This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Contributions for the kaon pair from ρ(770)\rho(770), ω(782)\omega(782) and their excited states in the BKK¯hB\to K\bar{K}h decays

Wen-Fei Wang1,2 [email protected] 1Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, China
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, China
Abstract

We study the resonance contributions for the kaon pair originating from the intermediate states ρ(770,1450,1700)\rho(770,1450,1700) and ω(782,1420,1650)\omega(782,1420,1650) for the three-body hadronic decays BKK¯hB\to K\bar{K}h in the perturbative QCD approach, where h=(π,K)h=(\pi,K). The branching fractions of the virtual contributions for KK¯K\bar{K} from the Breit-Wigner formula tails of ρ(770)\rho(770) and ω(782)\omega(782) which have been ignored in experimental and theoretical studies for these decays are found larger than the corresponding contributions from the resonances ρ(1450,1700)\rho(1450,1700) and ω(1420,1650)\omega(1420,1650). The differential branching fractions for Bρ(770)hKK¯hB\to\rho(770)h\to K\bar{K}h and Bω(782)hKK¯hB\to\omega(782)h\to K\bar{K}h are found nearly unaffected by the quite different values of the full widths for ρ(770)\rho(770) and ω(782)\omega(782) in this paper. The predictions in this work for the branching fractions of the quasi-two-body decays B+π+ρ(1450)0π+K+KB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}K^{+}K^{-} and B+π+ρ(1450)0π+π+πB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}\pi^{+}\pi^{-} meet the requirement of SU(3)SU(3) symmetry relation.

I Introduction

Charmless three-body hadronic BB meson decays provide us a field to investigate different aspects of weak and strong interactions. The underlying weak decay for bb-quark is simple which can be described well by the effective Hamiltonian rmp68-1125 , but the strong dynamics in these three-body processes is very complicated, owing to the hadron-hadron interactions, the three-body effects npps199-341 ; prd84-094001 and the rescattering processes 1512-09284 ; prd89-094013 ; epjc78-897 ; prd71-074016 in the final states, and also on account of the resonant contributions which are related to the scalar, vector and tensor resonances and are commonly described by the relativistic Breit-Wigner (BW) formula BW-model as well as the nonresonant contributions which are the rest at the amplitude level for the relevant decay processes. The experimental efforts for the three-body BB decays by employing Dalitz plot technique prd94-1046 within the isobar formalism pr135-B551 ; pr166-1731 ; prd11-3165 have revealed valuable information on involved strong and weak dynamics. But a priori model with all reliable and correct strong dynamical components is needed for the Dalitz plot analyses plb665-30 . The expressions of the decay amplitudes for those three-body decays without or have wrong factors for certain intermediate states will have negative impacts on the observables such as the branching fractions and CPCP violations for the relevant decay processes.

Recently, in the amplitude analysis of the three-body decays B±π±K+KB^{\pm}\to\pi^{\pm}K^{+}K^{-}, LHCb Collaboration reported an unexpected large fit fraction (30.7±1.2±0.9)%(30.7\pm 1.2\pm 0.9)\% in Ref. prl123-231802 for the resonance ρ(1450)0\rho(1450)^{0} decaying into charged kaon pair. This fit fraction implies a branching fraction (1.60±0.14)×106(1.60\pm 0.14)\times 10^{-6} for the quasi-two-body decay B+π+ρ(1450)0π+K+KB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}K^{+}K^{-} PDG-2020 , in view of the branching fractions (5.38±0.40±0.35)×106(5.38\pm 0.40\pm 0.35)\times 10^{-6} from Belle prd96-031101 and (5.0±0.5±0.5)×106(5.0\pm 0.5\pm 0.5)\times 10^{-6} presented by BaBar prl99-221801 for the B+K+Kπ+B^{+}\to K^{+}K^{-}\pi^{+} decays. While in the ρ\rho dominant decay modes B±π±π+πB^{\pm}\to\pi^{\pm}\pi^{+}\pi^{-}, the contribution for π+π\pi^{+}\pi^{-} pair from the intermediate state ρ(1450)0\rho(1450)^{0} was found to be small but consistent with the theoretical expectation prd96-036014 by LHCb in their recent works prl124-031801 ; prd101-012006 .

In Ref. prd101-111901 , within flavour SU(3)SU(3) symmetry, we predicted the branching fraction for B+π+ρ(1450)0π+K+KB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}K^{+}K^{-} to be about one tenth of that for the decay B+π+ρ(1450)0π+π+πB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}\pi^{+}\pi^{-} and much smaller than the corresponding result in prl123-231802 ; PDG-2020 , and our prediction got the supports from the theoretical analyses in Ref. 2007-02558 . In addition, the virtual contribution plb791-342 ; prd69-112002 ; prd79-112004 ; prd91-092002 ; prd94-072001 for K+KK^{+}K^{-} from the Breit-Wigner (BW) formula BW-model tail of the resonance ρ(770)0\rho(770)^{0} which has been ignored by the experimental analysis was found to be the same order but larger than the contribution of ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} prd101-111901 . In this work, we shall systematically study the contributions for the kaon pair from the resonances ρ(770,1450,1700)\rho(770,1450,1700) and ω(782,1420,1650)\omega(782,1420,1650) in the BKK¯hB\to K\bar{K}h decays within the perturbative QCD (PQCD) approach plb504-6 ; prd63-054008 ; prd63-074009 ; ppnp51-85 , where hh is the bachelor state pion or kaon. As for the other JPC=1J^{PC}=1^{--} isovector resonances, like ρ(1570)\rho(1570), ρ(1900)\rho(1900) and ρ(2150)\rho(2150), we will leave their possible contributions for kaon pair to the future studies in view of their ambiguous nature PDG-2020 .

The contributions for KK¯K\bar{K} from the tails of ρ(770)\rho(770) and ω(782)\omega(782) in the charmless three-body hadronic BB meson decays have been ignored in both the theoretical studies and the experimental works. But in the processes of πpKK+n\pi^{-}p\to K^{-}K^{+}n and π+nKK+p\pi^{+}n\to K^{-}K^{+}p prd15-3196 ; prd22-2595 , p¯pK+Kπ0\bar{p}p\to K^{+}K^{-}\pi^{0} plb468-178 ; epjc80-453 , e+eK+Ke^{+}e^{-}\to K^{+}K^{-} pl99b-257 ; pl107b-297 ; plb669-217 ; prd76-072012 ; prd88-032013 ; prd94-112006 ; plb779-64 ; prd99-032001 ; zpc39-13 and e+eKS0KL0e^{+}e^{-}\to K^{0}_{S}K^{0}_{L} pl99b-261 ; prd63-072002 ; plb551-27 ; plb760-314 ; prd89-092002 ; jetp103-720 , the resonances ρ(770)\rho(770) and ω(782)\omega(782) along with their excited states are indispensable for the formation of the kaon pair. In addition, the resonances ρ(770,1450)±\rho(770,1450)^{\pm} are the important intermediate states for the K±KS0K^{\pm}K^{0}_{S} pair in the final state of hadronic τ\tau decays prd98-032010 ; prd89-072009 ; prd53-6037 ; epjc79-436 . The subprocesses ρ(1450,1700)KK¯\rho(1450,1700)\to K\bar{K} be concerned for the decay J/ψK+Kπ0J/\psi\to K^{+}K^{-}\pi^{0} in Refs. prd76-094016 ; prd75-074017 ; prd95-072007 ; prd100-032004 could be mainly attributed to the observation of a resonant broad structure around 1.51.5 GeV in the K+KK^{+}K^{-} mass spectrum in prl97-142002 . While for the decays BKKKB\to KKK prd65-092005 ; prd71-092003 ; prd74-032003 ; prl99-161802 ; prd82-073011 ; prd85-112010 and BKKπB\to KK\pi prd87-091101 ; prl99-221801 , the unsettled fX(1500)f_{X}(1500) which decaying into K+KK^{+}K^{-} channel could probably be related to the resonance ρ(1450)0\rho(1450)^{0} 2007-13141 .

For the three-body decays BKK¯hB\to K\bar{K}h, the subprocesses ρKK¯\rho\to K\bar{K} and ωKK¯\omega\to K\bar{K} can not be calculated in the PQCD approach and will be introduced into the distribution amplitudes of the KK¯K\bar{K} system via the kaon vector time-like form factors. The intermediate ρ(770)\rho(770), ω(782)\omega(782) resonances and their excited states are generated in the hadronization of the light quark-antiquark pair qq¯()q\bar{q}^{(\prime)} with q()=(u,d)q^{(\prime)}=(u,d) as demonstrated in the Fig. 1 where the factorizable and nonfactorizable Feynman diagrams have been merged for the sake of simplicity. In the first approximation one can neglect the interaction of the KK¯K\bar{K} pair originating from the intermediate states with the bachelor hh, and study the decay processes Bρ(770,1450,1700)hKK¯hB\to\rho(770,1450,1700)h\to K\bar{K}h and Bω(782,1420,1650)hKK¯hB\to\omega(782,1420,1650)h\to K\bar{K}h in the quasi-two-body framework plb763-29 ; 1605-03889 ; prd96-113003 . The ππKK\pi\pi\leftrightarrow KK rescattering effects were found have important contributions for B±π±K+KB^{\pm}\to\pi^{\pm}K^{+}K^{-} prl123-231802 , which would be investigated in a subsequent work. The final state interaction effect for the ρ(1450,1700)KK¯\rho(1450,1700)\to K\bar{K} were found to be suppressed in prd75-074017 and will be neglected in the numerical calculation of this work. The quasi-two-body framework based on PQCD approach has been discussed in detail in plb763-29 , which has been followed in Refs. prd101-111901 ; epjc80-815 ; jhep2003-162 ; prd96-036014 ; prd95-056008 ; 2007-13141 ; 2010-12906 ; prd96-093011 ; npb923-54 ; epjc80-394 ; 2102-04691 for the quasi-two-body BB meson decays in recent years. Parallel analyses for the related three-body BB meson processes within QCD factorization can be found in Refs. 2007-08881 ; jhep2006-073 ; plb622-207 ; plb669-102 ; prd79-094005 ; prd72-094003 ; prd76-094006 ; prd88-114014 ; prd89-074025 ; prd94-094015 ; npb899-247 ; 2007-02558 ; epjc75-536 ; prd89-094007 , and for relevant work within the symmetries one is referred to Refs. plb564-90 ; prd72-075013 ; prd72-094031 ; prd84-056002 ; plb727-136 ; plb726-337 ; prd89-074043 ; plb728-579 ; prd91-014029 .

Figure 1: Typical Feynman diagrams for the processes BRhKK¯hB\to Rh\to K\bar{K}h, with RR represents the resonances ρ\rho, ω\omega and their excited states. The dots on the quarks connecting the weak vertex \otimes are the switchable vertices for the hard gluons.

This paper is organized as follows. In Sec. II, we review the kaon vector time-like form factors, which are the crucial inputs for the quasi-two-body framework within PQCD and decisive for the numerical results of this work. In Sec. III, we give a brief introduction of the theoretical framework for the quasi-two-body BB meson decays within PQCD approach. In Sec. IV, we present our numerical results of the branching fractions and direct CPCP asymmetries for the quasi-two-body decays Bρ(770,1450,1700)hKK¯hB\to\rho(770,1450,1700)h\to K\bar{K}h and Bω(782,1420,1650)hKK¯hB\to\omega(782,1420,1650)h\to K\bar{K}h, along with some necessary discussions. Summary of this work is given in Sec. V. The wave functions and factorization formulae for the related decay amplitudes are collected in the Appendix.

II Kaon time-like form factors

The electromagnetic form factors for the charged and neutral kaon are important for the precise determination of the hadronic loop contributions to the anomalous magnetic moment of the muon and the running of the QED coupling to the ZZ boson mass prd69-093003 ; plb779-64 ; prd97-114025 and are also valuable for the measurements of the resonance parameters zpc39-13 ; plb669-217 ; prd88-032013 ; plb779-64 ; prd63-072002 ; prd89-092002 ; plb760-314 . The kaon electromagnetic form factors have been extensively studied in Refs. epjc79-436 ; prd67-034012 ; epjc39-41 ; epjc49-697 ; prd81-094014 on the theoretical side. Up to now the experimental information on these form factors comes from the measurements of the reactions e+eK+Ke^{+}e^{-}\to K^{+}K^{-} zpc39-13 ; prd76-072012 ; prd99-032001 and e+eK+K(γ)e^{+}e^{-}\to K^{+}K^{-}(\gamma) prd88-032013 . Since KK¯K\bar{K} is not an eigenstate of isospin, both isospin 0 and 11 resonances need to be considered in components of the form factors of kaon  prd88-032013 . The combined analysis of the e+eK+Ke^{+}e^{-}\to K^{+}K^{-} and e+eKSKLe^{+}e^{-}\to K_{S}K_{L} cross sections and the spectral function in the τKK0ντ\tau^{-}\to K^{-}K^{0}\nu_{\tau} decay allows one to extract the isovector and isoscalar electromagnetic form factors for kaons jetp129-386 .

The vector time-like form factors for charged and neutral kaons are defined by the matrix elements zpc29-637 ; prd72-094003

K+(p1)K(p2)|q¯γμ(1γ5)q|0\displaystyle\langle K^{+}(p_{1})K^{-}(p_{2})|\bar{q}\gamma_{\mu}(1-\gamma_{5})q|0\rangle =\displaystyle= (p1p2)μFK+Kq(s),\displaystyle(p_{1}-p_{2})_{\mu}\,F_{K^{+}K^{-}}^{q}(s), (1)
K0(p1)K¯0(p2)|q¯γμ(1γ5)q|0\displaystyle\langle K^{0}(p_{1})\bar{K}^{0}(p_{2})|\bar{q}\gamma_{\mu}(1-\gamma_{5})q|0\rangle =\displaystyle= (p1p2)μFK0K¯0q(s),\displaystyle(p_{1}-p_{2})_{\mu}\,F_{K^{0}\bar{K}^{0}}^{q}(s), (2)

with the invariant mass square s=p2s=p^{2} and the KK¯K\bar{K} system momentum p=p1+p2p=p_{1}+p_{2}. These two form factors FK+KqF_{K^{+}K^{-}}^{q} and FK0K¯0qF_{K^{0}\bar{K}^{0}}^{q} can be related to kaon electromagnetic form factors FK+F_{K^{+}} and FK0F_{K^{0}}, which are defined by epjc39-41

K+(p1)K(p2)|jμem|0\displaystyle\langle K^{+}(p_{1})K^{-}(p_{2})|j^{em}_{\mu}|0\rangle =\displaystyle= (p1p2)μFK+(s),\displaystyle(p_{1}-p_{2})_{\mu}\,F_{K^{+}}(s), (3)
K0(p1)K¯0(p2)|jμem|0\displaystyle\langle K^{0}(p_{1})\bar{K}^{0}(p_{2})|j^{em}_{\mu}|0\rangle =\displaystyle= (p1p2)μFK0(s),\displaystyle(p_{1}-p_{2})_{\mu}\,F_{K^{0}}(s), (4)

and have the forms epjc39-41

FK+(s)\displaystyle F_{K^{+}}(s) =\displaystyle= +12ι=ρ,ρ,cιKBWι(s)+16ς=ω,ω,cςKBWς(s)+13κ=ϕ,ϕ,..cκKBWκ(s),\displaystyle+\frac{1}{2}\sum_{\iota=\rho,\rho^{\prime},...}c^{K}_{\iota}{\rm BW}_{\iota}(s)+\frac{1}{6}\sum_{\varsigma=\omega,\omega^{\prime},...}c^{K}_{\varsigma}{\rm BW}_{\varsigma}(s)+\frac{1}{3}\sum_{\kappa=\phi,\phi^{\prime},..}c^{K}_{\kappa}{\rm BW}_{\kappa}(s),\quad (5)
FK0(s)\displaystyle F_{K^{0}}(s) =\displaystyle= 12ι=ρ,ρ,cιKBWι(s)+16ς=ω,ω,cςKBWς(s)+13κ=ϕ,ϕ,..cκKBWκ(s),\displaystyle-\frac{1}{2}\sum_{\iota=\rho,\rho^{\prime},...}c^{K}_{\iota}{\rm BW}_{\iota}(s)+\frac{1}{6}\sum_{\varsigma=\omega,\omega^{\prime},...}c^{K}_{\varsigma}{\rm BW}_{\varsigma}(s)+\frac{1}{3}\sum_{\kappa=\phi,\phi^{\prime},..}c^{K}_{\kappa}{\rm BW}_{\kappa}(s),\quad (6)

with the electromagnetic current jμem=23u¯γμu13d¯γμd13s¯γμsj^{em}_{\mu}=\frac{2}{3}\bar{u}\gamma_{\mu}u-\frac{1}{3}\bar{d}\gamma_{\mu}d-\frac{1}{3}\bar{s}\gamma_{\mu}s carried by the light quarks u,du,d and ss npb250-517 . The BW formula in FK+(s)F_{K^{+}}(s) and FK0(s)F_{K^{0}}(s) has the form zpc48-445 ; prd101-012006

BWR=mR2mR2simRΓR(s),\displaystyle{\rm BW}_{R}=\frac{m_{R}^{2}}{m_{R}^{2}-s-im_{R}\Gamma_{R}(s)}\,, (7)

where the ss-dependent width is given by

ΓR(s)=ΓRmRs|q|3|q0|3X2(|q|rBWR).\displaystyle\Gamma_{R}(s)=\Gamma_{R}\frac{m_{R}}{\sqrt{s}}\frac{\left|\overrightarrow{q}\right|^{3}}{\left|\overrightarrow{q_{0}}\right|^{3}}X^{2}(\left|\overrightarrow{q}\right|r^{R}_{\rm BW}). (8)

The Blatt-Weisskopf barrier factor BW-X with barrier radius rBWR=4.0r^{R}_{\rm BW}=4.0 GeV-1 prd101-012006 is given by

X(z)=1+z021+z2.\displaystyle X(z)=\sqrt{\frac{1+z^{2}_{0}}{1+z^{2}}}\,. (9)

The magnitude of the momentum

|q|\displaystyle\left|\overrightarrow{q}\right| =\displaystyle= 12s[s(mK+mK¯)2][s(mKmK¯)2],\displaystyle\frac{1}{2\sqrt{s}}\sqrt{\left[s-(m_{K}+m_{\bar{K}})^{2}\right]\left[s-(m_{K}-m_{\bar{K}})^{2}\right]}\,, (10)

and the |q0|\left|\overrightarrow{q_{0}}\right| is |q|\left|\overrightarrow{q}\right| at s=mR2s=m^{2}_{R}. One should note that c¯γμc\bar{c}\gamma_{\mu}c can also contribute to FK+F_{K^{+}} and FK0F_{K^{0}} in the high-mass region prd88-032013 ; prd92-054024 ; prd92-072008 and the BW formula for the ρ\rho family could be replaced with the Gounaris-Sakurai (GS) model prl21-244 as in Refs. epjc39-41 ; prd81-094014 ; prd86-032013 . The FK+F_{K^{+}} and FK0F_{K^{0}} can be separated into the isospin I=0I=0 and I=1I=1 components as FK+(0)=FK+(0)I=1+FK+(0)I=0F_{K^{+(0)}}=F_{K^{+(0)}}^{I=1}+F_{K^{+(0)}}^{I=0}, with the FK+I=0=FK0I=0F_{K^{+}}^{I=0}=F_{K^{0}}^{I=0} and FK+I=1=FK0I=1F_{K^{+}}^{I=1}=-F_{K^{0}}^{I=1}, and one has K+(p1)K¯0(p2)|u¯γμd|0=(p1p2)μ2FK+I=1(s)\langle K^{+}(p_{1})\bar{K}^{0}(p_{2})|\bar{u}\gamma_{\mu}d|0\rangle=(p_{1}-p_{2})_{\mu}2F_{K^{+}}^{I=1}(s) epjc39-41 ; prd96-113003 .

