This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Convergence analysis of a finite difference method for stochastic Cahn–Hilliard equation

Jialin Hong LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China [email protected] Diancong Jin School of Mathematics and Statistics, Huazhong University of Science and Technology, and Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China [email protected]  and  Derui Sheng LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China [email protected]
Abstract.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn–Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order 11. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in L1()L^{1}(\mathbb{R}) to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly 38\frac{3}{8}, where a difficulty we overcome is to derive the optimal Hölder continuity of the spatial semi-discrete numerical solution.

Key words and phrases:
strong convergence rate, finite difference method, exponential Euler method, stochastic Cahn–Hilliard equation
2010 Mathematics Subject Classification:
65C30, 60H35, 60H15, 60H07
This work is supported by the National key R&D Program of China under Grant No. 2020YFA0713701, National Natural Science Foundation of China (Nos. 11971470, 11871068, 12031020, 12022118), and the Fundamental Research Funds for the Central Universities 3004011142.

1. Introduction

Consider the following stochastic Cahn–Hilliard equation

tu+Δ2u=Δf(u)+σ(u)W˙,in[0,T]×𝒪\displaystyle\begin{split}\partial_{t}u+\Delta^{2}u&=\Delta f(u)+\sigma(u)\dot{W},\quad\text{in}~{}[0,T]\times\mathcal{O}\\ \end{split} (1.1)

with initial condition u(0,)=u0u(0,\cdot)=u_{0} and homogeneous Dirichlet boundary conditions (DBCs) u=Δu=0u=\Delta u=0 on 𝒪\partial\mathcal{O}. Here, 𝒪:=(0,π)\mathcal{O}:=(0,\pi), T>0T>0, and {W(t,x),(t,x)[0,T]×𝒪}\{W(t,x),(t,x)\in[0,T]\times\mathcal{O}\} is a Brownian sheet defined on some probability space (Ω,,)(\Omega,\mathscr{F},\mathbb{P}). Assume that u0:𝒪u_{0}:\mathcal{O}\rightarrow\mathbb{R} is a deterministic continuous function, and σ\sigma is bounded and globally Lipschitz continuous. Eq. (1.1) is a well-known phenomenological model to describe the complicated phase separation. In the original form, ff is the derivative of the homogeneous free energy FF which contains a logarithmic term and in some cases can be approximated by an even-degree polynomial with a positive dominant coefficient [4], for example, F(x)=14x412x2F(x)=\frac{1}{4}x^{4}-\frac{1}{2}x^{2}. In this case, the truncation technique is usually used to localize (1.1) such that the sequence {uR}R1\{u_{R}\}_{R\geq 1} given by

tuR+Δ2uR=ΔfR(uR)+σ(u)W˙,in[0,T]×𝒪\displaystyle\begin{split}\partial_{t}u_{R}+\Delta^{2}u_{R}&=\Delta f_{R}(u_{R})+\sigma(u)\dot{W},\quad\text{in}~{}[0,T]\times\mathcal{O}\\ \end{split} (1.2)

can approximate uu in some sense (see e.g., [4, 8]), where {fR}R1\{f_{R}\}_{R\geq 1} satisfies the global Lipschitz condition. Hence, an effective numerical method applied to Eq. (1.2) is expected to approximate Eq. (1.1) well. With this consideration, the present work investigates numerical methods for stochastic Cahn–Hilliard equations with Lipschitz nonlinearity (i.e., ff is globally Lipschitz continuous), which includes the linearized Cahn–Hilliard equation (f=0f=0).

The existing results on the numerical methods for stochastic Cahn–Hilliard equations mainly focus on the strong convergence analysis. Without being too exhaustive, we mention [5, 21] on the finite element approximation for the case of f=0f=0. For the case of polynomial nonlinearity and additive noise, [19] and [14] respectively obtain the strong convergence of a spatial semi-discretization and a full discretization; [10, 24] establish the strong convergence rates of full discretizations based on the finite element method and spectral Galerkin method in space, respectively. Concerning the case of multiplicative noise, [8] presents the sharp strong convergence rate for a full discretization by using the spectral Galerkin method in space. In addition to the strong convergence analysis, the convergence analysis of densities of numerical solutions is also meaningful, which provides a theoretical foundation to approximate the density of the exact solution of the original system by means of numerical methods. There have been plenty results on density convergence of numerical solutions for various stochastic systems (see e.g., [3, 6, 9, 16, 18, 22]), of which we have not yet found relevant results for stochastic Cahn-Hilliard equations. The present paper aims to approximate the density of the exact solution of Eq. (1.1) via a spatial finite difference method (FDM) and present the strong convergence rate and density convergence of the associated numerical solution.

The spatial FDM has been employed to numerically solve, for instance, stochastic heat equations [15, 11, 1] and stochastic wave equations [7]. First, we give subtle error estimates between the discrete Green function of the spatial FDM and the exact one. Then under the globally Lipschitz condition on ff, we obtain the strong convergence order 11 for the spatial semi-discrete numerical solution un(t,x)u^{n}(t,x) based on the FDM, with πn\frac{\pi}{n} being the spatial stepsize. Further, it is shown that the Malliavin derivative of un(t,x)u^{n}(t,x) has the strong convergence order 11 as well. Combining the above results with the negative moment estimates of the exact solution, we deduce that the spatial semi-discrete numerical solution admits a density, which converges in L1()L^{1}(\mathbb{R}) to the density of the exact solution.

For more effective computation, we further discretize unu^{n} via an exponential Euler method in time and obtain the full discretization um,n={um,n(t,x),(t,x)[0,T]×𝒪}u^{m,n}=\{u^{m,n}(t,x),(t,x)\in[0,T]\times\mathcal{O}\}, where Tm\frac{T}{m} denotes the temporal stepsize. As an explicit method, the exponential Euler method is more computationally efficient than the implicit method and does not suffer from the CFL condition. By investigating the temporal Hölder continuity of the spatial semi-discrete numerical solution, we attain the strong convergence rate of the proposed method for Eq. (1.1) with Lipschitz nonlinearity, namely

um,n(t,x)u(t,x)Lp(Ω)C(ϵ)(n1+m38+ϵ),\|u^{m,n}(t,x)-u(t,x)\|_{L^{p}(\Omega)}\leq C(\epsilon)(n^{-1}+m^{-\frac{3}{8}+\epsilon}), (1.3)

where 0<ϵ10<\epsilon\ll 1. The spatial convergence order 11 and temporal convergence order nearly 38\frac{3}{8} in (1.3) are optimal in the sense that they coincide with the mean-square spatial and temporal Hölder continuity exponents of the exact solution, respectively. On the basis of (1.3), a localized argument leads to an Lp(Ω;)L^{p}(\Omega;\mathbb{R}) convergence order localized on a set of arbitrarily large probability for Eq. (1.1) with polynomial nonlinearity. With the independent interest, when ff is a polynomial of degree 33 with a positive dominant coefficient, we also establish the Hölder continuity and the uniform moment estimate of the exact solution. These are prepared for the density convergence analysis of the numerical solution of the spatial FDM for Eq. (1.1) with polynomial nonlinearity in our future work.

The rest of this paper is organized as follows. Section 2 gives the Hölder continuity and the uniform moment estimate of the exact solution. Then we introduce the spatial FDM and study its strong convergence order in Section 3. Section 4 presents the density convergence of the spatial semi-discrete numerical solution. In Section 5, we further apply an exponential Euler method to obtain a full discretization and obtain its strong convergence order.

2. Preliminaries

Let 𝒞α(𝒪)\mathcal{C}^{\alpha}(\mathcal{O}) be the space of α\alpha-Hölder continuous functions on 𝒪\mathcal{O} if α(0,1)\alpha\in(0,1), and be the space of α\alpha times continuously differentiable functions on 𝒪\mathcal{O} if α\alpha\in\mathbb{N}. For d1d\geq 1, we denote by \|\cdot\| and ,\langle\cdot,\cdot\rangle the Euclidean norm and inner product of d\mathbb{R}^{d}, respectively. For 1q1\leq q\leq\infty, we denote by Lq\|\cdot\|_{L^{q}} the usual norm of the space Lq(𝒪):=Lq(𝒪;)L^{q}(\mathcal{O}):=L^{q}(\mathcal{O};\mathbb{R}). For 1p<1\leq p<\infty and a Banach space (H,H)(H,\|\cdot\|_{H}), let Lp(Ω;H)L^{p}(\Omega;H) be the space of HH-valued random variables with bounded ppth moment, endowed with the norm Lp(Ω;H):=(𝔼[Hp])1p.\|\cdot\|_{L^{p}(\Omega;H)}:=\left(\mathbb{E}[\|\cdot\|_{H}^{p}]\right)^{\frac{1}{p}}. Especially, we write p:=Lp(Ω;)\|\cdot\|_{p}:=\|\cdot\|_{L^{p}(\Omega;\mathbb{R})} for short. Hereafter, we use CC to denote a generic positive constant that may change from one place to another and depend on several parameters but never on the space and time stepsizes. Without illustrated, the supremum with respect to t[0,T]t\in[0,T] (respectively, x𝒪x\in\mathcal{O} and (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}) is denoted by supt\sup_{t} (respectively, supx\sup_{x} and supt,x\sup_{t,x}). In this section, we present the regularity estimate of the exact solution of Eq. (1.1) under Assumption 1 or 2.

Assumption 1.

ff satisfies the globally Lipschitz condition, i.e., there is K>0K>0 such that

|f(y)f(z)|K|yz|,y,z.|f(y)-f(z)|\leq K|y-z|,\quad\forall~{}y,z\in\mathbb{R}.
Assumption 2.

ff is a polynomial of degree 33 with a positive dominant coefficient, i.e., f(x)=a0x3+a1x2+a2x+a3f(x)=a_{0}x^{3}+a_{1}x^{2}+a_{2}x+a_{3} with a0>0a_{0}>0.

The physical importance of the Dirichlet problem is pointed out to us by M. E. Gurtin: it governs the propagation of a solidification front into an ambient medium which is at rest relative to the front [12]; see [13, 8] and references therein for the study of Cahn–Hilliard equation with DBCs. In this case, the Green function associated to t+Δ2\partial_{t}+\Delta^{2} is given by Gt(x,y)=j=1eλj2tϕj(x)ϕj(y),G_{t}(x,y)=\sum_{j=1}^{\infty}e^{-\lambda_{j}^{2}t}\phi_{j}(x)\phi_{j}(y), t[0,T]t\in[0,T], x,y𝒪x,y\in\mathcal{O}, where λj=j2\lambda_{j}=-j^{2}, ϕj(x)=2/πsin(jx),\phi_{j}(x)=\sqrt{2/\pi}\sin(jx), j1j\geq 1. It is known that {ϕj,j1}\{\phi_{j},j\geq 1\} forms an orthonormal basis of L2(𝒪)L^{2}(\mathcal{O}). Denote 𝔾tv(x):=𝒪Gt(x,y)v(y)dy\mathbb{G}_{t}v(x):=\int_{\mathcal{O}}G_{t}(x,y)v(y)\mathrm{d}y, v𝒞(𝒪).v\in\mathcal{C}(\mathcal{O}). Similar to [4, Lemma 1.2], there exist C,c>0C,c>0 such that

|Gt(x,y)|Ct1/4exp(c|xy|4/3|t|1/3),\displaystyle|G_{t}(x,y)|\leq\frac{C}{t^{1/4}}\exp\Big{(}-c\frac{|x-y|^{4/3}}{|t|^{1/3}}\Big{)}, (2.1)
|ΔGt(x,y)|Ct3/4exp(c|xy|4/3|t|1/3).\displaystyle|\Delta G_{t}(x,y)|\leq\frac{C}{t^{3/4}}\exp\Big{(}-c\frac{|x-y|^{4/3}}{|t|^{1/3}}\Big{)}. (2.2)

The well-posedness of the stochastic Cahn–Hilliard equation under Assumption 2 with NBCs has been established in [4]. Since the Green function with DBCs and NBCs share similar properties, the existence and uniqueness of the solution to Eq. (1.1) under Assumption 2 can be obtained in an almost same way, and we present an outline of the idea here. For R1R\geq 1, let KR:K_{R}:\mathbb{R}\rightarrow\mathbb{R} be an even smooth cut-off function satisfying

KR(x)=1,if|x|<R;KR(x)=0,if|x|R+1,\displaystyle K_{R}(x)=1,\quad\text{if}~{}|x|<R;\qquad K_{R}(x)=0,\quad\text{if}~{}|x|\geq R+1, (2.3)

and |KR|1|K_{R}|\leq 1, |KR|2|K_{R}^{\prime}|\leq 2. Consider a sequence of SPDEs

tu¯R(t,x)+Δ2u¯R(t,x)=Δ(KR(u¯R(t,)Lq)f(u¯R(t,x)))+σ(u¯R(t,x))W˙(t,x)\displaystyle\partial_{t}\bar{u}_{R}(t,x)+\Delta^{2}\bar{u}_{R}(t,x)=\Delta\big{(}K_{R}(\|\bar{u}_{R}(t,\cdot)\|_{L^{q}})f(\bar{u}_{R}(t,x))\big{)}+\sigma(\bar{u}_{R}(t,x))\dot{W}(t,x) (2.4)

with DBCs and u¯R(0,)=u0Lq(𝒪)\bar{u}_{R}(0,\cdot)=u_{0}\in L^{q}(\mathcal{O}) for some q4q\geq 4. Define the stopping times

τR:=inf{t0:u¯R(t,)LqR},R1.\tau_{R}:=\inf\{t\geq 0:\|\bar{u}_{R}(t,\cdot)\|_{L^{q}}\geq R\},\quad R\geq 1.

Using the uniqueness of the solution of Eq. (2.4), it is concluded from the local property of stochastic integrals that for R>RR^{\prime}>R, u¯R(t,)=u¯R(t,)\bar{u}_{R^{\prime}}(t,\cdot)=\bar{u}_{R}(t,\cdot) for tτRt\leq\tau_{R}, so that a process uu can be defined by u(t,)=u¯R(t,)u(t,\cdot)=\bar{u}_{R}(t,\cdot) for tτRt\leq\tau_{R}. Set τ=limRτR\tau_{\infty}=\lim_{R\rightarrow\infty}\tau_{R}. Then uu is the unique solution of (1.1) on the interval [0,τ)[0,\tau_{\infty}). Further, {u¯R}R1\{\bar{u}_{R}\}_{R\geq 1} are {t}t[0,T]\{\mathcal{F}_{t}\}_{t\in[0,T]}-adapted stochastic processes such that for ρ[q,)\rho\in[q,\infty),

supR1𝔼[suptu¯R(t,)Lqρ]C(T,ρ,q)\sup_{R\geq 1}\mathbb{E}\Big{[}\sup_{t}\|\bar{u}_{R}(t,\cdot)\|_{L^{q}}^{\rho}\Big{]}\leq C(T,\rho,q) (2.5)

(see the second inequality in P794 of [4]). Based on (2.5), τ=+\tau_{\infty}=+\infty a.s. (see [4, (2.36)]), and thus under Assumption 2, Eq. (1.1) admits a global solution, i.e.,

u(t,x)\displaystyle u(t,x) =𝔾tu0(x)+0t𝒪ΔGts(x,y)f(u(s,y))dyds\displaystyle=\mathbb{G}_{t}u_{0}(x)+\int_{0}^{t}\int_{\mathcal{O}}\Delta G_{t-s}(x,y)f(u(s,y))\mathrm{d}y\mathrm{d}s
+0t𝒪Gts(x,y)σ(u(s,y))W(ds,dy),(t,x)[0,T]×𝒪.\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}G_{t-s}(x,y)\sigma(u(s,y))W(\mathrm{d}s,\mathrm{d}y),\quad(t,x)\in[0,T]\times\mathcal{O}.

It follows from Fatou’s lemma and (2.5) that for ρ[q,)\rho\in[q,\infty),

𝔼[suptu(t,)Lqρ]lim infR𝔼[𝟏{TτR}suptu¯R(t,)Lqρ]C(T,ρ,q),\mathbb{E}\Big{[}\sup_{t}\|u(t,\cdot)\|_{L^{q}}^{\rho}\Big{]}\leq\liminf_{R\rightarrow\infty}\mathbb{E}\Big{[}\mathbf{1}_{\{T\leq\tau_{R}\}}\sup_{t}\|\bar{u}_{R}(t,\cdot)\|_{L^{q}}^{\rho}\Big{]}\leq C(T,\rho,q), (2.6)

which also holds for any ρ1\rho\geq 1 and q1q\geq 1 in view of the Hölder inequality and the continuity of u0u_{0}. Besides, under Assumption 1, a standard Picard approximation argument shows that Eq. (1.1) admits a unique solution satisfying (2.6).

Similar to [4, Lemma 1.8], we have the following regularity of GG.

Lemma 2.1.

For α(0,1)\alpha\in(0,1), there exists C=CαC=C_{\alpha} such that for x,y𝒪x,y\in\mathcal{O} and t>st>s,

0t𝒪|Gtr(x,z)Gtr(y,z)|2dzdrC|xy|2,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|G_{t-r}(x,z)-G_{t-r}(y,z)|^{2}\mathrm{d}z\mathrm{d}r\leq C|x-y|^{2},
0s𝒪|Gtr(x,z)Gsr(x,z)|2dzdr+st𝒪|Gtr(x,z)|2dzdrC|ts|34α.\displaystyle\int_{0}^{s}\int_{\mathcal{O}}|G_{t-r}(x,z)-G_{s-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r+\int_{s}^{t}\int_{\mathcal{O}}|G_{t-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r\leq C|t-s|^{\frac{3}{4}\alpha}.

Based on (2.6) and Lemma 2.1, we present the Hölder continuity of the exact solution. Under either Assumption 1 or Assumption 2, there exists some constant K0K_{0} such that

|f(x)|K0(1+|x|3).\displaystyle|f(x)|\leq K_{0}(1+|x|^{3}). (2.7)
Lemma 2.2.

Let Assumption 1 or 2 hold, u0𝒞2(𝒪)u_{0}\in\mathcal{C}^{2}(\mathcal{O}), and α(0,1)\alpha\in(0,1). Then for p1p\geq 1, there exists some constant C=C(α,p,T,K0)C=C(\alpha,p,T,K_{0}) such that

u(t,x)u(s,y)pC(|ts|3α8+|xy|),(t,x),(s,y)[0,T]×𝒪.\displaystyle\|u(t,x)-u(s,y)\|_{p}\leq C(|t-s|^{\frac{3\alpha}{8}}+|x-y|),\quad\forall~{}(t,x),(s,y)\in[0,T]\times\mathcal{O}. (2.8)
Proof.

