This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Constraining the Presence of Companion Planets in Hot Jupiter Planetary System Using TTV Observation from TESS

Zixin Zhang School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Wenqin Wang School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Xinyue Ma School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Zhangliang Chen School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Yonghao Wang Hainan University, China Cong Yu School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Shangfei Liu School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Yang Gao School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Baitian Tang School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Bo Ma School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China CSST Science Center for the Guangdong-HongKong-Macau Great Bay Area, Sun Yat-sen University, Zhuhai 519082, China Bo Ma [email protected]
Abstract

The presence of another planetary companion in a transiting exoplanet system can impact its transit light curve, leading to sinusoidal transit timing variations (TTV). By utilizing both χ2\chi^{2} and RMS analysis, we have combined the TESS observation data with an N-body simulation to investigate the existence of an additional planet in the system and put a limit on its mass. We have developed CMAT, an efficient and user-friendly tool for fitting transit light curves and calculating TTV with a theoretical period, based on which we can give a limit on its hidden companion’s mass. We use 260 hot Jupiter systems from the complete TESS data set to demonstrate the use of CMAT. Our findings indicate that, for most systems, the upper mass limit of a companion planet can be restricted to several Jupiter masses. This constraint becomes stronger near resonance orbits, such as the 1:2, 2:1, 3:1, and 4:1 mean motion resonance, where the limit is reduced to several Earth masses. These findings align with previous studies suggesting that a lack of companion planets with resonance in hot Jupiter systems could potentially support the high eccentricity migration theory. Additionally, we observed that the choice between χ2\chi^{2} or root mean square (RMS) method does not significantly affect the upper limit on companion mass; however, χ2\chi^{2} analysis may result in weaker restrictions but is statistically more robust compared to RMS analysis in most cases.

Hot Jupiter – Exoplanet – Transit – Transit Timing
facilities: TESSsoftware: PyTransit, CMAT, REBOUND, Astroquery

1 Introduction

Hot Jupiters are exoplanets akin to Jupiter in mass and size but distinct due to their short orbital periods of less than 10 days, orbiting very close to their host stars (Dawson & Johnson, 2018). The large sizes and short orbital periods make them the most easily studied targets using the transit technique. Despite being the first type of exoplanet discovered orbiting a sun-like star (Mayor & Queloz, 1995), the origin of hot Jupiters remains a mystery. Several competing theories attempt to explain their formation: in-situ formation (Batygin et al., 2016; Dawson & Johnson, 2018), disk migration (Goldreich & Tremaine, 1980; Lin & Papaloizou, 1986; Lin et al., 1996; Ward, 1997; Kley & Nelson, 2012) and high-eccentricity migration (Fa & Eb, 1996; Trilling et al., 1998; Wu & Murray, 2003).

In the high-eccentricity migration scenario, a cold Jupiter is launched to eccentric orbits through dynamical interactions with other planets/stars, followed by tidal friction that can shrink and circularize its orbit over a long period. Since this process is usually dynamically hot, hot Jupiters formed through this channel are likely isolated without any resonant companion planets. Therefore, the presence of a nearby planetary companion has long been considered evidence against the high eccentricity migration theory. Recent research, however, has observed some hot Jupiters with nearby companions, challenging the high eccentricity migration theory (Zhu & Dong, 2021; Wu et al., 2023).

In multi-planet systems, mutual gravitational perturbations can alter the times of transit. Thus, transit timing variations (TTVs) are a powerful tool for characterizing planets in multi-planet systems (Holman & Murray, 2005; Agol et al., 2005; Lithwick et al., 2012). For example, it has been used for measuring masses and eccentricities of planets (Hadden & Lithwick, 2014, 2016, 2017). This is because the TTV amplitude is directly proportional to the perturber’s mass (Lithwick et al., 2012), and the TTV period and phase are related to the perturber’s orbital eccentricity. Because of the well-known degeneracy between mass and eccentricity, TTVs alone cannot accurately determine the companion planet’s mass. Nevertheless, the phases and amplitudes of TTVs can be used to establish upper limits on the masses of companion planetary candidates (Xie, 2013; Wang et al., 2021).

Launched in 2018, the Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2014) succeeded the Kepler space telescope, aiming to enhance our knowledge of exoplanets through the transit method. TESS’s wide field of view and high photometric accuracy make it particularly effective for studying hot Jupiters. It can survey nearly the entire sky and detect subtle brightness changes as low as 20 parts per million (ppm) for a magnitude 12 star with a 2-minute exposure. These capabilities make TESS an excellent tool for detecting hot Jupiters, significantly advancing exoplanetary research. Studying TTVs of a large sample of hot Jupiters using TESS data can put additional constraints on the hot Jupiter’s nearby companion planet and its formation channel. The short orbital periods and large radii of hot Jupiters make them ideal targets for TTV analysis. With accurate TTV measurements from TESS, we can constrain the presence of nearby companions and potentially shed light on the formation of hot Jupiters.

Here in this paper, we employ TTV analysis and numerical three-body simulations to constrain the presence of additional planets around 260 hot Jupiters using TESS observation data. This approach allows us to establish the upper mass limit of potential companion planets and provides insight into whether the hot Jupiter is situated in an isolated system. Our research builds upon the foundational work of Wang et al. (2018a, 2021), who investigated Transit Timing Variations (TTVs) in 39 hot Jupiter systems. Utilizing 127 new transit light curves from two ground-based telescopes, they were able to impose significant constraints on the presence of nearby companions. Despite these contributions, the sample sizes in these studies remain relatively modest, and the constraints they impose on the masses of hidden companions are less stringent compared to this study. In this work, we also introduce CMAT(Zhang, 2024)111Available at https://github.com/troyzx/CMAT, a Python package developed to analyze TTVs and establish the upper mass limit of planetary companions orbiting hot Jupiters.

This paper is structured as follows. Section 2 provides an overview of the data used in this study. In Section 3, we outline our methodology for analyzing TTVs of hot Jupiters and determining the upper mass limits of their companion planets. Our results and findings are described in Section 4. Comparisons with previous studies and the broader implications for hot Jupiter formation are discussed in Section  5. A summary of our findings is provided in Section 6.

2 Data and Observation

The data for this study are taken from the TESS observations. We select transiting hot Jupiters observed by TESS based on the following criteria: an orbital period of less than 10 days and a mass greater than 0.3 MJ\mathrm{M_{J}}. This results in a sample of 260 hot Jupiter systems, the largest sample size used in such a study to date.

Refer to caption
Figure 1: Orbital periods and radii of 260 hot Jupiter systems, the majority of which have orbital periods between 2-6 days and radii between 0.8-1.6 Jupiter radii

The HJ system parameters, as shown in Figure 1, reveal that most hot Jupiters have a radius between 0.8 and 1.6 Jupiter radii and an orbital period ranging from 1 to 10 days. Further discussions on how the parameters of hot Jupiters can affect the mass of their companions can be found in Section 4. The properties of the host stars in our sample are presented in Figure 2. Most of the host stars have masses ranging from 0.8 to 2.0 solar masses, radii ranging from 0.6 to 3 solar radii, and effective temperatures in the range of 5000 to 8000 K.

Refer to caption
Figure 2: Properties of the host stars in our sample of 260 hot Jupiter systems.

We use Astroquery (Ginsburg et al., 2017) to retrieve the TESS data products for hot Jupiters generated by the SPOC pipeline (Jenkins et al., 2016a) from MAST (Brasseur & Donaldson, 2020; Team, 2021). To ensure that we can obtain high-precision measurements of TTV, we included only systems with a minimum of 3 transits covered by TESS observations. Furthermore, we obtained these systems’ parameters from the NASA Exoplanet Archive (Akeson et al., 2013), including stellar mass, planetary mass, and orbital period. Figure 3 displays the number of transits in the data we used from TESS observations for our sample of 260 hot Jupiter systems. While the majority of systems have fewer than 100 transits, some exceed this number, with one system having more than 200 transits, namely Qatar-10 b (Alsubai et al., 2019).

Refer to caption
Figure 3: Distribution of transit number for 260 hot Jupiter systems. The majority of systems have transit less than 100, while some of them have more than 200 transits.

The presearch data conditioning simple aperture photometry (PDCSAP, Stumpe et al., 2012; Smith et al., 2012b; Stumpe et al., 2014) light curves from SPOC (Jenkins et al., 2016b) with 2 minute time sampling (“cadence”) are used in this analysis, where common instrumental systematics have been removed. To ensure the quality of the light curves, we also remove any outlier data points with a quality flag >0>0. Subsequently, we normalized the light curves to account for the varying brightness levels of different stars. Following this, we used our CMAT tool to fit the transit light curves and calculate the mid-transit times of HJs, which will be detailed in the next section.

3 Method

In this section, we present our TTV analysis method. Initially, we evaluate the TTVs by determining the amplitude caused by the companion. Subsequently, precise transit times are calculated from the TESS time series data, and adjustments for TTV are made based on a linear fit of the transit times. A dynamic simulation of the system is conducted to replicate observations and generate simulated TTVs using the transit light curve of the hot Jupiter. Finally, we combine the observed and simulated TTVs (TTVobserved\mathrm{TTV}_{\mathrm{observed}} and TTVsimulated\mathrm{TTV}_{\mathrm{simulated}}) using χ2\chi^{2} and RMS analysis to calculate an upper mass limit for the companion. Figure 4 illustrates the flowchart of our TTV analysis method.

Refer to caption
Figure 4: Flowchart of our TTV analysis method.

3.1 TTV from Light-curve Analysis

We derive the transit mid-time data of hot Jupiters using TESS data and Pytransit, similar to our previous studies in Wang et al. (2024). Pytransit is a Python package designed to fit transit light curves (Parviainen, 2015). It employs the Mandel-Agol model to fit transit light curves and then uses differential evolution and the Markov Chain Monte Carlo (MCMC) method to optimize the fit for stellar and orbital parameters, namely transit midtime, orbital period, planet radius in the unit of star radius, stellar density, and impact factor. Figure 5 presents the corner plot derived from the MCMC fitting of WASP-142 b’s orbital parameters.

Refer to caption
Figure 5: Corner plot derived from the MCMC fitting of WASP-142 b’s orbital parameters. This plot specifically illustrates the transit mid-time, orbital period, square of the radius ratio, star density, and impact factor from our result.

We adapted the Pytransit code to calculate precise transit times and periods for each transit. These values were then aggregated and fitted using a linear model to determine predicted transit times. TTVs were calculated by subtracting the actual transit times from the predicted transit times based on this linear model.

Figure 6 displays the cumulative probability distribution of RMS of TTV calculated from TESS observation data for our 260 hot Jupiter systems sample. The graph shows that all of them have an RMS of less than 150 seconds, with over 80% of the systems having an RMS of less than 50 seconds.

Refer to caption
Figure 6: Cumulative probability of Root Mean Square (RMS) of Transit Timing Variations (TTV) calculated from TESS observation data for our 260 hot Jupiter systems sample.

WASP-142 b, a hot Jupiter, has an orbital period of 2.05 days and a radius of 1.53 Jupiter radii. It orbits an F-type star, 1.33 times the mass of the Sun (Hellier et al., 2017). Figure 7 illustrates the TTV of WASP-142 b calculated by our method. The blue line represents the TTV obtained from two separate observation data sets, while the yellow line shows a zoomed-in view for each observation. The total RMS of all observations is 40 seconds, with individual observations having an RMS of 43 and 36 seconds respectively. The graph shows that there are two distinct data sets, and the RMS of each observation is close to one another, as well as the total RMS.

Refer to caption
Figure 7: The graph displays the TTV extracted from a linear model of WASP-142 b. The blue line represents the TTV obtained from two separate observation data sets, while the yellow line shows a zoomed-in view for each observation. The total RMS of all observations is 40 seconds, with individual observations having an RMS of 43 and 36 seconds respectively.

3.2 TTV from Dynamical simulation

We employ the rebound package (Rein & Liu, 2012; Rein & Spiegel, 2015) to simulate the TTV of a hot Jupiter when an additional companion planet is present in the planetary system. The orbit of the additional companion planet is set to be coplanar and circular. As discussed by Agol & Deck (2016), the coplanar and circular configuration induces smaller TTVs compared with non-coplanar or eccentric orbits. Therefore we can obtain a conservative estimate of the companion planets’ upper mass limits. We have explored the period ratio of an additional companion planet and hot Jupiter from 0.1 to 4.0. The companion planets’ masses are set to vary between 0.01 and 10510^{5} Earth masses (M\mathrm{M_{\oplus}}). The simulation is carried out in a parameter space grid of 300 by 300, where the companion planet mass is in log space. We set the system integration time to match the duration of the TESS observation data for each HJ system. To encompass all possible coplanar and circular orbital configurations, we have varied the initial orbital phase difference between the HJ and the additional planet at the time of the first HJ transit recorded by TESS from 0 to 2π2\pi, using a phase step of π/6\pi/6.

Refer to caption
Figure 8: The red dashed line and white line represent the upper mass limit of a possible companion around WASP-142 b, calculated by χ2\chi^{2} and RMS analysis, respectively. The background color represents Mean Exponential Growth factor of Nearby Orbits (MEGNO) calculated from the rebound simulation, which helps us assess the dynamical stability of the simulated planetary system. The MEGNO value is a measure of chaos in a dynamical system, with Y\langle Y\rangle converging to 2 indicating a stable system.

Additionally, we also compute the Mean Exponential Growth factor of Nearby Orbits (MEGNO) (Cincotta et al., 2003) to assess the dynamical stability of the simulated planetary system, as depicted in Figure 8. The MEGNO value is a measure of chaos in a dynamical system, with Y\langle Y\rangle converging to 2 indicating a stable system. We integrated each system for 10000 orbits to test the stability of the system.

