This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence analysis of a weak Galerkin finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion equation in 2D

Shicheng Liu [email protected] Xiangyun Meng [email protected] Qilong Zhai [email protected] School of Mathematics, Jilin University, Changchun 130012, China School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China
Abstract

In this paper, we propose a weak Galerkin finite element method (WG) for solving singularly perturbed convection-diffusion problems on a Bakhvalov-type mesh in 2D. Our method is flexible and allows the use of discontinuous approximation functions on the meshe. An error estimate is devised in a suitable norm and the optimal convergence order is obtained. Finally, numerical experiments are given to support the theory and to show the efficiency of the proposed method.

keywords:
Weak Galerkin finite element method, convection-diffusion, singularly perturbed, Bakhvalov-type mesh.
MSC:
[2020] 65N15 , 65N30 , 35B25
journal: Journal of Computational and Applied Mathematics

1 Introduction

Consider the following singularly perturbed convection-diffusion problem

εΔu𝐛u+cu\displaystyle-\varepsilon\Delta u-\mathbf{b}\cdot\nabla u+cu =f,inΩ,\displaystyle=f,\quad\text{in}~{}\Omega, (1.1)
u\displaystyle u =0,onΩ,\displaystyle=0,\quad\text{on}~{}\partial\Omega, (1.2)

with a positive parameter ε\varepsilon satisfying 0<ε10<\varepsilon\ll 1, and 𝐛[W1,(Ω)]2\mathbf{b}\in[W^{1,\infty}(\Omega)]^{2}. The functions 𝐛\mathbf{b}, cc and ff are assumed to be smooth on Ω\Omega. For any (x,y)Ω¯(x,y)\in\overline{\Omega}, Assume that

b1(x,y)β10,b2(x,y)β20,c(x,y)+12𝐛(x,y)γ0.\displaystyle\begin{aligned} &b_{1}(x,y)\geq\beta_{1}\geq 0,&&b_{2}(x,y)\geq\beta_{2}\geq 0,&&c(x,y)+\frac{1}{2}\nabla\cdot\mathbf{b}(x,y)\geq\gamma\geq 0.\end{aligned} (1.3)

where β1\beta_{1}, β2\beta_{2} and γ\gamma are some positive constants. Assumption (1.3) makes problem (1.1)-(1.2) has a unique solution in H2(Ω)H01(Ω)H^{2}(\Omega)\cup H_{0}^{1}(\Omega) for all fL2(Ω)f\in L^{2}(\Omega), see details in [17].

Singularly perturbed problems are one of the important topics in scientific computation. It is well known that the solution of the boundary value problem usually has layers, which are thin regions where the solution or its derivatives change rapidly, due to the diffusion coefficient is very small. In order to resolve the difficulty, numerical stabilization techniques have been developed, which can be divided into fitted operator methods and fitted mesh methods. One of the effective methods of solving singularly perturbed problems is to use layer-adapted meshes. Boundary layers can be resolved by designing layer-adapted meshes if we know a prior knowledge of the layers structure. Commonly used layer-adapted meshes for solving singularly perturbed problems include Bakhvalov-type meshes and Shishkin-type meshes. Bakhvalov mesh is proposed for the first time in [2], its application needs a nonlinear equation which cannot be solved explicitly. In order to avoid this difficulty, meshes that arise from an approximation of Bakhvalov’s mesh generating function are called Bakhvalov-type meshes, which are one of the most popular layer-adapted meshes, see details in [12]. Another piecewise equidistant mesh proposed by Shishkin in [19], but a logarithmic factor will be present in the error bounds when one uses a Shishkin-type mesh. Therefore, Bakhvalov-type meshes have better numerical performance than Shishkin-type meshes in general. Even if the layer-adapted meshe is used, the numerical solution of the convection-dominated problem still has some oscillation, as detailed in [4]. Additional stabilization is added to the numerical scheme to solve these oscillatory behaviour, examples for singularly perturbed onvection-diffusion problem, such as the streamline-diffusion finite element method [13, 14], the classical finite difference method of up-winding flavor [1, 6, 11, 20] and the discontinuous Galerkin methods [7, 8, 18, 30, 37, 35].

In this paper, we consider the WG method to solve the singularly perturbed convection-diffusion boundary value problem on Bakhvalov-type mesh. The WG method proves to be an effective numerical technique for the partial differential equations(PDEs). The main idea of this method is that the classical derivative is replaced by weak derivative, which allows the use of discontinuous functions in numerical schemes with parameter independent stabilizers. The initial proposal for its application in solving second-order elliptic problems was made by Junping Wang and Xiu Ye in [25]. The WG method has been applied to all kinds of problems including Stokes equations [26, 27, 29], Maxwell’s equations [16], Brinkman equations [15, 28, 31], fractional time convection-diffusion problems [21] and so on. For singular perturbed value problems, the WG method has also yielded some results, such as [9, 23, 24, 22, 34, 36, 33, 3]. The main purpose of this paper is to present optimal order uniform convergence in the energy norm on Bakhvalov-type mesh for convection-dominated problems in 2D.

This paper is organized as follows. In Section 2, we describe the assumptions and introduce a Bakhvalov-type mesh. In Section 3, we introduce the definition of weak operator, the WG scheme and some properties of projection operator involved. In Section 4, we provide convergence analysis. In Section 5, the numerical results verify the correctness of our theory.

2 Assumption and Partition

In this section, we will introduce the construction of the Bakhvalov-type mesh and the decomposition of the solution uu. As in [10] we shall introduce the following assumptions which describes the structure of uu.

Assumption 2.1.

For analysis, the solution uu of the equation (1.1) can can be decomposed as follows

u=S+E1+E2+E12.\displaystyle u=S+E_{1}+E_{2}+E_{12}.

where SS represents the smooth part, E1E_{1} and E2E_{2} corresponds to boundary layer components, E12E_{12} is corner layer part. Then, for 0i+jk+10\leq i+j\leq k+1, there exists a constant CC such taht

|i+jSxiyj|C,\displaystyle\left|\frac{\partial^{i+j}S}{\partial x^{i}\partial y^{j}}\right|\leq C, |i+jE1xiyj|Cεjeβ2yε,\displaystyle\left|\frac{\partial^{i+j}E_{1}}{\partial x^{i}\partial y^{j}}\right|\leq C\varepsilon^{-j}e^{-\frac{\beta_{2}y}{\varepsilon}}, (2.1)
|i+jE2xiyj|Cεieβ1xε,\displaystyle\left|\frac{\partial^{i+j}E_{2}}{\partial x^{i}\partial y^{j}}\right|\leq C\varepsilon^{-i}e^{-\frac{\beta_{1}x}{\varepsilon}}, |i+jE12xiyj|Cε(i+j)eβ1x+β2yε.\displaystyle\left|\frac{\partial^{i+j}E_{12}}{\partial x^{i}\partial y^{j}}\right|\leq C\varepsilon^{-(i+j)}e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}. (2.2)

For the convection-diffusion problem (1.1)-(1.2), we consider the following Bakhvalov-type mesh introduced in [12], which is defined by

xi={σεβ1ln(12(1ε)i/N),fori=0,,N/21(1xN2)2(Ni)/N,fori=N2+1,,Nyj={σεβ1ln(12(1ε)j/N),forj=0,,N/21(1yN2)2(Nj)/N,forj=N2+1,,N\displaystyle\begin{aligned} x_{i}=\begin{cases}-\frac{\sigma\varepsilon}{\beta_{1}}\ln(1-2(1-\varepsilon)i/N),\quad\text{for}~{}i=0,\cdots,N/2\\ 1-(1-x_{\frac{N}{2}})2(N-i)/N,\quad\text{for}~{}i=\frac{N}{2}+1,\cdots,N\end{cases}\\ y_{j}=\begin{cases}-\frac{\sigma\varepsilon}{\beta_{1}}\ln(1-2(1-\varepsilon)j/N),\quad\text{for}~{}j=0,\cdots,N/2\\ 1-(1-y_{\frac{N}{2}})2(N-j)/N,\quad\text{for}~{}j=\frac{N}{2}+1,\cdots,N\end{cases}\end{aligned} (2.3)

where N4N\geq 4 is an positive integer and σk+1\sigma\geq k+1, see Figure 1. Transition points are xN/2x_{N/2} and yN/2y_{N/2}, indicating a shift in mesh from coarse to fine. Then, we get a rectangulation mesh denoted as 𝒯N\mathcal{T}_{N}. For the sake of briefness, set

Ω12=:[x0,xN/21]×[y0,yN/21],\displaystyle\Omega_{12}=:[x_{0},x_{N/2-1}]\times[y_{0},y_{N/2-1}], Ω1=:[xN/21,xN]×[y0,yN/21],\displaystyle\Omega_{1}=:[x_{N/2-1},x_{N}]\times[y_{0},y_{N/2-1}],
Ω2=:[x0,xN/21]×[yN/21,yN],\displaystyle\Omega_{2}=:[x_{0},x_{N/2-1}]\times[y_{N/2-1},y_{N}], Ω0=:[xN/21,xN]×[yN/21,yN].\displaystyle\Omega_{0}=:[x_{N/2-1},x_{N}]\times[y_{N/2-1},y_{N}].
Refer to caption
Figure 1: A Bakhvalov-type mesh with N=8N=8 and dissection of Ω\Omega.

Let hx,i=xixi1h_{x,i}=x_{i}-x_{i-1} and hy,j=yjyj1h_{y,j}=y_{j}-y_{j-1}, we omit the subscript xx or yy if there is no confusion. According to [32], we have the following lemma which introduce some important properties of Bakhvalov-type mesh.

Lemma 2.1.

In this paper, suppose that εN1\varepsilon\leq N^{-1}, then for Bakhvalov-type mesh (2.3), one can obtain the properties

C1εN1h1C2εN1,\displaystyle C_{1}\varepsilon N^{-1}\leq h_{1}\leq C_{2}\varepsilon N^{-1}, (2.4)
h1h2hN/21,\displaystyle h_{1}\leq h_{2}\leq\cdots\leq h_{N/2-1}, (2.5)
14σεhN/21σε,\displaystyle\frac{1}{4}\sigma\varepsilon\leq h_{N/2-1}\leq\sigma\varepsilon, (2.6)
12σεhN/22σN1,\displaystyle\frac{1}{2}\sigma\varepsilon\leq h_{N/2}\leq 2\sigma N^{-1}, (2.7)
N1hi2N1,N/2+1iN,\displaystyle N^{-1}\leq h_{i}\leq 2N^{-1},\quad N/2+1\leq i\leq N, (2.8)
C3σεlnNxN/2C4σlnN,XN/2Cσε|lnε|,\displaystyle C_{3}\sigma\varepsilon\ln N\leq x_{N/2}\leq C_{4}\sigma\ln N,\quad X_{N/2}\geq C\sigma\varepsilon|\ln\varepsilon|, (2.9)
hiρeβ1x/εCερNρ,1iN/21,0ρσ.\displaystyle h_{i}^{\rho}e^{-\beta_{1}x/\varepsilon}\leq C\varepsilon^{\rho}N^{-\rho},\quad 1\leq i\leq N/2-1,0\leq\rho\leq\sigma. (2.10)

3 WG scheme

In this section, we introduce the notions of WG method. Let T𝒯NT\in\mathcal{T}_{N} be any element with boundary T\partial T. We introduce a weak function v={v0,vb}v=\{v_{0},v_{b}\} on the element TT, where v0L2(T)v_{0}\in L^{2}(T), and vbL2(T)v_{b}\in L^{2}(\partial T). Note that vbv_{b} has a single value on each edge ee. Additionally, component vbv_{b} may not necessarily be the same as the trace of v0v_{0} on T\partial T.