We first prove

supt,xu(t,x)pC(p,T).\displaystyle\sup_{t,x}\|u(t,x)\|_{p}\leq C(p,T). (2.9)

To this end, we write u(t,x)=i=13ui(t,x)u(t,x)=\sum_{i=1}^{3}u_{i}(t,x) with

u1(t,x):=𝔾tu0(x),\displaystyle u_{1}(t,x):=\mathbb{G}_{t}u_{0}(x), (2.10)
u2(t,x):=0t𝒪ΔGtr(x,z)f(u(r,z))dzdr,\displaystyle u_{2}(t,x):=\int_{0}^{t}\int_{\mathcal{O}}\Delta G_{t-r}(x,z)f(u(r,z))\mathrm{d}z\mathrm{d}r, (2.11)
u3(t,x):=0t𝒪Gtr(x,z)σ(u(r,z))W(dr,dz).\displaystyle u_{3}(t,x):=\int_{0}^{t}\int_{\mathcal{O}}G_{t-r}(x,z)\sigma(u(r,z))W(\mathrm{d}r,\mathrm{d}z). (2.12)

Let us state a useful property in [4, Lemma 1.6]. For any ρ[1,]\rho\in[1,\infty], q[ρ,+]q\in[\rho,+\infty], and 1/γ=1/q1/ρ+1[0,1]1/\gamma=1/q-1/\rho+1\in[0,1], the linear operator 𝕁t0\mathbb{J}_{t_{0}} defined by

𝕁t0(v)(t,x)=t0t𝒪ΔGts(x,y)v(s,y)dyds,0t0<tT,x𝒪,vL1(t0,T;Lρ(𝒪))\mathbb{J}_{t_{0}}(v)(t,x)=\int_{t_{0}}^{t}\int_{\mathcal{O}}\Delta G_{t-s}(x,y)v(s,y)\mathrm{d}y\mathrm{d}s,\quad 0\leq t_{0}<t\leq T,~{}x\in\mathcal{O},\quad v\in L^{1}(t_{0},T;L^{\rho}(\mathcal{O}))

is a mapping from L1(t0,T;Lρ(𝒪))L^{1}(t_{0},T;L^{\rho}(\mathcal{O})) to L(t0,T;Lq(𝒪))L^{\infty}(t_{0},T;L^{q}(\mathcal{O})) with

𝕁t0(v)(t,)LqCt0t(ts)34+14γv(s,)Lρds.\displaystyle\|\mathbb{J}_{t_{0}}(v)(t,\cdot)\|_{L^{q}}\leq C\int_{t_{0}}^{t}(t-s)^{-\frac{3}{4}+\frac{1}{4\gamma}}\|v(s,\cdot)\|_{L^{\rho}}\mathrm{d}s. (2.13)

It follows from (2.6) and (2.7) that

𝔼[f(u(r,))L1p]C(1+𝔼[u(r,)L33p])C(p,T,K0),r[0,T].\displaystyle\mathbb{E}[\|f(u(r,\cdot))\|^{p}_{L^{1}}]\leq C\big{(}1+\mathbb{E}[\|u(r,\cdot)\|^{3p}_{L^{3}}]\big{)}\leq C(p,T,K_{0}),\quad\forall~{}r\in[0,T]. (2.14)

Applying (2.13) with t0=0t_{0}=0, q=γ=q=\gamma=\infty and ρ=1\rho=1 leads to

u2(t,)LC0t(tr)34f(u(r,))L1dr,\displaystyle\left\|u_{2}(t,\cdot)\right\|_{L^{\infty}}\leq C\int_{0}^{t}(t-r)^{-\frac{3}{4}}\|f(u(r,\cdot))\|_{L^{1}}\mathrm{d}r,

which combined with the Minkowski inequality and (2.14) implies

supxu2(t,x)pC0t(tr)34(𝔼[f(u(r,))L1p])1pdrC(p,T,K0)t14.\displaystyle\sup_{x}\left\|u_{2}(t,x)\right\|_{p}\leq C\int_{0}^{t}(t-r)^{-\frac{3}{4}}\left(\mathbb{E}[\|f(u(r,\cdot))\|^{p}_{L^{1}}]\right)^{\frac{1}{p}}\mathrm{d}r\leq C(p,T,K_{0})t^{\frac{1}{4}}. (2.15)

Since σ\sigma is bounded, the Burkholder inequality [17, Theorem B.1] and (2.1) yield

u3(t,x)p2C(p)0t𝒪Gtr2(x,z)dzdrC(p)t34,\displaystyle\left\|u_{3}(t,x)\right\|^{2}_{p}\leq C(p)\int_{0}^{t}\int_{\mathcal{O}}G^{2}_{t-r}(x,z)\mathrm{d}z\mathrm{d}r\leq C(p)t^{\frac{3}{4}}, (2.16)

for (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}. In addition, (2.1) implies |u1(t,x)|Cu0𝒞(𝒪)|u_{1}(t,x)|\leq C\|u_{0}\|_{\mathcal{C}(\mathcal{O})} for x𝒪x\in\mathcal{O}, which together with (2.15) and (2.16) completes the proof of (2.9).

Without loss of generality, assume that s<ts<t. Notice that u(t,x)u(t,y)=𝔾tu0(x)𝔾tu0(y)+If+Iσu(t,x)-u(t,y)=\mathbb{G}_{t}u_{0}(x)-\mathbb{G}_{t}u_{0}(y)+I_{f}+I_{\sigma} with

If:\displaystyle I_{f}: =0t𝒪[ΔGtr(x,z)ΔGtr(y,z)]f(u(r,z))dzdr,\displaystyle=\int_{0}^{t}\int_{\mathcal{O}}\left[\Delta G_{t-r}(x,z)-\Delta G_{t-r}(y,z)\right]f(u(r,z))\mathrm{d}z\mathrm{d}r,
Iσ:\displaystyle I_{\sigma}: =0t𝒪[Gtr(x,z)Gtr(y,z)]σ(u(r,z))W(dr,dz),\displaystyle=\int_{0}^{t}\int_{\mathcal{O}}\left[G_{t-r}(x,z)-G_{t-r}(y,z)\right]\sigma(u(r,z))W(\mathrm{d}r,\mathrm{d}z),

and u(t,x)u(s,x)=𝔾tu0(x)𝔾su0(x)+Jf+Jf+Jσ+Jσu(t,x)-u(s,x)=\mathbb{G}_{t}u_{0}(x)-\mathbb{G}_{s}u_{0}(x)+J^{-}_{f}+J_{f}+J_{\sigma}+J^{-}_{\sigma} with

Jf:\displaystyle J^{-}_{f}: =0s𝒪[ΔGtr(x,z)ΔGsr(x,z)]f(u(r,z))dzdr,\displaystyle=\int_{0}^{s}\int_{\mathcal{O}}\left[\Delta G_{t-r}(x,z)-\Delta G_{s-r}(x,z)\right]f(u(r,z))\mathrm{d}z\mathrm{d}r,
Jσ:\displaystyle J^{-}_{\sigma}: =0s𝒪[Gtr(x,z)Gsr(x,z)]σ(u(r,z))W(dr,dz),\displaystyle=\int_{0}^{s}\int_{\mathcal{O}}\left[G_{t-r}(x,z)-G_{s-r}(x,z)\right]\sigma(u(r,z))W(\mathrm{d}r,\mathrm{d}z),
Jf:\displaystyle J_{f}: =st𝒪ΔGtr(x,z)f(u(r,z))dzdr,\displaystyle=\int_{s}^{t}\int_{\mathcal{O}}\Delta G_{t-r}(x,z)f(u(r,z))\mathrm{d}z\mathrm{d}r,~{}
Jσ:\displaystyle J_{\sigma}: =st𝒪Gtr(x,z)σ(u(r,z))W(dr,dz),\displaystyle=\int_{s}^{t}\int_{\mathcal{O}}G_{t-r}(x,z)\sigma(u(r,z))W(\mathrm{d}r,\mathrm{d}z),

where the explicit dependence of IfI_{f}, IσI_{\sigma}, JfJ^{-}_{f}, JfJ_{f}, JσJ_{\sigma}, JσJ^{-}_{\sigma} on t,s,x,yt,s,x,y is dropped for simplicity. Using [4, Lemma 2.3] and the assumption u0𝒞2(𝒪)u_{0}\in\mathcal{C}^{2}(\mathcal{O}), we get |𝔾tu0(x)𝔾tu0(y)|+|𝔾tu0(x)𝔾su0(x)|C(|ts|12+|xy|).|\mathbb{G}_{t}u_{0}(x)-\mathbb{G}_{t}u_{0}(y)|+|\mathbb{G}_{t}u_{0}(x)-\mathbb{G}_{s}u_{0}(x)|\leq C(|t-s|^{\frac{1}{2}}+|x-y|). By the Burkholder inequality, the boundedness of σ\sigma, and Lemma 2.1, we obtain Iσp2+Jσp2+Jσp2C(|ts|34α+|xy|2).\|I_{\sigma}\|_{p}^{2}+\|J_{\sigma}^{-}\|_{p}^{2}+\|J_{\sigma}\|_{p}^{2}\leq C(|t-s|^{\frac{3}{4}\alpha}+|x-y|^{2}). For any α1>0\alpha_{1}>0,

exCα1xα1,x>0.\displaystyle e^{-x}\leq C_{\alpha_{1}}x^{-\alpha_{1}},\quad\forall~{}x>0. (2.17)

By the orthogonality of {ϕj}j=1\{\phi_{j}\}_{j=1}^{\infty} in L2(𝒪)L^{2}(\mathcal{O}), (2.17), and |ϕj(x)ϕj(y)|j|xy||\phi_{j}(x)-\phi_{j}(y)|\leq j|x-y| for j1,j\geq 1,

𝒪|ΔGs(x,z)ΔGs(y,z)|2dz=j=1j4e2j4s|ϕj(x)ϕj(y)|2C|xy|2j=1j64ρsρ\displaystyle\int_{\mathcal{O}}|\Delta G_{s}(x,z)-\Delta G_{s}(y,z)|^{2}\mathrm{d}z=\sum_{j=1}^{\infty}j^{4}e^{-2j^{4}s}|\phi_{j}(x)-\phi_{j}(y)|^{2}\leq C|x-y|^{2}\sum_{j=1}^{\infty}j^{6-4\rho}s^{-\rho}

with ρ>0\rho>0. Choosing ρ(74,2)\rho\in(\frac{7}{4},2) and using the Cauchy–Schwarz inequality,

0t𝒪|ΔGs(x,z)ΔGs(y,z)|dzdsπ0t(𝒪|ΔGs(x,z)ΔGs(y,z)|2dz)12ds\displaystyle\quad\int_{0}^{t}\int_{\mathcal{O}}|\Delta G_{s}(x,z)-\Delta G_{s}(y,z)|\mathrm{d}z\mathrm{d}s\leq\sqrt{\pi}\int_{0}^{t}\left(\int_{\mathcal{O}}|\Delta G_{s}(x,z)-\Delta G_{s}(y,z)|^{2}\mathrm{d}z\right)^{\frac{1}{2}}\mathrm{d}s
C|xy|(j=1j64ρ)120tsρ2dsC|xy|.\displaystyle\leq C|x-y|\Big{(}\sum_{j=1}^{\infty}j^{6-4\rho}\Big{)}^{\frac{1}{2}}\int_{0}^{t}s^{-\frac{\rho}{2}}\mathrm{d}s\leq C|x-y|. (2.18)

Taking advantage of (2) and (2.9), we obtain

Ifp\displaystyle\|I_{f}\|_{p} C|xy|supt,xf(u(t,x))pC|xy|(1+supt,xu(t,x)3p3)C|xy|.\displaystyle\leq C|x-y|\sup_{t,x}\|f(u(t,x))\|_{p}\leq C|x-y|(1+\sup_{t,x}\|u(t,x)\|^{3}_{3p})\leq C|x-y|.

Similarly, the orthogonality of {ϕj}j=1\{\phi_{j}\}_{j=1}^{\infty} in L2(𝒪)L^{2}(\mathcal{O}), the Cauchy–Schwarz inequality, and (2.17) yield that for ρ>54\rho>\frac{5}{4},

st𝒪|ΔGtr(x,z)|dzdrπst(𝒪|ΔGtr(x,z)|2dz)12dr\displaystyle\quad\int_{s}^{t}\int_{\mathcal{O}}|\Delta G_{t-r}(x,z)|\mathrm{d}z\mathrm{d}r\leq\sqrt{\pi}\int_{s}^{t}\left(\int_{\mathcal{O}}|\Delta G_{t-r}(x,z)|^{2}\mathrm{d}z\right)^{\frac{1}{2}}\mathrm{d}r
Cst(j=1j4e2j4(tr))12drCst(j=1j44ρ(tr)ρ)12drC(ts)1ρ2,\displaystyle\leq C\int_{s}^{t}\Big{(}\sum_{j=1}^{\infty}j^{4}e^{-2j^{4}(t-r)}\Big{)}^{\frac{1}{2}}\mathrm{d}r\leq C\int_{s}^{t}\Big{(}\sum_{j=1}^{\infty}j^{4-4\rho}(t-r)^{-\rho}\Big{)}^{\frac{1}{2}}\mathrm{d}r\leq C(t-s)^{1-\frac{\rho}{2}}, (2.19)

which together with (2.9) implies that for α(0,1)\alpha\in(0,1),

Jfpst𝒪|ΔGtr(x,z)|(1+u(r,z)3p3)dzdrC(ts)38α.\displaystyle\|J_{f}\|_{p}\leq\int_{s}^{t}\int_{\mathcal{O}}|\Delta G_{t-r}(x,z)|(1+\|u(r,z)\|^{3}_{3p})\mathrm{d}z\mathrm{d}r\leq C(t-s)^{\frac{3}{8}\alpha}.

Observe that for any α2(0,1]\alpha_{2}\in(0,1],

1exCα2xα2,x0.\displaystyle 1-e^{-x}\leq C_{\alpha_{2}}x^{\alpha_{2}},\quad x\geq 0. (2.20)

Then the orthogonality of {ϕj}j=1\{\phi_{j}\}_{j=1}^{\infty} in L2(𝒪)L^{2}(\mathcal{O}), the Cauchy–Schwarz inequality, (2.20) and (2.17) imply that for α3(0,38)\alpha_{3}\in(0,\frac{3}{8}) and ρ=138+α3<2\rho=\frac{13}{8}+\alpha_{3}<2 with 44ρ+8α3<14-4\rho+8\alpha_{3}<-1, it holds that

0s𝒪|ΔGtr(x,z)ΔGsr(x,z)|dzdr\displaystyle\quad\int_{0}^{s}\int_{\mathcal{O}}|\Delta G_{t-r}(x,z)-\Delta G_{s-r}(x,z)|\mathrm{d}z\mathrm{d}r
π0s(𝒪|ΔGtr(x,z)ΔGsr(x,z)|2dz)12dr\displaystyle\leq\sqrt{\pi}\int_{0}^{s}\left(\int_{\mathcal{O}}|\Delta G_{t-r}(x,z)-\Delta G_{s-r}(x,z)|^{2}\mathrm{d}z\right)^{\frac{1}{2}}\mathrm{d}r
C0s(j=1j4e2j4(sr)|1ej4(ts)|2)12dr\displaystyle\leq C\int_{0}^{s}\Big{(}\sum_{j=1}^{\infty}j^{4}e^{-2j^{4}(s-r)}|1-e^{-j^{4}(t-s)}|^{2}\Big{)}^{\frac{1}{2}}\mathrm{d}r
C(j=1j44ρ+8α3)120s(sr)ρ2dr(ts)α3C(ts)α3.\displaystyle\leq C\Big{(}\sum_{j=1}^{\infty}j^{4-4\rho+8\alpha_{3}}\Big{)}^{\frac{1}{2}}\int_{0}^{s}(s-r)^{-\frac{\rho}{2}}\mathrm{d}r(t-s)^{\alpha_{3}}\leq C(t-s)^{\alpha_{3}}. (2.21)

Hence, it follows from (2.9) that JfpC(ts)38α\|J_{f}^{-}\|_{p}\leq C(t-s)^{\frac{3}{8}\alpha} with α(0,1)\alpha\in(0,1). Finally, combining the above estimates, we obtain (2.8), which completes the proof. ∎

Lemma 2.3.

Under the same conditions of Lemma 2.2, for any p1p\geq 1,

𝔼[supt,x|u(t,x)|p]\displaystyle\mathbb{E}\Big{[}\sup_{t,x}|u(t,x)|^{p}\Big{]} C(p,T,K0).\displaystyle\leq C(p,T,K_{0}).
Proof.

Based on (2.8) with α=23\alpha=\frac{2}{3}, we apply [17, Theorem C.6] with H1=14,H2=1H_{1}=\frac{1}{4},H_{2}=1,H=5H=5, k=p>6k=p>6, q=16pq=1-\frac{6}{p} and δ=12(q+1H/p)\delta=\frac{1}{2}(q+1-H/p) to obtain that there exists C1C_{1} such that

𝔼[sup(t,x)(s,y)|u(t,x)u(s,y)|p(|ts|14+|xy|)p6]C1.\displaystyle\mathbb{E}\bigg{[}\sup_{(t,x)\neq(s,y)}\frac{|u(t,x)-u(s,y)|^{p}}{(|t-s|^{\frac{1}{4}}+|x-y|)^{p-6}}\bigg{]}\leq C_{1}.