3.3 Constraints on Additional Planets

The presence of an additional planet in the transiting hot Jupiter system can perturb the hot Jupiter and generate significant TTV. To constrain the mass of the additional companion planet, we have employed two different methods, the χ2\chi^{2} method, and the RMS method, to compare the simulated TTV dataset with the observed TTV dataset. We will proceed to describe the specifics of these two methods next.

The χ2\chi^{2} test is a statistical tool that assesses the fit of a model to a dataset. It utilizes the chi-squared distribution, which adds up the squares of independent standard normal random variables. The χ2\chi^{2} can be expressed as:

χ2=i(OiEiσi)2,\displaystyle\chi^{2}=\sum_{i}\left(\frac{O_{i}-E_{i}}{\sigma_{i}}\right)^{2}, (1)

where OiO_{i} and σi\sigma_{i} represent the measured mid-transit time from observation and corresponding uncertainty from Section 3.1, and EiE_{i} represent the simulated mid-transit time values as described in Section 3.2.

Refer to caption
Figure 9: Combined constraints of hidden planet from our TTV analysis of 260 HJ systems. The color of each grid point indicates the percentage of HJ systems within our sample that can hide companion planets with the corresponding planet mass and period ratio. The three solid lines represent equal-percentage lines near 10%10\%, 50%50\%, and 90%90\%, respectively. The left panel shows the results from the χ2\chi^{2} method, while the right panel displays the results from the RMS test. The masses of Earth, Neptune, and Jupiter are marked with dashed lines.

RMS is a statistical measure of the dispersion of a set of data from its mean. The RMS method has been widely used to analyze the TTV observation data of hot Jupiters in the past. For instance, HAT-P-25 b is a hot Jupiter discovered by Quinn et al. (2011). Wang et al. (2018a) have utilized the RMS approach to establish the maximum mass limit of HAT-P-25 b’s companion and have ruled out any hidden long-period perturber with Mp>0.5,0.3,M_{p}>0.5,0.3, and 0.5M0.5\mathrm{M_{\oplus}} near the 1:2, 2:1, and 3:1 resonances. It is calculated by taking the square root of the mean of the squared TTV values. The RMS value of TTVs from TESS observation and numerical simulation can be calculated as:

RMSobs=1ni=1nOi2,\displaystyle RMS_{\rm obs}=\sqrt{\frac{1}{n}\sum_{i=1}^{n}O_{i}^{2}}, (2)
RMSsim=1ni=1nEi2.\displaystyle RMS_{\rm sim}=\sqrt{\frac{1}{n}\sum_{i=1}^{n}E_{i}^{2}}. (3)

After obtaining the TTV data from both observations (OiO_{i}) and simulations (EiE_{i}), we calculated the RMS and χ2\chi^{2} value for each HJ system. The upper mass limit of any companion planet was then established by comparing the simulated TTV data with observed TTV data using either the RMS method or the χ2\chi^{2} method. For each period ratio, we reduced the potential companion’s mass until the RMS value from the simulation (RMSsimRMS_{\rm sim}) fell below the RMS value from the TESS observation (RMSobsRMS_{\rm obs}), or the χ2\chi^{2} value fell below the 3-σ\sigma critical threshold. The result for WASP-142 b is illustrated in Figure 8 as an example. The red dashed line and white solid line indicate, respectively, the upper mass limit of a potential hidden companion around WASP-142 b as determined by χ2\chi^{2} and RMS analysis. The background color corresponds to MEGNO values calculated from the REBOUND simulations.

For seven HJ systems in our sample (HAT-P-59 b, KELT-8 b, KELT-24 b, WASP-62 b, WASP-160 B b, WASP-170 b, and XO-6 b), none of the simulated TTVs using a three-body model using parameters in our grid can match the observed TTV data. There are two possible explanations for this discrepancy. One is that we may have underestimated the measurement errors in the observational data, possibly due to unknown systematics. The other is that underlying physical processes in the HJ systems may be causing the observed TTVs to deviate from the predictions of a simple three-body model. As a result, we are unable to place meaningful constraints on the companion planets using the χ2\chi^{2} method for these seven systems (see also Figure 12), and we encourage further TTV follow-up studies of these seven systems.

3.4 CMAT

Here we introduce Companion MAss from Transit timing variation (CMAT), a Python package designed to calculate the TTV of hot Jupiter systems and establish the upper mass limit of their hidden planetary companions. We aim to provide a user-friendly tool for determining the upper mass limit of hidden planetary companions by analyzing high-precision lightcurve data. CMAT utilizes the MCMC method to accurately compute transit mid-times and TTVs based on input transit time series data. By evaluating χ2\chi^{2} and RMS values, it can identify the upper mass limit of any hidden planetary companion. The package can also automatically retrieve time series data from exo.MAST. To enhance its performance, we integrated multiprocessing into the package via the joblib package (Joblib Development Team, 2020). Multiprocessing significantly reduces the time required for the time-intensive computation of TTV. For instance, analyzing an observation of 100 transits takes approximately 2 minutes with 96 threads. We also plan to incorporate additional features in future updates.

For testing purposes, we used CMAT to analyze 32 sources from Wang et al. (2021). Our results align with their findings, demonstrating that CMAT is a dependable tool for analyzing TTV data and establishing the upper mass limit of concealed planetary companions.

4 Result

In this study, we have analyzed 260 hot Jupiter systems using our newly developed tool CMAT. Our findings indicate that for most systems, the upper mass limit of a hidden companion can be restricted to several Jupiter masses. This restriction becomes even stronger near resonance orbits such as 1:2, 2:1, 3:1, and 4:1, where we were able to limit the additional companion’s mass to just a few Earth masses.

Though some MMR or near-MMR systems have been discovered (Quinn et al., 2019), systematic searches by Lissauer et al. (2011) and Fabrycky et al. (2014) indicate that among the multiple planetary systems discovered, the vast majority are neither in nor near low-order mean-motion resonance systems. This aligns with our study’s findings, which show a sharp decrease in the upper mass of a companion planet near resonance, indicating a relatively low occurrence rate at these locations. These findings align with previous studies suggesting that a lack of companion planets with resonance in hot Jupiter systems could potentially support the high eccentricity migration theory. Additionally, we observed that the choice between χ2\chi^{2} or the RMS method does not significantly affect the upper limit on companion mass. However, χ2\chi^{2} analysis usually provides slightly weaker restrictions for the upper mass limit of companion planet compared to the RMS analysis but is statistically more robust.

We present the combined results for all our targets in Figure 9, which can be seen as a fold of Figure 8 for all 260 hot Jupiter systems. In Figure 8, each grid point’s color indicates the percentage of hot Jupiters in our sample that are capable of hiding companion planets with corresponding mass and period ratio. The solid lines on the plot indicate equal-percentage levels at around 10%10\%, 50%50\%, and 90%90\%, respectively. The left panel displays the statistical results from the χ2\chi^{2} method, and the right panel shows the results from the RMS method. Our results indicate that, for half of hot Jupiter systems in our sample, we can limit the mass of a hidden companion planet to just a few Earth masses near the 1:2 and 2:1 MMR. It is important to note that our dynamic simulation was based on a coplanar and circular hypothesis. This particular configuration results in smaller TTVs compared to non-coplanar or eccentric orbits, as discussed by Agol et al. (2005). Consequently, this approach yields a more conservative estimate of upper mass limits for the hidden companion planets. However, according to Xie et al. (2016), most multi-planet systems are coplanar and circular, aligning with our assumption.

We have found that specific systems in our sample, such as WASP-47 b, WASP-57 b, and WASP-60 b (see Figure 12), do not exhibit a significant reduction in the upper mass limit of a companion planet near resonance. This can be mainly attributed to the insufficient number of transits available for analysis for these targets, which results in a weaker constraint on the maximum mass of the potential companion planet. When more observation data are available in the future, we will be able to impose more stringent constraints on the mass of hidden companion planets in these systems.

We seek to find correlations between the upper mass limits of hidden companion planets with the HJ parameters in Figure 10. The primary planet’s orbital period (PP) and radius (RpR_{p}) are divided into 15 ×\times 5 bins, with logarithmic spacing for the orbital period. The color coding indicates the median maximum mass limit in Earth/Jupiter mass for the hidden companions near resonance ratios of 1:2, 2:1, and 3:1 (from top to bottom). We have calculated the Pearson correlation coefficients between the companion’s upper mass limits near the resonance ratios and the HJ’s radii and orbital periods. The results indicate that no significant correlation was found within the currently available dataset. However, there is a lack of HJs in the top-right corner bins of Figure 10, and future data in these bins could potentially alter the correlation results.

Refer to caption
Figure 10: The median upper mass limit of the hidden companion near resonances 1:2, 2:1, and 3:1 is expressed in Earth masses. The orbital period (PP) and radius (RpR_{p}) of the primary planet are categorized into 15 ×\times 5 bins, with the bins for the orbital period logarithmically spaced. The yellow numbers represent the number of systems in each bin. The color coding indicates the median maximum mass limit of the hidden companion.

Our results provide valuable insights into the dynamics of hot Jupiter systems and their hidden companions, contributing to the ongoing debate on the origin of hot Jupiters.

5 Discussion

5.1 Comparison with Previous Studies

In this subsection, we compare our findings with those of previous studies utilizing TTV methods to investigate companion planets near hot Jupiter.

Holman et al. (2006) launched the Transit Light Curve (TLC) project to create a collection of precise transit photometry data. The goal is to improve system parameters and detect variations in transit times and light-curve shapes that could suggest the presence of extra planets (Chan et al., 2011; Fernandez et al., 2009; Holman et al., 2007a, b; Winn et al., 2007a, b, c, d, 2008b, 2008a, 2009a, 2009b). In one of the TLC series papers, Carter et al. (2011) used the TTV method on GJ 1214b to rule out the presence of a companion planet with a mass exceeding 0.004 and 0.01 M\mathrm{M_{\oplus}} near 1:2 and 2:1 resonances, respectively. Gibson et al. (2010) studied the TTV of HAT-P-3 b and established upper mass limits of 0.33 and 1.81 Earth masses for a hypothetical planetary companion in 1:2 and 2:1 resonances, respectively. By comparison, we have improved upon their constraint by taking upper mass limits down to 0.1 Earth masses at both resonance positions shown in Section 4. The exploration of Kepler data by Steffen et al. (2012) found no significant TTV signal of a nearby companion planet in 63 Kepler hot Jupiter systems. Nevertheless, a photometric analysis successfully excluded companions with masses ranging from about 2/3 to 5 times that of Earth.

The Transit Monitoring in the South project (TraMoS, Hoyer et al., 2012) did not detect any TTV RMS variations exceeding 1 minute over a span of 3 years for the hot Jupiter WASP-5 b, and ruled out the existence of planets with masses greater than 5 M\mathrm{M_{\oplus}} and 2 M\mathrm{M_{\oplus}} near the 1:2 and 2:1 resonances, respectively. Their subsequent study of WASP-4 b (Hoyer et al., 2013) excluded companions with masses exceeding 2.5 and 1.0 M\mathrm{M_{\oplus}} near the 1:2 and 2:1 resonances, respectively. Their most recent study of WASP-19 b (Cortés-Zuleta et al., 2020) ruled out companions with masses greater than 0.26 and 2.8 M\mathrm{M_{\oplus}} near the 1:2 and 2:1 resonances, respectively. Our study has narrowed down these limits in most cases, reaching as low as 0.39 M\mathrm{M_{\oplus}} and 1.35 M\mathrm{M_{\oplus}} near these resonances, except for the 2:1 resonance of WASP-19 b.

The TEMP project (Wang et al., 2018a) aims to study TTV signals of hot Jupiter systems using ground-based telescopes. Using data from ground-based telescopes, they have excluded companions with masses above 0.6 and 0.4 M\mathrm{M_{\oplus}} for HAT-P-29 b (Wang et al., 2018a), and 0.5 and 0.3 M\mathrm{M_{\oplus}} for HAT-P-25 b (Wang et al., 2018b) near the 1:2 and 2:1 resonances, respectively. Our study only narrows down this limit to tens of Earth masses near these resonances for both systems due to the small number of transits observed by the TESS mission. The TEMP team also investigated the HAT-P-33 b system (Wang et al., 2017), ruling out a perturber with a mass exceeding 0.6 and 0.3 M\mathrm{M_{\oplus}} near the 1:2 and 2:1 resonances, respectively. With an adequate number of transits, we have managed to refine this limit to as low as 0.16 and 1.09 M\mathrm{M_{\oplus}} near these resonances. In their most recent research, the TEMP team analyzed 39 hot Jupiter systems, excluding companions with masses greater than 0.395.0M0.39-5.0\ \mathrm{M_{\oplus}} and 0.696.75M0.69-6.75\ \mathrm{M_{\oplus}} near the 1:2 and 2:1 resonances (Wang et al., 2021). Our work has further enhanced this constraint by narrowing the lower end down to as small as 0.05 M\mathrm{M_{\oplus}} near these resonances.

In summary, our study has expanded the sample size compared to previous studies on Transit Timing Variations (TTV) of hot Jupiters and generally establishes lower upper mass limit values compared to prior research. With the largest sample size to date, our study enables us to provide the most robust and statistically significant assessment of the upper mass limit for hidden planetary companions in hot Jupiter systems.

5.2 Eccentricity and Inclination

Since multi-planet transiting systems usually have nearly circular orbits and small mutual inclinations, we have used coplanar approximation to put constraints on additional companion planets in the hot Jupiter system in Section 3.2. However, it is important to note that TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with the anti-aligned orbit of the planetary companion (Holman & Murray, 2005; Nesvorný, 2009; Agol & Deck, 2016; Kubiak et al., 2023). These studies indicate that our reliance on coplanar and circular assumptions may lead to an underestimation of the TTV effects induced by an eccentric and/or inclined hidden companion, consequently resulting in a more conservative upper mass limit estimate. If non-coplanar and eccentric orbits are adopted for the concealed companion planet in the hot Jupiter system, we anticipate a decrease in the upper mass limits depicted in Figure 9. In our future work, we plan to consider both inclination and eccentricity to explore the possibility of non-coplanar or non-circular-orbital companions.

