the same notation

Ih(pwg(Sh,τ))pwg(Sh,τ)L2(Ω×]0,T[)2Cn=1Nτi=1Mj𝒩(i)(κicij)cij|pwg(Sn,j)pwg(Sn,i)|2,\|I_{h}(p_{wg}(S_{h,\tau}))-p_{wg}(S_{h,\tau})\|^{2}_{L^{2}(\Omega\times]0,T[)}\leq C\sum_{n=1}^{N}\tau\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\big{(}\frac{\kappa_{i}}{c_{ij}}\big{)}c_{ij}\big{|}p_{wg}(S^{n,j})-p_{wg}(S^{n,i})\big{|}^{2}, (172)

and the result will stem from an adequate upper bound for pwg(Sn,j)pwg(Sn,i)p_{wg}(S^{n,j})-p_{wg}(S^{n,i}), for all neighbors jj of ii. To this end, we proceed as in Lemma 32. Let c=Sn,ic=S^{n,i}, d=Sn,jd=S^{n,j} and suppose again that c<dc<d; then by (12), (142), (144), and (145),

|pwg(Sn,j)pwg(Sn,i)|1Cminα3αoθocdxβ31(1x)θo+β41,|p_{wg}(S^{n,j})-p_{wg}(S^{n,i})|\leq\frac{1}{C_{\rm min}\alpha_{3}\alpha_{o}\theta_{o}}\int_{c}^{d}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}, (173)

that we write as

|pwg(Sn,j)pwg(Sn,i)|C1cdxβ31(1x)θo+β41.|p_{wg}(S^{n,j})-p_{wg}(S^{n,i})|\leq C_{1}^{\prime}\int_{c}^{d}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}.

Here, the discussion reduces to three cases.

1) If 18c78\frac{1}{8}\leq c\leq\frac{7}{8}, since θo+β41>0\theta_{o}+\beta_{4}-1>0,

cdxβ31(1x)θo+β4181β3cd(1x)θo+β4181β3(dc).\int_{c}^{d}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}\leq 8^{1-\beta_{3}}\int_{c}^{d}(1-x)^{\theta_{o}+\beta_{4}-1}\leq 8^{1-\beta_{3}}(d-c). (174)

2) Likewise, if c>78c>\frac{7}{8},

cdxβ31(1x)θo+β41(87)1β3(dc).\int_{c}^{d}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}\leq\big{(}\frac{8}{7}\big{)}^{1-\beta_{3}}(d-c). (175)

3) If c<18c<\frac{1}{8},

cdxβ31(1x)θo+β41cdxβ31=1β3(dβ3cβ3)1β3(dc)β3.\int_{c}^{d}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}\leq\int_{c}^{d}x^{\beta_{3}-1}=\frac{1}{\beta_{3}}\big{(}d^{\beta_{3}}-c^{\beta_{3}}\big{)}\leq\frac{1}{\beta_{3}}\big{(}d-c\big{)}^{\beta_{3}}. (176)

Indeed, by Jensen’s inequality, valid for 0<β310<\beta_{3}\leq 1,

d=c+(dc)(cβ3+(dc)β3)1β3,i.e.,dβ3cβ3+(dc)β3.d=c+(d-c)\leq\big{(}c^{\beta_{3}}+(d-c)^{\beta_{3}}\big{)}^{\frac{1}{\beta_{3}}},\quad\mbox{i.e.,}\ d^{\beta_{3}}\leq c^{\beta_{3}}+(d-c)^{\beta_{3}}.

Consequently, in all cases,

|pwg(Sn,j)pwg(Sn,i)|C2|Sn,jSn,i|β3.|p_{wg}(S^{n,j})-p_{wg}(S^{n,i})|\leq C_{2}^{\prime}\big{|}S^{n,j}-S^{n,i}\big{|}^{\beta_{3}}. (177)

Thus, by substituting into (172), applying Lemma 32, and setting γw=β3r\gamma_{w}=\frac{\beta_{3}}{r}, we infer

Ih(pwg(Sh,τ))pwg(Sh,τ)L2(Ω×]0,T[)2\displaystyle\|I_{h}(p_{wg}(S_{h,\tau}))-p_{wg}(S_{h,\tau})\|^{2}_{L^{2}(\Omega\times]0,T[)} Cn=1Ni=1Mj𝒩(i)κicijτcij|Sn,jSn,i|2β3\displaystyle\leq C\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\frac{\kappa_{i}}{c_{ij}}\tau c_{ij}\big{|}S^{n,j}-S^{n,i}|^{2\beta_{3}}
Cn=1Ni=1Mj𝒩(i)κicijτcijAij2γw,\displaystyle\leq C\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\frac{\kappa_{i}}{c_{ij}}\tau c_{ij}A_{ij}^{2\gamma_{w}},

where Aij=|g(Sn,j)g(Sn,i)|A_{ij}=|g(S^{n,j})-g(S^{n,i})|. Note that r>β3r>\beta_{3}, hence γw<1\gamma_{w}<1. Then

Ih(pwg(Sh,τ))\displaystyle\|I_{h}(p_{wg}(S_{h,\tau}))- pwg(Sh,τ)L2(Ω×]0,T[)2Cn=1Ni=1Mj𝒩(i)κicij(τcij)1γw(τcij)γwAij2γw\displaystyle p_{wg}(S_{h,\tau})\|^{2}_{L^{2}(\Omega\times]0,T[)}\leq C\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\frac{\kappa_{i}}{c_{ij}}(\tau c_{ij})^{1-\gamma_{w}}\big{(}\tau c_{ij}\big{)}^{\gamma_{w}}A_{ij}^{2\gamma_{w}}
C(n=1Ni=1Mj𝒩(i)τcijAij2)γw(n=1Ni=1Mj𝒩(i)(κicij)11γwτcij)1γw.\displaystyle\leq C\Big{(}\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\tau c_{ij}A_{ij}^{2}\Big{)}^{\gamma_{w}}\Big{(}\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\big{(}\frac{\kappa_{i}}{c_{ij}}\big{)}^{\frac{1}{1-\gamma_{w}}}\tau c_{ij}\Big{)}^{1-\gamma_{w}}.

But

(n=1Ni=1Mj𝒩(i)(κicij)11γwτcij)1γwC(T|Ω|)1γwsupi,j(κicij)γw,\Big{(}\sum_{n=1}^{N}\sum_{i=1}^{M}\sum_{j\in\mathcal{N}(i)}\big{(}\frac{\kappa_{i}}{c_{ij}}\big{)}^{\frac{1}{1-\gamma_{w}}}\tau c_{ij}\Big{)}^{1-\gamma_{w}}\leq C\big{(}T|\Omega|\big{)}^{1-\gamma_{w}}\sup_{i,j}\big{(}\frac{\kappa_{i}}{c_{ij}}\big{)}^{\gamma_{w}},

and (171) with α=w\alpha=w follows from (162), the regularity of the mesh, and Theorem 30.

When α=o\alpha=o, the proof is based on fact that pog-p_{og} is nonnegative, monotonically increasing, and satisfies the inequality

pog(x)1Cmin1α3αwθw0xxθw+β31(1x)β41.-p_{og}(x)\leq\frac{1}{C_{\rm min}}\frac{1}{\alpha_{3}\alpha_{w}\theta_{w}}\int_{0}^{x}x^{\theta_{w}+\beta_{3}-1}(1-x)^{\beta_{4}-1}.

By comparing with (173), we see that the above argument carries over to pogp_{og} with β3\beta_{3} replaced by β4\beta_{4}. ∎

Finally, with the notation of Lemma 33, the following bound regarding pc(Sh,τ)p_{c}(S_{h,\tau}) follows from (171) and (14), and the fact that pc(0)p_{c}(0) is a constant:

Ih(pc(Sh,τ))pc(Sh,τ)L2(Ω×]0,T[)Chγ,\|I_{h}(p_{c}(S_{h,\tau}))-p_{c}(S_{h,\tau})\|_{L^{2}(\Omega\times]0,T[)}\leq C\,h^{\gamma}, (178)

where γ=1rmin(β3,β4)\gamma=\frac{1}{r}\rm{min}(\beta_{3},\beta_{4}).

6.2 Weak convergence

All constants below are independent of hh and τ\tau.

The bound (63) on the discrete saturation Sh,τS_{h,\tau} implies that there exists a function s¯L(Ω×]0,T[)\bar{s}\in L^{\infty}(\Omega\times]0,T[) and a subsequence of (h,τ)(h,\tau) not indicated, such that

lim(h,τ)(0,0)Sh,τ=s¯ weakly* inL(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}S_{h,\tau}=\bar{s}\quad\mbox{ weakly* in}\ L^{\infty}(\Omega\times]0,T[). (179)
Proposition 34.

The limit function s¯\bar{s} satisfies

(x,t)a.e. in Ω×]0,T[,0s¯(x,t)1.\forall(x,t)\ \mbox{a.e. in }\Omega\times]0,T[,\quad 0\leq\bar{s}(x,t)\leq 1. (180)
Proof.

The convergence (179) means that for all ψL1(Ω×]0,T[)\psi\in L^{1}(\Omega\times]0,T[),

Ω×]0,T[Sh,τψΩ×]0,T[s¯ψandΩ×]0,T[(1Sh,τ)ψΩ×]0,T[(1s¯)ψ.\int_{\Omega\times]0,T[}S_{h,\tau}\psi\to\int_{\Omega\times]0,T[}\bar{s}\psi\ \mbox{and}\ \int_{\Omega\times]0,T[}(1-S_{h,\tau})\psi\to\int_{\Omega\times]0,T[}(1-\bar{s})\psi.

We argue by contradiction. Suppose that s¯>1\bar{s}>1 on a set of positive measure, say DD, and take ψ=(s¯1)+\psi=(\bar{s}-1)_{+}, the positive part of s¯1\bar{s}-1. Then

0Ω×]0,T[(1Sh,τ)ψΩ×]0,T[(1s¯)(s¯1)+=D(1s¯)(s¯1)+,0\leq\int_{\Omega\times]0,T[}\big{(}1-S_{h,\tau}\big{)}\psi\to\int_{\Omega\times]0,T[}(1-\bar{s})(\bar{s}-1)_{+}=\int_{D}(1-\bar{s})(\bar{s}-1)_{+},

thus contradicting the fact that (1s¯)<0(1-\bar{s})<0 on DD. This proves that s¯1\bar{s}\leq 1. The proof that s¯0\bar{s}\geq 0 is similar. ∎

Regarding the pressure, the bound (85) yields weak convergence, up to a subsequence, of the gradient of Uα,h,τU_{\alpha,h,\tau}. We can deduce weak convergence of the sequences themselves by applying (84). Indeed,

ΩUw,h,τ=(Uw,h,τ,1)h=(Ih(pwg(Sh,τ)),1)h,\int_{\Omega}U_{w,h,\tau}=\big{(}U_{w,h,\tau},1\big{)}_{h}=\big{(}I_{h}(p_{wg}(S_{h,\tau})),1\big{)}_{h},

owing to (61). Then the properties of pwgp_{wg} and the boundedness of Sh,τS_{h,\tau} imply that

|(Ih(pwg(Sh,τ)),1)h|C.\big{|}\big{(}I_{h}(p_{wg}(S_{h,\tau})),1\big{)}_{h}\big{|}\leq C.

Similarly,

ΩUo,h,τ=(Ih(pwg(Sh,τ))+pc(0),1)h,\int_{\Omega}U_{o,h,\tau}=\big{(}I_{h}(p_{wg}(S_{h,\tau}))+p_{c}(0),1\big{)}_{h},

a bounded quantity. Then we infer from (84) that

Uα,h,τL2(Ω×]0,T[)C,α=w,o.\|U_{\alpha,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\leq C,\quad\alpha=w,o. (181)

With this, (85) implies that there exist functions W¯αL2(0,T;H1(Ω))\bar{W}_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}\in L^{2}(0,T;H^{1}(\Omega)), α=w,o\alpha=w,o, and a subsequence of hh and τ\tau (not indicated) such that,

lim(h,τ)(0,0)Uα,h,τ=W¯α, weakly inL2(0,T;H1(Ω)).\lim_{(h,\tau)\to(0,0)}U_{\alpha,h,\tau}=\bar{W}_{\alpha},\ \mbox{ weakly in}\ L^{2}(0,T;H^{1}(\Omega)). (182)

Likewise, the function Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) is bounded in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[) and it follows from this and (156) that there exists a function K¯L2(0,T,H1(Ω))\bar{K}\in L^{2}(0,T,H^{1}(\Omega)) such that, up to a subsequence,

lim(h,τ)(0,0)Ih(g(Sh,τ))=K¯ weakly inL2(0,T,H1(Ω)).\lim_{(h,\tau)\to(0,0)}I_{h}(g(S_{h,\tau}))=\bar{K}\quad\mbox{ weakly in}\ L^{2}(0,T,H^{1}(\Omega)). (183)

This implies in particular that for almost every time tt, Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) converges strongly in L2(Ω)L^{2}(\Omega). But as is well-known, these convergences are not sufficient to pass to the limit in the nonlinear terms: they must be supplemented by a bound for a fractional derivative in time of Sh,τS_{h,\tau} that yields compactness in time. This will stem via a bound for a fractional derivative in time of g(Sh,τ)g(S_{h,\tau}).

6.3 Compactness in time

Following the argument introduced by Kazhikhov, see [22], and recalling that hφ\|\cdot\|^{\varphi}_{h} is equivalent to the L2L^{2} norm in finite dimension, we want to derive first a fractional estimate in time for Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) and next for g(Sh,τ)g(S_{h,\tau}). The following lemma is a preliminary bound written in terms of sums of the pointwise values in time.

Lemma 35.

Under the assumptions of Theorem 30, there exist constants CC, independent of hh and τ\tau, such that for all integers 1N11\leq\ell\leq N-1,

m=1Nτ(g(Shm+)g(Shm)hφ)2C(τ),m=1Nτg(Shm+)g(Shm)L2(Ω)2C(τ).\sum_{m=1}^{N-\ell}\tau\big{(}\|g(S_{h}^{m+\ell})-g(S_{h}^{m})\|^{\varphi}_{h}\big{)}^{2}\leq C(\ell\tau),\ \sum_{m=1}^{N-\ell}\tau\|g(S_{h}^{m+\ell})-g(S_{h}^{m})\|_{L^{2}(\Omega)}^{2}\leq C(\ell\tau). (184)
Proof.

