This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Conservative nonconforming virtual element method for stationary incompressible magnetohydrodynamics thanks: .

Xiaojing Dong [email protected] Yunqing Huang [email protected] Tianwen Wang [email protected] Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing &\& Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, P.R. China
Abstract

In this paper, we propose a conservative nonconforming virtual element method for the full stationary incompressible magnetohydrodynamics model. We leverage the virtual element satisfactory divergence-free property to ensure mass conservation for the velocity field. The condition of the well-posedness of the proposed method, as well as the stability are derived. We establish optimal error estimates in the discrete energy norm for both the velocity and magnetic field. Furthermore, by employing a new technique, we obtain the optimal error estimates in L2L^{2}-norm without any additional conditions. Finally, numerical experiments are presented to validate the theoretical analysis. In the implementation process, we adopt the effective Oseen iteration to handle the nonlinear system.

Keywords: Virtual element method; Stationary incompressible magnetohydrodynamics; error estimates; Polygonal meshes

1 Introduction

Incompressible magnetohydrodynamics (MHD) equations, coupled by multiple physical fields, model the interaction between conducting fluid and an external magnetic field. MHD equations are significant in the regions of physics and engineering, such as cooling of liquid metal in nuclear reactors, confinement for controlled thermonuclear fusion, magnetic fluid motors and the propagation of radio waves in the ionosphere [19, 15].

In the last decades, there has been a lot of research on numerical solutions of incompressible MHD equations (see [21, 19, 20, 22, 25, 18, 17, 24, 23, 31] and the references therein). Regarding handling of nonlinear terms, the classic finite element iterative methods were designed in [18, 17]. In the most mixed finite element methods, the divergence-free restriction is imposed in the weak sense and the numerical solutions violate the physical properties. The divergence-free methods have been received widely attention for incompressible MHD equations. A mixed finite element method [20] (FEM) and three interior penalty discontinuous Galerkin (DG) methods [25] for incompressible MHD were developed, with preserving exactly divergence-free velocity. Literatures [24, 23] studied structure-preserving FEMs of MHD. Moreover, a fully divergence-free FEM for MHD was proposed in [22], where the magnetic field is approximated by a magnetic vector potential.

Virtual element method (VEM), introduced with one of the simplest examples in [5, 6], is a recent technique for numerical approximation of partial differential equations and is regarded as the extension of classic FEM onto polygonal/polyhedral meshes. VEM does not require that shape functions on element are explicitly constructed, but the discrete algebraic systems can be obtained by using the degrees of freedom. An arbitrary order nonconforming virtual element was presented and applied to the Poisson equation [16] and the Stokes equations [12, 28]. The literature [8] designed an 𝑯1\boldsymbol{H}^{1}-conforming Stokes-type virtual element (k2)(k\geq 2) such that the associated discrete kernel is divergence-free. In [4, 1], the stream virtual element formulations were studied by using a suitable stream function space to approximate velocity. Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions were investigated in [32]. Based on the de Rham complex, the reference [35] constructed a nonconforming virtual element for Stokes problem, which is piecewise divergence-free in discrete kernel. When utilizing the virtual element proposed in [35] to solve the Navier-Stokes equations, to ensure that the constructed discrete VEM scheme achieves optimal convergence with suitable precision, the computable L2L^{2}-projection onto the polynomials of degree k\leq k is required. In order to calculate L2L^{2}-projection, the enhanced version based on the nonconforming virtual element [35] was presented in [34] for the Navier-Stokes equations. In order to derive optimal convergence with suitable precision, the enhanced version of the H1H^{1}-conforming virtual element proposed in [5] was investigated in [2] for the reaction-diffusion problems. VEM has additionally been used to solve the resistive MHD model [3, 7].

Motivated by [3, 7], we consider a nonconforming VEM for the 2D full stationary incompressible MHD equations. Compared to the work in [3, 7], our research has two main differences: first, the model discussed here is more complex than the resistive MHD; second, the study in [3, 7] focuses on low-order virtual elements, while we develop an arbitrary order (k1k\geq 1) scheme on shape-regular polygonal meshes. For keeping mass conservation, the velocity and the pressure are approximated by the enhanced nonconforming virtual element space and discontinuous piecewise polynomials. The discrete velocity is piecewise divergence-free. Each component of the magnetic field is approximated by the enhanced H1H^{1}-conforming virtual element space. The treatment approaches for the bilinear term related to the magnetic field and the complex trilinear terms are provided. We prove the stability of the discrete formulation and establish conditions for uniqueness of the solution. Additionally, we derive optimal error estimates in the discrete energy norm and L2L^{2}-norm for both velocity and magnetic field, as well as in the L2L^{2}-norm for the pressure.

The rest of the paper is organized as follows. In Section 2, we briefly introduce some basis notations, the full stationary incompressible MHD equations and the weak formulation. In Section 3, we present the approximate spaces of the velocity, the magnetic field and the pressure, the virtual element discretizations of the MHD equations and the stability of the discrete formulation. In Section 4, the optimal error estimates are derived. Section 5 shows some numerical experiments to validate the theoretical analysis.

2 Preliminaries

Let Ω2\Omega\subset\mathbb{R}^{2} be a bounded convex polygonal domain. We denote a two-dimensional variable by 𝒙\boldsymbol{x}, where 𝒙=(x1,x2)\boldsymbol{x}=(x_{1},x_{2}) and 𝒙=(x2,x1)\boldsymbol{x}^{\perp}=(-x_{2},x_{1}). We use 𝒏\boldsymbol{n} to represent the unit outward normal vector of Ω\partial\Omega. For any polygonal subdomain EE of Ω\Omega, the unit outward normal vector of E\partial E (edge ee of E\partial E) is denoted 𝒏E(𝒏e)\boldsymbol{n}_{E}\,(\boldsymbol{n}_{e}). We adopt k(𝒪)\mathbb{P}_{k}(\mathcal{O}) to express the set of polynomials on 𝒪\mathcal{O} of degree at most k(0)k(\geq 0), here 𝒪\mathcal{O} can be EE, E\partial E or edge ee, specially 2(𝒪)=1(𝒪)={}\mathbb{P}_{-2}(\mathcal{O})=\mathbb{P}_{-1}(\mathcal{O})=\{\emptyset\}. There exists a direct sum decomposition

[k(E)]2=k+1(E)𝒙k1(E).\displaystyle\begin{aligned} \left[\mathbb{P}_{k}(E)\right]^{2}&=\nabla\mathbb{P}_{k+1}(E)\oplus\boldsymbol{x}^{\perp}\mathbb{P}_{k-1}(E).\end{aligned}

For scalar function vv and vector functions 𝒗=(v1,v1)\boldsymbol{v}=(v_{1},v_{1}), 𝒘=(w1,w2)\boldsymbol{w}=(w_{1},w_{2}), we introduce the cross product and curl\mathrm{curl} operators

v×𝒘=(w2v,w1v),𝒗×𝒘=w2v1w1v2,curlv=(vx2,vx1),curl𝒗=v2x1v1x2.\displaystyle\begin{aligned} v\times\boldsymbol{w}&=(-w_{2}v,w_{1}v),\qquad\boldsymbol{v}\times\boldsymbol{w}=w_{2}v_{1}-w_{1}v_{2},\\ \mathrm{curl}\,v&=\left(\frac{\partial v}{\partial x_{2}},-\frac{\partial v}{\partial x_{1}}\right),\qquad\mathrm{curl}\,\boldsymbol{v}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}.\end{aligned}

We define some useful spaces as follows:

H1(Ω)={vL2(Ω):vL2(Ω)},H01(Ω)={vH1(Ω):v|Ω=0},\displaystyle H^{1}(\Omega)=\left\{v\in L^{2}(\Omega):\;\nabla v\in L^{2}(\Omega)\right\},\qquad H_{0}^{1}(\Omega)=\left\{v\in H^{1}(\Omega):v|_{\partial\Omega}=0\right\},
𝑯1(Ω)=[H1(Ω)]2,𝑯01(Ω)=[H01(Ω)]2,𝑳2(Ω)=[L2(Ω)]2,\displaystyle\boldsymbol{H}^{1}(\Omega)=\left[H^{1}(\Omega)\right]^{2},\qquad\boldsymbol{H}_{0}^{1}(\Omega)=\left[H_{0}^{1}(\Omega)\right]^{2},\qquad\boldsymbol{L}^{2}(\Omega)=\left[L^{2}(\Omega)\right]^{2},
𝑯n1={𝒗𝑯1(Ω):𝒗𝒏|Ω=0},L02(Ω)={qL2(Ω):ΩqdΩ=0}.\displaystyle\boldsymbol{H}_{n}^{1}=\left\{\boldsymbol{v}\in\boldsymbol{H}^{1}(\Omega):\boldsymbol{v}\cdot\boldsymbol{n}|_{\partial\Omega}=0\right\},\qquad L_{0}^{2}(\Omega)=\left\{q\in L^{2}(\Omega):\;\int_{\Omega}q\,\mathrm{d}\Omega=0\right\}.

Let Wk,p(E)W^{k,p}(E) be the standard Sobolev space equipped with norm k,p,E\|\cdot\|_{k,p,E} and seminorm ||k,p,E|\cdot|_{k,p,E}. In particular, W0,p(E)W^{0,p}(E) is Lebesgue space with norm Lp(E)\|\cdot\|_{L^{p}(E)}, Wk,2(E)W^{k,2}(E) is Hilbertian space with norm k,E\|\cdot\|_{k,E} and seminorm ||k,E|\cdot|_{k,E}. (,)E(\cdot,\cdot)_{E} is usual L2L^{2}-inner product. If E=ΩE=\Omega, the subscript EE of norm, seminorm and inner product will be omitted.

We consider the two-dimensional full stationary incompressible MHD [21]:

{Rν1Δ𝒖+(𝒖)𝒖+pSccurl𝒃×𝒃=𝒇,inΩ,Rm1Sccurl(curl𝒃)Sccurl(𝒖×𝒃)=𝒈,inΩ,div𝒖=0,inΩ,div𝒃=0,inΩ,𝒖=𝟎,onΩ,𝒃𝒏=0,𝒏×curl𝒃=𝟎,onΩ,\displaystyle\begin{cases}-R_{\nu}^{-1}\Delta\boldsymbol{u}+(\nabla\boldsymbol{u})\boldsymbol{u}+\nabla p-S_{c}\,\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{b}=\boldsymbol{f},\quad\mathrm{in}\;\Omega,\\ R_{m}^{-1}S_{c}\,\mathrm{curl}\,(\mathrm{curl}\,\boldsymbol{b})-S_{c}\,\mathrm{curl}\,(\boldsymbol{u}\times\boldsymbol{b})=\boldsymbol{g},\quad\mathrm{in}\;\Omega,\\ \mathrm{div}\,\boldsymbol{u}=0,\quad\mathrm{in}\;\Omega,\\ \mathrm{div}\,\boldsymbol{b}=0,\quad\mathrm{in}\;\Omega,\\ \boldsymbol{u}=\mathbf{0},\quad\mathrm{on}\;\partial\Omega,\\ \boldsymbol{b}\cdot\boldsymbol{n}=0,\;\boldsymbol{n}\times\mathrm{curl}\,\boldsymbol{b}=\mathbf{0},\quad\mathrm{on}\;\partial\Omega,\end{cases} (2.1)

where 𝒖,𝒃,p\boldsymbol{u},\,\boldsymbol{b},\,p are the velocity, the magnetic field and the pressure, respectively. Hydrodynamic Reynolds number RνR_{\nu}, magnetic Reynolds number RmR_{m} and coupling coefficient ScS_{c} are the physical parameters of the equations. Functions 𝒇\boldsymbol{f} and 𝒈𝑳2(Ω)\boldsymbol{g}\in\boldsymbol{L}^{2}(\Omega) are source terms.

Like in [21], the weak formulation of problem (2.1) is as follows: (𝒗,𝒄,q)𝑯01(Ω)×𝑯n1(Ω)×L02(Ω)\forall(\boldsymbol{v},\boldsymbol{c},q)\in\boldsymbol{H}_{0}^{1}(\Omega)\times\boldsymbol{H}_{n}^{1}(\Omega)\times L_{0}^{2}(\Omega), find (𝒖,𝒃,p)𝑯01(Ω)×𝑯n1(Ω)×L02(Ω)(\boldsymbol{u},\boldsymbol{b},p)\in\boldsymbol{H}_{0}^{1}(\Omega)\times\boldsymbol{H}_{n}^{1}(\Omega)\times L_{0}^{2}(\Omega) such that

{Rν1(𝒖,𝒗)+12((𝒖)𝒖,𝒗)12((𝒗)𝒖,𝒖)(div𝒗,p)Sc(curl𝒃×𝒃,𝒗)=(𝒇,𝒗),Rm1Sc(curl𝒃,curl𝒄)+Rm1Sc(div𝒃,div𝒄)+Sc(curl𝒄×𝒃,𝒖)=(𝒈,𝒄),(div𝒖,q)=0.\displaystyle\begin{cases}R_{\nu}^{-1}(\nabla\boldsymbol{u},\nabla\boldsymbol{v})+\frac{1}{2}((\nabla\boldsymbol{u})\boldsymbol{u},\boldsymbol{v})-\frac{1}{2}((\nabla\boldsymbol{v})\boldsymbol{u},\boldsymbol{u})-(\mathrm{div}\,\boldsymbol{v},p)-S_{c}\,(\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{b},\boldsymbol{v})=(\boldsymbol{f},\boldsymbol{v}),\\ R_{m}^{-1}S_{c}\,(\mathrm{curl}\,\boldsymbol{b},\mathrm{curl}\,\boldsymbol{c})+R_{m}^{-1}S_{c}\,(\mathrm{div}\,\boldsymbol{b},\mathrm{div}\,\boldsymbol{c})+S_{c}\,(\mathrm{curl}\,\boldsymbol{c}\times\boldsymbol{b},\boldsymbol{u})=(\boldsymbol{g},\boldsymbol{c}),\\ (\mathrm{div}\,\boldsymbol{u},q)=0.\end{cases} (2.2)

According to the Proposition 3.1 in [21], we know that div𝒃=0\mathrm{div}\,\boldsymbol{b}=0 can be derived from (2.2). Problem (2.2) can be rewritten as follows: find (𝒖,𝒃,p)𝑯01(Ω)×𝑯n1(Ω)×L02(Ω)(\boldsymbol{u},\boldsymbol{b},p)\in\boldsymbol{H}_{0}^{1}(\Omega)\times\boldsymbol{H}_{n}^{1}(\Omega)\times L_{0}^{2}(\Omega) such that

{A(𝒖,𝒃;𝒗,𝒄)+B(𝒖,𝒃;𝒖,𝒃;𝒗,𝒄)d(𝒗,𝒄;p)=F;𝒗,𝒄,𝒗𝑯01(Ω),𝒄𝑯n1(Ω),d(𝒖,𝒃;q)=0,qL02(Ω),\displaystyle\begin{cases}A(\boldsymbol{u},\boldsymbol{b};\boldsymbol{v},\boldsymbol{c})+B(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v},\boldsymbol{c})-d(\boldsymbol{v},\boldsymbol{c};p)=\left<F;\boldsymbol{v},\boldsymbol{c}\right>,\quad\forall\boldsymbol{v}\in\boldsymbol{H}_{0}^{1}(\Omega),\boldsymbol{c}\in\boldsymbol{H}_{n}^{1}(\Omega),\\ d(\boldsymbol{u},\boldsymbol{b};q)=0,\quad\forall q\in L_{0}^{2}(\Omega),\end{cases} (2.3)

where, 𝒘𝑯01(Ω),𝝍𝑯n1(Ω)\forall\boldsymbol{w}\in\boldsymbol{H}_{0}^{1}(\Omega),\boldsymbol{\psi}\in\boldsymbol{H}_{n}^{1}(\Omega),

A(𝒖,𝒃;𝒗,𝒄)=a0(𝒖,𝒗)+a1(𝒃,𝒄),\displaystyle A(\boldsymbol{u},\boldsymbol{b};\boldsymbol{v},\boldsymbol{c})=a_{0}(\boldsymbol{u},\boldsymbol{v})+a_{1}(\boldsymbol{b},\boldsymbol{c}),
B(𝒖,𝒃;𝒘,𝝍;𝒗,𝒄)=a2(𝒖,𝒘,𝒗)a3(𝝍,𝒃,𝒗)+a3(𝒄,𝒃,𝒘),\displaystyle B(\boldsymbol{u},\boldsymbol{b};\boldsymbol{w},\boldsymbol{\psi};\boldsymbol{v},\boldsymbol{c})=a_{2}(\boldsymbol{\boldsymbol{u}},\boldsymbol{w},\boldsymbol{v})-a_{3}(\boldsymbol{\psi},\boldsymbol{b},\boldsymbol{v})+a_{3}(\boldsymbol{c},\boldsymbol{b},\boldsymbol{w}),\quad
a0(𝒖,𝒗)=Rν1(𝒖,𝒗),\displaystyle a_{0}(\boldsymbol{u},\boldsymbol{v})=R_{\nu}^{-1}(\nabla\boldsymbol{u},\nabla\boldsymbol{v}),
a1(𝒃,𝒄)=Rm1Sc(curl𝒃,curl𝒄)+Rm1Sc(div𝒃,div𝒄),\displaystyle a_{1}(\boldsymbol{b},\boldsymbol{c})=R_{m}^{-1}S_{c}\,(\mathrm{curl}\,\boldsymbol{b},\mathrm{curl}\,\boldsymbol{c})+R_{m}^{-1}S_{c}\,(\mathrm{div}\,\boldsymbol{b},\mathrm{div}\,\boldsymbol{c}),
a2(𝒖,𝒘,𝒗)=12((𝒘)𝒖,𝒗)12((𝒗)𝒖,𝒘),\displaystyle a_{2}(\boldsymbol{u},\boldsymbol{w},\boldsymbol{v})=\frac{1}{2}((\nabla\boldsymbol{w})\boldsymbol{u},\boldsymbol{v})-\frac{1}{2}((\nabla\boldsymbol{v})\boldsymbol{u},\boldsymbol{w}),
a3(𝝍,𝒃,𝒗)=Sc(curl𝝍×𝒃,𝒗),\displaystyle a_{3}(\boldsymbol{\psi},\boldsymbol{b},\boldsymbol{v})=S_{c}\,(\mathrm{curl}\,\boldsymbol{\psi}\times\boldsymbol{b},\boldsymbol{v}),
d(𝒗,𝒄;q)=(div𝒗,q),F;𝒗,𝒄=(𝒇,𝒗)+(𝒈,𝒄).\displaystyle d(\boldsymbol{v},\boldsymbol{c};q)=(\mathrm{div}\,\boldsymbol{v},q),\quad\left<F;\boldsymbol{v},\boldsymbol{c}\right>=\left(\boldsymbol{f},\boldsymbol{v}\right)+(\boldsymbol{g},\boldsymbol{c}).

For the sake of convenience, some norms are defined by

(𝒗,𝒄)i=(𝒗i2+𝒄i2)12,𝒗,𝒄𝑯i(Ω),i=0,1,2,\displaystyle\|(\boldsymbol{v},\boldsymbol{c})\|_{i}=\left(\|\boldsymbol{v}\|_{i}^{2}+\|\boldsymbol{c}\|_{i}^{2}\right)^{\frac{1}{2}},\qquad\forall\boldsymbol{v},\boldsymbol{c}\in\boldsymbol{H}^{i}(\Omega),\;i=0,1,2,

and F=(𝒇,𝒈)0\|F\|_{\ast}=\|(\boldsymbol{f},\boldsymbol{g})\|_{0}. We use the equivalent norm 𝒗0\|\nabla\boldsymbol{v}\|_{0} to replace 𝒗1\|\boldsymbol{v}\|_{1} for all 𝒗𝑯01(Ω)\boldsymbol{v}\in\boldsymbol{H}_{0}^{1}(\Omega). From [14], it know that

𝒖L4λ0𝒖1,curl𝒃02+div𝒃02λ1𝒃12,𝒖𝑯1(Ω),𝒃𝑯n1(Ω).\displaystyle\|\boldsymbol{u}\|_{L^{4}}\leq\lambda_{0}\|\boldsymbol{u}\|_{1},\qquad\|\mathrm{curl}\,\boldsymbol{b}\|_{0}^{2}+\|\mathrm{div}\,\boldsymbol{b}\|_{0}^{2}\geq\lambda_{1}\|\boldsymbol{b}\|_{1}^{2},\qquad\forall\boldsymbol{u}\in\boldsymbol{H}^{1}(\Omega),\;\boldsymbol{b}\in\boldsymbol{H}_{n}^{1}(\Omega). (2.4)

Here and after, λi,i=0,1,,5\lambda_{i},i=0,1,...,5 are positive constants independent of mesh size.