5.3 HJs with Known Companion Planets

Several HJ systems in our sample have known companion planets, including WASP-47, WASP-84, and WASP-132 (Bryant & Bayliss, 2022; Maciejewski et al., 2023; Grieves et al., 2024). We show their results in Figure 11. We find all four known companion planets are sitting below the upper limits derived using simple three-body simulations presented in Section 3, which in part validates the effectiveness of our method. Thus, we have kept these three HJ systems in our group study presented in Figure 9 and Figure 10. However, we do want to note here that our study assumes a simple three-body model. And for systems like WASP-47, where there is one star and at least three known planets, our method does not necessarily apply. A four- or five-body model is required to put more precise constraints on additional unknown companion planets in these systems, which is beyond the scope of this work.

Among these three HJ systems, Becker et al. (2015) have detected a TTV variation of WASP-47 b with an amplitude of 0.63±0.100.63\pm 0.10 mins and a period of 53\sim 53 days using data from the Kepler mission. Bryant & Bayliss (2022) and Nascimbeni et al. (2023) have studied the TTVs of WASP-47 b using TESS and CHEOPS data. Similar to the study by Bryant & Bayliss (2022), we can not confirm this variation using TESS data alone due to the larger timing noise (about 1 minute) and short time coverage (around 20 days).

Refer to caption
Figure 11: Same as Figure 7, but for HJ Systems with known companion planets, namely WASP-84 b, WASP-132 b and WASP-47 b.

5.4 Formation Theories of Hot Jupiters

We will discuss the implications of our results for the study of hot Jupiter formation theories in this section. Through the TTV analysis, hidden planetary companions of hot Jupiters can be detected or their existence ruled out. And the constraints become more stringent near resonance orbits. Thus, our findings can be used to constrain theoretical models used to generate hot Jupiter systems. Giant planets are more likely to form at larger separations, beyond the ice line of the star, where dust production is enhanced, before migrating inwards (Kokubo & Ida, 2002). Studying the existence and distribution of planetary companions in hot Jupiter systems can offer valuable insights into the migration mechanisms of these planets, which are a key aspect of their formation and evolution (Wu et al., 2023; Zink & Howard, 2023). Several popular migrating scenarios proposed by previous studies include high eccentricity migration and disk migration. In the high eccentricity migration scenario, planet-planet scattering (Fa & Eb, 1996; Chatterjee et al., 2008; Beaugé & Nesvorný, 2012), Kozai–Lidov effect (Wu & Murray, 2003; Naoz et al., 2012; Petrovich & Tremaine, 2016; Vick et al., 2019), and secular dynamics (Wu & Lithwick, 2011; Petrovich, 2015) have been invoked to circularize and shrink the orbits of hot Jupiters.

Resonance chains could be common, as giant planets may have captured terrestrial planets in such chains during migration. Multiple systems have been found in this type of resonance chain (Tinney et al., 2006), supporting the disk migration theory. If a hot Jupiter has migrated to its current position through high eccentricity migration, there should be no/few companions nearby (Mustill et al., 2015). Therefore, detecting a high percentage of hidden companions near the resonance orbits of hot Jupiters would favor the disk migration theory over the high eccentricity migration theory, or vice versa. Currently, several population synthesis studies have been carried out to study the formation of exoplanets (Mordasini et al., 2009a, b; Alibert et al., 2011; Mordasini et al., 2012; Emsenhuber et al., 2021a, b; Schlecker et al., 2021a; Burn et al., 2021; Schlecker et al., 2021b; Mishra et al., 2021). Results from similar population synthesis studies in the future for HJs can be used to directly compare with our statistical results.

Here, we propose two ways to utilize our findings for testing planetary formation models. The first one involves generating a synthetic population of hot Jupiters using a planetary population synthesis model. We then identify those with hidden companions in the vicinity of MMR. By comparing their mass distribution with our results, we can assess the feasibility of the HJ formation model. The second one also involves generating a synthetic population of hot Jupiters. We can then perform a statistical analysis of the synthetic population to obtain the percentages of hot Jupiters with companion planets above the three percentage lines shown in Figure 9. If any of the three percentages from the synthetic population is larger than the corresponding percentage (90%\%, 50%\%, or 10%\%) of the three solid lines, which means there are too many HJ systems with companion planets from theory than from observation, we can then infer that the formation model is inconsistent with observations.

A potential source of statistical bias arises from the fact that the discovery of hot Jupiters may favor systems with weak interactions, resulting in smaller transit timing variations (TTVs). Large TTVs might hinder the detection of hot Jupiters using detection algorithms such as the Box-fitting Least Squares (BLS) method. However, given the large transit depths of hot Jupiters, this bias is expected to be minimal. Future studies on TTVs of smaller planets should consider and adjust for this potential bias to ensure accuracy.

6 Summary and Conclusion

The study of hot Jupiters and their companion planets is an active research field in exoplanet science. Here we investigate the existence of additional planets in 260 hot Jupiter systems by analyzing transit timing variations observed by the TESS mission. The use of our newly developed CMAT tool, which combines observation data with numerical N-body simulations using χ2\chi^{2} and RMS analysis, has enabled us to provide more stringent constraints on the mass of the hidden companions than previous studies. This is particularly evident near resonance orbits, where we have been able to limit the companion planet mass to just a few Earth masses. These findings not only enhance our understanding of the dynamics of hot Jupiter systems but also provide valuable insights into the processes of planet formation and migration. The absence of resonant companion planets in hot Jupiter systems, as revealed by our study, lends support to the high eccentricity migration theory, contributing to the ongoing debate on the origin of hot Jupiters. We also note that χ2\chi^{2} analysis, while less restrictive, offers a statistically robust approach compared to RMS analysis.

Our work has pushed the boundaries of what is currently known about hot Jupiter systems and their hidden companions. With more high precision transit time data becoming available in the future, such as from PLAnetary Transits and Oscillation of stars mission (PLATO, Rauer et al., 2014), the China Space Station Telescope (CSST, Zhan, 2011), and the Earth 2.0 mission (ET, Ge et al., 2022), we expect more detailed measurements leading to better comprehension of planetary system formation and evolution within our galaxy as well as beyond it.

We plan to extend our TTV study from hot Jupiters to short-period transiting brown dwarfs (BDs) to further investigate the differences between the hot Jupiter and brown dwarf populations, as highlighted by researchers such as Grether & Lineweaver (2006) and Ma & Ge (2014). For instance, Bowler et al. (2020) argued that high-mass brown dwarfs predominantly form similarly to stellar binaries, based on a comparison of the mass-eccentricity distributions of brown dwarfs and giant planets. Since TTV studies can help reveal the dynamic properties of brown dwarf systems, we believe that expanding TTV analysis to transiting BDs can provide additional observational evidence for distinct formation mechanisms. Therefore, we encourage our colleagues to continue monitoring the transits of both hot Jupiters and transiting brown dwarfs to enhance our understanding of these celestial objects.

Acknowledgements

We express our gratitude to the TESS mission for its outstanding contribution to exoplanet science. The precise transit-time measurements from TESS were instrumental in our study of TTVs in hot Jupiters. We thank NSFC grants 12073092, 12103097, and 12103098, the National Key R&\&D Program of China (2020YFC2201400), as well as the science research grants from the China Manned Space Project (No. CMS-CSST2021-B09) for their financial support. Additionally, we appreciate the valuable assistance of the NASA Exoplanet Archive, which granted us access to a vast amount of observational data and resources that greatly aided our research efforts. We also thank open-source software developers for their contributions to the scientific community.