For any integer k1k\geq 1, we introduce the space of weak functions

VN={v={v0,vb}:v0k(T),vbk(e),eT,T𝒯N},V_{N}=\left\{v=\{v_{0},v_{b}\}:v_{0}\in\mathbb{Q}_{k}(T),v_{b}\in\mathbb{P}_{k}(e),e\in\partial T,\forall T\in\mathcal{T}_{N}\right\},

where k\mathbb{Q}_{k} is the space of polynomials which are of degree not exceeding kk with respect to each one of the variables xx and yy. Let VN0V_{N}^{0} represent the subspace of VhV_{h} defined by

VN0={vVh,vb|e=0,eTΩ}.V_{N}^{0}=\left\{v\in V_{h},v_{b}|_{e}=0,e\subset\partial T\cap\partial\Omega\right\}.
Definition 3.1.

For any vVNv\in V_{N}, a discrete weak gradient w\nabla_{w} is defined on TT as a unique polynomial wv[k(T)]2\nabla_{w}v\in[\mathbb{Q}_{k}(T)]^{2} satisfying:

(wv,𝐪)T=(v0,𝐪)T+vb,𝐪𝐧T,𝐪[k(T)]2.\displaystyle\left(\nabla_{w}v,\mathbf{q}\right)_{T}=-\left(v_{0},\nabla\cdot\mathbf{q}\right)_{T}+\left\langle v_{b},\mathbf{q}\cdot\mathbf{n}\right\rangle_{\partial T},\quad\forall\mathbf{q}\in\left[\mathbb{Q}_{k}(T)\right]^{2}. (3.1)
Definition 3.2.

For any vVNv\in V_{N}, a discrete weak convection divergence wbvk(T)\nabla_{w}^{b}v\in\mathbb{Q}_{k}(T) related to 𝐛\mathbf{b} is defined on TT as a unique polynomial satisfyings

(w,kbv,τ)T=(v0,(𝐛φ))T+vb,𝐛𝐧φT,φk(T).\displaystyle\left(\nabla_{w,k}^{b}v,\tau\right)_{T}=-\left(v_{0},\nabla\cdot(\mathbf{b}\varphi)\right)_{T}+\left\langle v_{b},\mathbf{b}\cdot\mathbf{n}\varphi\right\rangle_{\partial T},\quad\forall\varphi\in\mathbb{Q}_{k}(T). (3.2)

The following notations are often used

(φ,ϕ)𝒯N=T𝒯N(φ,ϕ)T,\displaystyle(\varphi,\phi)_{\mathcal{T}_{N}}=\sum_{T\in\mathcal{T}_{N}}(\varphi,\phi)_{T}, φ,ϕ𝒯N=T𝒯Nφ,ϕT,\displaystyle\langle\varphi,\phi\rangle_{\partial\mathcal{T}_{N}}=\sum_{T\in\mathcal{T}_{N}}\langle\varphi,\phi\rangle_{\partial T}, φ𝒯N2=T𝒯NφT2,\displaystyle\|\varphi\|_{\mathcal{T}_{N}}^{2}=\sum_{T\in\mathcal{T}_{N}}\|\varphi\|_{T}^{2},

We define Tx\partial T_{x} and Ty\partial T_{y} as the sets of element edges that are parallel to the xx and yy axes, respectively. Denote +T={(x,y)T|𝐛(x,y)𝐧(x,y)0}\partial_{+}T=\{(x,y)\in\partial T|\mathbf{b}(x,y)\cdot\mathbf{n}(x,y)\leq 0\}, and STS_{T} is the penalization parameter given by

ϑT={N,ifTΩ0,εhy1,ifTΩ\Ω0,onTx,εhx1,ifTΩ\Ω0,onTy.\displaystyle\vartheta_{T}=\begin{cases}N,&\text{if}~{}T\in\Omega_{0},\\ \varepsilon h_{y}^{-1},&\text{if}~{}T\in\Omega\backslash\Omega_{0},\text{on}~{}\partial T_{x},\\ \varepsilon h_{x}^{-1},&\text{if}~{}T\in\Omega\backslash\Omega_{0},\text{on}~{}\partial T_{y}.\end{cases}

Then, a WG algorithm is proposed in the following.

Find approximate solution uN={u0,ub}VN0u_{N}=\{u_{0},u_{b}\}\in V_{N}^{0} satisfying

A(uN,v)=(f,v0),vVN0.\displaystyle A(u_{N},v)=(f,v_{0}),\quad\forall v\in V_{N}^{0}. (3.3)

where

A(uN,v)=\displaystyle A(u_{N},v)= Ad(uN,v)+Ac(uN,v),\displaystyle A_{d}(u_{N},v)+A_{c}(u_{N},v),

and

Ad(uN,v)=\displaystyle A_{d}(u_{N},v)= (wuN,wv)𝒯N+sd(uN,v),\displaystyle(\nabla_{w}u_{N},\nabla_{w}v)_{\mathcal{T}_{N}}+s_{d}\left(u_{N},v\right),
Ac(uN,v)=\displaystyle A_{c}(u_{N},v)= (wbuN,v0)𝒯N+(cu0,v0)𝒯N+sc(uN,v)\displaystyle(\nabla_{w}^{b}u_{N},v_{0})_{\mathcal{T}_{N}}+(cu_{0},v_{0})_{\mathcal{T}_{N}}+s_{c}\left(u_{N},v\right)
sd(uN,v)=\displaystyle s_{d}(u_{N},v)= i=x,yT𝒯NϑTu0ub,v0vbTi,\displaystyle\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\langle u_{0}-u_{b},v_{0}-v_{b}\right\rangle_{\partial T_{i}},
sc(uN,v)=\displaystyle s_{c}(u_{N},v)= T𝒯Ne+T𝐛𝐧(u0ub),v0vbe,\displaystyle\sum_{\begin{subarray}{c}T\in\mathcal{T}_{N}\\ e\in\partial_{+}T\end{subarray}}\left\langle-\mathbf{b}\cdot\mathbf{n}(u_{0}-u_{b}),v_{0}-v_{b}\right\rangle_{e},
Definition 3.3.

From the bilinear form in (3.3) , for all vVNv\in V_{N} we can derive an energy norm defined by

|v|2=Ad(v,v)+v0𝒯h+|𝐛𝐧|12v0vb𝒯h,\displaystyle{|||}v{|||}^{2}=A_{d}(v,v)+\|v_{0}\|_{\mathcal{T}_{h}}+\||\mathbf{b}\cdot\mathbf{n}|^{\frac{1}{2}}v_{0}-v_{b}\|_{\partial{\mathcal{T}_{h}}}, (3.4)
Lemma 3.1.

There exists a positive constant α\alpha, independent of ε\varepsilon, such that for vVN0v\in V_{N}^{0}

A(v,v)α|v|2,A(v,v)\geq\alpha{|||}v{|||}^{2}, (3.5)

where α=min{γ,12}\alpha=\min\{\gamma,\frac{1}{2}\}.

Proof.

For any vVN0v\in V_{N}^{0}, it follows from the definition of the weak divergence (3.2) that

(wbv,v0)𝒯N=(v0,(𝐛v0))𝒯N+vb,𝐛𝐧v0𝒯N=12(v0,(𝐛v0))𝒯N12(v0,(𝐛v0))𝒯N+vb,𝐛𝐧v0𝒯N=12(v0,(𝐛v0))𝒯N+12(𝐛v0,v0)𝒯N12v0,𝐛𝐧v0𝒯N+vb,𝐛𝐧v0𝒯N=12(v0,𝐛v0)𝒯N12v0vb,𝐛𝐧v0𝒯N+12vb,𝐛𝐧(v0vb)𝒯N=12(v0,𝐛v0)𝒯N12𝐛𝐧(v0vb),v0vb𝒯N\displaystyle\begin{aligned} (\nabla_{w}^{b}v,v_{0})_{\mathcal{T}_{N}}&=(v_{0},\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}+\langle v_{b},\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}\\ &=-\frac{1}{2}(v_{0},\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}-\frac{1}{2}(v_{0},\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}+\langle v_{b},\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}\\ &=-\frac{1}{2}(v_{0},\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}+\frac{1}{2}(\mathbf{b}\cdot\nabla v_{0},v_{0})_{\mathcal{T}_{N}}-\frac{1}{2}\langle v_{0},\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}+\langle v_{b},\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}\\ &=-\frac{1}{2}(v_{0},\nabla\cdot\mathbf{b}v_{0})_{\mathcal{T}_{N}}-\frac{1}{2}\langle v_{0}-v_{b},\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}+\frac{1}{2}\langle v_{b},\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b})\rangle_{\partial\mathcal{T}_{N}}\\ &=-\frac{1}{2}(v_{0},\nabla\cdot\mathbf{b}v_{0})_{\mathcal{T}_{N}}-\frac{1}{2}\langle\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial\mathcal{T}_{N}}\end{aligned} (3.6)

Then, with together (1.3) and (3.6) we have

Ac(v,v)\displaystyle A_{c}(v,v) =(wbv,v0)𝒯N+(cv0,v0)𝒯N+𝐛𝐧(v0vb),v0vb+𝒯N\displaystyle=-(\nabla_{w}^{b}v,v_{0})_{\mathcal{T}_{N}}+(cv_{0},v_{0})_{\mathcal{T}_{N}}+\langle-\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial_{+}\mathcal{T}_{N}}
=((c+12𝐛)v0,v0)𝒯N+12𝐛𝐧(v0vb),v0vb𝒯N+𝐛𝐧(v0vb),v0vb+𝒯N\displaystyle=\left((c+\frac{1}{2}\nabla\cdot\mathbf{b})v_{0},v_{0}\right)_{\mathcal{T}_{N}}+\frac{1}{2}\langle\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial\mathcal{T}_{N}}+\langle-\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial_{+}\mathcal{T}_{N}}
(γv0,v0)𝒯N+12𝐛𝐧(v0vb),v0vb+𝒯N+12𝐛𝐧(v0vb),v0vb𝒯N\+𝒯N\displaystyle\geq(\gamma v_{0},v_{0})_{\mathcal{T}_{N}}+\frac{1}{2}\langle-\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial_{+}\mathcal{T}_{N}}+\frac{1}{2}\langle\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial\mathcal{T}_{N}\backslash\partial_{+}\mathcal{T}_{N}}
(γv0,v0)𝒯N+12|𝐛𝐧|(v0vb),v0vb𝒯N\displaystyle\geq(\gamma v_{0},v_{0})_{\mathcal{T}_{N}}+\frac{1}{2}\langle|\mathbf{b}\cdot\mathbf{n}|(v_{0}-v_{b}),v_{0}-v_{b}\rangle_{\partial\mathcal{T}_{N}}

The above inequality and Ad(v,v)=a(v,v)+sd(v,v)A_{d}(v,v)=a(v,v)+s_{d}(v,v) yield

A(v,v)α|v|2,\displaystyle A(v,v)\geq\alpha{|||}v{|||}^{2},

where α=min{γ,12}\alpha=\min\{\gamma,\frac{1}{2}\}. The lemma is proved. ∎

Now, we introduce some L2L^{2} projection operators for each element T𝒯NT\in\mathcal{T}_{N} detailed as follows. Let operator 𝒬0\mathcal{Q}_{0} projects onto k(T)\mathbb{Q}_{k}(T). For each edge eTe\in\partial T, consider the operator 𝒬b\mathcal{Q}_{b} onto k(e)\mathbb{P}_{k}(e). Finally, we define a projection operator 𝒬Nu={𝒬0u,𝒬bu}\mathcal{Q}_{N}u=\left\{\mathcal{Q}_{0}u,\mathcal{Q}_{b}u\right\} for solution uu onto the space VNV_{N} on each element TT. Additionally, denote by 𝐐N\mathbf{Q}_{N} the projection operator onto [k(T)]2[\mathbb{Q}_{k}(T)]^{2}. The following lemma is commutative property of weak gradient.

