This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Constant Directivity Loudspeaker Beamforming

Yuancheng Luo Amazon Inc.
[email protected]
Abstract

Loudspeaker array beamforming is a common signal processing technique for acoustic directivity control and robust audio reproduction. Unlike their microphone counterpart, loudspeaker constraints are often heterogeneous due to arrayed transducers with varying operating ranges in frequency, acoustic-electrical sensitivity, efficiency, and directivity. This work proposes a frequency-regularization method for generalized Rayleigh quotient directivity specifications and two novel beamformer designs that optimize for maximum efficiency constant directivity (MECD) and maximum sensitivity constant directivity (MSCD). We derive fast converging and analytic solutions from their quadratic equality constrained quadratic program formulations. Experiments optimize generalized directivity index constrained beamformer designs for a full-band heterogeneous array.

Index Terms:
Beamforming, acoustic directivity, regularization, quadratic programming, secular equation

I Introduction

Beamformer designs for loudspeaker arrays require constraints atypical to their microphone array counterpart due to greater variations in operating frequency characteristics across loudspeaker transducer elements, acoustic and electric power output limits, and placement restrictions. Traditional frequency-invariant beamforming designs for linear [1], circular [2], spherical [3], differential [4, 5] homogeneous arrays often optimize for directivity factor and white-noise gain (WNG) [6], [7], and beam pattern fit [8]. Such constraints are less applicable for heterogeneous loudspeakers and non-uniform arrays that jointly maximize acoustic/electrical power ratio in a listening window, and satisfy a generalized directivity index (GDI) [9]. The former extends WNG to evaluation regions in spherical coordinates, and transducer dependent penalty factors per electrical power unit over frequency. The latter relaxes beam pattern targets to an acoustic power ratio over two evaluation regions defined by density functions. This work addresses both issues and is organized as follows:

Section II introduces a novel regularization technique for the generalized Rayleigh quotient (GRQ) [10] that penalizing both acoustic and electrical power for heterogeneous arrays without introducing explicit constraints in their formulations. Sections II-A, II-B propose two maximal acoustic efficiency and sensitivity beamformer designs subject to constant GDI equality constraints, and present a pair of iterative and analytic solutions respectively via quadratic programming. Section III solves for the secular equation sub-problem common to both beamformer formulations. Section IV shows several beamformer designs for a sample heterogeneous array and compares convergence rates of the iterative solutions. Section V summarizes the theoretical results and experiments.

II Loudspeaker Directivity Optimization

The GRQ 𝒘H𝑨𝒘𝒘H𝑹𝒘\frac{\boldsymbol{w}^{H}\boldsymbol{A}\boldsymbol{w}}{\boldsymbol{w}^{H}\boldsymbol{R}\boldsymbol{w}} is the power ratio of a beamformer’s responses over two domains specified by weights 𝒘\boldsymbol{w} and so-called ”accept” and ”reject” covariance matrices 𝑨\boldsymbol{A}, and 𝑹\boldsymbol{R} respectively. A beamformer’s GDI equates to the GRQ for covariance matrices specified in the acoustic domain given by

𝑨=𝔼𝒓fA[𝒅(𝒓)𝒅H(𝒓)],𝑹=𝔼𝒓fR[𝒅(𝒓)𝒅H(𝒓)],\begin{split}\boldsymbol{A}=\mathbb{E}_{\boldsymbol{r}\small\sim f_{A}}\left[{\boldsymbol{d}(\boldsymbol{r})\boldsymbol{d}^{H}(\boldsymbol{r})}\right],\,\,\,\boldsymbol{R}=\mathbb{E}_{\boldsymbol{r}\small\sim f_{R}}\left[{\boldsymbol{d}(\boldsymbol{r})\boldsymbol{d}^{H}(\boldsymbol{r})}\right],\end{split} (1)

where the expectation samples steering vectors or anechoic frequency responses 𝒅(𝒓)\boldsymbol{d}(\boldsymbol{r}) (conjugate transpose 𝒅H(𝒓)\boldsymbol{d}^{H}(\boldsymbol{r})) over the Cartesian unit-directions 𝒓\boldsymbol{r}. The probability density functions fA(𝒓)f_{A}(\boldsymbol{r}), fR(𝒓)f_{R}(\boldsymbol{r}) weight the acoustic power-responses over specifiable directions to boost and attenuate respectively as shown in Fig. 1, and generalize the directivity index [9].

Refer to caption
Refer to caption
Figure 1: Sample accept fA(𝒓)f_{A}(\boldsymbol{r}) and reject fR(𝒓)f_{R}(\boldsymbol{r}) density functions define forward-facing listening and side-facing reflection windows respectively.

Maximizing GRQ therefore maximizes GDI by reducing GRQ into the normal Rayleigh quotient under a change of variables:

G(𝑨,𝑹,𝒘)=𝒘H𝑨𝒘𝒘H𝑹𝒘=𝒙H𝑸𝒙𝒙H𝒙,𝒙=𝑳H𝒘,𝑸=𝑳1𝑨𝑳H,𝑹=𝑳𝑳H,\begin{split}G(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})&=\frac{\boldsymbol{w}^{H}\boldsymbol{A}\boldsymbol{w}}{\boldsymbol{w}^{H}\boldsymbol{R}\boldsymbol{w}}=\frac{\boldsymbol{x}^{H}\boldsymbol{Q}\boldsymbol{x}}{\boldsymbol{x}^{H}\boldsymbol{x}},\quad\boldsymbol{x}=\boldsymbol{L}^{H}\boldsymbol{w},\\ \boldsymbol{Q}&=\boldsymbol{L}^{-1}\boldsymbol{A}\boldsymbol{L}^{-H},\quad\boldsymbol{R}=\boldsymbol{L}\boldsymbol{L}^{H},\end{split} (2)

where matrix 𝑳\boldsymbol{L} is the lower-triangular Cholesky factor of 𝑹\boldsymbol{R}. The maximizer 𝒘=argmax𝒘G(𝑨,𝑹,𝒘)=𝑳H𝒗\boldsymbol{w}_{*}=\operatorname*{arg\,max}_{\boldsymbol{w}}G(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})=\boldsymbol{L}^{-H}\boldsymbol{v} of (2) constrained to the unit-circle 𝒘H𝑹𝒘=1\boldsymbol{w}^{H}\boldsymbol{R}\boldsymbol{w}=1 is therefore the eigenvector 𝒗\boldsymbol{v} of the largest eigenvalue of matrix 𝑸\boldsymbol{Q}.