References

  • Addison et al. (2016) Addison, B. C., Tinney, C. G., Wright, D. J., & Bayliss, D. 2016, ApJ, 823, 29, doi: 10.3847/0004-637X/823/1/29
  • Agol & Deck (2016) Agol, E., & Deck, K. 2016, ApJ, 818, 177, doi: 10.3847/0004-637X/818/2/177
  • Agol et al. (2005) Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, Monthly Notices of the Royal Astronomical Society, 359, 567, doi: 10.1111/j.1365-2966.2005.08922.x
  • Akeson et al. (2013) Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989, doi: 10.1086/672273
  • Alibert et al. (2011) Alibert, Y., Mordasini, C., & Benz, W. 2011, Astronomy & Astrophysics, 526, A63, doi: 10.1051/0004-6361/201014760
  • Almenara et al. (2022) Almenara, J. M., Hébrard, G., Díaz, R. F., et al. 2022, A&A, 663, A134, doi: 10.1051/0004-6361/202142964
  • Alonso et al. (2008) Alonso, R., Auvergne, M., Baglin, A., et al. 2008, A&A, 482, L21, doi: 10.1051/0004-6361:200809431
  • Alsubai et al. (2018) Alsubai, K., Tsvetanov, Z. I., Latham, D. W., et al. 2018, AJ, 155, 52, doi: 10.3847/1538-3881/aaa000
  • Alsubai et al. (2019) Alsubai, K., Tsvetanov, Z. I., Pyrzas, S., et al. 2019, The Astronomical Journal, 157, 224, doi: 10.3847/1538-3881/ab19bc
  • Alsubai et al. (2019a) Alsubai, K., Tsvetanov, Z. I., Latham, D. W., et al. 2019a, AJ, 157, 74, doi: 10.3847/1538-3881/aaf80a
  • Alsubai et al. (2019b) Alsubai, K., Tsvetanov, Z. I., Pyrzas, S., et al. 2019b, AJ, 157, 224, doi: 10.3847/1538-3881/ab19bc
  • Alsubai et al. (2011) Alsubai, K. A., Parley, N. R., Bramich, D. M., et al. 2011, MNRAS, 417, 709, doi: 10.1111/j.1365-2966.2011.19316.x
  • Anderson et al. (2011) Anderson, D. R., Collier Cameron, A., Hellier, C., et al. 2011, A&A, 531, A60, doi: 10.1051/0004-6361/201016208
  • Anderson et al. (2013) Anderson, D. R., Collier, C. A., Gillon, M., et al. 2013, VizieR Online Data Catalog: Three short-period, transiting exoplanets (Anderson+, 2012), VizieR On-line Data Catalog: J/MNRAS/422/1988. Originally published in: 2012MNRAS.422.1988A
  • Anderson et al. (2014) Anderson, D. R., Collier Cameron, A., Delrez, L., et al. 2014, MNRAS, 445, 1114, doi: 10.1093/mnras/stu1737
  • Anderson et al. (2015) Anderson, D. R., Collier Cameron, A., Hellier, C., et al. 2015, A&A, 575, A61, doi: 10.1051/0004-6361/201423591
  • Anderson et al. (2017) Anderson, D. R., Collier Cameron, A., Delrez, L., et al. 2017, A&A, 604, A110, doi: 10.1051/0004-6361/201730439
  • Bakos et al. (2009) Bakos, G. Á., Howard, A. W., Noyes, R. W., et al. 2009, ApJ, 707, 446, doi: 10.1088/0004-637X/707/1/446
  • Bakos et al. (2011) Bakos, G. Á., Hartman, J., Torres, G., et al. 2011, ApJ, 742, 116, doi: 10.1088/0004-637X/742/2/116
  • Bakos et al. (2012) Bakos, G. Á., Hartman, J. D., Torres, G., et al. 2012, AJ, 144, 19, doi: 10.1088/0004-6256/144/1/19
  • Bakos et al. (2020) Bakos, G. Á., Bayliss, D., Bento, J., et al. 2020, AJ, 159, 267, doi: 10.3847/1538-3881/ab8ad1
  • Bakos et al. (2021) Bakos, G. Á., Hartman, J. D., Bhatti, W., et al. 2021, AJ, 162, 7, doi: 10.3847/1538-3881/abf637
  • Barge et al. (2008) Barge, P., Baglin, A., Auvergne, M., et al. 2008, A&A, 482, L17, doi: 10.1051/0004-6361:200809353
  • Barkaoui et al. (2019) Barkaoui, K., Burdanov, A., Hellier, C., et al. 2019, AJ, 157, 43, doi: 10.3847/1538-3881/aaf422
  • Barros et al. (2012) Barros, S. C. C., Pollacco, D. L., Gibson, N. P., et al. 2012, MNRAS, 419, 1248, doi: 10.1111/j.1365-2966.2011.19784.x
  • Barros et al. (2016) Barros, S. C. C., Brown, D. J. A., Hébrard, G., et al. 2016, A&A, 593, A113, doi: 10.1051/0004-6361/201526517
  • Batygin et al. (2016) Batygin, K., Bodenheimer, P. H., & Laughlin, G. P. 2016, The Astrophysical Journal, 829, 114, doi: 10.3847/0004-637X/829/2/114
  • Bayliss et al. (2013) Bayliss, D., Zhou, G., Penev, K., et al. 2013, AJ, 146, 113, doi: 10.1088/0004-6256/146/5/113
  • Bayliss et al. (2018) Bayliss, D., Gillen, E., Eigmüller, P., et al. 2018, MNRAS, 475, 4467, doi: 10.1093/mnras/stx2778
  • Beaugé & Nesvorný (2012) Beaugé, C., & Nesvorný, D. 2012, The Astrophysical Journal, 751, 119, doi: 10.1088/0004-637X/751/2/119
  • Becker et al. (2015) Becker, J. C., Vanderburg, A., Adams, F. C., Rappaport, S. A., & Schwengeler, H. M. 2015, ApJ, 812, L18, doi: 10.1088/2041-8205/812/2/L18
  • Bento et al. (2017) Bento, J., Schmidt, B., Hartman, J. D., et al. 2017, MNRAS, 468, 835, doi: 10.1093/mnras/stx500
  • Bento et al. (2018) Bento, J., Hartman, J. D., Bakos, G. Á., et al. 2018, MNRAS, 477, 3406, doi: 10.1093/mnras/sty726
  • Bieryla et al. (2014) Bieryla, A., Hartman, J. D., Bakos, G. Á., et al. 2014, AJ, 147, 84, doi: 10.1088/0004-6256/147/4/84
  • Bieryla et al. (2015) Bieryla, A., Collins, K., Beatty, T. G., et al. 2015, AJ, 150, 12, doi: 10.1088/0004-6256/150/1/12
  • Boisse et al. (2013) Boisse, I., Hartman, J. D., Bakos, G. Á., et al. 2013, A&A, 558, A86, doi: 10.1051/0004-6361/201220993
  • Bouchy et al. (2010) Bouchy, F., Hebb, L., Skillen, I., et al. 2010, A&A, 519, A98, doi: 10.1051/0004-6361/201014817
  • Bourrier et al. (2020) Bourrier, V., Ehrenreich, D., Lendl, M., et al. 2020, A&A, 635, A205, doi: 10.1051/0004-6361/201936640
  • Bowler et al. (2020) Bowler, B. P., Blunt, S. C., & Nielsen, E. L. 2020, AJ, 159, 63, doi: 10.3847/1538-3881/ab5b11
  • Brahm et al. (2018) Brahm, R., Hartman, J. D., Jordán, A., et al. 2018, AJ, 155, 112, doi: 10.3847/1538-3881/aaa898
  • Brasseur & Donaldson (2020) Brasseur, C., & Donaldson, T. 2020, MAST APIs: Present to Future
  • Brown et al. (2012) Brown, D. J. A., Collier Cameron, A., Díaz, R. F., et al. 2012, ApJ, 760, 139, doi: 10.1088/0004-637X/760/2/139
  • Bryant & Bayliss (2022) Bryant, E. M., & Bayliss, D. 2022, AJ, 163, 197, doi: 10.3847/1538-3881/ac58ff
  • Buchhave et al. (2010) Buchhave, L. A., Bakos, G. Á., Hartman, J. D., et al. 2010, ApJ, 720, 1118, doi: 10.1088/0004-637X/720/2/1118
  • Buchhave et al. (2011) —. 2011, ApJ, 733, 116, doi: 10.1088/0004-637X/733/2/116
  • Burdanov et al. (2018) Burdanov, A., Benni, P., Sokov, E., et al. 2018, PASP, 130, 074401, doi: 10.1088/1538-3873/aabde2
  • Burke et al. (2008) Burke, C. J., McCullough, P. R., Valenti, J. A., et al. 2008, ApJ, 686, 1331, doi: 10.1086/591497
  • Burn et al. (2021) Burn, R., Schlecker, M., Mordasini, C., et al. 2021, Astronomy & Astrophysics, 656, A72, doi: 10.1051/0004-6361/202140390
  • Carter et al. (2011) Carter, J. A., Winn, J. N., Holman, M. J., et al. 2011, Astrophysical Journal, 730, 82, doi: 10.1088/0004-637X/730/2/82
  • Castro-González et al. (2022) Castro-González, A., Díez Alonso, E., Menéndez Blanco, J., et al. 2022, MNRAS, 509, 1075, doi: 10.1093/mnras/stab2669
  • Chakrabarty & Sengupta (2019) Chakrabarty, A., & Sengupta, S. 2019, AJ, 158, 39, doi: 10.3847/1538-3881/ab24dd
  • Chan et al. (2011) Chan, T., Ingemyr, M., Winn, J. N., et al. 2011, Astronomical Journal, 141, 179, doi: 10.1088/0004-6256/141/6/179
  • Chatterjee et al. (2008) Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, Astrophysical Journal, 686, 580, doi: 10.1086/590227
  • Christensen-Dalsgaard et al. (2010) Christensen-Dalsgaard, J., Kjeldsen, H., Brown, T. M., et al. 2010, ApJ, 713, L164, doi: 10.1088/2041-8205/713/2/L164
  • Ciceri et al. (2016) Ciceri, S., Mancini, L., Henning, T., et al. 2016, PASP, 128, 074401, doi: 10.1088/1538-3873/128/965/074401
  • Cincotta et al. (2003) Cincotta, P., Giordano, C., & Simó, C. 2003, Physica D-nonlinear Phenomena - PHYSICA D, 182, 151, doi: 10.1016/S0167-2789(03)00103-9
  • Collins et al. (2014) Collins, K. A., Eastman, J. D., Beatty, T. G., et al. 2014, AJ, 147, 39, doi: 10.1088/0004-6256/147/2/39
  • Cooke et al. (2020) Cooke, B. F., Pollacco, D., Almleaky, Y., et al. 2020, VizieR Online Data Catalog: Observation & radial velocity of WASP-150 & WASP-176 (Cooke+, 2020), VizieR On-line Data Catalog: J/AJ/159/255. Originally published in: 2020AJ….159..255C, doi: 10.26093/cds/vizier.51590255
  • Cortés-Zuleta et al. (2020) Cortés-Zuleta, P., Rojo, P., Wang, S., et al. 2020, Astronomy & Astrophysics, 636, A98, doi: 10.1051/0004-6361/201936279
  • Costes et al. (2020) Costes, J. C., Watson, C. A., Belardi, C., et al. 2020, MNRAS, 491, 2834, doi: 10.1093/mnras/stz3140
  • Crouzet et al. (2017) Crouzet, N., McCullough, P. R., Long, D., et al. 2017, AJ, 153, 94, doi: 10.3847/1538-3881/153/3/94
  • Crouzet et al. (2020) Crouzet, N., Healy, B. F., Hébrard, G., et al. 2020, AJ, 159, 44, doi: 10.3847/1538-3881/ab5b12
  • Dawson & Johnson (2018) Dawson, R. I., & Johnson, J. A. 2018, Annual Review of Astronomy and Astrophysics, 56, 175, doi: 10.1146/annurev-astro-081817-051853
  • de Val-Borro et al. (2016) de Val-Borro, M., Bakos, G. Á., Brahm, R., et al. 2016, AJ, 152, 161, doi: 10.3847/0004-6256/152/6/161
  • Delrez et al. (2014) Delrez, L., Van Grootel, V., Anderson, D. R., et al. 2014, VizieR Online Data Catalog: WASP-68b, WASP-73b, WASP-88b transits (Delrez+, 2014), VizieR On-line Data Catalog: J/A+A/563/A143. Originally published in: 2014A&A…563A.143D, doi: 10.26093/cds/vizier.35630143
  • Demangeon et al. (2018) Demangeon, O. D. S., Faedi, F., Hébrard, G., et al. 2018, A&A, 610, A63, doi: 10.1051/0004-6361/201731735
  • Dorval et al. (2020) Dorval, P., Talens, G. J. J., Otten, G. P. P. L., et al. 2020, A&A, 635, A60, doi: 10.1051/0004-6361/201935611
  • Emsenhuber et al. (2021a) Emsenhuber, A., Mordasini, C., Burn, R., et al. 2021a, Astronomy and Astrophysics, 656, A69, doi: 10.1051/0004-6361/202038553
  • Emsenhuber et al. (2021b) —. 2021b, Astronomy and Astrophysics, 656, A70, doi: 10.1051/0004-6361/202038863
  • Enoch et al. (2010) Enoch, B., Collier Cameron, A., Parley, N. R., & Hebb, L. 2010, A&A, 516, A33, doi: 10.1051/0004-6361/201014326
  • Enoch et al. (2011a) Enoch, B., Cameron, A. C., Anderson, D. R., et al. 2011a, MNRAS, 410, 1631, doi: 10.1111/j.1365-2966.2010.17550.x
  • Enoch et al. (2011b) Enoch, B., Anderson, D. R., Barros, S. C. C., et al. 2011b, AJ, 142, 86, doi: 10.1088/0004-6256/142/3/86
  • Espinoza et al. (2016) Espinoza, N., Bayliss, D., Hartman, J. D., et al. 2016, AJ, 152, 108, doi: 10.3847/0004-6256/152/4/108
  • Espinoza et al. (2019) Espinoza, N., Hartman, J. D., Bakos, G. Á., et al. 2019, AJ, 158, 63, doi: 10.3847/1538-3881/ab26bb
  • Fa & Eb (1996) Fa, R., & Eb, F. 1996, Science (New York, N.Y.), 274, doi: 10.1126/science.274.5289.954
  • Fabrycky et al. (2014) Fabrycky, D. C., Lissauer, J. J., Ragozzine, D., et al. 2014, The Astrophysical Journal, 790, 146, doi: 10.1088/0004-637X/790/2/146
  • Faedi et al. (2011) Faedi, F., Barros, S. C. C., Anderson, D. R., et al. 2011, A&A, 531, A40, doi: 10.1051/0004-6361/201116671
  • Faedi et al. (2013) Faedi, F., Pollacco, D., Barros, S. C. C., et al. 2013, A&A, 551, A73, doi: 10.1051/0004-6361/201220520
  • Fernandez et al. (2009) Fernandez, J. M., Holman, M. J., Winn, J. N., et al. 2009, The Astronomical Journal, 137, 4911, doi: 10.1088/0004-6256/137/6/4911
  • Gaudi et al. (2017) Gaudi, B. S., Stassun, K. G., Collins, K. A., et al. 2017, Nature, 546, 514, doi: 10.1038/nature22392
  • Ge et al. (2022) Ge, J., Zhang, H., Zang, W., et al. 2022, arXiv e-prints, arXiv:2206.06693, doi: 10.48550/arXiv.2206.06693
  • Gibson et al. (2010) Gibson, N. P., Pollacco, D. L., Barros, S., et al. 2010, Monthly Notices of the Royal Astronomical Society, 401, 1917, doi: 10.1111/j.1365-2966.2009.15770.x