When concern only the contributions for K+K{K^{+}K^{-}} and K0K¯0{K^{0}\bar{K}^{0}} from the resonant states ι=ρ(770,1450,1700)\iota=\rho(770,1450,1700) and ς=ω(782,1420,1650)\varsigma=\omega(782,1420,1650), we have prd72-094003

FK+Ku(s)\displaystyle F_{K^{+}K^{-}}^{u}(s) =\displaystyle= FK0K¯0d(s)=+12ιcιKBWι(s)+12ςcςKBWς(s),\displaystyle F_{K^{0}\bar{K}^{0}}^{d}(s)=+\frac{1}{2}\sum_{\iota}c^{K}_{\iota}{\rm BW}_{\iota}(s)+\frac{1}{2}\sum_{\varsigma}c^{K}_{\varsigma}{\rm BW}_{\varsigma}(s), (11)
FK+Kd(s)\displaystyle F_{K^{+}K^{-}}^{d}(s) =\displaystyle= FK0K¯0u(s)=12ιcιKBWι(s)+12ςcςKBWς(s).\displaystyle F_{K^{0}\bar{K}^{0}}^{u}(s)=-\frac{1}{2}\sum_{\iota}c^{K}_{\iota}{\rm BW}_{\iota}(s)+\frac{1}{2}\sum_{\varsigma}c^{K}_{\varsigma}{\rm BW}_{\varsigma}(s). (12)

For the K+K¯0K^{+}\bar{K}^{0} and K0KK^{0}K^{-} pairs which have no contribution from the neutral resonances ω(782,1420,1650)\omega(782,1420,1650), we have prd67-034012 ; epjc39-41 ; epjc79-436

FK+K¯0(s)=FK0K(s)=FK+(s)FK0(s)=ιcιKBWι(s).\displaystyle F_{K^{+}\bar{K}^{0}}(s)=F_{K^{0}K^{-}}(s)=F_{K^{+}}(s)-F_{K^{0}}(s)=\sum_{\iota}c^{K}_{\iota}{\rm BW}_{\iota}(s). (13)

One should note that the different constants in Eqs. (11)-(12) and Eqs. (5)-(6) reveal the different definitions of the vector time-like and electromagnetic form factors for kaons in this work.

Table 1: The fitted results of cRKc^{K}_{R}’s in Refs. epjc39-41 ; prd81-094014 ; jetp129-386 . The column Fit-1 (Fit-2) contains the values of the constrained (unconstrained) fits.
cRKc^{K}_{R} Fit-1 epjc39-41 Fit-2 epjc39-41 Fit-1 prd81-094014 Fit-2 prd81-094014 Model-I jetp129-386 Model-II jetp129-386
cρ(770)Kc^{K}_{\rho(770)} 1.195±0.0091.195\pm 0.009 1.139±0.0101.139\pm 0.010 1.138±0.0111.138\pm 0.011 1.120±0.0071.120\pm 0.007 1.162±0.0051.162\pm 0.005 1.067±0.0411.067\pm 0.041
cω(782)Kc^{K}_{\omega(782)} 1.195±0.0091.195\pm 0.009 1.467±0.0351.467\pm 0.035 1.138±0.0111.138\pm 0.011 1.37±0.031.37\pm 0.03 1.26±0.061.26\pm 0.06 1.28±0.141.28\pm 0.14
cρ(1450)Kc^{K}_{\rho(1450)} 0.1120.010-0.112\mp 0.010 0.1240.012-0.124\mp 0.012 0.043±0.014-0.043\pm 0.014 0.107±0.010-0.107\pm 0.010 0.063±0.014-0.063\pm 0.014 0.025±0.008-0.025\pm 0.008
cω(1420)Kc^{K}_{\omega(1420)} 0.1120.010-0.112\mp 0.010 0.0180.024-0.018\mp 0.024 0.043±0.014-0.043\pm 0.014 0.173±0.003-0.173\pm 0.003 0.13±0.03-0.13\pm 0.03 0.13±0.02-0.13\pm 0.02
cρ(1700)Kc^{K}_{\rho(1700)} 0.0830.019-0.083\mp 0.019 0.0150.022-0.015\mp 0.022 0.144±0.015-0.144\pm 0.015 0.028±0.012-0.028\pm 0.012 0.160±0.014-0.160\pm 0.014 0.234±0.013-0.234\pm 0.013
cω(1650)Kc^{K}_{\omega(1650)} 0.0830.019-0.083\mp 0.019 0.4490.059-0.449\mp 0.059 0.144±0.015-0.144\pm 0.015 0.621±0.020-0.621\pm 0.020 0.37±0.05-0.37\pm 0.05 0.234±0.013-0.234\pm 0.013

The cRKc^{K}_{R} (with R=ι,ς,κR=\iota,\varsigma,\kappa) is proportional to the coupling constant gRKK¯g_{RK\bar{K}}, and the coefficients have the constraints jetp129-386

ι=ρ,ρ,cιK=1,13ς=ω,ω,cςK+23κ=ϕ,ϕ,..cκK=1\displaystyle\sum_{\iota=\rho,\rho^{\prime},...}c^{K}_{\iota}=1,\qquad\frac{1}{3}\sum_{\varsigma=\omega,\omega^{\prime},...}c^{K}_{\varsigma}+\frac{2}{3}\sum_{\kappa=\phi,\phi^{\prime},..}c^{K}_{\kappa}=1 (14)

to provide the proper normalizations FK+(0)=1F_{K^{+}}(0)=1 and FK0(0)=0F_{K^{0}}(0)=0, but the possibility of SU(3)SU(3) violations are allowed which will become manifest in differences between the fitted normalization coefficients epjc39-41 . In Refs. epjc39-41 ; prd81-094014 ; jetp129-386 , the coefficients cRKc^{K}_{R}’s for the resonances ρ(770),ω(782),ϕ(1020)\rho(770),\omega(782),\phi(1020) and their excited states have been fitted to the data, the results for ρ(770,1450,1700)\rho(770,1450,1700) and ω(782,1420,1650)\omega(782,1420,1650) are summarised in Table 1, from which one can find that the fitted values for the cρ(1450)Kc^{K}_{\rho(1450)}, cρ(1700)Kc^{K}_{\rho(1700)}, cω(1420)Kc^{K}_{\omega(1420)} or cω(1650)Kc^{K}_{\omega(1650)} are quite different in Refs. epjc39-41 ; prd81-094014 ; jetp129-386 .

With the relations epjc39-41

cω(782)K2fω(782)gω(782)K+Kmω(782),gω(782)K+K=12gϕ(1020)K+K,\displaystyle c^{K}_{\omega(782)}\approx\sqrt{2}\cdot\frac{f_{\omega(782)}g_{\omega(782)K^{+}K^{-}}}{m_{\omega(782)}},\quad\;g_{\omega(782)K^{+}K^{-}}=\frac{1}{\sqrt{2}}g_{\phi(1020)K^{+}K^{-}}, (15)

and Γω(782)ee=0.60±0.02\Gamma_{\omega(782)\to ee}=0.60\pm 0.02 keV, Γϕ(1020)=4.249±0.013\Gamma_{\phi(1020)}=4.249\pm 0.013 MeV, the branching fraction (49.2±0.5)%(49.2\pm 0.5)\% for the decay ϕ(1020)K+K\phi(1020)\to K^{+}K^{-} and the masses for K±,ω(782)K^{\pm},\omega(782) and ϕ(1020)\phi(1020) in PDG-2020 , it’s easy to obtain the result 1.113±0.0191.113\pm 0.019 for the coefficient cω(782)Kc^{K}_{\omega(782)}, where the error comes from the uncertainties of Γω(782)ee\Gamma_{\omega(782)\to ee} and Γϕ(1020)\Gamma_{\phi(1020)}, while the errors come from the uncertainties of the relevant masses are very small and have been neglected. Similarly, we have cρ(770)K=1.247±0.019c^{K}_{\rho(770)}=1.247\pm 0.019 with gρ(770)K+K=gω(782)K+Kg_{\rho(770)K^{+}K^{-}}=g_{\omega(782)K^{+}K^{-}} epjc39-41 and the decay constant fρ(770)=216±3f_{\rho(770)}=216\pm 3 MeV jhep1608-098 , where the error comes from the uncertainties of fρ(770)f_{\rho(770)} and Γϕ(1020)\Gamma_{\phi(1020)}. Our estimations for cω(782)Kc^{K}_{\omega(782)} and cρ(770)Kc^{K}_{\rho(770)} are consistent with the results in epjc39-41 ; prd81-094014 ; jetp129-386 . But unlike the results of Fit-2 in Refs. epjc39-41 ; prd81-094014 and the values in jetp129-386 , we have cω(782)Kc^{K}_{\omega(782)} slightly less than cρ(770)Kc^{K}_{\rho(770)}, because the decay constant (mass) for ω(782){\omega(782)} is slightly smaller (larger) than that for ρ(770){\rho(770)}. Supposing fρ(770)=fω(782)f_{\rho(770)}=f_{\omega(782)} and mρ(770)=mω(782)m_{\rho(770)}=m_{\omega(782)}, one will have cω(782)K=cρ(770)Kc^{K}_{\omega(782)}=c^{K}_{\rho(770)} with Eq. (15) and then back to the point of the constrained fit in epjc39-41 ; prd81-094014 . To be sure, the violation of the relation gρ(770)K+K=gω(782)K+K=12gϕ(1020)K+Kg_{\rho(770)K^{+}K^{-}}=g_{\omega(782)K^{+}K^{-}}=\frac{1}{\sqrt{2}}g_{\phi(1020)K^{+}K^{-}} will modify our estimations for cω(782)Kc^{K}_{\omega(782)} and cρ(770)Kc^{K}_{\rho(770)}, but the violation was found quite small plb779-64 .

In principle, the cRKc^{K}_{R} for the couplings can be calculated with the formula prd81-094014 ; plb512-331

cRnK=(1)nΓ(βRK1/2)απmRn2Γ(n+1)Γ(βRK1n),\displaystyle c^{K}_{R_{n}}=\frac{(-1)^{n}\Gamma(\beta^{K}_{R}-1/2)}{\alpha^{\prime}\sqrt{\pi}m^{2}_{R_{n}}\Gamma(n+1)\Gamma(\beta^{K}_{R}-1-n)}, (16)

with α=1/(2mR02)\alpha^{\prime}=1/(2m^{2}_{R_{0}}), and n=0n=0 for the ground states ρ(770),ω(782)\rho(770),\omega(782) and ϕ(1020)\phi(1020), n1n\geq 1 for their radial excitations. The parameters βRK\beta^{K}_{R} could be deduced from Eq. (16) with the fitted cR0Kc^{K}_{R_{0}} prd81-094014 . With Eq. (16) one will deduce the results cρ(1450)K=0.156±0.015c^{K}_{\rho(1450)}=-0.156\pm 0.015 and cω(1420)K=0.066±0.014c^{K}_{\omega(1420)}=-0.066\pm 0.014. The cρ(1450)Kc^{K}_{\rho(1450)} here is consistent with the result of Fit-2 in epjc39-41 but some larger than the latter for the magnitude. If we take into account the relation gω(1420)K+Kgρ(1450)K+Kg_{\omega(1420)K^{+}K^{-}}\approx g_{\rho(1450)K^{+}K^{-}}, the big difference between cω(1420)Kc^{K}_{\omega(1420)} and cρ(1450)Kc^{K}_{\rho(1450)} seems not reasonable. In view of the consistency for the coefficient cρ(1450)c_{\rho(1450)} of the pion electromagnetic form factor FπF_{\pi} in Refs. prd86-032013 ; zpc76-15 ; prd61-112002 ; pr421-191 ; prd78-072006 by different collaborations, we here propose a constraint for cρ(1450)Kc^{K}_{\rho(1450)} from the coefficient cρ(1450)πc^{\pi}_{\rho(1450)} of FπF_{\pi}. With the relation gρ(1450)K+K12gρ(1450)π+πg_{\rho(1450)K^{+}K^{-}}\approx\frac{1}{2}g_{\rho(1450)\pi^{+}\pi^{-}} within flavour SU(3)SU(3) symmetry epjc39-41 , one has

|cρ(1450)K|2|fρ(1450)gρ(1450)K+K|mρ(1450)|fρ(1450)gρ(1450)π+π|2mρ(1450)|cρ(1450)π|,\displaystyle|c^{K}_{\rho(1450)}|\approx\sqrt{2}\cdot\frac{|f_{\rho(1450)}g_{\rho(1450)K^{+}K^{-}}|}{m_{\rho(1450)}}\approx\frac{|f_{\rho(1450)}g_{\rho(1450)\pi^{+}\pi^{-}}|}{\sqrt{2}\,m_{\rho(1450)}}\approx|c^{\pi}_{\rho(1450)}|, (17)

where the different definitions for the coefficient cρ(1450)πc^{\pi}_{\rho(1450)} in prd86-032013 ; zpc76-15 ; prd61-112002 ; pr421-191 ; prd78-072006 and the differences for the BW and GS models should be taken into account. In view of the results for cρ(1450)Kc^{K}_{\rho(1450)} in epjc39-41 and cρ(1450)πc^{\pi}_{\rho(1450)} in Refs. prd86-032013 ; zpc76-15 ; prd61-112002 ; pr421-191 ; prd78-072006 , we adopt the cρ(1450)K=0.156±0.015c^{K}_{\rho(1450)}=-0.156\pm 0.015 deduced from Eq. (16) in our numerical calculation. In Ref. zpc62-455 , with the analyses of the e+ee^{+}e^{-} annihilation data, Γωee\Gamma_{\omega^{\prime}\to ee} was estimated to be 0.150.15 keV, implies the decay constant fω(1420)=131f_{\omega(1420)}=131 MeV. With the fρ(1450)=182±5f_{\rho(1450)}=182\pm 5 MeV in prd77-116009 and the masses for ω(1420)\omega(1420) and ρ(1450)\rho(1450) in PDG-2020 , one can estimate the ratio between cω(1420)Kc^{K}_{\omega(1420)} and cρ(1450)Kc^{K}_{\rho(1450)} as 0.748±0.0400.748\pm 0.040, then one has cω(1420)K=0.117±0.013c^{K}_{\omega(1420)}=-0.117\pm 0.013, which agree with the constrained result in epjc39-41 and the corresponding values in jetp129-386 as shown in Table 1.

The results for cρ(1700)Kc^{K}_{\rho(1700)} vary dramatically in Table 1, from 0.0150.022-0.015\mp 0.022 epjc39-41 to 0.234±0.013-0.234\pm 0.013  jetp129-386 . A reliable reference value should come from the measurements of FπF_{\pi} rather than the result deduced from Eq. (16) since ρ(1700)\rho(1700) is believed to be a 13D11^{3}D_{1} state in ρ\rho family zpc62-455 ; prd55-4157 ; PDG-2020 . With Eq. (17) and the replacement ρ(1450)ρ(1700)\rho(1450)\to\rho(1700) one has |cρ(1700)K|0.081|c^{K}_{\rho(1700)}|\approx 0.081 with the result |cρ′′|=0.068|c_{\rho^{\prime\prime}}|=0.068 for FπF_{\pi} in prd86-032013 . The difference between the |cρ(1700)K||c^{K}_{\rho(1700)}| and |cρ′′||c_{\rho^{\prime\prime}}| is induced by the differences of the BW and GS models and the different definitions for them. Then we adopt the fitted result 0.0830.019-0.083\mp 0.019 for cρ(1700)Kc^{K}_{\rho(1700)} epjc39-41 in the numerical calculation in this work. As for the coefficient cω(1650)Kc^{K}_{\omega(1650)}, we employ the value 0.0830.019-0.083\mp 0.019 of the constrained fits in epjc39-41 because of insufficiency of the knowledge for the properties of ω(1650)\omega(1650).

III Kinematics and differential branching fraction

In the light-cone coordinates, the momentum pBp_{B} for the initial state B+,B0B^{+},B^{0} or Bs0B^{0}_{s} with the mass mBm_{B} is written as pB=mB2(1,1,0T)p_{B}=\frac{m_{B}}{\sqrt{2}}(1,1,0_{\rm T}) in the rest frame of BB meson. In the same coordinates, the bachelor state pion or kaon in the concerned processes has the momentum p3=mB2(1ζ,0,0T)p_{3}=\frac{m_{B}}{\sqrt{2}}(1-\zeta,0,0_{\rm T}), and its spectator quark has the momentum k3=(mB2(1ζ)x3,0,k3T)k_{3}=(\frac{m_{B}}{\sqrt{2}}(1-\zeta)x_{3},0,k_{3{\rm T}}). For the resonances ρ\rho, ω\omega and their excited states, and the KK¯K\bar{K} system generated from them by the strong interaction, we have the momentum p=mB2(ζ,1,0T)p=\frac{m_{B}}{\sqrt{2}}(\zeta,1,0_{\rm T}) and the longitudinal polarization vector ϵL=12(ζ,1/ζ,0T)\epsilon_{L}=\frac{1}{\sqrt{2}}(-\sqrt{\zeta},1/\sqrt{\zeta},0_{\rm T}). It’s easy to check the variable ζ=s/mB2\zeta=s/m^{2}_{B} with the invariant mass square s=mKK¯2p2s=m^{2}_{K\bar{K}}\equiv p^{2}. The spectator quark comes out from BB meson and goes into the intermediate states in hadronization shown in Fig. 1 (a) has the momenta kB=(mB2xB,0,kBT)k_{B}=(\frac{m_{B}}{\sqrt{2}}x_{B},0,k_{B{\rm T}}) and k=(0,mB2x,kT)k=(0,\frac{m_{B}}{\sqrt{2}}x,k_{\rm T}) before and after it pass through the hard gluon vertex. The xBx_{B}, xx and x3x_{3}, which run from zero to one in the numerical calculation, are the momentum fractions for the BB meson, the resonances and the bachelor final state, respectively.

For the PP-wave KK¯K\bar{K} system along with the subprocesses ρKK¯\rho\to K\bar{K} and ωKK¯\omega\to K\bar{K}, the distribution amplitudes are organized into prd101-111901 ; epjc80-815 ; plb763-29

ϕKK¯P-wave(x,s)=12Nc[sϵ/Lϕ0(x,s)+ϵ/Lp/ϕt(x,s)+sϕs(x,s)],\displaystyle\phi^{P\text{-wave}}_{K\bar{K}}(x,s)=\frac{-1}{\sqrt{2N_{c}}}\left[\sqrt{s}\,{\epsilon/}\!_{L}\phi^{0}(x,s)+{\epsilon/}\!_{L}{p/}\phi^{t}(x,s)+\sqrt{s}\phi^{s}(x,s)\right]\!, (18)

with

ϕ0(x,s)\displaystyle\phi^{0}(x,s) =\displaystyle= 3CXFK(s)2Ncx(1x)[1+aR0C23/2(12x)],\displaystyle\frac{3C_{X}F_{K}(s)}{\sqrt{2N_{c}}}x(1-x)\left[1+a_{R}^{0}C^{3/2}_{2}(1-2x)\right]\!, (19)
ϕt(x,s)\displaystyle\phi^{t}(x,s) =\displaystyle= 3CXFKt(s)22Nc(12x)2[1+aRtC23/2(12x)],\displaystyle\frac{3C_{X}F^{t}_{K}(s)}{2\sqrt{2N_{c}}}(1-2x)^{2}\left[1+a_{R}^{t}C^{3/2}_{2}(1-2x)\right]\!, (20)
ϕs(x,s)\displaystyle\phi^{s}(x,s) =\displaystyle= 3CXFKs(s)22Nc(12x)[1+aRs(110x+10x2)],\displaystyle\frac{3C_{X}F^{s}_{K}(s)}{2\sqrt{2N_{c}}}(1-2x)\left[1+a_{R}^{s}\left(1-10x+10x^{2}\right)\right]\!, (21)

where FKF_{K} is employed as the abbreviation of the vector time-like form factors in Eqs. (11)-(13) and gain different component for different resonance contribution from to the expressions of the Eqs. (11)-(13) in the concerned decay processes. Moreover, we have factored out the normalisation constant CXC_{X} to make sure the the proper normalizations for the time-like form factors for kaon, and CXC_{X} are given by

Cρ0=Cω=2,Cρ±=1.\displaystyle C_{\rho^{0}}=C_{\omega}=\sqrt{2},\qquad C_{\rho^{\pm}}=1. (22)

The Gegenbauer polynomial C23/2(χ)=3(5χ21)/2C^{3/2}_{2}(\chi)=3\left(5\chi^{2}-1\right)/2 for the distribution amplitudes ϕ0\phi^{0} and ϕt\phi^{t}, and the Gegenbauer moments have been catered to the data in Ref. plb763-29 for the quasi-two-body decays BKρKππB\to K\rho\to K\pi\pi. Within flavour SU(2)SU(2) symmetry, we adopt the same Gegenbauer moments for the PP-wave KK¯K\bar{K} system originating from the intermediate states ω\omega and ρ\rho in this work. The vector time-like form factors FKtF^{t}_{K} and FKsF^{s}_{K} for the twist-33 distribution amplitudes are deduced from the relations FKt,s(s)(fρT/fρ)FK(s)F^{t,s}_{K}(s)\approx(f^{T}_{\rho}/f_{\rho})F_{K}(s) and FKt,s(s)(fωT/fω)FK(s)F^{t,s}_{K}(s)\approx(f^{T}_{\omega}/f_{\omega})F_{K}(s) plb763-29 with the result fρT/fρ=0.687f^{T}_{\rho}/f_{\rho}=0.687 at the scale μ=2\mu=2 GeV prd78-114509 . The relation fρT/fρfωT/fωf^{T}_{\rho}/f_{\rho}\approx f^{T}_{\omega}/f_{\omega} jhep1608-098 is employed because of the lack of a lattice QCD determination for fωTf^{T}_{\omega}.