In heterogeneous transducer beamformer design, it is beneficial to mix both acoustic and electric rejection covariance matrices as to penalize components of 𝒘\boldsymbol{w} outside each transducer’s operating frequency ranges. Consider the following generalized Rayleigh penalty quotient (GRPQ) G(𝑨,𝑹+𝚪𝚺,𝒘)G(\boldsymbol{A},\boldsymbol{R}+\boldsymbol{\Gamma}\boldsymbol{\Sigma},\boldsymbol{w}) which adds a diagonal positive-definite penalty matrix 𝚪𝚺\boldsymbol{\Gamma}\boldsymbol{\Sigma} to the denominator covariance matrix 𝑹\boldsymbol{R} given by

𝚪=diag[diag[𝑹]],𝚺=diag[σ1,,σN],\begin{split}\boldsymbol{\Gamma}=\textbf{{diag}}\left[{\textbf{{diag}}\left[{\boldsymbol{R}}\right]}\right],\quad\boldsymbol{\Sigma}=\textbf{{diag}}\left[{\sigma_{1},\,\ldots,\,\sigma_{N}}\right],\quad\end{split} (3)

where 0σn0\leq\sigma_{n}\leq\infty is unbounded. Inverting the sum of 𝚺\boldsymbol{\Sigma} and the identity matrix 𝑰\boldsymbol{I} gives the bounded weighting matrix

𝚲=(𝚺+𝑰)12=diag[λ1,,λN],0λn1,\begin{split}\boldsymbol{\Lambda}&=\left({\boldsymbol{\Sigma}+\boldsymbol{I}}\right)^{-\frac{1}{2}}=\textbf{{diag}}\left[{\lambda_{1},\,\ldots,\,\lambda_{N}}\right],\quad 0\leq\lambda_{n}\leq 1,\\ \end{split} (4)

which penalizes |wn|\left|{w_{n}}\right| for smaller λn\lambda_{n}. Lowering λn0\lambda_{n}\rightarrow 0 for frequencies outside transducer nn’s operating range has the desired effect on the maximizer |wn|0\left|{w_{n*}}\right|\rightarrow 0 and thus generalizes crossover designs to joint frequency-transducer weighted specifications of 𝚲\boldsymbol{\Lambda} as shown in Fig. 2.

Refer to caption
Figure 2: Max GRQ upper-bounds max GRPQ for a real sample mid-range, full-range and tweeter array. The maximizer 𝒘\boldsymbol{w}_{*} attenuates for frequencies outside each transducer’s operating range curve specified by 𝚲\boldsymbol{\Lambda}.

For computation, 𝚲\boldsymbol{\Lambda} also improves the condition number of 𝚪𝚺\boldsymbol{\Gamma}\boldsymbol{\Sigma} for maximizing (2) when combined with the following change of variables:

𝒘H𝑨𝒘𝒘H(𝑹+𝚪𝚺)𝒘=𝒚H𝚲𝑨𝚲𝒚𝒚H𝚲(𝑹+𝚪(𝚲2𝑰))𝚲𝒚,\begin{split}\frac{\boldsymbol{w}^{H}\boldsymbol{A}\boldsymbol{w}}{\boldsymbol{w}^{H}\left({\boldsymbol{R}+\boldsymbol{\Gamma}\boldsymbol{\Sigma}}\right)\boldsymbol{w}}&=\frac{\boldsymbol{y}^{H}\boldsymbol{\Lambda}\boldsymbol{A}\boldsymbol{\Lambda}\boldsymbol{y}}{\boldsymbol{y}^{H}\boldsymbol{\Lambda}\left({\boldsymbol{R}+\boldsymbol{\Gamma}(\boldsymbol{\Lambda}^{-2}-\boldsymbol{I})}\right)\boldsymbol{\Lambda}\boldsymbol{y}},\\ \end{split} (5)

where 𝒚=𝚲1𝒘\boldsymbol{y}=\boldsymbol{\Lambda}^{-1}\boldsymbol{w}. The modified GRPQ in (5) is now well-conditioned and bounded above by GRQ as expressed by

G(𝚲𝑨𝚲,𝑹^,𝒚)=G(𝑨,𝑹,𝒘)G(𝚲𝑹𝚲,𝑹^,𝒚),𝑹^=𝚲𝑹𝚲+𝚪(𝑰𝚲2)=𝚪+𝚲(𝑹𝚪)𝚲,\begin{split}G(\boldsymbol{\Lambda}\boldsymbol{A}\boldsymbol{\Lambda},\boldsymbol{\hat{R}},\boldsymbol{y})=G(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})\,G(\boldsymbol{\Lambda}\boldsymbol{R}\boldsymbol{\Lambda},\boldsymbol{\hat{R}},\boldsymbol{y}),\\ \boldsymbol{\hat{R}}=\boldsymbol{\Lambda}\boldsymbol{R}\boldsymbol{\Lambda}+\boldsymbol{\Gamma}(\boldsymbol{I}-\boldsymbol{\Lambda}^{2})=\boldsymbol{\Gamma}+\boldsymbol{\Lambda}\left({\boldsymbol{R}-\boldsymbol{\Gamma}}\right)\boldsymbol{\Lambda},\\ \end{split} (6)

where 𝑹^\boldsymbol{\hat{R}} attenuates non-diagonal entries of 𝑹\boldsymbol{R} by 𝚲2\boldsymbol{\Lambda}^{2}.

II-A Maximum Efficiency Constant Directivity Beamformer

In speaker array beamforming design, we can consider the following constant GRQ optimization argmax𝒘G(𝑪,𝑰,𝒘)\operatorname*{arg\,max}_{\boldsymbol{w}}G(\boldsymbol{C},\boldsymbol{I},\boldsymbol{w}) s.t. G(𝑨,𝑹,𝒘)=τG(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})=\tau, which maximizes an array’s efficiency defined by the ratio of the acoustic output power for covariance matrix 𝑪\boldsymbol{C}, to electric output power s.t. constant GDI τ\tau. The constraint is feasible for τ\tau between the smallest and largest generalized eigenvalues of 𝑨\boldsymbol{A}, 𝑹\boldsymbol{R}, and the solutions are not generally unique; consider diagonalizing matrix 𝑸\boldsymbol{Q} in (2):

τ=𝒙H𝑸𝒙𝒙H𝒙=𝒛H𝑬𝒛𝒛H𝒛,𝑸=𝑽𝑬𝑽H,𝒛=𝑽H𝒙,\begin{split}\tau=\frac{\boldsymbol{x}^{H}\boldsymbol{Q}\boldsymbol{x}}{\boldsymbol{x}^{H}\boldsymbol{x}}=\frac{\boldsymbol{z}^{H}\boldsymbol{E}\boldsymbol{z}}{\boldsymbol{z}^{H}\boldsymbol{z}},\quad\boldsymbol{Q}=\boldsymbol{V}\boldsymbol{E}\boldsymbol{V}^{H},\,\,\,\boldsymbol{z}=\boldsymbol{V}^{H}\boldsymbol{x},\end{split} (7)

where 𝑽=[𝒗1𝒗N]\boldsymbol{V}=\left[{\boldsymbol{v}_{1}\ldots\boldsymbol{v}_{N}}\right] is the column matrix of eigenvectors and 𝒆=diag[𝑬]=[e1,,eN]\boldsymbol{e}=\textbf{{diag}}\left[{\boldsymbol{E}}\right]=\left[{e_{1},\ldots,e_{N}}\right] s.t. enen+1e_{n}\leq e_{n+1} the ascending real-valued eigenvalues. For 𝒛H𝒛=1\boldsymbol{z}^{H}\boldsymbol{z}=1 constrained to the unit-circle, τ=n=1N|zn|2en\tau=\sum_{n=1}^{N}\left|{z_{n}}\right|^{2}e_{n} is satisfied by multiple non-negative weighting of 𝒆\boldsymbol{e} except at the extrema τ={e1,eN}\tau=\left\{{e_{1},e_{N}}\right\}. For the open interval e1<τ<eNe_{1}<\tau<e_{N}, we express GRQs (2), (7) as the quadratic equality constraint 𝒘H𝑫𝒘=0\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=0 via substitution for the Hermitian matrix 𝑫\boldsymbol{D}, which is shown to be indefinite:

𝑫=𝑨τ𝑹=𝑳𝑽(𝑬τ𝑰)𝑽H𝑳H,\begin{split}\boldsymbol{D}&=\boldsymbol{A}-\tau\boldsymbol{R}=\boldsymbol{L}\boldsymbol{V}\left({\boldsymbol{E}-\tau\boldsymbol{I}}\right)\boldsymbol{V}^{H}\boldsymbol{L}^{H},\end{split} (8)

where 𝒘n=𝑳H𝒗n𝒘nH𝑫𝒘n=enτ\boldsymbol{w}_{n}=\boldsymbol{L}^{-H}\boldsymbol{v}_{n}\,\Rightarrow\,\boldsymbol{w}_{n}^{H}\boldsymbol{D}\boldsymbol{w}_{n}=e_{n}-\tau.

