This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Connections between nonlocal operators:
from vector calculus identities to a fractional Helmholtz decomposition

Marta D’Elia Data Science and Computing group, Sandia National Laboratories, CA [email protected] Mamikon Gulian Data Science and Computing group, Sandia National Laboratories, CA [email protected] Tadele Mengesha Department of Mathematics, University of Tennessee, Knoxville, TN [email protected]  and  James M. Scott Applied Physics and Applied Mathematics, Columbia University, NY [email protected]
Abstract.

Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions.

1. Introduction

Nonlocal operators are operators whose functional values are determined by integration over a neighborhood, in contrast to differential operators which are locally determined. The integral nature of these operators allows them to describe multiscale behavior and anomalous behavior such as super- and sub-diffusion. This feature makes nonlocal models a viable alternative to models based on partial differential equations (PDEs) for a broad class of engineering and scientific applications. Such applications include in groundwater hydrology for subsurface transport (Benson et al., 2000; D’Elia and Gulian, 2021; Schumer et al., 2003, 2001), image processing (A. Buades et al., 2010; Gilboa and Osher, 2007; D’Elia et al., 2021b), multiscale and multiphysics systems (Alali and Lipton, 2012; Du et al., 2016; Askari et al., 2008), finance (Scalas et al., 2000; Sabatelli et al., 2002), and stochastic processes (Burch et al., 2014; D’Elia et al., 2017; Meerschaert and Sikorskii, 2012; Metzler and Klafter, 2000, 2004).

The foundations of nonlocal vector calculus, based on the nonlocal gradient, divergence, and Laplace operators in multiple dimensions, were developed by Gunzburger and Lehoucq (2010), Du et al. (2012), Du et al. (2013b), and Du et al. (2013a). In these works, two frameworks were introduced: an unweighted framework and a weighted framework. The unweighted framework involves the two-point gradient 𝒢𝐮(𝐱,𝐲)\mathcal{G}\mathbf{u}(\mathbf{x},\mathbf{y}) and its adjoint, the nonlocal divergence operator 𝒟𝐮(𝐱)\mathcal{D}\mathbf{u}(\mathbf{x}), the composition of which yields a nonlocal Laplace operator. The weighted framework is based on the one-point weighted gradient 𝒢ϱ𝐮(𝐱)\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x}) and its adjoint 𝒟ϱ𝐮(𝐱)\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x}), the weighted divergence. The one-point structure characterizing these weighted operators makes them more amenable for certain applications; see Du and Tian (2018); Lee and Du (2020) for applications to mechanics and Du and Tian (2020) for an application to fluid dynamics. Rigorous analysis of important aspects pertaining to these operators was performed by Mengesha and Spector (2015) and Mengesha and Du (2016).

Various forms of fractional-order (hereafter referred to as fractional) vector calculus have been developed both independently and in parallel; see for instance Meerschaert et al. (2006), Šilhavỳ (2020), and Tarasov (2008). D’Elia et al. (2021a) showed that a widely used form of fractional-vector calculus is in fact a special case of the weighted nonlocal vector calculus with singular weight function ϱ\varrho and infinite interaction radius. In particular, it was noted that the fractional gradient and divergence are special cases of weighted nonlocal operators. Moreover, despite the fractional Laplacian having an immediate representation as 𝒟𝒢\mathcal{D}\circ\mathcal{G}, a composition of unweighted operators, it was also shown to be represented as 𝒟ϱ𝒢ϱ\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}, a composition of the weighted fractional divergence and gradient. This representation of weighted Laplace operators as unweighted diffusion operators was formally extended to the more general kernel-based nonlocal calculus in D’Elia et al. (2021a) by deriving an associated equivalence kernel. This result reinforces ideas discovered in prior studies on equivalence kernels by Alali et al. (2014); Mengesha and Du (2014), and Šilhavỳ (2017) in the context of peridynamics, a nonlocal model of mechanics in which the nonlocal Navier-Lamé operator is represented as a nonlocal Laplace-type operator.

The aforementioned representations clearly show the major role that composition of operators play in deriving useful nonlocal vector calculus identities. A major contribution of this work is the rigorous justification of various representations of compositions of weighted nonlocal operators. We provide conditions under which the composition of two nonlocal operators defined by principal value integrals, such as the fractional divergence and gradient, can be represented by a double principal value integral. These analytical results are utilized together with classical vector calculus identities to prove several identities for weighted nonlocal vector operators, such as

𝒞ω𝒢ω=0,𝒟ω𝒞ω=0,𝒞ω𝒞ω=𝒢ω𝒟ω𝒟ω𝒢ω\mathcal{C}_{\omega}\circ\mathcal{G}_{\omega}=0,\quad\mathcal{D}_{\omega}\circ\mathcal{C}_{\omega}=0,\quad\mathcal{C}_{\omega}\circ\mathcal{C}_{\omega}=\mathcal{G}_{\omega}\circ\mathcal{D}_{\omega}-\mathcal{D}_{\omega}\circ\mathcal{G}_{\omega}

for translation invariant kernels, including fractional kernels. We specify the space of functions over which such composition is possible.

Another contribution is a rigorous proof of the equivalence of weighted and unweighted nonlocal Laplace operators via the equivalence kernel. While this result was presented in D’Elia et al. (2021a) formally, here we provide a set of conditions under which the result is valid. We verify these conditions for several important classes of kernels, including fractional kernels. We further study the properties of the equivalence kernel, which are important for establishing well-posedness for weighted nonlocal models.

Finally, we combine our results to obtain a weighted fractional Helmholtz decomposition in Hölder spaces. This result utilizes the vector calculus identities proved in the first half of the paper, as well as the characterization of the equivalence kernel for fractional kernels. A nonlocal Helmholtz decomposition for unweighted operators was derived by D’Elia et al. (2020). For weighted nonlocal operators, a Helmholtz decomposition for operators with kernels supported in the half ball was derived by Lee and Du (2020). Their results bear resemblance to the Helmholtz decompositions derived in the present paper, but in a different setting, namely in a periodic domain and for nonlocal kernels that scale in certain limits to local operators. In contrast, we study such decompositions in d\mathbb{R}^{d} with relaxed assumptions about the decay at infinity, which hold for standard fractional operators. In another related work, Haar and Radu (2020) studied Helmholtz decompositions for nonlocal convolution operators.

Outline of the paper. In Section 2, we introduce our notation and recall several relevant results for nonlocal operators in multiple dimensions with well-known kernels. We establish basic mapping properties of these operators as well. In Section 3, we focus on fractional operators and characterize their mapping properties completely for several function spaces. In Section 4, we prove several nonlocal operator identities that reflect well-established local counterparts from classical vector calculus. In Section 5, we identify a specific class of functions for which there exists an equivalence kernel such that the composition of the divergence and gradient operators corresponds to the (unweighted) negative nonlocal Laplace operator. Finally, in Section 6 we combine the vector calculus identities and the characterization of the equivalence kernel to obtain a weighted fractional Helmholtz decomposition. We collect requisite properties of the hypergeometric function in Appendix A.

2. Definitions of Operators

In this section, we recall the definitions of the nonlocal operators that will be used throughout the paper and identify function spaces for which these operators are defined. Furthermore, we introduce examples of nonlocal kernel functions that will be utilized in our main results.

Suppose we have a radial kernel ϱ\varrho satisfying

(K) ϱLloc1(d),ϱ0,ϱ(𝜼)|𝜼| is nonincreasing in |𝜼|, and dmin{1,|𝜼|1}ϱ(𝜼)d𝜼<.\begin{gathered}\varrho\in L^{1}_{\text{loc}}(\mathbb{R}^{d})\,,\qquad\varrho\geq 0\,,\qquad\frac{\varrho(\boldsymbol{\eta})}{|\boldsymbol{\eta}|}\text{ is nonincreasing in }|\boldsymbol{\eta}|\,,\\ \text{ and }\int_{\mathbb{R}^{d}}\min\{1,|\boldsymbol{\eta}|^{-1}\}\varrho(\boldsymbol{\eta})\,\mathrm{d}\boldsymbol{\eta}<\infty\,.\end{gathered}

Given positive integers N,dN,d and a given vector field 𝐮:dN\mathbf{u}:\mathbb{R}^{d}\rightarrow\mathbb{R}^{N} we define the nonlocal gradient

(2.1) 𝒢ϱ𝐮(𝐱)\displaystyle\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x}) =dϱ(𝐲𝐱)𝐮(𝐲)𝐮(𝐱)|𝐲𝐱|𝐲𝐱|𝐲𝐱|d𝐲\displaystyle=\int_{\mathbb{R}^{d}}\varrho(\mathbf{y}-\mathbf{x})\frac{\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})}{|\mathbf{y}-\mathbf{x}|}\otimes\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}

where for any vector 𝐚N{\bf a}\in\mathbb{R}^{N} and 𝐛d{\bf b}\in\mathbb{R}^{d}, the tensor product 𝐚𝐛{\bf a}\otimes{\mathbf{b}} is the N×dN\times d matrix the ijthij^{\text{th}} entry of which is aibja_{i}b_{j}. From this definition, it is clear that 𝒢ϱ\mathcal{G}_{\varrho} is an N×dN\times d matrix-valued map. For a given second order tensor field 𝐮:dN×d\mathbf{u}:\mathbb{R}^{d}\rightarrow\mathbb{R}^{N\times d}, we define the nonlocal divergence as

(2.2) 𝒟ϱ𝐮(𝐱)=dϱ(𝐲𝐱)𝐮(𝐲)𝐮(𝐱)|𝐲𝐱|𝐲𝐱|𝐲𝐱|d𝐲.\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})=\int_{\mathbb{R}^{d}}\varrho(\mathbf{y}-\mathbf{x})\frac{\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})}{|\mathbf{y}-\mathbf{x}|}\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}.

We interpret N×d\mathbb{R}^{N\times d} as a set of matrices with NN rows and dd columns. It is clear from the above definition (2.2) that 𝒟ϱ𝐮(𝐱)\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x}) is N\mathbb{R}^{N}-valued. Finally, in the event d=N=3d=N=3 and 𝐮:33\mathbf{u}:\mathbb{R}^{3}\to\mathbb{R}^{3} we define the nonlocal curl operator as

(2.3) 𝒞ϱ𝐮(𝐱)=3ϱ(𝐲𝐱)𝐲𝐱|𝐲𝐱|×𝐮(𝐲)𝐮(𝐱)|𝐲𝐱|d𝐲.\displaystyle\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})=\int_{\mathbb{R}^{3}}\varrho(\mathbf{y}-\mathbf{x})\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\times\frac{\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}.

The definitions above are consistent with known corresponding definitions for scalar fields or vector fields given in, e.g., Du et al. (2013a). Indeed, in the event that u:du:\mathbb{R}^{d}\to\mathbb{R} is a scalar field, the nonlocal gradient operator acting on uu gives the vector field 𝒢ϱu\mathcal{G}_{\varrho}u where

𝒢ϱu(𝐱)=dϱ(𝐲𝐱)u(𝐲)u(𝐱)|𝐲𝐱|𝐲𝐱|𝐲𝐱|d𝐲.\mathcal{G}_{\varrho}u(\mathbf{x})=\int_{\mathbb{R}^{d}}\varrho(\mathbf{y}-\mathbf{x})\frac{u(\mathbf{y})-u(\mathbf{x})}{|\mathbf{y}-\mathbf{x}|}\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}.

If we identify vector fields 𝐮:dd\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d} as 1×d1\times d matrix-valued fields, then the nonlocal divergence operator acting on the vector field is the scalar function given by

𝒟ϱ𝐮(𝐱)\displaystyle\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x}) =dϱ(𝐲𝐱)𝐲𝐱|𝐲𝐱|𝐮(𝐲)𝐮(𝐱)|𝐲𝐱|d𝐲.\displaystyle=\int_{\mathbb{R}^{d}}\varrho(\mathbf{y}-\mathbf{x})\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\cdot\frac{\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}.

Note that in the literature on nonlocal vector calculus (see, e.g, Du et al. (2013a)) these operators are commonly referred to as weighted, as opposed to their unweighted counterparts.

In what follows, we denote the ii-th partial derivative by DiD_{i}, and we use multi-index notation for derivatives of arbitrary order. The (classical) gradient operator (D1,D2,,Dn)(D_{1},D_{2},\ldots,D_{n}) is denoted by \nabla, its negative adjoint, the (classical) divergence operator, is denoted by div\mathrm{div}\,, and their composition, the (classical) Laplacian div\mathrm{div}\,\nabla, is denoted by Δ\Delta.