Lemma 3.2.

On each element T𝒯NT\in\mathcal{T}_{N}, for any vH2(T)v\in H^{2}(T),

w(𝒬Nu)=𝐐N(u).\displaystyle\nabla_{w}(\mathcal{Q}_{N}u)=\mathbf{Q}_{N}(\nabla u). (3.7)
Proof.

For any 𝐪[k(T)]2\mathbf{q}\in[\mathbb{Q}_{k}(T)]^{2}, from the weak gradient definition (3.1), we get

(w𝒬Nu,𝐪)T\displaystyle\left(\nabla_{w}\mathcal{Q}_{N}u,\mathbf{q}\right)_{T} =(𝒬0u,𝐪)T+𝒬bu,𝐪𝐧T\displaystyle=-\left(\mathcal{Q}_{0}u,\nabla\cdot\mathbf{q}\right)_{T}+\left\langle\mathcal{Q}_{b}u,\mathbf{q}\cdot\mathbf{n}\right\rangle_{\partial T}
=(u,𝐪)T+u,𝐪𝐧T\displaystyle=-\left(u,\nabla\cdot\mathbf{q}\right)_{T}+\left\langle u,\mathbf{q}\cdot\mathbf{n}\right\rangle_{\partial T}
=(u,𝐪)T\displaystyle=\left(\nabla u,\mathbf{q}\right)_{T}
=(𝐐Nu,𝐪)T.\displaystyle=\left(\mathbf{Q}_{N}\nabla u,\mathbf{q}\right)_{T}.

This corresponds to equality (3.7). ∎

4 Error estimate

In this section, we will obtain an error estimate for the WG finite element approximation uNu_{N}. We next derive the following error equation that the error satisfies.

Lemma 4.1.

Suppose that uu is the solutions of (1.1)-(1.2) and uNu_{N} is the solutions of (3.3). Denote eN=𝒬NuuNe_{N}=\mathcal{Q}_{N}u-u_{N}. Then for any vVN0v\in V_{N}^{0}, we have

A(eN,v)=l1(u,v)l2(u,v)l3(u,v)+sd(𝒬Nu,v)+sc(𝒬Nu,v),\displaystyle A(e_{N},v)=l_{1}(u,v)-l_{2}(u,v)-l_{3}(u,v)+s_{d}(\mathcal{Q}_{N}u,v)+s_{c}(\mathcal{Q}_{N}u,v), (4.1)

where

l1(u,v)=(u𝒬0u,(𝐛v0))𝒯h,\displaystyle l_{1}(u,v)=\left(u-\mathcal{Q}_{0}u,\nabla\cdot(\mathbf{b}v_{0})\right)_{\mathcal{T}_{h}},
l2(u,v)=u𝒬bu,𝐛𝐧(v0vb)𝒯h,\displaystyle l_{2}(u,v)=\left\langle u-\mathcal{Q}_{b}u,\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b})\right\rangle_{\partial\mathcal{T}_{h}},
l3(u,v)=ε(u𝐐hu)𝐧,v0vb𝒯h.\displaystyle l_{3}(u,v)=\varepsilon\left\langle\left(\nabla u-\mathbf{Q}_{h}\nabla u\right)\cdot\mathbf{n},v_{0}-v_{b}\right\rangle_{\partial\mathcal{T}_{h}}.
Proof.

Using (3.1), (3.7) and integration by parts, we obtain

(w𝒬Nu,wv)𝒯N\displaystyle\left(\nabla_{w}\mathcal{Q}_{N}u,\nabla_{w}v\right)_{\mathcal{T}_{N}} =(𝐐Nu,wv)𝒯N\displaystyle=\left(\mathbf{Q}_{N}\nabla u,\nabla_{w}v\right)_{\mathcal{T}_{N}}
=(v0,(𝐐Nu))𝒯N+vb,(𝐐Nu)𝐧𝒯N\displaystyle=-\left(v_{0},\nabla\cdot(\mathbf{Q}_{N}\nabla u)\right)_{\mathcal{T}_{N}}+\left\langle v_{b},(\mathbf{Q}_{N}\nabla u)\cdot\mathbf{n}\right\rangle_{\partial\mathcal{T}_{N}}
=(v0,𝐐Nu)𝒯Nv0vb,(𝐐Nu)𝐧𝒯N\displaystyle=\left(\nabla v_{0},\mathbf{Q}_{N}\nabla u\right)_{\mathcal{T}_{N}}-\left\langle v_{0}-v_{b},(\mathbf{Q}_{N}\nabla u)\cdot\mathbf{n}\right\rangle_{\partial\mathcal{T}_{N}}
=(u,v0)𝒯Nv0vb,(𝐐Nu)𝐧𝒯N\displaystyle=\left(\nabla u,\nabla v_{0}\right)_{\mathcal{T}_{N}}-\left\langle v_{0}-v_{b},(\mathbf{Q}_{N}\nabla u)\cdot\mathbf{n}\right\rangle_{\partial\mathcal{T}_{N}}
=(Δu,v0)𝒯N+u𝐧,v0𝒯Nv0vb,(𝐐Nu)𝐧𝒯Nu𝐧,vb𝒯N,\displaystyle=(-\Delta u,v_{0})_{\mathcal{T}_{N}}+\langle\nabla u\cdot\mathbf{n},v_{0}\rangle_{\partial\mathcal{T}_{N}}-\left\langle v_{0}-v_{b},(\mathbf{Q}_{N}\nabla u)\cdot\mathbf{n}\right\rangle_{\partial\mathcal{T}_{N}}-\langle\nabla u\cdot\mathbf{n},v_{b}\rangle_{\partial\mathcal{T}_{N}},
=(Δu,v0)𝒯N(𝐐Nu)𝐧,v0vb𝒯N\displaystyle=(-\Delta u,v_{0})_{\mathcal{T}_{N}}-\left\langle(\mathbf{Q}_{N}-\nabla u)\cdot\mathbf{n},v_{0}-v_{b}\right\rangle_{\partial\mathcal{T}_{N}}

where we have used the fact that u𝐧,vb𝒯N=0\langle\nabla u\cdot\mathbf{n},v_{b}\rangle_{\partial\mathcal{T}_{N}}=0. Similarly, from (3.2) and integration by parts one has

(wb𝒬Nu,v0)𝒯N\displaystyle-(\nabla_{w}^{b}\mathcal{Q}_{N}u,v_{0})_{\mathcal{T}_{N}} =(𝒬0u,(𝐛v0))𝒯N𝒬bu,𝐛𝐧v0𝒯N\displaystyle=(\mathcal{Q}_{0}u,\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}-\langle\mathcal{Q}_{b}u,\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}
=(𝒬0uu,(𝐛v0))𝒯N+(u,(𝐛v0))𝒯N𝒬bu,𝐛𝐧v0𝒯N\displaystyle=(\mathcal{Q}_{0}u-u,\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}+(u,\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}-\langle\mathcal{Q}_{b}u,\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}
=(𝒬0uu,(𝐛v0))𝒯N(𝐛u,v0)𝒯N𝒬buu,𝐛𝐧v0𝒯N\displaystyle=(\mathcal{Q}_{0}u-u,\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}-(\mathbf{b}\cdot\nabla u,v_{0})_{\mathcal{T}_{N}}-\langle\mathcal{Q}_{b}u-u,\mathbf{b}\cdot\mathbf{n}v_{0}\rangle_{\partial\mathcal{T}_{N}}
=(𝐛u,v0)𝒯N+(𝒬0uu,(𝐛v0))𝒯N𝒬buu,𝐛𝐧(v0vb)𝒯N\displaystyle=-(\mathbf{b}\cdot\nabla u,v_{0})_{\mathcal{T}_{N}}+(\mathcal{Q}_{0}u-u,\nabla\cdot(\mathbf{b}v_{0}))_{\mathcal{T}_{N}}-\langle\mathcal{Q}_{b}u-u,\mathbf{b}\cdot\mathbf{n}(v_{0}-v_{b})\rangle_{\partial\mathcal{T}_{N}}

where we have used 𝒬buu,𝐛𝐧vb𝒯N=0\langle\mathcal{Q}_{b}u-u,\mathbf{b}\cdot\mathbf{n}v_{b}\rangle_{\partial\mathcal{T}_{N}}=0. Also we have

(c𝒬Nu,v0)𝒯N=(c𝒬0u,v0)𝒯N=(cu,v0)𝒯N.\displaystyle(c\mathcal{Q}_{N}u,v_{0})_{\mathcal{T}_{N}}=(c\mathcal{Q}_{0}u,v_{0})_{\mathcal{T}_{N}}=(cu,v_{0})_{\mathcal{T}_{N}}.

Notice that

ε(wuN,wv)(wbuN,v0)+(cuN,v0)+sd(uN,v)+sc(uN,v)\displaystyle\varepsilon(\nabla_{w}u_{N},\nabla_{w}v)-(\nabla_{w}^{b}u_{N},v_{0})+(cu_{N},v_{0})+s_{d}(u_{N},v)+s_{c}(u_{N},v) =(f,v0),\displaystyle=(f,v_{0}),

and

ε(Δu,v0)(𝐛u,v0)+(cu,v0)\displaystyle-\varepsilon(\Delta u,v_{0})-(\mathbf{b}\cdot\nabla u,v_{0})+(cu,v_{0}) =(f,v0).\displaystyle=(f,v_{0}).

Combined with the above equality we yield

ε(wb𝒬Nu,wv)(wb𝒬Nu,v0)+(c𝒬Nu,v0)=(f,v0)+l1(u,v)l2(u,v)l3(u,v).\displaystyle\varepsilon(\nabla_{w}^{b}\mathcal{Q}_{N}u,\nabla_{w}v)-(\nabla_{w}^{b}\mathcal{Q}_{N}u,v_{0})+(c\mathcal{Q}_{N}u,v_{0})=(f,v_{0})+l_{1}(u,v)-l_{2}(u,v)-l_{3}(u,v).

By adding sd(𝒬Nu,v)s_{d}(\mathcal{Q}_{N}u,v) and sc(𝒬Nu,v)s_{c}(\mathcal{Q}_{N}u,v) to both sides of the above equation, we get

A(𝒬NuuN,v)=l1(u,v)l2(u,v)l3(u,v)+sd(𝒬Nu,v)+sc(𝒬Nu,v).\displaystyle A(\mathcal{Q}_{N}u-u_{N},v)=l_{1}(u,v)-l_{2}(u,v)-l_{3}(u,v)+s_{d}(\mathcal{Q}_{N}u,v)+s_{c}(\mathcal{Q}_{N}u,v).