For the above linear forms, the following estimates hold (see [21]), 𝒖,𝒘,𝒗𝑯01(Ω)\forall\boldsymbol{u},\boldsymbol{w},\boldsymbol{v}\in\boldsymbol{H}_{0}^{1}(\Omega), 𝒃,𝝍,𝒄𝑯n1(Ω)\boldsymbol{b},\boldsymbol{\psi},\boldsymbol{c}\in\boldsymbol{H}_{n}^{1}(\Omega) :

|A(𝒖,𝒃;𝒗,𝒄)|\displaystyle|A(\boldsymbol{u},\boldsymbol{b};\boldsymbol{v},\boldsymbol{c})| max{Rν1,4Rm1Sc}(𝒖,𝒃)1(𝒗,𝒄)1,\displaystyle\leq\max\left\{R_{\nu}^{-1},4R_{m}^{-1}S_{c}\right\}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}\,\|(\boldsymbol{v},\boldsymbol{c})\|_{1}, (2.5)
A(𝒖,𝒃;𝒖,𝒃)\displaystyle A(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b}) min{Rν1,λ1Rm1Sc}(𝒖,𝒃)12,\displaystyle\geq\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}^{2}, (2.6)
|B(𝒖,𝒃;𝒘,𝝍;𝒗,𝒄)|\displaystyle|B(\boldsymbol{u},\boldsymbol{b};\boldsymbol{w},\boldsymbol{\psi};\boldsymbol{v},\boldsymbol{c})| 2λ02max{1,2Sc}(𝒖,𝒃)1(𝒘,𝝍)1(𝒗,𝒄)1.\displaystyle\leq\sqrt[]{2}\lambda_{0}^{2}\max\{1,\sqrt[]{2}S_{c}\}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}\,\|(\boldsymbol{w},\boldsymbol{\psi})\|_{1}\,\|(\boldsymbol{v},\boldsymbol{c})\|_{1}. (2.7)

The linear form d(,;)d(\cdot,\cdot;\cdot) is continuous and satisfies the inf-sup condition [14, 21]

sup(𝒗,𝒄)𝑯01(Ω)×𝑯n1(Ω)|d(𝒗,𝒄;q)|(𝒗,𝒄)1γ0q0,qL02(Ω).\displaystyle\sup_{(\boldsymbol{v},\boldsymbol{c})\in\boldsymbol{H}_{0}^{1}(\Omega)\times\boldsymbol{H}_{n}^{1}(\Omega)}\frac{|d(\boldsymbol{v},\boldsymbol{c};q)|}{\|(\boldsymbol{v},\boldsymbol{c})\|_{1}}\geq\gamma_{0}\|q\|_{0},\qquad\forall\,q\in L_{0}^{2}(\Omega). (2.8)
Theorem 2.1

([18]) If 2λ02max{1,2Sc}F(min{Rν1,λ1Rm1Sc})2<1\frac{\sqrt[]{2}\lambda_{0}^{2}\max\{1,\sqrt[]{2}S_{c}\}\|F\|_{\ast}}{(\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\})^{2}}<1, the problem (2.3) has a unique solution (𝒖,𝒃,p)𝑯01(Ω)×𝑯n1(Ω)×L02(Ω)(\boldsymbol{u},\boldsymbol{b},p)\in\boldsymbol{H}_{0}^{1}(\Omega)\times\boldsymbol{H}_{n}^{1}(\Omega)\times L_{0}^{2}(\Omega), satisfying

min{Rν1,λ1Rm1Sc}(𝒖,𝒃)1F.\displaystyle\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}\leq\|F\|_{\ast}. (2.9)

3 Virtual element method

3.1 Meshes and projections

Let {𝒯h}h\{\mathcal{T}_{h}\}_{h} be a family of partitions of Ω\Omega into convex polygons and hEh_{E} be diameter of element EE, hh be the largest of all diameters, h\mathcal{E}_{h} represent the set of edges of 𝒯h\mathcal{T}_{h}. For each element EE, we have mesh regular assumptions that there exists a positive constant ρ\rho satisfying:

(A1) EE is star-shaped with respect to a ball BEB_{E} of radius ρhE\geq\rho h_{E}.

(A2) The distance between any two vertexes of EE is ρhE\geq\rho h_{E}.

For an internal edge ee, which is a shared edge of elements E+E^{+} and EE^{-} of 𝒯h\mathcal{T}_{h}, we define the jump of 𝒗\boldsymbol{v} by [𝒗]|e=(𝒗|E+)|e(𝒗|E)|e[\boldsymbol{v}]|_{e}=(\boldsymbol{v}|_{\partial E^{+}})|_{e}-(\boldsymbol{v}|_{\partial E^{-}})|_{e}, specially, for boundary edge ee, [𝒗]|e=𝒗|e[\boldsymbol{v}]|_{e}=\boldsymbol{v}|_{e}.

We introduce some useful projections as follows:

  • 1.

    H1H^{1}-seminorm projection Πk,E\Pi_{k}^{\nabla,E} : 𝑯1(E)[k(E)]2\boldsymbol{H}^{1}(E)\rightarrow[\mathbb{P}_{k}(E)]^{2}, defined by

    {EΠk,E𝒗:𝒎kdE=E𝒗:𝒎kdE,𝒎k[k(E)]2,𝒗𝑯1(E),EΠk,E𝒗dE=E𝒗dE,𝒗𝑯1(E).\displaystyle\begin{cases}\int_{E}\nabla\Pi_{k}^{\nabla,E}\boldsymbol{v}:\nabla\boldsymbol{m}_{k}\,\mathrm{d}E=\int_{E}\nabla\boldsymbol{v}:\nabla\boldsymbol{m}_{k}\,\mathrm{d}E,\qquad\forall\boldsymbol{m}_{k}\in\left[\mathbb{P}_{k}(E)\right]^{2},\;\boldsymbol{v}\in\boldsymbol{H}^{1}(E),\\ \int_{\partial E}\Pi_{k}^{\nabla,E}\boldsymbol{v}\,\mathrm{d}\partial E=\int_{\partial E}\boldsymbol{v}\;\mathrm{d}\partial E,\qquad\forall\boldsymbol{v}\in\boldsymbol{H}^{1}(E).\end{cases} (3.1)
  • 2.

    L2L^{2}-projection Πk0,E\Pi_{k}^{0,E} : 𝑳2(E)[k(E)]2\boldsymbol{L}^{2}(E)\rightarrow\left[\mathbb{P}_{k}(E)\right]^{2}, defined by

    EΠk0,E𝒗𝒎kdE=E𝒗𝒎kdE,𝒎k[k(E)]2,𝒗𝑳2(E).\displaystyle\int_{E}\Pi_{k}^{0,E}\boldsymbol{v}\cdot\boldsymbol{m}_{k}\,\mathrm{d}E=\int_{E}\boldsymbol{v}\cdot\boldsymbol{m}_{k}\,\mathrm{d}E,\qquad\forall\boldsymbol{m}_{k}\in\left[\mathbb{P}_{k}(E)\right]^{2},\,\boldsymbol{v}\in\boldsymbol{L}^{2}(E). (3.2)

3.2 The nonconforming element space and piecewise polynomials space

We use the enhanced nonconforming virtual element [34] to approximate the velocity. In order to describe it, we first introduce two auxiliary spaces. One space is

𝑽kf(E)={𝒗𝑯1(E):div𝒗k1(E),curl𝒗k1(E),𝒗𝒏e|ek(e),eE}.\displaystyle\boldsymbol{V}_{k}^{f}(E)=\left\{\boldsymbol{v}\in\boldsymbol{H}^{1}(E):\;\mathrm{div}\,\boldsymbol{v}\in\mathbb{P}_{k-1}(E),\;\mathrm{curl}\,\boldsymbol{v}\in\mathbb{P}_{k-1}(E),\;\boldsymbol{v}\cdot\boldsymbol{n}_{e}|_{e}\in\mathbb{P}_{k}(e),\;\forall e\in\partial E\right\}. (3.3)

From [35], we know that the following direct sum decomposition holds

𝑽kf(E)=𝑾0(E)𝑾1(E),\displaystyle\boldsymbol{V}_{k}^{f}(E)=\boldsymbol{W}_{0}(E)\oplus\boldsymbol{W}_{1}(E), (3.4)

where 𝑾0(E)\boldsymbol{W}_{0}(E) and 𝑾1(E)\boldsymbol{W}_{1}(E) are

𝑾0(E)={𝒗𝑽kf(E):div𝒗=0,𝒗𝒏e|e=0,eE},𝑾1(E)={𝒗𝑽kf(E):curl𝒗=0}.\displaystyle\begin{aligned} \boldsymbol{W}_{0}(E)&=\left\{\boldsymbol{v}\in\boldsymbol{V}_{k}^{f}(E):\;\mathrm{div}\,\boldsymbol{v}=0,\;\boldsymbol{v}\cdot\boldsymbol{n}_{e}|_{e}=0,\;\forall e\in\partial E\right\},\\ \boldsymbol{W}_{1}(E)&=\left\{\boldsymbol{v}\in\boldsymbol{V}_{k}^{f}(E):\;\mathrm{curl}\,\boldsymbol{v}=0\right\}.\end{aligned}

The other space is

Ψ(E)={ψH2(E):Δ2ψk1(E),Δψ|ek1(e),ψ|e=0,eE}.\displaystyle\Psi(E)=\left\{\psi\in H^{2}(E):\;\Delta^{2}\psi\in\mathbb{P}_{k-1}(E),\;\Delta\psi|_{e}\in\mathbb{P}_{k-1}(e),\;\psi|_{e}=0,\;\forall e\in\partial E\right\}.

From Lemma 3.1 in [34], it is easy to see that

𝑽~(E)=𝑾1(E)curlΨ(E)=𝑽kf(E)+curlΨ(E).\displaystyle\boldsymbol{\widetilde{V}}(E)=\boldsymbol{W}_{1}(E)\oplus\mathrm{curl}\,\Psi(E)=\boldsymbol{V}_{k}^{f}(E)+\mathrm{curl}\,\Psi(E). (3.5)

Then, the local space is defined by

𝑽(E)={𝒗𝑽~(E):E𝒗𝒎kdE=EΠk,E𝒗𝒎kdE,𝒎k𝒙Ek1(E)/𝒙Ek3(E),e𝒗𝒏emkde=eΠk,E𝒗𝒏emkde,mkk(e)/k1(e),eE},\displaystyle\begin{aligned} \boldsymbol{V}(E)=\left\{\boldsymbol{v}\in\boldsymbol{\widetilde{V}}(E):\,\int_{E}\boldsymbol{v}\cdot\boldsymbol{m}_{k}\,\mathrm{d}E=\int_{E}\Pi_{k}^{\nabla,E}\boldsymbol{v}\cdot\boldsymbol{m}_{k}\,\mathrm{d}E,\;\forall\boldsymbol{m}_{k}\in\boldsymbol{x}_{E}^{\perp}\mathbb{P}_{k-1}(E)/\boldsymbol{x}_{E}^{\perp}\mathbb{P}_{k-3}(E),\right.\\ \left.\qquad\int_{e}\boldsymbol{v}\cdot\boldsymbol{n}_{e}m_{k}\,\mathrm{d}e=\int_{e}\Pi_{k}^{\nabla,E}\boldsymbol{v}\cdot\boldsymbol{n}_{e}m_{k}\,\mathrm{d}e,\quad\forall m_{k}\in\mathbb{P}_{k}(e)/\mathbb{P}_{k-1}(e),e\subseteq\partial E\right\},\end{aligned} (3.6)

where 𝒙E=(𝒙𝒙b)/hE\boldsymbol{x}_{E}=(\boldsymbol{x}-\boldsymbol{x}_{b})/h_{E}, 𝒙b\boldsymbol{x}_{b} is the barycenter of EE. Obviously, [k(E)]2𝑽(E)\left[\mathbb{P}_{k}(E)\right]^{2}\subseteq\boldsymbol{V}(E). The degrees of freedom of 𝑽(E)\boldsymbol{V}(E) are

1|e|e𝒗𝒎k1de,𝒎k1[k1(e)]2,eE,\displaystyle\bullet\quad\frac{1}{|e|}\int_{e}\boldsymbol{v}\cdot\boldsymbol{m}_{k-1}\,\mathrm{d}e,\quad\forall\boldsymbol{m}_{k-1}\in\left[\mathbb{P}_{k-1}(e)\right]^{2},\,e\in\partial E, (3.7)
1|E|E𝒗𝒎k2dE,𝒎k2[k2(E)]2.\displaystyle\bullet\quad\frac{1}{|E|}\int_{E}\boldsymbol{v}\cdot\boldsymbol{m}_{k-2}\,\mathrm{d}E,\quad\forall\boldsymbol{m}_{k-2}\in\left[\mathbb{P}_{k-2}(E)\right]^{2}. (3.8)

It is not difficult for us to find that the projection Πk,E𝑽(E)\Pi_{k}^{\nabla,E}\circ\boldsymbol{V}(E) can be computed by using integration by parts and (3.7)-(3.8). According to the definition of 𝑽(E)\boldsymbol{V}(E), we know that div𝒗k1(E)\mathrm{div}\,\boldsymbol{v}\in\mathbb{P}_{k-1}(E) for all 𝒗𝑽(E)\boldsymbol{v}\in\boldsymbol{V}(E) and the expression of div𝒗\mathrm{div}\,\boldsymbol{v} on element EE can be calculated by

Ediv𝒗mk1dE=E𝒗mk1dE+eEe𝒗𝒏emk1de,mk1k1(E).\displaystyle\int_{E}\mathrm{div}\,\boldsymbol{v}\cdot m_{k-1}\,\mathrm{d}E=-\int_{E}\boldsymbol{v}\cdot\nabla m_{k-1}\,\mathrm{d}E+\sum_{e\in\partial E}\int_{e}\boldsymbol{v}\cdot\boldsymbol{n}_{e}m_{k-1}\,\mathrm{d}e,\quad\forall m_{k-1}\in\mathbb{P}_{k-1}(E). (3.9)

The first term on the right-hand side of (3.9) can be computed by (3.8). The second term is computable, since (𝒗𝒏e)|ek(e)\left(\boldsymbol{v}\cdot\boldsymbol{n}_{e}\right)|_{e}\in\mathbb{P}_{k}(e) and its expression can be uniquely determined by (3.6)-(3.8). For all 𝒎k[k(E)]2,𝒗𝑽(E)\boldsymbol{m}_{k}\in\left[\mathbb{P}_{k}(E)\right]^{2},\boldsymbol{v}\in\boldsymbol{V}(E), there holds

E𝒗𝒎kdE=E𝒗(mk+1𝒒k)dE=Ediv𝒗mk+1dE+eEe𝒗𝒏emk+1de+E𝒗𝒒kdE,\displaystyle\begin{aligned} \int_{E}\boldsymbol{v}\cdot\boldsymbol{m}_{k}\,\mathrm{d}E&=\int_{E}\boldsymbol{v}\cdot\left(\nabla m_{k+1}\oplus\boldsymbol{q}_{k}\right)\,\mathrm{d}E\\ &=-\int_{E}\mathrm{div}\,\boldsymbol{v}\cdot m_{k+1}\,\mathrm{d}E+\sum_{e\in\partial E}\int_{e}\boldsymbol{v}\cdot\boldsymbol{n}_{e}m_{k+1}\,\mathrm{d}e+\int_{E}\boldsymbol{v}\cdot\boldsymbol{q}_{k}\,\mathrm{d}E,\end{aligned} (3.10)

where mk+1k+1(E)m_{k+1}\in\mathbb{P}_{k+1}(E), 𝒒k𝒙Ek1(E)\boldsymbol{q}_{k}\in\boldsymbol{x}_{E}^{\perp}\mathbb{P}_{k-1}(E). Similar to the previous discussion, the right-hand side of (3.10) can be calculated by (3.7)-(3.8). Thus, the projection Πk0,E𝑽(E)\Pi_{k}^{0,E}\circ\boldsymbol{V}(E) is computable.

We define L2L^{2}-projection Πk10,E\Pi_{k-1}^{0,E} : 𝑽(E)[k1(E)]2×2\nabla\boldsymbol{V}(E)\rightarrow\left[\mathbb{P}_{k-1}(E)\right]^{2\times 2} by

EΠk10,E(𝒗):𝒎k1dE=E𝒗:𝒎k1dE,𝒎k1[k1(E)]2×2.\displaystyle\int_{E}\Pi_{k-1}^{0,E}\left(\nabla\boldsymbol{v}\right):\boldsymbol{m}_{k-1}\,\mathrm{d}E=\int_{E}\nabla\boldsymbol{v}:\boldsymbol{m}_{k-1}\,\mathrm{d}E,\quad\forall\boldsymbol{m}_{k-1}\in\left[\mathbb{P}_{k-1}(E)\right]^{2\times 2}. (3.11)

Indeed, the right-hand side of (3.11) can be calculated by integration by parts and (3.7)-(3.8). As a result, the projection Πk10,E(𝑽(E))\Pi_{k-1}^{0,E}\circ(\nabla\boldsymbol{V}(E)) is computable. With the above preparation, the global space is defined as

𝑽={𝒗𝑳2(Ω):𝒗|E𝑽(E),e[𝒗]𝒎k1de=0,𝒎k1[k1(e)]2,eh}.\displaystyle\boldsymbol{V}=\left\{\boldsymbol{v}\in\boldsymbol{L}^{2}(\Omega):\;\boldsymbol{v}|_{E}\in\boldsymbol{V}(E),\,\int_{e}[\boldsymbol{v}]\cdot\boldsymbol{m}_{k-1}\,\mathrm{d}e=0,\quad\forall\boldsymbol{m}_{k-1}\in\left[\mathbb{P}_{k-1}(e)\right]^{2},\,e\in\mathcal{E}_{h}\right\}. (3.12)
Lemma 3.1

([34]) Let 𝒗𝑯l(E)\boldsymbol{v}\in\boldsymbol{H}^{l}(E) with 1lk+11\leq l\leq k+1, 𝒗I\boldsymbol{v}_{I} be its degrees of freedom interpolation. Then, it holds that

𝒗𝒗I0,E+h|𝒗𝒗I|1,EChl|𝒗|l,E.\displaystyle\|\boldsymbol{v}-\boldsymbol{v}_{I}\|_{0,E}+h|\boldsymbol{v}-\boldsymbol{v}_{I}|_{1,E}\leq Ch^{l}|\boldsymbol{v}|_{l,E}.

Throughout this article, CC denotes a generic positive constant independent of hh, and might be different value at each occurrence.