For functions 𝐮:dN\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{N}, for k0k\in\mathbb{N}_{0} and α(0,1)\alpha\in(0,1) we denote the Hölder spaces as Ck,α(d;N):={𝐮C(d;N):𝐮Ck,α(d)<}C^{k,\alpha}(\mathbb{R}^{d};\mathbb{R}^{N}):=\{\mathbf{u}\in C(\mathbb{R}^{d};\mathbb{R}^{N})\,:\,\left\|\mathbf{u}\right\|_{C^{k,\alpha}(\mathbb{R}^{d})}<\infty\}, where the norm is given by

𝐮Ck,α(d)=𝐮L(d)+|γ|=1kDγ𝐮L(d)+|γ|=k[Dγ𝐮]C0,α(d),\displaystyle\|\mathbf{u}\|_{C^{k,\alpha}(\mathbb{R}^{d})}=\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}+\sum_{|\gamma|=1}^{k}\left\|D^{\gamma}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}+\sum_{|\gamma|=k}[D^{\gamma}\mathbf{u}]_{C^{0,\alpha}(\mathbb{R}^{d})},
[𝐯]C0,α(d)=sup𝐱,𝐲d,𝐱𝐲|𝐯(𝐱)𝐯(𝐲)||𝐱𝐲|α.\displaystyle\left[\mathbf{v}\right]_{C^{0,\alpha}(\mathbb{R}^{d})}=\underset{\mathbf{x},\mathbf{y}\in\mathbb{R}^{d},\mathbf{x}\neq\mathbf{y}}{\text{sup}}\frac{|\mathbf{v}(\mathbf{x})-\mathbf{v}(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|^{\alpha}}.

Later on in the paper we will need to consider functions in a range of Hölder spaces that depend on a parameter ss. For all s(0,1)s\in(0,1) and σ>0\sigma>0 small, we say that

𝐮𝒞2s+σ(d;N)\mathbf{u}\in\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{N})

if

𝐮{C0,2s+σ(d;N), when s<1/2,C1,2s+σ1(d;N), when s1/2.\mathbf{u}\in\begin{cases}C^{0,2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{N})\,,&\quad\text{ when }s<1/2\,,\\ C^{1,2s+\sigma-1}(\mathbb{R}^{d};\mathbb{R}^{N})\,,&\quad\text{ when }s\geq 1/2\,.\end{cases}

We next study the mapping properties of the nonlocal operators introduced above. To that end, we recall the class of Schwartz vector fields by 𝒮(d;N)\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{N}): this is the space C(d;N)C^{\infty}(\mathbb{R}^{d};\mathbb{R}^{N}) equipped with the countable family of seminorms

[𝐮]α,β:=sup|γ|αsup𝐱d|𝐱|β|Dγ𝐮(𝐱)|,α,β0,γ a d-multi-index.[\mathbf{u}]_{\alpha,\beta}:=\sup_{|\gamma|\leq\alpha}\sup_{\mathbf{x}\in\mathbb{R}^{d}}|\mathbf{x}|^{\beta}|D^{\gamma}\mathbf{u}(\mathbf{x})|\,,\qquad\alpha,\beta\in\mathbb{N}_{0}\,,\quad\gamma\text{ a }d\text{-multi-index.}

Our next result says that although these nonlocal operators do not necessarily map 𝒮(d;N)\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{N}) to itself, they map it to the class CC^{\infty}, and the mapped vector fields satisfy a certain decay property.

Proposition 2.1.

Let dd and NN be positive integers. Let 𝒵ϱ𝐮(𝐱)\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) denote any one of the following objects:

(2.4) 𝒢ϱ𝐮(𝐱), for 𝐮𝒮(d;N),𝒟ϱ𝐮(𝐱), for 𝐮𝒮(d;N×d),𝒞ϱ𝐮(𝐱), for 𝐮𝒮(d;d) and d=3.\begin{split}\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{N})\,,\\ \mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{N\times d})\,,\\ \mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{d})\text{ and }d=3\,.\end{split}

Then 𝒵ϱ𝐮(𝐱)\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) is a well-defined measurable function for all 𝐱\mathbf{x}, 𝒵ϱ𝐮C\mathcal{Z}_{\varrho}\mathbf{u}\in C^{\infty}, and for any p[1,]p\in[1,\infty] and γd\gamma\in\mathbb{N}^{d}, there is a constant CC depending on dd, NN and pp such that

(2.5) Dγ𝒵ϱ𝐮Lp(d)C(Dγ𝐮Lp(d)ϱL1(B1(0))+Dγ𝐮Lp(d)ϱ()||L1(dB1(0))).\|D^{\gamma}\mathcal{Z}_{\varrho}\mathbf{u}\|_{L^{p}(\mathbb{R}^{d})}\leq C\left(\|\nabla D^{\gamma}\mathbf{u}\|_{L^{p}(\mathbb{R}^{d})}\|\varrho\|_{L^{1}(B_{1}(0))}+\|D^{\gamma}\mathbf{u}\|_{L^{p}(\mathbb{R}^{d})}\left\|{\varrho(\cdot)\over|\cdot|}\right\|_{L^{1}(\mathbb{R}^{d}\setminus B_{1}(0))}\right).

Moreover, we have the following decay estimates for the derivatives: for any jj, kk\in\mathbb{N} , there exists a constant CC depending on dd, NN, jj and kk such that

(2.6) |Dγ𝒵ϱ𝐮(𝐱)|C([𝐮]|γ|+1,j|𝐱|j|𝐡||𝐱|2ϱ(|𝐡|)d𝐡+[𝐮]|γ|,k|𝐱|k|𝐡|>|𝐱|2ϱ(|𝐡|)|𝐡|d𝐡+Dγ𝐮L1(d)ϱ(|𝐱|2)|𝐱2|)\begin{split}|D^{\gamma}\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})|\leq C\left(\frac{[\mathbf{u}]_{|\gamma|+1,j}}{|\mathbf{x}|^{j}}\int_{|\mathbf{h}|\leq\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{h}|)\,\mathrm{d}\mathbf{h}+\frac{[\mathbf{u}]_{|\gamma|,k}}{|\mathbf{x}|^{k}}\int_{|\mathbf{h}|>\frac{|\mathbf{x}|}{2}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}+\|D^{\gamma}\mathbf{u}\|_{L^{1}(\mathbb{R}^{d})}\frac{\varrho\left(\frac{|\mathbf{x}|}{2}\right)}{|\frac{\mathbf{x}}{2}|}\right)\end{split}

for all |𝐱|1|\mathbf{x}|\geq 1.

Proof.

First, we show that for 𝐮𝒮(d)\mathbf{u}\in\mathscr{S}(\mathbb{R}^{d}), 𝒵ϱ𝐮(𝐱)\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) is well defined for any fixed 𝐱d\mathbf{x}\in\mathbb{R}^{d}. From the definition of these operators and after change of variables, we notice that

|𝒵ϱ𝐮(𝐱)|dϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳.|\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})|\leq\int_{\mathbb{R}^{d}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}.

Thus to show that 𝒵ϱ𝐮(𝐱)\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) is well defined, it suffices to show that the integrand on the right-hand side is integrable. This follows from the fact that the integrand can be estimated by a sum of two integrable functions, i.e.

(2.7) ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|𝐮L(B1(𝐱))ϱ(𝐳)χ{|𝐳|1}(𝐳)+2𝐮L(d)ϱ(𝐳)|𝐳|χ{|𝐳|1}(𝐳).\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\leq\|\nabla\mathbf{u}\|_{L^{\infty}(B_{1}(\mathbf{x}))}\varrho(\mathbf{z})\chi_{\{|\mathbf{z}|\leq 1\}}(\mathbf{z})+2\|\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}{\varrho(\mathbf{z})\over|\mathbf{z}|}\chi_{\{|\mathbf{z}|\geq 1\}}(\mathbf{z}).

The fact that 𝒵ϱ𝐮C(d;d)\mathcal{Z}_{\varrho}\mathbf{u}\in C^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d}) follows from the observation that the operators 𝒵ϱ\mathcal{Z}_{\varrho} commute with differentiation for vector fields in 𝒮(d)\mathscr{S}(\mathbb{R}^{d}), i.e. for any multi-index γ0d\gamma\in\mathbb{N}_{0}^{d}, Dγ𝒵ϱ𝐮=𝒵ϱDγ𝐮D^{\gamma}\mathcal{Z}_{\varrho}\mathbf{u}=\mathcal{Z}_{\varrho}D^{\gamma}\mathbf{u}. This commutative property follows by induction from the relation Di𝒵ϱ𝐮=𝒵ϱDi𝐮D_{i}\mathcal{Z}_{\varrho}\mathbf{u}=\mathcal{Z}_{\varrho}D_{i}\mathbf{u} for i=1,,di=1,\ldots,d. This, in turn, can be seen by applying the estimates (2.7) and

(2.8) ϱ(|𝐳|)|Di𝐮(𝐱+𝐳)Di𝐮(𝐱)||𝐳|Di𝐮L(B1(𝐱))ϱ(𝐳)χ{|𝐳|1}(𝐳)+2Di𝐮L(d)ϱ(𝐳)|𝐳|χ{|𝐳|1}(𝐳)\varrho(|\mathbf{z}|)\frac{|D_{i}\mathbf{u}(\mathbf{x}+\mathbf{z})-D_{i}\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\\ \leq\|\nabla D_{i}\mathbf{u}\|_{L^{\infty}(B_{1}(\mathbf{x}))}\varrho(\mathbf{z})\chi_{\{|\mathbf{z}|\leq 1\}}(\mathbf{z})+2\|D_{i}\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}{\varrho(\mathbf{z})\over|\mathbf{z}|}\chi_{\{|\mathbf{z}|\geq 1\}}(\mathbf{z})

in the dominated convergence theorem in order to differentiate under the integral sign. Thus to demonstrate the estimates (2.5) and (2.6), it suffices to check it for γ=0\gamma=0. To prove (2.5) when 1p<1\leq p<\infty, we have

(2.9) d|𝒵ϱ𝐮|pd𝐱Cd|B1(0)ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳|pd𝐱+Cd|dB1(0)ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳|pd𝐱.\int_{\mathbb{R}^{d}}|\mathcal{Z}_{\varrho}\mathbf{u}|^{p}\,\mathrm{d}\mathbf{x}\leq C\int_{\mathbb{R}^{d}}\left|\int_{B_{1}(0)}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\right|^{p}\,\mathrm{d}\mathbf{x}\\ +C\int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}\setminus B_{1}(0)}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\right|^{p}\,\mathrm{d}\mathbf{x}\,.

Using the identity 𝐮(𝐱+𝐳)𝐮(𝐱)=01𝐮(𝐱+t𝐳)𝐳dt\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})=\int_{0}^{1}\nabla\mathbf{u}(\mathbf{x}+t\mathbf{z})\mathbf{z}\,\mathrm{d}t and applying Minkowski’s integral inequality, we have that

d|𝒵ϱ𝐮|pd𝐱\displaystyle\int_{\mathbb{R}^{d}}|\mathcal{Z}_{\varrho}\mathbf{u}|^{p}\,\mathrm{d}\mathbf{x} Cd|B1(0)ϱ(|𝐳|)01|𝐮(𝐱+t𝐳)|dtd𝐳|pd𝐱\displaystyle\leq C\int_{\mathbb{R}^{d}}\left|\int_{B_{1}(0)}\varrho(|\mathbf{z}|)\int_{0}^{1}|\nabla\mathbf{u}(\mathbf{x}+t\mathbf{z})|\,\mathrm{d}t\,\mathrm{d}\mathbf{z}\right|^{p}\,\mathrm{d}\mathbf{x}
+d|dB1(0)ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳|pd𝐱\displaystyle\qquad+\int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}\setminus B_{1}(0)}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\right|^{p}\,\mathrm{d}\mathbf{x}
C[(B1(0)ϱ(|𝐳|)d𝐳)p𝐮Lp(d)+(dB1(0)ϱ(|𝐳|)|𝐳|d𝐳)p𝐮Lp(d)].\displaystyle\leq C\left[\left(\int_{B_{1}(0)}\varrho(|\mathbf{z}|)\,\mathrm{d}\mathbf{z}\right)^{p}\|\nabla\mathbf{u}\|_{L^{p}(\mathbb{R}^{d})}+\left(\int_{\mathbb{R}^{d}\setminus B_{1}(0)}{\varrho(|\mathbf{z}|)\over|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\right)^{p}\|\mathbf{u}\|_{L^{p}(\mathbb{R}^{d})}\right]\,.