The starting point is the inequality

m=1Nτ(g(Shm+)g(Shm)hφ)2Lm=1Nτ(g(Shm+)g(Shm),Shm+Shm)hφ,\sum_{m=1}^{N-\ell}\tau\big{(}\|g(S_{h}^{m+\ell})-g(S_{h}^{m})\|^{\varphi}_{h}\big{)}^{2}\leq L\sum_{m=1}^{N-\ell}\tau\Big{(}g(S_{h}^{m+\ell})-g(S_{h}^{m}),S_{h}^{m+\ell}-S_{h}^{m}\Big{)}_{h}^{\varphi}, (185)

owing that gg is Lipschitz continuous and increasing. Thus, by writing

Shm+Shm=k=1(Shm+kShm+k1),S_{h}^{m+\ell}-S_{h}^{m}=\sum_{k=1}^{\ell}\big{(}S_{h}^{m+k}-S_{h}^{m+k-1}\big{)},

testing each line of (58) taken at level m+km+k with Ih(g(Shm+)g(Shm))I_{h}\big{(}g(S_{h}^{m+\ell})-g(S_{h}^{m})\big{)}, and applying (185), we obtain

m=1Nτ(g(Shm+)g(Shm)hφ)2Lm=1Nτk=1τ|(fw(sin,hm+k)q¯hm+kfw(Shm+k)q¯hm+k,g(Shm+)g(Shm))h+[Pw,hm+k,Ih(ηw(Shm+k));Pw,hm+k,Ih(g(Shm+)g(Shm))]h|.\begin{split}\sum_{m=1}^{N-\ell}\tau\big{(}\|g(S_{h}^{m+\ell})-g(S_{h}^{m})\|^{\varphi}_{h}\big{)}^{2}&\leq L\sum_{m=1}^{N-\ell}\tau\sum_{k=1}^{\ell}\tau\Big{|}\big{(}f_{w}(s_{\mathrm{in,h}}^{m+k})\bar{q}_{h}^{m+k}-f_{w}(S_{h}^{m+k})\underline{q}_{h}^{m+k},g(S_{h}^{m+\ell})-g(S_{h}^{m})\big{)}_{h}\\ &+\big{[}P_{w,h}^{m+k},I_{h}(\eta_{w}(S_{h}^{m+k}));P_{w,h}^{m+k},I_{h}\big{(}g(S_{h}^{m+\ell})-g(S_{h}^{m})\big{)}\big{]}_{h}\Big{|}.\end{split} (186)

It is easy to check that, on one hand, with r=r=\ell or r=0r=0,

|[Pw,hm+k\displaystyle\Big{|}\big{[}P_{w,h}^{m+k} ,Ih(ηw(Shm+k));Pw,hm+k,Ih(g(Shm+r))]h|\displaystyle,I_{h}(\eta_{w}(S_{h}^{m+k}));P_{w,h}^{m+k},I_{h}\big{(}g(S_{h}^{m+r})\big{)}\big{]}_{h}\Big{|}
=12|i,j=1M(g(Sm+r,j)g(Sm+r,i))cijηw(Swm+k,ij)(Pwm+k,jPwm+k,i)|\displaystyle=\frac{1}{2}\Big{|}\sum_{i,j=1}^{M}\big{(}g(S^{m+r,j})-g(S^{m+r,i})\big{)}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\big{(}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{)}\Big{|}
14i,j=1Mcijηw(Swm+k,ij)(|g(Sm+r,j)g(Sm+r,i)|2+|Pwm+k,jPwm+k,i|2)\displaystyle\leq\frac{1}{4}\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\Big{(}\big{|}g(S^{m+r,j})-g(S^{m+r,i})\big{|}^{2}+\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}\Big{)}
14i,j=1Mcij(ηw(1)|g(Sm+r,j)g(Sm+r,i)|2+ηw(Swm+k,ij)|Pwm+k,jPwm+k,i|2),\displaystyle\leq\frac{1}{4}\sum_{i,j=1}^{M}c_{ij}\Big{(}\eta_{w}(1)\big{|}g(S^{m+r,j})-g(S^{m+r,i})\big{|}^{2}+\eta_{w}(S_{w}^{m+k,ij})\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}\Big{)},

since ηw\eta_{w} is increasing and Sh,τS_{h,\tau} is bounded by one. On the other hand,

|(fw(sin,hm+k)q¯hm+kfw(Shm+k)q¯hm+k,g(Shm+)g(Shm))h|C(q¯m+kL1(Ω)+q¯m+kL1(Ω)),\big{|}\big{(}f_{w}(s_{\mathrm{in,h}}^{m+k})\bar{q}_{h}^{m+k}-f_{w}(S_{h}^{m+k})\underline{q}_{h}^{m+k},g(S_{h}^{m+\ell})-g(S_{h}^{m})\big{)}_{h}\big{|}\leq C\big{(}\|\bar{q}^{m+k}\|_{L^{1}(\Omega)}+\|\underline{q}^{m+k}\|_{L^{1}(\Omega)}\big{)},

where here and below, CC denotes constants that are independent of \ell, hh, and τ\tau. Therefore, in view of (26)

m=1Nτ(g(Shm+)g(Shm)hφ)2Lm=1Nτ([18ηw(1)(τ)r=,0Ih(g(Shm+r))L2(Ω)2+12k=1τi,j=1Mcijηw(Swm+k,ij)|Pwm+k,jPwm+k,i|2]+Ck=1τ(q¯m+kL1(Ω)+q¯m+kL1(Ω)))18ηw(1)L(τ)[m=1+NτIh(g(Shm))L2(Ω)2+m=1NτIh(g(Shm))L2(Ω)2]+12Lm=1Nτk=1τ(i,j=1Mcijηw(Swm+k,ij)|Pwm+k,jPwm+k,i|2+C(q¯m+kL1(Ω)+q¯m+kL1(Ω))).\begin{split}&\sum_{m=1}^{N-\ell}\tau\big{(}\|g(S_{h}^{m+\ell})-g(S_{h}^{m})\|^{\varphi}_{h}\big{)}^{2}\leq L\sum_{m=1}^{N-\ell}\tau\Big{(}\Big{[}\frac{1}{8}\eta_{w}(1)(\ell\tau)\sum_{r=\ell,0}\|\nabla\,I_{h}(g(S_{h}^{m+r}))\|^{2}_{L^{2}(\Omega)}\\ &+\frac{1}{2}\sum_{k=1}^{\ell}\tau\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}\Big{]}+C\sum_{k=1}^{\ell}\tau\big{(}\|\bar{q}^{m+k}\|_{L^{1}(\Omega)}+\|\underline{q}^{m+k}\|_{L^{1}(\Omega)}\big{)}\Big{)}\\ &\leq\frac{1}{8}\eta_{w}(1)L(\ell\tau)\Big{[}\sum_{m=1+\ell}^{N}\tau\|\nabla\,I_{h}(g(S_{h}^{m}))\|^{2}_{L^{2}(\Omega)}+\sum_{m=1}^{N-\ell}\tau\|\nabla\,I_{h}(g(S_{h}^{m}))\|^{2}_{L^{2}(\Omega)}\Big{]}\\ &+\frac{1}{2}L\sum_{m=1}^{N-\ell}\tau\sum_{k=1}^{\ell}\tau\Big{(}\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}+C\big{(}\|\bar{q}^{m+k}\|_{L^{1}(\Omega)}+\|\underline{q}^{m+k}\|_{L^{1}(\Omega)}\big{)}\Big{)}.\end{split} (187)

By (156), il suffices to bound the terms in the last line above. This is achieved by interchanging the sums over mm and kk. Let n=m+kn=m+k; nn runs from 22 to NN and mm runs from max(1,n){\rm max}(1,n-\ell) to min(n1,N){\rm min}(n-1,N-\ell). Thus

m=1Nτk=1τ\displaystyle\sum_{m=1}^{N-\ell}\tau\sum_{k=1}^{\ell}\tau i,j=1Mcijηw(Swm+k,ij)|Pwm+k,jPwm+k,i|2\displaystyle\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}
=n=2Nτ(m=max(1,n)min(n1,N)τ)i,j=1Mcijηw(Swn,ij)|Pwn,jPwn,i|2.\displaystyle=\sum_{n=2}^{N}\tau\big{(}\sum_{m={\rm max}(1,n-\ell)}^{{\rm min}(n-1,N-\ell)}\tau\Big{)}\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{n,ij})\big{|}P_{w}^{n,j}-P_{w}^{n,i}\big{|}^{2}.

But min(n1,N)max(1,n)1{\rm min}(n-1,N-\ell)-{\rm max}(1,n-\ell)\leq\ell-1. Hence

m=1Nτk=1τi,j=1Mcijηw(Swm+k,ij)|Pwm+k,jPwm+k,i|2(τ)n=2Nτi,j=1Mcijηw(Swn,ij)|Pwn,jPwn,i|2,\sum_{m=1}^{N-\ell}\tau\sum_{k=1}^{\ell}\tau\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{m+k,ij})\big{|}P_{w}^{m+k,j}-P_{w}^{m+k,i}\big{|}^{2}\leq(\ell\tau)\sum_{n=2}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\eta_{w}(S_{w}^{n,ij})\big{|}P_{w}^{n,j}-P_{w}^{n,i}\big{|}^{2}, (188)

and we know from (80) that this last sum over nn is bounded. In the same fashion,

m=1Nτk=1τ(q¯m+kL1(Ω)+q¯m+kL1(Ω))(τ)(q¯L1(Ω×]0,T[)+q¯L1(Ω×]0,T[)).\sum_{m=1}^{N-\ell}\tau\sum_{k=1}^{\ell}\tau\big{(}\|\bar{q}^{m+k}\|_{L^{1}(\Omega)}+\|\underline{q}^{m+k}\|_{L^{1}(\Omega)}\big{)}\leq(\ell\tau)\big{(}\|\bar{q}\|_{L^{1}(\Omega\times]0,T[)}+\|\underline{q}\|_{L^{1}(\Omega\times]0,T[)}\big{)}. (189)

Then, under the assumptions of Theorem 30, (184) follows by substituting (156), (188), and (189) into (187). The second inequality stems from the first and (158). ∎

The next theorem transforms (184) into integrals.

Theorem 36.

Under the assumptions of Theorem 30, there exists a constant CC, independent of hh, and τ\tau, such that for all real numbers δ\delta, 0<δ<T0<\delta<T,

0Tδg(Sh,τ(t+δ))g(Sh,τ(t)L2(Ω)2dtCδ.\int_{0}^{T-\delta}\big{\|}g(S_{h,\tau}(t+\delta))-g(S_{h,\tau}(t)\big{\|}^{2}_{L^{2}(\Omega)}\,dt\leq C\delta. (190)

Similarly,

0TδIh(g(Sh,τ(t+δ))g(Sh,τ(t))L2(Ω)2dtCδ,\int_{0}^{T-\delta}\big{\|}I_{h}\big{(}g(S_{h,\tau}(t+\delta))-g(S_{h,\tau}(t)\big{)}\big{\|}^{2}_{L^{2}(\Omega)}\,dt\leq C\delta, (191)

with another constant CC, independent of hh, and τ\tau.

Proof.

The argument is not new, see for instance [26], but we recall it for the reader’s convenience. The discussion depends on the value of δ\delta; there are three cases: (i) 0<δ<τ0<\delta<\tau, (ii) δ=τ\delta=\ell\tau, 1N11\leq\ell\leq N-1, (iii) δ=τ(+η)\delta=\tau(\ell+\eta), 1N11\leq\ell\leq N-1, 0<η<10<\eta<1.

(i) If 0<δ<τ0<\delta<\tau, we have for all ff in L1(0,T)L^{1}(0,T)

0Tδf(t)𝑑t=m=0N2(tmtm+1δf(t)𝑑t+tm+1δtm+1f(t)𝑑t)+tN1tNδf(t)𝑑t.\int_{0}^{T-\delta}f(t)\,dt=\sum_{m=0}^{N-2}\Big{(}\int_{t_{m}}^{t_{m+1}-\delta}f(t)\,dt+\int_{t_{m+1}-\delta}^{t_{m+1}}f(t)\,dt\Big{)}+\int_{t_{N-1}}^{t_{N}-\delta}f(t)\,dt.

On the interval (tm,tm+1δ)(t_{m},t_{m+1}-\delta), by convention, see (54) applied to Sh,τS_{h,\tau}, Sh,τ(t+δ)=Shm+1=Sh,τ(t)S_{h,\tau}(t+\delta)=S_{h}^{m+1}=S_{h,\tau}(t) and on the interval (tm+1δ,tm+1)(t_{m+1}-\delta,t_{m+1}), Sh,τ(t+δ)=Shm+2S_{h,\tau}(t+\delta)=S_{h}^{m+2}. Therefore

0Tδg(Sh,τ(t+δ))g(Sh,τ(t))L2(Ω)2𝑑t\displaystyle\int_{0}^{T-\delta}\big{\|}g(S_{h,\tau}(t+\delta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt =m=0N2δg(Shm+2)g(Shm+1)L2(Ω)2\displaystyle=\sum_{m=0}^{N-2}\delta\big{\|}g(S_{h}^{m+2})-g(S_{h}^{m+1})\big{\|}^{2}_{L^{2}(\Omega)}
=m=1N1δg(Shm+1)g(Shm)L2(Ω)2,\displaystyle=\sum_{m=1}^{N-1}\delta\big{\|}g(S_{h}^{m+1})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)},

and (184) with =1\ell=1 yields (190) for this value of δ\delta.

(ii) Let δ=τ\delta=\ell\tau, for instance consider =2\ell=2. We have

tmtm+1g(Sh,τ(t+2τ))g(Sh,τ(t))L2(Ω)2𝑑t=τg(Shm+3)g(Shm+1)L2(Ω)2.\int_{t_{m}}^{t_{m+1}}\big{\|}g(S_{h,\tau}(t+2\tau))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt=\tau\big{\|}g(S_{h}^{m+3})-g(S_{h}^{m+1})\big{\|}^{2}_{L^{2}(\Omega)}.

Thus

0T2τg(Sh,τ(t+δ))g(Sh,τ(t))L2(Ω)2𝑑t=τm=1N2g(Shm+2)g(Shm)L2(Ω)2,\int_{0}^{T-2\tau}\big{\|}g(S_{h,\tau}(t+\delta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt=\tau\sum_{m=1}^{N-2}\big{\|}g(S_{h}^{m+2})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)},

and (184) with =2\ell=2 yields (190). This argument applies to any \ell with 1N11\leq\ell\leq N-1.

(iii) Let δ=τ(+η)\delta=\tau(\ell+\eta) for some 0<η<10<\eta<1, and for instance consider again =2\ell=2. Then for any integer mm, 0mN30\leq m\leq N-3,

tmtm+1τηg(Sh,τ(t+τ(2+η))g(Sh,τ(t))L2(Ω)2=τ(1η)g(Shm+3)g(Shm+1)L2(Ω)2,\int_{t_{m}}^{t_{m+1}-\tau\eta}\big{\|}g(S_{h,\tau}(t+\tau(2+\eta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}=\tau(1-\eta)\big{\|}g(S_{h}^{m+3})-g(S_{h}^{m+1})\big{\|}^{2}_{L^{2}(\Omega)},

and

tm+1τηtm+1g(Sh,τ(t+τ(2+η))g(Sh,τ(t))L2(Ω)2=τηg(Shm+4)g(Shm+1)L2(Ω)2.\int_{t_{m+1}-\tau\eta}^{t_{m+1}}\big{\|}g(S_{h,\tau}(t+\tau(2+\eta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}=\tau\eta\big{\|}g(S_{h}^{m+4})-g(S_{h}^{m+1})\big{\|}^{2}_{L^{2}(\Omega)}.

Hence

0Tτ(2+η)g(Sh,τ(t+τ(2+η)))g(Sh,τ(t))L2(Ω)2𝑑t=m=1N2τ(1η)g(Shm+2)g(Shm)L2(Ω)2+m=1N3τηg(Shm+3)g(Shm)L2(Ω)2.\begin{split}&\int_{0}^{T-\tau(2+\eta)}\big{\|}g(S_{h,\tau}(t+\tau(2+\eta)))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt\\ &=\sum_{m=1}^{N-2}\tau(1-\eta)\big{\|}g(S_{h}^{m+2})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)}+\sum_{m=1}^{N-3}\tau\eta\big{\|}g(S_{h}^{m+3})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)}.\end{split}

Then (184) with =2\ell=2 and =3\ell=3 implies that

0Tτ(2+η)g(Sh,τ(t+τ(2+η))g(Sh,τ(t))L2(Ω)2dtC(2τ(1η)+3τη)=Cτ(2+η).\int_{0}^{T-\tau(2+\eta)}\big{\|}g(S_{h,\tau}(t+\tau(2+\eta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt\leq C\big{(}2\tau(1-\eta)+3\tau\eta\big{)}=C\tau(2+\eta).