As the usual framework of VEM, we define a computable local bilinear form a0hE(,):𝑽(E)×𝑽(E)a_{0h}^{E}(\cdot,\cdot):\boldsymbol{V}(E)\times\boldsymbol{V}(E)\rightarrow\mathbb{R} by

a0hE(𝒖h,𝒗h)\displaystyle a_{0h}^{E}(\boldsymbol{u}_{h},\boldsymbol{v}_{h}) =Rν1((Πk,E𝒖h,Πk,E𝒗h)E+S0E((IΠk,E)𝒖h,(IΠk,E)𝒗h)),𝒖h,𝒗h𝑽(E),\displaystyle=R_{\nu}^{-1}\Big{(}(\nabla\Pi_{k}^{\nabla,E}\boldsymbol{u}_{h},\nabla\Pi_{k}^{\nabla,E}\boldsymbol{v}_{h})_{E}+\mathrm{S}_{0}^{E}((\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{u}_{h},(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{v}_{h})\Big{)},\quad\forall\boldsymbol{u}_{h},\boldsymbol{v}_{h}\in\boldsymbol{V}(E),

where S0E\mathrm{S}_{0}^{E} is a symmetric and positive definite bilinear form such that

α0a0E(𝒗h,𝒗h)Rν1S0E(𝒗h,𝒗h)α0a0E(𝒗h,𝒗h),𝒗h𝑽(E)Ker(Πk,E),\displaystyle\alpha_{0\ast}a_{0}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h})\leq R_{\nu}^{-1}\mathrm{S}_{0}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h})\leq\alpha_{0}^{\ast}a_{0}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h}),\quad\forall\boldsymbol{v}_{h}\in\boldsymbol{V}(E)\cap\mathrm{Ker}(\Pi_{k}^{\nabla,E}),

for two positive constants α0\alpha_{0\ast} and α0\alpha_{0}^{\ast} independent of hh and EE. The definition of a0hE(,)a_{0h}^{E}(\cdot,\cdot) and (3.1) imply

  • kk-consistency: for all 𝒎k[k(E)]2\boldsymbol{m}_{k}\in[\mathbb{P}_{k}(E)]^{2} and 𝒗h𝑽(E)\boldsymbol{v}_{h}\in\boldsymbol{V}(E),

    a0hE(𝒎k,𝒗h)=a0E(𝒎k,𝒗h),\displaystyle a_{0h}^{E}(\boldsymbol{m}_{k},\boldsymbol{v}_{h})=a_{0}^{E}(\boldsymbol{m}_{k},\boldsymbol{v}_{h}), (3.13)
  • stability: there exist two positive constants σ0\sigma_{0\ast} and σ0\sigma_{0}^{\ast}, independent of hh and EE, satisfying

    σ0a0E(𝒗h,𝒗h)a0hE(𝒗h,𝒗h)σ0a0E(𝒗h,𝒗h),𝒗h𝑽(E).\displaystyle\sigma_{0\ast}a_{0}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h})\leq a_{0h}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h})\leq\sigma_{0}^{\ast}a_{0}^{E}(\boldsymbol{v}_{h},\boldsymbol{v}_{h}),\quad\forall\boldsymbol{v}_{h}\in\boldsymbol{V}(E). (3.14)

The pressure is approximated by discontinuous piecewise polynomials, which is defined as

Q={qL02(Ω):q|Ek1(E),E𝒯h}.\displaystyle Q=\left\{q\in L_{0}^{2}(\Omega):\,q|_{E}\in\mathbb{P}_{k-1}(E),\quad\forall\,E\in\mathcal{T}_{h}\right\}.

Let qHl(Ω)L02(Ω)q\in H^{l}(\Omega)\cap L_{0}^{2}(\Omega), qI|Eq_{I}|_{E} be the L2L^{2}-projection of q|Eq|_{E} onto k1(E)\mathbb{P}_{k-1}(E), then qIQq_{I}\in Q, there holds

qqI0,E+h|qqI|1,EChl|q|l,E,1lk.\displaystyle\|q-q_{I}\|_{0,E}+h|q-q_{I}|_{1,E}\leq Ch^{l}|q|_{l,E},\quad\forall 1\leq l\leq k. (3.15)

3.3 The nodal space

In order to compute the L2L^{2}-projection onto polynomials of degree k\leq k, we use the enhanced H1H^{1}-conforming virtual element [2] to approximate each component of the magnetic field. First of all, we introduce a auxiliary space

Ukn(E)={cH1(E):Δck(E),c|EC0(E),c|ek(e),eE}.\displaystyle U_{k}^{n}(E)=\left\{c\in H^{1}(E):\,\Delta c\in\mathbb{P}_{k}(E),\,c|_{\partial E}\in C^{0}(\partial E),\,c|_{e}\in\mathbb{P}_{k}(e),\quad\forall\,e\in\partial E\right\}. (3.16)

Then, the local enhanced space is defined as

𝑴(E)={𝒄[Ukn(E)]2:(𝒄Πk,E𝒄,𝒎)E=0,𝒎[k(E)]2/[k2(E)]2},\displaystyle\boldsymbol{M}(E)=\left\{\boldsymbol{c}\in[U_{k}^{n}(E)]^{2}:\;(\boldsymbol{c}-\Pi_{k}^{\nabla,E}\boldsymbol{c},\boldsymbol{m})_{E}=0,\quad\forall\boldsymbol{m}\in[\mathbb{P}_{k}(E)]^{2}/[\mathbb{P}_{k-2}(E)]^{2}\right\}, (3.17)

with the degrees of freedom

thevaluesof𝒄atverticesofE,\displaystyle\bullet\quad\mathrm{the}\;\mathrm{values}\;\mathrm{of}\;\boldsymbol{c}\;\mathrm{at}\;\mathrm{vertices}\;\mathrm{of}\;E, (3.18)
1|e|e𝒄𝒎k2de,𝒎k2[k2(e)]2,eE,\displaystyle\bullet\quad\frac{1}{|e|}\int_{e}\boldsymbol{c}\cdot\boldsymbol{m}_{k-2}\,\mathrm{d}e,\quad\forall\boldsymbol{m}_{k-2}\in[\mathbb{P}_{k-2}(e)]^{2},\,e\in\partial E, (3.19)
1|E|E𝒄𝒎k2dE,𝒎k2[k2(E)]2.\displaystyle\bullet\quad\frac{1}{|E|}\int_{E}\boldsymbol{c}\cdot\boldsymbol{m}_{k-2}\,\mathrm{d}E,\quad\forall\boldsymbol{m}_{k-2}\in[\mathbb{P}_{k-2}(E)]^{2}. (3.20)

It is obvious that the projection Πk,E𝑴(E)\Pi_{k}^{\nabla,E}\circ\boldsymbol{M}(E) can be computed by (3.18)-(3.20). From (3.20) and (3.17), we know that the projection Πk0,E𝑴(E)\Pi_{k}^{0,E}\circ\boldsymbol{M}(E) is computable. We define L2L^{2}-projection Πk10,E\;\Pi_{k-1}^{0,E} : curl𝑴(E)k1(E)\mathrm{curl}\,\boldsymbol{M}(E)\rightarrow\mathbb{P}_{k-1}(E) by

EΠk10,E(curl𝒄)mk1dE=Ecurl𝒄mk1dE,mk1k1(E).\displaystyle\int_{E}\Pi_{k-1}^{0,E}\left(\mathrm{curl}\,\boldsymbol{c}\right)\cdot m_{k-1}\,\mathrm{d}E=\int_{E}\mathrm{curl}\,\boldsymbol{c}\cdot m_{k-1}\;\mathrm{d}E,\quad\forall m_{k-1}\in\mathbb{P}_{k-1}(E). (3.21)

According to integration by parts and (3.18)-(3.20), it is easy to see that the projection Πk10,E(curl𝑴(E))\Pi_{k-1}^{0,E}\circ(\mathrm{curl}\,\boldsymbol{M}(E)) is computable. Likewise, the projection Πk10,E(div𝑴(E))\Pi_{k-1}^{0,E}\circ(\mathrm{div}\,\boldsymbol{M}(E)) can be calculated.

The global space is defined as

𝑴={𝒄𝑯n1(Ω):𝒄|E𝑴(E),E𝒯h}.\displaystyle\boldsymbol{M}=\left\{\boldsymbol{c}\in\boldsymbol{H}_{n}^{1}(\Omega):\;\boldsymbol{c}|_{E}\in\boldsymbol{M}(E),\quad\forall E\in\mathcal{T}_{h}\right\}. (3.22)
Lemma 3.2

([11]) Let 𝒄𝑯l(E)\boldsymbol{c}\in\boldsymbol{H}^{l}(E) with 1lk+11\leq l\leq k+1, 𝒄I\boldsymbol{c}_{I} be its degrees of freedom interpolation. Then, it holds that

𝒄𝒄I0,E+h|𝒄𝒄I|1,EChl|𝒄|l,E.\displaystyle\|\boldsymbol{c}-\boldsymbol{c}_{I}\|_{0,E}+h|\boldsymbol{c}-\boldsymbol{c}_{I}|_{1,E}\leq Ch^{l}|\boldsymbol{c}|_{l,E}.

We define a computable local bilinear form a1hE(,):𝑴(E)×𝑴(E)a_{1h}^{E}(\cdot,\cdot):\boldsymbol{M}(E)\times\boldsymbol{M}(E)\rightarrow\mathbb{R} by

a1hE(𝒃h,𝒄h)\displaystyle a_{1h}^{E}(\boldsymbol{b}_{h},\boldsymbol{c}_{h}) =Rm1Sc((Πk10,Ecurl𝒃h,Πk10,Ecurl𝒄h)E+(Πk10,Ediv𝒃h,Πk10,Ediv𝒄h)E\displaystyle=R_{m}^{-1}S_{c}\left((\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}_{h},\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h})_{E}+(\Pi_{k-1}^{0,E}\mathrm{div}\,\boldsymbol{b}_{h},\Pi_{k-1}^{0,E}\mathrm{div}\,\boldsymbol{c}_{h})_{E}\right.
+S1E((IΠk,E)𝒃h,(IΠk,E)𝒄h)),𝒃h,𝒄h𝑴(E),\displaystyle\left.\quad+\mathrm{S}_{1}^{E}((\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{b}_{h},(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h})\right),\quad\forall\boldsymbol{b}_{h},\boldsymbol{c}_{h}\in\boldsymbol{M}(E),

where S1E\mathrm{S}_{1}^{E} is a symmetric and positive definite bilinear form satisfying

α1𝒄h0,ES1E(𝒄h,𝒄h)α1𝒄h0,E,𝒄h𝑴(E)Ker(Πk,E),\displaystyle\alpha_{1\ast}\|\nabla\boldsymbol{c}_{h}\|_{0,E}\leq\mathrm{S}_{1}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h})\leq\alpha_{1}^{\ast}\|\nabla\boldsymbol{c}_{h}\|_{0,E},\quad\forall\boldsymbol{c}_{h}\in\boldsymbol{M}(E)\cap\mathrm{Ker}(\Pi_{k}^{\nabla,E}),

for two positive constants α1\alpha_{1\ast} and α1\alpha_{1}^{\ast} independent of hh and EE.

Lemma 3.3

The local bilinear form a1hE(,)a_{1h}^{E}(\cdot,\cdot) satisfies the following properties

  • kk-consistency: for all 𝒎k[k(E)]2\boldsymbol{m}_{k}\in[\mathbb{P}_{k}(E)]^{2} and 𝒄h𝑴(E)\boldsymbol{c}_{h}\in\boldsymbol{M}(E),

    a1hE(𝒎k,𝒄h)=a1E(𝒎k,𝒄h),\displaystyle a_{1h}^{E}(\boldsymbol{m}_{k},\boldsymbol{c}_{h})=a_{1}^{E}(\boldsymbol{m}_{k},\boldsymbol{c}_{h}), (3.23)
  • stability: there exist two positive constants σ1\sigma_{1\ast} and σ1\sigma_{1}^{\ast}, independent of hh and EE, such that

    σ1a1E(𝒄h,𝒄h)a1hE(𝒄h,𝒄h)σ1Rm1Sc𝒄h1,E,𝒄h𝑴(E).\displaystyle\sigma_{1\ast}a_{1}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h})\leq a_{1h}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h})\leq\sigma_{1}^{\ast}R_{m}^{-1}S_{c}\|\boldsymbol{c}_{h}\|_{1,E},\quad\forall\boldsymbol{c}_{h}\in\boldsymbol{M}(E). (3.24)

Proof.  It is clear that (3.23) holds. For the stability, we need to prove that for all 𝒄h𝑴(E)\boldsymbol{c}_{h}\in\boldsymbol{M}(E),

(IΠk10,E)curl𝒄h0,E\displaystyle\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E} curl(IΠk,E)𝒄h0,E2(IΠk,E)𝒄h0,E,\displaystyle\leq\|\mathrm{curl}\,(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E}\leq\sqrt{2}\|\nabla(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E},
(IΠk10,E)div𝒄h0,E\displaystyle\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E} div(IΠk,E)𝒄h0,E2(IΠk,E)𝒄h0,E,\displaystyle\leq\|\mathrm{div}\,(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E}\leq\sqrt{2}\|\nabla(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E},

where I\mathrm{I} is an identity operator. Making use of the properties of L2L^{2}-projection, we have

(IΠk10,E)curl𝒄h0,E2\displaystyle\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2} =((IΠk10,E)curl𝒄h,curl(IΠk,E)𝒄h)E\displaystyle=((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h},\mathrm{curl}\,(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h})_{E}
(IΠk10,E)curl𝒄h0,Ecurl(IΠk,E)𝒄h0,E,\displaystyle\leq\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}\|\mathrm{curl}\,(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E},

which is the desired result of the first inequality. Similarly, the second inequality can be derived. Thus, there hold

a1hE(𝒄h,𝒄h)\displaystyle a_{1h}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h}) Rm1Sc(Πk10,Ecurl𝒄h0,E2+Πk10,Ediv𝒄h0,E2+α1(IΠk,E)𝒄h0,E2)\displaystyle\leq R_{m}^{-1}S_{c}\left(\|\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\|\Pi_{k-1}^{0,E}\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\alpha_{1}^{\ast}\|\nabla(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E}^{2}\right)
Rm1Sc(4+α1)𝒄h1,E2=Rm1Scσ1𝒄h1,E2\displaystyle\leq R_{m}^{-1}S_{c}(4+\alpha_{1}^{\ast})\|\boldsymbol{c}_{h}\|_{1,E}^{2}=R_{m}^{-1}S_{c}\sigma_{1}^{\ast}\|\boldsymbol{c}_{h}\|_{1,E}^{2}
a1hE(𝒄h,𝒄h)\displaystyle a_{1h}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h}) Rm1Sc(Πk10,Ecurl𝒄h0,E2+Πk10,Ediv𝒄h0,E2+α1(IΠk,E)𝒄h0,E2)\displaystyle\geq R_{m}^{-1}S_{c}\left(\|\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\|\Pi_{k-1}^{0,E}\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\alpha_{1\ast}\|\nabla(\mathrm{I}-\Pi_{k}^{\nabla,E})\boldsymbol{c}_{h}\|_{0,E}^{2}\right)
Rm1Sc(Πk10,Ecurl𝒄h0,E2+Πk10,Ediv𝒄h0,E2+α14((IΠk10,E)curl𝒄h0,E2\displaystyle\geq R_{m}^{-1}S_{c}\Big{(}\|\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\|\Pi_{k-1}^{0,E}\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\frac{\alpha_{1\ast}}{4}\Big{(}\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2}
+(IΠk10,E)div𝒄h0,E2))\displaystyle\quad+\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E}^{2}\Big{)}\Big{)}
Rm1Scmin{1,α14}(curl𝒄h0,E2+div𝒄h0,E2)=σ1a1E(𝒄h,𝒄h).\displaystyle\geq R_{m}^{-1}S_{c}\min\{1,\frac{\alpha_{1\ast}}{4}\}\big{(}\|\mathrm{curl}\,\boldsymbol{c}_{h}\|_{0,E}^{2}+\|\mathrm{div}\,\boldsymbol{c}_{h}\|_{0,E}^{2}\big{)}=\sigma_{1\ast}a_{1}^{E}(\boldsymbol{c}_{h},\boldsymbol{c}_{h}).

The proof is completed. ∎

3.4 The discrete formulation

The virtual element formulation of the problem (2.3): (𝒗h,𝒄h,qh)𝑽×𝑴×Q\forall(\boldsymbol{v}_{h},\boldsymbol{c}_{h},q_{h})\in\boldsymbol{V}\times\boldsymbol{M}\times Q, find (𝒖h,𝒃h,ph)𝑽×𝑴×Q(\boldsymbol{u}_{h},\boldsymbol{b}_{h},p_{h})\in\boldsymbol{V}\times\boldsymbol{M}\times Q such that

{Ah(𝒖h,𝒃h;𝒗h,𝒄h)+Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)dh(𝒗h,𝒄h;ph)=Fh;𝒗h,𝒄h,dh(𝒖h,𝒃h;qh)=0,\displaystyle\begin{cases}A_{h}(\boldsymbol{\boldsymbol{u}}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})+B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h})=\left<F_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h}\right>,\\ d_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};q_{h})=0,\end{cases} (3.25)

where, 𝒘h𝑽,𝝍h𝑴\forall\boldsymbol{w}_{h}\in\boldsymbol{V},\boldsymbol{\psi}_{h}\in\boldsymbol{M},

Ah(𝒖h,𝒃h;𝒗h,𝒄h)=a0h(𝒖h,𝒗h)+a1h(𝒃h,𝒄h)=E𝒯ha0hE(𝒖h,𝒗h)+a1hE(𝒃h,𝒄h),\displaystyle A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})=a_{0h}(\boldsymbol{u}_{h},\boldsymbol{v}_{h})+a_{1h}(\boldsymbol{b}_{h},\boldsymbol{c}_{h})=\sum_{E\in\mathcal{T}_{h}}a_{0h}^{E}(\boldsymbol{u}_{h},\boldsymbol{v}_{h})+a_{1h}^{E}(\boldsymbol{b}_{h},\boldsymbol{c}_{h}),
Bh(𝒖h,𝒃h;𝒘h,𝝍h;𝒗h,𝒄h)=a2h(𝒖h,𝒘h,𝒗h)a3h(𝝍h,𝒃h,𝒗h)+a3h(𝒄h,𝒃h,𝒘h),\displaystyle B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{h},\boldsymbol{\psi}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})=a_{2h}(\boldsymbol{u}_{h},\boldsymbol{w}_{h},\boldsymbol{v}_{h})-a_{3h}(\boldsymbol{\psi}_{h},\boldsymbol{b}_{h},\boldsymbol{v}_{h})+a_{3h}(\boldsymbol{c}_{h},\boldsymbol{b}_{h},\boldsymbol{w}_{h}),
a2h(𝒖h,𝒘h,𝒗h)=E𝒯ha2hE(𝒖h,𝒘h,𝒗h)\displaystyle a_{2h}(\boldsymbol{u}_{h},\boldsymbol{w}_{h},\boldsymbol{v}_{h})=\sum_{E\in\mathcal{T}_{h}}a_{2h}^{E}(\boldsymbol{u}_{h},\boldsymbol{w}_{h},\boldsymbol{v}_{h})
=E𝒯h12((Πk10,E(𝒘h)Πk0,E𝒖h,Πk0,E𝒗h)E(Πk10,E(𝒗h)Πk0,E𝒖h,Πk0,E𝒘h)E),\displaystyle\qquad\qquad\qquad\;\;=\sum_{E\in\mathcal{T}_{h}}\frac{1}{2}\Big{(}(\Pi_{k-1}^{0,E}(\nabla\boldsymbol{w}_{h})\Pi_{k}^{0,E}\boldsymbol{u}_{h},\Pi_{k}^{0,E}\boldsymbol{v}_{h})_{E}-(\Pi_{k-1}^{0,E}(\nabla\boldsymbol{v}_{h})\Pi_{k}^{0,E}\boldsymbol{u}_{h},\Pi_{k}^{0,E}\boldsymbol{w}_{h})_{E}\Big{)},
a3h(𝝍h,𝒃h,𝒗h)=E𝒯ha3hE(𝝍h,𝒃h,𝒗h)=ScE𝒯h(Πk10,Ecurl𝝍h×Πk0,E𝒃h,Πk0,E𝒗h)E,\displaystyle a_{3h}(\boldsymbol{\psi}_{h},\boldsymbol{b}_{h},\boldsymbol{v}_{h})=\sum_{E\in\mathcal{T}_{h}}a_{3h}^{E}(\boldsymbol{\psi}_{h},\boldsymbol{b}_{h},\boldsymbol{v}_{h})=S_{c}\sum_{E\in\mathcal{T}_{h}}(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{\psi}_{h}\times\Pi_{k}^{0,E}\boldsymbol{b}_{h},\Pi_{k}^{0,E}\boldsymbol{v}_{h})_{E},
dh(𝒗h,𝒄h;qh)=E𝒯hdhE(𝒗h,𝒄h;qh)=E𝒯h(div𝒗h,qh)E,\displaystyle d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};q_{h})=\sum_{E\in\mathcal{T}_{h}}d_{h}^{E}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};q_{h})=\sum_{E\in\mathcal{T}_{h}}(\mathrm{div}\,\boldsymbol{v}_{h},q_{h})_{E},
Fh;𝒗h,𝒄h=(𝒇h,𝒗h)+(𝒈h,𝒄h)=E𝒯h((Πk0,E𝒇,𝒗h)E+(Πk0,E𝒈,𝒄h)E).\displaystyle\left<F_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h}\right>=\left(\boldsymbol{f}_{h},\boldsymbol{v}_{h}\right)+(\boldsymbol{g}_{h},\boldsymbol{c}_{h})=\sum_{E\in\mathcal{T}_{h}}\left((\Pi_{k}^{0,E}\boldsymbol{f},\boldsymbol{v}_{h})_{E}+(\Pi_{k}^{0,E}\boldsymbol{g},\boldsymbol{c}_{h})_{E}\right).