Hence, for p>6p>6,

𝔼[supt,x|u(t,x)|p]=𝔼[supt,x|u(t,x)u(0,0)|p]\displaystyle\mathbb{E}\Big{[}\sup_{t,x}|u(t,x)|^{p}\Big{]}=\mathbb{E}\Big{[}\sup_{t,x}|u(t,x)-u(0,0)|^{p}\Big{]} C1(T14+π)p6.\displaystyle\leq C_{1}\big{(}T^{\frac{1}{4}}+\pi\big{)}^{p-6}. (2.22)

For 1p61\leq p\leq 6, the desired result follows from (2.22) and the Hölder inequality. The proof is completed. ∎

3. Finite difference method

In this section, we introduce the spatial FDM method for Eq. (1.1) and derive its strong convergence rate. Given a function ww on the mesh 𝒪h:={0,h,2h,,π}\mathcal{O}^{h}:=\{0,h,2h,\ldots,\pi\}, we define the difference operator

δhwi:=wi12wi+wi+1h2,δh2wi=wi24wi1+6wi4wi+1+wi+2h4,\delta_{h}w_{i}:=\frac{w_{i-1}-2w_{i}+w_{i+1}}{h^{2}},\quad\delta_{h}^{2}w_{i}=\frac{w_{i-2}-4w_{i-1}+6w_{i}-4w_{i+1}+w_{i+2}}{h^{4}},

for in:={1,2,,n1}i\in\mathbb{Z}_{n}:=\{1,2,\ldots,n-1\}, where wi:=w(ih)w_{i}:=w(ih). The compatibility conditions u0(0)=u0(π)=0u_{0}(0)=u_{0}(\pi)=0 and u0′′(0)=u0′′(π)=0u_{0}^{\prime\prime}(0)=u_{0}^{\prime\prime}(\pi)=0 are direct results of DBCs and the initial condition. One can approximate u(t,kh)u(t,kh) via {un(t,kh)}n2\{u^{n}(t,kh)\}_{n\geq 2}, where un(0,kh)=u0(kh)u^{n}(0,kh)=u_{0}(kh) and

dun(t,kh)+δh2un(t,kh)dt\displaystyle\quad\mathrm{d}u^{n}(t,kh)+\delta_{h}^{2}u^{n}(t,kh)\mathrm{d}t
=δhf(un(t,kh))dt+nπ1σ(un(t,kh))d(W(t,(k+1)h)W(t,kh)),\displaystyle=\delta_{h}f(u^{n}(t,kh))\mathrm{d}t+n\pi^{-1}\sigma(u^{n}(t,kh))\mathrm{d}(W(t,(k+1)h)-W(t,kh)), (3.1)

for t[0,T]t\in[0,T] and knk\in\mathbb{Z}_{n}, under the boundary conditions

un(t,0)=un(t,π)=0,un(t,h)+un(t,h)=un(t,(n1)h)+un(t,(n+1)h)=0,u^{n}(t,0)=u^{n}(t,\pi)=0,\quad u^{n}(t,-h)+u^{n}(t,h)=u^{n}(t,(n-1)h)+u^{n}(t,(n+1)h)=0,

for t(0,T]t\in(0,T]. For kn{0}k\in\mathbb{Z}_{n}\cup\{0\}, we use the polygonal interpolation

un(t,x):=un(t,kh)+(nπ1xk)(un(t,(k+1)h)un(t,kh)),x[kh,(k+1)h].u^{n}(t,x):=u^{n}(t,kh)+(n\pi^{-1}x-k)(u^{n}(t,(k+1)h)-u^{n}(t,kh)),\quad\forall~{}x\in[kh,(k+1)h].

To solve (3), we introduce

U(t)=(U1(t),,Un1(t)),βt=(βt1,,βtn1)U(t)=(U_{1}(t),\ldots,U_{n-1}(t))^{\top},\qquad\beta_{t}=(\beta^{1}_{t},\ldots,\beta^{n-1}_{t})^{\top}

with Uk(t):=un(t,kh)U_{k}(t):=u^{n}(t,kh) and βtk:=nπ(W(t,(k+1)h)W(t,kh))\beta^{k}_{t}:=\sqrt{\frac{n}{\pi}}(W(t,(k+1)h)-W(t,kh)) for knk\in\mathbb{Z}_{n}, where the explicit dependence of U(t)U(t) and βt\beta_{t} on nn is omitted. Let

An:=n2π2[2100121012001210012].\displaystyle A_{n}:=\frac{n^{2}}{\pi^{2}}\left[\begin{array}[]{cccccc}-2&1&0&\cdots&\cdots&0\\ 1&-2&1&\ddots&\ddots&\vdots\\ 0&1&-2&\ddots&\ddots&\vdots\\ \vdots&0&\ddots&\ddots&\ddots&0\\ \vdots&\ddots&\ddots&1&-2&1\\ 0&\cdots&\cdots&0&1&-2\end{array}\right].

Then (3) can be rewritten into an (n1)(n-1)-dimensional SDE

dU(t)+An2U(t)dt=AnFn(U(t))dt+n/πΣn(U(t))dβt\displaystyle\mathrm{d}U(t)+A_{n}^{2}U(t)\mathrm{d}t=A_{n}F_{n}(U(t))\mathrm{d}t+\sqrt{n/\pi}\Sigma_{n}(U(t))\mathrm{d}\beta_{t} (3.2)

with the initial condition U(0)=(u0(h),,u0((n1)h))U(0)=(u_{0}(h),\ldots,u_{0}((n-1)h))^{\top} and the coefficients

Fn(U(t))=(f(U1(t)),,f(Un1(t))),Σn(U(t))=diag(σ(U1(t)),,σ(Un1(t))).F_{n}(U(t))=(f(U_{1}(t)),\ldots,f(U_{n-1}(t)))^{\top},~{}\Sigma_{n}(U(t))=\textrm{diag}(\sigma(U_{1}(t)),\ldots,\sigma(U_{n-1}(t))).

Under Assumption 1, (3.2) admits a unique strong solution which satisfies

U(t)\displaystyle U(t) =exp(An2t)U(0)+0tAnexp(An2(ts))Fn(U(s))ds\displaystyle=\exp(-A_{n}^{2}t)U(0)+\int_{0}^{t}A_{n}\exp(-A_{n}^{2}(t-s))F_{n}(U(s))\mathrm{d}s
+nπ0texp(An2(ts))Σn(U(s))dβs,t[0,T].\displaystyle\quad+\sqrt{\frac{n}{\pi}}\int_{0}^{t}\exp(-A_{n}^{2}(t-s))\Sigma_{n}(U(s))\mathrm{d}\beta_{s},\quad t\in[0,T]. (3.3)

For jnj\in\mathbb{Z}_{n}, ej=(ej(1),,ej(n1))e_{j}=(e_{j}(1),\ldots,e_{j}(n-1))^{\top} given by

ej(k)=π/nϕj(kh)=2/nsin(jkh),kn,e_{j}(k)=\sqrt{\pi/n}\phi_{j}(kh)=\sqrt{2/n}\sin(jkh),\quad k\in\mathbb{Z}_{n}, (3.4)

is an eigenvector of AnA_{n} associated with the eigenvalue λj,n=j2cj,n\lambda_{j,n}=-j^{2}c_{j,n}, where

cj,n:=sin2(j2nπ)/(j2nπ)2c_{j,n}:=\sin^{2}(\frac{j}{2n}\pi)/(\frac{j}{2n}\pi)^{2}

satisfies 4π2cj,n1.\frac{4}{\pi^{2}}\leq c_{j,n}\leq 1. The vectors {ei}i=1n1\{e_{i}\}_{i=1}^{n-1} form an orthonormal basis of n1\mathbb{R}^{n-1}. In particular,

ei,ej=πnk=1n1ϕi(kh)ϕj(kh)=0πϕi(κn(y))ϕj(κn(y))dy=δij,\displaystyle\langle e_{i},e_{j}\rangle=\frac{\pi}{n}\sum_{k=1}^{n-1}\phi_{i}(kh)\phi_{j}(kh)=\int_{0}^{\pi}\phi_{i}(\kappa_{n}(y))\phi_{j}(\kappa_{n}(y))\mathrm{d}y=\delta_{ij}, (3.5)

where κn(y)=hy/h\kappa_{n}(y)=h\lfloor y/h\rfloor with \lfloor\cdot\rfloor being the floor function (see e.g., [15]). It is verified that 1sinaa16a21-\frac{\sin a}{a}\leq\frac{1}{6}a^{2} for all a[0,π2)a\in[0,\frac{\pi}{2}), which indicates that for jnj\in\mathbb{Z}_{n},

01cj,n=(1+sin(j2nπ)/(j2nπ))(1sin(j2nπ)/(j2nπ))π2j212n2.\displaystyle 0\leq 1-c_{j,n}=\Big{(}1+\sin(\frac{j}{2n}\pi)/(\frac{j}{2n}\pi)\Big{)}\Big{(}1-\sin(\frac{j}{2n}\pi)/(\frac{j}{2n}\pi)\Big{)}\leq\frac{\pi^{2}j^{2}}{12n^{2}}. (3.6)

Introduce the discrete kernel

Gtn(x,y)=j=1n1exp(λj,n2t)ϕj,n(x)ϕj(κn(y)),G^{n}_{t}(x,y)=\sum_{j=1}^{n-1}\exp(-\lambda_{j,n}^{2}t)\phi_{j,n}(x)\phi_{j}(\kappa_{n}(y)),

where ϕj,n(x)=ϕj(kh)+(nπ1xk)(ϕj((k+1)h)ϕj(kh))\phi_{j,n}(x)=\phi_{j}(kh)+(n\pi^{-1}x-k)(\phi_{j}((k+1)h)-\phi_{j}(kh)) for x[kh,(k+1)h]x\in[kh,(k+1)h], kn{0}k\in\mathbb{Z}_{n}\cup\{0\}. Define the discrete Dirichlet Laplacian Δn\Delta_{n} by Δnw(y)=0\Delta_{n}w(y)=0 for y[0,h)y\in[0,h),

Δnw(y)=n2π2(w(κn(y)+πn)2w(κn(y))+w(κn(y)πn)),y[h,π),\displaystyle\Delta_{n}w(y)=\frac{n^{2}}{\pi^{2}}\left(w\big{(}\kappa_{n}(y)+\frac{\pi}{n}\big{)}-2w\big{(}\kappa_{n}(y)\big{)}+w\big{(}\kappa_{n}(y)-\frac{\pi}{n}\big{)}\right),\quad y\in[h,\pi), (3.7)

where w:𝒪w:\mathcal{O}\rightarrow\mathbb{R} with w(0)=w(π)=0w(0)=w(\pi)=0. Since Δnϕj(κn(y))=λj,nϕj(κn(y))\Delta_{n}\phi_{j}(\kappa_{n}(y))=\lambda_{j,n}\phi_{j}(\kappa_{n}(y)),

ΔnGtn(x,y)=j=1n1λj,nexp(λj,n2t)ϕj,n(x)ϕj(κn(y)).\Delta_{n}G^{n}_{t}(x,y)=\sum_{j=1}^{n-1}\lambda_{j,n}\exp(-\lambda_{j,n}^{2}t)\phi_{j,n}(x)\phi_{j}(\kappa_{n}(y)).

Similar to [15, Section 2], based on (3), the diagonalization of the matrix AnA_{n}, (3.4) and un(t,kh)=j=1n1U(t),ejej(k)u^{n}(t,kh)=\sum_{j=1}^{n-1}\langle U(t),e_{j}\rangle e_{j}(k), one has

un(t,x)=\displaystyle u^{n}(t,x)= 𝒪Gtn(x,y)u0(κn(y))dy+0t𝒪ΔnGtsn(x,y)f(un(s,κn(y)))dyds\displaystyle\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y+\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f(u^{n}(s,\kappa_{n}(y)))\mathrm{d}y\mathrm{d}s
+0t𝒪Gtsn(x,y)σ(un(s,κn(y)))W(ds,dy),(t,x)[0,T]×𝒪.\displaystyle+\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma(u^{n}(s,\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y),\quad(t,x)\in[0,T]\times\mathcal{O}. (3.8)

The follow lemma characterizes the error between GG and GnG^{n}.

Lemma 3.1.

There exists some constant C=C(T)C=C(T) such that for any x𝒪x\in\mathcal{O} and t(0,T]t\in(0,T],

0t𝒪|ΔnGsn(x,y)ΔGs(x,y)|dyds\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G_{s}^{n}(x,y)-\Delta G_{s}(x,y)|\mathrm{d}y\mathrm{d}s Cn1,\displaystyle\leq Cn^{-1}, (3.9)
0t𝒪|Gsn(x,y)Gs(x,y)|2dyds\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{s}(x,y)-G_{s}(x,y)|^{2}\mathrm{d}y\mathrm{d}s Cn2.\displaystyle\leq Cn^{-2}. (3.10)
Proof.

For s[0,T]s\in[0,T] and x,y𝒪x,y\in\mathcal{O}, denote M1s,x,y=j=1n1λj,neλj,n2sϕj,n(x)(ϕj(κn(y))ϕj(y))M_{1}^{s,x,y}=\sum_{j=1}^{n-1}\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)\left(\phi_{j}(\kappa_{n}(y))-\phi_{j}(y)\right), M2s,x,y=j=1n1(λj,neλj,n2sϕj,n(x)λjeλj2sϕj(x))ϕj(y)M_{2}^{s,x,y}=\sum_{j=1}^{n-1}(\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)-\lambda_{j}e^{-\lambda_{j}^{2}s}\phi_{j}(x))\phi_{j}(y) and M3s,x,y=j=nλjeλj2sϕj(x)ϕj(y)M_{3}^{s,x,y}=\sum_{j=n}^{\infty}-\lambda_{j}e^{-\lambda_{j}^{2}s}\phi_{j}(x)\phi_{j}(y). Since {ϕj}j1\{\phi_{j}\}_{j\geq 1} is an orthonormal basis of L2(𝒪)L^{2}(\mathcal{O}), it holds that

𝒪|ΔnGsn(x,y)ΔGs(x,y)|2dy=𝒪|i=13Mis,x,y|2dy\displaystyle\quad\int_{\mathcal{O}}|\Delta_{n}G_{s}^{n}(x,y)-\Delta G_{s}(x,y)|^{2}\mathrm{d}y=\int_{\mathcal{O}}|\sum_{i=1}^{3}M_{i}^{s,x,y}|^{2}\mathrm{d}y
3𝒪|M1s,x,y|2dy+3j=1n1|λj,neλj,n2sϕj,n(x)λjeλj2sϕj(x)|2+3j=nj4e2j4s.\displaystyle\leq 3\int_{\mathcal{O}}|M_{1}^{s,x,y}|^{2}\mathrm{d}y+3\sum_{j=1}^{n-1}\left|\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)-\lambda_{j}e^{-\lambda_{j}^{2}s}\phi_{j}(x)\right|^{2}+3\sum_{j=n}^{\infty}j^{4}e^{-2j^{4}s}. (3.11)

It follows from the boundedness of {ϕj}j1\{\phi_{j}\}_{j\geq 1} and (2.17) that for α1(54,2)\alpha_{1}\in(\frac{5}{4},2),

0t(j=nj4e2j4s)12dsC0t(j=nj44α1sα1)12dsC(α1)n54α12.\displaystyle\int_{0}^{t}\Big{(}\sum_{j=n}^{\infty}j^{4}e^{-2j^{4}s}\Big{)}^{\frac{1}{2}}\mathrm{d}s\leq C\int_{0}^{t}\Big{(}\sum_{j=n}^{\infty}j^{4-4\alpha_{1}}s^{-\alpha_{1}}\Big{)}^{\frac{1}{2}}\mathrm{d}s\leq C(\alpha_{1})n^{\frac{5-4\alpha_{1}}{2}}. (3.12)

By (3.6), we have |λjλj,n|Cj4/n2,|\lambda_{j}-\lambda_{j,n}|\leq Cj^{4}/n^{2}, and thus, λj2λj,n2=|λjλj,n||λj+λj,n|Cj6/n2\lambda_{j}^{2}-\lambda_{j,n}^{2}=|\lambda_{j}-\lambda_{j,n}||\lambda_{j}+\lambda_{j,n}|\leq Cj^{6}/n^{2}, which along with (2.20) yields |eλj,n2seλj2s|=eλj,n2s|1e(λj2λj,n2)s|eλj,n2sj6n2s|e^{-\lambda_{j,n}^{2}s}-e^{-\lambda_{j}^{2}s}|=e^{-\lambda_{j,n}^{2}s}|1-e^{-(\lambda_{j}^{2}-\lambda_{j,n}^{2})s}|\leq e^{-\lambda_{j,n}^{2}s}\frac{j^{6}}{n^{2}}s. Besides, it can be verified that |ϕj,n(x)ϕj(x)|Cj/n.|\phi_{j,n}(x)-\phi_{j}(x)|\leq Cj/n. Therefore, for ρ,ρ1>0\rho,\rho_{1}>0

j=1n1|λj,neλj,n2sϕj,n(x)λjeλj2sϕj(x)|2\displaystyle\quad\sum_{j=1}^{n-1}\left|\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)-\lambda_{j}e^{-\lambda_{j}^{2}s}\phi_{j}(x)\right|^{2}
j=1n1|λj,nλj|2e2λj,n2s+j=1n1λj2|eλj,n2seλj2s|2+j=1n1λj2e2λj2s|ϕj,n(x)ϕj(x)|2\displaystyle\leq\sum_{j=1}^{n-1}|\lambda_{j,n}-\lambda_{j}|^{2}e^{-2\lambda_{j,n}^{2}s}+\sum_{j=1}^{n-1}\lambda_{j}^{2}|e^{-\lambda_{j,n}^{2}s}-e^{-\lambda_{j}^{2}s}|^{2}+\sum_{j=1}^{n-1}\lambda_{j}^{2}e^{-2\lambda_{j}^{2}s}|\phi_{j,n}(x)-\phi_{j}(x)|^{2}
Cn4j=1n1j84ρsρ+Cn4j=1n1j164ρ1s2ρ1+Cn2j=1n1j64ρsρ.\displaystyle\leq Cn^{-4}\sum_{j=1}^{n-1}j^{8-4\rho}s^{-\rho}+Cn^{-4}\sum_{j=1}^{n-1}{j^{16-4\rho_{1}}}s^{2-\rho_{1}}+Cn^{-2}\sum_{j=1}^{n-1}j^{6-4\rho}s^{-\rho}.