The estimate (2.5) in the case p=p=\infty is similar:

𝒵ϱ𝐮L(d)\displaystyle\left\|\mathcal{Z}_{\varrho}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})} C[(B1(0)ϱ(|𝐳|)d𝐳)𝐮L(d)+(dB1(0)ϱ(|𝐳|)|𝐳|d𝐳)𝐮L(d)].\displaystyle\leq C\left[\left(\int_{B_{1}(0)}\varrho(|\mathbf{z}|)\,\mathrm{d}\mathbf{z}\right)\|\nabla\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}+\left(\int_{\mathbb{R}^{d}\setminus B_{1}(0)}{\varrho(|\mathbf{z}|)\over|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\right)\|\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\right]\,.

To estimate (2.6), we proceed by splitting the integral defining 𝒵ϱ𝐮\mathcal{Z}_{\varrho}\mathbf{u}:

|𝒵ϱ𝐮(𝐱)||𝐳||𝐱|2ϱ(|𝐳|)|𝐮(𝐳+𝐱)𝐮(𝐱)||𝐳|d𝐳+|𝐳|>|𝐱|2ϱ(|𝐳|)|𝐮(𝐳+𝐱)𝐮(𝐱)||𝐳|d𝐳|𝐳||𝐱|2ϱ(|𝐳|)𝐮(𝐱+t(𝐳))d𝐲+|𝐳|>|𝐱|2ϱ(|𝐳|)|𝐮(𝐳+𝐱)||𝐳|d𝐳+|𝐳|>|𝐱|2ϱ(|𝐳|)|𝐮(𝐱)||𝐳|d𝐳\begin{split}|\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})|&\leq\int_{|\mathbf{z}|\leq\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{z}+\mathbf{x})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}+\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{z}+\mathbf{x})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &\leq\int_{|\mathbf{z}|\leq\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\nabla\mathbf{u}(\mathbf{x}+t(\mathbf{z}))\,\mathrm{d}\mathbf{y}+\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{z}+\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &\qquad+\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\end{split}

for some t[0,1]t\in[0,1]. We use the definition of [𝐮]α,β[\mathbf{u}]_{\alpha,\beta} to estimate:

|𝒵ϱ𝐮(𝐱)||𝐳||𝐱|2ϱ(|𝐳|)[𝐮]1,j|𝐱+t(𝐳)|jd𝐳+|𝐳|>|𝐱|2ϱ(|𝐳|)|𝐮(𝐳+𝐱)||𝐳|d𝐳+|𝐳|>|𝐱|2ϱ(|𝐳|)[𝐮]0,k|𝐱|k|𝐳|d𝐳.\begin{split}|\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})|&\leq\int_{|\mathbf{z}|\leq\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{[\mathbf{u}]_{1,j}}{|\mathbf{x}+t(\mathbf{z})|^{j}}\,\mathrm{d}\mathbf{z}+\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{z}+\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &\qquad+\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\frac{[\mathbf{u}]_{0,k}}{|\mathbf{x}|^{k}|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\,.\end{split}

Since ϱ(𝜼)|𝜼|1\varrho(\boldsymbol{\eta})|\boldsymbol{\eta}|^{-1} is nonincreasing and |𝐱+t𝐳||𝐱|2|\mathbf{x}+t\mathbf{z}|\geq\frac{|\mathbf{x}|}{2} for all 𝐳B(0,|𝐱|2)\mathbf{z}\in B(0,{|\mathbf{x}|\over 2}),

|𝒵ϱ𝐮(𝐱)|C(j)[𝐮]1,j|𝐱|j|𝐳||𝐱|2ϱ(|𝐳|)d𝐳+ϱ(|𝐱|2)(|𝐱|2)|𝐳|>|𝐱|2|𝐮(𝐳+𝐱)|d𝐳+[𝐮]0,k|𝐱|k|𝐳|>|𝐱|2ϱ(|𝐳|)|𝐳|d𝐳.\begin{split}|\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})|&\leq C(j)\frac{[\mathbf{u}]_{1,j}}{|\mathbf{x}|^{j}}\int_{|\mathbf{z}|\leq\frac{|\mathbf{x}|}{2}}\varrho(|\mathbf{z}|)\,\mathrm{d}\mathbf{z}+\frac{\varrho(\frac{|\mathbf{x}|}{2})}{\left(\frac{|\mathbf{x}|}{2}\right)}\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}|\mathbf{u}(\mathbf{z}+\mathbf{x})|\,\mathrm{d}\mathbf{z}\\ &\qquad+\frac{[\mathbf{u}]_{0,k}}{|\mathbf{x}|^{k}}\int_{|\mathbf{z}|>\frac{|\mathbf{x}|}{2}}\frac{\varrho(|\mathbf{z}|)}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\,.\end{split}

Changing coordinates gives (2.6). ∎

Remark 2.2.

For mm\in\mathbb{N}, denoting the class of mm-times continuously differentiable and bounded vector fields on d\mathbb{R}^{d} by Cbm(d;d)C^{m}_{b}(\mathbb{R}^{d};\mathbb{R}^{d}), the first part of the above proof implies that if 𝐮Cbm(d;d)\mathbf{u}\in C^{m}_{b}(\mathbb{R}^{d};\mathbb{R}^{d}) then 𝒵ϱ𝐮(𝐱)\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) is well-defined for all 𝐱d\mathbf{x}\in\mathbb{R}^{d} and 𝒵ϱ𝐮Cbm1(d;d)\mathcal{Z}_{\varrho}\mathbf{u}\in C^{m-1}_{b}(\mathbb{R}^{d};\mathbb{R}^{d}) with the estimate

Dγ𝒵ϱ𝐮L(d)C[Dγ𝐮L(d)ϱL1(B1(0))+Dγ𝐮L(d)ϱ()||L1(dB1(0))]\|D^{\gamma}\mathcal{Z}_{\varrho}\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\leq C\left[\|\nabla D^{\gamma}{\mathbf{u}}\|_{L^{\infty}(\mathbb{R}^{d})}\|\varrho\|_{L^{1}(B_{1}(0))}+\|D^{\gamma}\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\left\|{\varrho(\cdot)\over|\cdot|}\right\|_{L^{1}(\mathbb{R}^{d}\setminus B_{1}(0))}\right]

for any 1|γ|m1.1\leq|\gamma|\leq m-1.

We conclude the section by giving three examples of kernels that satisfy (K) and demonstrate the decay estimates in Proposition 2.1. We will refer to these examples in the sequel.

Example 2.1.

The Fractional Kernel For s(0,1)s\in(0,1) define the fractional kernel

(2.10) ϱs(|𝜼|):=cd,s|𝜼|d+s1,cd,s:=2sΓ(d+s+12)πd/2Γ(1s2),𝜼d{𝟎}.\varrho_{s}(|\boldsymbol{\eta}|):=\frac{c_{d,s}}{|\boldsymbol{\eta}|^{d+s-1}}\,,\qquad c_{d,s}:=\frac{2^{s}\Gamma(\frac{d+s+1}{2})}{\pi^{d/2}\Gamma(\frac{1-s}{2})}\,,\qquad\boldsymbol{\eta}\in\mathbb{R}^{d}\setminus\{{\bf 0}\}\,.

Choosing j=d+1j=d+1 and k=dk=d in (2.6), and computing the integrals gives the decay rate

|𝒵ϱs𝐮(𝐱)|C|𝐱|d+s.|\mathcal{Z}_{\varrho_{s}}\mathbf{u}(\mathbf{x})|\leq\frac{C}{|\mathbf{x}|^{d+s}}\,.

where CC depends on dd, ss and 𝐮\mathbf{u}.

Example 2.2.

The Truncated Fractional Kernel. Let δ>0\delta>0. Define the truncated fractional kernel ϱs,δ\varrho_{s,\delta} by

ϱs,δ(|𝜼|):=cd,sχB(𝟎,δ)(|𝜼|)|𝜼|d+s1,𝜼d{𝟎}.\varrho_{s,\delta}(|\boldsymbol{\eta}|):=c_{d,s}\frac{\chi_{B({\bf 0},\delta)}(|\boldsymbol{\eta}|)}{|\boldsymbol{\eta}|^{d+s-1}}\,,\qquad\boldsymbol{\eta}\in\mathbb{R}^{d}\setminus\{{\bf 0}\}\,.

Using the notation 𝒵s,δ\mathcal{Z}_{s,\delta} for 𝒵ϱs,δ\mathcal{Z}_{\varrho_{s,\delta}}, the estimate (2.6) corresponding to this kernel becomes

(2.11) |𝒵s,δ𝐮(𝐱)|Cδ1s|𝐱|j,2δ|𝐱|\begin{split}|\mathcal{Z}_{s,\delta}\mathbf{u}(\mathbf{x})|&\leq\frac{C\delta^{1-s}}{|\mathbf{x}|^{j}}\,,\qquad 2\delta\leq|\mathbf{x}|\end{split}

for any jj\in\mathbb{N}, where CC depends on dd, ss and 𝐮\mathbf{u}.

Example 2.3.

The Tempered Fractional Kernel. Let α>0\alpha>0, and let s(0,1)s\in(0,1). We define the tempered fractional kernel

ϱs,temp(|𝜼|):=eα|𝜼||𝜼|d+s1,𝜼d.\varrho_{s,\text{temp}}(|\boldsymbol{\eta}|):=\frac{\mathrm{e}^{-\alpha|\boldsymbol{\eta}|}}{|\boldsymbol{\eta}|^{d+s-1}}\,,\qquad\boldsymbol{\eta}\in\mathbb{R}^{d}\,.

We abbreviate the operators 𝒵ϱs,temp\mathcal{Z}_{\varrho_{s,\text{temp}}} as 𝒵s,temp\mathcal{Z}_{s,\text{temp}}. The exponential decay of ϱs,temp\varrho_{s,\text{temp}} gives the resulting nonlocal derivatives rapid decay. To see this, we consider the three terms in (2.6) separately. First, integrating directly we have

(2.12) 1|𝐱|j|𝐡||𝐱|2eα|𝜼||𝜼|d+s1d𝐡=ωd1|𝐱|j0|𝐱|/2eαrrsdrC(d,s,α)Γ(1s)|𝐱|j for all |𝐱|1.\frac{1}{|\mathbf{x}|^{j}}\int_{|\mathbf{h}|\leq\frac{|\mathbf{x}|}{2}}\frac{\mathrm{e}^{-\alpha|\boldsymbol{\eta}|}}{|\boldsymbol{\eta}|^{d+s-1}}\,\mathrm{d}\mathbf{h}=\frac{\omega_{d-1}}{|\mathbf{x}|^{j}}\int_{0}^{|\mathbf{x}|/2}\frac{\mathrm{e}^{-\alpha r}}{r^{s}}\,\mathrm{d}r\leq\frac{C(d,s,\alpha)\Gamma(1-s)}{|\mathbf{x}|^{j}}\text{ for all }|\mathbf{x}|\geq 1\,.

Next, by change of coordinates

(2.13) 1|𝐱|k|𝐡|>|𝐱|2eα|𝐡||𝐡|d+sd𝐡=ωd1|𝐱|k|𝐱|2eαrr1+sdr=2sωd1|𝐱|k+s1eα|𝐱|2rr1+sdrCeα|𝐱|2|𝐱|k+1+s,\begin{split}\frac{1}{|\mathbf{x}|^{k}}\int_{|\mathbf{h}|>\frac{|\mathbf{x}|}{2}}\frac{\mathrm{e}^{-\alpha|\mathbf{h}|}}{|\mathbf{h}|^{d+s}}\,\mathrm{d}\mathbf{h}=\frac{\omega_{d-1}}{|\mathbf{x}|^{k}}\int_{\frac{|\mathbf{x}|}{2}}^{\infty}\frac{\mathrm{e}^{-\alpha r}}{r^{1+s}}\,\mathrm{d}r&=\frac{2^{s}\omega_{d-1}}{|\mathbf{x}|^{k+s}}\int_{1}^{\infty}\frac{\mathrm{e}^{-\frac{\alpha|\mathbf{x}|}{2}r}}{r^{1+s}}\,\mathrm{d}r\leq C\frac{\mathrm{e}^{-\frac{\alpha|\mathbf{x}|}{2}}}{|\mathbf{x}|^{k+1+s}}\,,\end{split}

where we have used the upper bound 1tneztdtz1ez\int_{1}^{\infty}t^{-n}\mathrm{e}^{-zt}\,\mathrm{d}t\leq z^{-1}\mathrm{e}^{-z} in the last inequality (see (Abramowitz et al., 1988, Equation 15.1.19)); here CC depends on dd, ss, α\alpha and 𝐮\mathbf{u}. Plugging estimates (2.12) and (2.13) in to (2.6) we arrive at

(2.14) |𝒵s,temp𝐮(𝐱)|C(1|𝐱|j+eα|𝐱|2|𝐱|k+1+s+eα|𝐱|2|𝐱|d+s),|𝐱|1,j,k.|\mathcal{Z}_{s,\text{temp}}\mathbf{u}(\mathbf{x})|\leq C\left(\frac{1}{|\mathbf{x}|^{j}}+\frac{\mathrm{e}^{-\frac{\alpha|\mathbf{x}|}{2}}}{|\mathbf{x}|^{k+1+s}}+\frac{\mathrm{e}^{-\frac{\alpha|\mathbf{x}|}{2}}}{|\mathbf{x}|^{d+s}}\right)\,,\qquad|\mathbf{x}|\geq 1\,,\qquad j\,,k\in\mathbb{N}\,.
Remark 2.3.