Obviously, the linear form Bh(,;,;,)B_{h}(\cdot,\cdot;\cdot,\cdot;\cdot,\cdot) is antisymmetric, i.e.

Bh(,;𝒘h,𝝍h;𝒗h,𝒄h)=Bh(,;𝒗h,𝒄h;𝒘h,𝝍h),𝒘h,𝒗h𝑽,𝝍h,𝒄h𝑴.\displaystyle B_{h}(\cdot,\cdot;\boldsymbol{w}_{h},\boldsymbol{\psi}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})=-B_{h}(\cdot,\cdot;\boldsymbol{v}_{h},\boldsymbol{c}_{h};\boldsymbol{w}_{h},\boldsymbol{\psi}_{h}),\quad\forall\boldsymbol{w}_{h},\boldsymbol{v}_{h}\in\boldsymbol{V},\boldsymbol{\psi}_{h},\boldsymbol{c}_{h}\in\boldsymbol{M}.

According to the definition of 𝑽\boldsymbol{V}, it is easy to know that divh𝒗hQ\mathrm{div}_{h}\,\boldsymbol{v}_{h}\in Q for any 𝒗h𝑽\boldsymbol{v}_{h}\in\boldsymbol{V}, where divh|E=div\mathrm{div}_{h}|_{E}=\mathrm{div}. The discrete kernel space is defined as

𝒁h={𝒗h𝑽:dh(𝒗h,𝒄h;qh)=0,qhQ}={𝒗h𝑽:divh𝒗h=0}.\displaystyle\boldsymbol{Z}_{h}=\{\boldsymbol{v}_{h}\in\boldsymbol{V}:d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};q_{h})=0,\quad\forall\,q_{h}\in Q\}=\{\boldsymbol{v}_{h}\in\boldsymbol{V}:\mathrm{div}_{h}\,\boldsymbol{v}_{h}=0\}.

Due to the discrete velocity 𝒖h𝒁h\boldsymbol{u}_{h}\in\boldsymbol{Z}_{h}, then 𝒖h\boldsymbol{u}_{h} is piecewise divergence-free. We define some norms

|𝒗h|1,h=E𝒯h|𝒗h|1,E,(𝒗h,𝒄h)1,h=|𝒗h|1,h2+𝒄h12,𝒗h𝑽,𝒄h𝑴.\displaystyle|\boldsymbol{v}_{h}|_{1,h}=\sqrt{\sum_{E\in\mathcal{T}_{h}}|\boldsymbol{v}_{h}|_{1,E}}\,,\quad\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}=\sqrt{|\boldsymbol{v}_{h}|_{1,h}^{2}+\|\boldsymbol{c}_{h}\|_{1}^{2}},\quad\forall\boldsymbol{v}_{h}\in\boldsymbol{V},\boldsymbol{c}_{h}\in\boldsymbol{M}.

There are some useful inequalities

Πk0,E𝒗hL4(E)λ2𝒗hL4(E),\displaystyle\|\Pi_{k}^{0,E}\boldsymbol{v}_{h}\|_{L^{4}(E)}\leq\lambda_{2}\|\boldsymbol{v}_{h}\|_{L^{4}(E)}, 𝒗h𝑽,\displaystyle\quad\forall\boldsymbol{v}_{h}\in\boldsymbol{V}, (3.26)
𝒗hL4λ3|𝒗h|1,h,\displaystyle\|\boldsymbol{v}_{h}\|_{L^{4}}\leq\lambda_{3}|\boldsymbol{v}_{h}|_{1,h}, 𝒗h𝑯01(Ω)+𝑽,\displaystyle\quad\forall\boldsymbol{v}_{h}\in\boldsymbol{H}_{0}^{1}(\Omega)+\boldsymbol{V}, (3.27)
𝒗s1,4,EC𝒗s,E,\displaystyle\|\boldsymbol{v}\|_{s-1,4,E}\leq C\|\boldsymbol{v}\|_{s,E}, 𝒗𝑯s(E),\displaystyle\quad\forall\boldsymbol{v}\in\boldsymbol{H}^{s}(E), (3.28)
(IΠs0,E)𝒗L4(E)ChEr|𝒗|r,4,E,\displaystyle\|(\mathrm{I}-\Pi_{s}^{0,E})\boldsymbol{v}\|_{L^{4}(E)}\leq Ch_{E}^{r}|\boldsymbol{v}|_{r,4,E}, 𝒗𝑾s+1,4(E), 0rs+1,\displaystyle\quad\forall\boldsymbol{v}\in\boldsymbol{W}^{s+1,4}(E),\;0\leq r\leq s+1, (3.29)

where ss is a positive integer. By using Inverse inequality of polynomials, the properties of L2L^{2}-projection and Ho¨\ddot{\mathrm{o}}lder inequality, we obtain (3.26). The proof of (3.27), see Lemma 0.1 of Appendix in [34]. It is widely known that (3.28) holds. The inequality (3.29) can be found in [9].

Lemma 3.4

For any 𝒖h,𝒘h,𝒗h𝑽,𝒃h,𝝍h,𝒄h𝑴\boldsymbol{u}_{h},\boldsymbol{w}_{h},\boldsymbol{v}_{h}\in\boldsymbol{V},\,\boldsymbol{b}_{h},\boldsymbol{\psi}_{h},\boldsymbol{c}_{h}\in\boldsymbol{M}, there hold

|Ah(𝒖h,𝒃h;𝒗h,𝒄h)|σmax{Rν1,Rm1Sc}(𝒖h,𝒃h)1,h(𝒗h,𝒄h)1,h,\displaystyle|A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})|\leq\sigma^{\ast}\max\{R_{\nu}^{-1},R_{m}^{-1}S_{c}\}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\,\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}, (3.30)
Ah(𝒖h,𝒃h;𝒖h,𝒃h)σmin{Rν1,λ1Rm1Sc}(𝒖h,𝒃h)1,h2,\displaystyle A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h})\geq\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}^{2}, (3.31)
|Bh(𝒖h,𝒃h;𝒘h,𝝍h;𝒗h,𝒄h)|C^(𝒖h,𝒃h)1,h(𝒘h,𝝍h)1,h(𝒗h,𝒄h)1,h,\displaystyle|B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{h},\boldsymbol{\psi}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})|\leq\hat{C}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\|(\boldsymbol{w}_{h},\boldsymbol{\psi}_{h})\|_{1,h}\,\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}, (3.32)

where σ=max{σ0,σ1},σ=min{σ0,σ1}\sigma^{\ast}=\max\{\sigma_{0}^{\ast},\sigma_{1}^{\ast}\},\sigma_{\ast}=\min\{\sigma_{0\ast},\sigma_{1\ast}\}, C^\hat{C} is a constant independent of hh.

Proof.  By Cauchy-Schwarz inequality and stabilities (3.14) and (3.24), we infer

|Ah(𝒖h,𝒃h;𝒗h,𝒄h)|\displaystyle|A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})| =|a0h(𝒖h,𝒗h)+a1h(𝒃h,𝒄h)|\displaystyle=|a_{0h}(\boldsymbol{u}_{h},\boldsymbol{v}_{h})+a_{1h}(\boldsymbol{b}_{h},\boldsymbol{c}_{h})|
E𝒯h(σ0Rν1|𝒖h|1,E|𝒗h|1,E+σ1Rm1Sc𝒃h1,E𝒄h1,E)\displaystyle\leq\sum_{E\in\mathcal{T}_{h}}\left(\sigma_{0}^{\ast}R_{\nu}^{-1}|\boldsymbol{u}_{h}|_{1,E}|\boldsymbol{v}_{h}|_{1,E}+\sigma_{1}^{\ast}R_{m}^{-1}S_{c}\|\boldsymbol{b}_{h}\|_{1,E}\|\boldsymbol{c}_{h}\|_{1,E}\right)
σmax{Rν1,Rm1Sc}(𝒖h,𝒃h)1,h(𝒗h,𝒄h)1,h.\displaystyle\leq\sigma^{\ast}\max\{R_{\nu}^{-1},R_{m}^{-1}S_{c}\}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\,\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}.

Analogously, we get (3.31). Using (3.26) and (3.27) yields

a2h(𝒖h,𝒘h,𝒗h)\displaystyle a_{2h}(\boldsymbol{u}_{h},\boldsymbol{w}_{h},\boldsymbol{v}_{h}) =12E𝒯h(((Πk10,E𝒘h)Πk0,E𝒖h,Πk0,E𝒗h)E((Πk10,E𝒗h)Πk0,E𝒖h,Πk0,E𝒘h)E)\displaystyle=\frac{1}{2}\sum_{E\in\mathcal{T}_{h}}\left(((\Pi_{k-1}^{0,E}\nabla\boldsymbol{w}_{h})\Pi_{k}^{0,E}\boldsymbol{u}_{h},\Pi_{k}^{0,E}\boldsymbol{v}_{h})_{E}-((\Pi_{k-1}^{0,E}\nabla\boldsymbol{v}_{h})\Pi_{k}^{0,E}\boldsymbol{u}_{h},\Pi_{k}^{0,E}\boldsymbol{w}_{h})_{E}\right)
12λ22E𝒯h(𝒘h0,E𝒖hL4(E)𝒗hL4(E)+𝒗h0,E𝒖hL4(E)𝒘hL4(E))\displaystyle\leq\frac{1}{2}\lambda_{2}^{2}\sum_{E\in\mathcal{T}_{h}}\Big{(}\|\nabla\boldsymbol{w}_{h}\|_{0,E}\|\boldsymbol{u}_{h}\|_{L^{4}(E)}\|\boldsymbol{v}_{h}\|_{L^{4}(E)}+\|\nabla\boldsymbol{v}_{h}\|_{0,E}\|\boldsymbol{u}_{h}\|_{L^{4}(E)}\|\boldsymbol{w}_{h}\|_{L^{4}(E)}\Big{)}
λ22λ32|𝒖h|1,h|𝒘h|1,h|𝒗h|1,h.\displaystyle\leq\lambda_{2}^{2}\lambda_{3}^{2}|\boldsymbol{u}_{h}|_{1,h}|\boldsymbol{w}_{h}|_{1,h}|\boldsymbol{v}_{h}|_{1,h}. (3.33)

Similarly, we can obtain

a3h(𝝍h,𝒃h,𝒗h)2λ0λ22λ3Sc𝝍h1𝒃h1|𝒗h|1,h.\displaystyle a_{3h}(\boldsymbol{\psi}_{h},\boldsymbol{b}_{h},\boldsymbol{v}_{h})\leq\sqrt{2}\lambda_{0}\lambda_{2}^{2}\lambda_{3}S_{c}\|\boldsymbol{\psi}_{h}\|_{1}\|\boldsymbol{b}_{h}\|_{1}|\boldsymbol{v}_{h}|_{1,h}. (3.34)

Combining (3.33)-(3.34), we derive (3.32). The proof is finished. ∎

Lemma 3.5

There exists a constant γ1>0\gamma_{1}>0 independent of hh such that

sup(𝒗h,𝒄h)𝑽×𝑴|dh(𝒗h,𝒄h;qh)|(𝒗h,𝒄h)1,hγ1qh0,qhQ.\displaystyle\sup_{(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\in\boldsymbol{V}\times\boldsymbol{M}}\frac{|d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};q_{h})|}{\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}}\geq\gamma_{1}\|q_{h}\|_{0},\quad\forall q_{h}\in Q. (3.35)

Proof.  According to triangle inequality and Lemma 3.1, it is not difficult to find that |𝒗I|1,hη|𝒗|1|\boldsymbol{v}_{I}|_{1,h}\leq\eta|\boldsymbol{v}|_{1} for all 𝒗𝑯01(Ω)\boldsymbol{v}\in\boldsymbol{H}_{0}^{1}(\Omega), where η\eta is a positive constant independent of hh. From the definition of interpolation (see [34]) and the standard arguments in [14], for any qhQq_{h}\in Q, we have

sup(𝒗I,𝒄h)𝑽×𝑴|dh(𝒗I,𝒄h;qh)|(𝒗I,𝒄h)1,h\displaystyle\sup_{(\boldsymbol{v}_{I},\boldsymbol{c}_{h})\in\boldsymbol{V}\times\boldsymbol{M}}\frac{|d_{h}(\boldsymbol{v}_{I},\boldsymbol{c}_{h};q_{h})|}{\|(\boldsymbol{v}_{I},\boldsymbol{c}_{h})\|_{1,h}} sup(𝒗I,𝒄h)𝑽×𝟎|dh(𝒗I,𝒄h;qh)|(𝒗I,𝒄h)1,h\displaystyle\geq\sup_{(\boldsymbol{v}_{I},\boldsymbol{c}_{h})\in\boldsymbol{V}\times\boldsymbol{0}}\frac{|d_{h}(\boldsymbol{v}_{I},\boldsymbol{c}_{h};q_{h})|}{\|(\boldsymbol{v}_{I},\boldsymbol{c}_{h})\|_{1,h}}
=sup𝒗I𝑽|(div𝒗,qh)||𝒗I|1,h\displaystyle=\sup_{\boldsymbol{v}_{I}\in\boldsymbol{V}}\frac{|(\mathrm{div}\,\boldsymbol{v},q_{h})|}{|\boldsymbol{v}_{I}|_{1,h}}
1ηsup𝒗𝑯01(Ω)|(div𝒗,qh)||𝒗|1γ0ηqh0=γ1qh0.\displaystyle\geq\frac{1}{\eta}\sup_{\boldsymbol{v}\in\boldsymbol{H}_{0}^{1}(\Omega)}\frac{|(\mathrm{div}\,\boldsymbol{v},q_{h})|}{|\boldsymbol{v}|_{1}}\geq\frac{\gamma_{0}}{\eta}\|q_{h}\|_{0}=\gamma_{1}\|q_{h}\|_{0}.

Lemma 3.6

([10]) Let 𝒗𝑯l(E)\boldsymbol{v}\in\boldsymbol{H}^{l}(E), 1lk+11\leq l\leq k+1, there exists a polynomial 𝒗π[k(E)]2\boldsymbol{v}_{\pi}\in[\mathbb{P}_{k}(E)]^{2} such that

𝒗𝒗πLr(E)+h|𝒗𝒗π|W1,r(E)Chl|𝒗|Wl,r(E),1r.\displaystyle\|\boldsymbol{v}-\boldsymbol{v}_{\pi}\|_{L^{r}(E)}+h|\boldsymbol{v}-\boldsymbol{v}_{\pi}|_{W^{1,r}(E)}\leq Ch^{l}|\boldsymbol{v}|_{W^{l,r}(E)},\quad\forall 1\leq r\leq\infty.
Theorem 3.1

Assuming

C^Fh(σmin{Rν1,λ1Rm1Sc})2<1,\displaystyle\frac{\hat{C}\|F_{h}\|_{\ast}}{(\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\})^{2}}<1, (3.36)

then the problem (3.25) has a unique solution (𝒖h,𝒃h,ph)𝑽×𝑴×Q(\boldsymbol{u}_{h},\boldsymbol{b}_{h},p_{h})\in\boldsymbol{V}\times\boldsymbol{M}\times Q satisfying

σmin{Rν1,λ1Rm1Sc}(𝒖h,𝒃h)1,hFh.\displaystyle\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\leq\|F_{h}\|_{\ast}. (3.37)

Proof.  Similar to [21, 18], we can deduce (3.37) with just a few modifications. ∎

4 Error analysis

Lemma 4.1

Under assumptions (A1) and (A2), suppose 𝒖𝑯01(Ω)𝑯k+1(Ω)\boldsymbol{u}\in\boldsymbol{H}_{0}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega), 𝒃𝑯n1(Ω)𝑯k+1(Ω)\boldsymbol{b}\in\boldsymbol{H}_{n}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega), 𝒖h𝑽\boldsymbol{u}_{h}\in\boldsymbol{V} and 𝒃h𝑴\boldsymbol{b}_{h}\in\boldsymbol{M}, for every 𝒗h𝑽,𝒄h𝑴\boldsymbol{v}_{h}\in\boldsymbol{V},\boldsymbol{c}_{h}\in\boldsymbol{M}, there hold

|E𝒯ha2E(𝒖,𝒖,𝒗h)a2h(𝒖,𝒖,𝒗h)|Chk𝒖k+12|𝒗h|1,h,\displaystyle\Big{|}\sum_{E\in\mathcal{T}_{h}}a_{2}^{E}(\boldsymbol{u},\boldsymbol{u},\boldsymbol{v}_{h})-a_{2h}(\boldsymbol{u},\boldsymbol{u},\boldsymbol{v}_{h})\Big{|}\leq Ch^{k}\|\boldsymbol{u}\|_{k+1}^{2}|\boldsymbol{v}_{h}|_{1,h},
|E𝒯ha3E(𝒃,𝒃,𝒗h)a3h(𝒃,𝒃,𝒗h)|Chk𝒃k𝒃k+1|𝒗h|1,h,\displaystyle\Big{|}\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{b},\boldsymbol{b},\boldsymbol{v}_{h})-a_{3h}(\boldsymbol{b},\boldsymbol{b},\boldsymbol{v}_{h})\Big{|}\leq Ch^{k}\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}|\boldsymbol{v}_{h}|_{1,h},
|E𝒯ha3E(𝒄h,𝒃,𝒖)a3h(𝒄h,𝒃,𝒖)|Chk𝒃k+1𝒖k+1𝒄h1,\displaystyle\Big{|}\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{c}_{h},\boldsymbol{b},\boldsymbol{u})-a_{3h}(\boldsymbol{c}_{h},\boldsymbol{b},\boldsymbol{u})\Big{|}\leq Ch^{k}\|\boldsymbol{b}\|_{k+1}\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{c}_{h}\|_{1},
|Bh(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)|C^((𝒖h,𝒃h)1,h(𝒗h,𝒄h)1,h\displaystyle\big{|}B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\big{|}\leq\hat{C}\Big{(}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}
+(𝒖𝒖h+𝒗h,𝒃𝒃h+𝒄h)1,h((𝒖,𝒃)1+(𝒖h,𝒃h)1,h))(𝒗h,𝒄h)1,h.\displaystyle\qquad\qquad\qquad\quad+\|(\boldsymbol{u}-\boldsymbol{u}_{h}+\boldsymbol{v}_{h},\boldsymbol{b}-\boldsymbol{b}_{h}+\boldsymbol{c}_{h})\|_{1,h}\big{(}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}+\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\big{)}\Big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}.