The lemma is proved. ∎

Theorem 4.1.

Let σk+1\sigma\geq k+1. Suppose that uHk+1(Ω)u\in H^{k+1}(\Omega) and uNu_{N} be the solutions of (1.1)-(1.2) and (3.3)(\ref{3.3}), respectively. Then one has

|𝒬NuuN|CNk.{|||}\mathcal{Q}_{N}u-u_{N}{|||}\leq CN^{-k}. (4.2)
Proof.

Let v=eNv=e_{N} in the error equation (4.1), we derive the following equation

A(eN,eN)=l1(u,eN)l2(u,eN)l3(u,eN)+sd(𝒬Nu,eN)+sc(𝒬Nu,eN).\displaystyle A(e_{N},e_{N})=l_{1}(u,e_{N})-l_{2}(u,e_{N})-l_{3}(u,e_{N})+s_{d}(\mathcal{Q}_{N}u,e_{N})+s_{c}(\mathcal{Q}_{N}u,e_{N}).

Using the Cauchy-Schwarz inequality and (A.5), we obtain

l1(u,eN)=(u𝒬0u,(𝐛e0))𝒯h=(𝒬0uu,𝐛e0)𝒯h+(𝒬0uu,𝐛e0)𝒯hC𝒬0uu𝒯he0𝒯h+(𝒬0uu,b1xe0+b2ye0)𝒯hC𝒬0uu𝒯he0𝒯h+(𝒬0uu,(b1b1¯)xe0+(b2b2¯)ye0)𝒯hC𝒬0uu𝒯he0𝒯hCN(k+1)|eN|.\displaystyle\begin{aligned} l_{1}(u,e_{N})&=\left(u-\mathcal{Q}_{0}u,\nabla\cdot(\mathbf{b}e_{0})\right)_{\mathcal{T}_{h}}\\ &=\left(\mathcal{Q}_{0}u-u,\nabla\cdot\mathbf{b}e_{0}\right)_{\mathcal{T}_{h}}+\left(\mathcal{Q}_{0}u-u,\mathbf{b}\cdot\nabla e_{0}\right)_{\mathcal{T}_{h}}\\ &\leq C\left\|\mathcal{Q}_{0}u-u\right\|_{\mathcal{T}_{h}}\left\|e_{0}\right\|_{\mathcal{T}_{h}}+\left(\mathcal{Q}_{0}u-u,b_{1}\partial_{x}e_{0}+b_{2}\partial_{y}e_{0}\right)_{\mathcal{T}_{h}}\\ &\leq C\left\|\mathcal{Q}_{0}u-u\right\|_{\mathcal{T}_{h}}\left\|e_{0}\right\|_{\mathcal{T}_{h}}+\left(\mathcal{Q}_{0}u-u,\left(b_{1}-\overline{b_{1}}\right)\partial_{x}e_{0}+\left(b_{2}-\overline{b_{2}}\right)\partial_{y}e_{0}\right)_{\mathcal{T}_{h}}\\ &\leq C\left\|\mathcal{Q}_{0}u-u\right\|_{\mathcal{T}_{h}}\left\|e_{0}\right\|_{\mathcal{T}_{h}}\\ &\leq CN^{-(k+1)}{|||}e_{N}{|||}.\end{aligned}

where b1¯\overline{b_{1}} and b2¯\overline{b_{2}} are piecewise constant functions whose value are hx1eb1𝑑xh_{x}^{-1}\int_{e}b_{1}\,dx and hy1eb2𝑑yh_{y}^{-1}\int_{e}b_{2}\,dy, respectively. Similarly, it follows from the Cauchy-Schwarz inequality and (A.6) that

l2(u,eN)=u𝒬bu,𝐛𝐧(e0eb)𝒯hCi=x,yT𝒯Nu𝒬buTi|𝐛𝐧|12(e0eb)TiCi=x,yT𝒯Nu𝒬0uTi|𝐛𝐧|12(e0eb)TiCi=x,yu𝒬0u𝒯Ni|𝐛𝐧|12(e0eb)𝒯NiCN(k+12)|eN|.\displaystyle\begin{aligned} l_{2}(u,e_{N})&=\left\langle u-\mathcal{Q}_{b}u,\mathbf{b}\cdot\mathbf{n}(e_{0}-e_{b})\right\rangle_{\partial\mathcal{T}_{h}}\\ &\leq C\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\left\|u-\mathcal{Q}_{b}u\right\|_{\partial T_{i}}\left\|\left|\mathbf{b}\cdot\mathbf{n}\right|^{\frac{1}{2}}(e_{0}-e_{b})\right\|_{\partial T_{i}}\\ &\leq C\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\left\|u-\mathcal{Q}_{0}u\right\|_{\partial T_{i}}\left\|\left|\mathbf{b}\cdot\mathbf{n}\right|^{\frac{1}{2}}(e_{0}-e_{b})\right\|_{\partial T_{i}}\\ &\leq C\sum_{i=x,y}\left\|u-\mathcal{Q}_{0}u\right\|_{\partial\mathcal{T}_{Ni}}\left\|\left|\mathbf{b}\cdot\mathbf{n}\right|^{\frac{1}{2}}(e_{0}-e_{b})\right\|_{\mathcal{T}_{Ni}}\\ &\leq CN^{-(k+\frac{1}{2})}{|||}e_{N}{|||}.\end{aligned}

From the Cauchy-Schwarz inequality and (A.7), we yield

l3(u,eN)=ε(u𝐐hu)𝐧,e0eb𝒯hCεi=x,yT𝒯Nu𝐐huTie0ebTiCi=x,y(T𝒯NθTu𝐐huTi2)12(T𝒯NϑTe0ebTi2)12CNk|eN|.\displaystyle\begin{aligned} l_{3}(u,e_{N})&=\varepsilon\left\langle\left(\nabla u-\mathbf{Q}_{h}\nabla u\right)\cdot\mathbf{n},e_{0}-e_{b}\right\rangle_{\partial\mathcal{T}_{h}}\\ &\leq C\varepsilon\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\left\|\nabla u-\mathbf{Q}_{h}\nabla u\right\|_{\partial T_{i}}\left\|e_{0}-e_{b}\right\|_{\partial T_{i}}\\ &\leq C\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\theta_{T}\left\|\nabla u-\mathbf{Q}_{h}\nabla u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\|e_{0}-e_{b}\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\\ &\leq CN^{-k}{|||}e_{N}{|||}.\end{aligned}

On the other hand, it follows from the definition of stabilization, Cauchy-Schwarz inequality (A.8) and (A.6) that

sd(𝒬N,eN)\displaystyle s_{d}(\mathcal{Q}_{N},e_{N}) =i=x,yT𝒯NϑT𝒬0u𝒬bu,e0ebTi\displaystyle=\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\langle\mathcal{Q}_{0}u-\mathcal{Q}_{b}u,e_{0}-e_{b}\right\rangle_{\partial T_{i}}
Ci=x,y(T𝒯NϑT𝒬0uuTi2)12(T𝒯NϑTe0ebTi2)12\displaystyle\leq C\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\|\mathcal{Q}_{0}u-u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\|e_{0}-e_{b}\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}
CNk|eN|.\displaystyle\leq CN^{-k}{|||}e_{N}{|||}.

and

sc(𝒬N,eN)\displaystyle s_{c}(\mathcal{Q}_{N},e_{N}) =i=x,yT𝒯N𝐛𝐧(𝒬0u𝒬bu),v0vb+Ti\displaystyle=\sum_{i=x,y}\sum_{T\in\mathcal{T}_{N}}\left\langle-\mathbf{b}\cdot\mathbf{n}(\mathcal{Q}_{0}u-\mathcal{Q}_{b}u),v_{0}-v_{b}\right\rangle_{\partial_{+}T_{i}}
Ci=x,y(T𝒯N𝒬0uuTi2)12(T𝒯N|𝐛𝐧|12e0ebTi2)12\displaystyle\leq C\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\left\|\mathcal{Q}_{0}u-u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{N}}\left|\mathbf{b}\cdot\mathbf{n}\right|^{\frac{1}{2}}\left\|e_{0}-e_{b}\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}
CN(k+12)|eN|.\displaystyle\leq CN^{-(k+\frac{1}{2})}{|||}e_{N}{|||}.

Combining all the estimates above with together (3.5) that

α|eN|2\displaystyle\alpha{|||}e_{N}{|||}^{2} A(eN,eN)\displaystyle\leq A(e_{N},e_{N})
|l1(u,eN)|+|l2(u,eN)|+|l3(u,eN)|+|sd(𝒬N,eN)|+|sc(𝒬N,eN)|\displaystyle\leq|l_{1}(u,e_{N})|+|l_{2}(u,e_{N})|+|l_{3}(u,e_{N})|+|s_{d}(\mathcal{Q}_{N},e_{N})|+|s_{c}(\mathcal{Q}_{N},e_{N})|
CNk|eN|.\displaystyle\leq CN^{-k}{|||}e_{N}{|||}.

which implies (4.2). This completes the proof of the theorem. ∎

5 Numerical Experiments

In this section we present numerical experiments that support our theoretical results, which solution exhibits typical exponential layer behavior. And we select σ=2k\sigma=2k for creating the Bakhvalov-type mesh.

Example 5.1.
εΔu(2+2xy)xu(3x+2y)yu+u\displaystyle-\varepsilon\Delta u-(2+2x-y)\partial_{x}u-(3-x+2y)\partial_{y}u+u =f,inΩ=(0,1)2,\displaystyle=f,\quad\text{in}~{}\Omega=(0,1)^{2},
u\displaystyle u =0,onΩ,\displaystyle=0,\quad\text{on}~{}\partial\Omega,

where f(x,y)f(x,y) is chosen such that the exact solution

u(x,y)=2sin(πx)(1e2xε)(1y)2(1eyε).u(x,y)=2\sin(\pi x)\left(1-e^{-\frac{2x}{\varepsilon}}\right)\left(1-y\right)^{2}\left(1-e^{-\frac{y}{\varepsilon}}\right).

The error |eN|{|||}e_{N}{|||} and convergence rates for several different ε\varepsilon are shown in Table 1-2.