In PQCD approach, the factorization formula for the decay amplitude 𝒜{\mathcal{A}} of the quasi-two-body decays BρhKK¯hB\to\rho h\to K\bar{K}h and BωhKK¯hB\to\omega h\to K\bar{K}h is written as plb561-258 ; prd89-074031

𝒜=ϕBϕKK¯P-waveϕh\displaystyle{\mathcal{A}}=\phi_{B}\otimes{\mathcal{H}}\otimes\phi^{P\text{-wave}}_{K\bar{K}}\otimes\phi_{h} (23)

according to Fig. 1 at leading order in the strong coupling αs\alpha_{s}. The hard kernel {\mathcal{H}} here contains only one hard gluon exchange, and the symbol \otimes means convolutions in parton momenta. For the BB meson and bachelor final state hh in this work, their distribution amplitudes ϕB\phi_{B} and ϕh\phi_{h} are the same as those widely adopted in the PQCD approach, we attach their expressions and parameters in the Appendix A.

For the CPCP averaged differential branching fraction (\mathcal{B}), one has the formula prd101-111901 ; prd79-094005 ; PDG-2020

ddζ=τB|q|3|qh|312π3mB5|𝒜|2¯,\displaystyle\frac{d{\mathcal{B}}}{d\zeta}=\tau_{B}\frac{\left|\overrightarrow{q}\right|^{3}\left|\overrightarrow{q_{h}}\right|^{3}}{12\pi^{3}m^{5}_{B}}\overline{|{\mathcal{A}}|^{2}}\;, (24)

where τB\tau_{B} is the mean lifetime for BB meson. The magnitude of the momentum |qh|{\small|\overrightarrow{q_{h}}|} for the state hh in the rest frame of the intermediate states is written as

|qh|=12s[mB2(s+mh)2][mB2(smh)2],\displaystyle\left|\overrightarrow{q_{h}}\right|=\frac{1}{2\sqrt{s}}\sqrt{\left[m^{2}_{B}-(\sqrt{s}+m_{h})^{2}\right]\left[m^{2}_{B}-(\sqrt{s}-m_{h})^{2}\right]}, (25)

with mhm_{h} the mass for the bachelor meson pion or kaon. When mK=mK¯m_{K}=m_{\bar{K}}, the Eq. (10) has a simpler form

|q|\displaystyle\left|\overrightarrow{q}\right| =\displaystyle= 12s4mK2.\displaystyle\frac{1}{2}\sqrt{s-4m_{K}^{2}}\,. (26)

Note that the cubic |q|{\small|\overrightarrow{q}|} and |qh|{\small|\overrightarrow{q_{h}}|} in Eq. (24) are caused by the introduction of the Zemach tensor 2qqh{\small-2\overrightarrow{q}}\cdot{\small\overrightarrow{q_{h}}} which is employed to describe the angular distribution for the decay of spin 11 resonances Zemach . The direct CPCP asymmetry 𝒜CP{\mathcal{A}}_{CP} is defined as

𝒜CP=(B¯f¯)(Bf)(B¯f¯)+(Bf).\displaystyle{\mathcal{A}}_{CP}=\frac{{\mathcal{B}}(\bar{B}\to\bar{f})-{\mathcal{B}}(B\to f)}{{\mathcal{B}}(\bar{B}\to\bar{f})+{\mathcal{B}}(B\to f)}. (27)

The Lorentz invariant decay amplitudes according to Fig. 1 for the decays BρhKK¯hB\to\rho h\to K\bar{K}h and BωhKK¯hB\to\omega h\to K\bar{K}h are given in the Appendix B.

IV Numerical results and discussions

In the numerical calculation, we employ the decay constants fB=0.189f_{B}=0.189 GeV and fBs=0.231f_{B_{s}}=0.231 GeV for the B0,±B^{0,\pm} and Bs0B^{0}_{s} mesons prd98-074512 , respectively, and the mean lifetimes τB0=(1.519±0.004)×1012\tau_{B^{0}}=(1.519\pm 0.004)\times 10^{-12} s, τB±=(1.638±0.004)×1012\tau_{B^{\pm}}=(1.638\pm 0.004)\times 10^{-12} s and τBs0=(1.515±0.004)×1012\tau_{B^{0}_{s}}=(1.515\pm 0.004)\times 10^{-12} s PDG-2020 . The masses for the relevant particles in the numerical calculation of this work, the full widths for the resonances ρ(770,1450,1700)\rho(770,1450,1700) and ω(782,1420,1650)\omega(782,1420,1650), and the Wolfenstein parameters of the CKM matrix are presented in Table 2.

Table 2: Masses for the relevant particles, the full widths for ρ(770,1450,1700)\rho(770,1450,1700) and ω(782,1420,1650)\omega(782,1420,1650) (in units of GeV) and the Wolfenstein parameters PDG-2020 .
mB0=5.280mB±=5.279mBs0=5.367mK0=0.498mK±=0.494m_{B^{0}}=5.280\quad m_{B^{\pm}}=5.279\qquad m_{B^{0}_{s}}\,=5.367\quad\;\,m_{K^{0}}\;\,=0.498\quad\;m_{K^{\pm}}\;\;=0.494
mπ0=0.135mπ±=0.140mρ(770)=0.775Γρ(770)=0.149mω(782)=0.783m_{\pi^{0}}\,=0.135\quad m_{\pi^{\pm}}\,=0.140\quad m_{\rho(770)}=0.775\quad\Gamma_{\rho(770)}=0.149\quad\!m_{\omega(782)}=0.783
Γω(782)=0.00849mω(1420)=1.410±0.060Γω(1420)= 0.290±0.190\Gamma_{\omega(782)}\;\,=0.00849\qquad\qquad\;m_{\omega(1420)}=1.410\pm 0.060\quad\;\;\Gamma_{\omega(1420)}=\,0.290\pm 0.190
mρ(1450)=1.465±0.025Γρ(1450)=0.400±0.060mω(1650)=1.670±0.030m_{\rho(1450)}=1.465\pm 0.025\qquad\!\Gamma_{\rho(1450)}\;=0.400\pm 0.060\quad\;\;m_{\omega(1650)}\!=1.670\pm 0.030
Γω(1650)=0.315±0.035mρ(1700)=1.720±0.020Γρ(1700)=0.250±0.100\Gamma_{\omega(1650)}\,=0.315\pm 0.035\qquad\!m_{\rho(1700)}=1.720\pm 0.020\quad\;\;\,\Gamma_{\rho(1700)}=0.250\pm 0.100
λ=0.22650±0.00048A=0.7900.012+0.017ρ¯=0.1410.017+0.016η¯=0.357±0.01\lambda=0.22650\pm 0.00048\quad\;\;A=0.790^{+0.017}_{-0.012}\quad\;\;\bar{\rho}=0.141^{+0.016}_{-0.017}\quad\;\;\;\bar{\eta}=0.357\pm 0.01
Table 3: PQCD predictions of the CPCP averaged branching fractions and the direct CPCP asymmetries for the quasi-two-body Bρ(770)hKK¯hB\to\rho(770)h\to K\bar{K}h and Bω(782)hKK¯hB\to\omega(782)h\to K\bar{K}h decays. The decays with the subprocess ρ(770)0K0K¯0\rho(770)^{0}\to K^{0}\bar{K}^{0} or ω(782)K0K¯0\omega(782)\to K^{0}\bar{K}^{0} have the same results as their corresponding decay modes with ρ(770)0K+K\rho(770)^{0}\to K^{+}K^{-} or ω(782)K+K\omega(782)\to K^{+}K^{-}.
   Decay modes     {\mathcal{B}}      𝒜CP{\mathcal{A}}_{CP}
B+π0[ρ(770)+]K+K¯0B^{+}\to\pi^{0}[\rho(770)^{+}\to]K^{+}\bar{K}^{0} 2.010.350.260.200.070.06+0.38+0.29+0.24+0.10+0.06×1082.01^{+0.38+0.29+0.24+0.10+0.06}_{-0.35-0.26-0.20-0.07-0.06}\times 10^{-8} 0.160.200.180.100.00+0.18+0.20+0.10+0.00-0.16^{+0.18+0.20+0.10+0.00}_{-0.20-0.18-0.10-0.00}
B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} 1.430.250.170.100.050.04+0.26+0.19+0.11+0.06+0.04×1071.43^{+0.26+0.19+0.11+0.06+0.04}_{-0.25-0.17-0.10-0.05-0.04}\times 10^{-7} 0.220.040.010.010.01+0.04+0.01+0.01+0.01-0.22^{+0.04+0.01+0.01+0.01}_{-0.04-0.01-0.01-0.01}
B+π+[ω(782)]K+KB^{+}\to\pi^{+}[\omega(782)\;\to]K^{+}K^{-} 4.211.340.960.080.170.14+1.67+1.03+0.08+0.21+0.14×1084.21^{+1.67+1.03+0.08+0.21+0.14}_{-1.34-0.96-0.08-0.17-0.14}\times 10^{-8} 0.020.010.010.010.00+0.01+0.01+0.02+0.000.02^{+0.01+0.01+0.02+0.00}_{-0.01-0.01-0.01-0.00}
B+K0[ρ(770)+]K+K¯0B^{+}\to K^{0}[\rho(770)^{+}\to]K^{+}\bar{K}^{0} 2.210.450.460.290.080.07+0.51+0.51+0.34+0.10+0.07×1072.21^{+0.51+0.51+0.34+0.10+0.07}_{-0.45-0.46-0.29-0.08-0.07}\times 10^{-7} 0.170.050.030.020.00+0.04+0.04+0.01+0.000.17^{+0.04+0.04+0.01+0.00}_{-0.05-0.03-0.02-0.00}
B+K+[ρ(770)0]K+KB^{+}\to K^{+}[\rho(770)^{0}\to]K^{+}K^{-} 5.150.850.980.660.210.16+0.91+0.99+0.69+0.25+0.16×1085.15^{+0.91+0.99+0.69+0.25+0.16}_{-0.85-0.98-0.66-0.21-0.16}\times 10^{-8} 0.390.040.040.050.01+0.03+0.04+0.04+0.000.39^{+0.03+0.04+0.04+0.00}_{-0.04-0.04-0.05-0.01}
B+K+[ω(782)]K+KB^{+}\to K^{+}[\omega(782)\;\to]K^{+}K^{-} 8.921.472.181.070.340.30+1.67+2.33+1.19+0.43+0.30×1088.92^{+1.67+2.33+1.19+0.43+0.30}_{-1.47-2.18-1.07-0.34-0.30}\times 10^{-8} 0.220.040.040.040.00+0.04+0.05+0.04+0.000.22^{+0.04+0.05+0.04+0.00}_{-0.04-0.04-0.04-0.00}
B0π[ρ(770)+]K+K¯0B^{0}\to\pi^{-}[\rho(770)^{+}\to]K^{+}\bar{K}^{0} 1.020.170.250.130.050.03+0.21+0.28+0.14+0.06+0.03×1071.02^{+0.21+0.28+0.14+0.06+0.03}_{-0.17-0.25-0.13-0.05-0.03}\times 10^{-7} 0.150.030.030.000.00+0.04+0.04+0.00+0.000.15^{+0.04+0.04+0.00+0.00}_{-0.03-0.03-0.00-0.00}
B0π+[ρ(770)]KK0B^{0}\to\pi^{+}[\rho(770)^{-}\to]K^{-}K^{0} 9.592.901.880.190.330.29+3.25+1.96+0.22+0.46+0.29×1089.59^{+3.25+1.96+0.22+0.46+0.29}_{-2.90-1.88-0.19-0.33-0.29}\times 10^{-8} 0.270.080.010.020.00+0.11+0.02+0.02+0.00-0.27^{+0.11+0.02+0.02+0.00}_{-0.08-0.01-0.02-0.00}
B0π0[ρ(770)0]K+KB^{0}\to\pi^{0}\;[\rho(770)^{0}\,\to]K^{+}K^{-} 1.470.780.490.140.070.04+0.96+0.53+0.19+0.13+0.04×1091.47^{+0.96+0.53+0.19+0.13+0.04}_{-0.78-0.49-0.14-0.07-0.04}\times 10^{-9} 0.190.150.060.040.05+0.17+0.07+0.06+0.050.19^{+0.17+0.07+0.06+0.05}_{-0.15-0.06-0.04-0.05}
B0π0[ω(782)]K+KB^{0}\to\pi^{0}\;[\omega(782)\;\,\to]K^{+}K^{-} 4.960.871.360.650.220.17+0.73+1.25+0.63+0.24+0.17×1094.96^{+0.73+1.25+0.63+0.24+0.17}_{-0.87-1.36-0.65-0.22-0.17}\times 10^{-9} 0.580.180.110.140.04+0.19+0.11+0.14+0.040.58^{+0.19+0.11+0.14+0.04}_{-0.18-0.11-0.14-0.04}
B0K+[ρ(770)]KK0B^{0}\to K^{+}[\rho(770)^{-}\!\to]K^{-}K^{0} 1.770.250.390.250.060.05+0.30+0.41+0.27+0.08+0.05×1071.77^{+0.30+0.41+0.27+0.08+0.05}_{-0.25-0.39-0.25-0.06-0.05}\times 10^{-7} 0.200.080.020.030.00+0.07+0.03+0.03+0.000.20^{+0.07+0.03+0.03+0.00}_{-0.08-0.02-0.03-0.00}
B0K0[ρ(770)0]K+KB^{0}\to K^{0}\;[\rho(770)^{0}\to]K^{+}K^{-} 5.440.811.190.760.180.17+0.88+1.26+0.82+0.24+0.17×1085.44^{+0.88+1.26+0.82+0.24+0.17}_{-0.81-1.19-0.76-0.18-0.17}\times 10^{-8} 0.010.010.010.010.00+0.01+0.01+0.00+0.00-0.01^{+0.01+0.01+0.00+0.00}_{-0.01-0.01-0.01-0.00}
B0K0[ω(782)]K+KB^{0}\to K^{0}\;[\omega(782)\;\to]K^{+}K^{-} 5.990.961.390.750.190.20+1.15+1.60+0.88+0.22+0.20×1085.99^{+1.15+1.60+0.88+0.22+0.20}_{-0.96-1.39-0.75-0.19-0.20}\times 10^{-8} 0.010.020.000.010.00+0.02+0.00+0.01+0.000.01^{+0.02+0.00+0.01+0.00}_{-0.02-0.00-0.01-0.00}
Bs0π[ρ(770)+]K+K¯0B_{s}^{0}\to\pi^{-}[\rho(770)^{+}\to]K^{+}\bar{K}^{0} 2.310.620.390.260.080.07+0.75+0.51+0.30+0.11+0.07×1092.31^{+0.75+0.51+0.30+0.11+0.07}_{-0.62-0.39-0.26-0.08-0.07}\times 10^{-9} 0.660.160.060.030.01+0.17+0.04+0.03+0.01-0.66^{+0.17+0.04+0.03+0.01}_{-0.16-0.06-0.03-0.01}
Bs0π+[ρ(770)]KK0B_{s}^{0}\to\pi^{+}[\rho(770)^{-}\to]K^{-}K^{0} 5.431.450.480.770.200.17+1.47+0.57+0.79+0.24+0.17×1095.43^{+1.47+0.57+0.79+0.24+0.17}_{-1.45-0.48-0.77-0.20-0.17}\times 10^{-9} 0.040.040.010.010.00+0.03+0.01+0.01+0.000.04^{+0.03+0.01+0.01+0.00}_{-0.04-0.01-0.01-0.00}
Bs0π0[ρ(770)0]K+KB_{s}^{0}\to\pi^{0}\;[\rho(770)^{0}\to]K^{+}K^{-} 1.630.810.410.160.060.05+0.98+0.46+0.18+0.07+0.05×1091.63^{+0.98+0.46+0.18+0.07+0.05}_{-0.81-0.41-0.16-0.06-0.05}\times 10^{-9} 0.350.140.060.140.03+0.13+0.05+0.12+0.03-0.35^{+0.13+0.05+0.12+0.03}_{-0.14-0.06-0.14-0.03}
Bs0π0[ω(782)]K+KB_{s}^{0}\to\pi^{0}\;[\omega(782)\;\to]K^{+}K^{-} 8.173.282.141.210.450.28+3.83+2.37+1.22+0.51+0.28×10118.17^{+3.83+2.37+1.22+0.51+0.28}_{-3.28-2.14-1.21-0.45-0.28}\times 10^{-11} 0.110.040.000.020.01+0.03+0.00+0.02+0.000.11^{+0.03+0.00+0.02+0.00}_{-0.04-0.00-0.02-0.01}
Bs0K[ρ(770)+]K+K¯0B_{s}^{0}\to K^{-}[\rho(770)^{+}\to]K^{+}\bar{K}^{0} 2.040.020.410.210.090.06+0.03+0.43+0.22+0.11+0.06×1072.04^{+0.03+0.43+0.22+0.11+0.06}_{-0.02-0.41-0.21-0.09-0.06}\times 10^{-7} 0.250.040.030.000.01+0.04+0.03+0.00+0.010.25^{+0.04+0.03+0.00+0.01}_{-0.04-0.03-0.00-0.01}
Bs0K¯0[ρ(770)0]K+KB_{s}^{0}\to\bar{K}^{0}\;[\rho(770)^{0}\to]K^{+}K^{-} 1.030.450.170.160.050.03+0.63+0.19+0.18+0.08+0.03×1091.03^{+0.63+0.19+0.18+0.08+0.03}_{-0.45-0.17-0.16-0.05-0.03}\times 10^{-9} 0.600.220.040.140.04+0.24+0.03+0.16+0.020.60^{+0.24+0.03+0.16+0.02}_{-0.22-0.04-0.14-0.04}
Bs0K¯0[ω(782)]K+KB_{s}^{0}\to\bar{K}^{0}\;[\omega(782)\;\to]K^{+}K^{-} 1.390.570.140.140.070.05+0.68+0.17+0.12+0.07+0.05×1091.39^{+0.68+0.17+0.12+0.07+0.05}_{-0.57-0.14-0.14-0.07-0.05}\times 10^{-9} 0.340.210.060.030.03+0.29+0.06+0.01+0.03-0.34^{+0.29+0.06+0.01+0.03}_{-0.21-0.06-0.03-0.03}

Utilizing the differential branching fractions the Eq. (24) and the decay amplitudes collected in the Appendix B, we obtain the CPCP averaged branching fractions and the direct CPCP asymmetries in Tables 3, 4, 5 for the concerned quasi-two-body decay processes Bρ(770,1450,1700)hKK¯hB\to\rho(770,1450,1700)h\to K\bar{K}h and Bω(782,1420,1650)hKK¯hB\to\omega(782,1420,1650)h\to K\bar{K}h. For these PQCD predictions, the uncertainties of the Gegenbauer moments aR0=0.25±0.10a_{R}^{0}=0.25\pm 0.10, aRt=0.50±0.20a_{R}^{t}=-0.50\pm 0.20 and aRs=0.75±0.25a_{R}^{s}=0.75\pm 0.25 along with the decay widths of the intermediate states contribute the first error. The second error for each result in Tables 3, 4, 5 comes from the shape parameter ωB=0.40±0.04\omega_{B}=0.40\pm 0.04 or ωBs=0.50±0.05\omega_{B_{s}}=0.50\pm 0.05 in Eq. (38) for the B+,0B^{+,0} or Bs0B^{0}_{s} meson. The third one is induced by the chiral scale parameters m0h=mh2mq+mqm^{h}_{0}=\frac{m^{2}_{h}}{m_{q}+m_{q^{\prime}}} with m0π=1.4±0.1m^{\pi}_{0}=1.4\pm 0.1 GeV and m0K=1.9±0.1m^{K}_{0}=1.9\pm 0.1 GeV prd76-074018 and the Gegenbauer moment a2h=0.25±0.15a^{h}_{2}=0.25\pm 0.15 for the bachelor final state pion or kaon. The fourth one comes from the Wolfenstein parameters AA and ρ¯\bar{\rho} listed in Table 2. The uncertainties of cρ(770)K=1.247±0.019c^{K}_{\rho(770)}=1.247\pm 0.019, cω(782)K=1.113±0.019c^{K}_{\omega(782)}=1.113\pm 0.019, cρ(1450)K=0.156±0.015c^{K}_{\rho(1450)}=-0.156\pm 0.015, cω(1420)K=0.117±0.013c^{K}_{\omega(1420)}=-0.117\pm 0.013 and cω(1650),ρ(1700)K=0.083±0.019c^{K}_{\omega(1650),\rho(1700)}=-0.083\pm 0.019 result in the fifth error for the predicted branching fractions in this work, while these coefficients cRKc^{K}_{R} which exist only in the kaon time-like form factors will not change the direct CPCP asymmetries for the relevant decay processes. There are other errors for the PQCD predictions in this work, which come from the masses and the decay constants of the initial and final states, from the parameters in the distribution amplitudes for bachelor pion or kaon, from the uncertainties of the Wolfenstein parameters λ\lambda and η¯\bar{\eta}, etc., are small and have been neglected.