More generally, we have

0Tτ(+η)g(Sh,τ(t+τ(+η))g(Sh,τ(t))L2(Ω)2dt\displaystyle\int_{0}^{T-\tau(\ell+\eta)}\big{\|}g(S_{h,\tau}(t+\tau(\ell+\eta))-g(S_{h,\tau}(t))\big{\|}^{2}_{L^{2}(\Omega)}\,dt
=τ(1η)m=1Ng(Shm+)g(Shm)L2(Ω)2+τηm=1N(+1)g(Shm++1)g(Shm)L2(Ω)2,\displaystyle=\tau(1-\eta)\sum_{m=1}^{N-\ell}\big{\|}g(S_{h}^{m+\ell})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)}+\tau\eta\sum_{m=1}^{N-(\ell+1)}\big{\|}g(S_{h}^{m+\ell+1})-g(S_{h}^{m})\big{\|}^{2}_{L^{2}(\Omega)},

and we apply (184) with \ell to the first sum and +1\ell+1 to the second sum. This proves the first part of (190). The proof of (191) follows likewise from (184) with φ=1\varphi=1. ∎

6.4 Strong convergence

With Theorem 36, it follows from Kolmogorov’s theorem that the sequence Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) is compact in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[), see [22]. Thus, again up to a subsequence, Ih(g(Sh,τ))I_{h}(g(S_{h,\tau})) converges strongly in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[). Since it converges weakly to K¯\bar{K} in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)) (K¯\bar{K} belongs also to L(Ω×]0,T[)L^{\infty}(\Omega\times]0,T[)), uniqueness of the limit implies

lim(h,τ)(0,0)Ih(g(Sh,τ))=K¯ strongly inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}I_{h}(g(S_{h,\tau}))=\bar{K}\quad\mbox{ strongly in}\ L^{2}(\Omega\times]0,T[). (192)

By Lemma 31, this also implies

lim(h,τ)(0,0)g(Sh,τ)=K¯ strongly inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}g(S_{h,\tau})=\bar{K}\quad\mbox{ strongly in}\ L^{2}(\Omega\times]0,T[). (193)

From here, let us prove the strong convergence of Sh,τS_{h,\tau}. Recall that gg is invertible with range ]0,β[]0,\beta[ and inverse g1W1,(]0,β[)g^{-1}\in W^{1,\infty}(]0,\beta[). Let Fh,τ=g(Sh,τ)F_{h,\tau}=g(S_{h,\tau}); then

Sh,τ=g1(Fh,τ).S_{h,\tau}=g^{-1}(F_{h,\tau}).

The strong convergence of Fh,τF_{h,\tau} and the continuity of g1g^{-1} imply the strong convergence of Sh,τS_{h,\tau} to g1(K¯)g^{-1}(\bar{K}) in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[), and since Sh,τS_{h,\tau} converges weakly to s¯\bar{s}, uniqueness of the limit implies that s¯=g1(K¯)\bar{s}=g^{-1}(\bar{K}), i.e.,

lim(h,τ)(0,0)Sh,τ=s¯=g1(K¯) strongly inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}S_{h,\tau}=\bar{s}=g^{-1}(\bar{K})\quad\mbox{ strongly in}\ L^{2}(\Omega\times]0,T[). (194)

This strong convergence and the continuity of gg, pαgp_{\alpha\color[rgb]{0,0,0}g}, α=w,o\alpha=w,o, and pcp_{c}, also imply that

lim(h,τ)(0,0)g(Sh,τ)=g(s¯),lim(h,τ)(0,0)pαg(Sh,τ)=pαg(s¯),α=w,o,lim(h,τ)(0,0)pc(Sh,τ)=pc(s¯),\lim_{(h,\tau)\to(0,0)}g(S_{h,\tau})=g(\bar{s}),\quad\lim_{(h,\tau)\to(0,0)}p_{\alpha\color[rgb]{0,0,0}g}(S_{h,\tau})=p_{\alpha\color[rgb]{0,0,0}g}(\bar{s}),\alpha=w,o,\color[rgb]{0,0,0}\quad\lim_{(h,\tau)\to(0,0)}p_{c}(S_{h,\tau})=p_{c}(\bar{s}), (195)

all strongly in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[). Furthermore Lemma 33 and (178) yield

lim(h,τ)(0,0)Ih(pαg(Sh,τ))=pαg(s¯),lim(h,τ)(0,0)Ih(pc(Sh,τ))=pc(s¯),strongly inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}I_{h}(p_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}g}(S_{h,\tau}))=p_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}g}(\bar{s}),\quad\lim_{(h,\tau)\to(0,0)}I_{h}(p_{c}(S_{h,\tau}))=p_{c}(\bar{s}),\color[rgb]{0,0,0}\quad\mbox{strongly in}\ L^{2}(\Omega\times]0,T[). (196)

In view of (182), this convergence implies that Pα,h,τP_{\alpha,h,\tau} converges weakly in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[) to some function pα¯L2(Ω×]0,T[)\bar{p_{\alpha\color[rgb]{0,0,0}}}\in L^{2}(\Omega\times]0,T[), α=w,o\alpha=w,o. Furthermore, uniqueness of the limit implies that W¯α\bar{W}_{\alpha}, the limit function of Uα,h,τU_{\alpha,h,\tau} has the form

W¯w=pw¯+pwg(s¯),W¯o=po¯pog(s¯).\bar{W}_{w}=\bar{p_{w}}+p_{wg}(\bar{s}),\quad\bar{W}_{o}=\bar{p_{o}}-p_{og}(\bar{s}). (197)

7 Identification of the limit

Let us pass to the limit in the equations of the scheme. This is done in several steps because we do not have convergence of the pressure gradient.

7.1 The upwind diffusions

Since the discrete auxiliary pressures Uα,h,τU_{\alpha,h,\tau} converge weakly to W¯α\bar{W}_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}} in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)), instead of treating directly the upwind diffusion terms [Pα,h,τ,Ih(ηα(Sh,τ));Pα,h,τ,θh]h,\big{[}P_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0},h,\tau},I_{h}(\eta_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}(S_{h,\tau}));P_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0},h,\tau},\theta_{h}\big{]}_{h}, we begin with [Pα,h,τ,Ih(ηα(Sh,τ));Uα,h,τ,θh]h\big{[}P_{\alpha,h,\tau},I_{h}(\eta_{\alpha}(S_{h,\tau}));U_{\alpha,h,\tau},\theta_{h}\big{]}_{h}.

7.1.1 Discrete auxiliary pressure

Let us start with the wetting phase, the treatment of the non-wetting phase being much the same.

Let vv be a smooth function, say v𝒞1(Ω¯×[0,T])v\in{\mathcal{C}}^{1}(\bar{\Omega}\times[0,T]) and let Vh,τ=ρτ(Ih(v))V_{h,\tau}=\rho_{\tau}(I_{h}(v)). Assume for the moment that s¯\bar{s}, the limit of Sh,τS_{h,\tau}, is sufficiently smooth, say s¯W1,(Ω×]0,T[)\bar{s}\in W^{1,\infty}(\Omega\times]0,T[) and let s¯τ=s¯(tn)\bar{s}_{\tau}=\bar{s}(t_{n}) in ]tn1,tn]]t_{n-1},t_{n}]. Then assumption (140) implies

1τtn1tnηw(s¯)𝑑tηw(s¯τn)L(Ω)CτηwL(0,1)ts¯L(Ω×]0,T[).\big{\|}\frac{1}{\tau}\int_{t_{n-1}}^{t_{n}}\eta_{w}(\bar{s})\,dt-\eta_{w}(\bar{s}_{\tau}^{n})\|_{L^{\infty}(\Omega)}\leq C\tau\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\partial_{t}\bar{s}\|_{L^{\infty}(\Omega\times]0,T[)}. (198)

Proceeding as in Section 2.2, we treat the upwinding in several steps and consider first

0TΩηw(s¯)Uw,h,τVh,τ=0TΩUw,h,τVh,τ(ρτ(ηw(s¯))ηw(s¯τ)+ηw(s¯τ)).\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}=\int_{0}^{T}\int_{\Omega}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\big{(}\rho_{\tau}(\eta_{w}(\bar{s}))-\eta_{w}(\bar{s}_{\tau})+\eta_{w}(\bar{s}_{\tau})\big{)}. (199)

But in view of (198),

|0TΩUw,h,τVh,τ(ρτ(ηw(s¯))ηw(s¯τ))\displaystyle\Big{|}\int_{0}^{T}\int_{\Omega}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\big{(}\rho_{\tau}(\eta_{w}(\bar{s}))-\eta_{w}(\bar{s}_{\tau})) |CτηwL(0,1)ts¯L(Ω×]0,T[)\displaystyle\Big{|}\leq C\tau\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\partial_{t}\bar{s}\|_{L^{\infty}(\Omega\times]0,T[)}
×Uw,h,τL2(0,T;H1(Ω)Vh,τL2(0,T;H1(Ω)),\displaystyle\times\|U_{w,h,\tau}\|_{L^{2}(0,T;H^{1}(\Omega)}\|V_{h,\tau}\|_{L^{2}(0,T;H^{1}(\Omega))},

and the boundedness of all factors of τ\tau, owing to (85) and the regularity of vv, implies

lim(h,τ)(0,0)0TΩUw,h,τVh,τ(ρτ(ηw(s¯))ηw(s¯τ))=0.\lim_{(h,\tau)\to(0,0)}\int_{0}^{T}\int_{\Omega}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\big{(}\rho_{\tau}(\eta_{w}(\bar{s}))-\eta_{w}(\bar{s}_{\tau}))=0. (200)

Next the weak convergence of Uw,h,τU_{w,h,\tau} to W¯w\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}} in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)), the strong convergence of Vh,τV_{h,\tau} to vv in L(0,T;W1,(Ω))L^{\infty}(0,T;W^{1,\infty}(\Omega)), the continuity of ηw\eta_{w}, the regularity of s¯\bar{s}, and (200) imply

lim(h,τ)(0,0)0TΩηw(s¯τ)Uw,h,τVh,τ=0TΩηw(s¯)W¯wv.\lim_{(h,\tau)\to(0,0)}\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s}_{\tau})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}=\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v.

Let us expand the expression in the above left-hand side. With the notation (27), in view of Proposition 2 we have

0TΩηw(s¯τ)Uw,h,τVh,τ=n=1Nτi,j=1MUwn,i(KΔiΔjcij,K(ηw(s¯τn))K)(Vn,jVn,i).\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s}_{\tau})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}=-\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}U_{w}^{n,i}\ \Big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}(\eta_{w}(\bar{s}_{\tau}^{n}))_{K}\Big{)}\big{(}V^{n,j}-V^{n,i}\big{)}.

By symmetry, this becomes

0TΩηw(s¯τn)Uw,h,τVh,τ=12n=1Nτi,j=1M(KΔiΔjcij,K(ηw(s¯τn))K)(Uwn,jUwn,i)(Vn,jVn,i).\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s}_{\tau}^{n})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}=\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\Big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}(\eta_{w}(\bar{s}_{\tau}^{n}))_{K}\Big{)}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}. (201)

Hence

lim(h,τ)(0,0)12n=1Nτi,j=1M(KΔiΔjcij,K(ηw(s¯τn))K)(Uwn,jUwn,i)(Vn,jVn,i)=0TΩηw(s¯)W¯wv.\lim_{(h,\tau)\to(0,0)}\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\Big{(}\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}(\eta_{w}(\bar{s}_{\tau}^{n}))_{K}\Big{)}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}=\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v. (202)

According to (140) and the regularity of s¯\bar{s}, ηw(s¯)\eta_{w}(\bar{s}) belongs to L(0,T;W1,(Ω))L^{\infty}(0,T;W^{1,\infty}(\Omega)), and (35) gives

(ηw(s¯τn))Kηw(s¯τ)L(K)ChηwL(0,1)s¯L(Ω×]0,T[),\big{\|}(\eta_{w}(\bar{s}_{\tau}^{n}))_{K}-\eta_{w}(\bar{s}_{\tau})\big{\|}_{L^{\infty}(K)}\leq C\,h\,\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\nabla\,\bar{s}\|_{L^{\infty}(\Omega\times]0,T[)},

that allows to replace (ηw(s¯τn))K(\eta_{w}(\bar{s}_{\tau}^{n}))_{K} by any value of ηw(s¯τn)\eta_{w}(\bar{s}_{\tau}^{n}) in KK. Let us choose the upwind value of s¯τn\bar{s}_{\tau}^{n} as in (52), i.e.,

s¯w,τn,ij={s¯τn(𝒙i)ifPwn,i>Pwn,js¯τn(𝒙j)ifPwn,i<Pwn,jmax(s¯τn(𝒙i),s¯τn(𝒙j))ifPwn,i=Pwn,j,\bar{s}_{w,\tau}^{n,ij}=\left\{\begin{array}[]{c}\bar{s}_{\tau}^{n}({\boldsymbol{x}}_{i})\quad\mbox{if}\quad P_{w}^{n,i}>P_{w}^{n,j}\\ \bar{s}_{\tau}^{n}({\boldsymbol{x}}_{j})\quad\mbox{if}\quad P_{w}^{n,i}<P_{w}^{n,j}\\ \max(\bar{s}_{\tau}^{n}({\boldsymbol{x}}_{i}),\bar{s}_{\tau}^{n}({\boldsymbol{x}}_{j}))\quad\mbox{if}\quad P_{w}^{n,i}=P_{w}^{n,j},\end{array}\right. (203)

and set

Rij=KΔiΔjcij,K((ηw(s¯τn))Kηw(s¯w,τn,ij)).R_{ij}=\sum_{K\subset\Delta_{i}\cap\Delta_{j}}c_{ij,K}\big{(}(\eta_{w}(\bar{s}_{\tau}^{n}))_{K}-\eta_{w}(\bar{s}_{w,\tau}^{n,ij})\big{)}.

By proceeding as in Theorem 4 and applying (85), the regularity of vv, and the approximation properties of IhI_{h}, we obtain

12n=1Nτi,j=1MRij(Uwn,jUwn,i)(Vn,jVn,i)\displaystyle\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}R_{ij}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}
12n=1Nτ(i,j=1M|Rij|(Uwn,jUwn,i)2)12(i,j=1M|Rij|(Vn,jVn,i)2)12\displaystyle\leq\frac{1}{2}\sum_{n=1}^{N}\tau\Big{(}\sum_{i,j=1}^{M}|R_{ij}|\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{i,j=1}^{M}|R_{ij}|\big{(}V^{n,j}-V^{n,i}\big{)}^{2}\Big{)}^{\frac{1}{2}}
ChηwL(0,1)s¯L(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[)Vh,τL2(Ω×]0,T[)\displaystyle\leq C\,h\,\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\nabla\,\bar{s}\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\|\nabla\,V_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}
ChηwL(0,1)s¯L(Ω×]0,T[)|v|H1(0,T;H2(Ω)).\displaystyle\leq C\,h\,\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\nabla\,\bar{s}\|_{L^{\infty}(\Omega\times]0,T[)}|v|_{H^{1}(0,T;H^{2}(\Omega))}.

With (202), this implies

lim(h,τ)(0,0)12n=1Nτi,j=1Mcijηw(s¯w,τn,ij)(Uwn,jUwn,i)(Vn,jVn,i)=0TΩηw(s¯)W¯wv.\lim_{(h,\tau)\to(0,0)}\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\eta_{w}(\bar{s}_{w,\tau}^{n,ij})\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}=\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v. (204)

To recover 0T[Pw,h,τ,Ih(ηw(Sh,τ));Uw,h,τ,Vh,τ]h\int_{0}^{T}\big{[}P_{w,h,\tau},I_{h}(\eta_{w}(S_{h,\tau}));U_{w,h,\tau},V_{h,\tau}\big{]}_{h}, we write

ηw(s¯w,τn,ij)=ηw(s¯w,τn,ij)ηw(Swn,ij)+ηw(Swn,ij),\eta_{w}(\bar{s}_{w,\tau}^{n,ij})=\eta_{w}(\bar{s}_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij})+\eta_{w}(S_{w}^{n,ij}),

and we must examine the convergence of

X:=12n=1Nτi,j=1Mcij(ηw(s¯w,τn,ij)ηw(Swn,ij))(Uwn,jUwn,i)(Vn,jVn,i).X:=\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\big{(}\eta_{w}(\bar{s}_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij})\big{)}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}.