Proof.  Similar to Lemma 4.3 in [9], with just a few modifications, the first inequality of Lemma 4.1 can be derived. According to the properties of L2L^{2}-projection, Ho¨\ddot{\mathrm{o}}lder inequality and (3.26)-(3.29), we have

|E𝒯ha3E(𝒃,𝒃,𝒗h)a3h(𝒃,𝒃,𝒗h)|\displaystyle\Big{|}\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{b},\boldsymbol{b},\boldsymbol{v}_{h})-a_{3h}(\boldsymbol{b},\boldsymbol{b},\boldsymbol{v}_{h})\Big{|}
=|ScE𝒯hE((curl𝒃×𝒃)𝒗h(Πk10,Ecurl𝒃×Πk0,E𝒃)Πk0,E𝒗h)dE|\displaystyle=\Big{|}S_{c}\sum_{E\in\mathcal{T}_{h}}\int_{E}\Big{(}(\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{b})\cdot\boldsymbol{v}_{h}-(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b})\cdot\Pi_{k}^{0,E}\boldsymbol{v}_{h}\Big{)}\,\mathrm{d}E\Big{|}
=|ScE𝒯hE(((IΠk10,E)(curl𝒃×𝒃))(IΠk0,E)𝒗h+(curl𝒃×(IΠk0,E)𝒃)Πk0,E𝒗h\displaystyle=\Big{|}S_{c}\sum_{E\in\mathcal{T}_{h}}\int_{E}\Big{(}\big{(}(\mathrm{I}-\Pi_{k-1}^{0,E})(\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{b})\big{)}\cdot(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{v}_{h}+\big{(}\mathrm{curl}\,\boldsymbol{b}\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}\big{)}\cdot\Pi_{k}^{0,E}\boldsymbol{v}_{h}
+((IΠk10,E)curl𝒃×Πk0,E𝒃)Πk0,E𝒗h)dE|\displaystyle\qquad+\big{(}(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b}\big{)}\cdot\Pi_{k}^{0,E}\boldsymbol{v}_{h}\Big{)}\,\mathrm{d}E\Big{|}
ChkE𝒯h(curl𝒃×𝒃k1,E|𝒗h|1,E+𝒃1,E𝒃k,4,E𝒗hL4(E)+𝒃k+1,E𝒃L4(E)𝒗hL4(E))\displaystyle\leq Ch^{k}\sum_{E\in\mathcal{T}_{h}}\big{(}\|\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{b}\|_{k-1,E}|\boldsymbol{v}_{h}|_{1,E}+\|\boldsymbol{b}\|_{1,E}\|\boldsymbol{b}\|_{k,4,E}\|\boldsymbol{v}_{h}\|_{L^{4}(E)}+\|\boldsymbol{b}\|_{k+1,E}\|\boldsymbol{b}\|_{L^{4}(E)}\|\boldsymbol{v}_{h}\|_{L^{4}(E)}\big{)}
Chk(𝒃1+𝒃k)𝒃k+1|𝒗h|1,hChk𝒃k𝒃k+1|𝒗h|1,h.\displaystyle\leq Ch^{k}(\|\boldsymbol{b}\|_{1}+\|\boldsymbol{b}\|_{k})\|\boldsymbol{b}\|_{k+1}|\boldsymbol{v}_{h}|_{1,h}\leq Ch^{k}\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}|\boldsymbol{v}_{h}|_{1,h}.

Similarly, we observe that

|E𝒯ha3E(𝒄h,𝒃,𝒖)a3h(𝒄h,𝒃,𝒖)|\displaystyle\Big{|}\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{c}_{h},\boldsymbol{b},\boldsymbol{u})-a_{3h}(\boldsymbol{c}_{h},\boldsymbol{b},\boldsymbol{u})\Big{|}
=|ScE𝒯hE((IΠk10,E)curl𝒄h(IΠk10,E)(𝒃×𝒖)+(Πk10,Ecurl𝒄h×(IΠk0,E)𝒃)𝒖\displaystyle=\Big{|}S_{c}\sum_{E\in\mathcal{T}_{h}}\int_{E}\Big{(}(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{c}_{h}\cdot(\mathrm{I}-\Pi_{k-1}^{0,E})(\boldsymbol{b}\times\boldsymbol{u})+\Big{(}\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h}\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}\Big{)}\cdot\boldsymbol{u}
+(Πk10,Ecurl𝒄h×Πk0,E𝒃)(IΠk0,E)𝒖)dE|\displaystyle\quad+(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{c}_{h}\times\Pi_{k}^{0,E}\boldsymbol{b})\cdot(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{u}\Big{)}\,\mathrm{d}E\Big{|}
Chk(𝒃k+1𝒖k+1+𝒃k+1𝒖1+𝒃1𝒖k+1)𝒄h1Chk𝒃k+1𝒖k+1𝒄h1.\displaystyle\leq Ch^{k}(\|\boldsymbol{b}\|_{k+1}\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\|\boldsymbol{u}\|_{1}+\|\boldsymbol{b}\|_{1}\|\boldsymbol{u}\|_{k+1})\|\boldsymbol{c}_{h}\|_{1}\leq Ch^{k}\|\boldsymbol{b}\|_{k+1}\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{c}_{h}\|_{1}.

By the antisymmetric of the linear form Bh(,;,;,)B_{h}(\cdot,\cdot;\cdot,\cdot;\cdot,\cdot), we conclude that

Bh(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)\displaystyle B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})
=Bh(𝒖,𝒃;𝒖𝒖h,𝒃𝒃h;𝒗h,𝒄h)+Bh(𝒖𝒖h,𝒃𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)\displaystyle=B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})+B_{h}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})
=Bh(𝒖,𝒃;𝒖𝒖h+𝒗h,𝒃𝒃h+𝒄h;𝒗h,𝒄h)\displaystyle=B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u}-\boldsymbol{u}_{h}+\boldsymbol{v}_{h},\boldsymbol{b}-\boldsymbol{b}_{h}+\boldsymbol{c}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})
+Bh(𝒖𝒖h+𝒗h,𝒃𝒃h+𝒄h;𝒖h,𝒃h;𝒗h,𝒄h)Bh(𝒗h,𝒄h;𝒖h,𝒃h;𝒗h,𝒄h).\displaystyle\quad+B_{h}(\boldsymbol{u}-\boldsymbol{u}_{h}+\boldsymbol{v}_{h},\boldsymbol{b}-\boldsymbol{b}_{h}+\boldsymbol{c}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-B_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h}).

Applying (3.32), the proof is completed. ∎

Lemma 4.2

Under assumptions (A1) and (A2), let 𝒖𝑯01(Ω)𝑯k+1(Ω),𝒘𝑯2(Ω)\boldsymbol{u}\in\boldsymbol{H}_{0}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega),\boldsymbol{w}\in\boldsymbol{H}^{2}(\Omega) and pL02(Ω)Hk(Ω)p\in L_{0}^{2}(\Omega)\cap H^{k}(\Omega), for every 𝒗h𝑽\boldsymbol{v}_{h}\in\boldsymbol{V}, we can get

|𝒩(𝒖,p;𝒗h)|\displaystyle|\mathcal{N}(\boldsymbol{u},p;\boldsymbol{v}_{h})| Chk(Rν1𝒖k+1+pk+𝒖k+12)|𝒗h|1,h,\displaystyle\leq Ch^{k}\left(R_{\nu}^{-1}\|\boldsymbol{u}\|_{k+1}+\|p\|_{k}+\|\boldsymbol{u}\|_{k+1}^{2}\right)|\boldsymbol{v}_{h}|_{1,h},
|𝒩(𝒖,p;𝒘,𝒗h)|\displaystyle|\mathcal{N}(\boldsymbol{u},p;\boldsymbol{w},\boldsymbol{v}_{h})| Ch(Rν1𝒖2+p1+𝒖2𝒘2)|𝒗h|1,h,\displaystyle\leq Ch(R_{\nu}^{-1}\|\boldsymbol{u}\|_{2}+\|p\|_{1}+\|\boldsymbol{u}\|_{2}\|\boldsymbol{w}\|_{2})|\boldsymbol{v}_{h}|_{1,h},

where

𝒩(𝒖,p;𝒗h)\displaystyle\mathcal{N}(\boldsymbol{u},p;\boldsymbol{v}_{h}) =E𝒯hE(Rν1𝒖𝒏Ep𝒏E+12(𝒖𝒏E)𝒖)𝒗hdE,\displaystyle=\sum_{E\in\mathcal{T}_{h}}\int_{\partial E}\left(R_{\nu}^{-1}\nabla\boldsymbol{u}\cdot\boldsymbol{n}_{E}-p\boldsymbol{n}_{E}+\frac{1}{2}(\boldsymbol{u}\cdot\boldsymbol{n}_{E})\boldsymbol{u}\right)\cdot\boldsymbol{v}_{h}\,\mathrm{d}\partial E,
𝒩(𝒖,p;𝒘,𝒗h)\displaystyle\mathcal{N}(\boldsymbol{u},p;\boldsymbol{w},\boldsymbol{v}_{h}) =E𝒯hE(Rν1𝒖𝒏Ep𝒏E+12(𝒘𝒏E)𝒖)𝒗hdE.\displaystyle=\sum_{E\in\mathcal{T}_{h}}\int_{\partial E}\left(R_{\nu}^{-1}\nabla\boldsymbol{u}\cdot\boldsymbol{n}_{E}-p\boldsymbol{n}_{E}+\frac{1}{2}(\boldsymbol{w}\cdot\boldsymbol{n}_{E})\boldsymbol{u}\right)\cdot\boldsymbol{v}_{h}\,\mathrm{d}\partial E.

For the proof of Lemma 4.2, see [27, 34].

Theorem 4.1

Under assumptions (A1), (A2) and (3.36), let (𝒖,𝒃,p)(𝑯01(Ω)𝑯k+1(Ω))×(𝑯n1(Ω)𝑯k+1(Ω))×(L02(Ω)Hk(Ω))(\boldsymbol{u},\boldsymbol{b},p)\in(\boldsymbol{H}_{0}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega))\times(\boldsymbol{H}_{n}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega))\times(L_{0}^{2}(\Omega)\cap H^{k}(\Omega)) and (𝒖h,𝒃h,ph)𝑽×𝑴×Q(\boldsymbol{u}_{h},\boldsymbol{b}_{h},p_{h})\in\boldsymbol{V}\times\boldsymbol{M}\times Q be solutions of (2.3) and (3.25), respectively. Then, the following estimates hold

(𝒖𝒖h,𝒃𝒃h)1,h\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h} C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk,\displaystyle\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k}, (4.1)
pph0\displaystyle\|p-p_{h}\|_{0} C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk.\displaystyle\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k}. (4.2)

Proof.  According to the definition of interpolation, which implies that 𝒖\boldsymbol{u} and 𝒖I\boldsymbol{u}_{I} have the same degrees of freedom, we observe that if 𝒖𝒁\boldsymbol{u}\in\boldsymbol{Z}, then 𝒖I𝒁h\boldsymbol{u}_{I}\in\boldsymbol{Z}_{h}. Multiplying the first and second equations in (2.1) by test functions δ𝒖=𝒖h𝒖I𝒁h\delta_{\boldsymbol{u}}=\boldsymbol{u}_{h}-\boldsymbol{u}_{I}\in\boldsymbol{Z}_{h} and δ𝒃=𝒃h𝒃I𝑴\delta_{\boldsymbol{b}}=\boldsymbol{b}_{h}-\boldsymbol{b}_{I}\in\boldsymbol{M}, respectively, then using integration by parts, we deduce

E𝒯hAE(𝒖,𝒃;δ𝒖,δ𝒃)+E𝒯hBE(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)dh(δ𝒖,δ𝒃;p)=F;δ𝒖,δ𝒃+𝒩(𝒖,p;δ𝒖).\displaystyle\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})+\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})-d_{h}(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}};p)=\left<F;\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}}\right>+\mathcal{N}(\boldsymbol{u},p;\delta_{\boldsymbol{u}}). (4.3)

Subtracting (4.3) from (3.25), taking 𝒗h=δ𝒖,𝒄h=δ𝒃\boldsymbol{v}_{h}=\delta_{\boldsymbol{u}},\boldsymbol{c}_{h}=\delta_{\boldsymbol{b}} and using the fact dh(δ𝒖,δ𝒃;p)=0d_{h}(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}};p)=0, we derive

Ah(δ𝒖,δ𝒃;δ𝒖,δ𝒃)={Ah(𝒖π𝒖I;𝒃π𝒃I;δ𝒖,δ𝒃)+E𝒯hAE(𝒖𝒖π,𝒃𝒃π;δ𝒖,δ𝒃)}+{E𝒯hBE(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)Bh(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)}+{Bh(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)Bh(𝒖h,𝒃h;𝒖h,𝒃h;δ𝒖,δ𝒃)}+{Fh;δ𝒖,δ𝒃F;δ𝒖,δ𝒃}𝒩(𝒖,p;δ𝒖)=Θ1+Θ2+Θ3+Θ4+Θ5.\displaystyle\begin{aligned} &A_{h}(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\\ &=\big{\{}A_{h}(\boldsymbol{u}_{\pi}-\boldsymbol{u}_{I};\boldsymbol{b}_{\pi}-\boldsymbol{b}_{I};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})+\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}-\boldsymbol{u}_{\pi},\boldsymbol{b}-\boldsymbol{b}_{\pi};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\big{\}}\\ &\quad+\big{\{}\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})-B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\big{\}}+\big{\{}B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\\ &\quad-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\big{\}}+\big{\{}\left<F_{h};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}}\right>-\left<F;\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}}\right>\big{\}}-\mathcal{N}(\boldsymbol{u},p;\delta_{\boldsymbol{u}})\\ &=\Theta_{1}+\Theta_{2}+\Theta_{3}+\Theta_{4}+\Theta_{5}.\end{aligned} (4.4)

Applying triangle inequality, (3.30), Lemmas 3.1, 3.2 and 3.6, we obtain

Θ1=Ah(𝒖π𝒖I,𝒃π𝒃I;δ𝒖,δ𝒃)+E𝒯hAE(𝒖𝒖π,𝒃𝒃π;δ𝒖,δ𝒃)Chk(𝒖k+1+𝒃k+1)(δ𝒖,δ𝒃)1,h.\displaystyle\begin{aligned} \Theta_{1}&=A_{h}(\boldsymbol{u}_{\pi}-\boldsymbol{u}_{I},\boldsymbol{b}_{\pi}-\boldsymbol{b}_{I};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})+\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}-\boldsymbol{u}_{\pi},\boldsymbol{b}-\boldsymbol{b}_{\pi};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\\ &\leq Ch^{k}\left(\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\right)\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}.\end{aligned} (4.5)

Using Lemma 4.1, we have

Θ2\displaystyle\Theta_{2} =E𝒯hBE(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)Bh(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)\displaystyle=\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})-B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})
Chk(𝒖k+12+𝒃k𝒃k+1+𝒖k+1𝒃k+1)(δ𝒖,δ𝒃)1,h,\displaystyle\leq Ch^{k}\big{(}\|\boldsymbol{u}\|_{k+1}^{2}+\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}+\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{b}\|_{k+1}\big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}, (4.6)
Θ3\displaystyle\Theta_{3} =Bh(𝒖,𝒃;𝒖,𝒃;δ𝒖,δ𝒃)Bh(𝒖h,𝒃h;𝒖h,𝒃h;δ𝒖,δ𝒃)\displaystyle=B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})
C^(𝒖h,𝒃h)1,h(δ𝒖,δ𝒃)1,h2+Chk(𝒖k+1+𝒃k+1)((𝒖,𝒃)1+(𝒖h,𝒃h)1,h)(δ𝒖,δ𝒃)1,h\displaystyle\leq\hat{C}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}^{2}+Ch^{k}\big{(}\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\big{)}\big{(}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}+\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}
C^Fhσmin{Rν1,λ1Rm1Sc}(δ𝒖,δ𝒃)1,h2+Chk(F+Fh)(𝒖k+1+𝒃k+1)(δ𝒖,δ𝒃)1,h.\displaystyle\leq\frac{\hat{C}\|F_{h}\|_{\ast}}{\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}^{2}+Ch^{k}\big{(}\|F\|_{\ast}+\|F_{h}\|_{\ast}\big{)}\big{(}\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}. (4.7)

From the properties of L2L^{2}-projection, we know that

Θ4\displaystyle\Theta_{4} =Fh;δ𝒖,δ𝒃F;δ𝒖,δ𝒃\displaystyle=\left<F_{h};\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}}\right>-\left<F;\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}}\right>
=E𝒯hE(𝒇Πk0,E𝒇)(IΠ00,E)δ𝒖+(𝒈Πk0,E𝒈)(IΠ00,E)δ𝒃dE\displaystyle=\sum_{E\in\mathcal{T}_{h}}\int_{E}(\boldsymbol{f}-\Pi_{k}^{0,E}\boldsymbol{f})\cdot(\mathrm{I}-\Pi_{0}^{0,E})\delta_{\boldsymbol{u}}+(\boldsymbol{g}-\Pi_{k}^{0,E}\boldsymbol{g})\cdot(\mathrm{I}-\Pi_{0}^{0,E})\delta_{\boldsymbol{b}}\,\,\mathrm{d}E
CE𝒯h(hEk|𝒇|k1,E|δ𝒖|1,E+hEk|𝒈|k1,E|δ𝒃|1,E)\displaystyle\leq C\sum_{E\in\mathcal{T}_{h}}\big{(}h_{E}^{k}|\boldsymbol{f}|_{k-1,E}|\delta_{\boldsymbol{u}}|_{1,E}+h_{E}^{k}|\boldsymbol{g}|_{k-1,E}|\delta_{\boldsymbol{b}}|_{1,E}\big{)}
Chk(𝒇k1+𝒈k1)(δ𝒖,δ𝒃)1,h.\displaystyle\leq Ch^{k}\big{(}\|\boldsymbol{f}\|_{k-1}+\|\boldsymbol{g}\|_{k-1}\big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}. (4.8)

Applying Lemma 4.2, it is easy to see that

Θ5=𝒩(𝒖,p;δ𝒖)Chk(𝒖k+1+pk+𝒖k+12)(δ𝒖,δ𝒃)1,h.\displaystyle\Theta_{5}=-\mathcal{N}(\boldsymbol{u},p;\delta_{\boldsymbol{u}})\leq Ch^{k}\big{(}\|\boldsymbol{u}\|_{k+1}+\|p\|_{k}+\|\boldsymbol{u}\|_{k+1}^{2}\big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}. (4.9)

Substituting (4.5)-(4.9) into (4.4) and using (3.31), we infer

σmin{Rν1,λ1Rm1Sc}(1C^Fh(σmin{Rν1,λ1Rm1Sc})2)(δ𝒖,δ𝒃)1,h\displaystyle\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\}\Big{(}1-\frac{\hat{C}\|F_{h}\|_{\ast}}{(\sigma_{\ast}\min\{R_{\nu}^{-1},\lambda_{1}R_{m}^{-1}S_{c}\})^{2}}\Big{)}\|(\delta_{\boldsymbol{u}},\delta_{\boldsymbol{b}})\|_{1,h}
C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk.\displaystyle\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k}. (4.10)

By (4.10), assumption (3.36) and triangle inequality, we can derive (4.1).