Table 4: PQCD predictions of the CPCP averaged branching ratios and the direct CPCP asymmetries for the quasi-two-body Bρ(1450)hKK¯hB\to\rho(1450)h\to K\bar{K}h and Bω(1420)hKK¯hB\to\omega(1420)h\to K\bar{K}h decays. The decays with the subprocess ρ(1450)0K0K¯0\rho(1450)^{0}\to K^{0}\bar{K}^{0} or ω(1420)K0K¯0\omega(1420)\to K^{0}\bar{K}^{0} have the same results as their corresponding decay modes with ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} or ω(1420)K+K\omega(1420)\to K^{+}K^{-}.
   Decay modes     {\mathcal{B}}      𝒜CP{\mathcal{A}}_{CP}
B+π0[ρ(1450)+]K+K¯0B^{+}\to\pi^{0}[\rho(1450)^{+}\to]K^{+}\bar{K}^{0} 1.270.220.180.120.040.24+0.26+0.22+0.10+0.06+0.24×1081.27^{+0.26+0.22+0.10+0.06+0.24}_{-0.22-0.18-0.12-0.04-0.24}\times 10^{-8} 0.140.220.170.090.00+0.24+0.21+0.11+0.00-0.14^{+0.24+0.21+0.11+0.00}_{-0.22-0.17-0.09-0.00}
B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} 9.461.651.140.690.381.82+1.79+1.16+0.72+0.49+1.82×1089.46^{+1.79+1.16+0.72+0.49+1.82}_{-1.65-1.14-0.69-0.38-1.82}\times 10^{-8} 0.220.040.010.010.01+0.04+0.01+0.01+0.01-0.22^{+0.04+0.01+0.01+0.01}_{-0.04-0.01-0.01-0.01}
B+π+[ω(1420)]K+KB^{+}\to\pi^{+}[\omega(1420)\;\to]K^{+}K^{-} 1.620.520.390.020.070.36+0.61+0.45+0.03+0.08+0.36×1081.62^{+0.61+0.45+0.03+0.08+0.36}_{-0.52-0.39-0.02-0.07-0.36}\times 10^{-8} 0.010.020.020.020.01+0.01+0.02+0.01+0.010.01^{+0.01+0.02+0.01+0.01}_{-0.02-0.02-0.02-0.01}
B+K0[ρ(1450)+]K+K¯0B^{+}\to K^{0}[\rho(1450)^{+}\to]K^{+}\bar{K}^{0} 1.200.250.230.160.040.23+0.29+0.24+0.17+0.05+0.23×1071.20^{+0.29+0.24+0.17+0.05+0.23}_{-0.25-0.23-0.16-0.04-0.23}\times 10^{-7} 0.200.050.020.020.00+0.04+0.03+0.02+0.000.20^{+0.04+0.03+0.02+0.00}_{-0.05-0.02-0.02-0.00}
B+K+[ρ(1450)0]K+KB^{+}\to K^{+}[\rho(1450)^{0}\to]K^{+}K^{-} 3.360.560.640.430.130.65+0.62+0.67+0.47+0.16+0.65×1083.36^{+0.62+0.67+0.47+0.16+0.65}_{-0.56-0.64-0.43-0.13-0.65}\times 10^{-8} 0.420.030.030.050.01+0.03+0.04+0.05+0.010.42^{+0.03+0.04+0.05+0.01}_{-0.03-0.03-0.05-0.01}
B+K+[ω(1420)]K+KB^{+}\to K^{+}[\omega(1420)\;\to]K^{+}K^{-} 3.090.570.730.370.120.69+0.64+0.80+0.42+0.15+0.69×1083.09^{+0.64+0.80+0.42+0.15+0.69}_{-0.57-0.73-0.37-0.12-0.69}\times 10^{-8} 0.320.050.050.030.01+0.05+0.05+0.03+0.010.32^{+0.05+0.05+0.03+0.01}_{-0.05-0.05-0.03-0.01}
B0π[ρ(1450)+]K+K¯0B^{0}\to\pi^{-}[\rho(1450)^{+}\to]K^{+}\bar{K}^{0} 7.391.311.860.960.331.42+1.58+2.20+1.01+0.41+1.42×1087.39^{+1.58+2.20+1.01+0.41+1.42}_{-1.31-1.86-0.96-0.33-1.42}\times 10^{-8} 0.160.030.030.010.01+0.02+0.05+0.01+0.010.16^{+0.02+0.05+0.01+0.01}_{-0.03-0.03-0.01-0.01}
B0π+[ρ(1450)]KK0B^{0}\to\pi^{+}[\rho(1450)^{-}\to]K^{-}K^{0} 6.941.941.380.140.251.33+2.04+1.40+0.14+0.33+1.33×1086.94^{+2.04+1.40+0.14+0.33+1.33}_{-1.94-1.38-0.14-0.25-1.33}\times 10^{-8} 0.270.080.010.020.00+0.12+0.02+0.02+0.00-0.27^{+0.12+0.02+0.02+0.00}_{-0.08-0.01-0.02-0.00}
B0π0[ρ(1450)0]K+KB^{0}\to\pi^{0}\;[\rho(1450)^{0}\,\to]K^{+}K^{-} 8.485.143.010.780.491.63+5.96+3.07+0.81+0.68+1.63×10108.48^{+5.96+3.07+0.81+0.68+1.63}_{-5.14-3.01-0.78-0.49-1.63}\times 10^{-10} 0.200.170.080.070.05+0.21+0.10+0.09+0.060.20^{+0.21+0.10+0.09+0.06}_{-0.17-0.08-0.07-0.05}
B0π0[ω(1420)]K+KB^{0}\to\pi^{0}\;[\omega(1420)\;\,\to]K^{+}K^{-} 2.080.370.660.320.080.46+0.32+0.58+0.28+0.10+0.46×1092.08^{+0.32+0.58+0.28+0.10+0.46}_{-0.37-0.66-0.32-0.08-0.46}\times 10^{-9} 0.580.160.110.090.02+0.17+0.10+0.11+0.020.58^{+0.17+0.10+0.11+0.02}_{-0.16-0.11-0.09-0.02}
B0K+[ρ(1450)]KK0B^{0}\to K^{+}[\rho(1450)^{-}\!\to]K^{-}K^{0} 1.180.170.250.170.040.23+0.20+0.27+0.18+0.05+0.23×1071.18^{+0.20+0.27+0.18+0.05+0.23}_{-0.17-0.25-0.17-0.04-0.23}\times 10^{-7} 0.220.080.020.040.00+0.08+0.03+0.04+0.000.22^{+0.08+0.03+0.04+0.00}_{-0.08-0.02-0.04-0.00}
B0K0[ρ(1450)0]K+KB^{0}\to K^{0}\;[\rho(1450)^{0}\to]K^{+}K^{-} 3.690.600.820.510.120.71+0.67+0.84+0.55+0.16+0.71×1083.69^{+0.67+0.84+0.55+0.16+0.71}_{-0.60-0.82-0.51-0.12-0.71}\times 10^{-8} 0.010.020.010.010.00+0.01+0.01+0.00+0.00-0.01^{+0.01+0.01+0.00+0.00}_{-0.02-0.01-0.01-0.00}
B0K0[ω(1420)]K+KB^{0}\to K^{0}\;[\omega(1420)\;\to]K^{+}K^{-} 2.070.460.450.260.060.46+0.48+0.48+0.29+0.08+0.46×1082.07^{+0.48+0.48+0.29+0.08+0.46}_{-0.46-0.45-0.26-0.06-0.46}\times 10^{-8} 0.020.020.030.010.00+0.04+0.03+0.01+0.00-0.02^{+0.04+0.03+0.01+0.00}_{-0.02-0.03-0.01-0.00}
Bs0π[ρ(1450)+]K+K¯0B_{s}^{0}\to\pi^{-}[\rho(1450)^{+}\to]K^{+}\bar{K}^{0} 1.550.330.280.140.050.30+0.39+0.30+0.16+0.07+0.30×1091.55^{+0.39+0.30+0.16+0.07+0.30}_{-0.33-0.28-0.14-0.05-0.30}\times 10^{-9} 0.660.160.080.040.01+0.15+0.04+0.05+0.02-0.66^{+0.15+0.04+0.05+0.02}_{-0.16-0.08-0.04-0.01}
Bs0π+[ρ(1450)]KK0B_{s}^{0}\to\pi^{+}[\rho(1450)^{-}\to]K^{-}K^{0} 4.541.270.400.670.160.87+1.30+0.37+0.69+0.20+0.87×1094.54^{+1.30+0.37+0.69+0.20+0.87}_{-1.27-0.40-0.67-0.16-0.87}\times 10^{-9} 0.040.050.010.010.00+0.03+0.01+0.02+0.000.04^{+0.03+0.01+0.02+0.00}_{-0.05-0.01-0.01-0.00}
Bs0π0[ρ(1450)0]K+KB_{s}^{0}\to\pi^{0}\;[\rho(1450)^{0}\to]K^{+}K^{-} 1.150.590.300.120.040.22+0.72+0.35+0.09+0.05+0.22×1091.15^{+0.72+0.35+0.09+0.05+0.22}_{-0.59-0.30-0.12-0.04-0.22}\times 10^{-9} 0.360.160.040.140.03+0.12+0.05+0.10+0.02-0.36^{+0.12+0.05+0.10+0.02}_{-0.16-0.04-0.14-0.03}
Bs0π0[ω(1420)]K+KB_{s}^{0}\to\pi^{0}\;[\omega(1420)\;\to]K^{+}K^{-} 3.671.380.970.580.190.82+1.59+1.17+0.65+0.21+0.82×10113.67^{+1.59+1.17+0.65+0.21+0.82}_{-1.38-0.97-0.58-0.19-0.82}\times 10^{-11} 0.140.020.010.010.01+0.03+0.00+0.01+0.000.14^{+0.03+0.00+0.01+0.00}_{-0.02-0.01-0.01-0.01}
Bs0K[ρ(1450)+]K+K¯0B_{s}^{0}\to K^{-}[\rho(1450)^{+}\to]K^{+}\bar{K}^{0} 1.490.060.300.150.060.29+0.07+0.31+0.16+0.08+0.29×1071.49^{+0.07+0.31+0.16+0.08+0.29}_{-0.06-0.30-0.15-0.06-0.29}\times 10^{-7} 0.250.040.030.000.01+0.04+0.03+0.00+0.010.25^{+0.04+0.03+0.00+0.01}_{-0.04-0.03-0.00-0.01}
Bs0K¯0[ρ(1450)0]K+KB_{s}^{0}\to\bar{K}^{0}\;[\rho(1450)^{0}\to]K^{+}K^{-} 6.863.560.750.940.391.32+4.09+0.81+1.03+0.44+1.32×10106.86^{+4.09+0.81+1.03+0.44+1.32}_{-3.56-0.75-0.94-0.39-1.32}\times 10^{-10} 0.640.270.010.120.07+0.29+0.02+0.08+0.050.64^{+0.29+0.02+0.08+0.05}_{-0.27-0.01-0.12-0.07}
Bs0K¯0[ω(1420)]K+KB_{s}^{0}\to\bar{K}^{0}\;[\omega(1420)\;\to]K^{+}K^{-} 5.792.390.420.570.311.29+3.28+0.53+0.63+0.34+1.29×10105.79^{+3.28+0.53+0.63+0.34+1.29}_{-2.39-0.42-0.57-0.31-1.29}\times 10^{-10} 0.540.330.120.050.03+0.29+0.13+0.05+0.01-0.54^{+0.29+0.13+0.05+0.01}_{-0.33-0.12-0.05-0.03}
Table 5: PQCD predictions of the CPCP averaged branching ratios and the direct CPCP asymmetries for the quasi-two-body Bρ(1700)hKK¯hB\to\rho(1700)h\to K\bar{K}h and Bω(1650)hKK¯hB\to\omega(1650)h\to K\bar{K}h decays. The decays with the subprocess ρ(1700)0K0K¯0\rho(1700)^{0}\to K^{0}\bar{K}^{0} or ω(1650)K0K¯0\omega(1650)\to K^{0}\bar{K}^{0} have the same results as their corresponding decay modes with ρ(1700)0K+K\rho(1700)^{0}\to K^{+}K^{-} or ω(1650)K+K\omega(1650)\to K^{+}K^{-}.
   Decay modes     {\mathcal{B}}      𝒜CP{\mathcal{A}}_{CP}
B+π0[ρ(1700)+]K+K¯0B^{+}\to\pi^{0}[\rho(1700)^{+}\to]K^{+}\bar{K}^{0} 1.030.180.170.100.040.47+0.21+0.20+0.09+0.05+0.47×1081.03^{+0.21+0.20+0.09+0.05+0.47}_{-0.18-0.17-0.10-0.04-0.47}\times 10^{-8} 0.150.230.210.120.00+0.22+0.23+0.13+0.01-0.15^{+0.22+0.23+0.13+0.01}_{-0.23-0.21-0.12-0.00}
B+π+[ρ(1700)0]K+KB^{+}\to\pi^{+}[\rho(1700)^{0}\to]K^{+}K^{-} 8.711.341.170.590.363.99+1.47+1.20+0.61+0.46+3.99×1088.71^{+1.47+1.20+0.61+0.46+3.99}_{-1.34-1.17-0.59-0.36-3.99}\times 10^{-8} 0.250.030.010.010.01+0.03+0.02+0.01+0.01-0.25^{+0.03+0.02+0.01+0.01}_{-0.03-0.01-0.01-0.01}
B+π+[ω(1650)]K+KB^{+}\to\pi^{+}[\omega(1650)\;\to]K^{+}K^{-} 1.480.340.280.020.010.68+0.42+0.32+0.02+0.01+0.68×1091.48^{+0.42+0.32+0.02+0.01+0.68}_{-0.34-0.28-0.02-0.01-0.68}\times 10^{-9} 0.020.010.000.000.00+0.01+0.00+0.00+0.000.02^{+0.01+0.00+0.00+0.00}_{-0.01-0.00-0.00-0.00}
B+K0[ρ(1700)+]K+K¯0B^{+}\to K^{0}[\rho(1700)^{+}\to]K^{+}\bar{K}^{0} 1.080.250.190.150.030.49+0.27+0.21+0.18+0.05+0.49×1071.08^{+0.27+0.21+0.18+0.05+0.49}_{-0.25-0.19-0.15-0.03-0.49}\times 10^{-7} 0.210.060.030.020.00+0.05+0.04+0.03+0.000.21^{+0.05+0.04+0.03+0.00}_{-0.06-0.03-0.02-0.00}
B+K+[ρ(1700)0]K+KB^{+}\to K^{+}[\rho(1700)^{0}\to]K^{+}K^{-} 2.850.490.480.320.111.30+0.50+0.49+0.35+0.14+1.30×1082.85^{+0.50+0.49+0.35+0.14+1.30}_{-0.49-0.48-0.32-0.11-1.30}\times 10^{-8} 0.470.020.030.050.01+0.02+0.04+0.05+0.010.47^{+0.02+0.04+0.05+0.01}_{-0.02-0.03-0.05-0.01}
B+K+[ω(1650)]K+KB^{+}\to K^{+}[\omega(1650)\;\to]K^{+}K^{-} 2.810.470.590.320.101.29+0.53+0.66+0.36+0.13+1.29×1082.81^{+0.53+0.66+0.36+0.13+1.29}_{-0.47-0.59-0.32-0.10-1.29}\times 10^{-8} 0.360.040.050.050.01+0.03+0.05+0.05+0.010.36^{+0.03+0.05+0.05+0.01}_{-0.04-0.05-0.05-0.01}
B0π[ρ(1700)+]K+K¯0B^{0}\to\pi^{-}[\rho(1700)^{+}\to]K^{+}\bar{K}^{0} 4.380.731.060.480.192.01+0.80+1.17+0.50+0.23+2.01×1084.38^{+0.80+1.17+0.50+0.23+2.01}_{-0.73-1.06-0.48-0.19-2.01}\times 10^{-8} 0.180.020.030.010.01+0.03+0.03+0.01+0.010.18^{+0.03+0.03+0.01+0.01}_{-0.02-0.03-0.01-0.01}
B0π+[ρ(1700)]KK0B^{0}\to\pi^{+}[\rho(1700)^{-}\to]K^{-}K^{0} 6.661.691.400.120.243.05+1.78+1.41+0.13+0.32+3.05×1086.66^{+1.78+1.41+0.13+0.32+3.05}_{-1.69-1.40-0.12-0.24-3.05}\times 10^{-8} 0.290.080.020.020.01+0.12+0.02+0.02+0.01-0.29^{+0.12+0.02+0.02+0.01}_{-0.08-0.02-0.02-0.01}
B0π0[ρ(1700)0]K+KB^{0}\to\pi^{0}\;[\rho(1700)^{0}\,\to]K^{+}K^{-} 8.114.982.970.800.543.71+5.46+3.02+0.82+0.68+3.71×10108.11^{+5.46+3.02+0.82+0.68+3.71}_{-4.98-2.97-0.80-0.54-3.71}\times 10^{-10} 0.180.180.060.070.04+0.20+0.08+0.07+0.040.18^{+0.20+0.08+0.07+0.04}_{-0.18-0.06-0.07-0.04}
B0π0[ω(1650)]K+KB^{0}\to\pi^{0}\;[\omega(1650)\;\,\to]K^{+}K^{-} 1.480.340.390.160.060.68+0.31+0.44+0.15+0.06+0.68×1091.48^{+0.31+0.44+0.15+0.06+0.68}_{-0.34-0.39-0.16-0.06-0.68}\times 10^{-9} 0.570.170.090.070.01+0.21+0.07+0.09+0.010.57^{+0.21+0.07+0.09+0.01}_{-0.17-0.09-0.07-0.01}
B0K+[ρ(1700)]KK0B^{0}\to K^{+}[\rho(1700)^{-}\!\to]K^{-}K^{0} 9.951.601.611.150.324.56+1.87+1.83+1.31+0.44+4.56×1089.95^{+1.87+1.83+1.31+0.44+4.56}_{-1.60-1.61-1.15-0.32-4.56}\times 10^{-8} 0.280.090.010.040.00+0.07+0.01+0.05+0.000.28^{+0.07+0.01+0.05+0.00}_{-0.09-0.01-0.04-0.00}
B0K0[ρ(1700)0]K+KB^{0}\to K^{0}\;[\rho(1700)^{0}\to]K^{+}K^{-} 2.940.530.560.360.091.35+0.54+0.57+0.38+0.13+1.35×1082.94^{+0.54+0.57+0.38+0.13+1.35}_{-0.53-0.56-0.36-0.09-1.35}\times 10^{-8} 0.010.010.000.010.00+0.01+0.00+0.01+0.00-0.01^{+0.01+0.00+0.01+0.00}_{-0.01-0.00-0.01-0.00}
B0K0[ω(1650)]K+KB^{0}\to K^{0}\;[\omega(1650)\;\to]K^{+}K^{-} 1.890.380.360.190.070.87+0.43+0.39+0.22+0.08+0.87×1081.89^{+0.43+0.39+0.22+0.08+0.87}_{-0.38-0.36-0.19-0.07-0.87}\times 10^{-8} 0.010.030.000.000.00+0.04+0.00+0.01+0.00-0.01^{+0.04+0.00+0.01+0.00}_{-0.03-0.00-0.00-0.00}
Bs0π[ρ(1700)+]K+K¯0B_{s}^{0}\to\pi^{-}[\rho(1700)^{+}\to]K^{+}\bar{K}^{0} 1.370.310.270.140.050.63+0.34+0.29+0.14+0.06+0.63×1091.37^{+0.34+0.29+0.14+0.06+0.63}_{-0.31-0.27-0.14-0.05-0.63}\times 10^{-9} 0.700.150.070.040.01+0.16+0.04+0.01+0.01-0.70^{+0.16+0.04+0.01+0.01}_{-0.15-0.07-0.04-0.01}
Bs0π+[ρ(1700)]KK0B_{s}^{0}\to\pi^{+}[\rho(1700)^{-}\to]K^{-}K^{0} 3.570.860.320.520.131.63+0.94+0.30+0.54+0.16+1.63×1093.57^{+0.94+0.30+0.54+0.16+1.63}_{-0.86-0.32-0.52-0.13-1.63}\times 10^{-9} 0.070.050.020.020.00+0.04+0.01+0.02+0.000.07^{+0.04+0.01+0.02+0.00}_{-0.05-0.02-0.02-0.00}
Bs0π0[ρ(1700)0]K+KB_{s}^{0}\to\pi^{0}\;[\rho(1700)^{0}\to]K^{+}K^{-} 1.010.510.300.110.030.46+0.59+0.35+0.09+0.04+0.46×1091.01^{+0.59+0.35+0.09+0.04+0.46}_{-0.51-0.30-0.11-0.03-0.46}\times 10^{-9} 0.290.180.080.150.01+0.11+0.06+0.12+0.01-0.29^{+0.11+0.06+0.12+0.01}_{-0.18-0.08-0.15-0.01}
Bs0π0[ω(1650)]K+KB_{s}^{0}\to\pi^{0}\;[\omega(1650)\;\to]K^{+}K^{-} 3.141.290.980.490.161.44+1.35+1.10+0.53+0.19+1.44×10113.14^{+1.35+1.10+0.53+0.19+1.44}_{-1.29-0.98-0.49-0.16-1.44}\times 10^{-11} 0.150.050.010.030.01+0.06+0.02+0.02+0.010.15^{+0.06+0.02+0.02+0.01}_{-0.05-0.01-0.03-0.01}
Bs0K[ρ(1700)+]K+K¯0B_{s}^{0}\to K^{-}[\rho(1700)^{+}\to]K^{+}\bar{K}^{0} 1.140.070.240.120.050.52+0.07+0.25+0.12+0.06+0.52×1071.14^{+0.07+0.25+0.12+0.06+0.52}_{-0.07-0.24-0.12-0.05-0.52}\times 10^{-7} 0.290.040.030.010.01+0.04+0.04+0.01+0.010.29^{+0.04+0.04+0.01+0.01}_{-0.04-0.03-0.01-0.01}
Bs0K¯0[ρ(1700)0]K+KB_{s}^{0}\to\bar{K}^{0}\;[\rho(1700)^{0}\to]K^{+}K^{-} 4.211.700.420.500.261.93+1.90+0.47+0.55+0.29+1.93×10104.21^{+1.90+0.47+0.55+0.29+1.93}_{-1.70-0.42-0.50-0.26-1.93}\times 10^{-10} 0.670.260.020.160.03+0.25+0.03+0.12+0.040.67^{+0.25+0.03+0.12+0.04}_{-0.26-0.02-0.16-0.03}
Bs0K¯0[ω(1650)]K+KB_{s}^{0}\to\bar{K}^{0}\;[\omega(1650)\;\to]K^{+}K^{-} 4.181.170.380.430.231.91+1.44+0.42+0.50+0.27+1.91×10104.18^{+1.44+0.42+0.50+0.27+1.91}_{-1.17-0.38-0.43-0.23-1.91}\times 10^{-10} 0.640.190.080.120.05+0.26+0.08+0.09+0.03-0.64^{+0.26+0.08+0.09+0.03}_{-0.19-0.08-0.12-0.05}