On the one hand, owing to the smoothness of vv, we have

|Vn,jVn,i|ChivL(Ω×]0,T[),|V^{n,j}-V^{n,i}|\leq Ch_{i}\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}, (205)

where hih_{i} is the length of the edge whose endpoints are the vertices ii and jj. On the other hand,

|ηw(s¯w,τn,ij)ηw(Swn,ij)|CηwL(0,1)|s¯w,τn,ijSwn,ij|.|\eta_{w}(\bar{s}_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij})|\leq C\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}|\bar{s}_{w,\tau}^{n,ij}-S_{w}^{n,ij}|.

Hence

|X|CvL(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[)(n=1Nτi,j=1Mcijhi2|s¯w,τn,ijSwn,ij|2)12.|X|\leq C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\Big{(}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}h_{i}^{2}|\bar{s}_{w,\tau}^{n,ij}-S_{w}^{n,ij}|^{2}\Big{)}^{\frac{1}{2}}.

It is easy to check that

i,j=1Mcijhi2|s¯w,τn,ijSwn,ij|2Ci=1Mmi|s¯τn,iSn,i|2.\sum_{i,j=1}^{M}c_{ij}h_{i}^{2}|\bar{s}_{w,\tau}^{n,ij}-S_{w}^{n,ij}|^{2}\leq C\sum_{i=1}^{M}m_{i}|\bar{s}_{\tau}^{n,i}-S^{n,i}|^{2}.

Therefore

|X|\displaystyle|X| CvL(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[)(n=1NτIh(s¯τn)Sh,τnL2(Ω)2)12\displaystyle\leq C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\Big{(}\sum_{n=1}^{N}\tau\big{\|}I_{h}(\bar{s}_{\tau}^{n})-S_{h,\tau}^{n}\big{\|}_{L^{2}(\Omega)}^{2}\Big{)}^{\frac{1}{2}}
=CvL(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[)Ih(s¯τ)Sh,τL2(Ω×]0,T[),\displaystyle=C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\|I_{h}(\bar{s}_{\tau})-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)},

where we have used the equivalence (21). Then, we write

Ih(s¯τ)Sh,τL2(Ω×]0,T[)Ih(s¯τ)s¯τL2(Ω×]0,T[)+s¯τs¯L2(Ω×]0,T[)+s¯Sh,τL2(Ω×]0,T[),\|I_{h}(\bar{s}_{\tau})-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\leq\|I_{h}(\bar{s}_{\tau})-\bar{s}_{\tau}\|_{L^{2}(\Omega\times]0,T[)}+\|\bar{s}_{\tau}-\bar{s}\|_{L^{2}(\Omega\times]0,T[)}+\|\bar{s}-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)},

and the approximation properties of IhI_{h}, the strong convergence of s¯τ\bar{s}_{\tau} to s¯\bar{s} and of Sh,τS_{h,\tau} to s¯\bar{s}, all in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[) imply that

lim(h,τ)(0,0)n=1Nτi,j=1Mcij(ηw(s¯w,τn,ij)ηw(Swn,ij))(Uwn,jUwn,i)(Vn,jVn,i)=0.\lim_{(h,\tau)\to(0,0)}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\big{(}\eta_{w}(\bar{s}_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij})\big{)}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}=0. (206)

A combination of (206) and (204) yields the intermediate convergence result when the limit function s¯\bar{s} is smooth,

lim(h,τ)(0,0)n=1Nτ[Pw,h,τ,Ih(ηw(Sh,τ));Uw,h,τ,Vh,τ]h=0TΩηw(s¯)W¯wv.\lim_{(h,\tau)\to(0,0)}-\sum_{n=1}^{N}\tau\big{[}P_{w,h,\tau},I_{h}(\eta_{w}(S_{h,\tau}));U_{w,h,\tau},V_{h,\tau}\big{]}_{h}=\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v. (207)

It remains to lift the regularity restriction on s¯\bar{s}. Let (Sm)m1(S_{m})_{m\geq 1} be a sequence of smooth functions that tend to s¯\bar{s} in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[). Then for each ε>0\varepsilon>0, there exists an integer M0M_{0} such that

SM0s¯L2(Ω×]0,T[)ε.\|S_{M_{0}}-\bar{s}\|_{L^{2}(\Omega\times]0,T[)}\leq\varepsilon. (208)

From (208), the projection properties, and the fact that M0M_{0} is fixed, we infer

ρτ(ηw(s¯))ηw(s¯)L2(Ω×]0,T[)ρτ(ηw(s¯)ηw(SM0))L2(Ω×]0,T[)+ρτ(ηw(SM0))ηw(SM0)L2(Ω×]0,T[)+ηw(SM0)ηw(s¯)L2(Ω×]0,T[)(2ε+Cτ)ηwL(0,1).\begin{split}\|\rho_{\tau}(\eta_{w}(\bar{s}))-\eta_{w}(\bar{s})&\|_{L^{2}(\Omega\times]0,T[)}\leq\|\rho_{\tau}(\eta_{w}(\bar{s})-\eta_{w}(S_{M_{0}}))\|_{L^{2}(\Omega\times]0,T[)}\\ &+\|\rho_{\tau}(\eta_{w}(S_{M_{0}}))-\eta_{w}(S_{M_{0}})\|_{L^{2}(\Omega\times]0,T[)}+\|\eta_{w}(S_{M_{0}})-\eta_{w}(\bar{s})\|_{L^{2}(\Omega\times]0,T[)}\\ &\leq(2\,\varepsilon+C\,\tau)\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}.\end{split} (209)

Now, we replace (199) by

0TΩηw(s¯)Uw,h,τVh,τ=0TΩρτ(ηw(s¯)ηw(SM0))Uw,h,τVh,τ+0TΩρτ(ηw(SM0))Uw,h,τVh,τ=0TΩρτ(ηw(s¯)ηw(SM0))Uw,h,τVh,τ+0TΩηw(SM0)Uw,h,τVh,τ.\begin{split}\int_{0}^{T}&\int_{\Omega}\eta_{w}(\bar{s})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}=\int_{0}^{T}\int_{\Omega}\rho_{\tau}\big{(}\eta_{w}(\bar{s})-\eta_{w}(S_{M_{0}})\big{)}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\\ &+\int_{0}^{T}\int_{\Omega}\rho_{\tau}\big{(}\eta_{w}(S_{M_{0}})\big{)}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\\ &=\int_{0}^{T}\int_{\Omega}\rho_{\tau}\big{(}\eta_{w}(\bar{s})-\eta_{w}(S_{M_{0}})\big{)}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}+\int_{0}^{T}\int_{\Omega}\eta_{w}(S_{M_{0}})\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}.\end{split} (210)

For the first term, owing to (208), the projection properties, and (140), we have

|0TΩρτ(ηw(s¯)\displaystyle\Big{|}\int_{0}^{T}\int_{\Omega}\rho_{\tau}\big{(}\eta_{w}(\bar{s})- ηw(SM0))Uw,h,τVh,τ|Vh,τL(Ω×]0,T[)\displaystyle\eta_{w}(S_{M_{0}})\big{)}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\Big{|}\leq\|\nabla\,V_{h,\tau}\|_{L^{\infty}(\Omega\times]0,T[)}
×Uw,h,τL2(Ω×]0,T[)ηw(s¯)ηw(SM0)L2(Ω×]0,T[)\displaystyle\times\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\|\eta_{w}(\bar{s})-\eta_{w}(S_{M_{0}})\|_{L^{2}(\Omega\times]0,T[)}
εηwL(0,1)Vh,τL(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[).\displaystyle\leq\varepsilon\,\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\nabla\,V_{h,\tau}\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}.

Then the uniform boundedness of Uw,h,τU_{w,h,\tau} and Vh,τV_{h,\tau} yield

|0TΩρτ(ηw(S)ηw(SM0))Uw,h,τVh,τ|Cε,\Big{|}\int_{0}^{T}\int_{\Omega}\rho_{\tau}\big{(}\eta_{w}(S)-\eta_{w}(S_{M_{0}})\big{)}\nabla\,U_{w,h,\tau}\cdot\nabla\,V_{h,\tau}\Big{|}\leq C\,\varepsilon, (211)

with a constant CC independent of hh and τ\tau. Thus, we must examine the limit of the second term. Since M0M_{0} is fixed and SM0S_{M_{0}} is smooth, by reproducing the previous steps, we derive the analogue of (204) for the function SM0S_{M_{0}},

lim(h,τ)(0,0)12n=1Nτi,j=1Mcijηw((SM0)w,τn,ij)(Uwn,jUwn,i)(Vn,jVn,i)=0TΩηw(SM0)W¯wv=0TΩηw(s¯)W¯wv+R,\begin{split}\lim_{(h,\tau)\to(0,0)}\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}&c_{ij}\eta_{w}((S_{M_{0}})_{w,\tau}^{n,ij})\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}\\ &=\int_{0}^{T}\int_{\Omega}\eta_{w}(S_{M_{0}})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v=\int_{0}^{T}\int_{\Omega}\eta_{w}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v+R,\end{split} (212)

where

|R|=|0TΩ(ηw(SM0)ηw(s¯))W¯wv|ηwL(0,1)SM0s¯L2(Ω×]0,T[)W¯wL2(Ω×]0,T[)vL(Ω×]0,T[)Cε.\begin{split}|R|&=\big{|}\int_{0}^{T}\int_{\Omega}\big{(}\eta_{w}(S_{M_{0}})-\eta_{w}(\bar{s})\big{)}\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\cdot\nabla\,v\big{|}\\ &\leq\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|S_{M_{0}}-\bar{s}\|_{L^{2}(\Omega\times]0,T[)}\|\nabla\,\bar{W}_{\color[rgb]{1,0,0}w\color[rgb]{0,0,0}}\|_{L^{2}(\Omega\times]0,T[)}\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\leq C\,\varepsilon.\end{split} (213)

To relate the left-hand side of (212) to [Pw,h,τ,Ih(ηw(Sh,τ));Uw,h,τ,Vh]h\big{[}P_{w,h,\tau},I_{h}(\eta_{w}(S_{h,\tau}));U_{w,h,\tau},V_{h}\big{]}_{h}, we split

ηw((SM0)w,τn,ij)=ηw(Swn,ij)+ηw((SM0)w,τn,ij)ηw(Swn,ij),\eta_{w}((S_{M_{0}})_{w,\tau}^{n,ij})=\eta_{w}(S_{w}^{n,ij})+\eta_{w}((S_{M_{0}})_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij}),

and examine the convergence of

Y:=12n=1Nτi,j=1Mcij(ηw((SM0)w,τn,ij)ηw(Swn,ij))(Uwn,jUwn,i)(Vn,jVn,i).Y:=\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\big{(}\eta_{w}((S_{M_{0}})_{w,\tau}^{n,ij})-\eta_{w}(S_{w}^{n,ij})\big{)}\big{(}U_{w}^{n,j}-U_{w}^{n,i}\big{)}\big{(}V^{n,j}-V^{n,i}\big{)}.

By arguing as above and using the interpolant IhI_{h}, we derive

|Y|CηwL(0,1)vL(Ω×]0,T[)Uw,h,τL2(Ω×]0,T[)Ih((SM0)τ)Sh,τL2(Ω×]0,T[).|Y|\leq C\|\eta_{w}^{\prime}\|_{L^{\infty}(0,1)}\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\|\nabla\,U_{w,h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\|I_{h}((S_{M_{0}})_{\tau})-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}.

Finally, we write

Ih((SM0)τ)\displaystyle\|I_{h}((S_{M_{0}})_{\tau}) Sh,τL2(Ω×]0,T[)Ih((SM0)τ)(SM0)τL2(Ω×]0,T[)\displaystyle-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}\leq\|I_{h}((S_{M_{0}})_{\tau})-(S_{M_{0}})_{\tau}\|_{L^{2}(\Omega\times]0,T[)}
+(SM0)τSM0L2(Ω×]0,T[)+SM0s¯L2(Ω×]0,T[)+s¯Sh,τL2(Ω×]0,T[)\displaystyle+\|(S_{M_{0}})_{\tau}-S_{M_{0}}\|_{L^{2}(\Omega\times]0,T[)}+\|S_{M_{0}}-\bar{s}\|_{L^{2}(\Omega\times]0,T[)}+\|\bar{s}-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}
ChSM0L(0,T;H2(Ω))+CτSM0H1(0,T;L2(Ω))+ε+s¯Sh,τL2(Ω×]0,T[),\displaystyle\leq C\,h\|S_{M_{0}}\|_{L^{\infty}(0,T;H^{2}(\Omega))}+C\tau\|S_{M_{0}}\|_{H^{1}(0,T;L^{2}(\Omega))}+\varepsilon+\|\bar{s}-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)},

so that

|Y|C(h+τ+ε)+s¯Sh,τL2(Ω×]0,T[).|Y|\leq C(h+\tau+\varepsilon)+\|\bar{s}-S_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)}. (214)

In the next theorem, the limit (207) when s¯\bar{s} is only in L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[) follows by combining (210)–(214). The same argument holds when ww is replaced by oo.

Theorem 37.

Let v𝒞1(Ω¯×[0,T])v\in{\mathcal{C}}^{1}(\bar{\Omega}\times[0,T]) be a smooth function and let Vh,τ=Ih(v)(tn)V_{h,\tau}=I_{h}(v)(t_{n}) in ]tn1,tn]]t_{n-1},t_{n}]. Under the assumptions and notation on the mobility (140)–(144),

lim(h,τ)(0,0)0T[Pα,h,τ,Ih(ηα(Sh,τ));Uα,h,τ,Vh,τ]h=0TΩηα(s¯)W¯αv\lim_{(h,\tau)\to(0,0)}-\int_{0}^{T}\big{[}P_{\alpha,h,\tau},I_{h}(\eta_{\alpha}(S_{h,\tau}));U_{\alpha,h,\tau},V_{h,\tau}\big{]}_{h}=\int_{0}^{T}\int_{\Omega}\eta_{\alpha}(\bar{s})\nabla\,\bar{W}_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}\cdot\nabla\,v (215)

where s¯\bar{s} is the strong limit of Sh,τS_{h,\tau} and W¯α\bar{W}_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}} the weak limit of Uα,h,τU_{\alpha,h,\tau}, α=w,o\alpha=w,o.

7.1.2 The additional term

This paragraph is dedicated to the limit of

0T[Pα,h,τ,Ih(ηα(Sh,τ));Ih(pαg(Sh,τ)),Vh,τ]h,α=w,o.\int_{0}^{T}\big{[}P_{\alpha,h,\tau},I_{h}(\eta_{\alpha}(S_{h,\tau}));I_{h}(p_{\alpha g}(S_{h,\tau})),V_{h,\tau}\big{]}_{h},\ \alpha=w,o.

It shall be split below, as suggested by the following observation, derived from (12) and (13):

ηw(Swij)pwg(Sj)+g(Sj)=\displaystyle\eta_{w}(S_{w}^{ij})p_{wg}(S^{j})+g(S^{j})= 0Sjfo(x)(ηw(Swij)ηw(x))pc(x)𝑑x,\displaystyle\int_{0}^{S^{j}}f_{o}(x)\color[rgb]{0,0,0}\big{(}\eta_{w}(S_{w}^{ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx,
ηo(Soij)pog(Sj)+g(Sj)=\displaystyle\eta_{o}(S_{o}^{ij})p_{og}(S^{j})+g(S^{j})= 0Sjfw(x)(ηo(Soij)ηo(x))pc(x)𝑑x.\displaystyle\int_{0}^{S^{j}}f_{w}(x)\big{(}\eta_{o}(S_{o}^{ij})-\eta_{o}(x)\big{)}p_{c}^{\prime}(x)\,dx.