We now formally define the maximum efficiency constant directivity MECD(𝑨,𝑹,τ,𝑪,𝒘)(\boldsymbol{A},\boldsymbol{R},\tau,\boldsymbol{C},\boldsymbol{w}) beamformer design as a quadratic equality constrained quadratic program given by

argmax𝒘𝒘H𝑪𝒘s.t. 𝒘H𝑫𝒘=0,𝒘H𝒘=1,\begin{split}\operatorname*{arg\,max}_{\boldsymbol{w}}\boldsymbol{w}^{H}\boldsymbol{C}\boldsymbol{w}\quad\textrm{s.t. }\,\,\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=0,\quad\boldsymbol{w}^{H}\boldsymbol{w}=1,\end{split} (9)

where Hermitian matrix 𝑪\boldsymbol{C} is the speaker covariances over a separate evaluation density fC(𝒓)f_{C}(\boldsymbol{r}) as in (1), and indefinite matrix 𝑫\boldsymbol{D} constrains the GDI to τ\tau. The necessary conditions for optimality are expressed via the Lagrangian function \mathcal{L}:

(𝒘,λ,μ)=𝒘H𝑪𝒘λ(𝒘H𝑫𝒘)μ(𝒘H𝒘1),/𝒘=(𝑪Tλ𝑫Tμ𝑰)𝒘,0=(/𝒘)=(𝑪λ𝑫μ𝑰)𝒘,0=/𝒘=(𝑪λ𝑫μ𝑰)𝒘,[λ]𝑫𝒘=(𝑪[μ]𝑰)𝒘,\begin{split}\mathcal{L}(\boldsymbol{w},\lambda,\mu)&=\boldsymbol{w}^{H}\boldsymbol{C}\boldsymbol{w}-\lambda(\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w})-\mu(\boldsymbol{w}^{H}\boldsymbol{w}-1),\\ {\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}}}&=\left({\boldsymbol{C}^{T}-\lambda\boldsymbol{D}^{T}-\mu\boldsymbol{I}}\right)\boldsymbol{w}^{*},\\ 0&=\left({{\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}}}}\right)^{*}=\left({\boldsymbol{C}-\lambda^{*}\boldsymbol{D}-\mu^{*}\boldsymbol{I}}\right)\boldsymbol{w},\\ 0&={\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}^{*}}}=\left({\boldsymbol{C}-\lambda\boldsymbol{D}-\mu\boldsymbol{I}}\right)\boldsymbol{w},\\ &\Rightarrow\Re\left[{\lambda}\right]\boldsymbol{D}\boldsymbol{w}=\left({\boldsymbol{C}-\Re\left[{\mu}\right]\boldsymbol{I}}\right)\boldsymbol{w},\\ \end{split} (10)

where μ\mu and λ\lambda are the Lagrangian multipliers and it suffices to restrict both μ,λ\mu,\lambda\in\mathcal{R} for Hermitian 𝑪,𝑨,𝑹\boldsymbol{C},\boldsymbol{A},\boldsymbol{R}. Substituting 𝑫𝒘\boldsymbol{D}\boldsymbol{w} in (10) into the constraints yields the critical points of μ\mu:

0=/λ=𝒘H𝑫𝒘=𝒘H(𝑪μ𝑰)𝒘,μ=𝒘H𝑪𝒘𝒘H𝒘=G(𝑪,𝑰,𝒘),\begin{split}0={\partial\,{\mathcal{L}}}/{\partial\,{\lambda}}&=\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=\boldsymbol{w}^{H}\left({\boldsymbol{C}-\mu\boldsymbol{I}}\right)\boldsymbol{w},\\ \Rightarrow\mu&=\frac{\boldsymbol{w}^{H}\boldsymbol{C}\boldsymbol{w}}{\boldsymbol{w}^{H}\boldsymbol{w}}=G(\boldsymbol{C},\boldsymbol{I},\boldsymbol{w}),\\ \end{split} (11)

which are bounded between smallest and largest eigenvalues of 𝑪\boldsymbol{C}. The stationary points of (𝒘,λ,μ)\mathcal{L}(\boldsymbol{w},\lambda,\mu) can be found via iterative methods such the differential multipliers (DM) [11], which at each iteration kk sets μk=G(𝑪,𝑰,𝒘k)\mu_{k}=G(\boldsymbol{C},\boldsymbol{I},\boldsymbol{w}_{k}), performs a round of gradient ascent and descent on 𝒘k\boldsymbol{w}_{k}, λk\lambda_{k} via (10), (11) with fixed step-sizes α𝒘\alpha_{\boldsymbol{w}}, αλ\alpha_{\lambda} respectively, and lastly normalizes 𝒘k\boldsymbol{w}_{k} to the unit-circle.

We can greatly improve the convergence rate of the gradient method by directly solving for λk\lambda_{k} via projecting 𝒘k\boldsymbol{w}_{k} along an unknown direction 𝒗\boldsymbol{v}_{*} onto the nearest feasible point satisfying the quadratic equality constraints given by

argmin𝒗𝒗H𝒗s.t. (𝒘k+𝒗)H𝑫(𝒘k+𝒗)=0,\begin{split}\operatorname*{arg\,min}_{\boldsymbol{v}}\boldsymbol{v}^{H}\boldsymbol{v}\quad\textrm{s.t. }\,\,\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right)=0,\end{split} (12)

before normalizing the projection 𝒘k+𝒗\boldsymbol{w}_{k}+\boldsymbol{v}_{*} to the unit-circle.

Require: Hermitian 𝑪\boldsymbol{C}, 𝑫=𝑨τ𝑹\boldsymbol{D}=\boldsymbol{A}-\tau\boldsymbol{R}, minG(𝑨,𝑹,𝒘)τmaxG(𝑨,𝑹,𝒘)\min G(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})\leq\tau\leq\max G(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w}), α>0\alpha>0 step-size, KK iterations, initial 𝒘0\boldsymbol{w}_{0}
Result: Solution and maximum to (9)
1 for k=1k=1 to KK do
2       𝒘=𝒘k1+α𝑪𝒘k1\boldsymbol{w}_{*}=\boldsymbol{w}_{k-1}+\alpha\boldsymbol{C}\boldsymbol{w}_{k-1},  Gradient ascent
3       𝒗=Proj(𝒘,𝑫)\boldsymbol{v}_{*}=\textrm{Proj}(\boldsymbol{w}_{*},\boldsymbol{D}),  Projection (12)
4       𝒘k=𝒘+𝒗𝒘+𝒗\boldsymbol{w}_{k}=\frac{\boldsymbol{w}_{*}+\boldsymbol{v}_{*}}{\left\lVert\boldsymbol{w}_{*}+\boldsymbol{v}_{*}\right\rVert},  Normalization
5      
6 end for
return 𝐰K\boldsymbol{w}_{K}
Algorithm 1 MECD Projected Ascent