Substacting (4.3) from (3.25), taking δ𝒖=𝒗h,δ𝒃=𝒄h\delta_{\boldsymbol{u}}=\boldsymbol{v}_{h},\delta_{\boldsymbol{b}}=\boldsymbol{c}_{h}, we obtain

dh(𝒗h,𝒄h;p)dh(𝒗h,𝒄h;ph)={E𝒯hAE(𝒖𝒖π,𝒃𝒃π;𝒗h,𝒄h)Ah(𝒖h𝒖π,𝒃h𝒃π;𝒗h,𝒄h)}+{E𝒯hBE(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)Bh(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)}+{Bh(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)}+{Fh;𝒗h,𝒄hF;𝒗h,𝒄h}𝒩(𝒖,p;𝒗h)=Θ¯1+Θ¯2+Θ¯3+Θ¯4+Θ¯5.\displaystyle\begin{aligned} &d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p)-d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h})\\ &=\Big{\{}\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}-\boldsymbol{u}_{\pi},\boldsymbol{b}-\boldsymbol{b}_{\pi};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-A_{h}(\boldsymbol{u}_{h}-\boldsymbol{u}_{\pi},\boldsymbol{b}_{h}-\boldsymbol{b}_{\pi};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\Big{\}}\\ &\quad+\Big{\{}\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\Big{\}}+\big{\{}B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\\ &\quad-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\big{\}}+\big{\{}\left<F_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h}\right>-\left<F;\boldsymbol{v}_{h},\boldsymbol{c}_{h}\right>\big{\}}-\mathcal{N}(\boldsymbol{u},p;\boldsymbol{v}_{h})\\ &=\overline{\Theta}_{1}+\overline{\Theta}_{2}+\overline{\Theta}_{3}+\overline{\Theta}_{4}+\overline{\Theta}_{5}.\end{aligned} (4.11)

Similar to the estimates of the terms Θ1,Θ2,Θ4,Θ5\Theta_{1},\Theta_{2},\Theta_{4},\Theta_{5}, there hold

Θ¯1\displaystyle\overline{\Theta}_{1} C((𝒖𝒖h,𝒃𝒃h)1,h+hk(𝒖k+1+𝒃k+1))(𝒗h,𝒄h)1,h,\displaystyle\leq C\Big{(}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}+h^{k}\big{(}\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\big{)}\Big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}, (4.12)
Θ¯2\displaystyle\overline{\Theta}_{2} Chk(𝒖k+12+𝒃k𝒃k+1+𝒖k+1𝒃k+1)(𝒗h,𝒄h)1,h,\displaystyle\leq Ch^{k}\Big{(}\|\boldsymbol{u}\|_{k+1}^{2}+\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}+\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{b}\|_{k+1}\Big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}, (4.13)
Θ¯4\displaystyle\overline{\Theta}_{4} Chk(𝒇k1+𝒈k1)(𝒗h,𝒄h)1,h,\displaystyle\leq Ch^{k}\big{(}\|\boldsymbol{f}\|_{k-1}+\|\boldsymbol{g}\|_{k-1}\big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}, (4.14)
Θ¯5\displaystyle\overline{\Theta}_{5} Chk(𝒖k+1+pk+𝒖k+12)(𝒗h,𝒄h)1,h.\displaystyle\leq Ch^{k}\big{(}\|\boldsymbol{u}\|_{k+1}+\|p\|_{k}+\|\boldsymbol{u}\|_{k+1}^{2}\big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}. (4.15)

For the estimate of the term Θ¯3\overline{\Theta}_{3}, we observe that

Θ¯3=Bh(𝒖,𝒃;𝒖,𝒃;𝒗h,𝒄h)Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒗h,𝒄h)=Bh(𝒖𝒖h,𝒃𝒃h;𝒖,𝒃;𝒗h,𝒄h)+Bh(𝒖h,𝒃h;𝒖𝒖h,𝒃𝒃h;𝒗h,𝒄h)C(𝒖𝒖h,𝒃𝒃h)1,h((𝒖h,𝒃h)1,h+(𝒖,𝒃)1)(𝒗h,𝒄h)1,h.\displaystyle\begin{aligned} \overline{\Theta}_{3}&=B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\\ &=B_{h}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{u},\boldsymbol{b};\boldsymbol{v}_{h},\boldsymbol{c}_{h})+B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h})\\ &\leq C\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}\Big{(}\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}+\|(\boldsymbol{u},\boldsymbol{b})\|_{1}\Big{)}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}.\end{aligned} (4.16)

Combining (4.12)-(4.16) and using (4.1), we conclude that

|dh(𝒗h,𝒄h;ph)dh(𝒗h,𝒄h;p)|C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk(𝒗h,𝒄h)1,h.\displaystyle|d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h})-d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p)|\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k}\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}. (4.17)

Applying the discrete inf-sup condition (3.35) yields

phpI0\displaystyle\|p_{h}-p_{I}\|_{0} 1γ1sup(𝒗h,𝒄h)𝑽×𝑴|dh(𝒗h,𝒄h;phpI)|(𝒗h,𝒄h)1,h\displaystyle\leq\frac{1}{\gamma_{1}}\sup_{(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\in\boldsymbol{V}\times\boldsymbol{M}}\frac{|d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h}-p_{I})|}{\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}}
=1γ1sup(𝒗h,𝒄h)𝑽×𝑴|dh(𝒗h,𝒄h;php)|(𝒗h,𝒄h)1,h,\displaystyle=\frac{1}{\gamma_{1}}\sup_{(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\in\boldsymbol{V}\times\boldsymbol{M}}\frac{|d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h}-p)|}{\|(\boldsymbol{v}_{h},\boldsymbol{c}_{h})\|_{1,h}},

which implies

phpI0\displaystyle\|p_{h}-p_{I}\|_{0} C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk.\displaystyle\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k}.

By triangle inequality and (3.15), we get (4.2). The proof is completed. ∎

For L2L^{2}-norm of error, we consider the following dual problem, see [21, 26].

{Rν1Δ𝒘+12((𝒖)T𝒘(𝒘)T𝒖)(𝒘)𝒖+s+Sccurl𝚽×𝒃=𝒖𝒖h,inΩ,Rm1Sc(curlcurl𝚽(div𝚽))+Sc(curl𝒃×𝒘curl𝚽×𝒖curl(𝒃×𝒘))=𝒃𝒃h,inΩ,div𝒘=0,inΩ,𝒘=0,𝒃𝒏=0,curl𝚽×𝒏=0,onΩ,\displaystyle\begin{cases}-R_{\nu}^{-1}\Delta\boldsymbol{w}+\displaystyle\frac{1}{2}\left((\nabla\boldsymbol{u})^{\mathrm{T}}\boldsymbol{w}-(\nabla\boldsymbol{w})^{\mathrm{T}}\boldsymbol{u}\right)-(\nabla\boldsymbol{w})\boldsymbol{u}+\nabla s+S_{c}\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{b}=\boldsymbol{u}-\boldsymbol{u}_{h},\quad\mathrm{in}\;\Omega,\\ R_{m}^{-1}S_{c}\left(\mathrm{curl}\,\mathrm{curl}\,\boldsymbol{\Phi}-\nabla(\mathrm{div}\,\boldsymbol{\Phi})\right)+S_{c}\left(\mathrm{curl}\,\boldsymbol{b}\times\boldsymbol{w}-\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{u}-\mathrm{curl}(\boldsymbol{b}\times\boldsymbol{w})\right)=\boldsymbol{b}-\boldsymbol{b}_{h},\quad\mathrm{in}\;\Omega,\\ \mathrm{div}\,\boldsymbol{w}=0,\quad\mathrm{in}\;\Omega,\\ \boldsymbol{w}=0,\quad\boldsymbol{b}\cdot\boldsymbol{n}=0,\quad\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{n}=0,\quad\mathrm{on}\;\partial\Omega,\end{cases} (4.18)

where ()T(\cdot)^{\mathrm{T}} represents the normal transpose. We assume that the solution of (4.18) satisfies (𝒘,𝚽,s)𝑯2(Ω)×𝑯2(Ω)×H1(Ω)(\boldsymbol{w},\boldsymbol{\Phi},s)\in\boldsymbol{H}^{2}(\Omega)\times\boldsymbol{H}^{2}(\Omega)\times H^{1}(\Omega) and there exists a constant λ4\lambda_{4} such that

(𝒘,𝚽)2+s1λ4(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\|(\boldsymbol{w},\boldsymbol{\Phi})\|_{2}+\|s\|_{1}\leq\lambda_{4}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.19)
Theorem 4.2

Under assumptions (A1), (A2) and (3.36), let (𝒖,𝒃,p)(𝑯01(Ω)𝑯k+1(Ω))×(𝑯n1(Ω)𝑯k+1(Ω))×(L02(Ω)Hk(Ω))(\boldsymbol{u},\boldsymbol{b},p)\in(\boldsymbol{H}_{0}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega))\times(\boldsymbol{H}_{n}^{1}(\Omega)\cap\boldsymbol{H}^{k+1}(\Omega))\times(L_{0}^{2}(\Omega)\cap H^{k}(\Omega)) and (𝒖h,𝒃h,ph)𝑽×𝑴×Q(\boldsymbol{u}_{h},\boldsymbol{b}_{h},p_{h})\in\boldsymbol{V}\times\boldsymbol{M}\times Q be the solutions of (2.3) and (3.25), respectively. If (𝒘,𝚽,s)(𝑯2(Ω)𝑯01(Ω))×(𝑯2(Ω)𝑯n1(Ω))×(H1(Ω)L02(Ω))(\boldsymbol{w},\boldsymbol{\Phi},s)\in(\boldsymbol{H}^{2}(\Omega)\cap\boldsymbol{H}_{0}^{1}(\Omega))\times(\boldsymbol{H}^{2}(\Omega)\cap\boldsymbol{H}_{n}^{1}(\Omega))\times(H^{1}(\Omega)\cap L_{0}^{2}(\Omega)), there holds

(𝒖𝒖h,𝒃𝒃h)0\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0} C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk+1.\displaystyle\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k+1}.

Proof.  Multiplying (4.18) by test functions 𝒖𝒖h\boldsymbol{u}-\boldsymbol{u}_{h} and 𝒃𝒃h\boldsymbol{b}-\boldsymbol{b}_{h}, then adding (3.25) and substracting (4.3), with 𝒗h=δ𝒖=𝒘I𝒁h,𝒄h=δ𝒃=𝚽I\boldsymbol{v}_{h}=\delta_{\boldsymbol{u}}=\boldsymbol{w}_{I}\in\boldsymbol{Z}_{h},\boldsymbol{c}_{h}=\delta_{\boldsymbol{b}}=\boldsymbol{\Phi}_{I}, we deduce

(𝒖𝒖h,𝒃𝒃h)02\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}^{2}
=E𝒯hAE(𝒖𝒖h,𝒃𝒃h;𝒘,𝚽)+E𝒯hBE(𝒖,𝒃;𝒖𝒖h,𝒃𝒃h;𝒘,𝚽)\displaystyle=\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})+\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})
+E𝒯hBE(𝒖𝒖h,𝒃𝒃h;𝒖,𝒃;𝒘,𝚽)𝒩(𝒘,s;𝒖,𝒖𝒖h)+Ah(𝒖h,𝒃h;𝒘I,𝚽I)\displaystyle\quad+\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w},\boldsymbol{\Phi})-\mathcal{N}(\boldsymbol{w},s;\boldsymbol{u},\boldsymbol{u}-\boldsymbol{u}_{h})+A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})
+Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒘I,𝚽I)Fh;𝒘I,𝚽IE𝒯hAE(𝒖,𝒃;𝒘I,𝚽I)\displaystyle\quad+B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})-\left<F_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I}\right>-\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})
E𝒯hBE(𝒖,𝒃;𝒖,𝒃;𝒘I,𝚽I)+F;𝒘I,𝚽I+𝒩(𝒖,p;𝒘I)\displaystyle\quad-\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})+\left<F;\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I}\right>+\mathcal{N}(\boldsymbol{u},p;\boldsymbol{w}_{I})
=E𝒯hAE(𝒖𝒖h,𝒃𝒃h;𝒘𝒘I,𝚽𝚽I)+{Ah(𝒖h,𝒃h;𝒘I,𝚽I)E𝒯hAE(𝒖h,𝒃h;𝒘I,𝚽I)}\displaystyle=\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{w}-\boldsymbol{w}_{I},\boldsymbol{\Phi}-\boldsymbol{\Phi}_{I})+\Big{\{}A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})-\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})\Big{\}}
+{Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒘I𝒘,𝚽I𝚽)E𝒯hBE(𝒖,𝒃;𝒖,𝒃;𝒘I𝒘,𝚽I𝚽)}\displaystyle\quad+\Big{\{}B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})-\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})\Big{\}}
+E𝒯hBE(𝒖𝒖h,𝒃𝒃h;𝒖𝒖h,𝒃𝒃h;𝒘,𝚽){E𝒯hBE(𝒖h,𝒃h;𝒖h,𝒃h;𝒘,𝚽)\displaystyle\quad+\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})-\Big{\{}\sum_{E\mathcal{T}_{h}}B^{E}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})
Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒘,𝚽)}+FFh;𝒘I,𝚽I+{𝒩(𝒖,p;𝒘I𝒘)\displaystyle\quad-B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})\Big{\}}+\left<F-F_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I}\right>+\big{\{}\mathcal{N}(\boldsymbol{u},p;\boldsymbol{w}_{I}-\boldsymbol{w})
𝒩(𝒘,s;𝒖,𝒖𝒖h)}\displaystyle\quad-\mathcal{N}(\boldsymbol{w},s;\boldsymbol{u},\boldsymbol{u}-\boldsymbol{u}_{h})\big{\}}
=Γ1+Γ2+Γ3+Γ4+Γ5+Γ6+Γ7,\displaystyle=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\Gamma_{7}, (4.20)

where 𝒩(𝒖,p;𝒘)=0\mathcal{N}(\boldsymbol{u},p;\boldsymbol{w})=0. Applying Lemmas 3.1-3.2 and (4.19), we get

Γ1Ch(𝒖𝒖h,𝒃𝒃h)1,h(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\Gamma_{1}\leq Ch\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.21)

Making use of consistencies (3.13), (3.23), triangle inequality and (4.19), we obtain

Γ2\displaystyle\Gamma_{2} =Ah(𝒖h,𝒃h;𝒘I,𝚽I)E𝒯hAE(𝒖h,𝒃h;𝒘I,𝚽I)\displaystyle=A_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})-\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I})
=Ah(𝒖h𝒖π,𝒃h𝒃π;𝒘I𝒘π,𝚽I𝚽π)E𝒯hAE(𝒖h𝒖π,𝒃h𝒃π;𝒘I𝒘π,𝚽I𝚽π)\displaystyle=A_{h}(\boldsymbol{u}_{h}-\boldsymbol{u}_{\pi},\boldsymbol{b}_{h}-\boldsymbol{b}_{\pi};\boldsymbol{w}_{I}-\boldsymbol{w}_{\pi},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi}_{\pi})-\sum_{E\in\mathcal{T}_{h}}A^{E}(\boldsymbol{u}_{h}-\boldsymbol{u}_{\pi},\boldsymbol{b}_{h}-\boldsymbol{b}_{\pi};\boldsymbol{w}_{I}-\boldsymbol{w}_{\pi},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi}_{\pi})
C(𝒖h𝒖π,𝒃h𝒃π)1,h(𝒘I𝒘π,𝚽I𝚽π)1,h\displaystyle\leq C\|(\boldsymbol{u}_{h}-\boldsymbol{u}_{\pi},\boldsymbol{b}_{h}-\boldsymbol{b}_{\pi})\|_{1,h}\|(\boldsymbol{w}_{I}-\boldsymbol{w}_{\pi},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi}_{\pi})\|_{1,h}
C(h(𝒖𝒖h,𝒃𝒃h)1,h+hk+1(𝒖k+1+𝒃k+1))(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\leq C\Big{(}h\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}+h^{k+1}\big{(}\|\boldsymbol{u}\|_{k+1}+\|\boldsymbol{b}\|_{k+1}\big{)}\Big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.22)

From Lemmas 3.4, 4.1, 3.1, 3.2 and (4.19), we observe that

Γ3\displaystyle\Gamma_{3} =Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒘I𝒘,𝚽I𝚽)E𝒯hBE(𝒖,𝒃;𝒖,𝒃;𝒘I𝒘,𝚽I𝚽)\displaystyle=B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})-\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})
=Bh(𝒖h𝒖,𝒃h𝒃;𝒖h,𝒃h;𝒘I𝒘,𝚽I𝚽)+Bh(𝒖,𝒃;𝒖h𝒖,𝒃h𝒃;𝒘I𝒘,𝚽I𝚽)\displaystyle=B_{h}(\boldsymbol{u}_{h}-\boldsymbol{u},\boldsymbol{b}_{h}-\boldsymbol{b};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})+B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u}_{h}-\boldsymbol{u},\boldsymbol{b}_{h}-\boldsymbol{b};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})
+Bh(𝒖,𝒃;𝒖,𝒃;𝒘I𝒘,𝚽I𝚽)E𝒯hBE(𝒖,𝒃;𝒖,𝒃;𝒘𝒘I,𝚽I𝚽)\displaystyle\quad+B_{h}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}_{I}-\boldsymbol{w},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})-\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u},\boldsymbol{b};\boldsymbol{u},\boldsymbol{b};\boldsymbol{w}-\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi})
Ch((𝒖,𝒃)1+(𝒖h,𝒃h)1,h)(𝒖𝒖h,𝒃𝒃h)1,h(𝒖𝒖h,𝒃𝒃h)0\displaystyle\leq Ch\big{(}\|(\boldsymbol{u},\boldsymbol{b})\|_{1}+\|(\boldsymbol{u}_{h},\boldsymbol{b}_{h})\|_{1,h}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}
+Chk+1(𝒖k+12+𝒃k𝒃k+1+𝒖k+1𝒃k+1)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\quad+Ch^{k+1}\big{(}\|\boldsymbol{u}\|_{k+1}^{2}+\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}+\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{b}\|_{k+1}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.23)

Utilizing (3.32), Lemmas 3.1-3.2 and (4.19), we derive

Γ4C(𝒖𝒖h,𝒃𝒃h)1,h2(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\Gamma_{4}\leq C\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}^{2}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.24)

The term Γ5\Gamma_{5} can be rewritten as

Γ5=E𝒯hBE(𝒖h,𝒃h;𝒖h,𝒃h;𝒘,𝚽)+Bh(𝒖h,𝒃h;𝒖h,𝒃h;𝒘,𝚽)={a2h(𝒖h,𝒖h,𝒘)E𝒯ha2E(𝒖h,𝒖h,𝒘)}+{a3h(𝒃h,𝒃h,𝒘)E𝒯ha3E(𝒃h,𝒃h,𝒘)}+{a3h(𝚽,𝒃h,𝒖h)E𝒯ha3E(𝚽,𝒃h,𝒖h)}=Γ51+Γ52+Γ53.\displaystyle\begin{aligned} \Gamma_{5}&=-\sum_{E\in\mathcal{T}_{h}}B^{E}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})+B_{h}(\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{u}_{h},\boldsymbol{b}_{h};\boldsymbol{w},\boldsymbol{\Phi})\\ &=\Big{\{}a_{2h}(\boldsymbol{u}_{h},\boldsymbol{u}_{h},\boldsymbol{w})-\sum_{E\mathcal{T}_{h}}a_{2}^{E}(\boldsymbol{u}_{h},\boldsymbol{u}_{h},\boldsymbol{w})\Big{\}}+\Big{\{}a_{3h}(\boldsymbol{b}_{h},\boldsymbol{b}_{h},\boldsymbol{w})-\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{b}_{h},\boldsymbol{b}_{h},\boldsymbol{w})\Big{\}}\\ &\quad+\Big{\{}a_{3h}(\boldsymbol{\Phi},\boldsymbol{b}_{h},\boldsymbol{u}_{h})-\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{\Phi},\boldsymbol{b}_{h},\boldsymbol{u}_{h})\Big{\}}\\ &=\Gamma_{51}+\Gamma_{52}+\Gamma_{53}.\end{aligned} (4.25)

Here, we only provide the estimates of Γ52\Gamma_{52} and Γ53\Gamma_{53}, because the estimate of Γ51\Gamma_{51} is analogous to Γ52\Gamma_{52} and Γ53\Gamma_{53}. Similar to the proof of Theorem 4.7 in [27], the term Γ52\Gamma_{52} can be split as

Γ52\displaystyle\Gamma_{52} =a3h(𝒃h,𝒃h,𝒘)E𝒯ha3E(𝒃h,𝒃h,𝒘)\displaystyle=a_{3h}(\boldsymbol{b}_{h},\boldsymbol{b}_{h},\boldsymbol{w})-\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{b}_{h},\boldsymbol{b}_{h},\boldsymbol{w})
=ScE𝒯h((Πk10,Ecurl𝒃h×Πk0,E𝒃h,Πk0,E𝒘)E(curl𝒃h×𝒃h,𝒘)E)\displaystyle=S_{c}\sum_{E\in\mathcal{T}_{h}}\Big{(}(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}_{h}\times\Pi_{k}^{0,E}\boldsymbol{b}_{h},\Pi_{k}^{0,E}\boldsymbol{w})_{E}-(\mathrm{curl}\,\boldsymbol{b}_{h}\times\boldsymbol{b}_{h},\boldsymbol{w})_{E}\Big{)}
=ScE𝒯h(((IΠk10,E)curl𝒃h×(𝒃𝒃h),𝒘)E+(Πk10,E(curl𝒃curl𝒃h)×(IΠk0,E)𝒃h,𝒘)E\displaystyle=S_{c}\sum_{E\in\mathcal{T}_{h}}\Big{(}((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}_{h}\times(\boldsymbol{b}-\boldsymbol{b}_{h}),\boldsymbol{w})_{E}+(\Pi_{k-1}^{0,E}(\mathrm{curl}\,\boldsymbol{b}-\mathrm{curl}\,\boldsymbol{b}_{h})\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}_{h},\boldsymbol{w})_{E}
+(Πk10,E(curl𝒃curl𝒃h)×Πk0,E𝒃h,(IΠk0,E)𝒘)E(Πk10,Ecurl𝒃×(IΠk0,E)𝒃h,𝒘)E\displaystyle\quad+(\Pi_{k-1}^{0,E}(\mathrm{curl}\,\boldsymbol{b}-\mathrm{curl}\,\boldsymbol{b}_{h})\times\Pi_{k}^{0,E}\boldsymbol{b}_{h},(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{w})_{E}-(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}_{h},\boldsymbol{w})_{E}
+(Πk10,Ecurl𝒃×Πk0,E(𝒃𝒃h),(IΠk0,E)𝒘)E((IΠk10,E)curl𝒃h×𝒃,𝒘)E\displaystyle\quad+(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}(\boldsymbol{b}-\boldsymbol{b}_{h}),(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{w})_{E}-((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}_{h}\times\boldsymbol{b},\boldsymbol{w})_{E}
(Πk10,Ecurl𝒃×Πk0,E𝒃,(IΠk0,E)𝒘)E)\displaystyle\quad-(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b},(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{w})_{E}\Big{)}
=Sc(Γ521+Γ522+Γ523+Γ524+Γ525+Γ526+Γ527).\displaystyle=S_{c}\left(\Gamma_{521}+\Gamma_{522}+\Gamma_{523}+\Gamma_{524}+\Gamma_{525}+\Gamma_{526}+\Gamma_{527}\right). (4.26)