Choosing ρ=ρ12(0,2)\rho=\rho_{1}-2\in(0,2), we obtain

0t(j=1n1|λj,neλj,n2sϕj,n(x)λjeλj2sϕj(x)|2)12dsC0t(n54ρsρ)12dsCn54ρ2.\displaystyle\int_{0}^{t}\Big{(}\sum_{j=1}^{n-1}\left|\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)-\lambda_{j}e^{-\lambda_{j}^{2}s}\phi_{j}(x)\right|^{2}\Big{)}^{\frac{1}{2}}\mathrm{d}s\leq C\int_{0}^{t}(n^{5-4\rho}s^{-\rho})^{\frac{1}{2}}\mathrm{d}s\leq Cn^{\frac{5-4\rho}{2}}. (3.13)

We recall the following inequality in [15, Lemma 3.2]:

𝒪|w(y)w(κn(y))|2dyCn2𝒪|ddyw(y)|2dy,forwC1(𝒪).\displaystyle\int_{\mathcal{O}}|w(y)-w(\kappa_{n}(y))|^{2}\mathrm{d}y\leq Cn^{-2}\int_{\mathcal{O}}|\frac{\mathrm{d}}{\mathrm{d}y}w(y)|^{2}\mathrm{d}y,\quad\text{for}~{}w\in C^{1}(\mathcal{O}). (3.14)

Introducing Bn(s,x,y)=j=1n1λj,neλj,n2sϕj,n(x)ϕj(y)B_{n}(s,x,y)=\sum_{j=1}^{n-1}\lambda_{j,n}e^{-\lambda_{j,n}^{2}s}\phi_{j,n}(x)\phi_{j}(y) and making use of (3.14), we obtain

𝒪|M1s,x,y|2dy=𝒪|Bn(s,x,y)Bn(s,x,κn(y))|2dyCn2j=1n1j6e2λj,n2sϕj,n(x)2.\displaystyle\quad\int_{\mathcal{O}}|M_{1}^{s,x,y}|^{2}\mathrm{d}y=\int_{\mathcal{O}}|B_{n}(s,x,y)-B_{n}(s,x,\kappa_{n}(y))|^{2}\mathrm{d}y\leq Cn^{-2}\sum_{j=1}^{n-1}j^{6}e^{-2\lambda_{j,n}^{2}s}\phi_{j,n}(x)^{2}.

Hence, it follows from (2.17) that for ρ(74,2)\rho\in(\frac{7}{4},2),

0t(𝒪|M1s,x,y|2dy)12dsC0t(1n2j=1n1j64ρsρ)12dsCn1.\displaystyle\int_{0}^{t}\Big{(}\int_{\mathcal{O}}|M_{1}^{s,x,y}|^{2}\mathrm{d}y\Big{)}^{\frac{1}{2}}\mathrm{d}s\leq C\int_{0}^{t}\Big{(}\frac{1}{n^{2}}\sum_{j=1}^{n-1}j^{6-4\rho}s^{-\rho}\Big{)}^{\frac{1}{2}}\mathrm{d}s\leq Cn^{-1}. (3.15)

Combining (3)-(3.13) with (3.15) allows us to deduce

0t𝒪|ΔnGsn(x,y)ΔGs(x,y)|dydsπ0t(𝒪|ΔnGsn(x,y)ΔGs(x,y)|2dy)12dsCn1,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G_{s}^{n}(x,y)-\Delta G_{s}(x,y)|\mathrm{d}y\mathrm{d}s\leq\sqrt{\pi}\int_{0}^{t}\left(\int_{\mathcal{O}}|\Delta_{n}G_{s}^{n}(x,y)-\Delta G_{s}(x,y)|^{2}\mathrm{d}y\right)^{\frac{1}{2}}\mathrm{d}s\leq Cn^{-1},

which proves (3.9). It remains to prove (3.10). Set Hn(t,x,y):=j=1n1exp(λj2t)ϕj(x)ϕj(y).H_{n}(t,x,y):=\sum_{j=1}^{n-1}\exp(-\lambda_{j}^{2}t)\phi_{j}(x)\phi_{j}(y). Then 𝒪|Gsn(x,y)Gs(x,y)|2dy4k=14Jk(s,x),\int_{\mathcal{O}}|G^{n}_{s}(x,y)-G_{s}(x,y)|^{2}\mathrm{d}y\leq 4\sum_{k=1}^{4}J_{k}(s,x), where

J1(s,x):=j=nexp(2λj2s),J2(s,x):=𝒪|Hn(s,x,y)Hn(s,x,κn(y))|2dy,\displaystyle J_{1}(s,x):=\sum_{j=n}^{\infty}\exp(-2\lambda_{j}^{2}s),\qquad J_{2}(s,x):=\int_{\mathcal{O}}|H_{n}(s,x,y)-H_{n}(s,x,\kappa_{n}(y))|^{2}\mathrm{d}y,
J3(s,x):=j=1n1|exp(λj2s)exp(λj,n2s)|2,J4(s,x):=j=1n1e2λj,n2s|ϕj,n(x)ϕj(x)|2.\displaystyle J_{3}(s,x):=\sum_{j=1}^{n-1}|\exp(-\lambda_{j}^{2}s)-\exp(-\lambda_{j,n}^{2}s)|^{2},\qquad J_{4}(s,x):=\sum_{j=1}^{n-1}e^{-2\lambda_{j,n}^{2}s}|\phi_{j,n}(x)-\phi_{j}(x)|^{2}.

For the first term, we have 0tJ1(s,x)dsCj=nj4Cn3\int_{0}^{t}J_{1}(s,x)\mathrm{d}s\leq C\sum_{j=n}^{\infty}j^{-4}\leq Cn^{-3}. For 2<α<32<\alpha<3, J3(s,x)j=1n1e2λj,n2s(1e(λj2λj,n2)s)2Cj=1n1j12n4j4αs2αCn94αs2α,J_{3}(s,x)\leq\sum_{j=1}^{n-1}e^{-2\lambda_{j,n}^{2}s}(1-e^{-(\lambda_{j}^{2}-\lambda_{j,n}^{2})s})^{2}\leq C\sum_{j=1}^{n-1}\frac{j^{12}}{n^{4}}j^{-4\alpha}s^{2-\alpha}\leq Cn^{9-4\alpha}s^{2-\alpha}, which implies that 0tJ3(s,x)dsCϵn3+ϵ\int_{0}^{t}J_{3}(s,x)\mathrm{d}s\leq C_{\epsilon}n^{-3+\epsilon} with arbitrarily small ϵ>0\epsilon>0. Since |ϕj,n(x)ϕj(x)|Cj/n|\phi_{j,n}(x)-\phi_{j}(x)|\leq Cj/n, it holds that J4(s,x)Cj=1n1j4αsαj2n2Cn2sαJ_{4}(s,x)\leq C\sum_{j=1}^{n-1}j^{-4\alpha}s^{-\alpha}\frac{j^{2}}{n^{2}}\leq Cn^{-2}s^{-\alpha} for 34<α<1\frac{3}{4}<\alpha<1, and thus 0tJ4(s,x)dsCn2.\int_{0}^{t}J_{4}(s,x)\mathrm{d}s\leq Cn^{-2}. Using (3.14), we arrive at

0tJ2(s,x)dsCn20t𝒪|ddyHn(s,x,y)|2dydsCn2j=1n10tj2exp(2j4s)dsCn2.\displaystyle\int_{0}^{t}J_{2}(s,x)\mathrm{d}s\leq Cn^{-2}\int_{0}^{t}\int_{\mathcal{O}}|\frac{\mathrm{d}}{\mathrm{d}y}H_{n}(s,x,y)|^{2}\mathrm{d}y\mathrm{d}s\leq Cn^{-2}\sum_{j=1}^{n-1}\int_{0}^{t}j^{2}\exp(-2j^{4}s)\mathrm{d}s\leq Cn^{-2}.

Combining the above estimates completes the proof of (3.10). ∎

For n2n\geq 2, denote by 𝕌(t):=(u(t,h),,u(t,(n1)h))\mathbb{U}(t):=(u(t,h),\ldots,u(t,(n-1)h))^{\top} the exact solution of Eq. (1.1) on spatial grid points, where the explicit dependence of 𝕌(t)\mathbb{U}(t) on nn is omitted. We introduce the following auxiliary process {U~(t),t[0,T]}\{\tilde{U}(t),t\in[0,T]\} by

dU~(t)+An2U~(t)dt=AnFn(𝕌(t))dt+n/πΣn(𝕌(t))dβt,t(0,T]\displaystyle\mathrm{d}\tilde{U}(t)+A_{n}^{2}\tilde{U}(t)\mathrm{d}t=A_{n}F_{n}(\mathbb{U}(t))\mathrm{d}t+\sqrt{n/\pi}\Sigma_{n}(\mathbb{U}(t))\mathrm{d}\beta_{t},\quad t\in(0,T]

with initial value U~(0)=U(0)\tilde{U}(0)=U(0). Let u~n={u~n(t,x),(t,x)[0,T]×𝒪}\tilde{u}^{n}=\{\tilde{u}^{n}(t,x),(t,x)\in[0,T]\times\mathcal{O}\} satisfy

u~n(t,x)=\displaystyle\tilde{u}^{n}(t,x)= 𝒪Gtn(x,y)u0(κn(y))dy+0t𝒪ΔnGtsn(x,y)f(u(s,κn(y)))dyds\displaystyle\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y+\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f(u(s,\kappa_{n}(y)))\mathrm{d}y\mathrm{d}s
+0t𝒪Gtsn(x,y)σ(u(s,κn(y)))W(ds,dy).\displaystyle+\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma(u(s,\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y). (3.16)

Then U~k(t)=u~n(t,kh)\tilde{U}_{k}(t)=\tilde{u}^{n}(t,kh) for knk\in\mathbb{Z}_{n} and t[0,T]t\in[0,T]. In order to estimate un(t,x)u(t,x)p\|u^{n}(t,x)-u(t,x)\|_{p}, it suffices to estimate u~n(t,x)u(t,x)p\|\tilde{u}^{n}(t,x)-u(t,x)\|_{p} and u~n(t,x)un(t,x)p\|\tilde{u}^{n}(t,x)-u^{n}(t,x)\|_{p}, where the first term is tackled as follows.

Lemma 3.2.

Suppose that Assumption 1 or 2 holds and u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}). Then for any p1p\geq 1, there exists some constant C=C(p,T,K0)C=C(p,T,K_{0}) such that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

u~n(t,x)u(t,x)pCn1.\displaystyle\|\tilde{u}^{n}(t,x)-u(t,x)\|_{p}\leq Cn^{-1}.
Proof.

Recall that u=u1+u2+u3u=u_{1}+u_{2}+u_{3}, where uiu_{i}, i=1,2,3i=1,2,3, are defined in (2.10)-(2.12), respectively. Similarly, for (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}, we introduce u~1n(t,x):=𝒪Gtn(x,y)u0(κn(y))dy\tilde{u}^{n}_{1}(t,x):=\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y,

u~2n(t,x):=0t𝒪ΔnGtsn(x,y)f(u(s,κn(y)))dyds,\displaystyle\tilde{u}^{n}_{2}(t,x):=\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f(u(s,\kappa_{n}(y)))\mathrm{d}y\mathrm{d}s,
u~3n(t,x):=0t𝒪Gtsn(x,y)σ(u(s,κn(y)))W(ds,dy),\displaystyle\tilde{u}^{n}_{3}(t,x):=\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma(u(s,\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y),

and divide the proof into three parts.

Part 1: Following the proof of [4, Lemma 2.3], we use the PDE satisfied by GG to write u1(t,x)=u0(x)0t𝒪ΔGr(x,z)u0′′(z)dzdr.u_{1}(t,x)=u_{0}(x)-\int_{0}^{t}\int_{\mathcal{O}}\Delta G_{r}(x,z)u_{0}^{\prime\prime}(z)\mathrm{d}z\mathrm{d}r. As a numerical counterpart,

u~1n(t,x)u~n(0,x)=𝒪0trGrn(x,z)u0(κn(z))dzdr\displaystyle\quad\tilde{u}^{n}_{1}(t,x)-\tilde{u}^{n}(0,x)=\int_{\mathcal{O}}\int_{0}^{t}\frac{\partial}{\partial r}G^{n}_{r}(x,z)u_{0}(\kappa_{n}(z))\mathrm{d}z\mathrm{d}r
=0t𝒪Δn2Grn(x,z)u0(κn(z))dzdr=0t𝒪ΔnGrn(x,z)Δnu0(z)dzdr,\displaystyle=-\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}^{2}G^{n}_{r}(x,z)u_{0}(\kappa_{n}(z))\mathrm{d}z\mathrm{d}r=-\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{r}(x,z)\Delta_{n}u_{0}(z)\mathrm{d}z\mathrm{d}r, (3.17)

where in the last step we have used the fact that

𝒪Δnv(z)w(κn(z))dz=𝒪v(κn(z))Δnw(z)dz,\int_{\mathcal{O}}\Delta_{n}v(z)w(\kappa_{n}(z))\mathrm{d}z=\int_{\mathcal{O}}v(\kappa_{n}(z))\Delta_{n}w(z)\mathrm{d}z,

for v,w:𝒪v,w:\mathcal{O}\rightarrow\mathbb{R} with v=w=0v=w=0 on 𝒪\partial\mathcal{O}. Here, u~n(0,kh)=u0(kh)\tilde{u}^{n}(0,kh)=u_{0}(kh) for kn{0,n}k\in\mathbb{Z}_{n}\cup\{0,n\}, and u~n(0,x)=u0(kh)+(nπ1xk)(u0((k+1)h)u0(kh))\tilde{u}^{n}(0,x)=u_{0}(kh)+(n\pi^{-1}x-k)(u_{0}((k+1)h)-u_{0}(kh)) for x[kh,(k+1)h]x\in[kh,(k+1)h], kn{0}k\in\mathbb{Z}_{n}\cup\{0\}. In particular, when u0𝒞1(𝒪)u_{0}\in\mathcal{C}^{1}(\mathcal{O}), it holds that

|u~n(0,x)u~n(0,y)|C|xy|,x,y𝒪.\displaystyle|\tilde{u}^{n}(0,x)-\tilde{u}^{n}(0,y)|\leq C|x-y|,\quad x,y\in\mathcal{O}. (3.18)

By u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}) and (3.7), there exist θ1,θ2(0,1)\theta_{1},\theta_{2}\in(0,1) such that for z[h,π)z\in[h,\pi),

|u0′′(z)Δnu0(z)|=|u0′′(z)12u0′′(κn(z)+θ1πn)12u0′′(κn(z)θ2πn)|Cn1,|u^{\prime\prime}_{0}(z)-\Delta_{n}u_{0}(z)|=|u^{\prime\prime}_{0}(z)-\frac{1}{2}u_{0}^{\prime\prime}(\kappa_{n}(z)+\theta_{1}\frac{\pi}{n})-\frac{1}{2}u_{0}^{\prime\prime}(\kappa_{n}(z)-\theta_{2}\frac{\pi}{n})|\leq Cn^{-1},

and for z[0,h)z\in[0,h), |u0′′(z)Δnu0(z)|=|u0′′(z)|=|u0′′(z)u0′′(0)|Cn1.|u^{\prime\prime}_{0}(z)-\Delta_{n}u_{0}(z)|=|u^{\prime\prime}_{0}(z)|=|u^{\prime\prime}_{0}(z)-u^{\prime\prime}_{0}(0)|\leq Cn^{-1}. Therefore, using (2.2) and (3.9), a direct calculation gives

|u~1n(t,x)u1(t,x)|\displaystyle|\tilde{u}^{n}_{1}(t,x)-u_{1}(t,x)| Cn+0t𝒪|ΔnGrn(x,z)ΔGr(x,z)|dzdr\displaystyle\leq\frac{C}{n}+\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{r}(x,z)-\Delta G_{r}(x,z)|\mathrm{d}z\mathrm{d}r
+0t𝒪|ΔGr(x,z)||u0′′(z)Δnu0(z)|dzdrCn1.\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}|\Delta G_{r}(x,z)||u^{\prime\prime}_{0}(z)-\Delta_{n}u_{0}(z)|\mathrm{d}z\mathrm{d}r\leq Cn^{-1}. (3.19)

Part 2: The error u~3n(t,x)u3(t,x)\tilde{u}^{n}_{3}(t,x)-u_{3}(t,x) is divided into

u~3n(t,x)u3(t,x)=\displaystyle\tilde{u}^{n}_{3}(t,x)-u_{3}(t,x)= 0t𝒪[Gtsn(x,y)Gts(x,y)]σ(u(s,κn(y)))W(ds,dy)\displaystyle\int_{0}^{t}\int_{\mathcal{O}}[G_{t-s}^{n}(x,y)-G_{t-s}(x,y)]\sigma(u(s,\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y)
+0t𝒪Gts(x,y)[σ(u(s,κn(y)))σ(u(s,y))]W(ds,dy).\displaystyle+\int_{0}^{t}\int_{\mathcal{O}}G_{t-s}(x,y)[\sigma(u(s,\kappa_{n}(y)))-\sigma(u(s,y))]W(\mathrm{d}s,\mathrm{d}y).

The Burkholder inequality, the boundedness and Lipschitz continuity of σ\sigma, (3.10), (2.1), and Lemma 2.2 imply

u~3n(t,x)u3(t,x)p2\displaystyle\quad\|\tilde{u}^{n}_{3}(t,x)-u_{3}(t,x)\|_{p}^{2}
0t𝒪|Gtsn(x,y)Gts(x,y)|2dyds+C0t𝒪Gts2(x,y)u(s,κn(y))u(s,y)p2dyds\displaystyle\leq\int_{0}^{t}\int_{\mathcal{O}}|G_{t-s}^{n}(x,y)-G_{t-s}(x,y)|^{2}\mathrm{d}y\mathrm{d}s+C\int_{0}^{t}\int_{\mathcal{O}}G^{2}_{t-s}(x,y)\|u(s,\kappa_{n}(y))-u(s,y)\|_{p}^{2}\mathrm{d}y\mathrm{d}s
Cn2+C0t(ts)12supy𝒪u(s,κn(y))u(s,y)p2dsCn2.\displaystyle\leq Cn^{-2}+C\int_{0}^{t}(t-s)^{-\frac{1}{2}}\sup_{y\in\mathcal{O}}\|u(s,\kappa_{n}(y))-u(s,y)\|_{p}^{2}\mathrm{d}s\leq Cn^{-2}. (3.20)

Part 3: Notice that u~2n(t,x)u2(t,x)pI1+I2\|\tilde{u}^{n}_{2}(t,x)-u_{2}(t,x)\|_{p}\leq I_{1}+I_{2}, where

I1:=0t𝒪|ΔnGtsn(x,y)ΔGts(x,y)|f(u(s,κn(y)))pdyds,\displaystyle I_{1}:=\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G_{t-s}^{n}(x,y)-\Delta G_{t-s}(x,y)|\|f(u(s,\kappa_{n}(y)))\|_{p}\mathrm{d}y\mathrm{d}s,
I2:=0t𝒪|ΔGts(x,y)|f(u(s,κn(y)))f(u(s,y))pdyds.\displaystyle I_{2}:=\int_{0}^{t}\int_{\mathcal{O}}|\Delta G_{t-s}(x,y)|\left\|f(u(s,\kappa_{n}(y)))-f(u(s,y))\right\|_{p}\mathrm{d}y\mathrm{d}s.