This is expressed in the proposed MECD projected ascent (PA) Algorithm (1), which iterates between moving 𝒘\boldsymbol{w} along the gradient 𝑪𝒘\boldsymbol{C}\boldsymbol{w} of the objective in (9), solving for the minimum norm projection vector 𝒗\boldsymbol{v}_{*} for (12), and normalizing the projection to (𝒘k+𝒗)H(𝒘k+𝒗)=1\left({\boldsymbol{w}_{k}+\boldsymbol{v}_{*}}\right)^{H}\left({\boldsymbol{w}_{k}+\boldsymbol{v}_{*}}\right)=1. The minimum norm projection to (12) is a variant of the quadratic constrained least-squares problem in [12] that we generalize for indefinite 𝑫\boldsymbol{D}. Its feasible surface is the intersection of two hyper-ellipsoids characterized by 𝑨\boldsymbol{A} and τ𝑹\tau\boldsymbol{R} with necessary conditions satisfying the Lagrangian \mathcal{L} and multiplier λ\lambda:

(𝒗,λ)=𝒗H𝒗λ(𝒘k+𝒗)H𝑫(𝒘k+𝒗),/𝒗=𝒗λ𝑫T(𝒘k+𝒗),0=(/𝒗)=𝒗λ𝑫(𝒘k+𝒗),0=/𝒗=𝒗λ𝑫(𝒘k+𝒗),𝒗=[λ](𝑰[λ]𝑫)1𝑫𝒘k,\begin{split}\mathcal{L}(\boldsymbol{v},\lambda)&=\boldsymbol{v}^{H}\boldsymbol{v}-\lambda\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right),\\ {\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{v}}}&=\boldsymbol{v}^{*}-\lambda\boldsymbol{D}^{T}\left({\boldsymbol{w}_{k}^{*}+\boldsymbol{v}^{*}}\right),\\ 0&=\left({{\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{v}}}}\right)^{*}=\boldsymbol{v}-\lambda^{*}\boldsymbol{D}\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right),\\ 0&={\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{v}^{*}}}=\boldsymbol{v}-\lambda\boldsymbol{D}\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right),\\ \Rightarrow\boldsymbol{v}&=\Re\left[{\lambda}\right]\left({\boldsymbol{I}-\Re\left[{\lambda}\right]\boldsymbol{D}}\right)^{-1}\boldsymbol{D}\boldsymbol{w}_{k},\end{split} (13)

where it suffices to restrict λ\lambda\in\mathcal{R}. It is useful to express Hermitian 𝑫=𝑽𝑬𝑽H\boldsymbol{D}=\boldsymbol{V}\boldsymbol{E}\boldsymbol{V}^{H} along the column matrix of eigenvectors 𝑽\boldsymbol{V} and diagonal matrix of real-valued eigenvalues 𝑬\boldsymbol{E} so that λ\lambda deflates the latter:

𝒗=λ𝑽(𝑰λ𝑬)1𝑬𝑽H𝒘k,𝒘k+𝒗=(𝑰+λ𝑽(𝑰λ𝑬)1𝑬𝑽H)𝒘k=𝑽(𝑰λ𝑬)1𝑽H𝒘k,\begin{split}\boldsymbol{v}&=\lambda\boldsymbol{V}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-1}\boldsymbol{E}\boldsymbol{V}^{H}\boldsymbol{w}_{k},\\ \boldsymbol{w}_{k}+\boldsymbol{v}&=\left({\boldsymbol{I}+\lambda\boldsymbol{V}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-1}\boldsymbol{E}\boldsymbol{V}^{H}}\right)\boldsymbol{w}_{k}\\ &=\boldsymbol{V}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-1}\boldsymbol{V}^{H}\boldsymbol{w}_{k},\end{split} (14)

where 𝑰=𝑽𝑽H=𝑽(𝑰λ𝑬)1(𝑰λ𝑬)𝑽H\boldsymbol{I}=\boldsymbol{V}\boldsymbol{V}^{H}=\boldsymbol{V}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-1}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)\boldsymbol{V}^{H}. Substituting 𝒗\boldsymbol{v} into the constraints yields the critical points λ\lambda which are the roots of a quadratic secular equation S(λ)S(\lambda) variant [13]:

0=S(λ)=/λ=(𝒘k+𝒗)H𝑫(𝒘k+𝒗)=𝒖H(𝑰λ𝑬)H𝑬(𝑰λ𝑬)1𝒖,\begin{split}0&=S(\lambda)={\partial\,{\mathcal{L}}}/{\partial\,{\lambda}}=\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{w}_{k}+\boldsymbol{v}}\right)\\ &=\boldsymbol{u}^{H}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-H}\boldsymbol{E}\left({\boldsymbol{I}-\lambda\boldsymbol{E}}\right)^{-1}\boldsymbol{u},\end{split} (15)

where 𝒖=𝑽H𝒘k\boldsymbol{u}=\boldsymbol{V}^{H}\boldsymbol{w}_{k} and the inner terms are diagonal matrices. S(λ)S(\lambda) is therefore a sum of rational quadratic functions.

We can further characterize the minimizer (𝒗,λ)\left({\boldsymbol{v}_{*},\lambda_{*}}\right) via a slight modification of the first two theorems in the quadratic constrained least-squares solution [12] to support indefinite 𝑫\boldsymbol{D} for the squared norm (see Appendix derivations). Given a pair of critical points and solutions (𝒗1,λ1)\left({\boldsymbol{v}_{1},\lambda_{1}}\right) and (𝒗2,λ2)\left({\boldsymbol{v}_{2},\lambda_{2}}\right) satisfying (14), (15), the difference of the squared norms between vectors 𝒗1,𝒗2\boldsymbol{v}_{1},\boldsymbol{v}_{2} relates to the difference in multipliers λ1λ2\lambda_{1}-\lambda_{2}:

λ1λ22(𝒗1𝒗2)H𝑫(𝒗1𝒗2)=𝒗1H𝒗1𝒗2H𝒗2,\begin{split}\frac{\lambda_{1}-\lambda_{2}}{2}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)&=\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{1}-\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{2},\end{split} (16)

and the squared norm of the vector difference 𝒗1𝒗2\boldsymbol{v}_{1}-\boldsymbol{v}_{2} relates to the sum of multipliers λ1+λ2\lambda_{1}+\lambda_{2}:

λ1+λ22(𝒗1𝒗2)H𝑫(𝒗1𝒗2)=(𝒗1𝒗2)H(𝒗1𝒗2).\begin{split}\frac{\lambda_{1}+\lambda_{2}}{2}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)&=\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right).\end{split} (17)

Unlike [12], the term (𝒗1𝒗2)H𝑫(𝒗1𝒗2)\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right) may be negative for indefinite 𝑫\boldsymbol{D} such that choosing the min{λ1,λ2}\min\left\{{\lambda_{1},\lambda_{2}}\right\} via (16) is insufficient for determining the smaller norm between 𝒗1,𝒗2\boldsymbol{v}_{1},\boldsymbol{v}_{2}. Conversely, (17) no longer ensures that there is at most one solution λ<0\lambda<0. Taking the product of the left and right-hand sides of (16), (17) however gives

λ12λ224=(𝒗1H𝒗1𝒗2H𝒗2)(𝒗1𝒗2)H(𝒗1𝒗2)((𝒗1𝒗2)H𝑫(𝒗1𝒗2))2,\begin{split}\frac{\lambda_{1}^{2}-\lambda^{2}_{2}}{4}&=\frac{\left({\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{1}-\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{2}}\right)\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)}{\left({\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)}\right)^{2}},\end{split} (18)

which implies that picking the min{λ12,λ22}\min\left\{{\lambda_{1}^{2},\lambda_{2}^{2}}\right\} gives the smaller norm between 𝒗1,𝒗2\boldsymbol{v}_{1},\boldsymbol{v}_{2}. Therefore, the multiplier λ\lambda_{*} nearest to 0 and its corresponding vector 𝒗\boldsymbol{v}_{*} after substitution into (14) is the minimum norm solution under projection to (12). Methods for finding λ\lambda_{*} are discussed in Section III.