From Lemma 3.6, (2.4) and (4.19), we get

Γ521=E𝒯h((IΠk10,E)curl𝒃h×(𝒃𝒃h),𝒘)EE𝒯h(IΠk10,E)curl(𝒃h𝒃+𝒃𝒃π)0,E𝒃𝒃hL4(E)𝒘L4(E)CE𝒯h(|𝒃𝒃h|1,E+|𝒃𝒃π|1,E)𝒃𝒃hL4(E)𝒘L4(E)C(𝒃𝒃h1+h𝒃2)𝒃𝒃h1(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{521}&=\sum_{E\in\mathcal{T}_{h}}((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}_{h}\times(\boldsymbol{b}-\boldsymbol{b}_{h}),\boldsymbol{w})_{E}\\ &\leq\sum_{E\in\mathcal{T}_{h}}\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,(\boldsymbol{b}_{h}-\boldsymbol{b}+\boldsymbol{b}-\boldsymbol{b}_{\pi})\|_{0,E}\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{L^{4}(E)}\|\boldsymbol{w}\|_{L^{4}(E)}\\ &\leq C\sum_{E\in\mathcal{T}_{h}}(|\boldsymbol{b}-\boldsymbol{b}_{h}|_{1,E}+|\boldsymbol{b}-\boldsymbol{b}_{\pi}|_{1,E})\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{L^{4}(E)}\|\boldsymbol{w}\|_{L^{4}(E)}\\ &\leq C(\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}+h\|\boldsymbol{b}\|_{2})\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.27)

Using (3.29), Lemma 3.6, (2.4) and (4.19), we arrive at

Γ522=E𝒯h(Πk10,E(curl𝒃curl𝒃h)×(IΠk0,E)𝒃h,𝒘)ECE𝒯hcurl𝒃curl𝒃h0,E(IΠk0,E)(𝒃h𝒃+𝒃𝒃π)L4(E)𝒘L4(E)CE𝒯h|𝒃𝒃h|1,E𝒃h𝒃+𝒃𝒃πL4(E)𝒘L4(E)C(𝒃𝒃h1+h𝒃2)𝒃𝒃h1(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{522}&=\sum_{E\in\mathcal{T}_{h}}(\Pi_{k-1}^{0,E}(\mathrm{curl}\,\boldsymbol{b}-\mathrm{curl}\,\boldsymbol{b}_{h})\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}_{h},\boldsymbol{w})_{E}\\ &\leq C\sum_{E\in\mathcal{T}_{h}}\|\mathrm{curl}\,\boldsymbol{b}-\mathrm{curl}\,\boldsymbol{b}_{h}\|_{0,E}\|(\mathrm{I}-\Pi_{k}^{0,E})(\boldsymbol{b}_{h}-\boldsymbol{b}+\boldsymbol{b}-\boldsymbol{b}_{\pi})\|_{L^{4}(E)}\|\boldsymbol{w}\|_{L^{4}(E)}\\ &\leq C\sum_{E\in\mathcal{T}_{h}}|\boldsymbol{b}-\boldsymbol{b}_{h}|_{1,E}\|\boldsymbol{b}_{h}-\boldsymbol{b}+\boldsymbol{b}-\boldsymbol{b}_{\pi}\|_{L^{4}(E)}\|\boldsymbol{w}\|_{L^{4}(E)}\\ &\leq C(\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}+h\|\boldsymbol{b}\|_{2})\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.28)

Obviously, it is easy to know that

Γ523Ch𝒃h1𝒃𝒃h1(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\Gamma_{523}\leq Ch\|\boldsymbol{b}_{h}\|_{1}\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.29)

Applying (3.26), Lemma 3.6, (2.4) and (4.19), we deduce

Γ524=E𝒯h(Πk10,Ecurl𝒃×(IΠk0,E)𝒃h,𝒘)ECE𝒯hcurl𝒃L4(E)(IΠk0,E)(𝒃h𝒃+𝒃𝒃π)0,E𝒘L4(E)Ccurl𝒃L4(h|𝒃𝒃h|1+Chk+1|𝒃|k+1)𝒘L4C𝒃2(h𝒃𝒃h1+hk+1𝒃k+1)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{524}&=-\sum_{E\in\mathcal{T}_{h}}(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}_{h},\boldsymbol{w})_{E}\\ &\leq C\sum_{E\in\mathcal{T}_{h}}\|\mathrm{curl}\,\boldsymbol{b}\|_{L^{4}(E)}\|(\mathrm{I}-\Pi_{k}^{0,E})(\boldsymbol{b}_{h}-\boldsymbol{b}+\boldsymbol{b}-\boldsymbol{b}_{\pi})\|_{0,E}\|\boldsymbol{w}\|_{L^{4}(E)}\\ &\leq C\|\mathrm{curl}\,\boldsymbol{b}\|_{L^{4}}(h|\boldsymbol{b}-\boldsymbol{b}_{h}|_{1}+Ch^{k+1}|\boldsymbol{b}|_{k+1})\|\boldsymbol{w}\|_{L^{4}}\\ &\leq C\|\boldsymbol{b}\|_{2}\big{(}h\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}+h^{k+1}\|\boldsymbol{b}\|_{k+1}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.30)

Similar to (4.27)-(4.30), we have

Γ525\displaystyle\Gamma_{525} Ch𝒃1𝒃𝒃h1(𝒖𝒖h,𝒃𝒃h)0,\displaystyle\leq Ch\|\boldsymbol{b}\|_{1}\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}, (4.31)
Γ526\displaystyle\Gamma_{526} =E𝒯h((IΠk10,E)curl𝒃h×𝒃,𝒘)E\displaystyle=-\sum_{E\in\mathcal{T}_{h}}((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}_{h}\times\boldsymbol{b},\boldsymbol{w})_{E}
=E𝒯h((IΠk10,E)curl𝒃h,(IΠ00,E)(𝒃×𝒘))E\displaystyle=-\sum_{E\in\mathcal{T}_{h}}((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{b}_{h},(\mathrm{I}-\Pi_{0}^{0,E})(\boldsymbol{b}\times\boldsymbol{w}))_{E}
CE𝒯hhE(IΠk10,E)curl(𝒃h𝒃+𝒃𝒃π)0,E|𝒃×𝒘|1,E\displaystyle\leq C\sum_{E\in\mathcal{T}_{h}}h_{E}\|(\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,(\boldsymbol{b}_{h}-\boldsymbol{b}+\boldsymbol{b}-\boldsymbol{b}_{\pi})\|_{0,E}|\boldsymbol{b}\times\boldsymbol{w}|_{1,E}
C𝒃2(h𝒃𝒃h1+hk+1𝒃k+1)(𝒖𝒖h,𝒃𝒃h)0,\displaystyle\leq C\|\boldsymbol{b}\|_{2}\big{(}h\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}+h^{k+1}\|\boldsymbol{b}\|_{k+1}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}, (4.32)
Γ527\displaystyle\Gamma_{527} =E𝒯h(Πk10,Ecurl𝒃×Πk0,E𝒃,(IΠk0,E)𝒘)E\displaystyle=-\sum_{E\in\mathcal{T}_{h}}(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b},(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{w})_{E}
=E𝒯h((IΠk10,E)(Πk10,Ecurl𝒃×Πk0,E𝒃),(IΠk0,E)𝒘)E\displaystyle=-\sum_{E\in\mathcal{T}_{h}}((\mathrm{I}-\Pi_{k-1}^{0,E})(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b}),(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{w})_{E}
CE𝒯hhEk+1|Πk10,Ecurl𝒃×Πk0,E𝒃|k1,E|𝒘|2,E\displaystyle\leq C\sum_{E\in\mathcal{T}_{h}}h_{E}^{k+1}|\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{b}\times\Pi_{k}^{0,E}\boldsymbol{b}|_{k-1,E}|\boldsymbol{w}|_{2,E}
Chk+1𝒃k𝒃k+1(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\leq Ch^{k+1}\|\boldsymbol{b}\|_{k}\|\boldsymbol{b}\|_{k+1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.33)

Combining (4.27)-(4.33), we derive

Γ52C(hk+1+h(𝒖𝒖h,𝒃𝒃h)1,h+(𝒖𝒖h,𝒃𝒃h)1,h2)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\Gamma_{52}\leq C\Big{(}h^{k+1}+h\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}+\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}^{2}\Big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.34)

Analogously, by adding and subtracting terms, the term Γ53\Gamma_{53} can be written as

Γ53\displaystyle\Gamma_{53} =a3h(𝚽,𝒃h,𝒖h)E𝒯ha3E(𝚽,𝒃h,𝒖h)\displaystyle=a_{3h}(\boldsymbol{\Phi},\boldsymbol{b}_{h},\boldsymbol{u}_{h})-\sum_{E\in\mathcal{T}_{h}}a_{3}^{E}(\boldsymbol{\Phi},\boldsymbol{b}_{h},\boldsymbol{u}_{h})
=ScE𝒯h((Πk10,Ecurl𝚽×Πk0,E𝒃h,Πk0,E𝒖h)E(curl𝚽×𝒃h,𝒖h)E)\displaystyle=S_{c}\sum_{E\in\mathcal{T}_{h}}\Big{(}(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{\Phi}\times\Pi_{k}^{0,E}\boldsymbol{b}_{h},\Pi_{k}^{0,E}\boldsymbol{u}_{h})_{E}-(\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{b}_{h},\boldsymbol{u}_{h})_{E}\Big{)}
=ScE𝒯h((Πk10,Ecurl𝚽×(IΠk0,E)𝒃h,𝒖h)E(Πk10,Ecurl𝚽×Πk0,E𝒃h,(IΠk0,E)𝒖h)E\displaystyle=S_{c}\sum_{E\in\mathcal{T}_{h}}\Big{(}-(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{\Phi}\times(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{b}_{h},\boldsymbol{u}_{h})_{E}-(\Pi_{k-1}^{0,E}\mathrm{curl}\,\boldsymbol{\Phi}\times\Pi_{k}^{0,E}\boldsymbol{b}_{h},(\mathrm{I}-\Pi_{k}^{0,E})\boldsymbol{u}_{h})_{E}
+((IΠk10,E)curl𝚽×(𝒃𝒃h),𝒖h)E+((IΠk10,E)curl𝚽×𝒃,𝒖𝒖h)E\displaystyle\quad+((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{\Phi}\times(\boldsymbol{b}-\boldsymbol{b}_{h}),\boldsymbol{u}_{h})_{E}+((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{b},\boldsymbol{u}-\boldsymbol{u}_{h})_{E}
((IΠk10,E)curl𝚽×𝒃,𝒖)E)\displaystyle\quad-((\mathrm{I}-\Pi_{k-1}^{0,E})\mathrm{curl}\,\boldsymbol{\Phi}\times\boldsymbol{b},\boldsymbol{u})_{E}\Big{)}
=Sc(Γ531+Γ532+Γ533+Γ534+Γ535).\displaystyle=S_{c}\left(\Gamma_{531}+\Gamma_{532}+\Gamma_{533}+\Gamma_{534}+\Gamma_{535}\right). (4.35)

Similar to (4.27)-(4.33), we deduce

Γ531C|𝒖h|1,h(h𝒃𝒃h1+hk+1𝒃k+1)(𝒖𝒖h,𝒃𝒃h)0,Γ532C𝒃h1(h|𝒖𝒖h|1,h+hk+1𝒖k+1)(𝒖𝒖h,𝒃𝒃h)0,Γ533Ch|𝒖h|1,h𝒃𝒃h1(𝒖𝒖h,𝒃𝒃h)0,Γ534Ch𝒃1|𝒖𝒖h|1,h(𝒖𝒖h,𝒃𝒃h)0,Γ535Chk+1𝒖k+1𝒃k+1(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{531}&\leq C|\boldsymbol{u}_{h}|_{1,h}\big{(}h\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}+h^{k+1}\|\boldsymbol{b}\|_{k+1}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0},\\ \Gamma_{532}&\leq C\|\boldsymbol{b}_{h}\|_{1}\big{(}h|\boldsymbol{u}-\boldsymbol{u}_{h}|_{1,h}+h^{k+1}\|\boldsymbol{u}\|_{k+1}\big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0},\\ \Gamma_{533}&\leq Ch|\boldsymbol{u}_{h}|_{1,h}\|\boldsymbol{b}-\boldsymbol{b}_{h}\|_{1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0},\\ \Gamma_{534}&\leq Ch\|\boldsymbol{b}\|_{1}|\boldsymbol{u}-\boldsymbol{u}_{h}|_{1,h}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0},\\ \Gamma_{535}&\leq Ch^{k+1}\|\boldsymbol{u}\|_{k+1}\|\boldsymbol{b}\|_{k+1}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.36)

Substituting (4.36) into (4.35) yields

Γ53\displaystyle\Gamma_{53} C(hk+1+h(𝒖𝒖h,𝒃𝒃h)1,h)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\leq C\Big{(}h^{k+1}+h\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}\Big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.37)

By the same way, following estimate can be derived

Γ51C(hk+1+h(𝒖𝒖h,𝒃𝒃h)1,h+(𝒖𝒖h,𝒃𝒃h)1,h2)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\Gamma_{51}\leq C\Big{(}h^{k+1}+h\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}+\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{1,h}^{2}\Big{)}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}. (4.38)

According to the properties of L2L^{2}-projection and triangle inequality, we find

Γ6=FFh;𝒘I,𝚽I=E𝒯h((𝒇Πk0,E𝒇,𝒘I𝒘π)E+(𝒈Πk0,E𝒈,𝚽I𝚽π)E)CE𝒯hhEk+1(|𝒇|k1,E|𝒘|2,E+|𝒈|k1,E|𝚽|2,E)Chk+1(𝒇k1+𝒈k1)(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{6}&=\left<F-F_{h};\boldsymbol{w}_{I},\boldsymbol{\Phi}_{I}\right>\\ &=\sum_{E\in\mathcal{T}_{h}}\left((\boldsymbol{f}-\Pi_{k}^{0,E}\boldsymbol{f},\boldsymbol{w}_{I}-\boldsymbol{w}_{\pi})_{E}+(\boldsymbol{g}-\Pi_{k}^{0,E}\boldsymbol{g},\boldsymbol{\Phi}_{I}-\boldsymbol{\Phi}_{\pi})_{E}\right)\\ &\leq C\sum_{E\in\mathcal{T}_{h}}h_{E}^{k+1}\left(|\boldsymbol{f}|_{k-1,E}|\boldsymbol{w}|_{2,E}+|\boldsymbol{g}|_{k-1,E}|\boldsymbol{\Phi}|_{2,E}\right)\\ &\leq Ch^{k+1}\left(\|\boldsymbol{f}\|_{k-1}+\|\boldsymbol{g}\|_{k-1}\right)\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.39)

Using Lemmas 4.2, 3.1 and (4.19), the estimate of the term Γ7\Gamma_{7} is as follows:

Γ7Chk+1(𝒖k+1+pk+𝒖k+12)(𝒖𝒖h,𝒃𝒃h)0+Ch(1+𝒖2)|𝒖𝒖h|1,h(𝒖𝒖h,𝒃𝒃h)0.\displaystyle\begin{aligned} \Gamma_{7}&\leq Ch^{k+1}\left(\|\boldsymbol{u}\|_{k+1}+\|p\|_{k}+\|\boldsymbol{u}\|_{k+1}^{2}\right)\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}\\ &\quad+Ch(1+\|\boldsymbol{u}\|_{2})|\boldsymbol{u}-\boldsymbol{u}_{h}|_{1,h}\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}.\end{aligned} (4.40)

Combining (4.21)-(4.24), (4.34) and (4.37)-(4.40) and using Theorem 4.1, we obtain

(𝒖𝒖h,𝒃𝒃h)02C(𝒖,𝒃,p,𝒇,𝒈,Rν,Rm,Sc)hk+1.\displaystyle\|(\boldsymbol{u}-\boldsymbol{u}_{h},\boldsymbol{b}-\boldsymbol{b}_{h})\|_{0}^{2}\leq C(\boldsymbol{u},\boldsymbol{b},p,\boldsymbol{f},\boldsymbol{g},R_{\nu},R_{m},S_{c})h^{k+1}.

The proof is finished. ∎

5 Numerical examples

In this section, we first introduce a fixed-point algorithm (Oseen iteration) for the handing of nonlinear problems. Next, by the Example 5.1, we verify the convergence rates of the proposed nonconforming VEM for the cases k=1,2k=1,2, and compare the nonconforming VEM, the conforming VEM and the FEM for the case k=1k=1. The above conforming VEM only changes the approximation space of the velocity compared with the nonconforming VEM, the velocity is approximate by the low-order Stokes-type virtual element [30]. For the FEM, the stable finite element pair (P1b,P1,P1)(P_{1b},P_{1},P_{1}) is used for discretization. For both the VEM and FEM, we adopt Oseen iteration to deal with nonlinear system. The Oseen iteration scheme of the VEM is as follows:

{Ah(𝒖hn,𝒃hn;𝒗h,𝒄h)+Bh(𝒖hn1,𝒃hn1;𝒖hn,𝒃hn;𝒗h,𝒄h)dh(𝒗h,𝒄h;phn)=Fh;𝒗h,𝒄h,dh(𝒖hn,𝒃hn;qh)=0,\displaystyle\begin{cases}A_{h}(\boldsymbol{\boldsymbol{u}}_{h}^{n},\boldsymbol{b}_{h}^{n};\boldsymbol{v}_{h},\boldsymbol{c}_{h})+B_{h}(\boldsymbol{u}_{h}^{n-1},\boldsymbol{b}_{h}^{n-1};\boldsymbol{u}_{h}^{n},\boldsymbol{b}_{h}^{n};\boldsymbol{v}_{h},\boldsymbol{c}_{h})-d_{h}(\boldsymbol{v}_{h},\boldsymbol{c}_{h};p_{h}^{n})=\left<F_{h};\boldsymbol{v}_{h},\boldsymbol{c}_{h}\right>,\\ d_{h}(\boldsymbol{u}_{h}^{n},\boldsymbol{b}_{h}^{n};q_{h})=0,\end{cases}

with the iterative initial value 𝒖h0=𝟎,𝒃h0=𝟎\boldsymbol{u}_{h}^{0}=\mathbf{0},\boldsymbol{b}_{h}^{0}=\mathbf{0}, the iterative tolerance is 1e-7. The Oseen iteration of the FEM can be found in [18]. Then, in Example 5.2, we investigate a benchmark problem. All experiments are implemented with FEALPy package [33].