From the decay estimates (2.11) and (2.14) corresponding to the truncated and the tempered fractional kernels, we see that 𝒵s,δ\mathcal{Z}_{s,\delta} and 𝒵s,temp\mathcal{Z}_{s,\text{temp}} map the Schwartz class of vector fields 𝒮(d)\mathscr{S}(\mathbb{R}^{d}) into itself.

Example 2.4.

The Characteristic Function Kernel. Let δ>0\delta>0. We define the characteristic function kernel

ϱχ,δ(|𝜼|):=dωd1δdχB(𝟎,δ)(|𝜼|),𝜼d,\varrho_{\chi,\delta}(|\boldsymbol{\eta}|):=\frac{d}{\omega_{d-1}\delta^{d}}\chi_{B({\bf 0},\delta)}(|\boldsymbol{\eta}|)\,,\quad\boldsymbol{\eta}\in\mathbb{R}^{d}\,,

where ωd1\omega_{d-1} denotes the surface measure of the sphere in d\mathbb{R}^{d}. Using the notation 𝒵χ,δ\mathcal{Z}_{\chi,\delta} for 𝒵ϱχ,δ\mathcal{Z}_{\varrho_{\chi,\delta}}, the estimate (2.6) corresponding to this kernel becomes

|𝒵χ,δ𝐮(𝐱)|C|𝐱|j,2δ|𝐱|\begin{split}|\mathcal{Z}_{\chi,\delta}\mathbf{u}(\mathbf{x})|&\leq\frac{C}{|\mathbf{x}|^{j}}\,,\qquad 2\delta\leq|\mathbf{x}|\end{split}

for any jj\in\mathbb{N}, where CC depends on dd and 𝐮\mathbf{u}.

3. Hölder spaces and fractional vector calculus

The mapping properties of the nonlocal operators 𝒢ϱ\mathcal{G}_{\varrho}, 𝒟ϱ\mathcal{D}_{\varrho}, and 𝒞ϱ\mathcal{C}_{\varrho} depend on the kernel ϱ\varrho. In the case of the fractional kernel (2.10), it is possible to characterize the mapping properties of these operators completely for several function spaces. We refer to the nonlocal gradient, divergence, and curl operators associated with the fractional kernel (2.10) as the fractional gradient, divergence, and curl, respectively, and identify them using the noation

𝒢s:=𝒢ϱs,𝒟s:=𝒟ϱs,𝒞s:=𝒞ϱs.\mathcal{G}_{s}:=\mathcal{G}_{\varrho_{s}}\,,\qquad\mathcal{D}_{s}:=\mathcal{D}_{\varrho_{s}}\,,\qquad\mathcal{C}_{s}:=\mathcal{C}_{\varrho_{s}}\,.

The mapping properties of 𝒢s\mathcal{G}_{s} and 𝒟s\mathcal{D}_{s} in fractional Sobolev spaces were established by D’Elia et al. (2021a), and are analogous to the well-known mapping property of the fractional Laplacian (Δ)s(-\Delta)^{s} in Sobolev spaces (Lischke et al., 2018; Stein, 2016). In this section, we study the mapping properties in Hölder spaces of these operators. The properties will be used in in Section 4 to prove identities for fractional vector calculus operators in larger spaces than for general nonlocal operators, and in Section 6 in proving a Helmholtz decomposition involving fractional operators in Hölder spaces.

We will define the fractional gradient operators for functions that satisfy appropriate smoothness and integrability conditions. For α(0,2)\alpha\in(0,2), we define the weighted Lebesgue space Lα1L^{1}_{\alpha} as

Lα1(d;d):={𝐮Lloc1(d;d):𝐮Lα1(d):=d|𝐮(𝐱)|1+|𝐱|d+αd𝐱<}.L^{1}_{\alpha}(\mathbb{R}^{d};\mathbb{R}^{d}):=\left\{\mathbf{u}\in L^{1}_{loc}(\mathbb{R}^{d};\mathbb{R}^{d})\,:\,\left\|\mathbf{u}\right\|_{L^{1}_{\alpha}(\mathbb{R}^{d})}:=\int_{\mathbb{R}^{d}}\frac{|\mathbf{u}(\mathbf{x})|}{1+|\mathbf{x}|^{d+\alpha}}\,\mathrm{d}\mathbf{x}<\infty\right\}\,.

Note that for any α(0,2)\alpha\in(0,2), Lp(d;d)Lα1(d;d)L^{p}(\mathbb{R}^{d};\mathbb{R}^{d})\subset L^{1}_{\alpha}(\mathbb{R}^{d};\mathbb{R}^{d}) for p[1,]p\in[1,\infty].

Theorem 3.1.

Let s(0,1)s\in(0,1), N1N\geq 1, and d2d\geq 2. Let 𝒵s𝐮(𝐱)\mathcal{Z}_{s}\mathbf{u}(\mathbf{x}) denote any of the following objects:

𝒢s𝐮(𝐱), for 𝐮Ls1(d;N),𝒟s𝐮(𝐱), for 𝐮Ls1(d;N×d),𝒞s𝐮(𝐱), for 𝐮Ls1(d;d) and d=3.\begin{split}\mathcal{G}_{s}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in L^{1}_{s}(\mathbb{R}^{d};\mathbb{R}^{N})\,,\\ \mathcal{D}_{s}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in L^{1}_{s}(\mathbb{R}^{d};\mathbb{R}^{N\times d})\,,\\ \mathcal{C}_{s}\mathbf{u}(\mathbf{x})\,,&\quad\text{ for }\mathbf{u}\in L^{1}_{s}(\mathbb{R}^{d};\mathbb{R}^{d})\text{ and }d=3\,.\end{split}

Then we have the following:

  • 1)

    If 𝐮C0,β(d)\mathbf{u}\in C^{0,\beta}(\mathbb{R}^{d}) for β(s,1)\beta\in(s,1), then 𝒵s𝐮C0,βs(d)\mathcal{Z}_{s}\mathbf{u}\in C^{0,\beta-s}(\mathbb{R}^{d}) with

    (3.1) 𝒵s𝐮C0,βs(d)C𝐮C0,β(d).\left\|\mathcal{Z}_{s}\mathbf{u}\right\|_{C^{0,\beta-s}(\mathbb{R}^{d})}\leq C\left\|\mathbf{u}\right\|_{C^{0,\beta}(\mathbb{R}^{d})}\,.
  • 2)

    If 𝐮C1,β(d)\mathbf{u}\in C^{1,\beta}(\mathbb{R}^{d}) for β(0,1)\beta\in(0,1) and s<βs<\beta, then 𝒵s𝐮C1,βs(d)\mathcal{Z}_{s}\mathbf{u}\in C^{1,\beta-s}(\mathbb{R}^{d}) with

    (3.2) 𝒵s𝐮C1,βs(d)C𝐮C1,β(d).\left\|\mathcal{Z}_{s}\mathbf{u}\right\|_{C^{1,\beta-s}(\mathbb{R}^{d})}\leq C\left\|\mathbf{u}\right\|_{C^{1,\beta}(\mathbb{R}^{d})}\,.
  • 3)

    If 𝐮C1,β(d)\mathbf{u}\in C^{1,\beta}(\mathbb{R}^{d}) for β(0,1)\beta\in(0,1) and s>βs>\beta, then 𝒵s𝐮C0,βs+1(d)\mathcal{Z}_{s}\mathbf{u}\in C^{0,\beta-s+1}(\mathbb{R}^{d}) with

    (3.3) 𝒵s𝐮C0,βs+1(d)C𝐮C1,β(d).\left\|\mathcal{Z}_{s}\mathbf{u}\right\|_{C^{0,\beta-s+1}(\mathbb{R}^{d})}\leq C\left\|\mathbf{u}\right\|_{C^{1,\beta}(\mathbb{R}^{d})}\,.

In all estimates the constant CC depends only on dd, NN, ss and β\beta.

Proof.

To prove 1), we write

|𝒵s𝐮(𝐱)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})| d|𝐮(𝐲)𝐮(𝐱)||𝐲𝐱|d+sd𝐲\displaystyle\leq\int_{\mathbb{R}^{d}}\frac{|\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}
|𝐲𝐱|R|𝐮(𝐲)𝐮(𝐱)||𝐲𝐱|d+sd𝐲+|𝐲𝐱|>R|𝐮(𝐲)𝐮(𝐱)||𝐲𝐱|d+sd𝐲\displaystyle\leq\int_{|\mathbf{y}-\mathbf{x}|\leq R}\frac{|\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}+\int_{|\mathbf{y}-\mathbf{x}|>R}\frac{|\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}
[𝐮]C0,β(d)|𝐲𝐱|R1|𝐲𝐱|d+sβ𝑑𝐲+2𝐮L(d)|𝐲𝐱|>R1|𝐲𝐱|d+sd𝐲\displaystyle\leq\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}\int_{|\mathbf{y}-\mathbf{x}|\leq R}\frac{1}{|\mathbf{y}-\mathbf{x}|^{d+s-\beta}}d\mathbf{y}+2\|\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\int_{|\mathbf{y}-\mathbf{x}|>R}\frac{1}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}
CRβs[𝐮]C0,β(d)+2Rs𝐮L(d)\displaystyle\leq CR^{\beta-s}\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}+2R^{-s}\|\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}

for any R>0R>0. This holds for all 𝐱d\mathbf{x}\in\mathbb{R}^{d}, so 𝒵s𝐮L(d)\mathcal{Z}_{s}\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}).

Next, we use the following notation for the placeholder 𝒵s\mathcal{Z}_{s}:

𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)=d(𝐮(𝐱+𝐡)𝐮(𝐱))(𝐮(𝐲+𝐡)𝐮(𝐲))|𝐡|d+s(,×,)𝐡|𝐡|d𝐡.\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})=\int_{\mathbb{R}^{d}}\frac{\left(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x})\right)-\left(\mathbf{u}(\mathbf{y}+\mathbf{h})-\mathbf{u}(\mathbf{y})\right)}{|\mathbf{h}|^{d+s}}\left(\otimes,\times,\cdot\right)\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}.

It is clear that for any R>0R>0

|𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})| d|(𝐮(𝐱+𝐡)𝐮(𝐱))(𝐮(𝐲+𝐡)𝐮(𝐲))||𝐡|d+sd𝐡\displaystyle\leq\int_{\mathbb{R}^{d}}\frac{|\left(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x})\right)-\left(\mathbf{u}(\mathbf{y}+\mathbf{h})-\mathbf{u}(\mathbf{y})\right)|}{|\mathbf{h}|^{d+s}}\,\mathrm{d}\mathbf{h}
=|𝐡|R+|𝐡|>R\displaystyle=\int_{|\mathbf{h}|\leq R}...+\int_{|\mathbf{h}|>R}...
=I+II.\displaystyle=I+II.

To estimate II, we use

|𝐮(𝐳+𝐡)𝐮(𝐳)|[𝐮]C0,β(d)|𝐡|β for 𝐳=𝐱 or 𝐲.|\mathbf{u}(\mathbf{z}+\mathbf{h})-\mathbf{u}(\mathbf{z})|\leq[\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}|\mathbf{h}|^{\beta}\text{ for }\mathbf{z}=\mathbf{x}\text{ or }\mathbf{y}\,.