We note that a semi-definite program (SDP) and its relaxation of MECD in (9) is also possible as the number constraints tightly bounds the rank of the solution [14, 15, 16]. Formally, the MECD-SDP for unknown Hermitian and semi-definite matrix 𝑾0\boldsymbol{W}\succeq 0 and the matrix trace operator tr[]\textbf{{tr}}\left[{*}\right] is given by

argmax𝑾tr[𝑪𝑾]s.t. tr[𝑫𝑾]=0,tr[𝑾]=1,\begin{split}\operatorname*{arg\,max}_{\boldsymbol{W}}\textbf{{tr}}\left[{\boldsymbol{C}\boldsymbol{W}}\right]\quad\textrm{s.t. }\,\,\textbf{{tr}}\left[{\boldsymbol{D}\boldsymbol{W}}\right]=0,\quad\textbf{{tr}}\left[{\boldsymbol{W}}\right]=1,\end{split} (19)

which for Hermitian matrices 𝑪\boldsymbol{C}, 𝑫\boldsymbol{D} ensures a real-valued trace of two constraints, and a rank-11 solution 𝑾=𝒘𝒘H\boldsymbol{W}=\boldsymbol{w}\boldsymbol{w}^{H}. The interior-point method (IPM) therefore finds the maximizer within polynomial time as the problem is convex.

II-B Maximum Sensitivity Constant Directivity Beamformer

If the evaluation region is conventional111Speaker’s acoustic response is measured at single point 𝒓\boldsymbol{r} at 11m distance, then MECD maximizes the loudspeaker sensitivity [17] which we show has an analytic secular equation solution. Constraining the acoustic response to also be distortionless at the measurement point 𝒓\boldsymbol{r} reduces MECD into the proposed maximum sensitivity constant directivity MSCD(𝑨,𝑹,τ,𝒄,𝒘)(\boldsymbol{A},\boldsymbol{R},\tau,\boldsymbol{c},\boldsymbol{w}) quadratic program with both quadratic and linear constraint beamformer:

argmin𝒘𝒘H𝒘s.t. 𝒘H𝑫𝒘=0,𝒄H𝒘=1,\begin{split}\operatorname*{arg\,min}_{\boldsymbol{w}}\boldsymbol{w}^{H}\boldsymbol{w}&\quad\textrm{s.t. }\,\,\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=0,\quad\boldsymbol{c}^{H}\boldsymbol{w}=1,\\ \end{split} (20)

whereby 𝒄=𝒅(𝒓)\boldsymbol{c}=\boldsymbol{d}(\boldsymbol{r}) and the acoustic output at 𝒓\boldsymbol{r} is constrained to unity 𝒄H𝒘=1\boldsymbol{c}^{H}\boldsymbol{w}=1 and therefore has unit acoustic power 𝒘H𝑪𝒘=1\boldsymbol{w}^{H}\boldsymbol{C}\boldsymbol{w}=1 for 𝑪=𝒅(𝒓)𝒅(𝒓)H\boldsymbol{C}=\boldsymbol{d}(\boldsymbol{r})\boldsymbol{d}(\boldsymbol{r})^{H}. This problem is a variant of [13, 18] where the latter’s quadratic equality is set to unity instead of zero. The MSCD extrema are found at the critical points of the Lagrangian function \mathcal{L} and multipliers μ\mu and λ\lambda:

(𝒘,λ,μ)=𝒘H𝒘λ(𝒘H𝑫𝒘)μ(𝒄H𝒘1)μ(𝒄T𝒘1),/𝒘=(𝑰λ𝑫T)𝒘μ𝒄,0=(/𝒘)=(𝑰λ𝑫)𝒘μ𝒄,0=/𝒘=(𝑰λ𝑫)𝒘μ𝒄,𝒘=μ(𝑰[λ]𝑫)1𝒄,\begin{split}\mathcal{L}(\boldsymbol{w},\lambda,\mu)&=\boldsymbol{w}^{H}\boldsymbol{w}-\lambda(\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w})\\ &-\mu(\boldsymbol{c}^{H}\boldsymbol{w}-1)-\mu^{*}(\boldsymbol{c}^{T}\boldsymbol{w}^{*}-1),\\ {\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}}}&=\left({\boldsymbol{I}-\lambda\boldsymbol{D}^{T}}\right)\boldsymbol{w}^{*}-\mu\boldsymbol{c}^{*},\\ 0&=\left({{\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}}}}\right)^{*}=\left({\boldsymbol{I}-\lambda^{*}\boldsymbol{D}}\right)\boldsymbol{w}-\mu^{*}\boldsymbol{c},\\ 0&={\partial\,{\mathcal{L}}}/{\partial\,{\boldsymbol{w}^{*}}}=\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)\boldsymbol{w}-\mu^{*}\boldsymbol{c},\\ &\Rightarrow\boldsymbol{w}=\mu^{*}\left({\boldsymbol{I}-\Re\left[{\lambda}\right]\boldsymbol{D}}\right)^{-1}\boldsymbol{c},\end{split} (21)

where it suffices to restrict λ\lambda\in\mathcal{R} for Hermitian 𝑨,𝑹\boldsymbol{A},\boldsymbol{R}. Substituting 𝒘\boldsymbol{w} into the constraints yields the critical points:

0=/μ=𝒄H𝒘1μ=(𝒄H(𝑰λ𝑫)1𝒄)1,𝒘=(𝑰λ𝑫)1𝒄𝒄H(𝑰λ𝑫)1𝒄,0=/λ=𝒘H𝑫𝒘=𝒄H(𝑰λ𝑫)H𝑫(𝑰λ𝑫)1𝒄,\begin{split}0={\partial\,{\mathcal{L}}}/{\partial\,{\mu}}&=\boldsymbol{c}^{H}\boldsymbol{w}-1\,\,\,\Rightarrow\,\,\,\mu^{*}=\left({\boldsymbol{c}^{H}\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)^{-1}\boldsymbol{c}}\right)^{-1},\\ \Rightarrow\quad&\boldsymbol{w}=\frac{\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)^{-1}\boldsymbol{c}}{\boldsymbol{c}^{H}\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)^{-1}\boldsymbol{c}},\\ 0={\partial\,{\mathcal{L}}}/{\partial\,{\lambda}}&=\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=\boldsymbol{c}^{H}\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)^{-H}\boldsymbol{D}\left({\boldsymbol{I}-\lambda\boldsymbol{D}}\right)^{-1}\boldsymbol{c},\end{split} (22)

which restricts μ\mu\in\mathcal{R} as the eigenvalues of 𝑰λ𝑫\boldsymbol{I}-\lambda\boldsymbol{D} are also real. The critical points λ\lambda are the real-valued roots of S(λ)=/λS(\lambda)={\partial\,{\mathcal{L}}}/{\partial\,{\lambda}} in (22), analogous to that of (15) and given by