Table 1: Example 5.1, k=1
N ε\varepsilon = 1e-6 ε\varepsilon = 1e-7 ε\varepsilon = 1e-8 ε\varepsilon = 1e-9 ε\varepsilon = 1e-10      \bigstrut
8 3.66E-01 0.00 3.84E-01 0.00 3.98E-01 0.00 4.07E-01 0.00 4.14E-01 0.00 \bigstrut
16 1.73E-01 1.08 1.83E-01 1.07 1.91E-01 1.06 1.96E-01 1.05 2.00E-01 1.05 \bigstrut
32 8.24E-02 1.07 8.81E-02 1.05 9.23E-02 1.05 9.54E-02 1.04 9.76E-02 1.03 \bigstrut
64 3.95E-02 1.06 4.27E-02 1.04 4.51E-02 1.03 4.68E-02 1.03 4.80E-02 1.02 \bigstrut
128 1.90E-02 1.06 2.08E-02 1.04 2.21E-02 1.03 2.30E-02 1.02 2.37E-02 1.02 \bigstrut
256 9.14E-03 1.06 1.01E-02 1.04 1.08E-02 1.03 1.14E-02 1.02 1.17E-02 1.01 \bigstrut
Table 2: Example 5.1, k=2
N ε\varepsilon = 1e-6 ε\varepsilon = 1e-7 ε\varepsilon = 1e-8 ε\varepsilon = 1e-9 ε\varepsilon = 1e-10      \bigstrut
8 7.89E-02 0.00 8.27E-02 0.00 8.52E-02 0.00 8.70E-02 0.00 8.85E-02 0.00 \bigstrut
16 1.93E-02 2.03 2.04E-02 2.02 2.11E-02 2.02 2.16E-02 2.01 2.20E-02 2.01 \bigstrut
32 4.70E-03 2.04 5.01E-03 2.02 5.21E-03 2.02 5.35E-03 2.01 5.45E-03 2.01 \bigstrut
64 1.14E-03 2.04 1.23E-03 2.02 1.29E-03 2.02 1.33E-03 2.01 1.35E-03 2.01 \bigstrut
128 2.77E-04 2.05 3.02E-04 2.03 3.18E-04 2.02 3.29E-04 2.01 3.36E-04 2.01 \bigstrut
Example 5.2.
εΔu2xu3yu+u\displaystyle-\varepsilon\Delta u-2\partial_{x}u-3\partial_{y}u+u =f,inΩ=(0,1)2,\displaystyle=f,\quad\text{in}~{}\Omega=(0,1)^{2},
u\displaystyle u =0,onΩ,\displaystyle=0,\quad\text{on}~{}\partial\Omega,

where f(x,y)f(x,y) is chosen such that the exact solution

u(x,y)=2sin(1x)(1e2xε)(1y)2(1e3yε).u(x,y)=2\sin(1-x)\left(1-e^{-\frac{2x}{\varepsilon}}\right)\left(1-y\right)^{2}\left(1-e^{-\frac{3y}{\varepsilon}}\right).

The error |eN|{|||}e_{N}{|||} and convergence rates for several different ε\varepsilon are shown in Table 3-4.

Table 3: Example 5.2, k=1
N ε\varepsilon = 1e-6 ε\varepsilon = 1e-7 ε\varepsilon = 1e-8 ε\varepsilon = 1e-9 ε\varepsilon = 1e-10      \bigstrut
8 8.67E-02 0.00 8.68E-02 0.00 8.69E-02 0.00 8.70E-02 0.00 8.71E-02 0.00 \bigstrut
16 3.53E-02 1.30 3.53E-02 1.30 3.54E-02 1.30 3.54E-02 1.30 3.54E-02 1.30 \bigstrut
32 1.50E-02 1.24 1.50E-02 1.24 1.50E-02 1.24 1.50E-02 1.24 1.50E-02 1.24 \bigstrut
64 6.69E-03 1.16 6.69E-03 1.16 6.69E-03 1.16 6.69E-03 1.16 6.69E-03 1.16 \bigstrut
128 3.14E-03 1.09 3.14E-03 1.09 3.14E-03 1.09 3.14E-03 1.09 3.14E-03 1.09 \bigstrut
256 1.51E-03 1.05 1.51E-03 1.05 1.51E-03 1.05 1.51E-03 1.05 1.51E-03 1.05 \bigstrut
Table 4: Example 5.2, k=2
N ε\varepsilon = 1e-6 ε\varepsilon = 1e-7 ε\varepsilon = 1e-8 ε\varepsilon = 1e-9 ε\varepsilon = 1e-10      \bigstrut
8 1.58E-02 0.00 1.58E-02 0.00 1.58E-02 0.00 1.58E-02 0.00 1.58E-02 0.00 \bigstrut
16 2.91E-03 2.44 2.91E-03 2.44 2.91E-03 2.44 2.91E-03 2.44 2.91E-03 2.44 \bigstrut
32 5.83E-04 2.32 5.83E-04 2.32 5.83E-04 2.32 5.83E-04 2.32 5.83E-04 2.32 \bigstrut
64 1.29E-04 2.17 1.29E-04 2.17 1.29E-04 2.17 1.29E-04 2.17 1.29E-04 2.17 \bigstrut
128 3.05E-05 2.08 3.05E-05 2.08 3.05E-05 2.08 3.05E-05 2.08 3.05E-05 2.08 \bigstrut

Tables 14 show our numerical results including the errors in the energy norm and convergence rates for Examples 5.1 and 5.2. These data show uniform convergence of the singular perturbation parameter ε\varepsilon.

Statements and Declarations

Data Availability. The code used in this work will be made available upon request to the authors.

Appendix A  

The goal of this Appendix is to establish some fundamental estimates useful in the error estimate. The following lemmas are employed in the convergence analysis, and readers are directed to [5] for a detailed proof process.

Lemma A.1.

Consider ϕHk+1(T)\phi\in H^{k+1}(T) with k1k\geq 1. Let 𝒬0ϕ\mathcal{Q}_{0}\phi denote the L2L^{2}-projection of ϕ\phi onto k(T)\mathbb{Q}_{k}(T). Then the following inequality estimate holds,

ϕ𝒬0ϕTC(hxk+1xk+1ϕT+hyk+1yk+1ϕT)\displaystyle\|\phi-\mathcal{Q}_{0}\phi\|_{T}\leq C\left(h_{x}^{k+1}\left\|\partial_{x}^{k+1}\phi\right\|_{T}+h_{y}^{k+1}\left\|\partial_{y}^{k+1}\phi\right\|_{T}\right) (A.1)
ϕ𝒬0ϕTiC(hjk+12jk+1ϕT+hik+1hj12ik+1ϕT+hj12hikikjϕT),\displaystyle\|\phi-\mathcal{Q}_{0}\phi\|_{\partial T_{i}}\leq C\left(h_{j}^{k+\frac{1}{2}}\|\partial_{j}^{k+1}\phi\|_{T}+h_{i}^{k+1}h_{j}^{-\frac{1}{2}}\|\partial_{i}^{k+1}\phi\|_{T}+h_{j}^{\frac{1}{2}}h_{i}^{k}\|\partial_{i}^{k}\partial_{j}\phi\|_{T}\right), (A.2)

where i,j{x,y}i,j\in\{x,y\}, and iji\neq j.

Lemma A.2.

Let vk(T)v\in\mathbb{Q}_{k}(T) with k1k\geq 1 such that the following inequalities holds,

vTi\displaystyle\|v\|_{\partial T_{i}}\leq Chj12vT,\displaystyle Ch_{j}^{-\frac{1}{2}}\|v\|_{T}, (A.3)
ivT\displaystyle\|\partial_{i}v\|_{T}\leq Chi1vT,\displaystyle Ch_{i}^{-1}\|v\|_{T}, (A.4)

where CC is a constant only depends on kk and i,j{x,y}i,j\in\{x,y\}, iji\neq j.

We would like to establish the following estimates which are useful in the convergence analysis for the WG scheme (3.3).

Lemma A.3.

Let k1k\geq 1 and uHk+1(Ω)u\in H^{k+1}(\Omega). There exists a constant CC such that the following estimates hold true,

(T𝒯Nu𝒬0uT2)12CN(k+1),\displaystyle\left(\sum_{T\in\mathcal{T}_{N}}\left\|u-\mathcal{Q}_{0}u\right\|_{T}^{2}\right)^{\frac{1}{2}}\leq CN^{-(k+1)}, (A.5)
i=x,y(T𝒯Nu𝒬0uTi2)12CN(k+12),\displaystyle\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\left\|u-\mathcal{Q}_{0}u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\leq CN^{-(k+\frac{1}{2})}, (A.6)
i=x,y(T𝒯NθTu𝐐NuTi2)12CNk.\displaystyle\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\theta_{T}\left\|\nabla u-\mathbf{Q}_{N}\nabla u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\leq CN^{-k}. (A.7)
i=x,y(T𝒯NϑTu𝒬0uTi2)12CNk,\displaystyle\sum_{i=x,y}\left(\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\|u-\mathcal{Q}_{0}u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}\leq CN^{-k}, (A.8)

where

θT={ε2N1,ifTΩ0,εhy,ifTΩ\Ω0,onTx,εhx,ifTΩ\Ω0,onTy.\displaystyle\theta_{T}=\begin{cases}\varepsilon^{2}N^{-1},&\text{if}~{}T\in\Omega_{0},\\ \varepsilon h_{y},&\text{if}~{}T\in\Omega\backslash\Omega_{0},\text{on}~{}\partial T_{x},\\ \varepsilon h_{x},&\text{if}~{}T\in\Omega\backslash\Omega_{0},\text{on}~{}\partial T_{y}.\end{cases}
Proof.

Each term in the Assumption2.1 will be considered individually. To derive inequality (A.5), we use (A.1) and Lemma2.1 to obtain

S𝒬0SΩl\displaystyle\|S-\mathcal{Q}_{0}S\|_{\Omega_{l}} C(TΩl(hx2(k+1)+hy2(k+1))hxhy)12\displaystyle\leq C\left(\sum_{T\in\Omega_{l}}\left(h_{x}^{2(k+1)}+h_{y}^{2(k+1)}\right)\cdot h_{x}h_{y}\right)^{\frac{1}{2}}
CN(hN2(k+2))12\displaystyle\leq CN\left(h_{N}^{2(k+2)}\right)^{\frac{1}{2}}
CN(k+1),\displaystyle\leq CN^{-(k+1)},

Next, considering the boundary layer E1E_{1} in region Ω12Ω1\Omega_{12}\cup\Omega_{1}, using (A.1) and Lemma2.1 we have

E1𝒬0E1Ω12Ω1\displaystyle\|E_{1}-\mathcal{Q}_{0}E_{1}\|_{\Omega_{12}\cup\Omega_{1}} C(TΩ12Ω1(hx2(k+1)xk+1E1T2+hy2(k+1)yk+1E1T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\left(h_{x}^{2(k+1)}\left\|\partial_{x}^{k+1}E_{1}\right\|_{T}^{2}+h_{y}^{2(k+1)}\left\|\partial_{y}^{k+1}E_{1}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ12Ω1(hx2k+3hy+ε2(k+1)hxhy2k+3)eβ2yεL(T)2)12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\left(h_{x}^{2k+3}h_{y}+\varepsilon^{-2(k+1)}h_{x}h_{y}^{2k+3}\right)\left\|e^{-\frac{\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
CN(hx,N2(k+3)εN1+hx,Nhy,N21N2(k+1))12\displaystyle\leq CN\left(h_{x,N}^{2(k+3)}\varepsilon N^{-1}+h_{x,N}h_{y,\frac{N}{2}-1}N^{-2(k+1)}\right)^{\frac{1}{2}}
CN(εN2(k+2)+εN(2k+3))12\displaystyle\leq CN\left(\varepsilon N^{-2(k+2)}+\varepsilon N^{-(2k+3)}\right)^{\frac{1}{2}}
CN(k+1),\displaystyle\leq CN^{-(k+1)},