Therefore,

I\displaystyle I [𝐮]C0,β(d)|𝐡|R1|𝐡|d+sβd𝐡=C[𝐮]C0,β(d)Rβs.\displaystyle\leq\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}\int_{|\mathbf{h}|\leq R}\frac{1}{|\mathbf{h}|^{d+s-\beta}}\,\mathrm{d}\mathbf{h}=C\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}R^{\beta-s}.

For II, we use the estimate that, for 𝐡d\mathbf{h}\in\mathbb{R}^{d},

|𝐮(𝐱+𝐡)𝐮(𝐲+𝐡)|+|𝐮(𝐱)𝐮(𝐲)|2[𝐮]C0,β(d)|𝐱𝐲|β|\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{y}+\mathbf{h})|+|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})|\leq 2[\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}|\mathbf{x}-\mathbf{y}|^{\beta}

to obtain

II\displaystyle II 2[𝐮]C0,β(d)|𝐡|R|𝐱𝐲|β|𝐡|d+sd𝐡\displaystyle\leq 2[\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}\int_{|\mathbf{h}|\leq R}\frac{|\mathbf{x}-\mathbf{y}|^{\beta}}{|\mathbf{h}|^{d+s}}\,\mathrm{d}\mathbf{h}
=C[𝐮]C0,β(d)|𝐱𝐲|βRs.\displaystyle=C\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}\frac{|\mathbf{x}-\mathbf{y}|^{\beta}}{R^{s}}\,.

Choosing R=|𝐱𝐲|R=|\mathbf{x}-\mathbf{y}| gives

|𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})| I+IIC[𝐮]C0,β(d)|𝐱𝐲|βs.\displaystyle\leq I+II\leq C\left[\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}|\mathbf{x}-\mathbf{y}|^{\beta-s}.

Therefore, 𝒵s𝐮C0,βs(d)\mathcal{Z}_{s}\mathbf{u}\in C^{0,\beta-s}(\mathbb{R}^{d}).

The proof of 2) proceeds in the same as for the proof of 1), but with 𝐮\nabla\mathbf{u} in place of 𝐮\mathbf{u}. Here, one only needs to verify that the operator 𝒵s\mathcal{Z}_{s} commutes with derivatives. The process to verify this follows identically to the process in the proof of Proposition 2.1, with the estimate (2.8) replaced with

|Di𝐮(𝐱+𝐡)Di𝐮(𝐱)||𝐳|d+sχ{|𝐡|1}[𝐮]C0,β(d)|𝐡|d+sβ+2χ{|𝐡|1}𝐮L(d)|𝐡|d+s.\frac{|D_{i}\mathbf{u}(\mathbf{x}+\mathbf{h})-D_{i}\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|^{d+s}}\leq\chi_{\{|\mathbf{h}|\leq 1\}}\frac{[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}}{|\mathbf{h}|^{d+s-\beta}}+2\chi_{\{|\mathbf{h}|\geq 1\}}\frac{\left\|\nabla\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{h}|^{d+s}}\,.

To prove 3), we assume 𝐮C1,β(d)\mathbf{u}\in C^{1,\beta}(\mathbb{R}^{d}) for s>βs>\beta. To show that 𝒵s𝐮C0,βs+1(d)\mathcal{Z}_{s}\mathbf{u}\in C^{0,\beta-s+1}(\mathbb{R}^{d}), we write

|𝒵s𝐮(𝐱)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})| d|𝐮(𝐲)𝐮(𝐱)||𝐲𝐱|d+sd𝐲\displaystyle\leq\int_{\mathbb{R}^{d}}\frac{|\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}
𝐮L(d)|𝐲𝐱|<R1|𝐲𝐱|d+s1d𝐲+2𝐮L(d)|𝐲𝐱|R1|𝐲𝐱|d+sd𝐲\displaystyle\leq\|\nabla\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\int_{|\mathbf{y}-\mathbf{x}|<R}\frac{1}{|\mathbf{y}-\mathbf{x}|^{d+s-1}}\,\mathrm{d}\mathbf{y}+2\|\mathbf{u}\|_{L^{\infty}(\mathbb{R}^{d})}\int_{|\mathbf{y}-\mathbf{x}|\geq R}\frac{1}{|\mathbf{y}-\mathbf{x}|^{d+s}}\,\mathrm{d}\mathbf{y}
𝐮C1(d)(R1s+Rs).\displaystyle\leq\|\mathbf{u}\|_{C^{1}(\mathbb{R}^{d})}\left(R^{1-s}+R^{-s}\right).

Thus, 𝒵𝐮L(d)\mathcal{Z}\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}). Next, we have

|𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})| d|(𝐮(𝐱+𝐡)𝐮(𝐱))(𝐮(𝐲+𝐡)𝐮(𝐲))||𝐡|d+sd𝐡\displaystyle\leq\int_{\mathbb{R}^{d}}\frac{|(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}))-(\mathbf{u}(\mathbf{y}+\mathbf{h})-\mathbf{u}(\mathbf{y}))|}{|\mathbf{h}|^{d+s}}\,\mathrm{d}\mathbf{h}
=|𝐡|R+|𝐡|>R\displaystyle=\int_{|\mathbf{h}|\leq R}...+\int_{|\mathbf{h}|>R}...
=I+II.\displaystyle=I+II.

For II, we know that for t,t(0,1)t,t^{\prime}\in(0,1), and any 𝐡d\mathbf{h}\in\mathbb{R}^{d} we write first, using mean value theorem,

[𝐮(𝐱+𝐡)𝐮(𝐱)][𝐮(𝐲+𝐡)𝐮(𝐲)]=𝐮(𝐱+t𝐡)𝐡𝐮(𝐲+t𝐡)𝐡[\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x})]-[\mathbf{u}(\mathbf{y}+\mathbf{h})-\mathbf{u}(\mathbf{y})]=\nabla\mathbf{u}(\mathbf{x}+t\mathbf{h})\cdot\mathbf{h}-\nabla\mathbf{u}(\mathbf{y}+t^{\prime}\mathbf{h})\cdot\mathbf{h}

We add and subtract terms 𝐮(𝐱)𝐡\nabla\mathbf{u}(\mathbf{x})\cdot\mathbf{h} and 𝐮(𝐲)𝐡\nabla\mathbf{u}(\mathbf{y})\cdot\mathbf{h} to obtain the estimate

|(𝐮(𝐱+𝐡)𝐮(𝐱))(𝐮(𝐲+𝐡)𝐮(𝐲))|\displaystyle|(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}))-(\mathbf{u}(\mathbf{y}+\mathbf{h})-\mathbf{u}(\mathbf{y}))|
|𝐮(𝐱)𝐮(𝐲)||𝐡|+|𝐮(𝐱+t𝐡)𝐮(𝐱)||𝐡|+|𝐮(𝐱+t𝐡)𝐮(𝐲)||𝐡|\displaystyle\leq|\nabla\mathbf{u}(\mathbf{x})-\nabla\mathbf{u}(\mathbf{y})|\,|\mathbf{h}|+|\nabla\mathbf{u}(\mathbf{x}+t\mathbf{h})-\nabla\mathbf{u}(\mathbf{x})|\,|\mathbf{h}|+|\nabla\mathbf{u}(\mathbf{x}+t^{\prime}\mathbf{h})-\nabla\mathbf{u}(\mathbf{y})|\,|\mathbf{h}|
|𝐮(𝐱)𝐮(𝐲)||𝐡|+2[𝐮]C0,β(d)|𝐡|1+β\displaystyle\leq|\nabla\mathbf{u}(\mathbf{x})-\nabla\mathbf{u}(\mathbf{y})|\,|\mathbf{h}|+2\left[\nabla\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}|\mathbf{h}|^{1+\beta}
2[𝐮]C0,β(d)(|𝐱𝐲|β|𝐡|+|𝐡|1+β).\displaystyle\leq 2[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}\left(|\mathbf{x}-\mathbf{y}|^{\beta}|\mathbf{h}|+|\mathbf{h}|^{1+\beta}\right).

Thus,

I\displaystyle I 2[𝐮]C0,β(𝕕)[|𝐡|R|𝐱𝐲|β1|𝐡|d+s1+1|𝐡|d+sβ1d𝐡]\displaystyle\leq 2[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R^{d}})}\left[\int_{|\mathbf{h}|\leq R}|\mathbf{x}-\mathbf{y}|^{\beta}\frac{1}{|\mathbf{h}|^{d+s-1}}+\frac{1}{|\mathbf{h}|^{d+s-\beta-1}}\,\mathrm{d}\mathbf{h}\right]
=C[𝐮]C0,β(𝕕)(|𝐱𝐲|βR1s+R1+βs).\displaystyle=C[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R^{d}})}\left(|\mathbf{x}-\mathbf{y}|^{\beta}R^{1-s}+R^{1+\beta-s}\right).

To estimate IIII, we have, for some t,t(0,1)t,t^{\prime}\in(0,1), for any 𝐡\mathbf{h}

[𝐮(𝐱\displaystyle[\mathbf{u}(\mathbf{x} +𝐡)𝐮(𝐲+𝐡)][𝐮(𝐱)𝐮(𝐲)]\displaystyle+\mathbf{h})-\mathbf{u}(\mathbf{y}+\mathbf{h})]-[\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})]
=𝐮(t𝐱+t𝐡+(1t)𝐲+(1t)𝐡)(𝐱𝐲)𝐮(t𝐱+(1t)𝐲)(𝐱𝐲)\displaystyle=\nabla\mathbf{u}\big{(}t\mathbf{x}+t\mathbf{h}+(1-t)\mathbf{y}+(1-t)\mathbf{h}\big{)}(\mathbf{x}-\mathbf{y})-\nabla\mathbf{u}\big{(}t^{\prime}\mathbf{x}+(1-t^{\prime})\mathbf{y}\big{)}(\mathbf{x}-\mathbf{y})
=[𝐮(𝐲+t(𝐱𝐲)+𝐡)𝐮(𝐲+t(𝐱𝐲))](𝐱𝐲)\displaystyle=\left[\nabla\mathbf{u}\big{(}\mathbf{y}+t(\mathbf{x}-\mathbf{y})+\mathbf{h}\big{)}-\nabla\mathbf{u}\big{(}\mathbf{y}+t^{\prime}(\mathbf{x}-\mathbf{y})\big{)}\right](\mathbf{x}-\mathbf{y})

We now add and subtract appropriate terms to be able to write

[𝐮(𝐱\displaystyle[\mathbf{u}(\mathbf{x} +𝐡)𝐮(𝐲+𝐡)][𝐮(𝐱)𝐮(𝐲)]\displaystyle+\mathbf{h})-\mathbf{u}(\mathbf{y}+\mathbf{h})]-[\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})]
=[𝐮(𝐲+t(𝐱𝐲)+𝐡)𝐮(𝐲+t(𝐱𝐲))](𝐱𝐲)\displaystyle=\left[\nabla\mathbf{u}\big{(}\mathbf{y}+t(\mathbf{x}-\mathbf{y})+\mathbf{h}\big{)}-\nabla\mathbf{u}\big{(}\mathbf{y}+t^{\prime}(\mathbf{x}-\mathbf{y})\big{)}\right](\mathbf{x}-\mathbf{y})
=[𝐮(𝐲+t(𝐱𝐲)+𝐡)𝐮(𝐱+t(𝐱𝐲)+𝐡)](𝐱𝐲)\displaystyle=\left[\nabla\mathbf{u}\big{(}\mathbf{y}+t(\mathbf{x}-\mathbf{y})+\mathbf{h}\big{)}-\nabla\mathbf{u}\big{(}\mathbf{x}+t(\mathbf{x}-\mathbf{y})+\mathbf{h}\big{)}\right](\mathbf{x}-\mathbf{y})
+[𝐮(𝐱+t(𝐱𝐲)+𝐡)𝐮(𝐱+𝐡)](𝐱𝐲)\displaystyle+\left[\nabla\mathbf{u}\big{(}\mathbf{x}+t(\mathbf{x}-\mathbf{y})+\mathbf{h}\big{)}-\nabla\mathbf{u}(\mathbf{x}+\mathbf{h})\right](\mathbf{x}-\mathbf{y})
+[𝐮(𝐱+𝐡)𝐮(𝐱)](𝐱𝐲)\displaystyle+\left[\nabla\mathbf{u}(\mathbf{x}+\mathbf{h})-\nabla\mathbf{u}(\mathbf{x})\right](\mathbf{x}-\mathbf{y})
+[𝐮(𝐱)𝐮(𝐲)](𝐱𝐲)\displaystyle+\left[\nabla\mathbf{u}(\mathbf{x})-\nabla\mathbf{u}(\mathbf{y})\right](\mathbf{x}-\mathbf{y})
+[𝐮(𝐲)𝐮(𝐲+t(𝐱𝐲))](𝐱𝐲).\displaystyle+\left[\nabla\mathbf{u}(\mathbf{y})-\nabla\mathbf{u}(\mathbf{y}+t^{\prime}(\mathbf{x}-\mathbf{y}))\right](\mathbf{x}-\mathbf{y}).