  • Gillon et al. (2011) Gillon, M., Doyle, A. P., Lendl, M., et al. 2011, VizieR Online Data Catalog: WASP-50b photometry and radial velocities (Gillon+, 2011), VizieR On-line Data Catalog: J/A+A/533/A88. Originally published in: 2011A&A…533A..88G, doi: 10.26093/cds/vizier.35330088
  • Gillon et al. (2013) Gillon, M., Anderson, D. R., Collier-Cameron, A., et al. 2013, A&A, 552, A82, doi: 10.1051/0004-6361/201220561
  • Ginsburg et al. (2017) Ginsburg, A., Parikh, M., Woillez, J., et al. 2017, Astrophysics Source Code Library, ascl:1708.004
  • Goldreich & Tremaine (1980) Goldreich, P., & Tremaine, S. 1980, The Astrophysical Journal, 241, 425, doi: 10.1086/158356
  • Gómez Maqueo Chew et al. (2013) Gómez Maqueo Chew, Y., Faedi, F., Pollacco, D., et al. 2013, A&A, 559, A36, doi: 10.1051/0004-6361/201322314
  • Grether & Lineweaver (2006) Grether, D., & Lineweaver, C. H. 2006, ApJ, 640, 1051, doi: 10.1086/500161
  • Grieves et al. (2024) Grieves, N., Bouchy, F., Armstrong, D. J., et al. 2024, arXiv e-prints, arXiv:2406.15986, doi: 10.48550/arXiv.2406.15986
  • Günther et al. (2018) Günther, M. N., Queloz, D., Gillen, E., et al. 2018, MNRAS, 478, 4720, doi: 10.1093/mnras/sty1193
  • Hadden & Lithwick (2014) Hadden, S., & Lithwick, Y. 2014, The Astrophysical Journal, 787, 80, doi: 10.1088/0004-637X/787/1/80
  • Hadden & Lithwick (2016) —. 2016, The Astrophysical Journal, 828, 44, doi: 10.3847/0004-637X/828/1/44
  • Hadden & Lithwick (2017) —. 2017, The Astronomical Journal, 154, 5, doi: 10.3847/1538-3881/aa71ef
  • Hartman et al. (2011a) Hartman, J. D., Bakos, G. Á., Sato, B., et al. 2011a, ApJ, 726, 52, doi: 10.1088/0004-637X/726/1/52
  • Hartman et al. (2011b) Hartman, J. D., Bakos, G. Á., Torres, G., et al. 2011b, ApJ, 742, 59, doi: 10.1088/0004-637X/742/1/59
  • Hartman et al. (2012) Hartman, J. D., Bakos, G. Á., Béky, B., et al. 2012, AJ, 144, 139, doi: 10.1088/0004-6256/144/5/139
  • Hartman et al. (2014) Hartman, J. D., Bakos, G. Á., Torres, G., et al. 2014, AJ, 147, 128, doi: 10.1088/0004-6256/147/6/128
  • Hartman et al. (2015a) Hartman, J. D., Bhatti, W., Bakos, G. Á., et al. 2015a, AJ, 150, 168, doi: 10.1088/0004-6256/150/6/168
  • Hartman et al. (2015b) Hartman, J. D., Bayliss, D., Brahm, R., et al. 2015b, AJ, 149, 166, doi: 10.1088/0004-6256/149/5/166
  • Hartman et al. (2016) Hartman, J. D., Bakos, G. Á., Bhatti, W., et al. 2016, AJ, 152, 182, doi: 10.3847/0004-6256/152/6/182
  • Hartman et al. (2019) Hartman, J. D., Bakos, G. Á., Bayliss, D., et al. 2019, AJ, 157, 55, doi: 10.3847/1538-3881/aaf8b6
  • Hartman et al. (2020) Hartman, J. D., Jordán, A., Bayliss, D., et al. 2020, AJ, 159, 173, doi: 10.3847/1538-3881/ab7821
  • Hay et al. (2016) Hay, K. L., Collier-Cameron, A., Doyle, A. P., et al. 2016, MNRAS, 463, 3276, doi: 10.1093/mnras/stw2090
  • Hébrard et al. (2013) Hébrard, G., Collier Cameron, A., Brown, D. J. A., et al. 2013, A&A, 549, A134, doi: 10.1051/0004-6361/201220363
  • Hellier et al. (2011) Hellier, C., Anderson, D. R., Collier Cameron, A., et al. 2011, A&A, 535, L7, doi: 10.1051/0004-6361/201117081
  • Hellier et al. (2012) —. 2012, MNRAS, 426, 739, doi: 10.1111/j.1365-2966.2012.21780.x
  • Hellier et al. (2015) —. 2015, AJ, 150, 18, doi: 10.1088/0004-6256/150/1/18
  • Hellier et al. (2017) Hellier, C., Anderson, D. R., Collier Cameron, A., et al. 2017, Monthly Notices of the Royal Astronomical Society, 465, 3693, doi: 10.1093/mnras/stw3005
  • Hellier et al. (2017) Hellier, C., Anderson, D. R., Collier Cameron, A., et al. 2017, MNRAS, 465, 3693, doi: 10.1093/mnras/stw3005
  • Hellier et al. (2019a) Hellier, C., Anderson, D. R., Bouchy, F., et al. 2019a, MNRAS, 482, 1379, doi: 10.1093/mnras/sty2741
  • Hellier et al. (2019b) Hellier, C., Anderson, D. R., Barkaoui, K., et al. 2019b, MNRAS, 490, 1479, doi: 10.1093/mnras/stz2713
  • Henning et al. (2018) Henning, T., Mancini, L., Sarkis, P., et al. 2018, AJ, 155, 79, doi: 10.3847/1538-3881/aaa254
  • Holman & Murray (2005) Holman, M. J., & Murray, N. W. 2005, Science, 307, 1288, doi: 10.1126/science.1107822
  • Holman et al. (2006) Holman, M. J., Winn, J. N., Latham, D. W., et al. 2006, The Astrophysical Journal, 652, 1715, doi: 10.1086/508155
  • Holman et al. (2007a) Holman, M. J., Winn, J. N., Fuentes, C. I., et al. 2007a, The Astrophysical Journal, 655, 1103, doi: 10.1086/510342
  • Holman et al. (2007b) Holman, M. J., Winn, J. N., Latham, D. W., et al. 2007b, Astrophysical Journal, 664, 1185, doi: 10.1086/519077
  • Hord et al. (2022) Hord, B. J., Colón, K. D., Berger, T. A., et al. 2022, AJ, 164, 13, doi: 10.3847/1538-3881/ac6f57
  • Hoyer et al. (2012) Hoyer, S., Rojo, P., & López-Morales, M. 2012, The Astrophysical Journal, 748, 22, doi: 10.1088/0004-637X/748/1/22
  • Hoyer et al. (2013) Hoyer, S., López-Morales, M., Rojo, P., et al. 2013, Monthly Notices of the Royal Astronomical Society, 434, 46, doi: 10.1093/mnras/stt962
  • Huang et al. (2015) Huang, C. X., Hartman, J. D., Bakos, G. Á., et al. 2015, AJ, 150, 85, doi: 10.1088/0004-6256/150/3/85
  • Ikwut-Ukwa et al. (2020) Ikwut-Ukwa, M., Rodriguez, J. E., Bieryla, A., et al. 2020, AJ, 160, 209, doi: 10.3847/1538-3881/aba964
  • Jackson et al. (2023) Jackson, D. G., Watson, C. A., de Mooij, E. J. W., et al. 2023, MNRAS, 518, 4845, doi: 10.1093/mnras/stac3192
  • Jenkins et al. (2016a) Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016a, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, 99133E, doi: 10.1117/12.2233418
  • Jenkins et al. (2016b) Jenkins, J. M., Twicken, J. D., McCauliff, S., et al. 2016b, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, ed. G. Chiozzi & J. C. Guzman, 99133E, doi: 10.1117/12.2233418
  • Joblib Development Team (2020) Joblib Development Team. 2020, Joblib: running Python functions as pipeline jobs. https://joblib.readthedocs.io/
  • Johns-Krull et al. (2008) Johns-Krull, C. M., McCullough, P. R., Burke, C. J., et al. 2008, ApJ, 677, 657, doi: 10.1086/528950
  • Johnson et al. (2011) Johnson, J. A., Winn, J. N., Bakos, G. Á., et al. 2011, ApJ, 735, 24, doi: 10.1088/0004-637X/735/1/24
  • Johnson et al. (2018) Johnson, M. C., Rodriguez, J. E., Zhou, G., et al. 2018, AJ, 155, 100, doi: 10.3847/1538-3881/aaa5af
  • Jordán et al. (2014) Jordán, A., Brahm, R., Bakos, G. Á., et al. 2014, AJ, 148, 29, doi: 10.1088/0004-6256/148/2/29
  • Juncher et al. (2015) Juncher, D., Buchhave, L. A., Hartman, J. D., et al. 2015, PASP, 127, 851, doi: 10.1086/682725
  • Kipping et al. (2010) Kipping, D. M., Bakos, G. Á., Hartman, J., et al. 2010, ApJ, 725, 2017, doi: 10.1088/0004-637X/725/2/2017
  • Kipping et al. (2011) Kipping, D. M., Hartman, J., Bakos, G. Á., et al. 2011, AJ, 142, 95, doi: 10.1088/0004-6256/142/3/95
  • Kley & Nelson (2012) Kley, W., & Nelson, R. 2012, Annual Review of Astronomy and Astrophysics, 50, 211, doi: 10.1146/annurev-astro-081811-125523
  • Kokubo & Ida (2002) Kokubo, E., & Ida, S. 2002, Astrophysical Journal, 581, 666, doi: 10.1086/344105
  • Kubiak et al. (2023) Kubiak, S., Vanderburg, A., Becker, J., et al. 2023, Monthly Notices of the Royal Astronomical Society, 521, 4679, doi: 10.1093/mnras/stad766
  • Lam et al. (2017) Lam, K. W. F., Faedi, F., Brown, D. J. A., et al. 2017, A&A, 599, A3, doi: 10.1051/0004-6361/201629403
  • Latham et al. (2009) Latham, D. W., Bakos, G. Á., Torres, G., et al. 2009, ApJ, 704, 1107, doi: 10.1088/0004-637X/704/2/1107
  • Lendl et al. (2012) Lendl, M., Anderson, D. R., Collier-Cameron, A., et al. 2012, A&A, 544, A72, doi: 10.1051/0004-6361/201219585
  • Lendl et al. (2019) Lendl, M., Anderson, D. R., Bonfanti, A., et al. 2019, MNRAS, 482, 301, doi: 10.1093/mnras/sty2667
  • Lin et al. (1996) Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Nature, 380, 606, doi: 10.1038/380606a0
  • Lin & Papaloizou (1986) Lin, D. N. C., & Papaloizou, J. 1986, The Astrophysical Journal, 309, 846, doi: 10.1086/164653
  • Lindor et al. (2021) Lindor, B. M., Hartman, J. D., Bakos, G. Á., et al. 2021, AJ, 161, 64, doi: 10.3847/1538-3881/abc700
  • Lissauer et al. (2011) Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., et al. 2011, The Astrophysical Journal Supplement Series, 197, 8, doi: 10.1088/0067-0049/197/1/8
  • Lithwick et al. (2012) Lithwick, Y., Xie, J., & Wu, Y. 2012, The Astrophysical Journal, 761, 122, doi: 10.1088/0004-637X/761/2/122
  • Lund et al. (2017) Lund, M. B., Rodriguez, J. E., Zhou, G., et al. 2017, AJ, 154, 194, doi: 10.3847/1538-3881/aa8f95
  • Ma & Ge (2014) Ma, B., & Ge, J. 2014, MNRAS, 439, 2781, doi: 10.1093/mnras/stu134
  • Maciejewski et al. (2023) Maciejewski, G., Golonka, J., Łoboda, W., et al. 2023, MNRAS, 525, L43, doi: 10.1093/mnrasl/slad078
  • Mancini et al. (2015) Mancini, L., Hartman, J. D., Penev, K., et al. 2015, A&A, 580, A63, doi: 10.1051/0004-6361/201526069
  • Mancini et al. (2020) Mancini, L., Sarkis, P., Henning, T., et al. 2020, A&A, 633, A30, doi: 10.1051/0004-6361/201936532
  • Mandushev et al. (2011) Mandushev, G., Quinn, S. N., Buchhave, L. A., et al. 2011, ApJ, 741, 114, doi: 10.1088/0004-637X/741/2/114
  • Maxted et al. (2010) Maxted, P. F. L., Anderson, D. R., Gillon, M., et al. 2010, AJ, 140, 2007, doi: 10.1088/0004-6256/140/6/2007
  • Maxted et al. (2016) Maxted, P. F. L., Anderson, D. R., Collier Cameron, A., et al. 2016, A&A, 591, A55, doi: 10.1051/0004-6361/201628250
  • Mayor & Queloz (1995) Mayor, M., & Queloz, D. 1995, Nature, 378, 355, doi: 10.1038/378355a0
  • McLeod et al. (2017) McLeod, K. K., Rodriguez, J. E., Oelkers, R. J., et al. 2017, AJ, 153, 263, doi: 10.3847/1538-3881/aa6d5d
  • Mishra et al. (2021) Mishra, L., Alibert, Y., Leleu, A., et al. 2021, Astronomy & Astrophysics, 656, A74, doi: 10.1051/0004-6361/202140761
  • Mohler-Fischer et al. (2013) Mohler-Fischer, M., Mancini, L., Hartman, J. D., et al. 2013, A&A, 558, A55, doi: 10.1051/0004-6361/201321663
  • Mordasini et al. (2009a) Mordasini, C., Alibert, Y., & Benz, W. 2009a, Astronomy & Astrophysics, 501, 1139, doi: 10.1051/0004-6361/200810301
  • Mordasini et al. (2012) Mordasini, C., Alibert, Y., Benz, W., Klahr, H., & Henning, T. 2012, Astronomy & Astrophysics, 541, A97, doi: 10.1051/0004-6361/201117350
  • Mordasini et al. (2009b) Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2009b, Astronomy & Astrophysics, 501, 1161, doi: 10.1051/0004-6361/200810697
  • Mortier et al. (2013) Mortier, A., Santos, N. C., Sousa, S. G., et al. 2013, A&A, 558, A106, doi: 10.1051/0004-6361/201322240
  • Močnik et al. (2020) Močnik, T., Hellier, C., & Anderson, D. R. 2020, PASP, 132, 014401, doi: 10.1088/1538-3873/ab5598
  • Mustill et al. (2015) Mustill, A. J., Davies, M. B., & Johansen, A. 2015, The Astrophysical Journal, 808, 14, doi: 10.1088/0004-637X/808/1/14
  • Naoz et al. (2012) Naoz, S., Farr, W. M., & Rasio, F. A. 2012, Astrophysical Journal, 754, L36, doi: 10.1088/2041-8205/754/2/L36
  • Nascimbeni et al. (2023) Nascimbeni, V., Borsato, L., Zingales, T., et al. 2023, A&A, 673, A42, doi: 10.1051/0004-6361/202245486
  • Nesvorný (2009) Nesvorný, D. 2009, Astrophysical Journal, 701, 1116, doi: 10.1088/0004-637X/701/2/1116
  • Neveu-VanMalle et al. (2016) Neveu-VanMalle, M., Queloz, D., Anderson, D. R., et al. 2016, A&A, 586, A93, doi: 10.1051/0004-6361/201526965