As for the region Ω2Ω0\Omega_{2}\cup\Omega_{0}, we have the following estimate

E1𝒬0E1Ω2Ω0\displaystyle\|E_{1}-\mathcal{Q}_{0}E_{1}\|_{\Omega_{2}\cup\Omega_{0}} C(TΩ2Ω0(E1T2+𝒬0E1T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{1}\right\|_{T}^{2}+\left\|\mathcal{Q}_{0}E_{1}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
CE1Ω2Ω0\displaystyle\leq C\left\|E_{1}\right\|_{\Omega_{2}\cup\Omega_{0}}
CN(hx,Nhy,NE1L(Ω2Ω0)2)12\displaystyle\leq CN\left(h_{x,N}h_{y,N}\left\|E_{1}\right\|_{L^{\infty}(\Omega_{2}\cup\Omega_{0})}^{2}\right)^{\frac{1}{2}}
CNσ\displaystyle\leq CN^{-\sigma}

A similar bound can be readily obtained for E2E_{2}. For the concer layer E12E_{12}, by applying inequalities (A.1) and Lemma2.1, we arrive at

E12𝒬0E12Ω12\displaystyle\|E_{12}-\mathcal{Q}_{0}E_{12}\|_{\Omega_{12}} C(TΩ12(hx2k+3hyxk+1E12L(T)2+hxhy2k+3yk+1E12L(T)2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}}\left(h_{x}^{2k+3}h_{y}\left\|\partial_{x}^{k+1}E_{12}\right\|_{L^{\infty}(T)}^{2}+h_{x}h_{y}^{2k+3}\left\|\partial_{y}^{k+1}E_{12}\right\|_{L^{\infty}(T)}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ12ε2(k+1)(hx2k+3hy+hxhy2k+3)eβ1x+β2yεL(T)2)12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}}\varepsilon^{-2(k+1)}\left(h_{x}^{2k+3}h_{y}+h_{x}h_{y}^{2k+3}\right)\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
CN(εN1N2(k+1)(hx,N21+hy,N21))12\displaystyle\leq CN\left(\varepsilon N^{-1}N^{-2(k+1)}\left(h_{x,\frac{N}{2}-1}+h_{y,\frac{N}{2}-1}\right)\right)^{\frac{1}{2}}
CN(ε2N(2k+3))12\displaystyle\leq CN\left(\varepsilon^{2}N^{-(2k+3)}\right)^{\frac{1}{2}}
CN(k+32),\displaystyle\leq CN^{-(k+\frac{3}{2})},

Also, we have the estimate in regions Ω1Ω0\Omega_{1}\cup\Omega_{0} and Ω2Ω0\Omega_{2}\cup\Omega_{0}, as follows

E12𝒬0E12Ω1Ω0\displaystyle\|E_{12}-\mathcal{Q}_{0}E_{12}\|_{\Omega_{1}\cup\Omega_{0}} C(TΩ1Ω0(E12T2+𝒬0E12T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{1}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{T}^{2}+\left\|\mathcal{Q}_{0}E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
CE12Ω1Ω0\displaystyle\leq C\left\|E_{12}\right\|_{\Omega_{1}\cup\Omega_{0}}
CN(hx,Nhy,NE12L(Ω1Ω0)2)12\displaystyle\leq CN\left(h_{x,N}h_{y,N}\left\|E_{12}\right\|_{L^{\infty}(\Omega_{1}\cup\Omega_{0})}^{2}\right)^{\frac{1}{2}}
CNσ\displaystyle\leq CN^{-\sigma}

and

E12𝒬0E12Ω2Ω0\displaystyle\|E_{12}-\mathcal{Q}_{0}E_{12}\|_{\Omega_{2}\cup\Omega_{0}} C(TΩ2Ω0(E12T2+𝒬0E12T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{T}^{2}+\left\|\mathcal{Q}_{0}E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
CE12Ω2Ω0\displaystyle\leq C\left\|E_{12}\right\|_{\Omega_{2}\cup\Omega_{0}}
CN(hx,Nhy,NE12L(Ω2Ω0)2)12\displaystyle\leq CN\left(h_{x,N}h_{y,N}\left\|E_{12}\right\|_{L^{\infty}(\Omega_{2}\cup\Omega_{0})}^{2}\right)^{\frac{1}{2}}
CNσ\displaystyle\leq CN^{-\sigma}

Combining the above inequalities, we have completed the proof of (A.5).

Next, we give the proof of (A.6). Let Ω\Omega_{\ell} represents any region in Ω0,Ω1,Ω2\Omega_{0},\Omega_{1},\Omega_{2} and Ω12\Omega_{12}, by using (A.2) and Lemma2.1 we obtain

(TΩS𝒬0STi2)12\displaystyle\left(\sum_{T\in\Omega_{\ell}}\left\|S-\mathcal{Q}_{0}S\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}} C(TΩ(hj2k+1+hi2(k+1)hj1+hi2khj)hihj)12\displaystyle\leq C\left(\sum_{T\in\Omega_{\ell}}\left(h_{j}^{2k+1}+h_{i}^{2(k+1)}h_{j}^{-1}+h_{i}^{2k}h_{j}\right)\cdot h_{i}h_{j}\right)^{\frac{1}{2}}
CN(hN2k+1)12\displaystyle\leq CN\left(h_{N}^{2k+1}\right)^{\frac{1}{2}}
CN(k+12),\displaystyle\leq CN^{-(k+\frac{1}{2})},

For the boundary layer E1E_{1} in region Ω12Ω1\Omega_{12}\cup\Omega_{1}, using (A.2) and Lemma2.1 we have

(TΩ12Ω1E1𝒬0E1Tx2)12\displaystyle\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\left\|E_{1}-\mathcal{Q}_{0}E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
C(TΩ12Ω1(hy2k+1yk+1E1T2+hx2(k+1)hy1xk+1E1T2+hx2khyxkyE1T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\left(h_{y}^{2k+1}\left\|\partial_{y}^{k+1}E_{1}\right\|_{T}^{2}+h_{x}^{2(k+1)}h_{y}^{-1}\left\|\partial_{x}^{k+1}E_{1}\right\|_{T}^{2}+h_{x}^{2k}h_{y}\left\|\partial_{x}^{k}\partial_{y}E_{1}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ12Ω1(ε2(k+1)hxhy2(k+1)+hx2k+3+ε2hx2k+1hy2)eβ2yεL(T)2)12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\left(\varepsilon^{-2(k+1)}\cdot h_{x}h_{y}^{2(k+1)}+h_{x}^{2k+3}+\varepsilon^{-2}\cdot h_{x}^{2k+1}h_{y}^{2}\right)\left\|e^{-\frac{\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
CN(hx,NN2(k+1)+hx,N2k+3+hx,N2k+1N2)12\displaystyle\leq CN\left(h_{x,N}N^{-2(k+1)}+h_{x,N}^{2k+3}+h_{x,N}^{2k+1}N^{-2}\right)^{\frac{1}{2}}
CN(k+12),\displaystyle\leq CN^{-(k+\frac{1}{2})},

By using (A.3), (A.4) and Lemma2.1 in the rest of the region we get

(TΩ2Ω0E1𝒬0E1Tx2)12\displaystyle\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left\|E_{1}-\mathcal{Q}_{0}E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}} C(TΩ2Ω0(E1T12+𝒬0E1T12))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{1}\right\|_{\partial T_{1}}^{2}+\left\|\mathcal{Q}_{0}E_{1}\right\|_{\partial T_{1}}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ2Ω0(E1T12+hy1E1T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{1}\right\|_{\partial T_{1}}^{2}+h_{y}^{-1}\left\|E_{1}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(N01e2β1yε𝑑x+TΩ2Ω0hxeβ1yεL(T)2)12\displaystyle\leq C\left(N\int_{0}^{1}e^{-\frac{2\beta_{1}y}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}\cup\Omega_{0}}h_{x}\left\|e^{-\frac{\beta_{1}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
C(NN2σ+hx,NN2N2σ)12\displaystyle\leq C\left(N\cdot N^{-2\sigma}+h_{x,N}\cdot N^{2}\cdot N^{-2\sigma}\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

Similar result are easily obtained for Ty\partial T_{y}. The same goes for the boundary layer E2E_{2}. Now discuss the concer layer E12E_{12}, we have

(TΩ12E12𝒬0E12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{12}}\left\|E_{12}-\mathcal{Q}_{0}E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
C(TΩ12(hy2k+1yk+1E12T2+hx2(k+1)hy1xk+1E12T2+hx2khyxkyE12T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}}\left(h_{y}^{2k+1}\left\|\partial_{y}^{k+1}E_{12}\right\|_{T}^{2}+h_{x}^{2(k+1)}h_{y}^{-1}\left\|\partial_{x}^{k+1}E_{12}\right\|_{T}^{2}+h_{x}^{2k}h_{y}\left\|\partial_{x}^{k}\partial_{y}E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ12ε2(k+1)(hxhy2(k+1)+hx2k+3+hx2k+1hy2)eβ1x+β2yεL(T)2)12\displaystyle\leq C\left(\sum_{T\in\Omega_{12}}\varepsilon^{-2(k+1)}\left(h_{x}h_{y}^{2(k+1)}+h_{x}^{2k+3}+h_{x}^{2k+1}h_{y}^{2}\right)\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
CN(εN1N2(k+1)+hx,N21N2(k+1)+εN(2k+1)N2)12\displaystyle\leq CN\left(\varepsilon N^{-1}N^{-2(k+1)}+h_{x,\frac{N}{2}-1}N^{-2(k+1)}+\varepsilon N^{-(2k+1)}N^{-2}\right)^{\frac{1}{2}}
CN(k+12),\displaystyle\leq CN^{-(k+\frac{1}{2})},

where we have used (A.2) and Lemma2.1. And in other regions, using (A.3), (A.4) and Lemma2.1 we derive

(TΩ1Ω0E12𝒬0E12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{1}\cup\Omega_{0}}\left\|E_{12}-\mathcal{Q}_{0}E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}} C(TΩ1Ω0(E12Tx2+𝒬0E12Tx2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{1}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{\partial T_{x}}^{2}+\left\|\mathcal{Q}_{0}E_{12}\right\|_{\partial T_{x}}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ1Ω0(E12Tx2+hy1E12T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{1}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{\partial T_{x}}^{2}+h_{y}^{-1}\left\|E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(NxN/211e2(β1x+β2y)ε𝑑x+TΩ1Ω0hxeβ1x+β2yεL(T)2)12\displaystyle\leq C\left(N\int_{x_{N/2-1}}^{1}e^{-\frac{2(\beta_{1}x+\beta_{2}y)}{\varepsilon}}\,dx+\sum_{T\in\Omega_{1}\cup\Omega_{0}}h_{x}\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
C(NεN2σ+hx,NN2N2σ)12\displaystyle\leq C\left(N\cdot\varepsilon N^{-2\sigma}+h_{x,N}\cdot N^{2}\cdot N^{-2\sigma}\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

and

(TΩ2Ω0E12𝒬0E12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left\|E_{12}-\mathcal{Q}_{0}E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}} C(TΩ2Ω0(E12Tx2+𝒬0E12Tx2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{\partial T_{x}}^{2}+\left\|\mathcal{Q}_{0}E_{12}\right\|_{\partial T_{x}}^{2}\right)\right)^{\frac{1}{2}}
C(TΩ2Ω0(E12Tx2+hy1E12T2))12\displaystyle\leq C\left(\sum_{T\in\Omega_{2}\cup\Omega_{0}}\left(\left\|E_{12}\right\|_{\partial T_{x}}^{2}+h_{y}^{-1}\left\|E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
C(N01e2(β1x+β2y)ε𝑑x+TΩ2Ω0hxeβ1x+β2yεL(T)2)12\displaystyle\leq C\left(N\int_{0}^{1}e^{-\frac{2(\beta_{1}x+\beta_{2}y)}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}\cup\Omega_{0}}h_{x}\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
C(NεN2σ+hx,NN2N2σ)12\displaystyle\leq C\left(N\cdot\varepsilon N^{-2\sigma}+h_{x,N}\cdot N^{2}\cdot N^{-2\sigma}\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

Also it is easy to get similar result for Ty\partial T_{y}. Together with the above estimates, we easily get inequality (A.6).