Thus, we add and subtract gg and write by applying (25),

0T[\displaystyle\int_{0}^{T}\big{[} Pα,h,τ,Ih(ηα(Sh,τ));Ih(pαg(Sh,τ)),Vh,τ]h\displaystyle P_{\alpha,h,\tau},I_{h}(\eta_{\alpha}(S_{h,\tau}));I_{h}(p_{\alpha g}(S_{h,\tau})),V_{h,\tau}\big{]}_{h}
=n=1Nτi,j=1MVn,icij[ηα(Sαn,ij)(pαg(Sn,j)pαg(Sn,i))+g(Sn,j)g(Sn,i)]\displaystyle=\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}V^{n,i}c_{ij}\Big{[}\eta_{\alpha\color[rgb]{0,0,0}}(S_{\alpha}^{n,ij})\big{(}p_{\alpha\color[rgb]{0,0,0}g}(S^{n,j})-p_{\alpha\color[rgb]{0,0,0}g}(S^{n,i})\big{)}+g(S^{n,j})-g(S^{n,i})\Big{]}
+0TΩg(Sh,τ)Vh,τ=T1+T2.\displaystyle+\int_{0}^{T}\int_{\Omega}\nabla\,g(S_{h,\tau})\cdot\nabla\,V_{h,\tau}=T_{1}+T_{2}.

Since

lim(h,τ)(0,0)T2=0TΩg(s¯)v,\lim_{(h,\tau)\to(0,0)}T_{2}=\int_{0}^{T}\int_{\Omega}\nabla\,g(\bar{s})\cdot\nabla\,v, (216)

we must prove that the first term tends to zero. When α=w\alpha=w, it has the form

T1=12n=1Nτi,j=1Mcij(Sn,iSn,jfo(x)(ηw(Swn,ij)ηw(x))pc(x)𝑑x)(Vn,jVn,i),T_{1}=-\frac{1}{2}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}\ c_{ij}\Big{(}\int_{S^{n,i}}^{S^{n,j}}f_{o}(x)\big{(}\eta_{w}(S_{w}^{n,ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx\Big{)}\big{(}V^{n,j}-V^{n,i}\big{)}, (217)

with an analogous expression in the non-wetting phase. Then (205) yields,

|T1|C2vL(Ω×]0,T[)n=1Nτi,j=1Mhicij|Sn,iSn,jfo(x)(ηw(Swn,ij)ηw(x))pc(x)𝑑x|.|T_{1}|\leq\frac{C}{2}\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}h_{i}c_{ij}\big{|}\int_{S^{n,i}}^{S^{n,j}}f_{o}(x)\big{(}\eta_{w}(S_{w}^{n,ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx\big{|}. (218)

Showing that T1T_{1} is small requires a technical argument that we split into several steps.

Proposition 38.

For the wetting phase, we have

|SiSjfo(x)(ηw(Swij)ηw(x))pc(x)𝑑x|(ηw(Sj)ηw(Si))(pwg(Sj)pwg(Si)).|\int_{S^{i}}^{S^{j}}f_{o}(x)\big{(}\eta_{w}(S_{w}^{ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx\big{|}\leq-\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{(}p_{wg}(S^{j})-p_{wg}(S^{i})\big{)}. (219)

For the non-wetting phase, the corresponding expression is bounded by

|SiSjfw(x)(ηo(Soij)ηo(x))pc(x)𝑑x|(ηo(Sj)ηo(Si))(pog(Sj)pog(Si)).|\int_{S^{i}}^{S^{j}}f_{w}(x)\big{(}\eta_{o}(S_{o}^{ij})-\eta_{o}(x)\big{)}p_{c}^{\prime}(x)\,dx\big{|}\leq\big{(}\eta_{o}(S^{j})-\eta_{o}(S^{i})\big{)}\big{(}p_{og}(S^{j})-p_{og}(S^{i})\big{)}. (220)
Proof.

Let us prove (219), the proof of (220) being similar. The discussion depends on the respective values of SjS^{j} and SiS^{i}. There are two cases: Si<SjS^{i}<S^{j} or Si>SjS^{i}>S^{j}. Of course Si=SjS^{i}=S^{j} brings nothing.

1) If Si<SjS^{i}<S^{j} and Swij=SiS_{w}^{ij}=S^{i}, then ηw(Swij)ηw(x)=ηw(Si)ηw(x)\eta_{w}(S_{w}^{ij})-\eta_{w}(x)=\eta_{w}(S^{i})-\eta_{w}(x), and, as pwgp_{wg} is decreasing,

0SiSjfo(x)(pc(x))(ηw(x)ηw(Si))𝑑x(ηw(Sj)ηw(Si))(pwg(Sj)pwg(Si)).0\leq\int_{S^{i}}^{S^{j}}f_{o}(x)(-p_{c}^{\prime}(x))\big{(}\eta_{w}(x)-\eta_{w}(S^{i})\big{)}\,dx\leq-\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{(}p_{wg}(S^{j})-p_{wg}(S^{i})\big{)}.

If Swij=SjS_{w}^{ij}=S^{j}, then ηw(Swij)ηw(x)=ηw(Sj)ηw(x)\eta_{w}(S_{w}^{ij})-\eta_{w}(x)=\eta_{w}(S^{j})-\eta_{w}(x), and

0SiSjfo(x)(pc(x))(ηw(Sj)ηw(x))𝑑x(ηw(Sj)ηw(Si))(pwg(Sj)pwg(Si)).0\leq\int_{S^{i}}^{S^{j}}f_{o}(x)(-p_{c}^{\prime}(x))\big{(}\eta_{w}(S^{j})-\eta_{w}(x)\big{)}\,dx\leq-\big{(}\eta_{w}(S^{j})-\eta_{w}(S^{i})\big{)}\big{(}p_{wg}(S^{j})-p_{wg}(S^{i})\big{)}.

2) If Si>SjS^{i}>S^{j} and Swij=SiS_{w}^{ij}=S^{i}, then

0SjSifo(x)(pc(x))(ηw(Si)ηw(x))𝑑x(ηw(Si)ηw(Sj))(pwg(Si)pwg(Sj)).0\leq\int_{S^{j}}^{S^{i}}f_{o}(x)(-p_{c}^{\prime}(x))\big{(}\eta_{w}(S^{i})-\eta_{w}(x)\big{)}\,dx\leq-\big{(}\eta_{w}(S^{i})-\eta_{w}(S^{j})\big{)}\big{(}p_{wg}(S^{i})-p_{wg}(S^{j})\big{)}.

Finally, suppose that Swij=SjS_{w}^{ij}=S^{j}. Then

0SjSifo(x)pc(x)(ηw(Sj)ηw(x))𝑑x(ηw(Si)ηw(Sj))(pwg(Si)pwg(Sj)).0\leq\int_{S^{j}}^{S^{i}}f_{o}(x)\,p_{c}^{\prime}(x)\big{(}\eta_{w}(S^{j})-\eta_{w}(x)\big{)}\,dx\leq-\big{(}\eta_{w}(S^{i})-\eta_{w}(S^{j})\big{)}\big{(}p_{wg}(S^{i})-p_{wg}(S^{j})\big{)}.

This proves (219). ∎

By substituting (219) into (218), we arrive at

|T1|C2vL(Ω×]0,T[)n=1Nτi,j=1Mhicij((ηw(Sn,j)ηw(Sn,i))(pwg(Sn,j)pwg(Sn,i))),|T_{1}|\leq\frac{C}{2}\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}h_{i}c_{ij}\Big{(}-\big{(}\eta_{w}(S^{n,j})-\eta_{w}(S^{n,i})\big{)}\big{(}p_{wg}(S^{n,j})-p_{wg}(S^{n,i})\big{)}\Big{)}, (221)

with an analogous bound in the non-wetting phase. Up to the factor hih_{i}, they behave like 0TΩ(Ih(ηα(Sh,τ)))(Ih(pαg(Sh,τ)))\int_{0}^{T}\int_{\Omega}\nabla(I_{h}(\eta_{\alpha}(S_{h,\tau})))\cdot\nabla(I_{h}(p_{\alpha g}(S_{h,\tau}))), α=w,o.\alpha=w,o. Thus T1T_{1} tends to zero if this quantity is bounded or is of the order of a negative power of hh that is larger than 1-1. We have no direct bound for it, but as we do have a bound for 0TΩ(Ih(fα(Sh,τ)))(Ih(g(Sh,τ)))\int_{0}^{T}\int_{\Omega}\nabla(I_{h}(f_{\alpha}(S_{h,\tau})))\cdot\nabla(I_{h}(g(S_{h,\tau}))), see (138), we can gain some insight by relating the two integrands. Again, we examine the wetting phase, the treatment of the non-wetting phase being the same. The proposition below will be applied to x1=Sn,ix_{1}=S^{n,i} and x2=Sn,jx_{2}=S^{n,j}. The condition x1<x2x_{1}<x_{2} is not a restriction because if it does not hold, the indices ii and jj can be interchanged without changing the value of the two integrands.

Proposition 39.

Under the assumptions and notation on the mobility (140)–(144), we have for all pairs x1x_{1}, x2x_{2} with 0x1<x2340\leq x_{1}<x_{2}\leq\frac{3}{4},

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C(x2θwx1θw)(x2β3x1β3),\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C(x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}})(x_{2}^{\beta_{3}}-x_{1}^{\beta_{3}}), (222)
(fw(x2)fw(x1))(g(x2)g(x1))C(x2θwx1θw)(x2θw+β3x1θw+β3).\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq C(x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}})(x_{2}^{\theta_{w}+\beta_{3}}-x_{1}^{\theta_{w}+\beta_{3}}). (223)

Similarly, we have for all pairs x1x_{1}, x2x_{2} with 14x1<x21\frac{1}{4}\leq x_{1}<x_{2}\leq 1,

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C(x2x1)((1x1)θo+β4(1x2)θo+β4),\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C(x_{2}-x_{1})\big{(}(1-x_{1})^{\theta_{o}+\beta_{4}}-(1-x_{2})^{\theta_{o}+\beta_{4}}\big{)}, (224)
(fw(x2)fw(x1))(g(x2)g(x1))C((1x1)θo(1x2)θo)((1x1)θo+β4(1x2)θo+β4).\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq C\big{(}(1-x_{1})^{\theta_{o}}-(1-x_{2})^{\theta_{o}}\big{)}\big{(}(1-x_{1})^{\theta_{o}+\beta_{4}}-(1-x_{2})^{\theta_{o}+\beta_{4}}\big{)}. (225)

Finally, we have for all pairs x1x_{1}, x2x_{2} with 0x1140\leq x_{1}\leq\frac{1}{4} and 34x21\frac{3}{4}\leq x_{2}\leq 1,

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C(fw(x2)fw(x1))(g(x2)g(x1)).\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}. (226)

All constants CC above are independent of x1x_{1} and x2x_{2}.

Proof.

According to (140),

ηw(x2)ηw(x1)1αwθw(x2θwx1θw).\eta_{w}(x_{2})-\eta_{w}(x_{1})\leq\frac{1}{\alpha_{w}\theta_{w}}(x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}}).

Next, recalling that pwg(x)=fo(x)pc(x)p_{wg}^{\prime}(x)=f_{o}(x)p_{c}^{\prime}(x), we have, owing to (142), (144), and (8),

pwg(x1)pwg(x2)=x1x2fo(x)(pc(x))𝑑x1η1α31αoθox1x2xβ31(1x)θo+β41𝑑x1η1α31αoθox1x2xβ31𝑑x1η1α3β31αoθo(x2β3x1β3),\begin{split}p_{wg}(x_{1})-p_{wg}(x_{2})&=\int_{x_{1}}^{x_{2}}f_{o}(x)(-p_{c}^{\prime}(x))\,dx\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}\int_{x_{1}}^{x_{2}}x^{\beta_{3}-1}(1-x)^{\theta_{o}+\beta_{4}-1}\,dx\\ &\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}\int_{x_{1}}^{x_{2}}x^{\beta_{3}-1}\,dx\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}\beta_{3}}\frac{1}{\alpha_{o}\theta_{o}}(x_{2}^{\beta_{3}}-x_{1}^{\beta_{3}}),\end{split} (227)

and (222), valid on [0,1][0,1], follows from these two inequalities.

For (223), we use (151) that gives

fw(x2)fw(x1)αoαwCmax21θoθw(14)θo(x2θwx1θw),f_{w}(x_{2})-f_{w}(x_{1})\geq\frac{\alpha_{o}\alpha_{w}}{C_{\rm max}^{2}}\frac{1}{\theta_{o}\theta_{w}}\big{(}\frac{1}{4}\big{)}^{\theta_{o}}(x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}}), (228)

and we use (149) that gives

g(x2)g(x1)α3Cmaxαwθwαoθo1θw+β3(14)θo+β41(x2θw+β3x1θw+β3).g(x_{2})-g(x_{1})\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}\frac{1}{\theta_{w}+\beta_{3}}\big{(}\frac{1}{4}\big{)}^{\theta_{o}+\beta_{4}-1}(x_{2}^{\theta_{w}+\beta_{3}}-x_{1}^{\theta_{w}+\beta_{3}}).

The product of the two leads to (223).

Regarding (224), (222), albeit valid for all x[0,1]x\in[0,1], is not adequate for the comparison we have in mind, and instead we use that

ηw(x)1αw,\eta_{w}^{\prime}(x)\leq\frac{1}{\alpha_{w}},

which implies that

ηw(x2)ηw(x1)1αw(x2x1).\eta_{w}(x_{2})-\eta_{w}(x_{1})\leq\frac{1}{\alpha_{w}}(x_{2}-x_{1}).

Similarly, we use

pwg(x)1η1α31αoθo41β3(1x)θo+β41,-p_{wg}^{\prime}(x)\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}4^{1-\beta_{3}}(1-x)^{\theta_{o}+\beta_{4}-1},

so that

pwg(x1)pwg(x2)1η1α31αoθo1θo+β441β3((1x1)θo+β4(1x2)θo+β4)),p_{wg}(x_{1})-p_{wg}(x_{2})\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}\frac{1}{\theta_{o}+\beta_{4}}4^{1-\beta_{3}}\big{(}(1-x_{1})^{\theta_{o}+\beta_{4}}-(1-x_{2})^{\theta_{o}+\beta_{4}}\big{)}),

thus proving (224). Next, by applying (152), we have

fw(x2)fw(x1)1Cmax2αoαwθwθo(14)θw((1x1)θo(1x2)θo).f_{w}(x_{2})-f_{w}(x_{1})\geq\frac{1}{C_{\rm max}^{2}}\frac{\alpha_{o}\alpha_{w}}{\theta_{w}\theta_{o}}\big{(}\frac{1}{4}\big{)}^{\theta_{w}}\big{(}(1-x_{1})^{\theta_{o}}-(1-x_{2})^{\theta_{o}}\big{)}.

Likewise, by applying (149), we obtain

g(x2)g(x1)α3Cmaxαwθwαoθo1θo+β4(14)θw1+β3((1x1)θo+β4(1x2)θo+β4).g(x_{2})-g(x_{1})\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}\frac{1}{\theta_{o}+\beta_{4}}\big{(}\frac{1}{4}\big{)}^{\theta_{w}-1+\beta_{3}}\big{(}(1-x_{1})^{\theta_{o}+\beta_{4}}-(1-x_{2})^{\theta_{o}+\beta_{4}}\big{)}.

The product of the two yields (225).

Finally, when 0x1140\leq x_{1}\leq\frac{1}{4} and 34x21\frac{3}{4}\leq x_{2}\leq 1, since both ηw\eta_{w} and pwg-p_{wg} are both increasing, they satisfy

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))ηw(1)(pwg(1))>0.\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq\eta_{w}(1)\big{(}-p_{wg}(1)\big{)}>0.