It follows from (3.9), (2.7) and Lemma 2.3 that

I1C0t𝒪|ΔnGtsn(x,y)ΔGts(x,y)|dyds(1+supt,xu(t,x)3p3)Cn1.\displaystyle I_{1}\leq C\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G_{t-s}^{n}(x,y)-\Delta G_{t-s}(x,y)|\mathrm{d}y\mathrm{d}s\Big{(}1+\sup_{t,x}\|u(t,x)\|_{3p}^{3}\Big{)}\leq Cn^{-1}.

Under Assumption 1 or 2, |f(a1)f(a2)|c0(1+a12+a22)|a2a1||f(a_{1})-f(a_{2})|\leq c_{0}(1+a_{1}^{2}+a_{2}^{2})|a_{2}-a_{1}|. Hence, the Hölder inequality together with Lemmas 2.2 and 2.3 yields that for any (s,x)[0,T]×𝒪(s,x)\in[0,T]\times\mathcal{O},

f(u(s,κn(x)))f(u(s,x))p\displaystyle\quad\|f(u(s,\kappa_{n}(x)))-f(u(s,x))\|_{p}
Cu(s,κn(x))u(s,x)3p(1+u(s,κn(x))3p2+u(s,x)3p2)Cn1.\displaystyle\leq C\|u(s,\kappa_{n}(x))-u(s,x)\|_{3p}\big{(}1+\|u(s,\kappa_{n}(x))\|^{2}_{3p}+\|u(s,x)\|^{2}_{3p}\big{)}\leq Cn^{-1}.

Therefore, I2Cn10t𝒪|ΔGts(x,y)|dydsCn1I_{2}\leq Cn^{-1}\int_{0}^{t}\int_{\mathcal{O}}|\Delta G_{t-s}(x,y)|\mathrm{d}y\mathrm{d}s\leq Cn^{-1}, in view of (2.1). In conclusion, u~2n(t,x)u2(t,x)pCn1,\|\tilde{u}^{n}_{2}(t,x)-u_{2}(t,x)\|_{p}\leq Cn^{-1}, which along with (3) and (3) finishes the proof. ∎

By Lemma 3.2, we present the strong convergence rate of the spatial FDM for Eq. (1.1). We would like to mention that Theorem 3.3 also holds for stochastic Cahn–Hilliard equations with NBCs.

Theorem 3.3.

Suppose that Assumption 1 holds and u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}). Then for every p1p\geq 1, there exists some constant C=C(p,T,K)C=C(p,T,K) such that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

un(t,x)u(t,x)pCn1.\|u^{n}(t,x)-u(t,x)\|_{p}\leq Cn^{-1}.
Proof.

Denote en(t,x):=un(t,x)u(t,x)e^{n}(t,x):=u^{n}(t,x)-u(t,x). In view of (3) and (3),

un(t,x)u~n(t,x)\displaystyle u^{n}(t,x)-\tilde{u}^{n}(t,x) =0t𝒪ΔnGtsn(x,y)[f(un(s,κn(y)))f(u(s,κn(y)))]dyds\displaystyle=\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)\big{[}f(u^{n}(s,\kappa_{n}(y)))-f(u(s,\kappa_{n}(y)))\big{]}\mathrm{d}y\mathrm{d}s
+0t𝒪Gtsn(x,y)[σ(un(s,κn(y)))σ(u(s,κn(y)))]W(ds,dy).\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\big{[}\sigma(u^{n}(s,\kappa_{n}(y)))-\sigma(u(s,\kappa_{n}(y)))\big{]}W(\mathrm{d}s,\mathrm{d}y).

By the expressions of GtnG_{t}^{n} and ΔnGtn\Delta_{n}G_{t}^{n} and (2.17), we arrive at that for 0<ϵ10<\epsilon\ll 1,

|Gtn(x,y)|Cϵt14ϵ,|ΔnGtn(x,y)|Cϵt34ϵ,t(0,T],x,y𝒪.\displaystyle|G^{n}_{t}(x,y)|\leq C_{\epsilon}t^{-\frac{1}{4}-\epsilon},\qquad|\Delta_{n}G^{n}_{t}(x,y)|\leq C_{\epsilon}t^{-\frac{3}{4}-\epsilon},\quad\forall~{}t\in(0,T],~{}x,y\in\mathcal{O}. (3.21)

Hence, the Cauchy–Schwarz inequality with respect to the measure |ΔnGtsn(x,y)|dyds|\Delta_{n}G^{n}_{t-s}(x,y)|\mathrm{d}y\mathrm{d}s, Lemma 3.2, Assumption 1, and the Minkowski and Burkholder inequalities yield that for 0<ϵ10<\epsilon\ll 1,

en(t,x)p2\displaystyle\|e^{n}(t,x)\|_{p}^{2} Cn2+C0t𝒪|ΔnGtsn(x,y)|un(s,κn(y))u(s,κn(y))p2dyds\displaystyle\leq Cn^{-2}+C\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-s}(x,y)|\|u^{n}(s,\kappa_{n}(y))-u(s,\kappa_{n}(y))\|_{p}^{2}\mathrm{d}y\mathrm{d}s
+C0t𝒪|Gtsn(x,y)|2un(s,κn(y))u(s,κn(y))p2dyds\displaystyle\quad+C\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-s}(x,y)|^{2}\|u^{n}(s,\kappa_{n}(y))-u(s,\kappa_{n}(y))\|_{p}^{2}\mathrm{d}y\mathrm{d}s
Cn2+Cϵ0t𝒪(ts)34ϵun(s,κn(y))u(s,κn(y))p2dyds,\displaystyle\leq Cn^{-2}+C_{\epsilon}\int_{0}^{t}\int_{\mathcal{O}}(t-s)^{-\frac{3}{4}-\epsilon}\|u^{n}(s,\kappa_{n}(y))-u(s,\kappa_{n}(y))\|_{p}^{2}\mathrm{d}y\mathrm{d}s,

in which the second step used (3.21). Taking the supremum over xx produces

supxen(t,x)p2\displaystyle\sup_{x}\|e^{n}(t,x)\|^{2}_{p} Cn2+Cϵ0t(ts)34ϵsupxen(s,x)p2ds,\displaystyle\leq Cn^{-2}+C_{\epsilon}\int_{0}^{t}(t-s)^{-\frac{3}{4}-\epsilon}\sup_{x}\|e^{n}(s,x)\|_{p}^{2}\mathrm{d}s, (3.22)

which along with the Gronwall lemma with weak singularities (see e.g., [15, Lemma 3.4]) completes the proof. ∎

4. Convergence of density

For real-valued random variables X,YX,Y, we write dTV(X,Y)\mathrm{d}_{\mathrm{TV}}(X,Y) to indicate the total variation distance between XX and YY, i.e.,

dTV(X,Y)=2supA(){|(XA)(YA)|}=supϕΦ|𝔼[ϕ(X)]𝔼[ϕ(Y)]|,\mathrm{d}_{\mathrm{TV}}(X,Y)=2\sup_{A\in\mathscr{B}(\mathbb{R})}\{|\mathbb{P}(X\in A)-\mathbb{P}(Y\in A)|\}=\sup_{\phi\in\Phi}|\mathbb{E}[\phi(X)]-\mathbb{E}[\phi(Y)]|,

where Φ\Phi is the set of continuous functions ϕ:\phi:\mathbb{R}\rightarrow\mathbb{R} which are bounded by 11, and ()\mathscr{B}(\mathbb{R}) is the Borel σ\sigma-algebra of \mathbb{R}. Furthermore, if {Xn}n1\{X_{n}\}_{n\geq 1} and XX_{\infty} have the densities pXnp_{X_{n}} and pXp_{X_{\infty}} respectively, then

dTV(Xn,X)=pXnpXL1().\displaystyle\mathrm{d}_{\mathrm{TV}}(X_{n},X_{\infty})=\|p_{X_{n}}-p_{X_{\infty}}\|_{L^{1}(\mathbb{R})}. (4.1)

In this section, we show that for knk\in\mathbb{Z}_{n}, the spatial semi-discrete numerical solution un(T,kh)u^{n}(T,kh) admits a density, which converges in L1()L^{1}(\mathbb{R}) to the density of the exact solution u(T,kh)u(T,kh).

4.1. Malliavin calculus

We start with introducing some notations in the context of the Malliavin calculus with respect to the space-time white noise (see e.g., [23]). The isonormal Gaussian family {W(h),h}\{W(h),h\in\mathfrak{H}\} corresponding to :=L2([0,T]×𝒪)\mathfrak{H}:=L^{2}([0,T]\times\mathcal{O}) is given by the Wiener integral W(h)=0T𝒪h(s,y)W(ds,dy).W(h)=\int_{0}^{T}\int_{\mathcal{O}}h(s,y)W(\mathrm{d}s,\mathrm{d}y). Denote by 𝒮\mathcal{S} the class of smooth real-valued random variables of the form

X=φ(W(h1),,W(hn)),X=\varphi(W(h_{1}),\ldots,W(h_{n})), (4.2)

where φ𝒞p(n),\varphi\in\mathcal{C}_{p}^{\infty}(\mathbb{R}^{n}), hi,i=1,,n,n1.h_{i}\in\mathfrak{H},\,i=1,\ldots,n,\,n\geq 1. Here 𝒞p(n)\mathcal{C}_{p}^{\infty}(\mathbb{R}^{n}) is the space of all \mathbb{R}-valued smooth functions on n\mathbb{R}^{n} whose partial derivatives have at most polynomial growth. The Malliavin derivative of X𝒮X\in\mathcal{S} of the form (4.2) is an \mathfrak{H}-valued random variable given by DX=i=1niφ(W(h1),,W(hn))hi,DX=\sum_{i=1}^{n}\partial_{i}\varphi(W(h_{1}),\ldots,W(h_{n}))h_{i}, which is also a random field DX={Dθ,ξX,(θ,ξ)[0,T]×𝒪}DX=\{D_{\theta,\xi}X,(\theta,\xi)\in[0,T]\times\mathcal{O}\} with Dθ,ξX=i=1niφ(W(h1),,W(hn))hi(θ,ξ)D_{\theta,\xi}X\!=\sum_{i=1}^{n}\partial_{i}\varphi(W(h_{1}),\ldots,W(h_{n}))h_{i}(\theta,\xi) for almost everywhere (θ,ξ,ω)[0,T]×𝒪×Ω(\theta,\xi,\omega)\in[0,T]\times\mathcal{O}\times\Omega. For any p1p\geq 1, we denote the domain of DD in Lp(Ω;)L^{p}(\Omega;\mathbb{R}) by 𝔻1,p\mathbb{D}^{1,p}, meaning that 𝔻1,p\mathbb{D}^{1,p} is the closure of 𝒮\mathcal{S} with respect to the norm

X1,p=(𝔼[|X|p+DXp])1p.\|X\|_{1,p}=\left(\mathbb{E}\left[|X|^{p}+\|DX\|_{\mathfrak{H}}^{p}\right]\right)^{\frac{1}{p}}.

We define the iteration of the operator DD in such a way that for X𝒮X\in\mathcal{S}, the iterated derivative DkXD^{k}X is an k\mathfrak{H}^{\bigotimes k}-valued random variable. More precisely, for k+k\in\mathbb{N}_{+}, DkX={Dr1,θ1Drk,θkX,(ri,θi)[0,T]×𝒪}D^{k}X=\{D_{r_{1},\theta_{1}}\cdots D_{r_{k},\theta_{k}}X,(r_{i},\theta_{i})\in[0,T]\times\mathcal{O}\} is a measurable function on the product space ([0,T]×𝒪)k×Ω([0,T]\times\mathcal{O})^{k}\times\Omega. Then for p1p\geq 1, kk\in\mathbb{N}, denote by 𝔻k,p\mathbb{D}^{k,p} the completion of 𝒮\mathcal{S} with respect to the norm Xk,p=(𝔼[|X|p+j=1kDjXjp])1p.\|X\|_{k,p}=\big{(}\mathbb{E}\big{[}|X|^{p}+\sum_{j=1}^{k}\|D^{j}X\|_{\mathfrak{H}^{\bigotimes j}}^{p}\big{]}\big{)}^{\frac{1}{p}}. Define 𝔻k,:=p1𝔻k,p\mathbb{D}^{k,\infty}:=\bigcap_{p\geq 1}\mathbb{D}^{k,p} and 𝔻:=k1𝔻k,\mathbb{D}^{\infty}:=\bigcap_{k\geq 1}\mathbb{D}^{k,\infty} to be topological projective limits.

We close this part by the following proposition, which allows us to obtain the convergence of density of a sequence of random variables from the convergence in 𝔻1,2\mathbb{D}^{1,2}.

Proposition 4.1.

[22, Theorem 4.2] Let {Xn}n1\{X_{n}\}_{n\geq 1} be a sequence in 𝔻1,2\mathbb{D}^{1,2} such that each XnX_{n} admits a density. Let X𝔻2,4X_{\infty}\in\mathbb{D}^{2,4} and let 0<α20<\alpha\leq 2 be such that 𝔼[DXα]<\mathbb{E}[\|DX_{\infty}\|_{\mathfrak{H}}^{-\alpha}]<\infty. If XnXX_{n}\rightarrow X_{\infty} in 𝔻1,2\mathbb{D}^{1,2}, then there exists a constant c>0c>0 depending only on XX_{\infty} such that for any n1n\geq 1,

dTV(Xn,X)cXnX1,2αα+2.\mathrm{d}_{\mathrm{TV}}(X_{n},X_{\infty})\leq c\|X_{n}-X_{\infty}\|_{1,2}^{\frac{\alpha}{\alpha+2}}.

4.2. Convergence in 𝔻1,2\mathbb{D}^{1,2}

In this part, we extend the strong convergence of the spatial FDM to the convergence in 𝔻1,2\mathbb{D}^{1,2}. It is shown in [8, Proposition 3.1] or [4, Lemma 3.2] that if f(x)=(x3x)KR(x)f(x)=(x^{3}-x)K_{R}(x), then for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}, u(t,x)𝔻1,2u(t,x)\in\mathbb{D}^{1,2} and satisfies

Dr,zu(t,x)\displaystyle D_{r,z}u(t,x) =Gtr(x,z)σ(u(r,z))+rt𝒪ΔGts(x,y)f(u(s,y))Dr,zu(s,y)dyds\displaystyle=G_{t-r}(x,z)\sigma(u(r,z))+\int_{r}^{t}\int_{\mathcal{O}}\Delta G_{t-s}(x,y)f^{\prime}(u(s,y))D_{r,z}u(s,y)\mathrm{d}y\mathrm{d}s
+rt𝒪Gts(x,y)σ(u(s,y))Dr,zu(s,y)W(ds,dy),\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}G_{t-s}(x,y)\sigma^{\prime}(u(s,y))D_{r,z}u(s,y)W(\mathrm{d}s,\mathrm{d}y), (4.3)

if rtr\leq t, and Dr,zu(t,x)=0D_{r,z}u(t,x)=0, if r>tr>t. Their proofs rely on the global Lipschitz continuity of fRf_{R}, and thus (4.2) holds naturally whenever ff satisfies Assumption 1. Further, we impose Assumption 3 to study the regularity of the exact solution in the Malliavin Sobolev space.

Assumption 3.

For some integer k1k\geq 1, ff and σ\sigma have bounded derivatives up to order kk.

Lemma 4.2.

Under Assumptions 1 and 3, u(t,x)𝔻k,u(t,x)\in\mathbb{D}^{k,\infty} for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}. Moreover, for any p1p\geq 1, there exists C=C(k,p,T)C=C(k,p,T) such that

supt,xu(t,x)k,pC.\sup_{t,x}\|u(t,x)\|_{k,p}\leq C.
Proof.

Define the Picard approximation by w0(t,x)=u0(x)w^{0}(t,x)=u_{0}(x), (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}, and for ii\in\mathbb{N},

wi+1(t,x)\displaystyle w^{i+1}(t,x) =𝔾tu0(x)+0t𝒪ΔGts(x,y)f(wi(s,y))dyds\displaystyle=\mathbb{G}_{t}u_{0}(x)+\int_{0}^{t}\int_{\mathcal{O}}\Delta G_{t-s}(x,y)f(w^{i}(s,y))\mathrm{d}y\mathrm{d}s
+0t𝒪Gts(x,y)σ(wi(s,y))W(ds,dy),(t,x)[0,T]×𝒪.\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}G_{t-s}(x,y)\sigma(w^{i}(s,y))W(\mathrm{d}s,\mathrm{d}y),\quad(t,x)\in[0,T]\times\mathcal{O}.

Fix (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}. In view of [23, Lemma 1.5.3], the proof of u(t,x)𝔻k,u(t,x)\in\mathbb{D}^{k,\infty} boils down to proving that

(i) {wi(t,x)}i1\{w^{i}(t,x)\}_{i\geq 1} converges to u(t,x)u(t,x) in Lp(Ω;)L^{p}(\Omega;\mathbb{R}) for every p1p\geq 1.

(ii) for any p1p\geq 1, supi0wi(t,x)k,p<.\sup_{i\geq 0}\|w^{i}(t,x)\|_{k,p}<\infty.