S(λ)=𝒘H𝑫𝒘=𝒖H(𝑰λ𝑬)H𝑬(𝑰λ𝑬)1𝒖,𝑫=𝑽𝑬𝑽H,𝑰λ𝑫=𝑽(𝑰λ𝑬)𝑽H,\begin{split}S(\lambda)&=\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}=\boldsymbol{u}^{H}(\boldsymbol{I}-\lambda\boldsymbol{E})^{-H}\boldsymbol{E}(\boldsymbol{I}-\lambda\boldsymbol{E})^{-1}\boldsymbol{u},\\ \boldsymbol{D}&=\boldsymbol{V}\boldsymbol{E}\boldsymbol{V}^{H},\quad\boldsymbol{I}-\lambda\boldsymbol{D}=\boldsymbol{V}(\boldsymbol{I}-\lambda\boldsymbol{E})\boldsymbol{V}^{H},\\ \end{split} (23)

where 𝒖=𝑽H𝒄\boldsymbol{u}=\boldsymbol{V}^{H}\boldsymbol{c}, column eigenvector matrix 𝑽\boldsymbol{V} and diagonal matrix of real-valued eigenvalues 𝑬\boldsymbol{E} of 𝑫\boldsymbol{D}. The minimizer 𝒘\boldsymbol{w}_{*} is therefore found at the root λ\lambda_{*} nearest to 0.

III Quadratic Secular Equation Root-Finding

The secular equations S(λ)S(\lambda) in (15), (23) can be expressed in rational form w.r.t. reciprocal eigenvalue poles bn=en1b_{n}=e_{n}^{-1}:

S(λ)=n=1Nununen(1λen)2=n=1Nanbn(λbn)2,\begin{split}S(\lambda)&=\sum_{n=1}^{N}\frac{u_{n}u_{n}^{*}e_{n}}{\left({1-\lambda e_{n}}\right)^{2}}=\sum_{n=1}^{N}\frac{a_{n}b_{n}}{\left({\lambda-b_{n}}\right)^{2}},\end{split} (24)

where unu_{n} and ene_{n} are the nnth elements of 𝒖\boldsymbol{u} and diag[𝑬]\textbf{{diag}}\left[{\boldsymbol{E}}\right] from (15), (23) respectively, and an=|un|2a_{n}=\left|{u_{n}}\right|^{2}. It is also useful to express S(λ)=S-(λ)+S+(λ)S(\lambda)=S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda)+S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda) and its first derivative in terms of the set of negative and positive poles B-={bn|bn<0}B_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}=\left\{{b_{n}|\,b_{n}<0}\right\} and B+={bn|bn>0}B_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}=\left\{{b_{n}|\,b_{n}>0}\right\} respectively given by

S-(λ)=bnB-anbn(λbn)2,S-(λ)λ=bnB-2an|bn|(λbn)3,S+(λ)=bnB+anbn(λbn)2,S+(λ)λ=bnB+2anbn(λbn)3.\begin{split}S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda)&=\sum_{b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}}\frac{a_{n}b_{n}}{\left({\lambda-b_{n}}\right)^{2}},\,\,\,\,\frac{\partial\,{S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda)}}{\partial\,{\lambda}}=\sum_{b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}}\frac{2a_{n}\left|{b_{n}}\right|}{\left({\lambda-b_{n}}\right)^{3}},\\ S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda)&=\sum_{b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}}\frac{a_{n}b_{n}}{\left({\lambda-b_{n}}\right)^{2}},\,\,\,\,\frac{\partial\,{S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda)}}{\partial\,{\lambda}}=\sum_{b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}}\frac{-2a_{n}b_{n}}{\left({\lambda-b_{n}}\right)^{3}}.\end{split} (25)

Unlike the linear and quadratic secular equations in [13], S(λ)S(\lambda) is not monotonic in most intervals between consecutive poles due to the presence of different signed bnb_{n} in the numerator terms. The one exception is the tightest interval bounding 0 which contains the smallest magnitude negative and positive poles b-=max(B-)b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}=\max\left({B_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}}\right), b+=min(B+)b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}=\min\left({B_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}}\right) respectively. This is a consequence of (25) where the first derivatives given by

S-(λ>b-)λ>0,S+(λ<b+)λ>0,\begin{split}\frac{\partial\,{S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda>b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}})}}{\partial\,{\lambda}}>0,\quad\frac{\partial\,{S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}})}}{\partial\,{\lambda}}>0,\end{split} (26)

in the intervals outside these poles are bounded and positive.

Refer to caption
Figure 3: S(λ)S(\lambda) has positive pole B+={1}B_{\texttt{+}}=\left\{{1}\right\}, negative poles B-={2,1}B_{\texttt{-}}=\left\{{-2,-1}\right\}, and two roots. The monotonic increasing S(b-<λ<b+)S(b_{\texttt{-}}<\lambda<b_{\texttt{+}}) bounds the root λ\lambda_{*} nearest to 0 and restricts other roots to outside λ\lambda_{*} reflected across b-b_{\texttt{-}}, b+b_{\texttt{+}}.

Moreover, we show as in Fig. 3 that the intersecting interval b-<λ<b+b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}} contains exactly one real-valued root λ\lambda_{*} that is also the root nearest to 0 and therefore equivalent to the critical point and solutions to (12), (20). The proof is as follows:

The function S(b-<λ<b+)S(b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}) where S(λ=b-)=S(\lambda=b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}})=-\infty, S(λ=b+)=+S(\lambda=b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}})=+\infty is continuous and so the intermediate value theorem guarantees the existence of at least one real-valued root in the interval. Its first derivative S(b-<λ<b+)λ>0\frac{\partial\,{S(b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}})}}{\partial\,{\lambda}}>0 is strictly positive in the interval via (26) and therefore contains exactly one root λ\lambda_{*} that can easily be found via bracketing methods such as [19]. To show that λ\lambda_{*} is indeed the nearest to 0, observe that reflecting λ\lambda over b-b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}} or b+b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}} in the interval moves λ\lambda closer to the remaining poles in BB_{-}, B+B_{+} respectively:

|λbn|>|2b-λbn|,bnB-{b-},λ>b-,|λbn|>|2b+λbn|,bnB+{b+},λ<b+,\begin{split}\left|{\lambda-b_{n}}\right|&>\left|{2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda-b_{n}}\right|,\quad b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}\setminus\left\{{b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}}\right\},\,\,\,\lambda>b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}},\\ \left|{\lambda-b_{n}}\right|&>\left|{2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda-b_{n}}\right|,\quad b_{n}\in B_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}\setminus\left\{{b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}}\right\},\,\,\,\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}},\end{split} (27)

which with (26) places bounds on S-(λ)S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda), S+(λ)S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda) given by