Likewise, as both fwf_{w} and gg are increasing, they satisfy

(fw(x2)fw(x1))(g(x2)g(x1))(fw(34)fw(14))(g(34)g(14))=:D>0.\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq\big{(}f_{w}(\frac{3}{4})-f_{w}(\frac{1}{4})\big{)}\big{(}g(\frac{3}{4})-g(\frac{1}{4})\big{)}=:D>0.

Hence

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))1D(ηwpwg)(1)(fw(x2)fw(x1))(g(x2)g(x1)),\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq-\frac{1}{D}\big{(}\eta_{w}\,p_{wg}\big{)}(1)\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)},

whence (226). Clearly all constants involved are independent of x1x_{1} and x2x_{2}. ∎

It stems from (222) and (223), that the two left-hand sides cannot be compared when x1x_{1} and x2x_{2} are too small. The same observation applies to (224) and (225) when 1x11-x_{1} and 1x21-x_{2} are too small. But in this case, there is no need for comparison because the expression we want to bound is sufficiently small, as is shown in the next proposition where again, x1=Sn,ix_{1}=S^{n,i} and x2=Sn,jx_{2}=S^{n,j}.

Proposition 40.

Suppose that x1<x2hiγ1x_{1}<x_{2}\leq h_{i}^{\gamma_{1}} for some exponent γ1>0\gamma_{1}>0 such that

γ1>1θw+β3.\gamma_{1}>\frac{1}{\theta_{w}+\beta_{3}}. (229)

Then

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chi2hiδ1,h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\,h_{i}^{2}h_{i}^{\delta_{1}}, (230)

where

0<δ1γ1(θw+β3)1.0<\delta_{1}\leq\gamma_{1}(\theta_{w}+\beta_{3})-1. (231)

Similarly, suppose that 1x2<1x1hiγ21-x_{2}<1-x_{1}\leq h_{i}^{\gamma_{2}} for some exponent γ2>0\gamma_{2}>0 such that

γ2>11+θo+β4.\gamma_{2}>\frac{1}{1+\theta_{o}+\beta_{4}}. (232)

Then

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chi2hiδ2,h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\,h_{i}^{2}h_{i}^{\delta_{2}}, (233)

where

0<δ2γ2(1+θo+β4)1.0<\delta_{2}\leq\gamma_{2}(1+\theta_{o}+\beta_{4})-1. (234)

In both cases, the constants CC are independent of x1x_{1}, x2x_{2}, and hih_{i}.

Proof.

In the first case, according to (222), the choice (231) and (229) on γ1\gamma_{1}, we have

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chi1+γ1(θw+β3)=hi2hiγ1(θw+β3)1,h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\,h_{i}^{1+\gamma_{1}(\theta_{w}+\beta_{3})}=h_{i}^{2}h_{i}^{\gamma_{1}(\theta_{w}+\beta_{3})-1},

with the constant CC of (222), which gives (230). In the second case, the same argument leads to

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))hi1+γ2(1+θo+β4)=hi2hiγ2(1+θo+β4)1,h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq h_{i}^{1+\gamma_{2}(1+\theta_{o}+\beta_{4})}=h_{i}^{2}h_{i}^{\gamma_{2}(1+\theta_{o}+\beta_{4})-1},

with the constant CC of (224), thus implying (233) with the choice (234) for δ2\delta_{2} and the condition (232) on γ2\gamma_{2}. ∎

Now, we turn to the case when x2x_{2} is not too small.

Proposition 41.

In addition to (229), suppose that the exponent γ1\gamma_{1} of Proposition 40 satisfies

γ1<1θw.\gamma_{1}<\frac{1}{\theta_{w}}. (235)

Suppose that x1<x2x_{1}<x_{2} and 34x2>hiγ1\frac{3}{4}\geq x_{2}>h_{i}^{\gamma_{1}}. Then

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chiδ1(fw(x2)fw(x1))(g(x2)g(x1)),h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq Ch_{i}^{\delta_{1}^{\prime}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}, (236)

where

0<δ1=min(1γ1θw,δ1).0<\delta_{1}^{\prime}={\rm min}\big{(}1-\gamma_{1}\theta_{w},\delta_{1}\big{)}. (237)

Again, the constant CC is independent of x1x_{1}, x2x_{2}, and hih_{i}.

Proof.

Either x112x2x_{1}\leq\frac{1}{2}x_{2} or x1>12x2x_{1}>\frac{1}{2}x_{2}, and we examine each case.

1) When x112x2x_{1}\leq\frac{1}{2}x_{2}, formula (223) leads to

(fw(x2)fw(x1))(g(x2)g(x1))(1(12)θw)(1(12)θw+β3)Cx22θw+β3,\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq\big{(}1-(\frac{1}{2})^{\theta_{w}}\big{)}\big{(}1-(\frac{1}{2})^{\theta_{w}+\beta_{3}}\big{)}Cx_{2}^{2\theta_{w}+\beta_{3}},

with the constant CC of (223), whereas

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Cx2θw+β3,\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq Cx_{2}^{\theta_{w}+\beta_{3}},

with the constant CC of (222). Hence

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chix2θw(fw(x2)fw(x1))(g(x2)g(x1)),h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\frac{h_{i}}{x_{2}^{\theta_{w}}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)},

with another constant CC independent of x1x_{1}, x2x_{2}, and hih_{i}. Now, we use the assumption that x2>hiγ1x_{2}>h_{i}^{\gamma_{1}}. Then, owing to (237),

hix2θwhi1γ1θwhiδ1,\frac{h_{i}}{x_{2}^{\theta_{w}}}\leq h_{i}^{1-\gamma_{1}\theta_{w}}\leq h_{i}^{\delta_{1}^{\prime}},

and we recover (236).

2) When x1>12x2x_{1}>\frac{1}{2}x_{2}, we infer from the next to last inequality in (227) that

pwg(x1)pwg(x2)1η1α31αoθo(x2x1)x1β311η1α31αoθo21β31x21β3(x2x1).p_{wg}(x_{1})-p_{wg}(x_{2})\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}\big{(}x_{2}-x_{1}\big{)}x_{1}^{\beta_{3}-1}\leq\frac{1}{\eta_{\ast}}\frac{1}{\alpha_{3}}\frac{1}{\alpha_{o}\theta_{o}}2^{1-\beta_{3}}\frac{1}{x_{2}^{1-\beta_{3}}}\big{(}x_{2}-x_{1}\big{)}.

Thus, on the one hand,

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C1x21β3(x2x1)(x2θwx1θw),\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C\,\frac{1}{x_{2}^{1-\beta_{3}}}\big{(}x_{2}-x_{1}\big{)}\big{(}x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}}\big{)}, (238)

where CC is the above constant divided by αw\alpha_{w}. On the other hand, we use the lower bound (228) for the difference in fwf_{w} and we need a lower bound for the difference in gg. It is derived from (149),

g(x2)g(x1)α3Cmaxαwθwαoθo(14)θo+β41x1θw+β31(x2x1)α3Cmaxαwθwαoθo(14)θo+β41(12)θw+β31x2θw+β31(x2x1).\begin{split}g(x_{2})-g(x_{1})&\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}\big{(}\frac{1}{4}\big{)}^{\theta_{o}+\beta_{4}-1}x_{1}^{\theta_{w}+\beta_{3}-1}(x_{2}-x_{1})\\ &\geq\frac{\alpha_{3}}{C_{\rm max}}\frac{\alpha_{w}}{\theta_{w}}\frac{\alpha_{o}}{\theta_{o}}\big{(}\frac{1}{4}\big{)}^{\theta_{o}+\beta_{4}-1}\big{(}\frac{1}{2}\big{)}^{\theta_{w}+\beta_{3}-1}x_{2}^{\theta_{w}+\beta_{3}-1}(x_{2}-x_{1}).\end{split} (239)

Hence (228) and (239) yield

(fw(x2)fw(x1))(g(x2)g(x1))Cx2θw+β31(x2θwx1θw)(x2x1),\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq Cx_{2}^{\theta_{w}+\beta_{3}-1}\big{(}x_{2}^{\theta_{w}}-x_{1}^{\theta_{w}}\big{)}(x_{2}-x_{1}), (240)

with the product of the constants of (228) and (239). Then by combining (238) and (240), we deduce that

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chiγ1θw(fw(x2)fw(x1))(g(x2)g(x1));\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq\frac{C}{h_{i}^{\gamma_{1}\theta_{w}}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)};

which is (236) when δ1\delta_{1}^{\prime} satisfies (237). ∎

The case when 1x11-x_{1} is not too small is handled by the next proposition.

Proposition 42.

In addition to (232), suppose that the exponent γ2\gamma_{2} of Proposition 40 satisfies

γ2<1θo1.\gamma_{2}<\frac{1}{\theta_{o}-1}. (241)

Suppose that 14<x1<x21\frac{1}{4}<x_{1}<x_{2}\leq 1 and 1x1>hiγ21-x_{1}>h_{i}^{\gamma_{2}}. Then

hi(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))Chiδ2(fw(x2)fw(x1))(g(x2)g(x1)),h_{i}\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq Ch_{i}^{\delta_{2}^{\prime}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}, (242)

where

0<δ2=min(δ2,1γ2(θo1)).0<\delta_{2}^{\prime}={\rm min}\big{(}\delta_{2},1-\gamma_{2}(\theta_{o}-1)\big{)}. (243)

Again, the constant CC is independent of x1x_{1}, x2x_{2}, and hih_{i}.

Proof.

The proof is analogous to that of Proposition 41, but we sketch the steps for the reader’s convenience. We skip the constants’ details, but stress that they are independent of x1x_{1}, x2x_{2}, and hih_{i}. Again, there are two possibilities, either 1x212(1x1)1-x_{2}\leq\frac{1}{2}(1-x_{1}) or 1x2>12(1x1)1-x_{2}>\frac{1}{2}(1-x_{1}), and we examine each case.

1) In the first case,

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C(1x1)1+θ0+β4,\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C(1-x_{1})^{1+\theta_{0}+\beta_{4}},

and

(fw(x2)fw(x1))(g(x2)g(x1))C(1x1)2θ0+β4.\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}\geq C(1-x_{1})^{2\theta_{0}+\beta_{4}}.

Hence

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))\displaystyle\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)} C1(1x1)θo1(fw(x2)fw(x1))(g(x2)g(x1))\displaystyle\leq C\frac{1}{(1-x_{1})^{\theta_{o}-1}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}
C1hiγ2(θo1)(fw(x2)fw(x1))(g(x2)g(x1)).\displaystyle\leq C\frac{1}{h_{i}^{\gamma_{2}(\theta_{o}-1)}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}.

With (241) and (243), this implies (242).

2) In the second case, we have on the one hand,

pwg(x1)pwg(x2)C(x2x1)(1x1)θo+β41,p_{wg}(x_{1})-p_{wg}(x_{2})\leq C(x_{2}-x_{1})(1-x_{1})^{\theta_{o}+\beta_{4}-1},

so that

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))C(x2x1)2(1x1)θo+β41.\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)}\leq C(x_{2}-x_{1})^{2}(1-x_{1})^{\theta_{o}+\beta_{4}-1}.

On the other hand,

fw(x2)fw(x1)C(x2x1)(1x1)θo1,f_{w}(x_{2})-f_{w}(x_{1})\geq C(x_{2}-x_{1})(1-x_{1})^{\theta_{o}-1},

and

g(x2)g(x1)C(x2x1)(1x1)θo+β41,g(x_{2})-g(x_{1})\geq C(x_{2}-x_{1})(1-x_{1})^{\theta_{o}+\beta_{4}-1},

and thus

(ηw(x2)ηw(x1))(pwg(x1)pwg(x2))\displaystyle\big{(}\eta_{w}(x_{2})-\eta_{w}(x_{1})\big{)}\big{(}p_{wg}(x_{1})-p_{wg}(x_{2})\big{)} C1(1x1)θo1(fw(x2)fw(x1))(g(x2)g(x1))\displaystyle\leq C\frac{1}{(1-x_{1})^{\theta_{o}-1}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)}
C1hiγ2(θo1)(fw(x2)fw(x1))(g(x2)g(x1)),\displaystyle\leq C\frac{1}{h_{i}^{\gamma_{2}(\theta_{o}-1)}}\big{(}f_{w}(x_{2})-f_{w}(x_{1})\big{)}\big{(}g(x_{2})-g(x_{1})\big{)},

whence (242). ∎

In view of (229), (231), (235), and (237), let us choose

δ1=δ1=β32θw+β3,γ1=22θw+β3.\delta_{1}=\delta_{1}^{\prime}=\frac{\beta_{3}}{2\theta_{w}+\beta_{3}},\quad\gamma_{1}=\frac{2}{2\theta_{w}+\beta_{3}}. (244)

Then (229) and (231) are satisfied, as well as (235) and (237). Likewise, in view of (232), (234), (241), and (243), the choice

δ2=δ2=2+β42θo+β4,γ2=22θo+β4,\delta_{2}=\delta_{2}^{\prime}=\frac{2+\beta_{4}}{2\theta_{o}+\beta_{4}},\quad\gamma_{2}=\frac{2}{2\theta_{o}+\beta_{4}}, (245)

satisfies (232), (234), (241), (243). Then the desired limit follows by collecting these results.

Lemma 43.

Under the assumptions and notation on the mobility (140)–(144), the term T1T_{1} defined in (217) tends to zero, with a similar limit in the non-wetting phase, i.e.,

lim(h,τ)(0,0)n=1Nτi,j=1Mcij(Sn,iSn,jfo(x)(ηw(Swn,ij)ηw(x))pc(x)𝑑x)(Vn,jVn,i)=0,lim(h,τ)(0,0)n=1Nτi,j=1Mcij(Sn,iSn,jfw(x)(ηo(Son,ij)ηo(x))pc(x)𝑑x)(Vn,jVn,i)=0.\begin{split}&\lim_{(h,\tau)\to(0,0)}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\Big{(}\int_{S^{n,i}}^{S^{n,j}}f_{o}(x)\big{(}\eta_{w}(S_{w}^{n,ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx\Big{)}\big{(}V^{n,j}-V^{n,i}\big{)}=0,\\ &\lim_{(h,\tau)\to(0,0)}\sum_{n=1}^{N}\tau\sum_{i,j=1}^{M}c_{ij}\Big{(}\int_{S^{n,i}}^{S^{n,j}}f_{w}(x)\big{(}\eta_{o}(S_{o}^{n,ij})-\eta_{o}(x)\big{)}p_{c}^{\prime}(x)\,dx\Big{)}\big{(}V^{n,j}-V^{n,i}\big{)}=0.\end{split} (246)
Proof.

We prove the first limit. Here the parameters of Propositions 40 and 41 are chosen by (244) and (245). It stems from the above considerations that, for each index nn, the set of all indices (i,j)(i,j) from 11 to MM can be partitioned into three subsets,

𝒪1={(i,j); 0Sn,i<Sn,j34},𝒪2={(i,j);14Sn,i<Sn,j1},{\mathcal{O}}_{1}=\{(i,j)\,;\,0\leq S^{n,i}<S^{n,j}\leq\frac{3}{4}\},\quad{\mathcal{O}}_{2}=\{(i,j)\,;\,\frac{1}{4}\leq S^{n,i}<S^{n,j}\leq 1\},
𝒪3={(i,j); 0Sn,i14and34Sn,j1}.{\mathcal{O}}_{3}=\{(i,j)\,;\,0\leq S^{n,i}\leq\frac{1}{4}\ \mbox{and}\ \frac{3}{4}\leq S^{n,j}\leq 1\}.