The PQCD predictions are omitted in Tables 3, 4, 5 for those quasi-two-body decays with the subprocesses ρ(770,1450,1700)0K0K¯0\rho(770,1450,1700)^{0}\to K^{0}\bar{K}^{0} and ω(782,1420,1650)K0K¯0\omega(782,1420,1650)\to K^{0}\bar{K}^{0} . The variations caused by the small mass difference between K±K^{\pm} and K0K^{0} for the branching fraction and direct CPCP asymmetry of a decay mode with one of these intermediate states decaying into K0K¯0K^{0}\bar{K}^{0} or K+KK^{+}K^{-} are tiny. As the examples, we calculate the the branching fractions for the decays B+π+ρ(770)0B^{+}\to\pi^{+}\rho(770)^{0}, B+K+ρ(770)0B^{+}\to K^{+}\rho(770)^{0}, B+π+ω(782)B^{+}\to\pi^{+}\omega(782) and B+K+ω(782)B^{+}\to K^{+}\omega(782) with the resonances ρ(770)0\rho(770)^{0} and ω(782)\omega(782) decay into the final state K0K¯0K^{0}\bar{K}^{0}. Their four branching fractions with the same sources for the errors as these results in Table 3 are predicted to be

(B+π+ρ(770)0π+K0K¯0)\displaystyle{\mathcal{B}}(B^{+}\to\pi^{+}\rho(770)^{0}\to\pi^{+}K^{0}\bar{K}^{0}) =\displaystyle= 1.400.240.170.100.060.04+0.26+0.17+0.10+0.06+0.04×107,\displaystyle 1.40^{+0.26+0.17+0.10+0.06+0.04}_{-0.24-0.17-0.10-0.06-0.04}\times 10^{-7}, (28)
(B+K+ρ(770)0K+K0K¯0)\displaystyle{\mathcal{B}}(B^{+}\to K^{+}\rho(770)^{0}\to K^{+}K^{0}\bar{K}^{0}) =\displaystyle= 5.080.830.970.650.200.15+0.92+1.00+0.70+0.25+0.15×108,\displaystyle 5.08^{+0.92+1.00+0.70+0.25+0.15}_{-0.83-0.97-0.65-0.20-0.15}\times 10^{-8}, (29)
(B+π+ω(782)π+K0K¯0)\displaystyle{\mathcal{B}}(B^{+}\to\pi^{+}\omega(782)\to\pi^{+}K^{0}\bar{K}^{0}) =\displaystyle= 4.141.320.940.080.160.14+1.64+1.02+0.07+0.20+0.14×108,\displaystyle 4.14^{+1.64+1.02+0.07+0.20+0.14}_{-1.32-0.94-0.08-0.16-0.14}\times 10^{-8}, (30)
(B+K+ω(782)K+K0K¯0)\displaystyle{\mathcal{B}}(B^{+}\to K^{+}\omega(782)\to K^{+}K^{0}\bar{K}^{0}) =\displaystyle= 8.791.442.151.030.330.30+1.65+2.30+1.17+0.42+0.30×108.\displaystyle 8.79^{+1.65+2.30+1.17+0.42+0.30}_{-1.44-2.15-1.03-0.33-0.30}\times 10^{-8}. (31)

It’s easy to check that these branching fractions are very close to the results in Table 3 for the corresponding decay modes with ρ(770)0\rho(770)^{0} and ω(782)\omega(782) decaying into K+KK^{+}K^{-}. The impacts from the mass difference of K±K^{\pm} and K0K^{0} for the direct CPCP asymmetries for the relevant processes are even smaller, which could be inferred from the comparison of the results in Table 3 with

𝒜CP(B+π+ρ(770)0π+K0K¯0)\displaystyle{\mathcal{A}}_{CP}(B^{+}\to\pi^{+}\rho(770)^{0}\to\pi^{+}K^{0}\bar{K}^{0}) =\displaystyle= 0.220.040.010.010.01+0.04+0.01+0.01+0.01,\displaystyle-0.22^{+0.04+0.01+0.01+0.01}_{-0.04-0.01-0.01-0.01}, (32)
𝒜CP(B+K+ρ(770)0K+K0K¯0)\displaystyle{\mathcal{A}}_{CP}(B^{+}\to K^{+}\rho(770)^{0}\to K^{+}K^{0}\bar{K}^{0}) =\displaystyle=    0.390.040.040.040.01+0.03+0.04+0.04+0.01.\displaystyle\;\;\;0.39^{+0.03+0.04+0.04+0.01}_{-0.04-0.04-0.04-0.01}. (33)

For the decay modes B+π+ρ(1450)0B^{+}\to\pi^{+}\rho(1450)^{0} and B+K+ρ(1450)0B^{+}\to K^{+}\rho(1450)^{0} with ρ(1450)0K0K¯0\rho(1450)^{0}\to K^{0}\bar{K}^{0}, we have the central values 9.32×1089.32\times 10^{-8} and 0.22-0.22, 3.30×1083.30\times 10^{-8} and 0.420.42 as their branching fractions and direct CPCP asymmetries, respectively, which are also very close to the results in Table 4 for the corresponding decay processes with ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-}. In view of the large errors for the predictions in Tables 3, 4, 5, we set the concerned decays with the subprocess ρ(770,1450,1700)0K0K¯0\rho(770,1450,1700)^{0}\to K^{0}\bar{K}^{0} or ω(782,1420,1650)K0K¯0\omega(782,1420,1650)\to K^{0}\bar{K}^{0} have the same results as their corresponding decay modes with the resonances decaying into K+KK^{+}K^{-}. It should be stressed that the K0K¯0K^{0}\bar{K}^{0} with the PP-wave resonant origin in the final state of BKK¯hB\to K\bar{K}h decays can not generate the KS0KS0K^{0}_{S}K^{0}_{S} system because of the Bose-Einstein statistics.

From the branching fractions in Tables 3, 4, one can find that the virtual contributions for KK¯K\bar{K} from the BW tails of the intermediate states ρ(770)\rho(770) and ω(782)\omega(782) in those quasi-two-body decays which have been ignored in experimental and theoretical studies are all larger than the corresponding results from ρ(1450)\rho(1450) and ω(1420)\omega(1420). Specifically, the branching fractions in Table 3 with the resonances ρ(770)0\rho(770)^{0} and ρ(770)±\rho(770)^{\pm} are about 1.21.2-1.81.8 times of the corresponding results in Table 4 for the decays with ρ(1450)0\rho(1450)^{0} and ρ(1450)±\rho(1450)^{\pm}, while the six predictions for the branching fractions in Table 3 with ω(782)\omega(782) in the quasi-two-body decay processes are about 2.22.2-2.92.9 times of the corresponding values for the decays with the resonance ω(1420)\omega(1420) in Table 4. The difference of the multiples between the results of the branching fractions with the resonances ρ\rho and ω\omega in Table 3 and Table 4 should mainly be attributed to the relatively small value for the cω(1420)Kc^{K}_{\omega(1420)} adopted in this work comparing with cρ(1450)Kc^{K}_{\rho(1450)}.

Figure 2: The differential branching fractions for the decays B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} (left) and B+π+[ω(782)]K+KB^{+}\to\pi^{+}[\omega(782)\to]K^{+}K^{-} (right). The big diagram in the left is for the comparison for the differential branching fractions of B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} and B+π+[ρ(770)0]π+πB^{+}\to\pi^{+}[\rho(770)^{0}\to]\pi^{+}\pi^{-}, in which the solid line for B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} is magnified by a factor of 1010.

It is remarkable for these virtual contributions in Table 3 that their differential branching fractions are nearly unaffected by the full widths of ρ(770)\rho(770) and ω(782)\omega(782), which could be concluded from the Fig. 2. In this figure, the lines in the left diagram for B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} and in the right diagram for B+π+[ω(782)]K+KB^{+}\to\pi^{+}[\omega(782)\to]K^{+}K^{-} have very similar shape although there is a big difference between the values for the widths of ρ(770)\rho(770) and ω(782)\omega(782) as listed in Table 2. The best explanation for Fig. 2 is that the imaginary part of the denominator in the BW formula the Eq. (7) which hold the energy dependent width for the resonances ρ(770)\rho(770) or ω(782)\omega(782) becomes unimportant when the invariant mass square ss is large enough even if one employs the effective mass defined by the ad hoc formula prd91-092002 ; prd90-072003 to replace the mR2m^{2}_{R} in |q0|\left|\overrightarrow{q_{0}}\right| in Eq. (8) or calculates the energy dependent width with the partial widths and the branching ratios for the intermediate state as in Refs. plb779-64 ; prd88-032013 ; plb760-314 ; prd76-072012 . At this point, the BW expression for ρ(770)\rho(770) or ω(782)\omega(782) is charged by the coefficient cRKc^{K}_{R} in the time-like form factors for kaons and the gap between the invariant mass square ss for kaon pair and the squared mass of the resonance. Although the threshold of kaon pair is not far from the pole masses of ρ(770)\rho(770) and ω(782)\omega(782), thanks to the strong suppression from the factor |q|3\left|\overrightarrow{q}\right|^{3} in Eq. (24), the differential branching fractions for those processes with ρ(770)\rho(770) or ω(782)\omega(782) decaying into kaon pair will reach their peak at about 1.351.35 GeV as shown in Fig. 2.

As we have stated in Ref. prd101-111901 , the bumps in Fig. 2 for B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} and B+π+[ω(782)0]K+KB^{+}\to\pi^{+}[\omega(782)^{0}\to]K^{+}K^{-} are generated by the tails of the BW formula for the resonances ρ(770)\rho(770) and ω(782)\omega(782) along with the phase space factors in Eq. (24) and should not be taken as the evidence for a new resonant state at about 1.351.35 GeV. When we compare the curves for the differential branching fractions for B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} and B+π+[ρ(770)0]π+πB^{+}\to\pi^{+}[\rho(770)^{0}\to]\pi^{+}\pi^{-}, we can understand this point well. In order to make a better contrast, the differential branching fraction for B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} is magnified 1010 times in the big one of the left diagram of Fig. 2. The dash-dot line for B+π+[ρ(770)0]π+πB^{+}\to\pi^{+}[\rho(770)^{0}\to]\pi^{+}\pi^{-} shall climb to its peak at about the pole mass of ρ(770)0\rho(770)^{0} and then descend as exhibited in Fig. 2. While this pattern is inapplicable for the decay process of B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-}, its curve can only show the existence from the threshold of kaon pair where the s\sqrt{s} has already crossed the peak of BW for ρ(770)0\rho(770)^{0}. As s\sqrt{s} becoming larger, the effect of the full width for ρ(770)\rho(770) fade from the stage, the ratio between the differential branching fractions for the quasi-two-body decays B+π+[ρ(770)0]K+KB^{+}\to\pi^{+}[\rho(770)^{0}\to]K^{+}K^{-} and B+π+[ρ(770)0]π+πB^{+}\to\pi^{+}[\rho(770)^{0}\to]\pi^{+}\pi^{-} will tend to be a constant which is proportional to the value of |gρ(770)K+K/gρ(770)π+π|2|g_{\rho(770)K^{+}K^{-}}/g_{\rho(770)\pi^{+}\pi^{-}}|^{2} if the phase space for the decay process is large enough. This conclusion can also be demonstrated well from the curve of the ratio

Rρ(1450)(s)=d(B+π+[ρ(1450)0]K+K)/dsd(B+π+[ρ(1450)0]π+π)/ds\displaystyle R_{\rho(1450)}(\sqrt{s})=\frac{d{\mathcal{B}}(B^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-})/d\sqrt{s}}{d{\mathcal{B}}(B^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-})/d\sqrt{s}} (34)

for the decays B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} and B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-} in Fig. 3. The solid line which stands for the B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} decay and has been magnified 1010 times will arise at the threshold of kaon pair in Fig. 3 and contribute the zero for Rρ(1450)R_{\rho(1450)} because of the factor |q|3\left|\overrightarrow{q}\right|^{3} in Eq. (24), and the following for Rρ(1450)R_{\rho(1450)} is a rapid rise to the value about 0.10.1 in the region where the main portion of the branching fractions for B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} and B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-} concentrated, then Rρ(1450)R_{\rho(1450)} is going to the value |gρ(1450)K+K/gρ(1450)π+π|2|g_{\rho(1450)K^{+}K^{-}}/g_{\rho(1450)\pi^{+}\pi^{-}}|^{2} as the rise of ss.

Figure 3: The differential branching fractions for the decays B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} (solid line) which is magnified by a factor of 1010 and B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-}(dash-dot line) in the large diagram and curve for the s\sqrt{s} dependent ratio Rρ(1450)R_{\rho(1450)} in the small one.

With the help of the factorization relation Γ(B+ρ(1450)0π+h+hπ+)Γ(B+ρ(1450)0π+)(ρ(1450)0h+h)\Gamma(B^{+}\to\rho(1450)^{0}\pi^{+}\to h^{+}h^{-}\pi^{+})\approx\Gamma(B^{+}\to\rho(1450)^{0}\pi^{+}){\mathcal{B}}(\rho(1450)^{0}\to h^{+}h^{-}) 2011-03201 ; 2011-07468 , the ratio Rρ(1450)R_{\rho(1450)} can be related to the the coupling constants gρ(1450)0π+πg_{\rho(1450)^{0}\pi^{+}\pi^{-}} and gρ(1450)0K+Kg_{\rho(1450)^{0}K^{+}K^{-}} with the expression

gρ(1450)0h+h=6πmρ(1450)2Γρ(1450)ρ(1450)0h+hq3,\displaystyle g_{\rho(1450)^{0}h^{+}h^{-}}=\sqrt{\frac{6\pi m^{2}_{\rho(1450)}\Gamma_{\rho(1450)}{\mathcal{B}}_{\rho(1450)^{0}\to h^{+}h^{-}}}{q^{3}}}\,, (35)

here q=12mρ(1450)24mh2q=\frac{1}{2}\sqrt{m^{2}_{\rho(1450)}-4m_{h}^{2}} and hh is pion or kaon. Utilizing the relation gρ(1450)0K+K12gρ(1450)0π+πg_{\rho(1450)^{0}K^{+}K^{-}}\approx\frac{1}{2}g_{\rho(1450)^{0}\pi^{+}\pi^{-}} epjc39-41 one has prd101-111901

Rρ(1450)\displaystyle R_{\rho(1450)} =\displaystyle= (ρ(1450)0K+K)(ρ(1450)0π+π)gρ(1450)0K+K2(mρ(1450)24mK2)3/2gρ(1450)0π+π2(mρ(1450)24mπ2)3/2\displaystyle\frac{{\mathcal{B}}(\rho(1450)^{0}\to K^{+}K^{-})}{{\mathcal{B}}(\rho(1450)^{0}\to\pi^{+}\pi^{-})}\approx\frac{g^{2}_{\rho(1450)^{0}K^{+}K^{-}}(m^{2}_{\rho(1450)}-4m^{2}_{K})^{3/2}}{g^{2}_{\rho(1450)^{0}\pi^{+}\pi^{-}}(m^{2}_{\rho(1450)}-4m^{2}_{\pi})^{3/2}} (36)
=\displaystyle= 0.107.\displaystyle 0.107.

For the quasi-two-body decay B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-}, we have its branching fraction as 8.732.54+2.73×1078.73^{+2.73}_{-2.54}\times 10^{-7} with the BW formula for ρ(1450)0\rho(1450)^{0} and the relation |cρ(1450)K||cρ(1450)π||c^{K}_{\rho(1450)}|\approx|c^{\pi}_{\rho(1450)}| in Eq. (17), where the error has the same sources as the branching fractions in Table 4 but have been added in quadrature. This result are consistent with the measurements =1.40.9+0.6×106{\mathcal{B}}=1.4^{+0.6}_{-0.9}\times 10^{-6} prd79-072006 ; PDG-2020 from BaBar and =(7.9±3.0)×107{\mathcal{B}}=(7.9\pm 3.0)\times 10^{-7} prl124-031801 ; prd101-012006 by LHCb and agree with the prediction (9.97±2.25)×107(9.97\pm 2.25)\times 10^{-7} in prd101-111901 with the GS model for the resonance ρ(1450)0\rho(1450)^{0}. Then we have the ratio Rρ(1450)=0.1080.001+0.000R_{\rho(1450)}=0.108^{+0.000}_{-0.001} which is very close to the 0.1070.107 in Eq. (36) and the result in Fig. 3 for the ratio Rρ(1450)(s)R_{\rho(1450)}(\sqrt{s}) in the region around the mass of ρ(1450)\rho(1450) where the main portion of the branching fractions for B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} and B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-} concentrated. The small error for Rρ(1450)R_{\rho(1450)} from the PQCD predictions is caused by the cancellation, which means that the increase or decrease for the relevant numerical results from the uncertainties of those parameters will result in nearly identical change of the weight for these two decays. When the ρ(1450)0{\rho(1450)^{0}} in Eq. (36) is replaced by ρ(1700)0{\rho(1700)^{0}}, one will have the ratio Rρ(1700)0.143R_{\rho(1700)}\approx 0.143 prd101-111901 . With the results (ρ(1450)0π+π)=15%{\mathcal{B}}(\rho(1450)^{0}\to\pi^{+}\pi^{-})=15\% and (ρ(1700)0π+π)=14%{\mathcal{B}}(\rho(1700)^{0}\to\pi^{+}\pi^{-})=14\% in Ref. jhep2001-112 from CMD-3 Collaboration, one can estimate the branching fractions (ρ(1450)0K+K)1.6%{\mathcal{B}}(\rho(1450)^{0}\to K^{+}K^{-})\approx 1.6\% and (ρ(1700)0K+K)2.0%{\mathcal{B}}(\rho(1700)^{0}\to K^{+}K^{-})\approx 2.0\%.