  • Nielsen et al. (2019) Nielsen, L. D., Bouchy, F., Turner, O. D., et al. 2019, MNRAS, 489, 2478, doi: 10.1093/mnras/stz2351
  • Obermeier et al. (2020) Obermeier, C., Steuer, J., Kellermann, H., et al. 2020, A&A, 639, A130, doi: 10.1051/0004-6361/202037715
  • Oberst et al. (2017) Oberst, T. E., Rodriguez, J. E., Colón, K. D., et al. 2017, AJ, 153, 97, doi: 10.3847/1538-3881/153/3/97
  • Oliveira et al. (2019) Oliveira, J. M., Martioli, E., & Tucci-Maia, M. 2019, Research Notes of the American Astronomical Society, 3, 35, doi: 10.3847/2515-5172/ab06c7
  • Parviainen (2015) Parviainen, H. 2015, Monthly Notices of the Royal Astronomical Society, 450, 3233, doi: 10.1093/mnras/stv894
  • Pearson (2019) Pearson, K. A. 2019, AJ, 158, 243, doi: 10.3847/1538-3881/ab4e1c
  • Penev et al. (2013) Penev, K., Bakos, G. Á., Bayliss, D., et al. 2013, AJ, 145, 5, doi: 10.1088/0004-6256/145/1/5
  • Pepper et al. (2013) Pepper, J., Siverd, R. J., Beatty, T. G., et al. 2013, ApJ, 773, 64, doi: 10.1088/0004-637X/773/1/64
  • Petrovich (2015) Petrovich, C. 2015, Astrophysical Journal, 805, 75, doi: 10.1088/0004-637X/805/1/75
  • Petrovich & Tremaine (2016) Petrovich, C., & Tremaine, S. 2016, Astrophysical Journal, 829, 132, doi: 10.3847/0004-637X/829/2/132
  • Queloz et al. (2010) Queloz, D., Anderson, D. R., Collier Cameron, A., et al. 2010, A&A, 517, L1, doi: 10.1051/0004-6361/201014768
  • Quinn et al. (2011) Quinn, S. N., Bakos, G. Á., Hartman, J., et al. 2011, The Astrophysical Journal, 745, 80, doi: 10.1088/0004-637X/745/1/80
  • Quinn et al. (2012) Quinn, S. N., Bakos, G. Á., Hartman, J., et al. 2012, ApJ, 745, 80, doi: 10.1088/0004-637X/745/1/80
  • Quinn et al. (2019) Quinn, S. N., Becker, J. C., Rodriguez, J. E., et al. 2019, The Astronomical Journal, 158, 177, doi: 10.3847/1538-3881/ab3f2b
  • Rauer et al. (2014) Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249
  • Raynard et al. (2018) Raynard, L., Goad, M. R., Gillen, E., et al. 2018, MNRAS, 481, 4960, doi: 10.1093/mnras/sty2581
  • Rein & Liu (2012) Rein, H., & Liu, S.-F. 2012, Astronomy & Astrophysics, 537, A128, doi: 10.1051/0004-6361/201118085
  • Rein & Spiegel (2015) Rein, H., & Spiegel, D. S. 2015, Monthly Notices of the Royal Astronomical Society, 446, 1424, doi: 10.1093/mnras/stu2164
  • Ricker et al. (2014) Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003, doi: 10.1117/1.JATIS.1.1.014003
  • Rodriguez et al. (2019) Rodriguez, J. E., Eastman, J. D., Zhou, G., et al. 2019, AJ, 158, 197, doi: 10.3847/1538-3881/ab4136
  • Sarkis et al. (2018) Sarkis, P., Henning, T., Hartman, J. D., et al. 2018, AJ, 156, 216, doi: 10.3847/1538-3881/aade54
  • Sato et al. (2012) Sato, B., Hartman, J. D., Bakos, G. Á., et al. 2012, PASJ, 64, 97, doi: 10.1093/pasj/64.5.97
  • Schanche et al. (2020) Schanche, N., Hébrard, G., Collier Cameron, A., et al. 2020, MNRAS, 499, 428, doi: 10.1093/mnras/staa2848
  • Schlecker et al. (2021a) Schlecker, M., Mordasini, C., Emsenhuber, A., et al. 2021a, Astronomy & Astrophysics, 656, A71, doi: 10.1051/0004-6361/202038554
  • Schlecker et al. (2021b) Schlecker, M., Pham, D., Burn, R., et al. 2021b, Astronomy & Astrophysics, 656, A73, doi: 10.1051/0004-6361/202140551
  • Shporer et al. (2009) Shporer, A., Bakos, G. Á., Bouchy, F., et al. 2009, ApJ, 690, 1393, doi: 10.1088/0004-637X/690/2/1393
  • Simpson et al. (2011a) Simpson, E. K., Pollacco, D., Cameron, A. C., et al. 2011a, MNRAS, 414, 3023, doi: 10.1111/j.1365-2966.2011.18603.x
  • Simpson et al. (2011b) Simpson, E. K., Faedi, F., Barros, S. C. C., et al. 2011b, AJ, 141, 8, doi: 10.1088/0004-6256/141/1/8
  • Smalley et al. (2010) Smalley, B., Anderson, D. R., Collier Cameron, A., et al. 2010, A&A, 520, A56, doi: 10.1051/0004-6361/201014705
  • Smalley et al. (2011) —. 2011, A&A, 526, A130, doi: 10.1051/0004-6361/201015992
  • Smalley et al. (2012) Smalley, B., Anderson, D. R., Collier-Cameron, A., et al. 2012, A&A, 547, A61, doi: 10.1051/0004-6361/201219731
  • Smith (2015) Smith, A. M. S. 2015, Acta Astron., 65, 117, doi: 10.48550/arXiv.1412.0451
  • Smith et al. (2012a) Smith, A. M. S., Anderson, D. R., Collier Cameron, A., et al. 2012a, AJ, 143, 81, doi: 10.1088/0004-6256/143/4/81
  • Smith et al. (2013) Smith, A. M. S., Anderson, D. R., Bouchy, F., et al. 2013, A&A, 552, A120, doi: 10.1051/0004-6361/201220727
  • Smith et al. (2014) Smith, A. M. S., Anderson, D. R., Armstrong, D. J., et al. 2014, A&A, 570, A64, doi: 10.1051/0004-6361/201424752
  • Smith et al. (2012b) Smith, J. C., Stumpe, M. C., Van Cleve, J. E., et al. 2012b, PASP, 124, 1000, doi: 10.1086/667697
  • Sozzetti et al. (2009) Sozzetti, A., Torres, G., Charbonneau, D., et al. 2009, ApJ, 691, 1145, doi: 10.1088/0004-637X/691/2/1145
  • Spake et al. (2016) Spake, J. J., Brown, D. J. A., Doyle, A. P., et al. 2016, PASP, 128, 024401, doi: 10.1088/1538-3873/128/960/024401
  • Stassun et al. (2017) Stassun, K. G., Collins, K. A., & Gaudi, B. S. 2017, AJ, 153, 136, doi: 10.3847/1538-3881/aa5df3
  • Steffen et al. (2012) Steffen, J. H., Ragozzine, D., Fabrycky, D. C., et al. 2012, Proceedings of the National Academy of Sciences, 109, 7982, doi: 10.1073/pnas.1120970109
  • Street et al. (2010) Street, R. A., Simpson, E., Barros, S. C. C., et al. 2010, ApJ, 720, 337, doi: 10.1088/0004-637X/720/1/337
  • Stumpe et al. (2014) Stumpe, M. C., Smith, J. C., Catanzarite, J. H., et al. 2014, PASP, 126, 100, doi: 10.1086/674989
  • Stumpe et al. (2012) Stumpe, M. C., Smith, J. C., Van Cleve, J. E., et al. 2012, PASP, 124, 985, doi: 10.1086/667698
  • Team (2021) Team, M. 2021, TESS Light Curves - All Sectors, STScI/MAST, doi: 10.17909/T9-NMC8-F686
  • Temple et al. (2019) Temple, L. Y., Hellier, C., Almleaky, Y., et al. 2019, AJ, 157, 141, doi: 10.3847/1538-3881/ab095a
  • Tinney et al. (2006) Tinney, C. G., Butler, R. P., Marcy, G. W., et al. 2006, Astrophysical Journal, 647, 594, doi: 10.1086/503706
  • Torres et al. (2008a) Torres, G., Winn, J. N., & Holman, M. J. 2008a, ApJ, 677, 1324, doi: 10.1086/529429
  • Torres et al. (2008b) —. 2008b, ApJ, 677, 1324, doi: 10.1086/529429
  • Torres et al. (2010) Torres, G., Bakos, G. Á., Hartman, J., et al. 2010, ApJ, 715, 458, doi: 10.1088/0004-637X/715/1/458
  • Triaud et al. (2011) Triaud, A. H. M. J., Queloz, D., Hellier, C., et al. 2011, VizieR Online Data Catalog: WASP-23 photometric and radial velocity data (Triaud+, 2011), VizieR On-line Data Catalog: J/A+A/531/A24. Originally published in: 2011A&A…531A..24T, doi: 10.26093/cds/vizier.35310024
  • Triaud et al. (2013) Triaud, A. H. M. J., Anderson, D. R., Collier, C. A., et al. 2013, VizieR Online Data Catalog: WASP-80 photometric and radial velocity data (Triaud+, 2013), VizieR On-line Data Catalog: J/A+A/551/A80. Originally published in: 2013A&A…551A..80T, doi: 10.26093/cds/vizier.35510080
  • Triaud et al. (2017) Triaud, A. H. M. J., Neveu-VanMalle, M., Lendl, M., et al. 2017, MNRAS, 467, 1714, doi: 10.1093/mnras/stx154
  • Trilling et al. (1998) Trilling, D. E., Benz, W., Guillot, T., et al. 1998, The Astrophysical Journal, 500, 428, doi: 10.1086/305711
  • Turner et al. (2016) Turner, O. D., Anderson, D. R., Collier Cameron, A., et al. 2016, PASP, 128, 064401, doi: 10.1088/1538-3873/128/964/064401
  • Turner et al. (2019) Turner, O. D., Anderson, D. R., Barkaoui, K., et al. 2019, MNRAS, 485, 5790, doi: 10.1093/mnras/stz742
  • Vick et al. (2019) Vick, M., Lai, D., & Anderson, K. R. 2019, Monthly Notices of the Royal Astronomical Society, 484, 5645, doi: 10.1093/mnras/stz354
  • Vines et al. (2019) Vines, J. I., Jenkins, J. S., Acton, J. S., et al. 2019, MNRAS, 489, 4125, doi: 10.1093/mnras/stz2349
  • Wang et al. (2024) Wang, W., Zhang, Z., Chen, Z., et al. 2024, ApJS, 270, 14, doi: 10.3847/1538-4365/ad0847
  • Wang et al. (2018a) Wang, X.-Y., Wang, S., Hinse, T. C., et al. 2018a, Publications of the Astronomical Society of the Pacific, 130, 064401, doi: 10.1088/1538-3873/aab93e
  • Wang et al. (2018b) —. 2018b, Publications of the Astronomical Society of the Pacific, 130, 064401, doi: 10.1088/1538-3873/aab93e
  • Wang et al. (2021) Wang, X.-Y., Wang, Y.-H., Wang, S., et al. 2021, The Astrophysical Journal Supplement Series, 255, 15, doi: 10.3847/1538-4365/ac0835
  • Wang et al. (2017) Wang, Y.-H., Wang, S., Liu, H.-G., et al. 2017, The Astronomical Journal, 154, 49, doi: 10.3847/1538-3881/aa7519
  • Ward (1997) Ward, W. R. 1997, Icarus, 126, 261, doi: 10.1006/icar.1996.5647
  • West et al. (2016) West, R. G., Hellier, C., Almenara, J. M., et al. 2016, A&A, 585, A126, doi: 10.1051/0004-6361/201527276
  • Winn et al. (2009a) Winn, J. N., Holman, M. J., Carter, J. A., et al. 2009a, Astronomical Journal, 137, 3826, doi: 10.1088/0004-6256/137/4/3826
  • Winn et al. (2007a) Winn, J. N., Holman, M. J., & Fuentes, C. I. 2007a, The Astronomical Journal, 133, 11, doi: 10.1086/509658
  • Winn et al. (2007b) Winn, J. N., Holman, M. J., & Roussanova, A. 2007b, The Astrophysical Journal, 657, 1098, doi: 10.1086/510834
  • Winn et al. (2008a) Winn, J. N., Holman, M. J., Shporer, A., et al. 2008a, The Astronomical Journal, 136, 267, doi: 10.1088/0004-6256/136/1/267
  • Winn et al. (2007c) Winn, J. N., Holman, M. J., Henry, G. W., et al. 2007c, Astronomical Journal, 133, 1828, doi: 10.1086/512159
  • Winn et al. (2007d) Winn, J. N., Holman, M. J., Bakos, G. Á., et al. 2007d, Astronomical Journal, 134, 1707, doi: 10.1086/521599
  • Winn et al. (2008b) Winn, J. N., Holman, M. J., Torres, G., et al. 2008b, Astrophysical Journal, 683, 1076, doi: 10.1086/589737
  • Winn et al. (2009b) Winn, J. N., Holman, M. J., Henry, G. W., et al. 2009b, The Astrophysical Journal, 693, 794, doi: 10.1088/0004-637X/693/1/794
  • Wu et al. (2023) Wu, D.-H., Rice, M., & Wang, S. 2023, The Astronomical Journal, 165, 171, doi: 10.3847/1538-3881/acbf3f
  • Wu & Lithwick (2011) Wu, Y., & Lithwick, Y. 2011, Astrophysical Journal, 735, 109, doi: 10.1088/0004-637X/735/2/109
  • Wu & Murray (2003) Wu, Y., & Murray, N. 2003, The Astrophysical Journal, 589, 605, doi: 10.1086/374598
  • Xie (2013) Xie, J.-W. 2013, The Astrophysical Journal Supplement Series, 208, 22, doi: 10.1088/0067-0049/208/2/22
  • Xie et al. (2016) Xie, J.-W., Dong, S., Zhu, Z., et al. 2016, Proceedings of the National Academy of Science, 113, 11431, doi: 10.1073/pnas.1604692113
  • Zhan (2011) Zhan, H. 2011, Scientia Sinica Physica, Mechanica & Astronomica, 41, 1441, doi: 10.1360/132011-961
  • Zhang (2024) Zhang, Z. 2024, CMAT: Companion MAss from Ttv modeling, 0.1, Zenodo, doi: 10.5281/zenodo.13739647
  • Zhou et al. (2016) Zhou, G., Rodriguez, J. E., Collins, K. A., et al. 2016, AJ, 152, 136, doi: 10.3847/0004-6256/152/5/136
  • Zhou et al. (2017) Zhou, G., Bakos, G. Á., Hartman, J. D., et al. 2017, AJ, 153, 211, doi: 10.3847/1538-3881/aa674a
  • Zhou et al. (2019a) Zhou, G., Huang, C. X., Bakos, G. Á., et al. 2019a, AJ, 158, 141, doi: 10.3847/1538-3881/ab36b5
  • Zhou et al. (2019b) Zhou, G., Bakos, G. Á., Bayliss, D., et al. 2019b, AJ, 157, 31, doi: 10.3847/1538-3881/aaf1bb
  • Zhu & Dong (2021) Zhu, W., & Dong, S. 2021, Annual Review of Astronomy and Astrophysics, 59, 291, doi: 10.1146/annurev-astro-112420-020055
  • Zink & Howard (2023) Zink, J. K., & Howard, A. W. 2023, ApJ, 956, L29, doi: 10.3847/2041-8213/acfdab