In turn, 𝒪1{\mathcal{O}}_{1} and 𝒪2{\mathcal{O}}_{2} can each be partitioned into two subsets

𝒪1,1={(i,j)𝒪1;Sn,jhTγ1},𝒪1,2={(i,j)𝒪1;Sn,j>hTγ1},{\mathcal{O}}_{1,1}=\{(i,j)\in{\mathcal{O}}_{1}\,;\,S^{n,j}\leq h_{T}^{\gamma_{1}}\},\quad{\mathcal{O}}_{1,2}=\{(i,j)\in{\mathcal{O}}_{1}\,;\,S^{n,j}>h_{T}^{\gamma_{1}}\},
𝒪2,1={(i,j)𝒪2; 1Sn,ihTγ2},𝒪2,2={(i,j)𝒪2; 1Sn,i>hTγ2}.{\mathcal{O}}_{2,1}=\{(i,j)\in{\mathcal{O}}_{2}\,;\,1-S^{n,i}\leq h_{T}^{\gamma_{2}}\},\quad{\mathcal{O}}_{2,2}=\{(i,j)\in{\mathcal{O}}_{2}\,;\,1-S^{n,i}>h_{T}^{\gamma_{2}}\}.

To simplify, let

Ai,j=cij(Sn,iSn,jfo(x)(ηw(Swn,ij)ηw(x))pc(x)𝑑x)(Vn,jVn,i).A_{i,j}=c_{ij}\Big{(}\int_{S^{n,i}}^{S^{n,j}}f_{o}(x)\big{(}\eta_{w}(S_{w}^{n,ij})-\eta_{w}(x)\big{)}p_{c}^{\prime}(x)\,dx\Big{)}\big{(}V^{n,j}-V^{n,i}\big{)}.

In view of (230) and (233), for all pairs (i,j)(i,j) in 𝒪,1{\mathcal{O}}_{\ell,1}, =1,2\ell=1,2, Ai,jA_{i,j} satisfies

|Ai,j|CvL(Ω×]0,T[)hi2+δcij.|A_{i,j}|\leq C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}h_{i}^{2+\delta_{\ell}}c_{ij}.

Owing to (236) and (242), for all pairs (i,j)(i,j) in 𝒪,2{\mathcal{O}}_{\ell,2}, =1,2\ell=1,2, we have

|Ai,j|CvL(Ω×]0,T[)hiδcij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i)).|A_{i,j}|\leq C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}h_{i}^{\delta_{\ell}}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}g(S^{n,j})-g(S^{n,i})\big{)}.

Finally, for all pairs (i,j)(i,j) in 𝒪3{\mathcal{O}}_{3},

|Ai,j|CvL(Ω×]0,T[)hicij(fw(Sn,j)fw(Sn,i))(g(Sn,j)g(Sn,i)).|A_{i,j}|\leq C\|\nabla\,v\|_{L^{\infty}(\Omega\times]0,T[)}h_{i}c_{ij}\big{(}f_{w}(S^{n,j})-f_{w}(S^{n,i})\big{)}\big{(}g(S^{n,j})-g(S^{n,i})\big{)}.

According to (138), the sum of the terms over all (i,j)(i,j) in 𝒪,2{\mathcal{O}}_{\ell,2} and 𝒪3{\mathcal{O}}_{3} tends to zero. For the remaining terms, observe that by definition,

hi2cijC|ΔiΔj|,h_{i}^{2}c_{ij}\leq C|\Delta_{i}\cap\Delta_{j}|,

so that the sum over all (i,j)(i,j) in 𝒪,1{\mathcal{O}}_{\ell,1} is bounded by ChiδCh_{i}^{\delta_{\ell}} that also tends to zero, whence the first part of the limit (246). The same limit to zero holds for the non-wetting phase. ∎

With (216), this lemma leads to the desired limit of the term with the auxiliary pressures.

Theorem 44.

Let v𝒞1(Ω¯×[0,T])v\in{\mathcal{C}}^{1}(\bar{\Omega}\times[0,T]) be a smooth function and let Vh,τ(t)=Ih(v)(tn)V_{h,\tau}(t)=I_{h}(v)(t_{n}) in ]tn1,tn]]t_{n-1},t_{n}]. Under the assumptions and notation on the mobility (140)–(144),

lim(h,τ)(0,0)0T[Pα,h,τ,Ih(ηα(Sh,τ));Ih(pαg(Sh,τ)),Vh,τ]h=0TΩg(s¯)v,α=w,o,\lim_{(h,\tau)\to(0,0)}\int_{0}^{T}\big{[}P_{\alpha\color[rgb]{0,0,0},h,\tau},I_{h}(\eta_{\alpha\color[rgb]{0,0,0}}(S_{h,\tau}));I_{h}(p_{\alpha\color[rgb]{0,0,0}g}(S_{h,\tau})),V_{h,\tau}\big{]}_{h}=\int_{0}^{T}\int_{\Omega}\nabla\,g(\bar{s})\cdot\nabla\,v,\ \alpha=w,o, (247)

where s¯\bar{s} is the limit of Sh,τS_{h,\tau}.

Finally, Theorems 37 and 44, together with (15) and (197), give the desired convergence of the upwind diffusion terms.

Theorem 45.

With the notation and assumptions of Theorem 37, we have for all functions v𝒞1(Ω¯×[0,T])v\in{\mathcal{C}}^{1}(\bar{\Omega}\times[0,T]),

lim(h,τ)(0,0)0T[Pα,h,τ,Ih(ηα(Sh,τ));Pα,h,τ,Vh,τ]h=0TΩ(ηw(s¯)(p¯w+pwg(s¯))+g(s¯))vif α=w,=0TΩ(ηo(s¯)(p¯opog(s¯))g(s¯))vif α=o.\begin{split}\lim_{(h,\tau)\to(0,0)}&-\int_{0}^{T}\big{[}P_{\alpha,h,\tau},I_{h}(\eta_{\alpha}(S_{h,\tau}));P_{\alpha,h,\tau},V_{h,\tau}\big{]}_{h}\\ &=\int_{0}^{T}\int_{\Omega}\big{(}\eta_{w}(\bar{s})\nabla(\bar{p}_{w}+p_{wg}(\bar{s}))+\nabla\,g(\bar{s})\big{)}\cdot\nabla\,v\quad\mbox{if }\ \alpha=w,\\ &=\int_{0}^{T}\int_{\Omega}\big{(}\eta_{o}(\bar{s})\nabla(\bar{p}_{o}-p_{og}(\bar{s}))-\nabla\,g(\bar{s})\big{)}\cdot\nabla\,v\quad\mbox{if }\ \alpha=o.\end{split} (248)

7.2 Convergence of the right-hand sides

In order to pass to the limit in the right-hand sides of (58)–(59) it is convenient to replace the quadrature formulas by integrals. Since the quadrature formulas are exact for polynomials of degree one, this is achieved by approximating some functions with the operator ρh\rho_{h}, see (43). As sins_{\mathrm{in}} belongs to L(Ω×]0,T[)L^{\infty}(\Omega\times]0,T[), standard approximation properties of ρτ\rho_{\tau} and rhr_{h} and a density argument imply

lim(h,τ)(0,0)ρτ(ρK(sin))=sininL(K×]0,T[).\lim_{(h,\tau)\to(0,0)}\rho_{\tau}(\rho_{K}(s_{\mathrm{in}}))=s_{\mathrm{in}}\ \mbox{in}\;L^{\infty}(K\times]0,T[). (249)

Then the continuity of fαf_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}, for α=w,o\alpha=w,o, yields

lim(h,τ)(0,0)fα(ρτ(ρK(sin)))=fα(sin)inL(K×]0,T[).\lim_{(h,\tau)\to(0,0)}f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}})))=f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in}})\ \mbox{in}\;L^{\infty}(K\times]0,T[). (250)

Similarly, since q¯\bar{q} belongs to L2(Ω×]0,T[)L^{2}(\Omega\times]0,T[),

lim(h,τ)(0,0)ρτ(ρK(q¯))=q¯inL2(K×]0,T[).\lim_{(h,\tau)\to(0,0)}\rho_{\tau}(\rho_{K}(\bar{q}))=\bar{q}\ \mbox{in}\;L^{2}(K\times]0,T[).

Also the (constant in space) correction added to ρτ(rh(q¯))\rho_{\tau}(r_{h}(\bar{q})) satisfies

lim(h,τ)(0,0)ρτ(1|Ω|Ω(rh(q¯)q¯))=0inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}\rho_{\tau}\big{(}\frac{1}{|\Omega|}\int_{\Omega}(r_{h}(\bar{q})-\bar{q})\big{)}=0\ \mbox{in}\;L^{2}(\Omega\times]0,T[).

Therefore

lim(h,τ)(0,0)q¯h,τ=q¯inL2(Ω×]0,T[).\lim_{(h,\tau)\to(0,0)}\bar{q}_{h,\tau}=\bar{q}\ \mbox{in}\;L^{2}(\Omega\times]0,T[). (251)

With the same function Vh,τV_{h,\tau}, consider the first term in the right-hand sides of (58)–(59)

X:=n=1Nτ(Ih(fα(sin,hn))q¯hn,Vhn)h=0T(Ih(fα(sin,h,τ))q¯h,τ,Vh,τ)h.X:=\sum_{n=1}^{N}\tau\big{(}I_{h}(f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in},h}^{n}))\bar{q}_{h}^{n},V_{h}^{n}\big{)}_{h}=\int_{0}^{T}\big{(}I_{h}(f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in},h,\tau}))\bar{q}_{h,\tau},V_{h,\tau}\big{)}_{h}.

By definition of the quadrature formula, XX has the following expression:

X=n=1NτKΩ¯|K|d+1=1d+1fα(sin,h,τn,i)q¯h,τn,iVh,τn,i.X=\sum_{n=1}^{N}\tau\sum_{K\in\bar{\Omega}}\frac{|K|}{d+1}\sum_{\ell=1}^{d+1}f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in,h,\tau}}^{n,\ell_{i}})\bar{q}_{h,\tau}^{n,\ell_{i}}V_{h,\tau}^{n,\ell_{i}}.

By inserting fα(ρτ(ρK(sin)))f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}}))) and ρτ(ρK(q¯))\rho_{\tau}(\rho_{K}(\bar{q})), this becomes

X=\displaystyle X= n=1NτKΩ¯|K|d+1=1d+1(fα(sin,h,τn,i)fα(ρτ(ρK(sin))))q¯h,τn,iVh,τn,i\displaystyle\sum_{n=1}^{N}\tau\sum_{K\in\bar{\Omega}}\frac{|K|}{d+1}\sum_{\ell=1}^{d+1}\big{(}f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in,h,\tau}}^{n,\ell_{i}})-f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}})))\big{)}\bar{q}_{h,\tau}^{n,\ell_{i}}V_{h,\tau}^{n,\ell_{i}}
+n=1NτKΩ¯|K|d+1=1d+1fα(ρτ(ρK(sin)))(q¯h,τn,iρτ(ρK(q¯)))Vh,τn,i\displaystyle+\sum_{n=1}^{N}\tau\sum_{K\in\bar{\Omega}}\frac{|K|}{d+1}\sum_{\ell=1}^{d+1}f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}})))\big{(}\bar{q}_{h,\tau}^{n,\ell_{i}}-\rho_{\tau}(\rho_{K}(\bar{q}))\big{)}V_{h,\tau}^{n,\ell_{i}}
+0TΩfα(ρτ(ρK(sin)))ρτ(ρK(q¯))Vh,τ=X1+X2+X3,\displaystyle+\int_{0}^{T}\int_{\Omega}f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}})))\rho_{\tau}(\rho_{K}(\bar{q}))V_{h,\tau}=X_{1}+X_{2}+X_{3},

since the last summand is a polynomial of degree one. We have

lim(h,τ)(0,0)X3=0TΩfo(sin)q¯v.\lim_{(h,\tau)\to(0,0)}X_{3}=\int_{0}^{T}\int_{\Omega}f_{o}(s_{\mathrm{in}})\,\bar{q}\,v.

It remains to show that X1X_{1} and X2X_{2} tend to zero. For X1X_{1}, since fof_{o} and fwf_{w} have the same derivative (up to the sign), we deduce from (150), (140), (141), (143), (144), and (145) that fαf_{\alpha}^{\prime} is bounded in [0,1][0,1]; hence

|fα(sin,h,τn,i)fα(ρτ(ρK(sin)))|C|sin,h,τn,iρτ(ρK(sin))|.|f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in,h,\tau}}^{n,\ell_{i}})-f_{\alpha\color[rgb]{0,0,0}}(\rho_{\tau}(\rho_{K}(s_{\mathrm{in}})))|\leq C|s_{\mathrm{in,h,\tau}}^{n,\ell_{i}}-\rho_{\tau}(\rho_{K}(s_{\mathrm{in}}))|.

Thus, the summand is bounded by polynomials and the equivalence of norms yields

|X1|CvL(Ω×]0,T[)sin,h,τρτ(ρK(sin))L2(Ω×]0,T[)q¯h,τL2(Ω×]0,T[),|X_{1}|\leq C\|v\|_{L^{\infty}(\Omega\times]0,T[)}\|s_{\mathrm{in,h,\tau}}-\rho_{\tau}(\rho_{K}(s_{\mathrm{in}}))\|_{L^{2}(\Omega\times]0,T[)}\|\bar{q}_{h,\tau}\|_{L^{2}(\Omega\times]0,T[)},

that tends to zero with (h,τ)(h,\tau). It is easy to check that the same holds for X2X_{2}. Hence

lim(h,τ)(0,0)0T(Ih(fα(sin,h,τ))q¯h,τ,Vh,τ)h=0TΩfα(sin)q¯v.\lim_{(h,\tau)\to(0,0)}\int_{0}^{T}\big{(}I_{h}(f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in},h,\tau}))\bar{q}_{h,\tau},V_{h,\tau}\big{)}_{h}=\int_{0}^{T}\int_{\Omega}f_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in}})\,\bar{q}\,v. (252)

The argument for the second term in the right-hand side of (58) is much the same; we insert ρτ(ρK(s¯))\rho_{\tau}(\rho_{K}(\bar{s})) and we use the fact that

lim(h,τ)(0,0)Sh,τρτ(ρK(s¯))L2(Ω×]0,T[)=0.\lim_{(h,\tau)\to(0,0)}\|S_{h,\tau}-\rho_{\tau}(\rho_{K}(\bar{s}))\|_{L^{2}(\Omega\times]0,T[)}=0.

Then the argument used for the first term readily gives

lim(h,τ)(0,0)0T(Ih(fα(Sh,τ))q¯hτ,Vh,τ)h=0TΩfα(s¯)q¯v.\lim_{(h,\tau)\to(0,0)}\int_{0}^{T}(I_{h}(f_{\alpha\color[rgb]{0,0,0}}(S_{h,\tau}))\underline{q}_{h_{\tau}},V_{h,\tau}\big{)}_{h}=\int_{0}^{T}\int_{\Omega}f_{\alpha\color[rgb]{0,0,0}}(\bar{s})\,\bar{q}\,v. (253)

By combining (252) and (253), we obtain convergence of the right-hand sides,

lim(h,τ)(0,0)(0T(Ih(fα(sin,h,τ))q¯h,τIh(fα(Sh,τ))q¯hτ,Vh,τ)h=0TΩ(fα(sin)q¯fα(s¯)q¯)v.\lim_{(h,\tau)\to(0,0)}\Big{(}\int_{0}^{T}\big{(}I_{h}(f_{\color[rgb]{1,0,0}\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in},h,\tau}))\bar{q}_{h,\tau}-I_{h}(f_{\alpha\color[rgb]{0,0,0}}(S_{h,\tau}))\underline{q}_{h_{\tau}},V_{h,\tau}\big{)}_{h}=\int_{0}^{T}\int_{\Omega}\big{(}f_{\alpha\color[rgb]{0,0,0}}(s_{\mathrm{in}})\,\bar{q}-f_{\alpha\color[rgb]{0,0,0}}(\bar{s})\,\bar{q}\big{)}v. (254)

7.3 The full scheme

It remains to pass to the limit in the time derivative, say in (58), summed over nn, and tested with the same Vh,τV_{h,\tau} as previously, except that here we take v(T)=0v(T)=0. After summation by parts, this term reads

n=1N(ShnShn1,Vhn)hφ=n=1N1(Vhn+1Vhn,Shn)hφ(Vh1,Sh0)hφ.\sum_{n=1}^{N}(S_{h}^{n}-S_{h}^{n-1},V_{h}^{n})_{h}^{\varphi}=-\sum_{n=1}^{N-1}(V_{h}^{n+1}-V_{h}^{n},S_{h}^{n})_{h}^{\varphi}-(V_{h}^{1},S_{h}^{0})_{h}^{\varphi}. (255)

By definition,

(Vhn+1Vhn,Shn)hφ=KΩ¯|K|d+1φ|K=1d+1(Vn+1,iVn,i)Sn,i.(V_{h}^{n+1}-V_{h}^{n},S_{h}^{n})_{h}^{\varphi}=\sum_{K\in\bar{\Omega}}\frac{|K|}{d+1}\varphi|_{K}\sum_{\ell=1}^{d+1}(V^{n+1,i_{\ell}}-V^{n,i_{\ell}})S^{n,i_{\ell}}.