S-(λ)>S-(2b-λ),S-(λ)<S-(2b+λ),λ>b-,S+(λ)<S+(2b+λ),S+(λ)>S+(2b-λ),λ<b+,\begin{split}S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda)>S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}\left({2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda}\right),\,\,\,S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}(\lambda)<S_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}\left({2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda}\right),&\,\,\,\lambda>b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}},\\ S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda)<S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}\left({2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda}\right),\,\,\,S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}(\lambda)>S_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}\left({2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda}\right),&\,\,\,\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}},\\ \end{split} (28)

and as a result induces bounds on S(λ)S(\lambda) after summation:

S(2b-λ)<S(λ)<S(2b+λ),b-<λ<b+,S(2b-λ)<S(λ)<0,b-<λ<λ, 0<S(λ)<S(2b+λ),λ<λ<b+.\begin{split}S(2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda)<S(\lambda)<S(2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda),&\quad b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}},\\ \Rightarrow\,S(2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda)<S(\lambda)<0,&\quad b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}<\lambda<\lambda_{*},\\ \Rightarrow\,0<S(\lambda)<S(2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda),&\quad\lambda_{*}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}.\end{split} (29)

This implies there are no roots in the regions reflected across b-b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}} and b+b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}} given by 2b-λ<λ<b-2b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}}-\lambda_{*}<\lambda<b_{\raisebox{0.0pt}{\scalebox{0.85}{-}}} and b+<λ<2b+λb_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}<\lambda<2b_{\raisebox{0.0pt}{\scalebox{0.55}{+}}}-\lambda_{*} respectively and that λ\lambda_{*} must be nearest to 0.

IV Experiments

We first compare MECD solver performance for N=8N=8 elements with randomized complex-valued covariances 𝑨,𝑹,𝑪\boldsymbol{A},\boldsymbol{R},\boldsymbol{C} in Fig. 4. Our PA method reduces the number of iterations to convergence of the baseline DM method from 5050 to 55. Larger step-sizes in the latter cause oscillations between the objective and constraint, and also exhibit to a lesser degree in Matlab’s fmincon IPM solver. SDPT3 [20] for SDP shows similar convergence rates of the objective to PA but requires more compute in solving for N2N^{2} number of variables instead of NN.

Refer to caption
Figure 4: MECD solver convergence rates for efficiency G(𝑪,𝑰,𝒘)G(\boldsymbol{C},\boldsymbol{I},\boldsymbol{w}) objective and constant GDI G(𝑨,𝑹,𝒘)=6 dBG(\boldsymbol{A},\boldsymbol{R},\boldsymbol{w})=6\textrm{ dB} constraint are ranked PA (α=1,𝒘0=𝟏)(\alpha=1,\boldsymbol{w}_{0}=\boldsymbol{1}) >> SDP >> IPM >> DM (α𝒘=1e2\alpha_{\boldsymbol{w}}=1e-2, αλ=1e3\alpha_{\lambda}=1e-3 step-sizes).

We then compare GRQ to GRPQ beamformer designs for a measured sample N=3N=3 mid-range, full-range, and tweeter array with 𝑨,𝑹,𝑪=𝑨\boldsymbol{A},\boldsymbol{R},\boldsymbol{C}=\boldsymbol{A} integrated over densities from Fig. 1, frequency weighting Λ\Lambda from Fig. 2, and constant GDI min{6, 10log10max(τ)} dB\min\left\{{6,\,10\log_{10}\max(\tau)}\right\}\textrm{ dB} for MECD and MSCD. GRPQ beam patterns shown in Fig. 5 exhibit more regular responses inline with expected transducer operating frequency ranges; directivity grows increasingly omni-directional in low-frequency as only the mid-range is active. MECD beam patterns exhibit less lobing than MSCD and their maximum GDI counterparts.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Contour plots compare GRQ to GRPQ beam patterns constrained to each transducer’s operating ranges across frequency on the horizontal plane.

V Conclusion

We introduced an electrical power penalty term to GRQ for regularizing frequency-dependent heterogeneous speaker array beamformer designs such as MECD and MSCD. Characterizing the projection sub-problem in MECD-PA and MSCD yielded a fast quadratic secular equation root-finding solution. The PA method accelerated convergence rates over the baseline DM, IPM, and SDP methods. GRPQ solutions exhibited more regular beam patterns than GRQ for a sample 33-way system. Inequality constrained GDI can be considered in future works.

The necessary conditions for (𝒗,λ)(\boldsymbol{v},\lambda) in (12) are given by

(𝒘+𝒗)H𝑫(𝒘+𝒗)=0,𝒗=λ𝑫(𝒘+𝒗),\begin{split}\left({\boldsymbol{w}+\boldsymbol{v}}\right)^{H}\boldsymbol{D}\left({\boldsymbol{w}+\boldsymbol{v}}\right)&=0,\quad\boldsymbol{v}=\lambda\boldsymbol{D}\left({\boldsymbol{w}+\boldsymbol{v}}\right),\end{split} (30)

where several useful relations are derived for characterizing the minimizer. Expanding the equality constraint in (30) relates the sum of symmetric terms to the sum of mixed terms:

𝒘H𝑫𝒘+𝒗H𝑫𝒗=(𝒗H𝑫𝒘+𝒘H𝑫𝒗).\begin{split}\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}+\boldsymbol{v}^{H}\boldsymbol{D}\boldsymbol{v}&=-\left({\boldsymbol{v}^{H}\boldsymbol{D}\boldsymbol{w}+\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}}\right).\end{split} (31)

It is possible to relate the squared norm of 𝒗\boldsymbol{v} from (30) to the difference in squared norms under 𝑫\boldsymbol{D} via (31):

𝒗H𝒗=λ2(𝒗H𝑫𝒘+𝒘H𝑫𝒗)+λ𝒗H𝑫𝒗=λ2(𝒗H𝑫𝒗𝒘H𝑫𝒘).\begin{split}\boldsymbol{v}^{H}\boldsymbol{v}&=\frac{\lambda}{2}\left({\boldsymbol{v}^{H}\boldsymbol{D}\boldsymbol{w}+\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}}\right)+\lambda\boldsymbol{v}^{H}\boldsymbol{D}\boldsymbol{v}\\ &=\frac{\lambda}{2}\left({\boldsymbol{v}^{H}\boldsymbol{D}\boldsymbol{v}-\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}}\right).\end{split} (32)

For (𝒗1,λ1)(\boldsymbol{v}_{1},\lambda_{1}), (𝒗2,λ2)(\boldsymbol{v}_{2},\lambda_{2}), the mixed products from (30) are given:

𝒗2H𝒗1=λ1𝒗2H𝑫𝒘+λ1𝒗2H𝑫𝒗1,𝒗1H𝒗2=λ2𝒗1H𝑫𝒘+λ2𝒗1H𝑫𝒗2,\begin{split}\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}&=\lambda_{1}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{w}+\lambda_{1}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{1},\\ \boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}&=\lambda_{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{w}+\lambda_{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{2},\end{split} (33)

where their arithmetic mean is equivalent under conjugation 𝒗2H𝒗1=12(𝒗2H𝒗1+(𝒗1H𝒗2)H)\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}=\frac{1}{2}\left({\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}+\left({\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}}\right)^{H}}\right) and 𝒗1H𝒗2=(𝒗2H𝒗1)H\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}=\left({\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}}\right)^{H}:

𝒗2H𝒗1=λ1𝒗2H𝑫𝒘+λ2𝒘H𝑫𝒗12+λ1+λ22𝒗2H𝑫𝒗1,𝒗1H𝒗2=λ1𝒘H𝑫𝒗2+λ2𝒗1H𝑫𝒘2+λ1+λ22𝒗1H𝑫𝒗2.\begin{split}\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}&=\frac{\lambda_{1}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{w}+\lambda_{2}\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}_{1}}{2}+\frac{\lambda_{1}+\lambda_{2}}{2}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{1},\\ \boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}&=\frac{\lambda_{1}\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}_{2}+\lambda_{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{w}}{2}+\frac{\lambda_{1}+\lambda_{2}}{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{2}.\\ \end{split} (34)

Summing (34) and substituting (31) gives

𝒗2H𝒗1+𝒗1H𝒗2=λ1+λ22(𝒗2H𝑫𝒗1+𝒗1H𝑫𝒗2𝒘H𝑫𝒘)λ1𝒗2H𝑫𝒗2+λ2𝒗1H𝑫𝒗12.\begin{split}\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}+\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}&=\frac{\lambda_{1}+\lambda_{2}}{2}\left({\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{1}+\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{2}-\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}}\right)\\ &-\frac{\lambda_{1}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{2}+\lambda_{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{1}}{2}.\end{split} (35)

Subtracting (35) from the sum of (𝒗1,λ1)(\boldsymbol{v}_{1},\lambda_{1}), (𝒗2,λ2)(\boldsymbol{v}_{2},\lambda_{2}) substituted into (32) gives 𝒗1H𝒗1+𝒗2H𝒗2𝒗2H𝒗1𝒗1H𝒗2=(𝒗1𝒗2)H(𝒗1𝒗2)\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{1}+\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{2}-\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}-\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}=\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right)^{H}\left({\boldsymbol{v}_{1}-\boldsymbol{v}_{2}}\right) which verifies (17). Next, observe that the arithmetic difference is equivalent under conjugation:

0=𝒗2H𝒗1(𝒗1H𝒗2)H=𝒗1H𝒗2(𝒗2H𝒗1)H,0=λ1𝒗2H𝑫𝒘λ2𝒘H𝑫𝒗12+λ1λ22𝒗2H𝑫𝒗1,0=λ1𝒘H𝑫𝒗2λ2𝒗1H𝑫𝒘2+λ1λ22𝒗1H𝑫𝒗2,\begin{split}0&=\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}-\left({\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}}\right)^{H}=\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{2}-\left({\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{1}}\right)^{H},\\ \Rightarrow 0&=\frac{\lambda_{1}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{w}-\lambda_{2}\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}_{1}}{2}+\frac{\lambda_{1}-\lambda_{2}}{2}\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{1},\\ \Rightarrow 0&=\frac{\lambda_{1}\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{v}_{2}-\lambda_{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{w}}{2}+\frac{\lambda_{1}-\lambda_{2}}{2}\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{2},\\ \end{split} (36)

whereby taking the summation and substituting (31) gives

0=λ1λ22(𝒗2H𝑫𝒗1+𝒗1H𝑫𝒗2𝒘H𝑫𝒘)+λ2𝒗1𝑫𝒗1λ1𝒗2𝑫𝒗22.\begin{split}0&=\frac{\lambda_{1}-\lambda_{2}}{2}\left({\boldsymbol{v}_{2}^{H}\boldsymbol{D}\boldsymbol{v}_{1}+\boldsymbol{v}_{1}^{H}\boldsymbol{D}\boldsymbol{v}_{2}-\boldsymbol{w}^{H}\boldsymbol{D}\boldsymbol{w}}\right)\\ &+\frac{\lambda_{2}\boldsymbol{v}_{1}\boldsymbol{D}\boldsymbol{v}_{1}-\lambda_{1}\boldsymbol{v}_{2}\boldsymbol{D}\boldsymbol{v}_{2}}{2}.\end{split} (37)

Subtracting (37) from the difference 𝒗1H𝒗1𝒗2H𝒗2\boldsymbol{v}_{1}^{H}\boldsymbol{v}_{1}-\boldsymbol{v}_{2}^{H}\boldsymbol{v}_{2} after substitution into (32) verifies (16) after combining the terms.

References

  • [1] D. B. Ward, R. A. Kennedy, and R. C. Williamson, Constant directivity beamforming.   Springer, 2001, pp. 3–17.
  • [2] G. Huang, J. Chen, and J. Benesty, “Insights into frequency-invariant beamforming with concentric circular microphone arrays,” IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 12, 2018.
  • [3] F. Zotter, H. Pomberger, and A. Schmeder, “Efficient directivity pattern control for spherical loudspeaker arrays,” Journal of the Acoustical Society of America, vol. 123, no. 5, p. 3643, 2008.
  • [4] J. Wang, W. Zhang, C. Pan, J. Chen, and J. Benesty, “On the design of differential loudspeaker arrays with broadside radiation patterns,” JASA Express Letters, vol. 1, no. 8, 2021.
  • [5] F. Miotello, A. Bernardini, D. Albertini, F. Antonacci, and A. Sarti, “Steerable first-order differential loudspeaker arrays with monopole and dipole elements,” in Convention of the European Acoustics Association, Forum Acusticum, 2023, pp. 11–15.
  • [6] R. Berkun, I. Cohen, and J. Benesty, “Combined beamformers for robust broadband regularized superdirective beamforming,” IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23, no. 5, 2015.
  • [7] M. Crocco and A. Trucco, “Design of robust superdirective arrays with a tunable tradeoff between directivity and frequency-invariance,” IEEE Trans. Signal Process., vol. 59, no. 5, 2011.
  • [8] L. C. Parra, “Steerable frequency-invariant beamforming for arbitrary arrays,” The Journal of the Acoustical Society of America, vol. 119, no. 6, pp. 3839–3847, 2006.
  • [9] Y. Luo, “Spherical harmonic covariance and magnitude function encodings for beamformer design,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2021, pp. 1–17, 2021.
  • [10] R. Horn and C. Johnson, Matrix Analysis.   Cambridge University Press, 1990.
  • [11] J. Platt and A. Barr, “Constrained differential optimization,” in Neural Information Processing Systems, D. Anderson, Ed., vol. 0.   American Institute of Physics, 1987.
  • [12] W. Gander, “Least squares with a quadratic constraint,” Numerische Mathematik, vol. 36, pp. 291–307, 1980.
  • [13] G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM Review, vol. 15, no. 2, p. 330, 1973.
  • [14] A. Shapiro, “Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis,” Psychometrika, vol. 47, pp. 187–199, 1982.
  • [15] A. I. Barvinok, “Problems of distance geometry and convex properties of quadratic maps,” Discrete & Computational Geometry, vol. 13, pp. 189–202, 1995.
  • [16] G. Pataki, “On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues,” Mathematics of Operations Research, vol. 23, 05 1998.
  • [17] D. Davis, E. Patronis, and P. Brown, Sound System Engineering 4e.   Taylor & Francis, 2013, pp. 365–366.
  • [18] W. Gander, G. H. Golub, and U. Von Matt, “A constrained eigenvalue problem,” Linear Algebra and its applications, vol. 114, pp. 815–839, 1989.
  • [19] R. P. Brent, “An algorithm with guaranteed convergence for finding a zero of a function,” The Computer Journal, vol. 14, no. 4, 1971.
  • [20] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3 — a matlab software package for semidefinite programming, version 1.3,” Optimization methods and software, vol. 11, no. 1-4, pp. 545–581, 1999.