Appendix A Result of Individual Target

In this appendix, we present the individual upper mass limit of hidden companions for 260 hot Jupiter systems. The upper mass limit is calculated using χ2\chi^{2} and RMS analysis. The results are shown in Figure 12.

\restartappendixnumbering
Refer to caption
Figure 12: Upper mass limit of companion planets and MEGNO for 260 HJs in our sample.
Refer to caption
Figure 13: Upper mass limit of companion planets and MEGNO for 260 HJs in our sample. (Continued)
Refer to caption
Figure 14: Upper mass limit of companion planets and MEGNO for 260 HJs in our sample. (Continued)
Refer to caption
Figure 15: Upper mass limit of companion planets and MEGNO for 260 HJs in our sample. (Continued)
Refer to caption
Figure 16: Upper mass limit of companion planets and MEGNO for 260 HJs in our sample. (Continued)

Appendix B Star and Hot Jupiter mass

In this appendix, we provide the masses of the host stars and hot Jupiters for 260 systems included in our research. \startlongtable

Table 1: The mass of the host star and the planet in the system. The mass of the star is in solar mass and the mass of the planet is in Jupiter mass. The references for the mass of the star and the planet are also provided.
Planet Name M[M]\mathrm{M_{\star}}\ \big{[}\mathrm{M_{\odot}}\big{]} M\mathrm{M_{\star}} Ref Mp[MJ]\mathrm{M_{p}}\ \big{[}\mathrm{M_{J}}\big{]} Mp\mathrm{M_{p}} Ref
CoRoT-1 b 0.95 Barge et al. (2008) 1.02979 Calculated from MSINI and I
CoRoT-2 b 0.97 Alonso et al. (2008) 3.27527 Calculated from MSINI and I
HAT-P-1 b 1.133 Torres et al. (2008a) 0.532369 Calculated from MSINI and I
HAT-P-2 b 1.308 Torres et al. (2008a) 8.87066 Calculated from MSINI and I
HAT-P-3 b 0.928 Torres et al. (2008a) 0.595712 Calculated from MSINI and I
HAT-P-4 b 1.248 Torres et al. (2008a) 0.671507 Calculated from MSINI and I
HAT-P-5 b 1.157 Torres et al. (2008a) 1.05561 Calculated from MSINI and I
HAT-P-6 b 1.29 Torres et al. (2008a) 1.05957 Calculated from MSINI and I
HAT-P-7 b 1.5 Christensen-Dalsgaard et al. (2010) 1.7916 Calculated from MSINI and I
HAT-P-8 b 1.28 Latham et al. (2009) 1.29336 Calculated from MSINI and I
HAT-P-9 b 1.28 Shporer et al. (2009) 0.776601 Calculated from MSINI and I
HAT-P-13 b 1.22 Bakos et al. (2009) 0.85708 Calculated from MSINI and I
HAT-P-14 b 1.386 Torres et al. (2010) 2.23603 Calculated from MSINI and I
HAT-P-16 b 1.218 Buchhave et al. (2010) 4.2025 Calculated from MSINI and I
HAT-P-19 b 0.842 Hartman et al. (2011a) 0.292273 Calculated from MSINI and I
HAT-P-20 b 0.756 Bakos et al. (2011) 7.28953 Calculated from MSINI and I
HAT-P-21 b 0.947 Bakos et al. (2011) 4.07833 Calculated from MSINI and I
HAT-P-22 b 0.916 Bakos et al. (2011) 2.15137 Calculated from MSINI and I
HAT-P-23 b 1.13 Bakos et al. (2011) 2.09606 Calculated from MSINI and I
HAT-P-24 b 1.191 Kipping et al. (2010) 0.685857 Calculated from MSINI and I
HAT-P-25 b 1.01 Quinn et al. (2012) 0.567181 Calculated from MSINI and I
HAT-P-27 b 0.92 Brown et al. (2012) 0.617485 Calculated from MSINI and I
HAT-P-28 b 1.025 Buchhave et al. (2011) 0.627833 Calculated from MSINI and I
HAT-P-29 b 1.207 Buchhave et al. (2011) 0.779004 Calculated from MSINI and I
HAT-P-30 b 1.242 Johnson et al. (2011) 0.711088 Calculated from MSINI and I
HAT-P-31 b 1.218 Kipping et al. (2011) 2.16904 Calculated from MSINI and I
HAT-P-32 b 1.16 Hartman et al. (2011b) 0.861516 Calculated from MSINI and I
HAT-P-33 b 1.375 Hartman et al. (2011b) 0.763256 Calculated from MSINI and I
HAT-P-34 b 1.392 Bakos et al. (2012) 3.334 Calculated from MSINI and I
HAT-P-35 b 1.236 Bakos et al. (2012) 1.05422 Calculated from MSINI and I
HAT-P-36 b 1.022 Bakos et al. (2012) 1.83923 Calculated from MSINI and I
HAT-P-37 b 0.929 Bakos et al. (2012) 1.17362 Calculated from MSINI and I
HAT-P-38 b 0.886 Sato et al. (2012) 0.267569 Calculated from MSINI and I
HAT-P-39 b 1.404 Hartman et al. (2012) 0.599196 Calculated from MSINI and I
HAT-P-40 b 1.512 Hartman et al. (2012) 0.6202 Calculated from MSINI and I
HAT-P-41 b 1.418 Hartman et al. (2012) 0.800254 Calculated from MSINI and I
HAT-P-42 b 1.18 Boisse et al. (2013) 1.044 Boisse et al. (2013)
HAT-P-43 b 1.03 Castro-González et al. (2022) 0.662 Boisse et al. (2013)
HAT-P-44 b 0.942 Hartman et al. (2014) 0.352 Hartman et al. (2014)
HAT-P-49 b 1.543 Bieryla et al. (2014) 1.72959 Calculated from MSINI and I
HAT-P-50 b 1.27 Hartman et al. (2015a) 1.35 Hartman et al. (2015a)
HAT-P-51 b 0.98 Hartman et al. (2015a) 0.309 Hartman et al. (2015a)
HAT-P-52 b 0.89 Hartman et al. (2015a) 0.818 Hartman et al. (2015a)
HAT-P-55 b 1.01 Juncher et al. (2015) 0.582 Juncher et al. (2015)
HAT-P-56 b 1.296 Huang et al. (2015) 2.18029 Calculated from MSINI and I
HAT-P-58 b 1.03 Bakos et al. (2021) 0.372 Bakos et al. (2021)
HAT-P-59 b 1.01 Bakos et al. (2021) 1.54 Bakos et al. (2021)
HAT-P-60 b 1.44 Bakos et al. (2021) 0.574 Bakos et al. (2021)
HAT-P-61 b 1.0 Bakos et al. (2021) 1.057 Bakos et al. (2021)
HAT-P-62 b 1.02 Bakos et al. (2021) 0.761 Bakos et al. (2021)
HAT-P-65 b 1.21 Hartman et al. (2016) 0.527 Hartman et al. (2016)
HAT-P-66 b 1.26 Hartman et al. (2016) 0.783 Hartman et al. (2016)
HAT-P-67 b 1.64 Zhou et al. (2017) 0.34 Zhou et al. (2017)
HAT-P-68 b 0.68 Lindor et al. (2021) 0.724 Lindor et al. (2021)
HAT-P-69 b 1.65 Zhou et al. (2019a) 3.58 Zhou et al. (2019a)
HAT-P-70 b 1.89 Zhou et al. (2019a) 6.78 Zhou et al. (2019a)
HATS-1 b 0.986 Penev et al. (2013) 1.86507 Calculated from MSINI and I
HATS-2 b 0.882 Mohler-Fischer et al. (2013) 1.34915 Calculated from MSINI and I
HATS-3 b 1.209 Bayliss et al. (2013) 1.0735 Calculated from MSINI and I
HATS-4 b 1.001 Jordán et al. (2014) 1.323 Jordán et al. (2014)
HATS-6 b 0.574 Hartman et al. (2015b) 0.319 Hartman et al. (2015b)
HATS-13 b 0.962 Mancini et al. (2015) 0.542398 Calculated from MSINI and I
HATS-16 b 0.97 Ciceri et al. (2016) 3.27 Ciceri et al. (2016)
HATS-18 b 1.04 Chakrabarty & Sengupta (2019) 1.9795 Chakrabarty & Sengupta (2019)
HATS-22 b 0.76 Bento et al. (2017) 2.74 Bento et al. (2017)
HATS-23 b 1.12 Bento et al. (2017) 1.47 Bento et al. (2017)
HATS-24 b 1.07 Oliveira et al. (2019) 2.26 Oliveira et al. (2019)
HATS-25 b 0.99 Espinoza et al. (2016) 0.613 Espinoza et al. (2016)
HATS-26 b 1.3 Espinoza et al. (2016) 0.65 Espinoza et al. (2016)
HATS-27 b 1.42 Espinoza et al. (2016) 0.53 Espinoza et al. (2016)
HATS-28 b 0.93 Espinoza et al. (2016) 0.672 Espinoza et al. (2016)
HATS-30 b 1.09 Espinoza et al. (2016) 0.706 Espinoza et al. (2016)
HATS-31 b 1.28 de Val-Borro et al. (2016) 0.88 de Val-Borro et al. (2016)
HATS-32 b 1.1 de Val-Borro et al. (2016) 0.92 de Val-Borro et al. (2016)
HATS-33 b 1.06 de Val-Borro et al. (2016) 1.192 de Val-Borro et al. (2016)
HATS-34 b 0.96 de Val-Borro et al. (2016) 0.941 de Val-Borro et al. (2016)
HATS-39 b 1.38 Bento et al. (2018) 0.63 Bento et al. (2018)
HATS-40 b 1.56 Bento et al. (2018) 1.59 Bento et al. (2018)
HATS-41 b 1.5 Bento et al. (2018) 9.7 Bento et al. (2018)
HATS-42 b 1.27 Bento et al. (2018) 1.88 Bento et al. (2018)
HATS-43 b 0.84 Brahm et al. (2018) 0.261 Brahm et al. (2018)
HATS-44 b 0.86 Brahm et al. (2018) 0.56 Brahm et al. (2018)
HATS-45 b 1.27 Brahm et al. (2018) 0.7 Brahm et al. (2018)
HATS-47 b 0.67 Hartman et al. (2020) 0.369 Hartman et al. (2020)
HATS-51 b 1.19 Henning et al. (2018) 0.768 Henning et al. (2018)
HATS-52 b 1.11 Henning et al. (2018) 2.24 Henning et al. (2018)
HATS-53 b 0.96 Henning et al. (2018) 0.595 Henning et al. (2018)
HATS-54 b 1.05 Jackson et al. (2023) 0.753 Jackson et al. (2023)
HATS-55 b 1.2 Espinoza et al. (2019) 0.921 Espinoza et al. (2019)
HATS-56 b 1.57 Espinoza et al. (2019) 0.602 Espinoza et al. (2019)
HATS-57 b 1.03 Espinoza et al. (2019) 3.147 Espinoza et al. (2019)
HATS-59 b 1.04 Sarkis et al. (2018) 0.806 Sarkis et al. (2018)
HATS-60 b 1.1 Hartman et al. (2019) 0.662 Hartman et al. (2019)
HATS-63 b 0.93 Hartman et al. (2019) 0.96 Hartman et al. (2019)
HATS-64 b 1.56 Hartman et al. (2019) 0.96 Hartman et al. (2019)
HATS-67 b 1.44 Hartman et al. (2019) 1.45 Hartman et al. (2019)
HATS-68 b 1.35 Hartman et al. (2019) 1.29 Hartman et al. (2019)
HATS-69 b 0.89 Hartman et al. (2019) 0.577 Hartman et al. (2019)
HATS-70 b 1.78 Zhou et al. (2019b) 12.9 Zhou et al. (2019b)
HATS-71 b 0.49 Bakos et al. (2020) 0.37 Bakos et al. (2020)
HD 189733 b 0.806 Torres et al. (2008b) 1.1436 Calculated from MSINI and I
K2-237 b 1.26 Ikwut-Ukwa et al. (2020) 1.363 Ikwut-Ukwa et al. (2020)
KELT-3 b 1.282 Pepper et al. (2013) 1.46164 Calculated from MSINI and I
KELT-6 b 1.085 Collins et al. (2014) 0.43122 Calculated from MSINI and I
KELT-7 b 1.535 Bieryla et al. (2015) 1.28 Bieryla et al. (2015)
KELT-8 b 0.81 Stassun et al. (2017) 0.66 Stassun et al. (2017)
KELT-9 b 2.52 Gaudi et al. (2017) 2.88 Gaudi et al. (2017)
KELT-15 b 2.06 Stassun et al. (2017) 1.31 Stassun et al. (2017)
KELT-16 b 1.21 Oberst et al. (2017) 2.75 Oberst et al. (2017)
KELT-17 b 1.64 Zhou et al. (2016) 1.31 Zhou et al. (2016)
KELT-18 b 1.52 McLeod et al. (2017) 1.18 McLeod et al. (2017)
KELT-20 b 1.76 Lund et al. (2017) 3.382 Lund et al. (2017)
KELT-21 b 1.46 Johnson et al. (2018) 3.91 Johnson et al. (2018)
KELT-24 b 1.46 Rodriguez et al. (2019) 5.18 Rodriguez et al. (2019)
KPS-1 b 0.89 Burdanov et al. (2018) 1.09 Burdanov et al. (2018)
MASCARA-4 b 1.75 Dorval et al. (2020) 3.1 Dorval et al. (2020)
NGTS-1 b 0.62 Bayliss et al. (2018) 0.812 Bayliss et al. (2018)
NGTS-2 b 1.64 Raynard et al. (2018) 0.74 Raynard et al. (2018)
NGTS-3 A b 1.02 Günther et al. (2018) 2.38 Günther et al. (2018)
NGTS-6 b 0.77 Vines et al. (2019) 1.339 Vines et al. (2019)