Therefore, estimating each term as before using the Hölder continuity of 𝐮\mathbf{u} we have

|[𝐮(𝐱+𝐡𝐮(𝐲+𝐡)][𝐮(𝐱)𝐮(𝐲)]|C[𝐮]C0,β(d)(|𝐲𝐱|β+1+|𝐱𝐲||𝐡|β).|[\mathbf{u}(\mathbf{x}+\mathbf{h}-\mathbf{u}(\mathbf{y}+\mathbf{h})]-[\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})]|\leq C\left[\nabla\mathbf{u}\right]_{C^{0,\beta}(\mathbb{R}^{d})}\left(|\mathbf{y}-\mathbf{x}|^{\beta+1}+|\mathbf{x}-\mathbf{y}||\mathbf{h}|^{\beta}\right).

Thus,

IIC[𝐮]C0,β(d)(|𝐱𝐲|>R|𝐱𝐲|1+β|𝐡|d+s+|𝐱𝐲||𝐡|d+sβd𝐡).II\leq C[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}\left(\int_{|\mathbf{x}-\mathbf{y}|>R}\frac{|\mathbf{x}-\mathbf{y}|^{1+\beta}}{|\mathbf{h}|^{d+s}}+\frac{|\mathbf{x}-\mathbf{y}|}{|\mathbf{h}|^{d+s-\beta}}\,\mathrm{d}\mathbf{h}\right).

Since s>βs>\beta, the above integral exists and so

IIC[𝐮]C0,β(d)(|𝐱𝐲|1+βRs+|𝐱𝐲|Rsβ).II\leq C[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}\left(\frac{|\mathbf{x}-\mathbf{y}|^{1+\beta}}{R^{s}}+\frac{|\mathbf{x}-\mathbf{y}|}{R^{s-\beta}}\right).

Putting I and II together, we obtain that for any R>0R>0, and 𝐱,𝐲d\mathbf{x},\mathbf{y}\in\mathbb{R}^{d}

|𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)|\displaystyle|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})| I+II\displaystyle\leq I+II
C[𝐮]C0,β(𝕕)(|𝐱𝐲|βR1s+R1+βs+|𝐱𝐲|1+βRs+|𝐱𝐲|Rsβ).\displaystyle\leq C[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R^{d}})}\left(|\mathbf{x}-\mathbf{y}|^{\beta}R^{1-s}+R^{1+\beta-s}+\frac{|\mathbf{x}-\mathbf{y}|^{1+\beta}}{R^{s}}+\frac{|\mathbf{x}-\mathbf{y}|}{R^{s-\beta}}\right).

Choosing R=|𝐱𝐲|R=|\mathbf{x}-\mathbf{y}| gives us

|𝒵s𝐮(𝐱)𝒵s𝐮(𝐲)|C[𝐮]C0,β(d)|𝐱𝐲|βs+1,|\mathcal{Z}_{s}\mathbf{u}(\mathbf{x})-\mathcal{Z}_{s}\mathbf{u}(\mathbf{y})|\leq C[\nabla\mathbf{u}]_{C^{0,\beta}(\mathbb{R}^{d})}|\mathbf{x}-\mathbf{y}|^{\beta-s+1},

completing the proof.

4. Vector calculus identities for nonlocal operators

This section is devoted to the proof of several operator identities whose local, classical counterpart is well-established, but that have not been fully investigated for the nonlocal operators considered in this work. To handle the potential singularity along the diagonal 𝐱=𝐲\mathbf{x}=\mathbf{y}, we start by proving similar identities for “truncated” operators first, and then recover the desired identities in the vanishing truncation limit. The latter is justified by an important result proved at the beginning of this section in Theorem 4.1. This allows us to establish the validity of the operator identities for bounded C2C^{2} functions.

We define the truncated operators below; note that in the nonlocal literature (see, e.g. D’Elia and Gunzburger (2013)) “truncated” operators usually correspond to “compactly supported” kernels; however, in our usage below, the truncation is performed in a neighborhood of 𝐱\mathbf{x}, i.e. we remove from the domain of integration an infinitesimal ball centered at 𝐱\mathbf{x}. Let ε>0\varepsilon>0. The truncated gradient, divergence and curl operators are defined as

𝒢ϱ,ε𝐮(𝐱)\displaystyle\mathcal{G}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x}) =dB(𝐱,ε)ϱ(𝐲𝐱)(𝐮(𝐲)𝐮(𝐱))|𝐲𝐱|𝐲𝐱|𝐲𝐱|d𝐲,𝐮:dN,\displaystyle=\int_{\mathbb{R}^{d}\setminus B(\mathbf{x},\varepsilon)}\varrho(\mathbf{y}-\mathbf{x})\frac{(\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x}))}{|\mathbf{y}-\mathbf{x}|}\otimes\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}\,,\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{N}\,,
𝒟ϱ,ε𝐮(𝐱)\displaystyle\mathcal{D}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x}) =dB(𝐱,ε)ϱ(𝐲𝐱)(𝐮(𝐲)𝐮(𝐱))|𝐲𝐱|𝐲𝐱|𝐲𝐱|d𝐲,𝐮:dN×d,\displaystyle=\int_{\mathbb{R}^{d}\setminus B(\mathbf{x},\varepsilon)}\varrho(\mathbf{y}-\mathbf{x})\frac{(\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x}))}{|\mathbf{y}-\mathbf{x}|}\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}\,,\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{N\times d}\,,
𝒞ϱ,ε𝐮(𝐱)\displaystyle\mathcal{C}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x}) =dB(𝐱,ε)ϱ(𝐲𝐱)𝐲𝐱|𝐲𝐱|×(𝐮(𝐲)𝐮(𝐱))|𝐲𝐱|d𝐲,𝐮:dd and d=3.\displaystyle=\int_{\mathbb{R}^{d}\setminus B(\mathbf{x},\varepsilon)}\varrho(\mathbf{y}-\mathbf{x})\frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|}\times\frac{(\mathbf{u}(\mathbf{y})-\mathbf{u}(\mathbf{x}))}{|\mathbf{y}-\mathbf{x}|}\,\mathrm{d}\mathbf{y}\,,\quad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d}\text{ and }d=3\,.

We use the notation 𝒵ϱ,ε𝐮(𝐱)\mathcal{Z}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x}) in exactly the same way as in Proposition 2.1. Note that for 𝐮L(d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}), we have that

|𝒵ϱ,ε𝐮(𝐱)|2𝐮L(d)|𝐡|εϱ(|𝐡|)|𝐡|d𝐡.|\mathcal{Z}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})|\leq 2\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\int_{|\mathbf{h}|\geq\varepsilon}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}.

Thus, for any fixed ε>0\varepsilon>0 all three operators are well-defined. The next theorem shows that the composition of the limits of two operators, when compatible, equals the limit of the truncated composition.

Theorem 4.1.

Let d2d\geq 2 and N1N\geq 1. Let 𝒴ϱ𝒵ϱ𝐮(𝐱)\mathcal{Y}_{\varrho}\circ\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) denote any of the following compositions of operators:

𝒢ϱ𝒢ϱu(𝐱),u:d,𝒟ϱ𝒢ϱ𝐮(𝐱),𝐮:dN,𝒞ϱ𝒢ϱu(𝐱),u:d and d=3,𝒢ϱ𝒟ϱ𝐮(𝐱),𝐮:dN×d,𝒟ϱ𝒟ϱ𝐮(𝐱),𝐮:dd×d,𝒞ϱ𝒟ϱ𝐮(𝐱),𝐮:dd×d and d=3,𝒢ϱ𝒞ϱ𝐮(𝐱),𝐮:dd and d=3,𝒟ϱ𝒞ϱ𝐮(𝐱),𝐮:dd and d=3,𝒞ϱ𝒞ϱ𝐮(𝐱),𝐮:dd and d=3.\begin{split}\mathcal{G}_{\varrho}\circ\mathcal{G}_{\varrho}u(\mathbf{x})\,,&\qquad u:\mathbb{R}^{d}\to\mathbb{R}\,,\\ \mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{N}\,,\\ \mathcal{C}_{\varrho}\circ\mathcal{G}_{\varrho}u(\mathbf{x})\,,&\qquad u:\mathbb{R}^{d}\to\mathbb{R}\text{ and }d=3\,,\\ \mathcal{G}_{\varrho}\circ\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{N\times d}\,,\\ \mathcal{D}_{\varrho}\circ\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d\times d}\,,\\ \mathcal{C}_{\varrho}\circ\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d\times d}\text{ and }d=3\,,\\ \mathcal{G}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d}\text{ and }d=3\,,\\ \mathcal{D}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d}\text{ and }d=3\,,\\ \mathcal{C}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})\,,&\qquad\mathbf{u}:\mathbb{R}^{d}\to\mathbb{R}^{d}\text{ and }d=3\,.\\ \end{split}

If either

  1. 1)

    𝐮Cb2(d)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d}), or

  2. 2)

    ϱ=ϱs\varrho=\varrho_{s} and 𝐮L2s1(d)𝒞2s+σ(d)\mathbf{u}\in L^{1}_{2s}(\mathbb{R}^{d})\cap\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d}) for σ>0\sigma>0 sufficiently small,

then 𝒴ϱ𝒵ϱ𝐮(𝐱)\mathcal{Y}_{\varrho}\circ\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x}) is a bounded function. Furthermore, we have

𝒴ϱ𝒵ϱ𝐮(𝐱)=limε,ε0𝒴ϱ,ε𝒵ϱ,ε𝐮(𝐱)\mathcal{Y}_{\varrho}\circ\mathcal{Z}_{\varrho}\mathbf{u}(\mathbf{x})=\lim_{\varepsilon,\varepsilon^{\prime}\to 0}\mathcal{Y}_{\varrho,\varepsilon}\circ\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})

where 𝒴ϱ,ε\mathcal{Y}_{\varrho,\varepsilon}, 𝒵ϱ,ε\mathcal{Z}_{\varrho,\varepsilon^{\prime}} denote the relevant truncated form of the operator.

Proof.

For any ε\varepsilon, ε>0\varepsilon^{\prime}>0 we have

|𝒴ϱ,ε𝒵ϱ,ε𝐮(𝐱)|dB(𝟎,ε)ϱ(𝐡)|𝒵ϱ,ε𝐮(𝐱+𝐡)𝒵ϱ,ε𝐮(𝐱)||𝐡|d𝐡.\begin{split}|\mathcal{Y}_{\varrho,\varepsilon}\circ\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})|&\leq\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\varrho(\bf h)\frac{|\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})|}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\,.\end{split}

We will use the Lebesgue Dominated Convergence Theorem. We will derive the relevant estimates for the function

Υε,ε(𝐱,𝐡):=χdB(𝟎,ε)ϱ(𝐡)|𝒵ϱ,ε𝐮(𝐱+𝐡)𝒵ϱ,ε𝐮(𝐱)||𝐡|.\Upsilon_{\varepsilon,\varepsilon^{\prime}}(\mathbf{x},\mathbf{h}):=\chi_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\varrho(\mathbf{h})\frac{|\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})|}{|\mathbf{h}|}\,.

Specifically, we will show that there exists a function Υ(𝐡)\Upsilon(\mathbf{h}) such that ΥL1(d)\Upsilon\in L^{1}(\mathbb{R}^{d}) and

|Υε,ε(𝐱,𝐡)||Υ(𝐡)| for all 𝐱,𝐡d, for all ε,ε>0.|\Upsilon_{\varepsilon,\varepsilon^{\prime}}(\mathbf{x},\mathbf{h})|\leq|\Upsilon(\mathbf{h})|\quad\text{ for all }\mathbf{x}\,,\mathbf{h}\in\mathbb{R}^{d}\,,\qquad\text{ for all }\varepsilon,\varepsilon^{\prime}>0\,.