Let’s prove (A.7) now. The notation Ωτ\Omega_{\tau} represents any region in Ω0,Ω1\Omega_{0},\Omega_{1}, and Ω2\Omega_{2}. By the definition of θT\theta_{T} and (A.2), we obtain

(TΩτθTS𝐐NSTi2)12\displaystyle\left(\sum_{T\in\Omega_{\tau}}\theta_{T}\left\|\nabla S-\mathbf{Q}_{N}\nabla S\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}} =(TΩτεhjS𝐐NSTi2)12\displaystyle=\left(\sum_{T\in\Omega_{\tau}}\varepsilon h_{j}\left\|\nabla S-\mathbf{Q}_{N}\nabla S\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ12(hj2k+hi2k+hi2(k1)hj2)hihj)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{12}}\left(h_{j}^{2k}+h_{i}^{2k}+h_{i}^{2(k-1)}h_{j}^{2}\right)\cdot h_{i}h_{j}\right)^{\frac{1}{2}}
Cε12N(hN2(k+1))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}N\left(h_{N}^{2(k+1)}\right)^{\frac{1}{2}}
CN(k+12),\displaystyle\leq CN^{-(k+\frac{1}{2})},

And for the region Ω0\Omega_{0}, we also have

(TΩ0θTS𝐐NSTi2)12\displaystyle\left(\sum_{T\in\Omega_{0}}\theta_{T}\left\|\nabla S-\mathbf{Q}_{N}\nabla S\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}} =(TΩ0ε2N1S𝐐NSTi2)12\displaystyle=\left(\sum_{T\in\Omega_{0}}\varepsilon^{2}N^{-1}\left\|\nabla S-\mathbf{Q}_{N}\nabla S\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}}
Cε(TΩ12N1(hj2k1+hi2khj1+hi2(k1)hj)hihj)12\displaystyle\leq C\varepsilon\left(\sum_{T\in\Omega_{12}}N^{-1}\left(h_{j}^{2k-1}+h_{i}^{2k}h_{j}^{-1}+h_{i}^{2(k-1)}h_{j}\right)\cdot h_{i}h_{j}\right)^{\frac{1}{2}}
CεN(N1hN2k)12\displaystyle\leq C\varepsilon N\left(N^{-1}\cdot h_{N}^{2k}\right)^{\frac{1}{2}}
CN(k+12),\displaystyle\leq CN^{-(k+\frac{1}{2})},

where i,j{x,y}i,j\in\{x,y\} and iji\neq j. For the boundary layer E1E_{1} in region Ω12Ω1\Omega_{12}\cup\Omega_{1}, we have

(TΩ12Ω1θTE1𝐐NE1Tx2)12=(TΩ12Ω1εhyE1𝐐NE1Tx2)12\displaystyle\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\theta_{T}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\varepsilon h_{y}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ12Ω1(hy2k(ykxE1T2+yk+1E1T2)+hx2k(xk+1E1T2+xkyE1T2)\displaystyle\leq C\varepsilon^{\frac{1}{2}}\Bigg{(}\sum_{T\in\Omega_{12}\cup\Omega_{1}}\Big{(}h_{y}^{2k}\left(\left\|\partial_{y}^{k}\partial_{x}E_{1}\right\|_{T}^{2}+\left\|\partial_{y}^{k+1}E_{1}\right\|_{T}^{2}\right)+h_{x}^{2k}\left(\left\|\partial_{x}^{k+1}E_{1}\right\|_{T}^{2}+\left\|\partial_{x}^{k}\partial_{y}E_{1}\right\|_{T}^{2}\right)
+hx2(k1)hy2(xkyE1T2+xk1y2E1T2)))12\displaystyle\quad+h_{x}^{2(k-1)}h_{y}^{2}\left(\left\|\partial_{x}^{k}\partial_{y}E_{1}\right\|_{T}^{2}+\left\|\partial_{x}^{k-1}\partial_{y}^{2}E_{1}\right\|_{T}^{2}\right)\Big{)}\Bigg{)}^{\frac{1}{2}}
Cε12(TΩ12Ω1(hy2k+1hx(ε2k+ε2(k+1))+hx2k+1hy(1+ε2)\displaystyle\leq C\varepsilon^{\frac{1}{2}}\Bigg{(}\sum_{T\in\Omega_{12}\cup\Omega_{1}}\Big{(}h_{y}^{2k+1}h_{x}\left(\varepsilon^{-2k}+\varepsilon^{-2(k+1)}\right)+h_{x}^{2k+1}h_{y}\left(1+\varepsilon^{-2}\right)
+hx2k1hy3(ε2+ε4))eβ2yεL(T)2)12\displaystyle\quad+h_{x}^{2k-1}h_{y}^{3}\left(\varepsilon^{-2}+\varepsilon^{-4}\right)\Big{)}\left\|e^{-\frac{\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\Bigg{)}^{\frac{1}{2}}
Cε12N((hx,NN(2k+1)+hx,N2k+1N1+hx,N2k1N3)(ε+ε1))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}N\left(\left(h_{x,N}N^{-(2k+1)}+h_{x,N}^{2k+1}N^{-1}+h_{x,N}^{2k-1}N^{-3}\right)\cdot\left(\varepsilon+\varepsilon^{-1}\right)\right)^{\frac{1}{2}}
CNk,\displaystyle\leq CN^{-k},

In region Ω2\Omega_{2}, using (A.3), (A.4) and Lemma2.1 we get

(TΩ2θTE1𝐐NE1Tx2)12=(TΩ2εhyE1𝐐NE1Tx2)12\displaystyle\left(\sum_{T\in\Omega_{2}}\theta_{T}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{2}}\varepsilon h_{y}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ2hy(xE1T12+yE1T12)+xE1T2+yE1T2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{2}}h_{y}\left(\left\|\partial_{x}E_{1}\right\|_{\partial T_{1}}^{2}+\left\|\partial_{y}E_{1}\right\|_{\partial T_{1}}^{2}\right)+\left\|\partial_{x}E_{1}\right\|_{T}^{2}+\left\|\partial_{y}E_{1}\right\|_{T}^{2}\right)^{\frac{1}{2}}
Cε12(hy,NN(1+ε2)0xN/21e2β2yε𝑑x+TΩ2(1+ε2)hxhyeβ2yεL(T)2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(h_{y,N}\cdot N\left(1+\varepsilon^{-2}\right)\int_{0}^{x_{N/2-1}}e^{-\frac{2\beta_{2}y}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}}\left(1+\varepsilon^{-2}\right)h_{x}h_{y}\left\|e^{-\frac{\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε12((1+ε2)(εN12σ+εN1N22σ))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\left(1+\varepsilon^{-2}\right)\left(\varepsilon\cdot N^{1-2\sigma}+\varepsilon N^{-1}\cdot N^{2-2\sigma}\right)\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

Similarly, for the region Ω0\Omega_{0} we have

(TΩ0θTE1𝐐NE1Tx2)12=(TΩ0ε2N1E1𝐐NE1Tx2)12\displaystyle\left(\sum_{T\in\Omega_{0}}\theta_{T}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{0}}\varepsilon^{2}N^{-1}\left\|\nabla E_{1}-\mathbf{Q}_{N}\nabla E_{1}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε(TΩ0N1(xE1Tx2+yE1Tx2)+N1hy1(xE1T2+yE1T2))12\displaystyle\leq C\varepsilon\left(\sum_{T\in\Omega_{0}}N^{-1}\left(\left\|\partial_{x}E_{1}\right\|_{\partial T_{x}}^{2}+\left\|\partial_{y}E_{1}\right\|_{\partial T_{x}}^{2}\right)+N^{-1}h_{y}^{-1}\left(\left\|\partial_{x}E_{1}\right\|_{T}^{2}+\left\|\partial_{y}E_{1}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
Cε(N1N(1+ε2)xN/211e2β2yε𝑑x+TΩ2(1+ε2)N1hxeβ2yεL(T)2)12\displaystyle\leq C\varepsilon\left(N^{-1}\cdot N\left(1+\varepsilon^{-2}\right)\int_{x_{N/2-1}}^{1}e^{-\frac{2\beta_{2}y}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}}\left(1+\varepsilon^{-2}\right)N^{-1}h_{x}\left\|e^{-\frac{\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε((1+ε2)N2σ)12\displaystyle\leq C\varepsilon\left(\left(1+\varepsilon^{-2}\right)N^{-2\sigma}\right)^{\frac{1}{2}}
CNσ,\displaystyle\leq CN^{-\sigma},

It is easy to get similar result for Ty\partial T_{y} and the boundary layer E2E_{2} in the same way. By arguments similar to the ones used above, for the concer layer E12E_{12}, one has

(TΩ12θTE12𝐐NE12Tx2)12=(TΩ12Ω1εhyE12𝐐NE12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{12}}\theta_{T}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{12}\cup\Omega_{1}}\varepsilon h_{y}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ12(hy2k(ykxE12T2+yk+1E12T2)+hx2k(xk+1E12T2+xkyE12T2)+hx2(k1)hy2(xkyE12T2+xk1y2E12T2)))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{12}}\left(h_{y}^{2k}\left(\left\|\partial_{y}^{k}\partial_{x}E_{12}\right\|_{T}^{2}+\left\|\partial_{y}^{k+1}E_{12}\right\|_{T}^{2}\right)+h_{x}^{2k}\left(\left\|\partial_{x}^{k+1}E_{12}\right\|_{T}^{2}+\left\|\partial_{x}^{k}\partial_{y}E_{12}\right\|_{T}^{2}\right)+h_{x}^{2(k-1)}h_{y}^{2}\left(\left\|\partial_{x}^{k}\partial_{y}E_{12}\right\|_{T}^{2}+\left\|\partial_{x}^{k-1}\partial_{y}^{2}E_{12}\right\|_{T}^{2}\right)\right)\right)^{\frac{1}{2}}
Cε12(TΩ12ε2(k+1)(hy2k+1hx+hx2k+1hy+hx2k1hy3)eβ1x+β2yεL(T)2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{12}}\varepsilon^{-2(k+1)}\left(h_{y}^{2k+1}h_{x}+h_{x}^{2k+1}h_{y}+h_{x}^{2k-1}h_{y}^{3}\right)\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε12N(N(2k+1)N1+N(2k+1)N1+N(2k1)N3)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}N\left(N^{-(2k+1)}\cdot N^{-1}+N^{-(2k+1)}N^{-1}+N^{-(2k-1)}N^{-3}\right)^{\frac{1}{2}}
Cε12Nk,\displaystyle\leq C\varepsilon^{\frac{1}{2}}N^{-k},