NGTS-9 b 1.34 Costes et al. (2020) 2.9 Costes et al. (2020)
OGLE-TR-113 b 0.779 Torres et al. (2008b) 1.26 Torres et al. (2008b)
Qatar-1 b 0.85 Alsubai et al. (2011) 1.08979 Calculated from MSINI and I
Qatar-6 b 0.82 Alsubai et al. (2018) 0.668 Alsubai et al. (2018)
Qatar-7 b 1.41 Alsubai et al. (2019a) 1.88 Alsubai et al. (2019a)
Qatar-8 b 1.03 Alsubai et al. (2019b) 0.371 Alsubai et al. (2019b)
Qatar-9 b 0.72 Alsubai et al. (2019b) 1.19 Alsubai et al. (2019b)
Qatar-10 b 1.16 Alsubai et al. (2019b) 0.736 Alsubai et al. (2019b)
TrES-1 b 0.878 Torres et al. (2008b) 0.752484 Calculated from MSINI and I
TrES-2 b 0.983 Torres et al. (2008b) 1.20071 Calculated from MSINI and I
TrES-3 b 0.915 Torres et al. (2008b) 1.91 Sozzetti et al. (2009)
TrES-4 b 1.394 Torres et al. (2008b) 0.925 Sozzetti et al. (2009)
TrES-5 b 0.893 Mandushev et al. (2011) 1.7781 Calculated from MSINI and I
WASP-1 b 1.2 Enoch et al. (2010) 0.918 Simpson et al. (2011a)
WASP-2 b 0.88 Enoch et al. (2010) 0.908659 Calculated from MSINI and I
WASP-3 b 1.22 Enoch et al. (2010) 2.01184 Calculated from MSINI and I
WASP-4 b 0.91 Enoch et al. (2010) 1.22311 Calculated from MSINI and I
WASP-5 b 1.01 Enoch et al. (2010) 1.62423 Calculated from MSINI and I
WASP-6 b 0.93 Enoch et al. (2010) 0.52136 Calculated from MSINI and I
WASP-7 b 1.2 Enoch et al. (2010) 0.919279 Calculated from MSINI and I
WASP-8 b 1.03 Queloz et al. (2010) 2.13797 Queloz et al. (2010)
WASP-10 b 0.79 Enoch et al. (2010) 3.19144 Calculated from MSINI and I
WASP-11 b 0.8 Enoch et al. (2010) 0.539755 Calculated from MSINI and I
WASP-12 b 1.28 Enoch et al. (2010) 1.36063 Calculated from MSINI and I
WASP-13 b 1.09 Barros et al. (2012) 0.473883 Calculated from MSINI and I
WASP-14 b 1.31 Enoch et al. (2010) 7.69234 Calculated from MSINI and I
WASP-15 b 1.18 Enoch et al. (2010) 0.542797 Calculated from MSINI and I
WASP-16 b 1.0 Enoch et al. (2010) 0.842294 Calculated from MSINI and I
WASP-17 b 1.19 Enoch et al. (2010) 0.508547 Calculated from MSINI and I
WASP-18 b 1.22 Enoch et al. (2010) 10.2006 Calculated from MSINI and I
WASP-19 b 0.93 Enoch et al. (2010) 1.13339 Calculated from MSINI and I
WASP-20 b 1.2 Anderson et al. (2015) 0.311 Anderson et al. (2015)
WASP-21 b 1.01 Bouchy et al. (2010) 0.300272 Calculated from MSINI and I
WASP-22 b 1.1 Maxted et al. (2010) 0.559059 Calculated from MSINI and I
WASP-23 b 0.78 Triaud et al. (2011) 0.872226 Calculated from MSINI and I
WASP-24 b 1.184 Street et al. (2010) 1.091 Calculated from MSINI and I
WASP-25 b 1.0 Enoch et al. (2011a) 0.57847 Calculated from MSINI and I
WASP-26 b 1.12 Smalley et al. (2010) 1.01746 Calculated from MSINI and I
WASP-31 b 1.165 Anderson et al. (2011) 0.479329 Calculated from MSINI and I
WASP-32 b 1.07 Brown et al. (2012) 3.45362 Calculated from MSINI and I
WASP-34 b 1.01 Smalley et al. (2011) 0.583354 Calculated from MSINI and I
WASP-35 b 1.07 Enoch et al. (2011b) 0.717098 Calculated from MSINI and I
WASP-36 b 1.02 Smith et al. (2012a) 2.26929 Calculated from MSINI and I
WASP-37 b 0.925 Simpson et al. (2011b) 1.79362 Calculated from MSINI and I
WASP-39 b 0.93 Faedi et al. (2011) 0.284338 Calculated from MSINI and I
WASP-41 b 0.93 Neveu-VanMalle et al. (2016) 0.939101 Calculated from MSINI and I
WASP-42 b 0.881 Lendl et al. (2012) 0.496968 Calculated from MSINI and I
WASP-43 b 0.58 Hellier et al. (2011) 1.77609 Calculated from MSINI and I
WASP-44 b 0.951 Anderson et al. (2013) 0.889836 Calculated from MSINI and I
WASP-45 b 0.909 Anderson et al. (2013) 1.00657 Calculated from MSINI and I
WASP-46 b 0.956 Anderson et al. (2013) 2.10232 Calculated from MSINI and I
WASP-47 b 1.02 Mortier et al. (2013) 1.12341 Calculated from MSINI and I
WASP-48 b 1.19 Enoch et al. (2011b) 0.984236 Calculated from MSINI and I
WASP-49 b 0.938 Lendl et al. (2012) 0.378231 Calculated from MSINI and I
WASP-50 b 0.892 Gillon et al. (2011) 1.47244 Calculated from MSINI and I
WASP-53 b 0.84 Triaud et al. (2017) 2.132 Triaud et al. (2017)
WASP-54 b 1.213 Faedi et al. (2013) 0.63273 Calculated from MSINI and I
WASP-56 b 1.107 Faedi et al. (2013) 0.605385 Calculated from MSINI and I
WASP-57 b 0.954 Faedi et al. (2013) 0.675887 Calculated from MSINI and I
WASP-58 b 0.94 Hébrard et al. (2013) 0.891379 Calculated from MSINI and I
WASP-59 b 0.719 Hébrard et al. (2013) 0.859095 Calculated from MSINI and I
WASP-60 b 1.078 Hébrard et al. (2013) 0.512143 Calculated from MSINI and I
WASP-61 b 1.22 Hellier et al. (2012) 2.05491 Calculated from MSINI and I
WASP-62 b 1.25 Hellier et al. (2012) 0.56227 Calculated from MSINI and I
WASP-63 b 1.32 Hellier et al. (2012) 0.378096 Calculated from MSINI and I
WASP-64 b 1.004 Gillon et al. (2013) 1.27137 Calculated from MSINI and I
WASP-65 b 0.93 Gómez Maqueo Chew et al. (2013) 1.55 Gómez Maqueo Chew et al. (2013)
WASP-66 b 1.3 Hellier et al. (2012) 2.31346 Calculated from MSINI and I
WASP-69 b 0.826 Anderson et al. (2014) 0.259543 Calculated from MSINI and I
WASP-71 b 1.572 Smith et al. (2013) 2.242 Smith et al. (2013)
WASP-72 b 1.327 Gillon et al. (2013) 1.40771 Calculated from MSINI and I
WASP-73 b 1.34 Delrez et al. (2014) 1.88059 Calculated from MSINI and I
WASP-78 b 1.33 Smalley et al. (2012) 0.883997 Calculated from MSINI and I
WASP-79 b 1.52 Smalley et al. (2012) 0.887514 Calculated from MSINI and I
WASP-80 b 0.58 Triaud et al. (2013) 0.551763 Calculated from MSINI and I
WASP-81 b 1.08 Triaud et al. (2017) 0.729 Triaud et al. (2017)
WASP-82 b 1.64 Smith (2015) 1.25 Smith (2015)
WASP-83 b 1.11 Hellier et al. (2015) 0.3 Hellier et al. (2015)
WASP-84 b 0.842 Anderson et al. (2014) 0.69431 Calculated from MSINI and I
WASP-87 b 1.2 Addison et al. (2016) 2.18 Addison et al. (2016)
WASP-90 b 1.55 West et al. (2016) 0.63 West et al. (2016)
WASP-91 b 0.84 Anderson et al. (2017) 1.34 Anderson et al. (2017)
WASP-92 b 1.19 Hay et al. (2016) 0.805 Hay et al. (2016)
WASP-93 b 1.33 Hay et al. (2016) 1.47 Hay et al. (2016)
WASP-104 b 1.076 Smith et al. (2014) 1.272 Smith et al. (2014)
WASP-105 b 0.89 Anderson et al. (2017) 1.8 Anderson et al. (2017)
WASP-106 b 1.092 Smith et al. (2014) 1.925 Smith et al. (2014)
WASP-113 b 1.32 Barros et al. (2016) 0.475 Barros et al. (2016)
WASP-118 b 1.32 Hay et al. (2016) 0.514 Hay et al. (2016)
WASP-119 b 1.02 Maxted et al. (2016) 1.23 Maxted et al. (2016)
WASP-120 b 1.39 Turner et al. (2016) 4.85 Turner et al. (2016)
WASP-121 b 1.36 Bourrier et al. (2020) 1.157 Bourrier et al. (2020)
WASP-123 b 1.17 Turner et al. (2016) 0.899 Turner et al. (2016)
WASP-124 b 1.07 Maxted et al. (2016) 0.6 Maxted et al. (2016)
WASP-126 b 1.12 Pearson (2019) 0.28411 Pearson (2019)
WASP-129 b 1.0 Maxted et al. (2016) 1.0 Maxted et al. (2016)
WASP-131 b 1.06 Hellier et al. (2017) 0.27 Hellier et al. (2017)
WASP-132 b 0.78 Hord et al. (2022) 0.41 Hord et al. (2022)
WASP-135 b 0.98 Spake et al. (2016) 1.90043 Calculated from MSINI and I
WASP-136 b 1.41 Lam et al. (2017) 1.51 Lam et al. (2017)
WASP-138 b 1.22 Lam et al. (2017) 1.22 Lam et al. (2017)
WASP-140 b 0.9 Hellier et al. (2017) 2.44 Hellier et al. (2017)
WASP-141 b 1.25 Hellier et al. (2017) 2.69 Hellier et al. (2017)
WASP-142 b 1.33 Hellier et al. (2017) 0.84 Hellier et al. (2017)
WASP-144 b 0.81 Hellier et al. (2019a) 0.44 Hellier et al. (2019a)
WASP-147 b 1.04 Lendl et al. (2019) 0.275 Lendl et al. (2019)
WASP-148 b 0.95 Almenara et al. (2022) 0.287 Almenara et al. (2022)
WASP-150 b 1.39 Cooke et al. (2020) 8.46 Cooke et al. (2020)
WASP-151 b 1.08 Močnik et al. (2020) 0.316 Močnik et al. (2020)
WASP-153 b 1.34 Demangeon et al. (2018) 0.39 Demangeon et al. (2018)
WASP-159 b 1.41 Hellier et al. (2019a) 0.55 Hellier et al. (2019a)
WASP-160 B b 0.87 Lendl et al. (2019) 0.278 Lendl et al. (2019)
WASP-161 b 1.39 Barkaoui et al. (2019) 2.49 Barkaoui et al. (2019)
WASP-162 b 0.95 Hellier et al. (2019a) 5.2 Hellier et al. (2019a)
WASP-164 b 0.95 Lendl et al. (2019) 2.13 Lendl et al. (2019)
WASP-165 b 1.25 Lendl et al. (2019) 0.658 Lendl et al. (2019)
WASP-168 b 1.08 Hellier et al. (2019a) 0.42 Hellier et al. (2019a)
WASP-169 b 1.34 Nielsen et al. (2019) 0.561 Nielsen et al. (2019)
WASP-170 b 0.93 Barkaoui et al. (2019) 1.6 Barkaoui et al. (2019)
WASP-171 b 1.17 Nielsen et al. (2019) 1.084 Nielsen et al. (2019)
WASP-172 b 1.49 Hellier et al. (2019a) 0.47 Hellier et al. (2019a)
WASP-174 b 1.24 Mancini et al. (2020) 0.33 Mancini et al. (2020)
WASP-175 b 1.21 Nielsen et al. (2019) 0.99 Nielsen et al. (2019)
WASP-176 b 1.34 Cooke et al. (2020) 0.855 Cooke et al. (2020)
WASP-178 b 2.07 Hellier et al. (2019b) 1.66 Hellier et al. (2019b)
WASP-181 b 1.04 Turner et al. (2019) 0.299 Turner et al. (2019)
WASP-183 b 0.78 Turner et al. (2019) 0.502 Turner et al. (2019)
WASP-184 b 1.23 Hellier et al. (2019b) 0.57 Hellier et al. (2019b)
WASP-186 b 1.22 Schanche et al. (2020) 4.22 Schanche et al. (2020)
WASP-187 b 1.54 Schanche et al. (2020) 0.8 Schanche et al. (2020)
WASP-190 b 1.35 Temple et al. (2019) 1.0 Temple et al. (2019)
WASP-192 b 1.09 Hellier et al. (2019b) 2.3 Hellier et al. (2019b)
Wendelstein-1 b 0.65 Obermeier et al. (2020) 0.592 Obermeier et al. (2020)
XO-1 b 1.027 Torres et al. (2008b) 0.918464 Calculated from MSINI and I
XO-2 b 0.974 Torres et al. (2008b) 0.566541 Calculated from MSINI and I
XO-3 b 1.41 Johns-Krull et al. (2008) 13.2849 Calculated from MSINI and I
XO-4 b 1.1 Stassun et al. (2017) 1.42 Stassun et al. (2017)
XO-5 b 1.0 Burke et al. (2008) 1.15251 Calculated from MSINI and I
XO-6 b 1.47 Crouzet et al. (2017) 4.4 Crouzet et al. (2017)
XO-7 b 1.41 Crouzet et al. (2020) 0.709 Crouzet et al. (2020)