It is important to notice that the definition of the coupling constant the Eq. (35) for the resonant states ρ(770)\rho(770) and ω(782)\omega(782) decaying to the final state KK¯K\bar{K} are invalid, or rather, one could not define the partial decay width such as Γρ(770)K+K=Γρ(770)ρ(770)0K+K\Gamma_{\rho(770)\to K^{+}K^{-}}=\Gamma_{\rho(770)}{\mathcal{B}}_{\rho(770)^{0}\to K^{+}K^{-}} or Γω(782)K+K=Γω(782)ω(782)K+K\Gamma_{\omega(782)\to K^{+}K^{-}}=\Gamma_{\omega(782)}{\mathcal{B}}_{\omega(782)\to K^{+}K^{-}} for the virtual contribution. This conclusion can be extended to other strong decay processes with the virtual contributions which come from the tails of the resonances.

In Ref. prl123-231802 , the fit fraction of ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} for the three-body decays B±π±K+KB^{\pm}\to\pi^{\pm}K^{+}K^{-} was measured to be (30.7±1.2±0.9)%(30.7\pm 1.2\pm 0.9)\% by LHCb Collaboration, implying =(1.60±0.14)×106{\mathcal{B}}=(1.60\pm 0.14)\times 10^{-6} for the quasi-two-body decay B+π+ρ(1450)0π+K+KB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}K^{+}K^{-} PDG-2020 . This branching fraction is close to the measurement =1.40.9+0.6×106{\mathcal{B}}=1.4^{+0.6}_{-0.9}\times 10^{-6} in prd79-072006 ; PDG-2020 and larger than the result =(7.9±3.0)×107{\mathcal{B}}=(7.9\pm 3.0)\times 10^{-7} from LHCb prl124-031801 ; prd101-012006 for the B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-} process. In view of the mass difference between kaon and pion, the factor |q|3\left|\overrightarrow{q}\right|^{3} in Eq. (24) will be about 4.764.76 times larger for the subprocess ρ(1450)0π+π\rho(1450)^{0}\to\pi^{+}\pi^{-} when comparing with ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} for the decay B+π+ρ(1450)0B^{+}\to\pi^{+}\rho(1450)^{0} at s=mρ(1450)2s=m^{2}_{\rho(1450)}. It means that the coupling constant for ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} should roughly be 4.76\sqrt{4.76} times larger than that for ρ(1450)0π+π\rho(1450)^{0}\to\pi^{+}\pi^{-} in order to achieve the comparable branching fractions for the quasi-two-body decays B+π+[ρ(1450)0]K+KB^{+}\to\pi^{+}[\rho(1450)^{0}\to]K^{+}K^{-} and B+π+[ρ(1450)0]π+πB^{+}\to\pi^{+}[\rho(1450)^{0}\to]\pi^{+}\pi^{-}. Clearly, a larger coupling constant for ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} is contrary to the naive expectation 2007-02558 and the discussions in literature epjc39-41 ; plb779-64 .

V Summary

In this work, we studied the contributions for kaon pair originating from the resonances ρ(770)\rho(770), ω(782)\omega(782) and their excited states ρ(1450,1700)\rho(1450,1700) and ω(1420,1650)\omega(1420,1650) in the three-body decays BKK¯hB\to K\bar{K}h in the PQCD approach. The subprocesses ρ(770,1450,1700)KK¯\rho(770,1450,1700)\to K\bar{K} and ω(782,1420,1650)KK¯\omega(782,1420,1650)\to K\bar{K}, which can not be calculated in the PQCD, were introduced into the distribution amplitudes for KK¯K\bar{K} system via the kaon vector time-like form factors. With the coefficients cρ(770)K=1.247±0.019c^{K}_{\rho(770)}=1.247\pm 0.019, cω(782)K=1.113±0.019c^{K}_{\omega(782)}=1.113\pm 0.019, cρ(1450)K=0.156±0.015c^{K}_{\rho(1450)}=-0.156\pm 0.015, cω(1420)K=0.117±0.013c^{K}_{\omega(1420)}=-0.117\pm 0.013 and cω(1650),ρ(1700)K=0.083±0.019c^{K}_{\omega(1650),\rho(1700)}=-0.083\pm 0.019 in the time-like form factors for kaons, we predicted the CPCP averaged branching fractions and the direct CPCP asymmetries for the quasi-two-body processes Bρ(770,1450,1700)hKK¯hB\to\rho(770,1450,1700)h\to K\bar{K}h and Bω(782,1420,1650)hKK¯hB\to\omega(782,1420,1650)h\to K\bar{K}h.

The branching fractions of the virtual contributions for KK¯K\bar{K} in this work from the BW tails of the intermediate states ρ(770)\rho(770) and ω(782)\omega(782) in the concerned decays which have been ignored in experimental and theoretical studies were found larger than the corresponding results from ρ(1450,1700)\rho(1450,1700) and ω(1420,1650)\omega(1420,1650). A remarkable phenomenon for the virtual contributions discussed in this work is that the differential branching fractions for Bρ(770)hKK¯hB\to\rho(770)h\to K\bar{K}h and Bω(782)hKK¯hB\to\omega(782)h\to K\bar{K}h are nearly unaffected by the quite different values of the full widths for ρ(770)\rho(770) and ω(782)\omega(782). The definition of the partial decay width such as Γρ(770)K+K=Γρ(770)ρ(770)0K+K\Gamma_{\rho(770)\to K^{+}K^{-}}=\Gamma_{\rho(770)}{\mathcal{B}}_{\rho(770)^{0}\to K^{+}K^{-}} for the virtual contribution are invalid. This conclusion can be extended to other strong decay processes with the virtual contributions come from the tails of the resonances. The bumps of the lines for the differential branching fractions for those virtual contributions, which are generated by the phase space factors and the tails of the BW formula of ρ(770)\rho(770) or ω(782)\omega(782), should not be taken as the evidence for a new resonant state at about 1.351.35 GeV.

The PQCD predicted results for the branching fractions of the quasi-two-body decays B+π+ρ(1450)0π+K+KB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}K^{+}K^{-} and B+π+ρ(1450)0π+π+πB^{+}\to\pi^{+}\rho(1450)^{0}\to\pi^{+}\pi^{+}\pi^{-} meet the requirement of the SU(3)SU(3) symmetry relation gρ(1450)0K+K12gρ(1450)0π+πg_{\rho(1450)^{0}K^{+}K^{-}}\approx\frac{1}{2}g_{\rho(1450)^{0}\pi^{+}\pi^{-}}. The larger coupling constant for ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} deduced from the fit fraction (30.7±1.2±0.9)%(30.7\pm 1.2\pm 0.9)\% for ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} in the B±π±K+KB^{\pm}\to\pi^{\pm}K^{+}K^{-} decays by LHCb Collaboration is contrary to the discussions in literature. We estimated the branching fractions to be about 1.6%1.6\% and 2.0%2.0\% for the decays ρ(1450)0K+K\rho(1450)^{0}\to K^{+}K^{-} and ρ(1700)0K+K\rho(1700)^{0}\to K^{+}K^{-}, respectively, according to the measurement results from CMD-3 Collaboration for ρ(1450,1700)0π+π\rho(1450,1700)^{0}\to\pi^{+}\pi^{-}.

Acknowledgements.
This work was supported in part by the National Natural Science Foundation of China under Grants No. 11547038 and No. 11575110.

Appendix A Distribution amplitudes

The BB meson light-cone matrix element can be decomposed as npb592-3 ; prd76-074018

ΦB=i2Nc(p/B+mB)γ5ϕB(kB),\displaystyle\Phi_{B}=\frac{i}{\sqrt{2N_{c}}}(p{/}_{B}+m_{B})\gamma_{5}\phi_{B}(k_{B}), (37)

where the distribution amplitude ϕB\phi_{B} is of the form

ϕB(xB,bB)=NBxB2(1xB)2exp[(xBmB)22ωB212(ωBbB)2],\displaystyle\phi_{B}(x_{B},b_{B})=N_{B}x_{B}^{2}(1-x_{B})^{2}\mathrm{exp}\left[-\frac{(x_{B}m_{B})^{2}}{2\omega_{B}^{2}}-\frac{1}{2}(\omega_{B}b_{B})^{2}\right], (38)

with NBN_{B} the normalization factor. The shape parameters ωB=0.40±0.04\omega_{B}=0.40\pm 0.04 GeV for B±B^{\pm} and B0B^{0} and ωBs=0.50±0.05\omega_{B_{s}}=0.50\pm 0.05 for Bs0B^{0}_{s}, respectively.

The light-cone wave functions for pion and kaon are written as jhep9809-005 ; jhep9901-010 ; prd71-014015 ; jhep0605-004

Φh=i2Ncγ5[p/3ϕA(x3)+m0hϕP(x3)+m0h(n/v/1)ϕT(x3)].\displaystyle\Phi_{h}=\frac{i}{\sqrt{2N_{c}}}\gamma_{5}\left[p{/}_{3}\phi^{A}(x_{3})+m^{h}_{0}\phi^{P}(x_{3})+m^{h}_{0}(n/v/-1)\phi^{T}(x_{3})\right]. (39)

The distribution amplitudes of ϕA(x3),ϕP(x3)\phi^{A}(x_{3}),\phi^{P}(x_{3}) and ϕT(x3)\phi^{T}(x_{3}) are

ϕA(x3)\displaystyle\phi^{A}(x_{3}) =\displaystyle= fh22Nc6x3(1x3)[1+a1hC13/2(t)+a2hC23/2(t)+a4hC43/2(t)],\displaystyle\frac{f_{h}}{2\sqrt{2N_{c}}}6x_{3}(1-x_{3})\left[1+a_{1}^{h}C_{1}^{3/2}(t)+a_{2}^{h}C_{2}^{3/2}(t)+a_{4}^{h}C_{4}^{3/2}(t)\right], (40)
ϕP(x3)\displaystyle\phi^{P}(x_{3}) =\displaystyle= fh22Nc[1+(30η352ρh2)C21/2(t)3[η3ω3+920ρh2(1+6a2h)]C41/2(t)],\displaystyle\frac{f_{h}}{2\sqrt{2N_{c}}}\left[1+(30\eta_{3}-\frac{5}{2}\rho^{2}_{h})C_{2}^{1/2}(t)-3\big{[}\eta_{3}\omega_{3}+\frac{9}{20}\rho^{2}_{h}(1+6a_{2}^{h})\big{]}C_{4}^{1/2}(t)\right], (41)
ϕT(x3)\displaystyle\phi^{T}(x_{3}) =\displaystyle= fh22Nc(t)[1+6(5η312η3ω3720ρh235ρh2a2h)(110x3+10x32)],\displaystyle\frac{f_{h}}{2\sqrt{2N_{c}}}(-t)\left[1+6\left(5\eta_{3}-\frac{1}{2}\eta_{3}\omega_{3}-\frac{7}{20}\rho^{2}_{h}-\frac{3}{5}\rho^{2}_{h}a_{2}^{h}\right)(1-10x_{3}+10x_{3}^{2})\right],\quad\; (42)

with t=2x31t=2x_{3}-1, C2,41/2(t)C^{1/2}_{2,4}(t) and C1,2,43/2(t)C^{3/2}_{1,2,4}(t) are Gegenbauer polynomials. The chiral scale parameters m0h=mh2mq+mqm^{h}_{0}=\frac{m^{2}_{h}}{m_{q}+m_{q^{\prime}}} for pion and kaon are m0π=(1.4±0.1)m_{0}^{\pi}=(1.4\pm 0.1) GeV and m0K=(1.9±0.1)m_{0}^{K}=(1.9\pm 0.1) GeV as they in prd76-074018 . The decay constants fπ=130.2(1.2)f_{\pi}=130.2(1.2) MeV and fK=155.7(3)f_{K}=155.7(3) MeV can be found in Ref. PDG-2020 . The Gegenbauer moments a1π=0,a1K=0.06,a2h=0.25,a4h=0.015a_{1}^{\pi}=0,a_{1}^{K}=0.06,a_{2}^{h}=0.25,a_{4}^{h}=-0.015 and the parameters ρh=mh/m0h,η3=0.015,ω3=3\rho_{h}=m_{h}/m_{0}^{h},\eta_{3}=0.015,\omega_{3}=-3 are adopted in the numerical calculation.

Appendix B Decay amplitudes

With the subprocesses ρ+K+K¯0\rho^{+}\to K^{+}\bar{K}^{0}, ρKK0\rho^{-}\to K^{-}K^{0}, ρ0K+K\rho^{0}\to K^{+}K^{-}, ρ0K0K¯0\rho^{0}\to K^{0}\bar{K}^{0}, ωK+K\omega\to K^{+}K^{-} and ωK0K¯0\omega\to K^{0}\bar{K}^{0}, and ρ\rho is ρ(770),ρ(1450)\rho(770),\rho(1450) or ρ(1700)\rho(1700) and ω\omega is ω(782),ω(1420)\omega(782),\omega(1420) or ω(1650)\omega(1650), the Lorentz invariant decay amplitudes for the quasi-two-body decays BρhKK¯hB\to\rho h\to K\bar{K}h and BωhKK¯hB\to\omega h\to K\bar{K}h are given as follows:

𝒜(B+ρ+π0)\displaystyle{\cal A}(B^{+}\to\rho^{+}\pi^{0}) =\displaystyle= GF2VubVud{a1[FThLL+FAhLLFaρLL]+a2FTρLL+C1[MThLL+MAhLL\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{ud}\big{\{}a_{1}[F^{LL}_{Th}+F^{LL}_{Ah}-F^{LL}_{a\rho}]+a_{2}F^{LL}_{T\rho}+C_{1}[M^{LL}_{Th}+M^{LL}_{Ah} (43)
MAρLL]+C2MTρLL}GF2VtbVtd{[a4+5C93+C103a72]FTρLL\displaystyle-M^{LL}_{A\rho}]+C_{2}M^{LL}_{T\rho}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{td}\big{\{}\big{[}-a_{4}+\frac{5C_{9}}{3}+C_{10}-\frac{3a_{7}}{2}\big{]}F^{LL}_{T\rho}
[a6a82]FTρSP+[C9+3C102C3]MTρLL[C5C72]MTρLR\displaystyle-[a_{6}-\frac{a_{8}}{2}]F^{SP}_{T\rho}+[\frac{C_{9}+3C_{10}}{2}-C_{3}]M^{LL}_{T\rho}-[C_{5}-\frac{C_{7}}{2}]M^{LR}_{T\rho}
+3C82MTρSP+[a4+a10][FThLL+FAhLLFAρLL]+[a6+a8][FAhSP\displaystyle+\frac{3C_{8}}{2}M^{SP}_{T\rho}+[a_{4}+a_{10}][F^{LL}_{Th}+F^{LL}_{Ah}-F^{LL}_{A\rho}]+[a_{6}+a_{8}][F^{SP}_{Ah}
FAρSP]+[C3+C9][MThLL+MAhLLMAρLL]+[C5+C7][MThLR\displaystyle-F^{SP}_{A\rho}]+[C_{3}+C_{9}][M^{LL}_{Th}+M^{LL}_{Ah}-M^{LL}_{A\rho}]+[C_{5}+C_{7}][M^{LR}_{Th}
+MAhLRMAρLR]},\displaystyle+M^{LR}_{Ah}-M^{LR}_{A\rho}]\big{\}},
𝒜(B+ρ0π+)\displaystyle{\cal A}(B^{+}\to\rho^{0}\pi^{+}) =\displaystyle= GF2VubVud{a1[FTρLL+FAρLLFAhLL]+a2FThLL+C1[MTρLL+MAρLL\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{ud}\big{\{}a_{1}[F^{LL}_{T\rho}+F^{LL}_{A\rho}-F^{LL}_{Ah}]+a_{2}F^{LL}_{Th}+C_{1}[M^{LL}_{T\rho}+M^{LL}_{A\rho} (44)
MAhLL]+C2MThLL}GF2VtbVtd{[a4+a10][FTρLL+FAρLLFAhLL]\displaystyle-M^{LL}_{Ah}]+C_{2}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{td}\big{\{}[a_{4}+a_{10}][F^{LL}_{T\rho}+F^{LL}_{A\rho}-F^{LL}_{Ah}]
+[a6+a8][FTρSP+FAρSPFAhSP]+[C3+C9][MTρLL+MAρLLMAhLL]\displaystyle+[a_{6}+a_{8}][F^{SP}_{T\rho}+F^{SP}_{A\rho}-F^{SP}_{Ah}]+[C_{3}+C_{9}][M^{LL}_{T\rho}+M^{LL}_{A\rho}-M^{LL}_{Ah}]
+[C5+C7][MTρLR+MAρLRMThLR]+[53C9+C10+3a72a4]FThLL\displaystyle+[C_{5}+C_{7}][M^{LR}_{T\rho}+M^{LR}_{A\rho}-M^{LR}_{Th}]+[\frac{5}{3}C_{9}+C_{10}+\frac{3a_{7}}{2}-a_{4}]F^{LL}_{Th}
+[C9+3C102C3]MThLL[C5C72]MThLR+3C82MThSP},\displaystyle+[\frac{C_{9}+3C_{10}}{2}-C_{3}]M^{LL}_{Th}-[C_{5}-\frac{C_{7}}{2}]M^{LR}_{Th}+\frac{3C_{8}}{2}M^{SP}_{Th}\big{\}},
𝒜(B+ωπ+)\displaystyle{\cal A}(B^{+}\to\omega\pi^{+}) =\displaystyle= GF2VubVud{a1[FTωLL+FAωLL+FAhLL]+a2FThLL+C1[MTωLL+MAωLL\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{ud}\big{\{}a_{1}[F^{LL}_{T\omega}+F^{LL}_{A\omega}+F^{LL}_{Ah}]+a_{2}F^{LL}_{Th}+C_{1}[M^{LL}_{T\omega}+M^{LL}_{A\omega} (45)
+MAhLL]+C2MThLL}GF2VtbVtd{[a4+a10][FTωLL+FAωLL+FAhLL]\displaystyle+M^{LL}_{Ah}]+C_{2}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{td}\big{\{}[a_{4}+a_{10}][F^{LL}_{T\omega}+F^{LL}_{A\omega}+F^{LL}_{Ah}]
+[a6+a8][FTωSP+FAωSP+FAhSP]+[C3+C9][MTωLL+MAωLL+MAhLL]\displaystyle+[a_{6}+a_{8}][F^{SP}_{T\omega}+F^{SP}_{A\omega}+F^{SP}_{Ah}]+[C_{3}+C_{9}][M^{LL}_{T\omega}+M^{LL}_{A\omega}+M^{LL}_{Ah}]
+[C5+C7][MTωLR+MAωLR+MAhLR]+[(7C3+5C4+C9C10)/3\displaystyle+[C_{5}+C_{7}][M^{LR}_{T\omega}+M^{LR}_{A\omega}+M^{LR}_{Ah}]+[(7C_{3}+5C_{4}+C_{9}-C_{10})/3
+2a5+a72]FLLTh+[C3+2C4C9C102]MLLTh+[C5C72]MLRTh\displaystyle+2a_{5}+\frac{a_{7}}{2}]F^{LL}_{Th}+[C_{3}+2C_{4}-\frac{C_{9}-C_{10}}{2}]M^{LL}_{Th}+[C_{5}-\frac{C_{7}}{2}]M^{LR}_{Th}
+[2C6+C82]MThSP},\displaystyle+[2C_{6}+\frac{C_{8}}{2}]M^{SP}_{Th}\big{\}},
𝒜(B+ρ+K0)\displaystyle{\cal A}(B^{+}\to\rho^{+}K^{0}) =\displaystyle= GF2VubVus{a1FAρLL+C1MAρLL}GF2VtbVts{[a4a102]FTρLL+[a6\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{us}\{a_{1}F^{LL}_{A\rho}+C_{1}M^{LL}_{A\rho}\}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{ts}\big{\{}[a_{4}-\frac{a_{10}}{2}]F^{LL}_{T\rho}+[a_{6} (46)
a82]FSPTρ+[C3C92]MLLTρ+[C5C72]MLRTρ+[a4+a10]FLLAρ\displaystyle-\frac{a_{8}}{2}]F^{SP}_{T\rho}+[C_{3}-\frac{C_{9}}{2}]M^{LL}_{T\rho}+[C_{5}-\frac{C_{7}}{2}]M^{LR}_{T\rho}+[a_{4}+a_{10}]F^{LL}_{A\rho}
+[C3+C9]MAρLL+[a6+a8]FAρSP+[C5+C7]MAρLR},\displaystyle+[C_{3}+C_{9}]M^{LL}_{A\rho}+[a_{6}+a_{8}]F^{SP}_{A\rho}+[C_{5}+C_{7}]M^{LR}_{A\rho}\big{\}},
𝒜(B+ρ0K+)\displaystyle{\cal A}(B^{+}\to\rho^{0}K^{+}) =\displaystyle= GF2VubVus{a1[FTρLL+FAρLL]+a2FThLL+C1[MTρLL+MAρLL]+C2MThLL}\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{us}\big{\{}a_{1}[F^{LL}_{T\rho}+F^{LL}_{A\rho}]+a_{2}F^{LL}_{Th}+C_{1}[M^{LL}_{T\rho}+M^{LL}_{A\rho}]+C_{2}M^{LL}_{Th}\big{\}} (47)
GF2VtbVts{[a4+a10][FTρLL+FAρLL]+[a6+a8][FTρSP+FAρSP]+[C3\displaystyle-\frac{G_{F}}{2}V_{tb}^{*}V_{ts}\big{\{}[a_{4}+a_{10}][F^{LL}_{T\rho}+F^{LL}_{A\rho}]+[a_{6}+a_{8}][F^{SP}_{T\rho}+F^{SP}_{A\rho}]+[C_{3}
+C9][MTρLL+MAρLL]+[C5+C7][MTρLR+MAρLR]+32[a7+a9]FLLTh\displaystyle+C_{9}][M^{LL}_{T\rho}+M^{LL}_{A\rho}]+[C_{5}+C_{7}][M^{LR}_{T\rho}+M^{LR}_{A\rho}]+\frac{3}{2}[a_{7}+a_{9}]F^{LL}_{Th}
+3C102MThLL+3C82MThSP},\displaystyle+\frac{3C_{10}}{2}M^{LL}_{Th}+\frac{3C_{8}}{2}M^{SP}_{Th}\big{\}},
𝒜(B+ωK+)\displaystyle{\cal A}(B^{+}\to\omega K^{+}) =\displaystyle= GF2VubVus{a1[FTωLL+FAωLL]+a2FThLL+C1[MTωLL+MAωLL]+C2MThLL}\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{us}\big{\{}a_{1}[F^{LL}_{T\omega}+F^{LL}_{A\omega}]+a_{2}F^{LL}_{Th}+C_{1}[M^{LL}_{T\omega}+M^{LL}_{A\omega}]+C_{2}M^{LL}_{Th}\big{\}} (48)
GF2VtbVts{[a4+a10][FTωLL+FAωLL]+[a6+a8][FTωSP+FAωSP]+[C3\displaystyle-\frac{G_{F}}{2}V_{tb}^{*}V_{ts}\big{\{}[a_{4}+a_{10}][F^{LL}_{T\omega}+F^{LL}_{A\omega}]+[a_{6}+a_{8}][F^{SP}_{T\omega}+F^{SP}_{A\omega}]+[C_{3}
+C9][MTωLL+MAωLL]+[C5+C7][MTωLR+MAωLR]+[2a3+2a5+a7/2\displaystyle+C_{9}][M^{LL}_{T\omega}+M^{LL}_{A\omega}]+[C_{5}+C_{7}][M^{LR}_{T\omega}+M^{LR}_{A\omega}]+[2a_{3}+2a_{5}+a_{7}/2
+a9/2]FThLL+[2C4+C102]MThLL+[2C6+C82]MThSP},\displaystyle+a_{9}/2]F^{LL}_{Th}+[2C_{4}+\frac{C_{10}}{2}]M^{LL}_{Th}+[2C_{6}+\frac{C_{8}}{2}]M^{SP}_{Th}\big{\}},
𝒜(B0ρ+π)\displaystyle{\cal A}(B^{0}\to\rho^{+}\pi^{-}) =\displaystyle= GF2VubVud{a2FAρLL+C2MAρLL+a1FThLL+C1MThLL}GF2VtbVtd{[a3\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{ud}\big{\{}a_{2}F^{LL}_{A\rho}+C_{2}M^{LL}_{A\rho}+a_{1}F^{LL}_{Th}+C_{1}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{td}\big{\{}[a_{3} (49)
+a9a5a7]FLLAρ+[C4+C10]MLLAρ+[C6+C8]MSPAρ+[a4+a10]\displaystyle+a_{9}-a_{5}-a_{7}]F^{LL}_{A\rho}+[C_{4}+C_{10}]M^{LL}_{A\rho}+[C_{6}+C_{8}]M^{SP}_{A\rho}+[a_{4}+a_{10}]
×FThLL+[C3+C9]MThLL+[C5+C7]MThLR+[43[C3+C4C92C102]\displaystyle\times F^{LL}_{Th}+[C_{3}+C_{9}]M^{LL}_{Th}+[C_{5}+C_{7}]M^{LR}_{Th}+[\frac{4}{3}[C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2}]
a5+a72]FLLAh+[a6a82]FSPAh+[C3+C4C92C102]MLLAh+[C5\displaystyle-a_{5}+\frac{a_{7}}{2}]F^{LL}_{Ah}+[a_{6}-\frac{a_{8}}{2}]F^{SP}_{Ah}+[C_{3}+C_{4}-\frac{C_{9}}{2}-\frac{C_{10}}{2}]M^{LL}_{Ah}+[C_{5}
C72]MAhLR+[C6C82]MAhSP},\displaystyle-\frac{C_{7}}{2}]M^{LR}_{Ah}+[C_{6}-\frac{C_{8}}{2}]M^{SP}_{Ah}\big{\}},
𝒜(B0ρπ+)\displaystyle{\cal A}(B^{0}\to\rho^{-}\pi^{+}) =\displaystyle= GF2VubVud{a1FTρLL+a2FAhLL+C1MTρLL+C2MAhLL}GF2VtbVtd{[a4\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{ud}\big{\{}a_{1}F^{LL}_{T\rho}+a_{2}F^{LL}_{Ah}+C_{1}M^{LL}_{T\rho}+C_{2}M^{LL}_{Ah}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{td}\big{\{}[a_{4} (50)
+a10]FLLTρ+[a6+a8]FSPTρ+[C3+C9]MLLTρ+[C5+C7]MLRTρ\displaystyle+a_{10}]F^{LL}_{T\rho}+[a_{6}+a_{8}]F^{SP}_{T\rho}+[C_{3}+C_{9}]M^{LL}_{T\rho}+[C_{5}+C_{7}]M^{LR}_{T\rho}
+[43[C3+C4C9+C102]a5+a72]FAρLL+[a6a82]FAρSP\displaystyle+[\frac{4}{3}[C_{3}+C_{4}-\frac{C_{9}+C_{10}}{2}]-a_{5}+\frac{a_{7}}{2}]F^{LL}_{A\rho}+[a_{6}-\frac{a_{8}}{2}]F^{SP}_{A\rho}
+[C3+C4C9+C102]MAρLL+[C5C72]MAρLR+[C6C82]MAρSP\displaystyle+[C_{3}+C_{4}-\frac{C_{9}+C_{10}}{2}]M^{LL}_{A\rho}+[C_{5}-\frac{C_{7}}{2}]M^{LR}_{A\rho}+[C_{6}-\frac{C_{8}}{2}]M^{SP}_{A\rho}
+[a3+a9a5a7]FAhLL+[C4+C10]MAhLL+[C6+C8]MaPSP},\displaystyle+[a_{3}+a_{9}-a_{5}-a_{7}]F^{LL}_{Ah}+[C_{4}+C_{10}]M^{LL}_{Ah}+[C_{6}+C_{8}]M^{SP}_{aP}\big{\}},
𝒜(B0ρ0π0)\displaystyle{\cal A}(B^{0}\to\rho^{0}\pi^{0}) =\displaystyle= GF22VubVud{a2[FAρLL+FAhLLFTρLLFThLL]+C2[MAρLL+MAhLL\displaystyle\frac{G_{F}}{2\sqrt{2}}V_{ub}^{*}V_{ud}\big{\{}a_{2}[F^{LL}_{A\rho}+F^{LL}_{Ah}-F^{LL}_{T\rho}-F^{LL}_{Th}]+C_{2}[M^{LL}_{A\rho}+M^{LL}_{Ah} (51)
MTρLLMThLL]}GF22VtbVtd{[a45C93C10+3a72]FTρLL+[a6\displaystyle-M^{LL}_{T\rho}-M^{LL}_{Th}]\big{\}}-\frac{G_{F}}{2\sqrt{2}}V_{tb}^{*}V_{td}\big{\{}[a_{4}-\frac{5C_{9}}{3}-C_{10}+\frac{3a_{7}}{2}]F^{LL}_{T\rho}+[a_{6}
a82][FTρSP+FAρSP+FAhSP]+[C3C9+3C102][MTρLL+MThLL]+[C5\displaystyle-\frac{a_{8}}{2}][F^{SP}_{T\rho}+F^{SP}_{A\rho}+F^{SP}_{Ah}]+[C_{3}-\frac{C_{9}+3C_{10}}{2}][M^{LL}_{T\rho}+M^{LL}_{Th}]+[C_{5}
C72][MTρLR+MAρLR+MThLR+MAhLR]3C82[MTρSP+MThSP]+[(7C3\displaystyle-\frac{C_{7}}{2}][M^{LR}_{T\rho}+M^{LR}_{A\rho}+M^{LR}_{Th}+M^{LR}_{Ah}]-\frac{3C_{8}}{2}[M^{SP}_{T\rho}+M^{SP}_{Th}]+[(7C_{3}
+5C4+C9C10)/32a5a72][FAρLL+FAhLL]+[C3+2C4\displaystyle+5C_{4}+C_{9}-C_{10})/{3}-2a_{5}-\frac{a_{7}}{2}][F^{LL}_{A\rho}+F^{LL}_{Ah}]+[C_{3}+2C_{4}
C9C102][MAρLL+MAhLL]+[2C6+C82][MAρSP+MAhSP]+[a45C93\displaystyle-\frac{C_{9}-C_{10}}{2}][M^{LL}_{A\rho}+M^{LL}_{Ah}]+[2C_{6}+\frac{C_{8}}{2}][M^{SP}_{A\rho}+M^{SP}_{Ah}]+[a_{4}-\frac{5C_{9}}{3}
C103a72]FThLL},\displaystyle-C_{10}-\frac{3a_{7}}{2}]F^{LL}_{Th}\big{\}},
𝒜(B0ωπ0)\displaystyle{\cal A}(B^{0}\to\omega\pi^{0}) =\displaystyle= GF22VubVud{a2[FAωLL+FAhLL+FTωLLFThLL]+C2[MAωLL+MAhLL+MTωLL\displaystyle\frac{G_{F}}{2\sqrt{2}}V_{ub}^{*}V_{ud}\big{\{}a_{2}[F^{LL}_{A\omega}+F^{LL}_{Ah}+F^{LL}_{T\omega}-F^{LL}_{Th}]+C_{2}[M^{LL}_{A\omega}+M^{LL}_{Ah}+M^{LL}_{T\omega} (52)
MThLL]}GF22VtbVtd{[a4+5C93+C103a72][FTωLL+FAωLL+FAhLL]\displaystyle-M^{LL}_{Th}]\big{\}}-\frac{G_{F}}{2\sqrt{2}}V_{tb}^{*}V_{td}\big{\{}[-a_{4}+\frac{5C_{9}}{3}+C_{10}-\frac{3a_{7}}{2}][F^{LL}_{T\omega}+F^{LL}_{A\omega}+F^{LL}_{Ah}]
[a6a82][FTωSP+FAωSP+FAhSP][(7C3+5C4+C9C10)/3+2a5\displaystyle-[a_{6}-\frac{a_{8}}{2}][F^{SP}_{T\omega}+F^{SP}_{A\omega}+F^{SP}_{Ah}]-[(7C_{3}+5C_{4}+C_{9}-C_{10})/{3}+2a_{5}
+a72]FLLTh[C3C9+3C102][MTωLL+MAωLL+MAhLL][C5C72][MTωLR\displaystyle+\frac{a_{7}}{2}]F^{LL}_{Th}-[C_{3}-\frac{C_{9}+3C_{10}}{2}][M^{LL}_{T\omega}+M^{LL}_{A\omega}+M^{LL}_{Ah}]-[C_{5}-\frac{C_{7}}{2}][M^{LR}_{T\omega}
+MAωLR+MThLR+MAhLR]+3C82[MTωSP+MAωSP+MAhSP][C3+2C4\displaystyle+M^{LR}_{A\omega}+M^{LR}_{Th}+M^{LR}_{Ah}]+\frac{3C_{8}}{2}[M^{SP}_{T\omega}+M^{SP}_{A\omega}+M^{SP}_{Ah}]-[C_{3}+2C_{4}
C9C102]MThLL[2C6+C82]MThSP},\displaystyle-\frac{C_{9}-C_{10}}{2}]M^{LL}_{Th}-[2C_{6}+\frac{C_{8}}{2}]M^{SP}_{Th}\big{\}},
𝒜(B0ρK+)\displaystyle{\cal A}(B^{0}\to\rho^{-}K^{+}) =\displaystyle= GF2VubVus{a1FTρLL+C1MTρLL}GF2VtbVts{[a4+a10]FTρLL+[a6+a8]\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{us}\big{\{}a_{1}F^{LL}_{T\rho}+C_{1}M^{LL}_{T\rho}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{ts}\big{\{}[a_{4}+a_{10}]F^{LL}_{T\rho}+[a_{6}+a_{8}] (53)
×FTρSP+[C3+C9]MTρLL+[C5+C7]MTρLR+[a4a102]FAρLL+[a6a82]\displaystyle\times F^{SP}_{T\rho}+[C_{3}+C_{9}]M^{LL}_{T\rho}+[C_{5}+C_{7}]M^{LR}_{T\rho}+[a_{4}-\frac{a_{10}}{2}]F^{LL}_{A\rho}+[a_{6}-\frac{a_{8}}{2}]
×FAρSP+[C3C92]MAρLL+[C5C72]MAρLR},\displaystyle\times F^{SP}_{A\rho}+[C_{3}-\frac{C_{9}}{2}]M^{LL}_{A\rho}+[C_{5}-\frac{C_{7}}{2}]M^{LR}_{A\rho}\big{\}},
𝒜(B0ρ0K0)\displaystyle{\cal A}(B^{0}\to\rho^{0}K^{0}) =\displaystyle= GF2VubVus{a2FThLL+C2MThLL]}GF2VtbVts{[a4a102][FTρLL+FAρLL]\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{us}\big{\{}a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}]\big{\}}\!-\frac{G_{F}}{2}V_{tb}^{*}V_{ts}\big{\{}\!-\![a_{4}-\frac{a_{10}}{2}][F^{LL}_{T\rho}+F^{LL}_{A\rho}] (54)
[a6a82][FTρSP+FAρSP][C3C92][MTρLL+MAρLL][C5C72]\displaystyle-[a_{6}-\frac{a_{8}}{2}][F^{SP}_{T\rho}+F^{SP}_{A\rho}]-[C_{3}-\frac{C_{9}}{2}][M^{LL}_{T\rho}+M^{LL}_{A\rho}]-[C_{5}-\frac{C_{7}}{2}]
×[MTρLR+MAρLR]+32[a7+a9]FThLL+3C102MThLL+3C82MThSP},\displaystyle\times[M^{LR}_{T\rho}+M^{LR}_{A\rho}]+\frac{3}{2}[a_{7}+a_{9}]F^{LL}_{Th}+\frac{3C_{10}}{2}M^{LL}_{Th}+\frac{3C_{8}}{2}M^{SP}_{Th}\big{\}},
𝒜(B0ωK0)\displaystyle{\cal A}(B^{0}\to\omega K^{0}) =\displaystyle= GF2VubVus{a2FThLL+C2MThLL}GF2VtbVts{[a4a102][FTωLL+FAωLL]\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{us}\big{\{}a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{ts}\big{\{}[a_{4}-\frac{a_{10}}{2}][F^{LL}_{T\omega}+F^{LL}_{A\omega}] (55)
+[a6a82][FTωSP+FAωSP]+[C3C92][MTωLL+MAωLL]+[C5C72]\displaystyle+[a_{6}-\frac{a_{8}}{2}][F^{SP}_{T\omega}+F^{SP}_{A\omega}]+[C_{3}-\frac{C_{9}}{2}][M^{LL}_{T\omega}+M^{LL}_{A\omega}]+[C_{5}-\frac{C_{7}}{2}]
×[MTωLR+MAωLR]+[2a3+2a5+a7+a92]FThLL+[2C4+C102]MThLL\displaystyle\times[M^{LR}_{T\omega}+M^{LR}_{A\omega}]+[2a_{3}+2a_{5}+\frac{a_{7}+a_{9}}{2}]F^{LL}_{Th}+[2C_{4}+\frac{C_{10}}{2}]M^{LL}_{Th}
+[2C6+C82]MThSP},\displaystyle+[2C_{6}+\frac{C_{8}}{2}]M^{SP}_{Th}\big{\}},
𝒜(Bs0ρ+π)\displaystyle{\cal A}(B_{s}^{0}\to\rho^{+}\pi^{-}) =\displaystyle= GF2VubVus{a2FAρLL+C2MAρLL}GF2VtbVts{[a3+a9a5a7]FAρLL\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{us}\big{\{}a_{2}F^{LL}_{A\rho}+C_{2}M^{LL}_{A\rho}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{ts}\big{\{}[a_{3}+a_{9}-a_{5}-a_{7}]F^{LL}_{A\rho} (56)
+[C4+C10]MAρLL+[C6+C8]MAρSP+[a3a92a5+a72]FAhLL+[C4\displaystyle+[C_{4}+C_{10}]M^{LL}_{A\rho}+[C_{6}+C_{8}]M^{SP}_{A\rho}+[a_{3}-\frac{a_{9}}{2}-a_{5}+\frac{a_{7}}{2}]F^{LL}_{Ah}+[C_{4}
C102]MAhLL+[C6C82]MAhSP},\displaystyle-\frac{C_{10}}{2}]M^{LL}_{Ah}+[C_{6}-\frac{C_{8}}{2}]M^{SP}_{Ah}\big{\}},
𝒜(Bs0ρπ+)\displaystyle{\cal A}(B_{s}^{0}\to\rho^{-}\pi^{+}) =\displaystyle= GF2VubVus{a2FAhLL+C2MAhLL}GF2VtbVts{[a3a92a5+a72]FAρLL\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{us}\big{\{}a_{2}F^{LL}_{Ah}+C_{2}M^{LL}_{Ah}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{ts}\big{\{}[a_{3}-\frac{a_{9}}{2}-a_{5}+\frac{a_{7}}{2}]F^{LL}_{A\rho} (57)
+[C4C102]MAρLL+[C6C82]MAρSP+[a3+a9a5a7]FAhLL+[C4\displaystyle+[C_{4}-\frac{C_{10}}{2}]M^{LL}_{A\rho}+[C_{6}-\frac{C_{8}}{2}]M^{SP}_{A\rho}+[a_{3}+a_{9}-a_{5}-a_{7}]F^{LL}_{Ah}+[C_{4}
+C10]MAhLL+[C6+C8]MAhSP},\displaystyle+C_{10}]M^{LL}_{Ah}+[C_{6}+C_{8}]M^{SP}_{Ah}\big{\}},
𝒜(Bs0ρ0π0)\displaystyle{\cal A}(B_{s}^{0}\to\rho^{0}\pi^{0}) =\displaystyle= GF22VubVus{a2[FAρLL+FAhLL]+C2[MAρLL+MAhLL]}GF22VtbVts{[2a3\displaystyle\frac{G_{F}}{2\sqrt{2}}V_{ub}^{*}V_{us}\big{\{}a_{2}[F^{LL}_{A\rho}+F^{LL}_{Ah}]+C_{2}[M^{LL}_{A\rho}+M^{LL}_{Ah}]\big{\}}-\frac{G_{F}}{2\sqrt{2}}V_{tb}^{*}V_{ts}\big{\{}[2a_{3} (58)
+a922a5a72][FAρLL+FAhLL]+[2C4+C102][MAρLL+MAhLL]+[2C6\displaystyle+\frac{a_{9}}{2}-2a_{5}-\frac{a_{7}}{2}][F^{LL}_{A\rho}+F^{LL}_{Ah}]+[2C_{4}+\frac{C_{10}}{2}][M^{LL}_{A\rho}+M^{LL}_{Ah}]+[2C_{6}
+C82][MAρSP+MAhSP]},\displaystyle+\frac{C_{8}}{2}][M^{SP}_{A\rho}+M^{SP}_{Ah}]\big{\}},
𝒜(Bs0ωπ0)\displaystyle{\cal A}(B_{s}^{0}\to\omega\pi^{0}) =\displaystyle= GF22VubVus{a2[FAωLL+FAhLL]+C2[MAωLL+MAhLL]}GF22VtbVts\displaystyle\frac{G_{F}}{2\sqrt{2}}V_{ub}^{*}V_{us}\big{\{}a_{2}[F^{LL}_{A\omega}+F^{LL}_{Ah}]+C_{2}[M^{LL}_{A\omega}+M^{LL}_{Ah}]\big{\}}-\frac{G_{F}}{2\sqrt{2}}V_{tb}^{*}V_{ts} (59)
×{32[a9a7][FAωLL+FAhLL]+3C102[MAωLL+MAhLL]+3C82[MAωSP\displaystyle\times\big{\{}\frac{3}{2}[a_{9}-a_{7}][F^{LL}_{A\omega}+F^{LL}_{Ah}]+\frac{3C_{10}}{2}[M^{LL}_{A\omega}+M^{LL}_{Ah}]+\frac{3C_{8}}{2}[M^{SP}_{A\omega}
+MAhSP]},\displaystyle+M^{SP}_{Ah}]\big{\}},
𝒜(Bs0ρ+K)\displaystyle{\cal A}(B_{s}^{0}\to\rho^{+}K^{-}) =\displaystyle= GF2VubVud{a1FThLL+C1MThLL}GF2VtbVtd{[a4+a10]FThLL+[C3\displaystyle\frac{G_{F}}{\sqrt{2}}V_{ub}^{*}V_{ud}\big{\{}a_{1}F^{LL}_{Th}+C_{1}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{\sqrt{2}}V_{tb}^{*}V_{td}\big{\{}[a_{4}+a_{10}]F^{LL}_{Th}+[C_{3} (60)
+C9]MLLTh+[C5+C7]MLRTh+[a4a102]FLLAh+[a6a82]FSPAh\displaystyle+C_{9}]M^{LL}_{Th}+[C_{5}+C_{7}]M^{LR}_{Th}+[a_{4}-\frac{a_{10}}{2}]F^{LL}_{Ah}+[a_{6}-\frac{a_{8}}{2}]F^{SP}_{Ah}
+[C3C92]MAhLL+[C5C72]MAhLR},\displaystyle+[C_{3}-\frac{C_{9}}{2}]M^{LL}_{Ah}+[C_{5}-\frac{C_{7}}{2}]M^{LR}_{Ah}\big{\}},
𝒜(Bs0ρ0K¯0)\displaystyle{\cal A}(B_{s}^{0}\to\rho^{0}\bar{K}^{0}) =\displaystyle= GF2VubVud{a2FThLL+C2MThLL}GF2VtbVtd{[5C93+C10+3a72a4]\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{ud}\big{\{}a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{td}\big{\{}[\frac{5C_{9}}{3}+C_{10}+\frac{3a_{7}}{2}-a_{4}] (61)
×FThLL+[C92+3C102C3]MThLL[C5C72][MThLR+MAhLR]+3C82\displaystyle\times F^{LL}_{Th}+[\frac{C_{9}}{2}+\frac{3C_{10}}{2}-C_{3}]M^{LL}_{Th}-[C_{5}-\frac{C_{7}}{2}][M^{LR}_{Th}+M^{LR}_{Ah}]+\frac{3C_{8}}{2}
×MThSP[a4a102]FAhLL[a6a82]FAhSP[C3C92]MAhLL},\displaystyle\times M^{SP}_{Th}-[a_{4}-\frac{a_{10}}{2}]F^{LL}_{Ah}-[a_{6}-\frac{a_{8}}{2}]F^{SP}_{Ah}-[C_{3}-\frac{C_{9}}{2}]M^{LL}_{Ah}\big{\}},
𝒜(Bs0ωK¯0)\displaystyle{\cal A}(B_{s}^{0}\to\omega\bar{K}^{0}) =\displaystyle= GF2VubVud{a2FThLL+C2MThLL}GF2VtbVtd{[(7C3+5C4+C9\displaystyle\frac{G_{F}}{2}V_{ub}^{*}V_{ud}\big{\{}a_{2}F^{LL}_{Th}+C_{2}M^{LL}_{Th}\big{\}}-\frac{G_{F}}{2}V_{tb}^{*}V_{td}\big{\{}[(7C_{3}+5C_{4}+C_{9} (62)
C10)/3+2a5+a72]FLLTh+[C3+2C4C9C102]MLLTh+[C5C72]\displaystyle-C_{10})/{3}+2a_{5}+\frac{a_{7}}{2}]F^{LL}_{Th}+[C_{3}+2C_{4}-\frac{C_{9}-C_{10}}{2}]M^{LL}_{Th}+[C_{5}-\frac{C_{7}}{2}]
×[MThLR+MAhLR]+[2C6+C82]MThSP+[a4a102]FAhLL+[a6a82]FAhSP\displaystyle\times[M^{LR}_{Th}+M^{LR}_{Ah}]+[2C_{6}+\frac{C_{8}}{2}]M^{SP}_{Th}+[a_{4}-\frac{a_{10}}{2}]F^{LL}_{Ah}+[a_{6}-\frac{a_{8}}{2}]F^{SP}_{Ah}
+[C3C92]MAhLL},\displaystyle+[C_{3}-\frac{C_{9}}{2}]M^{LL}_{Ah}\big{\}},