Property (i) and property (ii) with k=1k=1 and p=2p=2 can be obtained in the same way as in [4, Lemma 3.2] (the sequence {wi(t,x)}i1\{w^{i}(t,x)\}_{i\geq 1} corresponds to {un,k(t,x)}k1\{u_{n,k}(t,x)\}_{k\geq 1} in [4]). The proof of property (ii) with general k,p1k,p\geq 1 is omitted since it is standard and similar to those for other kinds of SPDEs with Lipschitz continuous coefficients; see [2, Proposition 4.3] for the case of stochastic heat equations, [25, Theorem 1] for the case of stochastic wave equations. ∎

Similar to properties (i) and (ii), the standard Picard approximation also shows that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}, un(t,x)𝔻1,2u^{n}(t,x)\in\mathbb{D}^{1,2}.

Proposition 4.3.

Suppose that u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}) and Assumptions 1 and 3 hold for k=2k=2. Then there exists some constant CC such that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

𝔼[Dun(t,x)Du(t,x)2]Cn2.\mathbb{E}\left[\|Du^{n}(t,x)-Du(t,x)\|_{\mathfrak{H}}^{2}\right]\leq Cn^{-2}.
Proof.

By the chain rule and (3), we obtain

Dr,zun(t,x)\displaystyle D_{r,z}u^{n}(t,x) =Gtrn(x,z)σ(un(r,κn(z)))\displaystyle=G^{n}_{t-r}(x,z)\sigma(u^{n}(r,\kappa_{n}(z)))
+rt𝒪ΔnGtsn(x,y)f(un(s,κn(y)))Dr,zun(s,κn(y))dyds\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f^{\prime}(u^{n}(s,\kappa_{n}(y)))D_{r,z}u^{n}(s,\kappa_{n}(y))\mathrm{d}y\mathrm{d}s
+rt𝒪Gtsn(x,y)σ(un(s,κn(y)))Dr,zun(s,κn(y))W(ds,dy),\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))D_{r,z}u^{n}(s,\kappa_{n}(y))W(\mathrm{d}s,\mathrm{d}y), (4.4)

if rtr\leq t, and Dr,zun(t,x)=0D_{r,z}u^{n}(t,x)=0, if r>tr>t. Combining (4.2) and (4.2), we write

Dr,zun(t,x)Dr,zu(t,x):=It,xn(r,z)+Jt,xn(r,z)+Kt,xn(r,z),\displaystyle D_{r,z}u^{n}(t,x)-D_{r,z}u(t,x):=I^{n}_{t,x}(r,z)+J^{n}_{t,x}(r,z)+K^{n}_{t,x}(r,z), (4.5)

where for r>tr>t, It,xn(r,z)=Jt,xn(r,z)=Kt,xn(r,z)=0I^{n}_{t,x}(r,z)=J^{n}_{t,x}(r,z)=K^{n}_{t,x}(r,z)=0, and for rtr\leq t,

It,xn(r,z)\displaystyle I^{n}_{t,x}(r,z) =Gtrn(x,z)σ(un(r,κn(z)))Gtr(x,z)σ(u(r,z)),\displaystyle=G^{n}_{t-r}(x,z)\sigma(u^{n}(r,\kappa_{n}(z)))-G_{t-r}(x,z)\sigma(u(r,z)),
Jt,xn(r,z)\displaystyle J^{n}_{t,x}(r,z) =rt𝒪ΔnGtsn(x,y)f(un(s,κn(y)))[Dr,zun(s,κn(y))Dr,zu(s,κn(y))]dyds\displaystyle=\int_{r}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f^{\prime}(u^{n}(s,\kappa_{n}(y)))\left[D_{r,z}u^{n}(s,\kappa_{n}(y))-D_{r,z}u(s,\kappa_{n}(y))\right]\mathrm{d}y\mathrm{d}s
+rt𝒪ΔnGtsn(x,y)f(un(s,κn(y)))[Dr,zu(s,κn(y))Dr,zu(s,y)]dyds\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)f^{\prime}(u^{n}(s,\kappa_{n}(y)))\left[D_{r,z}u(s,\kappa_{n}(y))-D_{r,z}u(s,y)\right]\mathrm{d}y\mathrm{d}s
+rt𝒪ΔnGtsn(x,y)[f(un(s,κn(y)))f(u(s,y))]Dr,zu(s,y)dyds\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-s}(x,y)\left[f^{\prime}(u^{n}(s,\kappa_{n}(y)))-f^{\prime}(u(s,y))\right]D_{r,z}u(s,y)\mathrm{d}y\mathrm{d}s
+rt𝒪[ΔnGtsn(x,y)ΔGts(x,y)]f(u(s,y))Dr,zu(s,y)dyds\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\left[\Delta_{n}G^{n}_{t-s}(x,y)-\Delta G_{t-s}(x,y)\right]f^{\prime}(u(s,y))D_{r,z}u(s,y)\mathrm{d}y\mathrm{d}s
=:Jt,xn,1(r,z)+Jt,xn,2(r,z)+Jt,xn,3(r,z)+Jt,xn,4(r,z),\displaystyle=:J^{n,1}_{t,x}(r,z)+J^{n,2}_{t,x}(r,z)+J^{n,3}_{t,x}(r,z)+J^{n,4}_{t,x}(r,z),
Kt,xn(r,z)\displaystyle K^{n}_{t,x}(r,z) =rt𝒪Gtsn(x,y)σ(un(s,κn(y)))[Dr,zun(s,κn(y))Dr,zu(s,κn(y))]W(ds,dy)\displaystyle=\int_{r}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))[D_{r,z}u^{n}(s,\kappa_{n}(y))-D_{r,z}u(s,\kappa_{n}(y))]W(\mathrm{d}s,\mathrm{d}y)
+rt𝒪Gtsn(x,y)σ(un(s,κn(y)))[Dr,zu(s,κn(y))Dr,zu(s,y)]W(ds,dy)\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))\left[D_{r,z}u(s,\kappa_{n}(y))-D_{r,z}u(s,y)\right]W(\mathrm{d}s,\mathrm{d}y)
+rt𝒪[Gtsn(x,y)σ(un(s,κn(y)))Gts(x,y)σ(u(s,y))]Dr,zu(s,y)W(ds,dy)\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\left[G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))-G_{t-s}(x,y)\sigma^{\prime}(u(s,y))\right]D_{r,z}u(s,y)W(\mathrm{d}s,\mathrm{d}y)
=:Kt,xn,1(r,z)+Kt,xn,2(r,z)+Kt,xn,3(r,z).\displaystyle=:K^{n,1}_{t,x}(r,z)+K^{n,2}_{t,x}(r,z)+K^{n,3}_{t,x}(r,z).

When r>tr>t, we always set Jt,xn,i(r,z)=Kt,xn,j(r,z)=0J^{n,i}_{t,x}(r,z)=K^{n,j}_{t,x}(r,z)=0 for i=1,2,3,4i=1,2,3,4 and j=1,2,3j=1,2,3. Hereafter, let ϵ1\epsilon\ll 1 be an arbitrarily fixed positive number. A combination of Lemma 2.2 and Theorem 3.3 reveals that for any p2p\geq 2,

un(s,κn(y))u(s,y)p\displaystyle\|u^{n}(s,\kappa_{n}(y))-u(s,y)\|_{p} un(s,κn(y))u(s,κn(y))p+u(s,κn(y))u(s,y)p\displaystyle\leq\|u^{n}(s,\kappa_{n}(y))-u(s,\kappa_{n}(y))\|_{p}+\|u(s,\kappa_{n}(y))-u(s,y)\|_{p}
Cn1,\displaystyle\leq Cn^{-1}, (4.6)

for all (s,y)[0,T]×𝒪(s,y)\in[0,T]\times\mathcal{O}. Then the Lipschitz continuity of ff^{\prime}, the Minkowski and Cauchy-Schwarz inequalities and (3.21) produce

Jt,xn,3L2(Ω;)\displaystyle\|J^{n,3}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})} Cϵ0t𝒪(ts)34ϵun(s,κn(y))u(s,y)4Du(s,y)L4(Ω;)dyds\displaystyle\!\leq\!C_{\epsilon}\!\int_{0}^{t}\int_{\mathcal{O}}(t\!-\!s)^{-\frac{3}{4}-\epsilon}\|u^{n}(s,\kappa_{n}(y))\!-\!u(s,y)\|_{4}\|Du(s,y)\|_{L^{4}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s
Cn1supt,xDu(t,x)L4(Ω;)Cn1,\displaystyle\leq Cn^{-1}\sup_{t,x}\|Du(t,x)\|_{L^{4}(\Omega;\mathfrak{H})}\leq Cn^{-1},

where (4.2) and Lemma 4.2 were used in the second line. Similarly, by the boundedness of ff^{\prime}, Lemma 2.3, Lemma 4.2, and (3.9),

Jt,xn,4L2(Ω;)\displaystyle\|J^{n,4}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})} 0t𝒪|ΔnGtsn(x,y)ΔGts(x,y)|f(u(s,y))Du(s,y)L2(Ω;)dyds\displaystyle\leq\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-s}(x,y)-\Delta G_{t-s}(x,y)|\|f^{\prime}(u(s,y))Du(s,y)\|_{L^{2}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s
C0t𝒪|ΔnGtsn(x,y)ΔGts(x,y)|dydsCn1.\displaystyle\leq C\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-s}(x,y)-\Delta G_{t-s}(x,y)|\mathrm{d}y\mathrm{d}s\leq Cn^{-1}.

Since σ\sigma is bounded and Lipschitz continuous, it follows from the Minkowski inequality, (4.2), (3.10), and (2.1) that for p2p\geq 2,

It,xnLp(Ω;)2\displaystyle\|I_{t,x}^{n}\|_{L^{p}(\Omega;\mathfrak{H})}^{2} 0t𝒪Gtrn(x,z)σ(un(r,κn(z)))Gtr(x,z)σ(u(r,z))p2dzdr\displaystyle\leq\int_{0}^{t}\int_{\mathcal{O}}\|G^{n}_{t-r}(x,z)\sigma(u^{n}(r,\kappa_{n}(z)))-G_{t-r}(x,z)\sigma(u(r,z))\|_{p}^{2}\mathrm{d}z\mathrm{d}r
20t𝒪|Gtrn(x,z)Gtr(x,z)|2σ(un(r,κn(z)))p2dzdr\displaystyle\leq 2\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)-G_{t-r}(x,z)|^{2}\|\sigma(u^{n}(r,\kappa_{n}(z)))\|_{p}^{2}\mathrm{d}z\mathrm{d}r
+20t𝒪|Gtr(x,z)|2σ(un(r,κn(z)))σ(u(r,z))p2dzdrCn2.\displaystyle\quad+2\int_{0}^{t}\int_{\mathcal{O}}|G_{t-r}(x,z)|^{2}\|\sigma(u^{n}(r,\kappa_{n}(z)))-\sigma(u(r,z))\|_{p}^{2}\mathrm{d}z\mathrm{d}r\leq Cn^{-2}.

Replacing σ\sigma by σ\sigma^{\prime} in the above inequality, we also have

0t𝒪Gtsn(x,y)σ(un(s,κn(y)))Gts(x,y)σ(u(s,y))42dydsCn2,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}\|G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))-G_{t-s}(x,y)\sigma^{\prime}(u(s,y))\|_{4}^{2}\mathrm{d}y\mathrm{d}s\leq Cn^{-2},

which along with the Burkholder inequality for Hilbert space valued martingales (see e.g. [2, (4.18)]), the Hölder inequality and Lemma 4.2 indicates

Kt,xn,3L2(Ω;)2\displaystyle\|K^{n,3}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}^{2} C0t𝒪(Gtsn(x,y)σ(un(s,κn(y)))Gts(x,y)σ(u(s,y)))Du(s,y)L2(Ω;)2dyds\displaystyle\leq C\int_{0}^{t}\int_{\mathcal{O}}\left\|\left(G^{n}_{t-s}(x,y)\sigma^{\prime}(u^{n}(s,\kappa_{n}(y)))-G_{t-s}(x,y)\sigma^{\prime}(u(s,y))\right)Du(s,y)\right\|^{2}_{L^{2}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s
Cn2supt,xDu(t,x)L4(Ω;)2Cn2.\displaystyle\leq Cn^{-2}\sup_{t,x}\|Du(t,x)\|_{L^{4}(\Omega;\mathfrak{H})}^{2}\leq Cn^{-2}.

In order to estimate It,xn,2I^{n,2}_{t,x} and Kt,xn,2K^{n,2}_{t,x}, we claim that for p2p\geq 2, there exists some constant C=C(p,T)C=C(p,T) such that for any x1,x2𝒪x_{1},x_{2}\in\mathcal{O} and t(0,T]t\in(0,T],

Du(t,x1)Du(t,x2)Lp(Ω;)C|x1x2|.\displaystyle\|Du(t,x_{1})-Du(t,x_{2})\|_{L^{p}(\Omega;\mathfrak{H})}\leq C|x_{1}-x_{2}|. (4.7)

Indeed, from (4.2), we have that for rtr\leq t,

Dr,zu(t,x1)Dr,zu(t,x2)\displaystyle D_{r,z}u(t,x_{1})-D_{r,z}u(t,x_{2}) =[Gtr(x1,z)Gtr(x2,z)]σ(u(r,z))\displaystyle=\left[G_{t-r}(x_{1},z)-G_{t-r}(x_{2},z)\right]\sigma(u(r,z))
+rt𝒪[ΔGts(x1,y)ΔGts(x2,y)]f(u(s,y))Dr,zu(s,y)dyds\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\left[\Delta G_{t-s}(x_{1},y)-\Delta G_{t-s}(x_{2},y)\right]f^{\prime}(u(s,y))D_{r,z}u(s,y)\mathrm{d}y\mathrm{d}s
+rt𝒪[Gts(x1,y)Gts(x2,y)]σ(u(s,y))Dr,zu(s,y)W(ds,dy)\displaystyle\quad+\int_{r}^{t}\int_{\mathcal{O}}\left[G_{t-s}(x_{1},y)-G_{t-s}(x_{2},y)\right]\sigma^{\prime}(u(s,y))D_{r,z}u(s,y)W(\mathrm{d}s,\mathrm{d}y)
=:L1(r,z)+L2(r,z)+L3(r,z).\displaystyle=:L_{1}(r,z)+L_{2}(r,z)+L_{3}(r,z).

For r>tr>t, let Li(r,z)=0L_{i}(r,z)=0, i=1,2,3i=1,2,3. The boundedness of σ\sigma and Lemma 2.1 indicate

L1Lp(Ω;)2C0t𝒪|Gtr(x1,z)Gtr(x2,z)|2dzdrC|x1x2|2.\|L_{1}\|^{2}_{L^{p}(\Omega;\mathfrak{H})}\leq C\int_{0}^{t}\int_{\mathcal{O}}|G_{t-r}(x_{1},z)-G_{t-r}(x_{2},z)|^{2}\mathrm{d}z\mathrm{d}r\leq C|x_{1}-x_{2}|^{2}.

Since ff^{\prime} is bounded, it follows from (2) and Lemma 4.2 that

L2Lp(Ω;)\displaystyle\|L_{2}\|_{L^{p}(\Omega;\mathfrak{H})} C0t𝒪|ΔGts(x1,y)ΔGts(x2,y)|Du(s,y)Lp(Ω;)dydsC|x1x2|.\displaystyle\leq C\int_{0}^{t}\int_{\mathcal{O}}\left|\Delta G_{t-s}(x_{1},y)-\Delta G_{t-s}(x_{2},y)\right|\|Du(s,y)\|_{L^{p}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s\leq C|x_{1}-x_{2}|.

Similarly, it follows from the Burkholder inequality, Lemmas 2.1 and 4.2 that L3Lp(Ω;)C|x1x2|.\|L_{3}\|_{L^{p}(\Omega;\mathfrak{H})}\leq C|x_{1}-x_{2}|. Gathering the above estimates of L1L_{1}, L2L_{2} and L3L_{3}, we obtain (4.7). By means of (4.7) and (3.21), it can be verified that Jt,xn,2L2(Ω;)+Kt,xn,2L2(Ω;)Cn1.\|J^{n,2}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}+\|K^{n,2}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}\leq Cn^{-1}. Substituting the above estimates of It,xnL2(Ω;)\|I^{n}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}, Jt,xn,iL2(Ω;)\|J^{n,i}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}, i=2,3,4i=2,3,4, and Kt,xn,jL2(Ω;)\|K^{n,j}_{t,x}\|_{L^{2}(\Omega;\mathfrak{H})}, j=2,3j=2,3, into (4.5), we deduce that for 0<ϵ10<\epsilon\ll 1,

Dun(t,x)Du(t,x)L2(Ω;)2\displaystyle\quad\|Du^{n}(t,x)-Du(t,x)\|^{2}_{L^{2}(\Omega;\mathfrak{H})}
Cn2+C|0t𝒪|ΔnGtsn(x,y)|Dun(s,κn(y))Du(s,κn(y))L2(Ω;)dyds|2\displaystyle\leq Cn^{-2}+C\left|\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-s}(x,y)|\|Du^{n}(s,\kappa_{n}(y))-Du(s,\kappa_{n}(y))\|_{L^{2}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s\right|^{2}
+C0t𝒪|Gtsn(x,y)|2Dun(s,κn(y))Du(s,κn(y))L2(Ω;)2dyds\displaystyle\quad+C\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-s}(x,y)|^{2}\|Du^{n}(s,\kappa_{n}(y))-Du(s,\kappa_{n}(y))\|^{2}_{L^{2}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s
Cn2+C0t𝒪(ts)34ϵDun(s,κn(y))Du(s,κn(y))L2(Ω;)2dyds,\displaystyle\leq Cn^{-2}+C\int_{0}^{t}\int_{\mathcal{O}}(t-s)^{-\frac{3}{4}-\epsilon}\|Du^{n}(s,\kappa_{n}(y))-Du(s,\kappa_{n}(y))\|^{2}_{L^{2}(\Omega;\mathfrak{H})}\mathrm{d}y\mathrm{d}s, (4.8)

where the last step used the Hölder inequality and (3.21). Similar to (3.22), by taking the supremum over x𝒪x\in\mathcal{O} on both sides of (4.2) and applying the Gronwall lemma with weak singularities (see e.g., [15, Lemma 3.4]), we complete the proof. ∎

4.3. Convergence of density

In this part, we present the convergence of density of the numerical solution {un(T,kh)}n2\{u^{n}(T,kh)\}_{n\geq 2} for knk\in\mathbb{Z}_{n}. In order to apply Proposition 4.1 with X=u(T,x)X_{\infty}=u(T,x), we impose Assumption 4 and investigate the negative moment estimate of Du(t,x)Du(t,x).