In order to compute VEM errors, we consider the following computable error quantities:

e𝒖0\displaystyle\|e_{\boldsymbol{u}}\|_{0} =E𝒯h𝒖Πk0,E𝒖h0,E2,|e𝒖|1=E𝒯h|𝒖Πk,E𝒖h|1,E2,ep0=pph0,\displaystyle=\sqrt{\sum_{E\in\mathcal{T}_{h}}\|\boldsymbol{u}-\Pi_{k}^{0,E}\boldsymbol{u}_{h}\|_{0,E}^{2}},\quad|e_{\boldsymbol{u}}|_{1}=\sqrt{\sum_{E\in\mathcal{T}_{h}}|\boldsymbol{u}-\Pi_{k}^{\nabla,E}\boldsymbol{u}_{h}|_{1,E}^{2}},\quad\|e_{p}\|_{0}=\|p-p_{h}\|_{0},
e𝒃0\displaystyle\|e_{\boldsymbol{b}}\|_{0} =E𝒯h𝒃Πk0,E𝒃h0,E2,e𝒃1=E𝒯h(𝒃Πk0,E𝒃h0,E2+|𝒃Πk,E𝒃h|1,E2).\displaystyle=\sqrt{\sum_{E\in\mathcal{T}_{h}}\|\boldsymbol{b}-\Pi_{k}^{0,E}\boldsymbol{b}_{h}\|_{0,E}^{2}},\quad\|e_{\boldsymbol{b}}\|_{1}=\sqrt{\sum_{E\in\mathcal{T}_{h}}\big{(}\|\boldsymbol{b}-\Pi_{k}^{0,E}\boldsymbol{b}_{h}\|_{0,E}^{2}+|\boldsymbol{b}-\Pi_{k}^{\nabla,E}\boldsymbol{b}_{h}|_{1,E}^{2}\big{)}}.

For the choice of the stabilization terms S0E,S1E\mathrm{S}_{0}^{E},\mathrm{S}_{1}^{E}, we follow [34, 2]

S0E(𝒖h,𝒗h)=i=1dim(𝑽(E))dofi𝑽(E)(𝒖h)dofi𝑽(E)(𝒗h),\displaystyle\mathrm{S}_{0}^{E}(\boldsymbol{u}_{h},\boldsymbol{v}_{h})=\sum_{i=1}^{\mathrm{dim}(\boldsymbol{V}(E))}\mathrm{dof}_{i}^{\boldsymbol{V}(E)}(\boldsymbol{u}_{h})\mathrm{dof}_{i}^{\boldsymbol{V}(E)}(\boldsymbol{v}_{h}),
S1E(𝒃h,𝒄h)=i=1dim(𝑴(E))dofi𝑴(E)(𝒃h)dofi𝑴(E)(𝒄h),\displaystyle\mathrm{S}_{1}^{E}(\boldsymbol{b}_{h},\boldsymbol{c}_{h})=\sum_{i=1}^{\mathrm{dim}(\boldsymbol{M}(E))}\mathrm{dof}_{i}^{\boldsymbol{M}(E)}(\boldsymbol{b}_{h})\mathrm{dof}_{i}^{\boldsymbol{M}(E)}(\boldsymbol{c}_{h}),

where dofi𝑾(𝒗)\mathrm{dof}_{i}^{\boldsymbol{W}}(\boldsymbol{v}) is the iith degree of freedom of smooth enough function 𝒗\boldsymbol{v} to the space 𝑾\boldsymbol{W}, here 𝑾\boldsymbol{W} is 𝑽(E)\boldsymbol{V}(E) or 𝑴(E)\boldsymbol{M}(E). Of course, the choice is not unique, there are also some other options [29, 11, 13].

Refer to caption
Refer to caption
Refer to caption
Figure 1: Sample meshes: 𝒯h1\mathcal{T}_{h}^{1}(left), 𝒯h2\mathcal{T}_{h}^{2}(middle) and 𝒯h3\mathcal{T}_{h}^{3}(right).
Example 5.1

We consider solving MHD with Rν=Rm=Sc=1R_{\nu}=R_{m}=S_{c}=1 on domain Ω=[0,1]2\Omega=[0,1]^{2}. The source terms 𝒇\boldsymbol{f} and 𝒈\boldsymbol{g} satisfy the exact solutions

𝒖=(sin(πx1)2sin(πx2)cos(πx2)sin(πx1)sin(πx2)2cos(πx1)),𝒃=(sin(πx1)cos(πx2)sin(πx2)cos(πx1)),p=cos(πx1)cos(πx2).\displaystyle\boldsymbol{u}=\begin{pmatrix}\sin(\pi x_{1})^{2}\sin(\pi x_{2})\cos(\pi x_{2})\\ -\sin(\pi x_{1})\sin(\pi x_{2})^{2}\cos(\pi x_{1})\end{pmatrix},\;\boldsymbol{b}=\begin{pmatrix}\sin(\pi x_{1})\cos(\pi x_{2})\\ -\sin(\pi x_{2})\cos(\pi x_{1})\end{pmatrix},\;p=\cos(\pi x_{1})\cos(\pi x_{2}).

In Table 1, we list the errors and the optimal convergence rates of the velocity on meshes 𝒯h1\mathcal{T}_{h}^{1} and 𝒯h2\mathcal{T}_{h}^{2} (see Figure 1) for the cases k=1,2k=1,2, as well as L2L^{2}-norm of divh𝒖h\mathrm{div}_{h}\boldsymbol{u}_{h}. We observe that the discrete velocity is divergence-free up to machine precision. Table 2 displays the errors and the optimal convergence rates of the magnetic and pressure on meshes 𝒯h1\mathcal{T}_{h}^{1} and 𝒯h2\mathcal{T}_{h}^{2} for the cases k=1,2k=1,2. Tables 1 and 2 illustrate validity of the theoretical analysis.

Table 1: Convergence rates of velocity on meshes 𝒯h1\mathcal{T}_{h}^{1} and 𝒯h2\mathcal{T}_{h}^{2}.
meshes kk hh e𝒖0\|e_{\boldsymbol{u}}\|_{0} Rate |e𝒖|1|e_{\boldsymbol{u}}|_{1} Rate divh𝒖h0\|\mathrm{div}_{h}\boldsymbol{u}_{h}\|_{0}
𝒯h1\mathcal{T}_{h}^{1} 1 0.3727 7.9642e-02 - 1.4316e+00 - 1.8392e-15
0.1863 2.7525e-02 1.53 7.0057e-01 1.03 3.6925e-15
0.0932 7.8488e-03 1.81 3.3440e-01 1.07 2.7869e-15
0.0466 2.0667e-03 1.93 1.6374e-01 1.03 1.1629e-14
0.0233 5.2739e-04 1.97 8.1386e-02 1.01 4.7360e-14
𝒯h1\mathcal{T}_{h}^{1} 2 0.3727 2.8702e-02 - 1.4227e+00 - 6.2575e-15
0.1863 3.7358e-03 2.94 5.5399e-01 1.36 1.1871e-14
0.0932 4.2119e-04 3.15 1.5298e-01 1.86 2.5457e-14
0.0466 4.4875e-05 3.23 3.9484e-02 1.95 4.4265e-14
0.0233 4.9710e-06 3.17 9.9924e-03 1.98 1.2225e-13
𝒯h2\mathcal{T}_{h}^{2} 1 0.3536 1.5356e-01 - 1.6980e+00 - 1.0977e-15
0.1768 4.4590e-02 1.78 7.6794e-01 1.14 3.0290e-15
0.0884 1.1317e-02 1.98 3.3497e-01 1.2 3.9649e-15
0.0442 2.8199e-03 2.0 1.5790e-01 1.09 8.4733e-15
0.0221 7.0356e-04 2.0 7.7581e-02 1.03 3.3386e-14
𝒯h2\mathcal{T}_{h}^{2} 2 0.3536 5.6481e-02 - 1.5316e+00 - 8.3672e-15
0.1768 9.0257e-03 2.65 8.8572e-01 0.79 8.7864e-15
0.0884 9.1090e-04 3.31 3.0408e-01 1.54 1.5897e-14
0.0442 7.7982e-05 3.55 8.2445e-02 1.88 4.1011e-14
0.0221 6.5169e-06 3.58 2.1539e-02 1.94 1.1272e-13
Table 2: Convergence rates of magnetic field and pressure on meshes 𝒯h1\mathcal{T}_{h}^{1} and 𝒯h2\mathcal{T}_{h}^{2}.
meshes kk hh e𝒃0\|e_{\boldsymbol{b}}\|_{0} Rate e𝒃1\|e_{\boldsymbol{b}}\|_{1} Rate ep0\|e_{p}\|_{0} Rate
𝒯h1\mathcal{T}_{h}^{1} 1 0.3727 4.7679e-02 - 9.1759e-01 - 3.5180e-01 -
0.1863 1.3848e-02 1.78 4.9783e-01 0.88 1.7097e-01 1.04
0.0932 3.7189e-03 1.9 2.5769e-01 0.95 6.4053e-02 1.42
0.0466 9.5814e-04 1.96 1.3086e-01 0.98 2.5234e-02 1.34
0.0233 2.4266e-04 1.98 6.5904e-02 0.99 1.1266e-02 1.16
𝒯h1\mathcal{T}_{h}^{1} 2 0.3727 7.6370e-03 - 1.7843e-01 - 1.8498e-01 -
0.1863 1.0430e-03 2.87 4.8383e-02 1.88 4.9715e-02 1.9
0.0932 1.3037e-04 3.0 1.2346e-02 1.97 9.4398e-03 2.4
0.0466 1.6216e-05 3.01 3.1185e-03 1.99 1.5328e-03 2.62
0.0233 2.0260e-06 3.0 7.8440e-04 1.99 2.5201e-04 2.6
𝒯h2\mathcal{T}_{h}^{2} 1 0.3536 7.8227e-02 - 9.9789e-01 - 3.1471e-01 -
0.1768 1.9856e-02 1.98 5.0244e-01 0.99 1.5002e-01 1.07
0.0884 4.9809e-03 2.0 2.5167e-01 1.0 5.6183e-02 1.42
0.0442 1.2462e-03 2.0 1.2589e-01 1.0 2.2761e-02 1.3
0.0221 3.1162e-04 2.0 6.2955e-02 1.0 1.0399e-02 1.13
𝒯h2\mathcal{T}_{h}^{2} 2 0.3536 6.3629e-03 - 1.9293e-01 - 7.4471e-01 -
0.1768 8.0376e-04 2.98 4.8794e-02 1.98 2.0652e-01 1.85
0.0884 9.6233e-05 3.06 1.2098e-02 2.01 3.4511e-02 2.58
0.0442 1.1679e-05 3.04 3.0013e-03 2.01 5.1169e-03 2.75
0.0221 1.4478e-06 3.01 7.4778e-04 2.0 9.0330e-04 2.5
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: Errors of velocity and magnetic field on meshes 𝒯h3\mathcal{T}_{h}^{3}.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Errors of velocity and magnetic field on meshes 𝒯h1\mathcal{T}_{h}^{1}.

For comparison, we also solve the MHD problem by the conforming VEM and the FEM. In Figure 2, we compare with three methods on meshes 𝒯h3\mathcal{T}_{h}^{3} for the case k=1k=1, by displaying the error curves of the velocity and magnetic field with respect to the number of degrees of freedom. Figure 3 shows the compared results of the conforming VEM and the nonconforming VEM on meshes 𝒯h1\mathcal{T}_{h}^{1} for the case k=1k=1. From Figures 2 and 3, we observe that our proposed nonconforming VEM can provide better approximations for the velocity than the conforming VEM and the FEM in the numerical test for the case k=1k=1.

Example 5.2

We consider Hartmann flow in the channel Ω=[0,6]×[1,1]\Omega=[0,6]\times[-1,1]. The transverse magnetic field 𝒃d=(0,1)\boldsymbol{b}_{d}=(0,1) is applied. The solutions of MHD are

𝒖(x1,x2)=(u(x2),0),𝒃(x1,x2)=(b(x2),1),p(x1,x2)=Gx1Scb2(x2)/2,\displaystyle\boldsymbol{u}(x_{1},x_{2})=(u(x_{2}),0),\quad\boldsymbol{b}(x_{1},x_{2})=(b(x_{2}),1),\quad p(x_{1},x_{2})=-Gx_{1}-S_{c}b^{2}(x_{2})/2,

where

u(x2)=GRνHatanh(Ha)(1cosh(x2Ha)cosh(Ha)),b(x2)=GSc(sinh(x2Ha)sinh(Ha)x2).\displaystyle u(x_{2})=\frac{GR_{\nu}}{\mathrm{Ha}\cdot\tanh(\mathrm{Ha})}\left(1-\frac{\cosh(x_{2}\mathrm{Ha})}{\cosh(\mathrm{Ha})}\right),\quad b(x_{2})=\frac{G}{S_{c}}\left(\frac{\sinh(x_{2}\mathrm{Ha})}{\sinh(\mathrm{Ha})}-x_{2}\right).

Ha=RνRmSc\mathrm{Ha}=\sqrt{R_{\nu}R_{m}S_{c}} is the Hartmann number, 𝒇=𝒈=𝟎\boldsymbol{f}=\boldsymbol{g}=\boldsymbol{0}, and boundary conditions are given by

𝒖=𝟎onx2=±1,\displaystyle\boldsymbol{u}=\boldsymbol{0}\quad\mathrm{on}\;x_{2}=\pm 1,
(pIRν1𝒖)𝒏=p𝒏onx1=0andx1=6,\displaystyle(p\mathrm{I}-R_{\nu}^{-1}\nabla\boldsymbol{u})\boldsymbol{n}=p\boldsymbol{n}\quad\mbox{on}\;x_{1}=0\;\mbox{and}\;x_{1}=6,
𝒏×𝒃=𝒏×𝒃donΩ.\displaystyle\boldsymbol{n}\times\boldsymbol{b}=\boldsymbol{n}\times\boldsymbol{b}_{d}\quad\mbox{on}\;\partial\Omega.

Without loss of generality, we set G=0.1G=0.1. The numerical experiment is carried out on meshes 𝒯h2\mathcal{T}_{h}^{2} with h=0.358h=0.358. Figure 4 presents the first components of numerical solutions (L2L^{2}-projection) and analytical solutions with Ha=1\mathrm{Ha}=1 (Rν=1,Rm=0.1,Sc=10R_{\nu}=1,R_{m}=0.1,S_{c}=10) and Ha=5\mathrm{Ha}=5 (Rν=5,Rm=1,Sc=5R_{\nu}=5,R_{m}=1,S_{c}=5). The experiment indicates that the numerical solutions almost agree with the analytical solutions.

Refer to caption
Refer to caption
Figure 4: Numerical (scatter), analytical (line) along x1=3x_{1}=3.

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Nos: 12071404, 11971410, 12026254), Young Elite Scientist Sponsorship Program by CAST (No: 2020QNRC001), the Science and Technology Innovation Program of Hunan Province (No: 2024RC3158), Key Project of Scientific Research Project of Hunan Provincial Department of Education (No: 22A0136), Postgraduate Scientific Research Innovation Project of Hunan Province (No: CX20230614).

References

  • [1] D. Adak, D. Mora, S. Natarajan, and A. Silgado. A virtual element discretization for the time dependent Navier–Stokes equations in stream-function formulation. ESAIM: Mathematical Modelling and Numerical Analysis, 55(5):2535–2566, 2021.
  • [2] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent projectors for virtual element methods. Computers &\& Mathematics with Applications, 66(3):376–391, 2013.
  • [3] S. N. Alvarez, V. Bokil, V. Gyrya, and G. Manzini. The virtual element method for resistive magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 381:113815, 2021.
  • [4] P. F. Antonietti, L. Beirão da Veiga, D. Mora, and M. Verani. A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis, 52(1):386–404, 2014.
  • [5] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01):199–214, 2013.
  • [6] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide to the virtual element method. Mathematical Models and Methods in Applied Sciences, 24(08):1541–1573, 2014.
  • [7] L. Beirão da Veiga, F. Dassi, G. Manzini, and L. Mascotto. The virtual element method for the 3D resistive magnetohydrodynamic model. Mathematical Models and Methods in Applied Sciences, 33(03):643–686, 2023.
  • [8] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 51(2):509–535, 2017.
  • [9] L. Beirão da Veiga, C. Lovadina, and G. Vacca. Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis, 56(3):1210–1242, 2018.
  • [10] S. C. Brenner. The mathematical theory of finite element methods. Springer, 2008.
  • [11] S. C. Brenner and L.-Y. Sung. Virtual element methods on meshes with small edges or faces. Mathematical Models and Methods in Applied Sciences, 28(07):1291–1336, 2018.
  • [12] A. Cangiani, V. Gyrya, and G. Manzini. The nonconforming virtual element method for the Stokes equations. SIAM Journal on Numerical Analysis, 54(6):3411–3435, 2016.
  • [13] L. Chen and J. Huang. Some error analysis on virtual element methods. Calcolo, 55:1–23, 2018.
  • [14] C. Cuvelier, A. Segal, and A. A. Van Steenhoven. Finite element methods and Navier-Stokes equations, volume 22. Springer Science & Business Media, 1986.
  • [15] P. A. Davidson. Introduction to magnetohydrodynamics, volume 55. Cambridge university press, 2017.
  • [16] B. A. De Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):879–904, 2016.
  • [17] X. Dong and Y. He. Two-level newton iterative method for the 2D/3D stationary incompressible magnetohydrodynamics. Journal of Scientific Computing, 63(2):426–451, 2015.
  • [18] X. Dong, Y. He, and Y. Zhang. Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 276:287–311, 2014.
  • [19] J.-F. Gerbeau, C. Le Bris, and T. Lelièvre. Mathematical methods for the magnetohydrodynamics of liquid metals. Clarendon Press, 2006.
  • [20] C. Greif, D. Li, D. Schötzau, and X. Wei. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 199(45-48):2840–2855, 2010.
  • [21] M. D. Gunzburger, A. J. Meir, and J. S. Peterson. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Mathematics of Computation, 56(194):523–563, 1991.
  • [22] R. Hiptmair, L. Li, S. Mao, and W. Zheng. A fully divergence-free finite element method for magnetohydrodynamic equations. Mathematical Models and Methods in Applied Sciences, 28(04):659–695, 2018.
  • [23] K. Hu, Y. Ma, and J. Xu. Stable finite element methods preserving \nabla\cdotB= 0 exactly for mhd models. Numerische Mathematik, 135(2):371–396, 2017.
  • [24] K. Hu and J. Xu. Structure-preserving finite element methods for stationary MHD models. Mathematics of Computation, 88(316):553–581, 2019.
  • [25] H. Huang, Y. Huang, and X. Dong. Three interior penalty DG methods for stationary incompressible magnetohydrodynamics. Journal of Computational and Applied Mathematics, 425:115030, 2023.
  • [26] O. A. Karakashian and W. N. Jureidini. A nonconforming finite element method for the stationary Navier–Stokes equations. SIAM Journal on Numerical Analysis, 35(1):93–120, 1998.
  • [27] X. Liu and Z. Chen. The nonconforming virtual element method for the Navier-Stokes equations. Advances in Computational Mathematics, 45:51–74, 2019.
  • [28] X. Liu, J. Li, and Z. Chen. A nonconforming virtual element method for the Stokes problem on general meshes. Computer Methods in Applied Mechanics and Engineering, 320:694–711, 2017.
  • [29] L. Mascotto. Ill-conditioning in the virtual element method: Stabilizations and bases. Numerical Methods for Partial Differential Equations, 34(4):1258–1281, 2018.
  • [30] S. Naranjo-Alvarez, L. Beirão da Veiga, V. A. Bokil, F. Dassi, V. Gyrya, and G. Manzini. The virtual element method for a 2D incompressible MHD system. Mathematics and Computers in Simulation, 211:301–328, 2023.
  • [31] Q. Tang and Y. Huang. Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. Journal of Scientific Computing, 70:149–174, 2017.
  • [32] H. Wei, X. Huang, and A. Li. Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions. SIAM Journal on Numerical Analysis, 59(3):1835–1856, 2021.
  • [33] H. Wei and Y. Huang. Fealpy: Finite Element Analysis Library in Python. https://github.com/weihuayi/ fealpy, Xiangtan University, 2017-2023.
  • [34] B. Zhang, J. Zhao, and M. Li. The divergence-free nonconforming virtual element method for the Navier–Stokes problem. Numerical Methods for Partial Differential Equations, 39(3):1977–1995, 2023.
  • [35] J. Zhao, B. Zhang, S. Mao, and S. Chen. The divergence-free nonconforming virtual element for the Stokes problem. SIAM Journal on Numerical Analysis, 57(6):2730–2759, 2019.