where GFG_{F} is the Fermi coupling constant, VV’s are the CKM matrix elements. The combinations aia_{i} with i=1i=1-1010 are defined as

a1=C2+C1/3,a2=C1+C2/3,a3=C3+C4/3,a4=C4+C3/3,\displaystyle a_{1}=C_{2}+{C_{1}}/{3},~{}~{}a_{2}=C_{1}+{C_{2}}/{3},~{}~{}a_{3}=C_{3}+{C_{4}}/{3},~{}~{}a_{4}=C_{4}+{C_{3}}/{3}, (63)
a5=C5+C6/3,a6=C6+C5/3,a7=C7+C8/3,a8=C8+C7/3,\displaystyle a_{5}=C_{5}+{C_{6}}/{3},~{}~{}a_{6}=C_{6}+{C_{5}}/{3},~{}~{}a_{7}=C_{7}+{C_{8}}/{3},~{}~{}a_{8}=C_{8}+{C_{7}}/{3},
a9=C9+C10/3,a10=C10+C9/3,\displaystyle a_{9}=C_{9}+{C_{10}}/{3},~{}a_{10}=C_{10}+{C_{9}}/{3},

for the Wilson coefficients.

The general amplitudes for the quasi-two body decays BρhKK¯hB\to\rho h\to K\bar{K}h and BωhKK¯hB\to\omega h\to K\bar{K}h in the decay amplitudes Eqs. (43)-(62) are given according to Fig. 1, the typical Feynman diagrams for the PQCD approach. The symbols LLLL, LRLR and SPSP are employed to denote the amplitudes from the (VA)(VA)(V-A)(V-A), (VA)(V+A)(V-A)(V+A) and (SP)(S+P)(S-P)(S+P) operators, respectively. The emission diagrams are depicted in Fig. 1 (a) and (c), while the annihilation diagrams are shown by Fig. 1 (b) and (d). For the factorizable diagrams in Fig. 1, we name their expressions with FF, while the others are nonfactorizable diagrams, we name their expressions with MM. The specific expressions for these general amplitudes are the same as in the appendix of epjc80-815 but with the replacements ϕρ\phi\to\rho and ϕω\phi\to\omega for their subscripts for the subprocesses ρKK¯\rho\to K\bar{K} and ωKK¯\omega\to K\bar{K}, respectively, in this work. It should be understood that the Wilson coefficients CC and the amplitudes FF and MM for the factorizable and nonfactorizable contributions, respectively, appear in convolutions in momentum fractions and impact parameters bb.

References

  • (1) G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
  • (2) K. S. F. F. Guimarães et al., Nucl. Phys. Proc. Suppl. 199, 341 (2010).
  • (3) P. C. Magalhães et al., Phys. Rev. D 84, 094001 (2011).
  • (4) J. R. Peláez and A. Rodas, Eur. Phys. J. C 78, 897 (2018).
  • (5) I. Bediaga and P. C. Magalhães, arXiv:1512.09284.
  • (6) I. Bediaga, T. Frederico, and O. Lourenço, Phys. Rev. D 89, 094013 (2014).
  • (7) J. R. Peláez and F. J. Ynduráin, Phys. Rev. D 71, 074016 (2005).
  • (8) G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
  • (9) R. H. Dalitz, Phys. Rev. 94, 1046 (1954).
  • (10) G. N. Fleming, Phys. Rev. 135, B551 (1964).
  • (11) D. Morgan, Phys. Rev.  166, 1731 (1968).
  • (12) D. Herndon, P. Soding, and R. J. Cashmore, Phys. Rev. D 11, 3165 (1975).
  • (13) I. Bediaga, D. R. Boito, G. Guerrer, F. S. Navarra, and M. Nielsen, Phys. Lett. B 665, 30 (2008).
  • (14) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 123, 231802 (2019).
  • (15) P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (16) C. L. Hsu et al. (Belle Collaboration), Phys. Rev. D 96, 031101 (2017).
  • (17) B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 221801 (2007).
  • (18) Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 96, 036014 (2017).
  • (19) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 124, 031801 (2020).
  • (20) R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 101, 012006 (2020).
  • (21) W. F. Wang, Phys. Rev. D 101, 111901(R) (2020).
  • (22) H. Y. Cheng and C. K. Chua, Phys. Rev. D 102, 053006 (2020).
  • (23) W. F. Wang and J. Chai, Phys. Lett. B 791, 342 (2019).
  • (24) K. Abe et al. (Belle Collaboration), Phys. Rev. D 69, 112002 (2004).
  • (25) B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 112004 (2009).
  • (26) R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 91, 092002 (2015); 93, 119901(E) (2016).
  • (27) R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 94, 072001 (2016).
  • (28) Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Lett. B 504, 6 (2001).
  • (29) Y. Y. Keum, H. n. Li, and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
  • (30) C. D. Lü, K. Ukai, and M. Z. Yang, Phys. Rev. D 63, 074009 (2001).
  • (31) H. n. Li, Prog. Part. Nucl. Phys. 51, 85 (2003).
  • (32) A. J. Pawlicki et al., Phys. Rev. D 15, 3196 (1977).
  • (33) D. Cohen et al., Phys. Rev. D 22, 2595 (1980).
  • (34) A. Abele et al. (Crystal Barrel Collaboration), Phys. Lett. B 468, 178 (1999).
  • (35) M. Albrecht et al. (Crystal Barrel Collaboration), Eur. Phys. J. C 80, 453 (2020).
  • (36) B. Delcourt et al., Phys. Lett. 99B, 257 (1981).
  • (37) P. M. Ivanov et al., Phys. Lett. 107B, 297 (1981).
  • (38) D. Bisello et al. (DM2 Collaboration), Z. Phys. C 39, 13 (1988).
  • (39) M. N. Achasov et al., Phys. Rev. D 76, 072012 (2007).
  • (40) R. R. Akhmetshin et al. (CMD-2 Collaboration), Phys. Lett. B 669, 217 (2008).
  • (41) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 88, 032013 (2013).
  • (42) M. N. Achasov et al., Phys. Rev. D 94, 112006 (2016).
  • (43) E. A. Kozyrev et al., Phys. Lett. B 779, 64 (2018).
  • (44) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 99, 032001 (2019).
  • (45) F. Mané et al., Phys. Lett. 99B, 261 (1981).
  • (46) M. N. Achasov et al., Phys. Rev. D 63, 072002 (2001).
  • (47) R. R. Akhmetshin et al., Phys. Lett. B 551, 27 (2003).
  • (48) M. N. Achasov et al., J. Exp. Theor. Phys. 103, 720 (2006).
  • (49) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 89, 092002 (2014).
  • (50) E. A. Kozyrev et al. (CMD-3 Collaboration), Phys. Lett. B 760, 314 (2016).
  • (51) S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014).
  • (52) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 98, 032010 (2018).
  • (53) T. E. Coan et al. (CLEO Collaboration), Phys. Rev. D 53, 6037 (1996).
  • (54) S. Gonzàlez-Solís and P. Roig, Eur. Phys. J. C 79, 436 (2019).
  • (55) X. Liu, B. Zhang, L. L. Shen, and S. L. Zhu, Phys. Rev. D 75, 074017 (2007).
  • (56) B. A. Li, Phys. Rev. D 76, 094016 (2007).
  • (57) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 95, 072007 (2017).
  • (58) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 032004 (2019).
  • (59) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 97, 142002 (2006).
  • (60) A. Garmash et al. (Belle Collaboration), Phys. Rev. D 65, 092005 (2002).
  • (61) A. Garmash et al. (Belle Collaboration), Phys. Rev. D 71, 092003 (2005).
  • (62) B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74, 032003 (2006).
  • (63) B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 99, 161802 (2007).
  • (64) Y. Nakahama et al. (Belle Collaboration), Phys. Rev. D 82, 073011 (2010).
  • (65) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85, 112010 (2012).
  • (66) V. Gaur et al. (Belle Collaboration), Phys. Rev. D 87, 091101(R) (2013).
  • (67) Z. T. Zou, Y. Li, and H. n. Li, Phys. Rev. D 103, 013005 (2021).
  • (68) W. F. Wang and H. n. Li, Phys. Lett. B 763, 29 (2016).
  • (69) J. H. Alvarenga Nogueira et al., arXiv:1605.03889.
  • (70) D. Boito et al., Phys. Rev. D 96, 113003 (2017).
  • (71) Y. Y. Fan and W. F. Wang, Eur. Phys. J. C 80 815 (2020).
  • (72) W. F. Wang, J. Chai, and A. J. Ma, J. High Energy Phys. 03 (2020) 162.
  • (73) Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 95, 056008 (2017).
  • (74) A. J. Ma and W. F. Wang, Phys. Rev. D 103, 016002 (2021).
  • (75) A. J. Ma, Y. Li, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 96, 093011 (2017).
  • (76) A. J. Ma, Y. Li, W. F. Wang, and Z. J. Xiao, Nucl. Phys. B923, 54 (2017).
  • (77) Z. T. Zou, Y. Li, Q. X. Li, and X. Liu, Eur. Phys. J. C 80 394 (2020).
  • (78) J. Chai, S. Cheng, and W. F. Wang, arXiv:2102.04691.
  • (79) T. Huber, J. Virto, and K.K. Vos, J. High Energy Phys. 11 (2020) 103.
  • (80) T. Mannel, K. Olschewsky, and K. K. Vos, J. High Energy Phys. 06 (2020) 073.
  • (81) S. Kränkl, T. Mannel, and J. Virto, Nucl. Phys. B899, 247 (2015).
  • (82) A. Furman, R. Kamiński, L. Leśniak, and P. Żenczykowski, Phys. Lett. B 699, 102 (2011).
  • (83) A. Furman, R. Kamiński, L. Leśniak, and B. Loiseau, Phys. Lett. B 622, 207 (2005).
  • (84) B. El-Bennich et al., Phys. Rev. D 79, 094005 (2009); 83, 039903 (2011).
  • (85) H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 72, 094003 (2005).
  • (86) H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 76, 094006 (2007).
  • (87) H. Y. Cheng and C. K. Chua, Phys. Rev. D 88, 114014 (2013).
  • (88) H. Y. Cheng and C. K. Chua, Phys. Rev. D 89, 074025 (2014).
  • (89) Y. Li, Phys. Rev. D 89, 094007 (2014).
  • (90) H. Y. Cheng, C. K. Chua, and Z. Q. Zhang, Phys. Rev. D 94, 094015 (2016).
  • (91) C. Wang, Z. H. Zhang, Z. Y. Wang, and X. H. Guo, Eur. Phys. J. C 75, 536 (2015).
  • (92) M. Gronau and J. L. Rosner, Phys. Lett. B 564, 90 (2003).
  • (93) G. Engelhard, Y. Nir, and G. Raz, Phys. Rev. D 72, 075013 (2005).
  • (94) M. Gronau and J. L. Rosner, Phys. Rev. D 72, 094031 (2005).
  • (95) M. Imbeault and D. London, Phys. Rev. D 84, 056002 (2011).
  • (96) M. Gronau, Phys. Lett. B 727, 136 (2013).
  • (97) B. Bhattacharya, M. Gronau, and J. L. Rosner, Phys. Lett. B 726, 337 (2013).
  • (98) B. Bhattacharya, M. Gronau, M. Imbeault, D. London, and J. L. Rosner, Phys. Rev. D 89, 074043 (2014).
  • (99) D. Xu, G. N. Li, and X. G. He, Phys. Lett. B 728, 579 (2014).
  • (100) X. G. He, G. N. Li and D. Xu, Phys. Rev. D 91, 014029 (2015).
  • (101) K. Hagiwara, A. D. Martin, D. Nomura, and T. Teubner, Phys. Rev. D 69, 093003 (2004).
  • (102) A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018).
  • (103) C. K. Chua, W. S. Hou, S. Y. Shiau, and S. Y. Tsai, Phys. Rev. D 67, 034012 (2003).
  • (104) C. Bruch, A. Khodjamirian, and J. H. Kühn, Eur. Phys. J. C 39, 41 (2005).
  • (105) S. A. Ivashyn and A. Y. Korchin, Eur. Phys. J. C 49, 697 (2007).
  • (106) H. Czyż, A. Grzelińska, and J. H. Kühn, Phys. Rev. D 81, 094014 (2010).
  • (107) K. I. Beloborodov, V. P. Druzhinin, and S. I. Serednyakov, J. Exp. Theor. Phys. 129, 386 (2019).
  • (108) M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637 (1985).
  • (109) J. Gasser and H. Leutwyler, Nucl. Phys. B250, 517 (1985).
  • (110) J. H. Kühn and A. Santamaria, Z. Phys. C 48, 445 (1990).
  • (111) J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics, Springer, New York (1952).
  • (112) V. P. Druzhinin, Phys. Rev. D 92, 054024 (2015).
  • (113) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 92, 072008 (2015).
  • (114) G. J. Gounaris and J. J. Sakurai, Phys. Rev. Lett. 21, 244 (1968).
  • (115) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 86, 032013 (2012).
  • (116) A. Bharucha, D. M. Straub, and R. Zwicky, J. High Energy Phys. 08 (2016) 098.
  • (117) C. A. Dominguez, Phys. Lett. B 512, 331 (2001).
  • (118) R. Barate et al. (ALEPH Collaboration), Z. Phys. C 76, 15 (1997).
  • (119) S. Anderson et al. (CLEO Collaboration), Phys. Rev. D 61, 112002 (2000).
  • (120) S. Schael et al. (ALEPH Collaboration), Phys. Rept. 421, 191 (2005).
  • (121) M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78, 072006 (2008).
  • (122) A. B. Clegg and A. Donnachie, Z. Phys. C 62, 455 (1994).
  • (123) O. Catà and V. Mateu, Phys. Rev. D 77, 116009 (2008).
  • (124) T. Barnes, F. E. Close, P. R. Page, and E. S. Swanson, Phys. Rev. D 55, 4157 (1997).
  • (125) C. Allton et al. (RBC-UKQCD Collaboration), Phys. Rev. D 78, 114509 (2008).
  • (126) C. H. Chen and H. n. Li, Phys. Lett. B 561 (2003) 258.
  • (127) W. F. Wang, H. C. Hu, H. n. Li and C. D. Lü, Phys. Rev. D 89, 074031 (2014).
  • (128) C. Zemach, Phys. Rev. 133, B1201 (1964).
  • (129) A. Bazavov et al., Phys. Rev. D 98, 074512 (2018).
  • (130) A. Ali et al., Phys. Rev. D 76, 074018 (2007).
  • (131) R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 90, 072003 (2014).
  • (132) H. Y. Cheng, C. W. Chiang, and C. K. Chua, Phys. Lett. B 813, 136058 (2021).
  • (133) H. Y. Cheng, C. W. Chiang, and C. K. Chua, arXiv:2011.07468.
  • (134) J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 79, 072006 (2009).
  • (135) S.-S. Gribanov et al. (CMD-3 Collaboration), J. High Energy Phys. 01 (2020) 112.
  • (136) M. Beneke and T. Feldmann, Nucl. Phys. B592, 3 (2001).
  • (137) P. Ball, J. High Energy Phys. 09 (1998) 005.
  • (138) P. Ball, J. High Energy Phys. 01 (1999) 010.
  • (139) P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
  • (140) P. Ball, V. M. Braun, and A. Lenz, J. High Energy Phys. 05 (2006) 004.