First we prove the theorem for case 1). We have

Υε,ε(𝐱,𝐡)ϱ(|𝐡|)min{𝒵ϱ,ε𝐮L(d),𝒵ϱ,ε𝐮L(d)|𝐡|}.\begin{split}\Upsilon_{\varepsilon,\varepsilon^{\prime}}(\mathbf{x},\mathbf{h})\leq\varrho(|\mathbf{h}|)\min\left\{\left\|\nabla\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\,,\frac{\left\|\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{h}|}\right\}\,.\end{split}

Therefore, it suffices to show that there exist constants b1b_{1} and b2b_{2} independent of ε\varepsilon^{\prime} such that

(4.1) 𝒵ϱ,ε𝐮L(d)b1,𝒵ϱ,ε𝐮L(d)b2, for all ε>0\left\|\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\leq b_{1}\,,\qquad\left\|\nabla\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\leq b_{2}\,,\qquad\text{ for all }\varepsilon^{\prime}>0

and the proof will be complete by setting Υ(𝐡)=ϱ(|𝐡|)min{b2,b1|𝐡|}\Upsilon(\mathbf{h})=\varrho(|\mathbf{h}|)\min\left\{b_{2}\,,\frac{b_{1}}{|\mathbf{h}|}\right\}. To prove (4.1) we proceed analogously to (2.7):

|𝒵ϱ,ε𝐮(𝐱)|ε|𝐳|1ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳+|𝐳|>1ϱ(|𝐳|)|𝐮(𝐱+𝐳)𝐮(𝐱)||𝐳|d𝐳|𝐳|1ϱ(|𝐳|)|𝐮(𝐱)(𝐳)|+o(|𝐳|)|𝐳|d𝐳+|𝐳|>1ϱ(|𝐳|)|𝐮(𝐱+𝐳)|+|𝐮(𝐱)||𝐳|d𝐳|𝐮(𝐱)||𝐲𝐱|1ϱ(|𝐳|)d𝐳+𝐮L(d)|𝐳|>1ϱ(|𝐳|)|𝐳|d𝐳:=b1<.\begin{split}|\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})|&\leq\int_{\varepsilon^{\prime}\leq|\mathbf{z}|\leq 1}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}+\int_{|\mathbf{z}|>1}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})-\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &\leq\int_{|\mathbf{z}|\leq 1}\varrho(|\mathbf{z}|)\frac{|\nabla\mathbf{u}(\mathbf{x})(\mathbf{z})|+o(|\mathbf{z}|)}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}+\int_{|\mathbf{z}|>1}\varrho(|\mathbf{z}|)\frac{|\mathbf{u}(\mathbf{x}+\mathbf{z})|+|\mathbf{u}(\mathbf{x})|}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &\leq|\nabla\mathbf{u}(\mathbf{x})|\int_{|\mathbf{y}-\mathbf{x}|\leq 1}\varrho(|\mathbf{z}|)\,\mathrm{d}\mathbf{z}+\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\int_{|\mathbf{z}|>1}\frac{\varrho(|\mathbf{z}|)}{|\mathbf{z}|}\,\mathrm{d}\mathbf{z}\\ &:=b_{1}<\infty\,.\end{split}

The estimate for 𝒵ϱ,ε𝐮\nabla\mathcal{Z}_{\varrho,\varepsilon^{\prime}}\mathbf{u} follows the same lines, since the operators 𝒵ϱ,ε\mathcal{Z}_{\varrho,\varepsilon^{\prime}} commute with derivatives. Therefore, the theorem is proved for case 1).

For case 2) and for s<1/2s<1/2, we need to show that

Υε,ε(𝐱,𝐡)=χdB(𝟎,ε)|𝒵s,ε𝐮(𝐱+𝐡)𝒵s,ε𝐮(𝐱)||𝐡|d+s.\Upsilon_{\varepsilon,\varepsilon^{\prime}}(\mathbf{x},\mathbf{h})=\chi_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{|\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})|}{|\mathbf{h}|^{d+s}}\,.

is bounded by an L1L^{1} function Υ(𝐡)\Upsilon(\mathbf{h}). If we can show the existence of constants b1b_{1} and b2b_{2} independent of ε\varepsilon^{\prime} such that

(4.2) 𝒵s,ε𝐮L(d)b1,[𝒵s,ε𝐮]C0,s+σ(d)b2,\left\|\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\leq b_{1}\,,\qquad[\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}]_{C^{0,s+\sigma}(\mathbb{R}^{d})}\leq b_{2}\,,

then we have the upper bound by an L1L^{1} function

Υε,ε(𝐱,𝐡)χ{|𝐡|1}[𝒵s,ε𝐮]C0,s+σ(d)|𝐡|dσ+2χ{|𝐡|>1}𝒵s,ε𝐮L(d)|𝐡|d+s,\Upsilon_{\varepsilon,\varepsilon^{\prime}}(\mathbf{x},\mathbf{h})\leq\chi_{\{|\mathbf{h}|\leq 1\}}\frac{[\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}]_{C^{0,s+\sigma}(\mathbb{R}^{d})}}{|\mathbf{h}|^{d-\sigma}}+2\chi_{\{|\mathbf{h}|>1\}}\frac{\left\|\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{h}|^{d+s}}\,,

and the proof in the case 2) with s<1/2s<1/2 will be complete. The existence of b1b_{1} and b2b_{2} in (4.2) can be shown by following the proof of the estimate (3.1) line by line, with 𝐮\mathbf{u} replaced by 𝒵s,ε𝐮\mathcal{Z}_{s,\varepsilon^{\prime}}\mathbf{u} and β=2s+σ\beta=2s+\sigma.

The case 2) and s1/2s\geq 1/2 is proved the same way, instead following the proof of the estimate (3.3) line by line.

4.1. The Curl of the Gradient is Zero

The following proposition is a nonlocal analogue of the vector calculus identity curlu=𝟎\mathrm{curl}\,\nabla u={\bf 0}.

Proposition 4.2.

The identity

(4.3) 𝒞ϱ𝒢ϱu(𝐱)=𝟎\mathcal{C}_{\varrho}\circ\mathcal{G}_{\varrho}u(\mathbf{x})={\bf 0}

holds for all 𝐱d\mathbf{x}\in\mathbb{R}^{d} if either

  1. 1)

    uCb2(d)u\in C^{2}_{b}(\mathbb{R}^{d}) with d=3d=3, or

  2. 2)

    ϱ=ϱs\varrho=\varrho_{s} and uL2s1(d)𝒞2s+σ(d)u\in L^{1}_{2s}(\mathbb{R}^{d})\cap\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d}) for σ>0\sigma>0 sufficiently small.

This can be shown immediately by applying Theorem 4.1 to the following theorem for the corresponding truncated operators.

Theorem 4.3.

For any uL(d)u\in L^{\infty}(\mathbb{R}^{d}) and for any ε\varepsilon, ε>0\varepsilon^{\prime}>0

(4.4) 𝒞ϱ,ε𝒢ϱ,εu(𝐱)=𝒞ϱ,ε𝒢ϱ,εu(𝐱)\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u(\mathbf{x})=-\mathcal{C}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{G}_{\varrho,\varepsilon}u(\mathbf{x})

for all 𝐱d\mathbf{x}\in\mathbb{R}^{d}.

Proof.

Unpacking the operator 𝒢ϱ,ε𝒢ϱ,εu\mathcal{G}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u and changing coordinates,

𝒞ϱ,ε𝒢ϱ,εu=dB(𝟎,ε)ϱ(|𝐡|)𝐡|𝐡|×𝒢ϱ,εu(𝐱+𝐡)𝒢ϱ,εu(𝐱)|𝐡|d𝐡=dB(𝟎,ε)ϱ(|𝐡|)|𝐡|𝐡|𝐡|×(dB(𝟎,ε)ϱ(|𝐰|)|𝐰|(u(𝐱+𝐡+𝐰)u(𝐱+𝐡))𝐰|𝐰|d𝐰dB(𝟎,ε)ϱ(|𝐰|)|𝐰|(u(𝐱+𝐰)u(𝐱))𝐰|𝐰|d𝐰)d𝐡=dB(𝟎,ε)ϱ(|𝐡|)|𝐡|𝐡|𝐡|×(dB(𝟎,ε)ϱ(|𝐰|)|𝐰|(u(𝐱+𝐡+𝐰)u(𝐱+𝐡)u(𝐱+𝐰)+u(𝐱))𝐰|𝐰|d𝐰)d𝐡.\begin{split}\mathcal{C}_{\varrho,\varepsilon}&\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\varrho(|\mathbf{h}|)\frac{\mathbf{h}}{|\mathbf{h}|}\times\frac{\mathcal{G}_{\varrho,\varepsilon^{\prime}}u(\mathbf{x}+\mathbf{h})-\mathcal{G}_{\varrho,\varepsilon^{\prime}}u(\mathbf{x})}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\times\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{h})\big{)}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\\ &\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{w})-u(\mathbf{x})\big{)}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\Bigg{)}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\times\\ &\qquad\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{h})-u(\mathbf{x}+\mathbf{w})+u(\mathbf{x})\big{)}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\Bigg{)}\,\mathrm{d}\mathbf{h}\,.\end{split}

We are justified in using linearity of the integral in the last equality, since 𝐰ϱ(𝐰)|𝐮(𝐱+𝐰)𝐮(𝐱)||𝐰|\mathbf{w}\mapsto\varrho(\mathbf{w})\frac{|\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})|}{|\mathbf{w}|} is in L1(dB(𝟎,ε))L^{1}(\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)) for any 𝐮L(d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}), for any ε>0\varepsilon>0 and for any 𝐱d\mathbf{x}\in\mathbb{R}^{d}. Thus we obtain,

𝒞ϱ,ε𝒢ϱ,εu=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(u(𝐱+𝐡+𝐰)u(𝐱+𝐡)u(𝐱+𝐰)+u(𝐱))𝐡|𝐡|×𝐰|𝐰|d𝐰d𝐡.\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{h})-u(\mathbf{x}+\mathbf{w})+u(\mathbf{x})\big{)}\frac{\mathbf{h}}{|\mathbf{h}|}\times\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,.

The last expression in the double integral is majorized by

(4.5) Cχ{|𝐡|ε}χ{|𝐰|ε}𝐮L(d)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|L1(d×d).C\chi_{\{|\mathbf{h}|\geq\varepsilon\}}\chi_{\{|\mathbf{w}|\geq\varepsilon^{\prime}\}}\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\in L^{1}(\mathbb{R}^{d}\times\mathbb{R}^{d})\,.

Therefore, we can use Fubini’s theorem and interchange the order of integration:

𝒞ϱ,ε𝒢ϱ,εu=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(u(𝐱+𝐡+𝐰)u(𝐱+𝐡)u(𝐱+𝐰)+u(𝐱))𝐡|𝐡|×𝐰|𝐰|d𝐡d𝐰.\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{h})-u(\mathbf{x}+\mathbf{w})+u(\mathbf{x})\big{)}\frac{\mathbf{h}}{|\mathbf{h}|}\times\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{h}\,\mathrm{d}\mathbf{w}\,.

Now, we use the identity 𝐚×𝐛=(𝐚×𝐛)\mathbf{a}\times\mathbf{b}=-(\mathbf{a}\times\mathbf{b}), and “re-pack” the integrals to obtain the result:

𝒞ϱ,ε𝒢ϱ,εu=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(u(𝐱+𝐡+𝐰)u(𝐱+𝐡)u(𝐱+𝐰)+u(𝐱))𝐰|𝐰|×𝐡|𝐡|d𝐡d𝐰=dB(𝟎,ε)ϱ(|𝐰|)|𝐰|𝐰|𝐰|×(dB(𝟎,ε)ϱ(|𝐡|)|𝐡|(u(𝐱+𝐡+𝐰)u(𝐱+𝐰))𝐡|𝐡|d𝐡dB(𝟎,ε)ϱ(|𝐡|)|𝐡|(u(𝐱+𝐡)u(𝐱))𝐡|𝐡|d𝐡)d𝐰=𝒞ϱ,ε𝒢ϱ,εu(𝐱).\begin{split}&\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}u\\ &=-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{h})-u(\mathbf{x}+\mathbf{w})+u(\mathbf{x})\big{)}\frac{\mathbf{w}}{|\mathbf{w}|}\times\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\,\mathrm{d}\mathbf{w}\\ &=-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\big{(}u(\mathbf{x}+\mathbf{h}+\mathbf{w})-u(\mathbf{x}+\mathbf{w})\big{)}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &\qquad\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\big{(}u(\mathbf{x}+\mathbf{h})-u(\mathbf{x})\big{)}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\Bigg{)}\,\mathrm{d}\mathbf{w}\\ &=-\mathcal{C}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{G}_{\varrho,\varepsilon}u(\mathbf{x})\,.\end{split}

Proof of Proposition 4.2.