Using (A.3), (A.4) and Lemma2.1, we obtain

(TΩ1θTE12𝐐NE12Tx2)12=(TΩ1εh2E12𝐐NE12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{1}}\theta_{T}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{1}}\varepsilon h_{2}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ1hy(xE12Tx2+yE12Tx2)+xE12T2+yE12T2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{1}}h_{y}\left(\left\|\partial_{x}E_{12}\right\|_{\partial T_{x}}^{2}+\left\|\partial_{y}E_{12}\right\|_{\partial T_{x}}^{2}\right)+\left\|\partial_{x}E_{12}\right\|_{T}^{2}+\left\|\partial_{y}E_{12}\right\|_{T}^{2}\right)^{\frac{1}{2}}
Cε12(hy,N21Nε2xN/211e2(β1x+β2y)ε𝑑x+TΩ1ε2hxhyeβ1x+β2yεL(T)2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(h_{y,\frac{N}{2}-1}\cdot N\varepsilon^{-2}\int_{x_{N/2-1}}^{1}e^{-\frac{2(\beta_{1}x+\beta_{2}y)}{\varepsilon}}\,dx+\sum_{T\in\Omega_{1}}\varepsilon^{-2}h_{x}h_{y}\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε12(ε2(ε2N12σ+εN1N22σ))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\varepsilon^{-2}\left(\varepsilon^{2}\cdot N^{1-2\sigma}+\varepsilon N^{-1}\cdot N^{2-2\sigma}\right)\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

In the same way, we also have

(TΩ2θTE12𝐐NE12Tx2)12=(TΩ2εh2E12𝐐NE12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{2}}\theta_{T}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{2}}\varepsilon h_{2}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε12(TΩ2hy(xE12Tx2+yE12Tx2)+xE12T2+yE12T2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\sum_{T\in\Omega_{2}}h_{y}\left(\left\|\partial_{x}E_{12}\right\|_{\partial T_{x}}^{2}+\left\|\partial_{y}E_{12}\right\|_{\partial T_{x}}^{2}\right)+\left\|\partial_{x}E_{12}\right\|_{T}^{2}+\left\|\partial_{y}E_{12}\right\|_{T}^{2}\right)^{\frac{1}{2}}
Cε12(hy,NNε20xN/21e2(β1x+β2y)ε𝑑x+TΩ2ε2hxhyeβ1x+β2yεL(T)2)12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(h_{y,N}\cdot N\varepsilon^{-2}\int_{0}^{x_{N/2-1}}e^{-\frac{2(\beta_{1}x+\beta_{2}y)}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}}\varepsilon^{-2}h_{x}h_{y}\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε12(ε2(εN2σ+εN1N22σ))12\displaystyle\leq C\varepsilon^{\frac{1}{2}}\left(\varepsilon^{-2}\left(\varepsilon\cdot N^{-2\sigma}+\varepsilon N^{-1}\cdot N^{2-2\sigma}\right)\right)^{\frac{1}{2}}
CN12σ,\displaystyle\leq CN^{\frac{1}{2}-\sigma},

and

(TΩ0θTE12𝐐NE12Tx2)12=(TΩ0ε2N1E12𝐐NE12Tx2)12\displaystyle\left(\sum_{T\in\Omega_{0}}\theta_{T}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}=\left(\sum_{T\in\Omega_{0}}\varepsilon^{2}N^{-1}\left\|\nabla E_{12}-\mathbf{Q}_{N}\nabla E_{12}\right\|_{\partial T_{x}}^{2}\right)^{\frac{1}{2}}
Cε(TΩ0N1(xE12Tx2+yE12Tx2)+N1hy1(xE12T2+yE12T2))12\displaystyle\leq C\varepsilon\left(\sum_{T\in\Omega_{0}}N^{-1}\left(\left\|\partial_{x}E_{12}\right\|_{\partial T_{x}}^{2}+\left\|\partial_{y}E_{12}\right\|_{\partial T_{x}}^{2}\right)+N^{-1}h_{y}^{-1}\left(\left\|\partial_{x}E_{12}\right\|_{T}^{2}+\left\|\partial_{y}E_{12}\right\|_{T}^{2}\right)\right)^{\frac{1}{2}}
Cε(N1Nε2xN/211e2(β1x+β2y)ε𝑑x+TΩ2ε2N1hxeβ1x+β2yεL(T)2)12\displaystyle\leq C\varepsilon\left(N^{-1}\cdot N\varepsilon^{-2}\int_{x_{N/2-1}}^{1}e^{-\frac{2(\beta_{1}x+\beta_{2}y)}{\varepsilon}}\,dx+\sum_{T\in\Omega_{2}}\varepsilon^{-2}N^{-1}h_{x}\left\|e^{-\frac{\beta_{1}x+\beta_{2}y}{\varepsilon}}\right\|_{L^{\infty}(T)}^{2}\right)^{\frac{1}{2}}
Cε(ε2(εN2σ+N2σ))12\displaystyle\leq C\varepsilon\left(\varepsilon^{-2}\left(\varepsilon N^{-2\sigma}+N^{-2\sigma}\right)\right)^{\frac{1}{2}}
CNσ,\displaystyle\leq CN^{-\sigma},

Also it is easy to get similar result for Ty\partial T_{y}. Combining the above estimates, We have completed the proof of (A.7).

Finally, for the last inequality (A.8), note that ϑT=εhj1Cεh11CN\vartheta_{T}=\varepsilon h_{j}^{-1}\leq C\varepsilon h_{1}^{-1}\leq CN in regions Ω1\Omega_{1}, Ω2\Omega_{2}, Ω12\Omega_{12} and ϑT=N\vartheta_{T}=N in region Ω0\Omega_{0}. Together with (A.6) we get

(T𝒯NϑTu𝒬0uTi2)12\displaystyle\left(\sum_{T\in\mathcal{T}_{N}}\vartheta_{T}\left\|u-\mathcal{Q}_{0}u\right\|_{\partial T_{i}}^{2}\right)^{\frac{1}{2}} CNk.\displaystyle\leq CN^{-k}.

At this point, all the estimates are proved.

References

  • [1] V. B. Andreev and N. V. Kopteva, On the convergence, uniform with respect to a small parameter, of monotone three-point difference schemes, Differ. Uravn., 34 (1998), pp. 921–928, 1006.
  • [2] N. S. Bahvalov, On the optimization of the methods for solving boundary value problems in the presence of a boundary layer, Ž. Vyčisl. Mat i Mat. Fiz., 9 (1969), pp. 841–859.
  • [3] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), pp. Paper No. 5, 15.
  • [4] S. Franz and H.-G. Roos, The capriciousness of numerical methods for singular perturbations, SIAM Rev., 53 (2011), pp. 157–173.
  • [5] E. H. Georgoulis, Discontinuous Galerkin methods on shape-regular and anisotropic meshes, PhD thesis, University of Oxford D. Phil. Thesis, 2003.
  • [6] N. Kopteva, Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes, vol. 66, 2001, pp. 179–197. Archives for scientific computing. Numerical methods for transport-dominated and related problems (Magdeburg, 1999).
  • [7] R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal., 47 (2008/09), pp. 89–108.
  • [8]  , Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities, Numer. Math., 112 (2009), pp. 295–318.
  • [9] R. Lin, X. Ye, S. Zhang, and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), pp. 1482–1497.
  • [10] T. Linß, Uniform superconvergence of a Galerkin finite element method on Shishkin-type meshes, Numer. Methods Partial Differential Equations, 16 (2000), pp. 426–440.
  • [11] T. Linß, The necessity of Shishkin decompositions, Appl. Math. Lett., 14 (2001), pp. 891–896.
  • [12] T. Linß, Layer-adapted meshes for reaction-convection-diffusion problems, vol. 1985 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.
  • [13] T. Linßand M. Stynes, The SDFEM on Shishkin meshes for linear convection-diffusion problems, Numer. Math., 87 (2001), pp. 457–484.
  • [14] L.-B. Liu, H. Leng, and G. Long, Analysis of the SDFEM for singularly perturbed differential-difference equations, Calcolo, 55 (2018), pp. Paper No. 23, 17.
  • [15] L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), pp. 327–342.
  • [16] L. Mu, J. Wang, X. Ye, and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), pp. 363–386.
  • [17] H.-G. Roos, M. Stynes, and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, vol. 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second ed., 2008. Convection-diffusion-reaction and flow problems.
  • [18] H.-G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Numer. Methods Partial Differential Equations, 23 (2007), pp. 1560–1576.
  • [19] G. I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Keldysh Institute of Applied Mathematics, Moscow, In Russian, 1990. Second Doctoral thesis.
  • [20] S. Sumit, S. Kumar, and M. Kumar, Optimal fourth-order parameter-uniform convergence of a non-monotone scheme on equidistributed meshes for singularly perturbed reaction-diffusion problems, Int. J. Comput. Math., 99 (2022), pp. 1638–1653.
  • [21] c. Toprakseven, A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl. Numer. Math., 168 (2021), pp. 1–12.
  • [22]  , Optimal order uniform convergence of weak Galerkin finite element method on Bakhvalov-type meshes for singularly perturbed convection dominated problems, Hacet. J. Math. Stat., 52 (2023), pp. 850–875.
  • [23] c. Toprakseven and P. Zhu, Uniform convergent modified weak Galerkin method for convection-dominated two-point boundary value problems, Turkish J. Math., 45 (2021), pp. 2703–2730.
  • [24] S. Toprakseven, Superconvergence of a modified weak Galerkin method for singularly perturbed two-point elliptic boundary-value problems, Calcolo, 59 (2022), pp. Paper No. 1, 35.
  • [25] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), pp. 103–115.
  • [26]  , A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), pp. 155–174.
  • [27] R. Wang, X. Wang, Q. Zhai, and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), pp. 171–185.
  • [28] X. Wang, Q. Zhai, and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), pp. 13–24.
  • [29] Z. Wang, R. Wang, and J. Liu, Robust weak Galerkin finite element solvers for Stokes flow based on a lifting operator, Comput. Math. Appl., 125 (2022), pp. 90–100.
  • [30] H. Zarin and H.-G. Roos, Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100 (2005), pp. 735–759.
  • [31] Q. Zhai, R. Zhang, and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19 (2016), pp. 1409–1434.
  • [32] J. Zhang and X. Liu, Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes, J. Sci. Comput., 85 (2020), pp. Paper No. 2, 14.
  • [33] J. Zhang and X. Liu, Uniform convergence of a weak Galerkin finite element method on Shishkin mesh for singularly perturbed convection-diffusion problems in 2D, Appl. Math. Comput., 432 (2022), pp. Paper No. 127346, 12.
  • [34] J. Zhang and X. Liu, Uniform convergence of a weak Galerkin method for singularly perturbed convection-diffusion problems, Math. Comput. Simulation, 200 (2022), pp. 393–403.
  • [35] H. Zhu and Z. Zhang, Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer, Math. Comp., 83 (2014), pp. 635–663.
  • [36] P. Zhu and S. Xie, A uniformly convergent weak Galerkin finite element method on Shishkin mesh for 1d convection-diffusion problem, J. Sci. Comput., 85 (2020), pp. Paper No. 34, 22.
  • [37] P. Zhu, Y. Yang, and Y. Yin, Higher order uniformly convergent NIPG methods for 1-d singularly perturbed problems of convection-diffusion type, Appl. Math. Model., 39 (2015), pp. 6806–6816.