Assumption 4.

There exists some σ0>0\sigma_{0}>0 such that |σ(x)|>σ0|\sigma(x)|>\sigma_{0}, for any xx\in\mathbb{R}.

Lemma 4.4.

Let x𝒪x\in\mathcal{O} and Assumptions 1 and 4 hold. Then there is ρ(0,1]\rho\in(0,1] such that

𝔼[Du(T,x)2ρ]C(ρ,T).\displaystyle\mathbb{E}\big{[}\|Du(T,x)\|^{-2\rho}_{\mathfrak{H}}\big{]}\leq C(\rho,T). (4.9)
Proof.

To prove (4.9), we need to use [8, Proposition 3.2], which is summarized as follows: under Assumption 4, if xi𝒪x_{i}\in\mathcal{O}, i=1,,di=1,\ldots,d, are distinct points, then for some p0>0p_{0}>0, there exists ε0=ε0(p0)\varepsilon_{0}=\varepsilon_{0}(p_{0}) such that for all ε(0,ε0)\varepsilon\in(0,\varepsilon_{0}),

supξd,ξ=1(ξ(t)ξε)εp0,\displaystyle\sup_{\xi\in\mathbb{R}^{d},\|\xi\|=1}\mathbb{P}\left(\xi^{\top}\mathbb{C}(t)\xi\leq\varepsilon\right)\leq\varepsilon^{p_{0}}, (4.10)

where (t):=(Du(t,xi),Du(t,xj))1i,jd\mathbb{C}(t):=(\langle Du(t,x_{i}),Du(t,x_{j})\rangle_{\mathfrak{H}})_{1\leq i,j\leq d} denotes the Malliavin covariance matrix of (u(t,x1),,u(t,xd))(u(t,x_{1}),\ldots,u(t,x_{d})) (the notation uu corresponds to XRX_{R} in [8]).

As a consequence of (4.10) with d=1d=1 and t=Tt=T, we have that for all 0<εε00<\varepsilon\leq\varepsilon_{0}, (Du(T,x)2ε)εp0,\mathbb{P}(\|Du(T,x)\|^{2}_{\mathfrak{H}}\leq\varepsilon)\leq\varepsilon^{p_{0}}, which implies that for any ρ<p0\rho<p_{0},

n=1nρ1(Du(T,x)2n)n=1ε01nρ1+n=ε01+1nρ1np0C(ρ,ε0).\displaystyle\sum_{n=1}^{\infty}n^{\rho-1}\mathbb{P}\left(\|Du(T,x)\|^{-2}_{\mathfrak{H}}\geq n\right)\leq\sum_{n=1}^{\lfloor\varepsilon_{0}^{-1}\rfloor}n^{\rho-1}+\sum_{n=\lfloor\varepsilon_{0}^{-1}\rfloor+1}^{\infty}n^{\rho-1}n^{-p_{0}}\leq C(\rho,\varepsilon_{0}).

Then we have that for 0<ρ<min{p0,1}0<\rho<\min\{p_{0},1\} and Z:=Du(T,x)2Z:=\|Du(T,x)\|^{-2}_{\mathfrak{H}},

𝔼[Zρ]\displaystyle\mathbb{E}\left[Z^{\rho}\right] 1+n=1(n+1)ρ(nZ<n+1)2+n=1((n+1)ρnρ)(Zn)\displaystyle\leq 1+\sum_{n=1}^{\infty}(n+1)^{\rho}\mathbb{P}(n\leq Z<n+1)\leq 2+\sum_{n=1}^{\infty}\left((n+1)^{\rho}-n^{\rho}\right)\mathbb{P}(Z\geq n)
2+ρn=1nρ1(Zn)C(ρ,ε0),\displaystyle\leq 2+\rho\sum_{n=1}^{\infty}n^{\rho-1}\mathbb{P}(Z\geq n)\leq C(\rho,\varepsilon_{0}),

which implies (4.9). The proof is completed. ∎

We are ready to give the main result of this section, which states that for knk\in\mathbb{Z}_{n}, the density of the numerical solution un(T,kh)u^{n}(T,kh) exists and converges in L1()L^{1}(\mathbb{R}) to the density of the exact solution. The readers are referred to [4, 8] for the existence of the density pu(t,x)p_{u(t,x)} of the exact solution u(t,x)u(t,x) for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}.

Theorem 4.5.

Suppose that Assumptions 1, 3, and 4 hold for k=2k=2, and u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}). Then for any knk\in\mathbb{Z}_{n}, un(T,kh)u^{n}(T,kh) admits a density pun(T,kh)p_{u^{n}(T,kh)}, and moreover

limnpu(T,kh)pun(T,kh)L1()=0.\lim_{n\rightarrow\infty}\|p_{u(T,kh)}-p_{u^{n}(T,kh)}\|_{L^{1}(\mathbb{R})}=0.
Proof.

By [23, Theorem 2.3.3] and (3.2), we obtain that under Assumption 4, for any t(0,T]t\in(0,T], the law of U(t)U(t) is absolutely continuous with respect to the Lebesgue measure on n1\mathbb{R}^{n-1}. Thus, {un(T,kh)}kn\{u^{n}(T,kh)\}_{k\in\mathbb{Z}_{n}} admits a density. Theorem 3.3, Lemma 4.2, Proposition 4.3, and Lemma 4.4 indicate that the conditions of Proposition 4.1 are fulfilled for α=2ρ\alpha=2\rho, Xn=un(T,kh)X_{n}=u^{n}(T,kh) and X=u(T,kh)X_{\infty}=u(T,kh). As a result,

limndTV(u(T,kh),un(T,kh))=0,\lim_{n\rightarrow\infty}\mathrm{d}_{\mathrm{TV}}(u(T,kh),u^{n}(T,kh))=0,

which together to (4.1) completes the proof. ∎

5. Full discretization

For the purpose of effective computation, we combine the spatial FDM with a temporal exponential Euler method to obtain the full discretization of Eq. (1.1), and give the strong convergence rate of the fully discrete numerical solution in this section.

Let {ti=iτ,i=0,1,,m}\{t_{i}=i\tau,i=0,1,\ldots,m\} (with m2m\geq 2) be a uniform partition of [0,T][0,T], where τ:=T/m\tau:=T/m is the uniform time stepsize. Denote by ηm(s)=τs/τ\eta_{m}(s)=\tau\lfloor s/\tau\rfloor the largest time grid point smaller than ss. By replacing ss in (3) by ηm(s)\eta_{m}(s), we obtain the full discretization um,n={um,n(t,x);(t,x)[0,T]×𝒪}u^{m,n}=\{u^{m,n}(t,x);(t,x)\in[0,T]\times\mathcal{O}\} given by

um,n(t,x)\displaystyle u^{m,n}(t,x) =𝒪Gtn(x,y)u0(κn(y))dy\displaystyle=\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y
+0t𝒪ΔnGtηm(s)n(x,y)f(um,n(ηm(s),κn(y)))dyds\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)f(u^{m,n}(\eta_{m}(s),\kappa_{n}(y)))\mathrm{d}y\mathrm{d}s
+0t𝒪Gtηm(s)n(x,y)σ(um,n(ηm(s),κn(y)))W(ds,dy).\displaystyle\quad+\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-\eta_{m}(s)}(x,y)\sigma(u^{m,n}(\eta_{m}(s),\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y). (5.1)

The discrete Green function GnG^{n} satisfies the following estimates.

Lemma 5.1.

Let γ(0,38)\gamma\in(0,\frac{3}{8}). Then for any x,y𝒪x,y\in\mathcal{O} and s,t[0,T]s,t\in[0,T] with s<ts<t,

0t𝒪|Gtrn(x,z)Gtrn(y,z)|2dzdrC|xy|2,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)-G^{n}_{t-r}(y,z)|^{2}\mathrm{d}z\mathrm{d}r\leq C|x-y|^{2},
0s𝒪|Gtrn(x,z)Gsrn(x,z)|2dzdr+st𝒪|Gtrn(x,z)|2dzdrCγ|ts|2γ.\displaystyle\int_{0}^{s}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)-G^{n}_{s-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r+\int_{s}^{t}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r\leq C_{\gamma}|t-s|^{2\gamma}.
Proof.

The proof is similar to that of [4, Lemma 1.8]. It can be verified that

|ϕj,n(x)ϕj,n(y)|2π1j|xy|.|\phi_{j,n}(x)-\phi_{j,n}(y)|\leq\sqrt{2\pi^{-1}}j|x-y|. (5.2)

A combination of (3.5) and (5.2) implies

0t𝒪|Gtrn(x,z)Gtrn(y,z)|2dzdr\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)-G^{n}_{t-r}(y,z)|^{2}\mathrm{d}z\mathrm{d}r\leq j=1n112λj,n2|ϕj,n(x)ϕj,n(y)|2C|xy|2.\displaystyle\sum_{j=1}^{n-1}\frac{1}{2\lambda_{j,n}^{2}}|\phi_{j,n}(x)-\phi_{j,n}(y)|^{2}\leq C|x-y|^{2}.

By the uniform boundedness of ϕj,n\phi_{j,n} and (3.5),

𝒪|Gtn(x,z)|2dz=j=1n1exp(2λj,n2t)|ϕj,n(x)|2Ct140ez4dzCt14,\displaystyle\int_{\mathcal{O}}|G^{n}_{t}(x,z)|^{2}\mathrm{d}z=\sum_{j=1}^{n-1}\exp(-2\lambda_{j,n}^{2}t)|\phi_{j,n}(x)|^{2}\leq Ct^{-\frac{1}{4}}\int_{0}^{\infty}e^{-z^{4}}\mathrm{d}z\leq Ct^{-\frac{1}{4}},

which indicates st𝒪|Gtrn(x,z)|2dzdrC|ts|34\int_{s}^{t}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r\leq C|t-s|^{\frac{3}{4}}. Using (3.5) and (2.20), we obtain

0s𝒪|Gtrn(x,z)Gsrn(x,z)|2dzdr\displaystyle\int_{0}^{s}\int_{\mathcal{O}}|G^{n}_{t-r}(x,z)-G^{n}_{s-r}(x,z)|^{2}\mathrm{d}z\mathrm{d}r =j=1n1|1exp(λj,n2(ts))|21exp(2λj,n2s)2λj,n2|ϕj,n(x)|2\displaystyle=\sum_{j=1}^{n-1}|1-\exp(-\lambda_{j,n}^{2}(t-s))|^{2}\frac{1-\exp(-2\lambda_{j,n}^{2}s)}{2\lambda_{j,n}^{2}}|\phi_{j,n}(x)|^{2}
Cj=1n1λj,n4γ2(ts)2γC(ts)2γ,\displaystyle\leq C\sum_{j=1}^{n-1}\lambda_{j,n}^{4\gamma-2}(t-s)^{2\gamma}\leq C(t-s)^{2\gamma}, (5.3)

where γ<38\gamma<\frac{3}{8}. The proof is completed. ∎

In a similar way, one can prove the following lemma.

Lemma 5.2.

Let α(0,1)\alpha\in(0,1). Then for any x,y𝒪x,y\in\mathcal{O} and s,t[0,T]s,t\in[0,T] with s<ts<t,

st𝒪|ΔnGtrn(x,z)|dzdrC|ts|3α8,\displaystyle\int_{s}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-r}(x,z)|\mathrm{d}z\mathrm{d}r\leq C|t-s|^{\frac{3\alpha}{8}}, (5.4)
0s𝒪|ΔnGtrn(x,z)ΔnGsrn(y,z)|dzdrC(α)(|xy|+|ts|3α8).\displaystyle\int_{0}^{s}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-r}(x,z)-\Delta_{n}G^{n}_{s-r}(y,z)|\mathrm{d}z\mathrm{d}r\leq C(\alpha)(|x-y|+|t-s|^{\frac{3\alpha}{8}}). (5.5)
Proof.

By using the orthogonality of {ϕjκn}jn\{\phi_{j}\circ\kappa_{n}\}_{j\in\mathbb{Z}_{n}} and the Cauchy–Schwarz inequality, (5.4) and (5.5) with x=yx=y and (5.5) with t=st=s can be obtained similarly as in (2), (2) and (2), respectively. ∎

Proposition 5.3.

Let Assumption 1 hold and u0𝒞2(𝒪)u_{0}\in\mathcal{C}^{2}(\mathcal{O}). Then for any α(0,1)\alpha\in(0,1) and p1p\geq 1, there exists C=C(p,T,α)C=C(p,T,\alpha) such that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

un(t,x)un(s,y)pC(|ts|3α8+C|xy|).\displaystyle\|u^{n}(t,x)-u^{n}(s,y)\|_{p}\leq C(|t-s|^{\frac{3\alpha}{8}}+C|x-y|).
Proof.

As a result of Theorem 3.3 and Lemma 2.3, for n2n\geq 2 and (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

un(t,x)pun(t,x)u(t,x)p+u(t,x)pC(p,T,K).\displaystyle\|u^{n}(t,x)\|_{p}\leq\|u^{n}(t,x)-u(t,x)\|_{p}+\|u(t,x)\|_{p}\leq C(p,T,K). (5.6)

Recall that u~1n(t,x):=𝒪Gtn(x,y)u0(κn(y))dy\tilde{u}^{n}_{1}(t,x):=\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y. It follows from (3) and (3.18) that

|u~1n(t,x)u~1n(t,y)|\displaystyle|\tilde{u}^{n}_{1}(t,x)-\tilde{u}^{n}_{1}(t,y)| C|xy|+0t𝒪|ΔnGrn(x,z)ΔnGrn(y,z)||Δnu0(z)|dzdr.\displaystyle\leq C|x-y|+\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{r}(x,z)-\Delta_{n}G^{n}_{r}(y,z)||\Delta_{n}u_{0}(z)|\mathrm{d}z\mathrm{d}r.

Since u0𝒞2(𝒪)u_{0}\in\mathcal{C}^{2}(\mathcal{O}), |Δnu0(z)|C|\Delta_{n}u_{0}(z)|\leq C for z𝒪z\in\mathcal{O}, and hence (5.5) implies |u~1n(t,x)u~1n(t,y)|C|xy|.|\tilde{u}^{n}_{1}(t,x)-\tilde{u}^{n}_{1}(t,y)|\leq C|x-y|. Similarly, based on (3), (5.4), and (5.5), one also has that for any α(0,1)\alpha\in(0,1), |u~1n(t,x)u~1n(s,x)|C|ts|3α8.|\tilde{u}^{n}_{1}(t,x)-\tilde{u}^{n}_{1}(s,x)|\leq C|t-s|^{\frac{3\alpha}{8}}. Based on a standard argument as in the proof of Lemma 2.2, it follows from (5.6) and Lemmas 5.1 and 5.2 that un(t,x)u~1n(t,x)un(s,y)+u~1n(s,y)pC(|ts|3α8+C|xy|)\|u^{n}(t,x)-\tilde{u}^{n}_{1}(t,x)-u^{n}(s,y)+\tilde{u}^{n}_{1}(s,y)\|_{p}\leq C(|t-s|^{\frac{3\alpha}{8}}+C|x-y|). The proof is completed. ∎

Theorem 5.4.

Suppose that Assumption 1 holds and u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}). Then for every p1p\geq 1 and 0<ϵ10<\epsilon\ll 1, there exists some constant C=C(p,T,K,ϵ)C=C(p,T,K,\epsilon) such that for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O},

um,n(t,x)u(t,x)pC(n1+m3ϵ8).\displaystyle\|u^{m,n}(t,x)-u(t,x)\|_{p}\leq C(n^{-1}+m^{-\frac{3-\epsilon}{8}}).
Proof.

Let (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O} and 0<ϵ10<\epsilon\ll 1. By virtue of Theorem 3.3, it remains to show

um,n(t,x)un(t,x)pCm3ϵ8.\displaystyle\|u^{m,n}(t,x)-u^{n}(t,x)\|_{p}\leq Cm^{-\frac{3-\epsilon}{8}}.

By (3), (5), the Minkowski inequality, the Burkholder inequality, and the Lipschitz continuity of σ\sigma and bb, we obtain that for any p2p\geq 2,

um,n(t,x)un(t,x)p2CH1m,n+CH2m,n+CQ1m,n+CQ2m,n\displaystyle\|u^{m,n}(t,x)-u^{n}(t,x)\|^{2}_{p}\leq CH_{1}^{m,n}+CH_{2}^{m,n}+CQ_{1}^{m,n}+CQ_{2}^{m,n}
+C0t𝒪|ΔnGtηm(s)n(x,y)|um,n(ηm(s),κn(y))un(ηm(s),κn(y))p2dyds\displaystyle+C\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)|\|u^{m,n}(\eta_{m}(s),\kappa_{n}(y))-u^{n}(\eta_{m}(s),\kappa_{n}(y))\|^{2}_{p}\mathrm{d}y\mathrm{d}s
+C0t𝒪|Gtηm(s)n(x,y)|2um,n(ηm(s),κn(y))un(ηm(s),κn(y))p2dyds,\displaystyle+C\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-\eta_{m}(s)}(x,y)|^{2}\|u^{m,n}(\eta_{m}(s),\kappa_{n}(y))-u^{n}(\eta_{m}(s),\kappa_{n}(y))\|_{p}^{2}\mathrm{d}y\mathrm{d}s,

where

H1m,n:\displaystyle H_{1}^{m,n}: =|0t𝒪|ΔnGtηm(s)n(x,y)ΔnGtsn(x,y)|f(un(ηm(s),κn(y)))pdyds|2,\displaystyle=\Big{|}\int_{0}^{t}\int_{\mathcal{O}}\big{|}\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)-\Delta_{n}G^{n}_{t-s}(x,y)\big{|}\|f(u^{n}(\eta_{m}(s),\kappa_{n}(y)))\|_{p}\mathrm{d}y\mathrm{d}s\Big{|}^{2},
H2m,n:\displaystyle H_{2}^{m,n}: =|0t𝒪|ΔnGtsn(x,y)|f(un(ηm(s),κn(y)))f(un(s,κn(y)))pdyds|2,\displaystyle=\Big{|}\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-s}(x,y)|\|f(u^{n}(\eta_{m}(s),\kappa_{n}(y)))-f(u^{n}(s,\kappa_{n}(y)))\|_{p}\mathrm{d}y\mathrm{d}s\Big{|}^{2},
Q1m,n:\displaystyle Q_{1}^{m,n}: =0t𝒪|Gtηm(s)n(x,y)Gtsn(x,y)|2σ(un(ηm(s),κn(y)))p2dyds,\displaystyle=\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-\eta_{m}(s)}(x,y)-G^{n}_{t-s}(x,y)|^{2}\|\sigma(u^{n}(\eta_{m}(s),\kappa_{n}(y)))\|_{p}^{2}\mathrm{d}y\mathrm{d}s,
Q2m,n:\displaystyle Q_{2}^{m,n}: =0t𝒪|Gtsn(x,y)|2σ(un(ηm(s),κn(y)))σ(un(s,κn(y)))p2dyds.\displaystyle=\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-s}(x,y)|^{2}\|\sigma(u^{n}(\eta_{m}(s),\kappa_{n}(y)))-\sigma(u^{n}(s,\kappa_{n}(y)))\|_{p}^{2}\mathrm{d}y\mathrm{d}s.