By inserting ρK(Vn+1,iVn,i)\rho_{K}(V^{n+1,i_{\ell}}-V^{n,i_{\ell}}) in each element, this becomes

(Vhn+1Vhn,Shn)hφ=(Vhn+1Vhnρh(Vn+1Vn),Shn)hφ+Ωφρh(Vn+1Vn)Shn.(V_{h}^{n+1}-V_{h}^{n},S_{h}^{n})_{h}^{\varphi}=(V_{h}^{n+1}-V_{h}^{n}-\rho_{h}(V^{n+1}-V^{n}),S_{h}^{n})_{h}^{\varphi}+\int_{\Omega}\varphi\rho_{h}(V^{n+1}-V^{n})S^{n}_{h}.

The first term has the bound

|(Vhn+1Vhnρh(Vn+1Vn),Shn)hφ|φL(Ω)Vhn+1Vhnρh(Vn+1Vn)hShnh.\big{|}(V_{h}^{n+1}-V_{h}^{n}-\rho_{h}(V^{n+1}-V^{n}),S_{h}^{n})_{h}^{\varphi}\big{|}\leq\|\varphi\|_{L^{\infty}(\Omega)}\|V_{h}^{n+1}-V_{h}^{n}-\rho_{h}(V^{n+1}-V^{n})\|_{h}\|S_{h}^{n}\|_{h}.

Since the functions are piecewise polynomials, the equivalence of norms yields

|n=1N1\displaystyle\big{|}\sum_{n=1}^{N-1} (Vhn+1Vhnρh(Vn+1Vn),Shn)hφ|CφL(Ω)\displaystyle(V_{h}^{n+1}-V_{h}^{n}-\rho_{h}(V^{n+1}-V^{n}),S_{h}^{n})_{h}^{\varphi}\big{|}\leq C\,\|\varphi\|_{L^{\infty}(\Omega)}
×(n=1N1τ1τ(Ih(vn+1vn)ρh(Vn+1Vn))L2(Ω)2)12(n=1N1τShnL2(Ω)2)12.\displaystyle\times\big{(}\sum_{n=1}^{N-1}\tau\|\frac{1}{\tau}\big{(}I_{h}(v^{n+1}-v^{n})-\rho_{h}(V^{n+1}-V^{n})\big{)}\|^{2}_{L^{2}(\Omega)}\big{)}^{\frac{1}{2}}\big{(}\sum_{n=1}^{N-1}\tau\|S_{h}^{n}\|^{2}_{L^{2}(\Omega)}\big{)}^{\frac{1}{2}}.

Then the regularity of vv, the approximation properties of IhI_{h} and ρh\rho_{h} and the boundedness of Sh,τS_{h,\tau} imply that

lim(h,τ)(0,0)|n=1N1(Vhn+1Vhnρh(Vn+1Vn),Shn)hφ|=0.\lim_{(h,\tau)\to(0,0)}\big{|}\sum_{n=1}^{N-1}(V_{h}^{n+1}-V_{h}^{n}-\rho_{h}(V^{n+1}-V^{n}),S_{h}^{n})_{h}^{\varphi}\big{|}=0.

Similarly, it is easy to check from the convergence of Sh,τS_{h,\tau} that

lim(h,τ)(0,0)n=1N1Ωφρh(Vn+1Vn)Shn=0TΩφ(tv)s¯.-\lim_{(h,\tau)\to(0,0)}\sum_{n=1}^{N-1}\int_{\Omega}\varphi\rho_{h}(V^{n+1}-V^{n})S^{n}_{h}=-\int_{0}^{T}\int_{\Omega}\varphi(\partial_{t}v)\bar{s}.

The treatment of the initial term is the same. Hence

lim(h,τ)(0,0)n=1N(ShnShn1,Vhn)hφ=0TΩφ(tv)s¯Ωφs0v.\lim_{(h,\tau)\to(0,0)}\sum_{n=1}^{N}(S_{h}^{n}-S_{h}^{n-1},V_{h}^{n})_{h}^{\varphi}=-\int_{0}^{T}\int_{\Omega}\varphi(\partial_{t}v)\bar{s}-\int_{\Omega}\varphi s^{0}v. (256)

By combining (256), with (45) and (254), we readily see that the limit functions s¯\bar{s}, p¯α\bar{p}_{\alpha} and pαg(s¯)p_{\alpha g}(\bar{s}) satisfy the weak formulation (16). This proves Theorem 6.

8 Numerical validation

This section proposes a numerical validation of our algorithm with a two dimensional finite difference code. Details on the algorithm implemented are given. A problem with manufactured solutions is then considered to study the convergence properties of our algorithm.

8.1 Implementation of the model

To avoid dealing with nonlinear terms, we implement a modified version of the algorithm proposed in section 2.3. The main difference consists of approximating the terms Swn+1,ijS_{w}^{n+1,ij}, Son+1,ijS_{o}^{n+1,ij} and Pon+1P_{o}^{n+1} with first time order extrapolation. For each node 1iM1\leq i\leq M, the unknowns (Sn+1,i,Pwn+1,i)(S^{n+1,i},P_{w}^{n+1,i}) are computed as the solution of the following problem:

m~iΔt(Sn+1,iSn,i)ji,jN(i)cijηw(Sw,n+1,ij)(Pwn+1,jPwn+1,i)\displaystyle\frac{\tilde{m}_{i}}{\Delta t}(S^{n+1,i}-S^{n,i})-\sum_{j\neq i,j\in N(i)}c_{ij}\eta_{w}(S^{*,n+1,ij}_{w})(P_{w}^{n+1,j}-P_{w}^{n+1,i})
=mif1n+1,i,1iM,\displaystyle=m_{i}f_{1}^{n+1,i},\quad 1\leq i\leq M, (257)
m~iΔt(Sn+1,iSn,i)ji,jN(i)cijηo(So,n+1,ij)(Pwn+1,jPwn+1,i)\displaystyle-\frac{\tilde{m}_{i}}{\Delta t}(S^{n+1,i}-S^{n,i})-\sum_{j\neq i,j\in N(i)}c_{ij}\eta_{o}(S^{*,n+1,ij}_{o})(P_{w}^{n+1,j}-P_{w}^{n+1,i})
ji,jN(i)cijηo(So,n+1,ij)(pc,n+1,jpc,n+1,i)=mif2n+1,i,1iM,\displaystyle-\sum_{j\neq i,j\in N(i)}c_{ij}\eta_{o}(S^{*,n+1,ij}_{o})(p_{c}^{*,n+1,j}-p_{c}^{*,n+1,i})=m_{i}f_{2}^{n+1,i},\quad 1\leq i\leq M, (258)

where the pressure PoP_{o} has been substituted with Pw+pcP_{w}+p_{c} with respect to (50). The solution PwP_{w} is enforced to satisfy (51) a posteriori by subtracting its integral i=1MmiPwi\sum_{i=1}^{M}m_{i}P_{w}^{i} after solving the above problem. The terms Sw,n+1,ijS_{w}^{*,n+1,ij} and So,n+1,ijS_{o}^{*,n+1,ij} are approximated at time iteration n by setting them to Swn,ijS_{w}^{n,ij} and Son,ijS_{o}^{n,ij}. Eventually, the capillary pressure pc,n+1p_{c}^{*,n+1} is approximated with a first order Taylor expansion with respect to the saturation SS, it reads:

pc,n+1=pcn+(pcS)n(Sn+1Sn).p_{c}^{*,n+1}=p_{c}^{n}+\left(\frac{\partial p_{c}}{\partial S}\right)^{n}(S^{n+1}-S^{n}). (259)

We note that to facilitate the implementation of this algorithm in a two dimensional finite difference code, the source terms of the equations (48)-(49) have been replaced by functions denoted by f1f_{1} and f2f_{2}.

8.2 Numerical test with a manufactured solution

The numerical validation of the algorithm is done by approximating the analytical solutions defined by

Pw(t,x,y)=2+x2yy2+x2sin(t+y),P_{w}(t,x,y)=2+x^{2}y-y^{2}+x^{2}\sin(t+y), (260)
S(t,x,y)=0.2(2+2xy+cos(t+x)),S(t,x,y)=0.2(2+2xy+\cos(t+x)), (261)

on the computational domain Ω=[0,1]2\Omega=[0,1]^{2}. Dirichlet boundary conditions are applied on Ω\partial\Omega on both unknowns PwP_{w} and SS. The initial conditions of the problem satisfy (260)-(261). The porosity of the domain is set to:

ϕ(t,x,y)=0.2(1+xy).\phi(t,x,y)=0.2(1+xy). (262)

The mobilities ηw\eta_{w} and ηo\eta_{o}, introduced in section 1.1, are defined as follows:

ηw=4S2,ηo=0.4(1S)2.\eta_{w}=4S^{2},\qquad\eta_{o}=0.4(1-S)^{2}. (263)

The capillary pressure is based on the Brooks-Corey model, it reads:

Pc={AS0.5if S>0.05,A(1.510S)×0.050.5otherwise.P_{c}=\begin{cases}AS^{-0.5}&\text{if $S>0.05$},\\ A(1.5-10S)\times 0.05^{-0.5}&\text{otherwise}.\end{cases} (264)

where AA is a constant set to 5050. The term sources f1f_{1} and f2f_{2} are computed accordingly. The convergence tests are performed on a set of six uniform grids with respective mesh size h{0.2,0.1,0.05,0.025,0.0125,0.00625}h\in\{0.2,0.1,0.05,0.025,0.0125,0.00625\}. The convergence properties are evaluated by using a time step τ\tau set to the mesh size hh with a final time T=1T=1. As the time derivatives and the saturations Swn+1,ij,Son+1,ijS_{w}^{n+1,ij},S_{o}^{n+1,ij} are computed with first order time approximation, we expect the convergence rate in the L2L^{2} norm to be of order one.

L2L^{2}-norm of error Water pressure PwP_{w} Water saturation SS
hh ndfn_{df} Error Rate Error Rate
0.20.2 25 8.50E-3 - 4.21E-3 -
0.10.1 100 4.15E-3 1.03 2.30E-3 0.87
0.050.05 400 2.08E-3 1.00 1.14E-4 1.01
0.0250.025 1600 1.04-3 1.00 5.57E-4 1.03
0.01250.0125 6400 5.23E-4 0.99 2.75E-4 1.02
Table 1: Results of convergence tests where the mesh size is denoted by hh and the number of degrees of freedom per unknown by ndfn_{df}. The time step τ\tau is set to h and errors are computed at final time T=1T=1.

The results of the convergence tests are presented in Table 1. The theoretical order of convergence, equal to one, is recovered for both unknowns which confirms the correct behavior of the algorithm.

9 Conclusions

This paper formulates a 1\mathbb{P}_{1} finite element method to solve the immiscible two-phase flow problem in porous media. The unknowns are the phase pressure and saturation, which are the preferred unknowns in industrial reservoir simulators. The numerical method employs mass lumping for integration and an upwind flux technique. As a consequence, the saturation is shown to be bounded between zero and one. The discrete approximations of pressure and saturation converge to the weak solution as the time step and mesh sizes tend to zero.

References

  • [1] H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 12 (1985), pp. 335–392.
  • [2] T. Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Analysis, Theory, Models & Applications, 19 (1992), pp. 1009–1031.
  • [3] T. Arbogast and M. F. Wheeler, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33 (1996), pp. 1669–1687.
  • [4] K. Aziz and A. Settari, Petroleum reservoir simulation. 1979, Applied Science Publ. Ltd., London, UK, (1979).
  • [5] P. Bastian, A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure, Computational Geosciences, 18 (2014), pp. 779–796.
  • [6] J. Casado-Diaz, T. Chancon Rebollo, V. Girault, M. Gomez Marmol, and F. Murat, Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in l1l^{1}, Numerische Mathematik, 105 (2007), pp. 337–374.
  • [7] G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, Elsevier, 1986.
  • [8] Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations, 171 (2001), pp. 203–232.
  • [9] Z. Chen and R. Ewing, Mathematical analysis for reservoir models, SIAM J. Numer. Anal., 30 (1999), pp. 431–453.
  • [10] Z. Chen and R. Ewing, Degenerate two-phase incompressible flow III. Sharp error estimates, Numerische Mathematik, 90 (2001), pp. 215–240.
  • [11] K. Deimling, Nonlinear Functional Analysis, Dover Publications, Mineola, New York, 1985.
  • [12] G. Dinca and J. Mawlin, Brouwer degree and applications, tech. rep., Laboratoire Jacques-Louis Lions, Université Paris VI, 2009.
  • [13] J. Douglas, Jr, Finite difference methods for two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 20 (1983), pp. 681–696.
  • [14] Y. Epshteyn and B. Riviere, Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow, Journal of Computational and Applied Mathematics, 225 (2009), pp. 487–509.
  • [15] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, 7 (2000), pp. 713–1018.
  • [16] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering scheme, ESAIM: Mathematical Modelling and Numerical Analysis, 37 (2003), pp. 937–972.
  • [17] R. Eymard, D. Hilhorst, and M. Vohralík, A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numerische Mathematik, 105 (2006), pp. 73–131.
  • [18] P. A. Forsyth, A control volume finite element approach to napl groundwater contamination, SIAM Journal on Scientific and Statistical Computing, 12 (1991), pp. 1029–1057.
  • [19] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximations for hyperbolic systems, SIAM J. Numer. Anal., 54 (2016), pp. 2466–2489.
  • [20] R. Helmig, Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems, Springer-Verlag, 1997.
  • [21] D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential Equations, 55 (1984), pp. 276–288.
  • [22] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G. DeLaPenha and L. Adauto, eds., vol. 30 of North-Holland Mathematical Series, North-Holland, 1978, pp. 284–346.
  • [23] A. Michel, A finite volume scheme for two-phase incompressible flow in porous media, SIAM J. Numer. Anal., 41 (2003), pp. 1301–1317.
  • [24] M. Ohlberger, Convergence of a mixed finite element: Finite volume method for the two phase flow in porous media, East West Journal of Numerical Mathematics, 5 (1997), pp. 183–210.
  • [25] D. W. Peaceman, Fundamentals of numerical reservoir simulation, vol. 6, Elsevier, 2000.
  • [26] N. J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations, SIAM J. Numer. Anal., 47 (2010), pp. 4680–4710.
  • [27] C. S. Woodward and C. N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37 (2000), pp. 701–724.
  • [28] I. Yotov, A mixed finite element discretization on non-matching multiblock grids for a degenerate parabolic equation arising in porous media flow, East West Journal of Numerical Mathematics, 5 (1997), pp. 211–230.