Taking advantage of Corollary 5.3 and (3.21), we obtain

H2m,n+Q2m,nCϵsupt|ηm(t)t|3ϵ4Cϵm3ϵ4.H_{2}^{m,n}+Q_{2}^{m,n}\leq C_{\epsilon}\sup_{t}|\eta_{m}(t)-t|^{\frac{3-\epsilon}{4}}\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}.

Similar to the proof of (5), one has that for α<38\alpha<\frac{3}{8},

0t𝒪|Gtηm(s)n(x,y)Gtsn(x,y)|2dydsCϵsupt|ηm(t)t|2α,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-\eta_{m}(s)}(x,y)-G^{n}_{t-s}(x,y)|^{2}\mathrm{d}y\mathrm{d}s\leq C_{\epsilon}\sup_{t}|\eta_{m}(t)-t|^{2\alpha},

which along with the boundedness of σ\sigma shows that Q1m,nCm3(1ϵ)4Q_{1}^{m,n}\leq Cm^{-\frac{3(1-\epsilon)}{4}}. Similar to (5.5) with x=yx=y, we also have that for α<38\alpha<\frac{3}{8},

0t𝒪|ΔnGtηm(s)n(x,y)ΔnGtsn(x,y)|dydsCsupt|ηm(t)t|α,\displaystyle\int_{0}^{t}\int_{\mathcal{O}}\big{|}\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)-\Delta_{n}G^{n}_{t-s}(x,y)\big{|}\mathrm{d}y\mathrm{d}s\leq C\sup_{t}|\eta_{m}(t)-t|^{\alpha},

which along with (5.6) reveals that H1m,nCϵm3ϵ4H_{1}^{m,n}\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}. Gathering the above estimates together yields that for any t[0,T]t\in[0,T],

supxum,n(t,x)un(t,x)p2\displaystyle\quad\sup_{x}\|u^{m,n}(t,x)-u^{n}(t,x)\|^{2}_{p}
Cϵm3ϵ4+C0t𝒪|ΔnGtηm(s)n(x,y)|supxum,n(ηm(s),x)un(ηm(s),x)p2dyds\displaystyle\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}+C\int_{0}^{t}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)|\sup_{x}\|u^{m,n}(\eta_{m}(s),x)-u^{n}(\eta_{m}(s),x)\|^{2}_{p}\mathrm{d}y\mathrm{d}s
+C0t𝒪|Gtηm(s)n(x,y)|2supxum,n(ηm(s),x)un(ηm(s),x)p2dyds.\displaystyle\quad+C\int_{0}^{t}\int_{\mathcal{O}}|G^{n}_{t-\eta_{m}(s)}(x,y)|^{2}\sup_{x}\|u^{m,n}(\eta_{m}(s),x)-u^{n}(\eta_{m}(s),x)\|^{2}_{p}\mathrm{d}y\mathrm{d}s.

Letting a(t):=supxum,n(t,x)un(t,x)p2a(t):=\sup_{x}\|u^{m,n}(t,x)-u^{n}(t,x)\|^{2}_{p}, t[0,T]t\in[0,T] and using (3.21), we obtain

a(t)Cϵm3ϵ4+C0t(tηm(s))34ϵa(ηm(s))ds,t[0,T].\displaystyle a(t)\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}+C\int_{0}^{t}(t-\eta_{m}(s))^{-\frac{3}{4}-\epsilon}a(\eta_{m}(s))\mathrm{d}s,\quad t\in[0,T]. (5.7)

Hence, for any k=1,2,,mk=1,2,\ldots,m,

a(tk)\displaystyle a(t_{k}) Cϵm3ϵ4+C0tk(tkηm(s))34ϵa(ηm(s))ds=Cϵm3ϵ4+Cτi=0k1tki34ϵa(ti),\displaystyle\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}+C\int_{0}^{t_{k}}(t_{k}-\eta_{m}(s))^{-\frac{3}{4}-\epsilon}a(\eta_{m}(s))\mathrm{d}s=C_{\epsilon}m^{-\frac{3-\epsilon}{4}}+C\tau\sum_{i=0}^{k-1}t_{k-i}^{-\frac{3}{4}-\epsilon}a(t_{i}),

which together with the discrete Gronwall lemma (see e.g. [20, Lemma A.4]) implies that sup0kma(tk)Cϵm3ϵ4.\sup_{0\leq k\leq m}a(t_{k})\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}. Finally, taking (5.7) into account gives

a(t)\displaystyle a(t) Cϵm3ϵ4+Cϵm3ϵ40t(tηm(s))34ϵdsCϵm3ϵ4,t[0,T].\displaystyle\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}}+C_{\epsilon}m^{-\frac{3-\epsilon}{4}}\int_{0}^{t}(t-\eta_{m}(s))^{-\frac{3}{4}-\epsilon}\mathrm{d}s\leq C_{\epsilon}m^{-\frac{3-\epsilon}{4}},\quad t\in[0,T].

Thus the proof is complete. ∎

Remark 5.5.

The application of the orthogonality of {ϕjκn}jn\{\phi_{j}\circ\kappa_{n}\}_{j\in\mathbb{Z}_{n}} plays a key role to obtain the temporal convergence order nearly 38\frac{3}{8} of the full discretization in Theorem 5.4. For example, if the left hand of (5.4) is estimated in the following way

0s𝒪|ΔnGtrn(x,z)ΔnGsrn(x,z)|dzdr\displaystyle\quad\int_{0}^{s}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-r}(x,z)-\Delta_{n}G^{n}_{s-r}(x,z)|\mathrm{d}z\mathrm{d}r
C0sj=0n1|λj,n|exp(λj,n2(sr))[1exp(λj,n2(ts))]dr\displaystyle\leq C\int_{0}^{s}\sum_{j=0}^{n-1}|\lambda_{j,n}|\exp(-\lambda_{j,n}^{2}(s-r))[1-\exp(-\lambda_{j,n}^{2}(t-s))]\mathrm{d}r
Cj=1n1λj,n2α(ts)αλj,nCj=1j4α2(ts)αCα(ts)α,\displaystyle\leq C\sum_{j=1}^{n-1}\frac{\lambda_{j,n}^{2\alpha}(t-s)^{\alpha}}{-\lambda_{j,n}}\leq C\sum_{j=1}^{\infty}j^{4\alpha-2}(t-s)^{\alpha}\leq C_{\alpha}(t-s)^{\alpha},

with α(0,14)\alpha\in(0,\frac{1}{4}), then we can only obtain 0s𝒪|ΔnGtrn(x,z)ΔnGsrn(x,z)|dzdrC(α)|ts|14ϵ\int_{0}^{s}\int_{\mathcal{O}}|\Delta_{n}G^{n}_{t-r}(x,z)-\Delta_{n}G^{n}_{s-r}(x,z)|\mathrm{d}z\mathrm{d}r\leq C(\alpha)|t-s|^{\frac{1}{4}-\epsilon} with 0<ϵ10<\epsilon\ll 1. As a result, the temporal Hölder continuity exponent of unu^{n} is only nearly 14{\frac{1}{4}}, which leads to that the temporal convergence order of the exponential Euler method is only nearly 14\frac{1}{4}.

Combining Theorem 5.4 with a localized argument, we show an Lp(Ω;)L^{p}(\Omega;\mathbb{R}) convergence order localized on a set of arbitrarily large probability for Eq. (1.1) with polynomial nonlinearity.

Corollary 5.6.

Suppose that Assumption 2 hold and u0𝒞3(𝒪)u_{0}\in\mathcal{C}^{3}(\mathcal{O}). Then for any R1R\geq 1, 0<ϵ10<\epsilon\ll 1 and p1p\geq 1, there exists C=C(R,T,p,ϵ)C=C(R,T,p,\epsilon) such that

𝔼[𝟏ΩRΩRm,n|um,n(t,x)u(t,x)|p]C(n1+m3ϵ8).\displaystyle\mathbb{E}\left[\mathbf{1}_{\Omega_{R}\cap\Omega_{R}^{m,n}}|u^{m,n}(t,x)-u(t,x)|^{p}\right]\leq C\big{(}n^{-1}+m^{-\frac{3-\epsilon}{8}}\big{)}.
Proof.

For R1R\geq 1, denote ΩR:={ωΩ:supt,x|u(t,x,ω)|R}.\Omega_{R}:=\big{\{}\omega\in\Omega:\sup_{t,x}|u(t,x,\omega)|\leq R\big{\}}. Set fR=KRff_{R}=K_{R}f with KRK_{R} defined by (2.3). Consider the localized Cahn-Hilliard equation

tuR+Δ2uR=ΔfR(uR)+σ(uR)W˙,R1\displaystyle\partial_{t}u_{R}+\Delta^{2}u_{R}=\Delta f_{R}(u_{R})+\sigma(u_{R})\dot{W},\quad R\geq 1 (5.8)

with uR(0,)=u0u_{R}(0,\cdot)=u_{0} and DBCs. Then the local property of stochastic integrals shows u=uRu=u_{R} (i.e., for any (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}, u(t,x)=uR(t,x)u(t,x)=u_{R}(t,x)) on ΩR\Omega_{R} a.s. Consider the numerical solution uRm,nu_{R}^{m,n} of (5.8) based on the FDM in space and the exponential Euler method in time, i.e.,

uRm,n(t,x)=\displaystyle u_{R}^{m,n}(t,x)= 𝒪Gtn(x,y)u0(κn(y))dy+0t𝒪ΔnGtηm(s)n(x,y)fR(uRm,n(ηm(s),κn(y)))dyds\displaystyle\int_{\mathcal{O}}G^{n}_{t}(x,y)u_{0}(\kappa_{n}(y))\mathrm{d}y+\int_{0}^{t}\int_{\mathcal{O}}\Delta_{n}G^{n}_{t-\eta_{m}(s)}(x,y)f_{R}(u_{R}^{m,n}(\eta_{m}(s),\kappa_{n}(y)))\mathrm{d}y\mathrm{d}s
+0t𝒪Gtηm(s)n(x,y)σ(uRm,n(ηm(s),κn(y)))W(ds,dy),\displaystyle+\int_{0}^{t}\int_{\mathcal{O}}G^{n}_{t-\eta_{m}(s)}(x,y)\sigma(u_{R}^{m,n}(\eta_{m}(s),\kappa_{n}(y)))W(\mathrm{d}s,\mathrm{d}y), (5.9)

for n,m2n,m\geq 2 and (t,x)[0,T]×𝒪(t,x)\in[0,T]\times\mathcal{O}. Seting ΩRm,n:={ωΩ:supt,x|um,n(t,x,ω)|R}\Omega_{R}^{m,n}:=\big{\{}\omega\in\Omega:\sup_{t,x}|u^{m,n}(t,x,\omega)|\leq R\big{\}}, and comparing (5) with (5), it follows from the local property of stochastic integrals that uRm,n=um,nu_{R}^{m,n}=u^{m,n} on ΩRm,n\Omega_{R}^{m,n} a.s. For fixed R1R\geq 1, since fRf_{R} satisfies Assumption 1, Theorem 5.4 indicates that there exists some constant C=C(R,T,p,ϵ)C=C(R,T,p,\epsilon) such that for 0<ϵ10<\epsilon\ll 1 and p1p\geq 1,

𝔼[|uRm,n(t,x)uR(t,x)|p]C(n1+m3ϵ8).\mathbb{E}\left[|u^{m,n}_{R}(t,x)-u_{R}(t,x)|^{p}\right]\leq C\big{(}n^{-1}+m^{-\frac{3-\epsilon}{8}}\big{)}.

Since um,n(t,x)u^{m,n}(t,x) and u(t,x)u(t,x) have almost surely continuous trajectories, we have limR(ΩR)=limR(ΩRm,n)=1\lim_{R\rightarrow\infty}\mathbb{P}(\Omega_{R})=\lim_{R\rightarrow\infty}\mathbb{P}(\Omega_{R}^{m,n})=1, which implies limR(ΩRΩRm,n)=1\lim_{R\rightarrow\infty}\mathbb{P}(\Omega_{R}\cap\Omega_{R}^{m,n})=1. By u=uRu=u_{R} on ΩR\Omega_{R} a.s., and uRm,n=um,nu_{R}^{m,n}=u^{m,n} on ΩRm,n\Omega_{R}^{m,n} a.s., we obtain

𝔼[𝟏ΩRΩRm,n|um,n(t,x)u(t,x)|p]𝔼[|uRm,n(t,x)uR(t,x)|p]C(n1+m3ϵ8).\displaystyle\mathbb{E}\left[\mathbf{1}_{\Omega_{R}\cap\Omega_{R}^{m,n}}|u^{m,n}(t,x)-u(t,x)|^{p}\right]\leq\mathbb{E}\left[|u^{m,n}_{R}(t,x)-u_{R}(t,x)|^{p}\right]\leq C\big{(}n^{-1}+m^{-\frac{3-\epsilon}{8}}\big{)}.

The proof is completed. ∎

Remark 5.7.

Theorems 3.3 and 4.5 indicate that when applying the spatial FDM to the localized Cahn–Hilliard equation (1.2), the associated numerical solution is strongly convergent and the density of the numerical solution converges in L1()L^{1}(\mathbb{R}). In addition, Section 2 gives the uniform moment estimate and Hölder continuity of the exact solution for Eq. (1.1) with ff being a polynomial of degree 33 with a positive dominant coefficient. We expect to combine the above results with the localization technique to study the strong convergence of the spatial FDM and the density convergence of the associated numerical solution for the stochastic Cahn–Hilliard equation with polynomial nonlinearity and multiplicative noise in the future.

References

  • [1] Rikard Anton, David Cohen, and Lluis Quer-Sardanyons. A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J. Numer. Anal., 40(1):247–284, 2020.
  • [2] Vlad Bally and Etienne Pardoux. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal., 9(1):27–64, 1998.
  • [3] Vlad Bally and Denis Talay. The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density. Monte Carlo Methods Appl., 2(2):93–128, 1996.
  • [4] Caroline Cardon-Weber. Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 7(5):777–816, 2001.
  • [5] Shimin Chai, Yanzhao Cao, Yongkui Zou, and Wenju Zhao. Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation. Appl. Numer. Math., 124:44–56, 2018.
  • [6] Chuchu Chen, Jianbo Cui, Jialin Hong, and Derui Sheng. Convergence of Density Approximations for Stochastic Heat Equation. arXiv:2007.12960.
  • [7] David Cohen and Lluís Quer-Sardanyons. A fully discrete approximation of the one-dimensional stochastic wave equation. IMA J. Numer. Anal., 36(1):400–420, 2016.
  • [8] Jianbo Cui and Jialin Hong. Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion. J. Differential Equations, 269(11):10143–10180, 2020.
  • [9] Jianbo Cui, Jialin Hong, and Derui Sheng. Convergence in Density of Splitting AVF Scheme for Stochastic Langevin Equation. arXiv:1906.03439.
  • [10] Jianbo Cui, Jialin Hong, and Liying Sun. Strong convergence of full discretization for stochastic Cahn-Hilliard equation driven by additive noise. SIAM J. Numer. Anal., 59(6):2866–2899, 2021.
  • [11] A. M. Davie and J. G. Gaines. Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comp., 70(233):121–134, 2001.
  • [12] Qiang Du and R. A. Nicolaides. Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal., 28(5):1310–1322, 1991.
  • [13] Charles M. Elliott and Stig Larsson. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comp., 58(198):603–630, S33–S36, 1992.
  • [14] Daisuke Furihata, Mihály Kovács, Stig Larsson, and Fredrik Lindgren. Strong convergence of a fully discrete finite element approximation of the stochastic Cahn-Hilliard equation. SIAM J. Numer. Anal., 56(2):708–731, 2018.
  • [15] István Gyöngy. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal., 9(1):1–25, 1998.
  • [16] Y. Hu and S. Watanabe. Donsker’s delta functions and approximation of heat kernels by the time discretization methods. J. Math. Kyoto Univ., 36(3):499–518, 1996.
  • [17] Davar Khoshnevisan. Analysis of Stochastic Partial Differential Equations, volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2014.
  • [18] A. Kohatsu-Higa. High order Itô-Taylor approximations to heat kernels. J. Math. Kyoto Univ., 37(1):129–150, 1997.
  • [19] Mihály Kovács, Stig Larsson, and Ali Mesforush. Finite element approximation of the Cahn-Hilliard-Cook equation. SIAM J. Numer. Anal., 49(6):2407–2429, 2011.
  • [20] R. Kruse. Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, volume 2093 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  • [21] Stig Larsson and Ali Mesforush. Finite-element approximation of the linearized Cahn-Hilliard-Cook equation. IMA J. Numer. Anal., 31(4):1315–1333, 2011.
  • [22] Ivan Nourdin and Guillaume Poly. Convergence in total variation on Wiener chaos. Stochastic Process. Appl., 123(2):651–674, 2013.
  • [23] David Nualart. The Malliavin Calculus and Related Topics. Probability and its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.
  • [24] Ruisheng Qi and Xiaojie Wang. Error estimates of semidiscrete and fully discrete finite element methods for the Cahn-Hilliard-Cook equation. SIAM J. Numer. Anal., 58(3):1613–1653, 2020.
  • [25] Lluís Quer-Sardanyons and Marta Sanz-Solé. A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli, 10(1):165–186, 2004.