Use Theorem 4.1 to take the limit as ε\varepsilon, ε0\varepsilon^{\prime}\to 0 on both sides of (4.4):

𝒞ϱ𝒢ϱu=𝒞ϱ𝒢ϱu.\mathcal{C}_{\varrho}\circ\mathcal{G}_{\varrho}u=-\mathcal{C}_{\varrho}\circ\mathcal{G}_{\varrho}u\,.

4.2. The Divergence of the Curl is Zero

We proceed as in the previous section to prove a nonlocal vector calculus analogue of the identity divcurl𝐮=0\mathrm{div}\,\mathrm{curl}\,\mathbf{u}=0.

Proposition 4.4.

The identity

(4.6) 𝒟ϱ𝒞ϱ𝐮(𝐱)=0\mathcal{D}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})=0

holds for all 𝐱d\mathbf{x}\in\mathbb{R}^{d} if either

  1. 1)

    𝐮Cb2(d;d)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3, or

  2. 2)

    ϱ=ϱs\varrho=\varrho_{s} and 𝐮L2s1(d;d)𝒞2s+σ(d;d)\mathbf{u}\in L^{1}_{2s}(\mathbb{R}^{d};\mathbb{R}^{d})\cap\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3 and for σ>0\sigma>0 sufficiently small.

This can be shown immediately by applying Theorem 4.1 to the following theorem for the corresponding truncated operators.

Theorem 4.5.

For any 𝐮L(d;d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3 and for any ε\varepsilon, ε>0\varepsilon^{\prime}>0

(4.7) 𝒟ϱ,ε𝒞ϱ,ε𝐮(𝐱)=𝒟ϱ,ε𝒞ϱ,ε𝐮(𝐱)\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})=-\mathcal{D}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{C}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})

for all 𝐱d\mathbf{x}\in\mathbb{R}^{d}.

Proof.

Unpacking the operator 𝒟ϱ,ε𝒞ϱ,ε𝐮\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u} and changing coordinates,

𝒟ϱ,ε𝒞ϱ,ε𝐮=dB(𝟎,ε)ϱ(|𝐡|)𝒞ϱ,ε𝐮(𝐱+𝐡)𝒞ϱ,ε𝐮(𝐱)|𝐡|𝐡|𝐡|d𝐡=dB(𝟎,ε)ϱ(|𝐡|)|𝐡|(dB(𝟎,ε)ϱ(|𝐰|)|𝐰|𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))d𝐰dB(𝟎,ε)ϱ(|𝐰|)|𝐰|𝐰|𝐰|×(𝐮(𝐱+𝐰)𝐮(𝐱))d𝐰)𝐡|𝐡|d𝐡=dB(𝟎,ε)ϱ(|𝐡|)|𝐡|(dB(𝟎,ε)ϱ(|𝐰|)|𝐰|𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱))d𝐰)𝐡|𝐡|d𝐡.\begin{split}&\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\varrho(|\mathbf{h}|)\frac{\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})}{|\mathbf{h}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times\Big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})\Big{)}\,\mathrm{d}\mathbf{w}\\ &\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times\Big{(}\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})\Big{)}\,\mathrm{d}\mathbf{w}\Bigg{)}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\,\mathrm{d}\mathbf{w}\Bigg{)}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\,.\end{split}

We are justified in using linearity of the integral in the last equality, since 𝐰ϱ(𝐰)|𝐮(𝐱+𝐰)𝐮(𝐱)||𝐰|\mathbf{w}\mapsto\varrho(\mathbf{w})\frac{|\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})|}{|\mathbf{w}|} is in L1(dB(𝟎,ε))L^{1}(\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)) for any 𝐮L(d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}), for any ε>0\varepsilon>0 and for any 𝐱d\mathbf{x}\in\mathbb{R}^{d}. Thus we obtain

𝒟ϱ,ε𝒞ϱ,ε𝐮=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱)))𝐡|𝐡|d𝐰d𝐡.\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\Bigg{)}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,.

The last expression in the double integral is majorized by

(4.8) Cχ{|𝐡|ε}χ{|𝐰|ε}𝐮L(d)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|L1(d×d).C\chi_{\{|\mathbf{h}|\geq\varepsilon\}}\chi_{\{|\mathbf{w}|\geq\varepsilon^{\prime}\}}\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\in L^{1}(\mathbb{R}^{d}\times\mathbb{R}^{d})\,.

Therefore, we can use Fubini’s theorem and interchange the order of integration:

𝒟ϱ,ε𝒞ϱ,ε𝐮=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱)))𝐡|𝐡|d𝐡d𝐰.\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\Bigg{)}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\,\mathrm{d}\mathbf{w}\,.

Now, we use the identity (𝐚×𝐛)𝐜=(𝐛×𝐜)𝐚=(𝐜×𝐛)𝐚(\mathbf{a}\times\mathbf{b})\cdot\mathbf{c}=(\mathbf{b}\times\mathbf{c})\cdot\mathbf{a}=-(\mathbf{c}\times\mathbf{b})\cdot\mathbf{a}, and “re-pack” the integrals to obtain the result:

𝒟ϱ,ε𝒞ϱ,ε𝐮=dB(𝟎,ε)dB(𝟎,ε)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐡|𝐡|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱)))𝐰|𝐰|d𝐡d𝐰=dB(𝟎,ε)ϱ(|𝐰|)|𝐰|(dB(𝟎,ε)ϱ(|𝐡|)|𝐡|𝐡|𝐡|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐰))d𝐡dB(𝟎,ε)ϱ(|𝐡|)|𝐡|𝐡|𝐡|×(𝐮(𝐱+𝐡)𝐮(𝐱))d𝐡)𝐰|𝐰|d𝐰=𝒟ϱ,ε𝒞ϱ,ε𝐮(𝐱).\begin{split}&\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}\\ &=-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{h}}{|\mathbf{h}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\Bigg{)}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{h}\,\mathrm{d}\mathbf{w}\\ &=-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{w})\big{)}\,\mathrm{d}\mathbf{h}\\ &\qquad\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\times\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x})\big{)}\,\mathrm{d}\mathbf{h}\Bigg{)}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}=-\mathcal{D}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{C}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})\,.\end{split}

Proof of Proposition 4.4.

Use Theorem 4.1 to take the limit as ε\varepsilon, ε0\varepsilon^{\prime}\to 0 on both sides of (4.7):

𝒟ϱ𝒞ϱ𝐮=𝒟ϱ𝒞ϱ𝐮.\mathcal{D}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}=-\mathcal{D}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}\,.

4.3. Curl of Curl Identity

We again proceed by computing the composition of the curl operator with itself in the truncated case and then using Theorem 4.1 to prove that the same identity holds in the limit.

Proposition 4.6.

The identity

(4.9) 𝒞ϱ𝒞ϱ𝐮(𝐱)=𝒢ϱ𝒟ϱ𝐮(𝐱)𝒟ϱ𝒢ϱ𝐮(𝐱)\mathcal{C}_{\varrho}\circ\mathcal{C}_{\varrho}\mathbf{u}(\mathbf{x})=\mathcal{G}_{\varrho}\circ\mathcal{D}_{\varrho}\mathbf{u}(\mathbf{x})-\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})

holds for all 𝐱d\mathbf{x}\in\mathbb{R}^{d} if either

  1. 1)

    𝐮Cb2(d;d)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3, or

  2. 2)

    ϱ=ϱs\varrho=\varrho_{s} and 𝐮L2s1(d;d)𝒞2s+σ(d;d)\mathbf{u}\in L^{1}_{2s}(\mathbb{R}^{d};\mathbb{R}^{d})\cap\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3 and for σ>0\sigma>0 sufficiently small.

This can be shown immediately by applying Theorem 4.1 to the following version for the corresponding truncated operators.

Theorem 4.7.

For any 𝐮L(d;d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3 and for any ε\varepsilon, ε>0\varepsilon^{\prime}>0

(4.10) 𝒞ϱ,ε𝒞ϱ,ε𝐮(𝐱)=𝒢ϱ,ε𝒟ϱ,ε𝐮(𝐱)𝒟ϱ,ε𝒢ϱ,ε𝐮(𝐱)\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})=\mathcal{G}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{D}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})-\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})
Proof.

We require the following “triple product” identity,

(4.11) 𝐚×(𝐛×𝐜)=(𝐚𝐜)𝐛(𝐚𝐛)𝐜.\mathbf{a}\times(\mathbf{b}\times\mathbf{c})=(\mathbf{a}\cdot\mathbf{c})\mathbf{b}-(\mathbf{a}\cdot\mathbf{b})\mathbf{c}.

Unpacking the operator 𝒞ϱ,ε𝒞ϱ,ε𝐮\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u} using the definition of 𝒞ϱ,ε\mathcal{C}_{\varrho,\varepsilon} and changing coordinates,

𝒞ϱ,ε𝒞ϱ,ε𝐮(𝐱)=𝒞ϱ,ε(𝒞ϱ,ε𝐮)(𝐱)=dB(𝟎,ε)ϱ(𝐡)𝐡|𝐡|×(𝒞ϱ,ε𝐮(𝐱+𝐡)𝒞ϱ,ε𝐮(𝐱))|𝐡|d𝐡=dB(𝟎,ε)ϱ(𝐡)|𝐡|𝐡|𝐡|(dB(𝟎,ε)ϱ(𝐰)|𝐰|𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))d𝐰dB(𝟎,ε)ϱ(𝐰)|𝐰|𝐰|𝐰|×(𝐮(𝐱+𝐰)𝐮(𝐱))d𝐰)d𝐡=dB(𝟎,ε)ϱ(𝐡)|𝐡|𝐡|𝐡|×dB(𝟎,ε)ϱ(𝐰)|𝐰|(𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))𝐰|𝐰|×(𝐮(𝐱+𝐰)𝐮(𝐱)))d𝐰d𝐡.\begin{split}\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})&=\mathcal{C}_{\varrho,\varepsilon}(\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u})(\mathbf{x})\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\varrho(\mathbf{h})\frac{\mathbf{h}}{|\mathbf{h}|}\times\frac{(\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}))}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\\ &\qquad\Bigg{(}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\,\mathrm{d}\mathbf{w}\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\,\mathrm{d}\mathbf{w}\Bigg{)}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\times\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\\ &\qquad\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))-\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\Bigg{)}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}.\end{split}

We are justified in using linearity of the integral in the last equality, since 𝐰ϱ(𝐰)|𝐮(𝐱+𝐰)𝐮(𝐱)||𝐰|\mathbf{w}\mapsto\varrho(\mathbf{w})\frac{|\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})|}{|\mathbf{w}|} is in L1(dB(𝟎,ε))L^{1}(\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)) for any 𝐮L(d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}), for any ε>0\varepsilon>0 and for any 𝐱d\mathbf{x}\in\mathbb{R}^{d}.

Some of these terms do not depend on 𝐰\mathbf{w}, so we can write

𝒞ϱ,ε𝒞ϱ,ε𝐮(𝐱)\displaystyle\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}) =dB(𝟎,ε)ϱ(𝐡)|𝐡|dB(𝟎,ε)ϱ(𝐰)|𝐰|[𝐡|𝐡|×(𝐰|𝐰|×(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)))\displaystyle=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\left[\frac{\mathbf{h}}{|\mathbf{h}|}\times\left(\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\right)\right.
𝐡|𝐡|×(𝐰|𝐰|×(𝐮(𝐱+𝐰)𝐮(𝐱)))]d𝐰d𝐡.\displaystyle\qquad\qquad-\left.\frac{\mathbf{h}}{|\mathbf{h}|}\times\left(\frac{\mathbf{w}}{|\mathbf{w}|}\times(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\right)\right]\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}.

Now we use the identity (4.11) to write

𝒞ϱ,ε𝒞ϱ,ε𝐮(𝐱)=dB(𝟎,ε)\displaystyle\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)} ϱ(𝐡)|𝐡|dB(𝟎,ε)ϱ(𝐰)|𝐰|[\displaystyle\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}
(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)))𝐰|𝐰|\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}
\displaystyle- (𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))
\displaystyle- (𝐡|𝐡|(𝐮(𝐱+𝐰)𝐮(𝐱)))𝐰|𝐰|\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}
+\displaystyle+ (𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐰)𝐮(𝐱))]d𝐰d𝐡\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\Bigg{]}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}
=dB(𝟎,ε)\displaystyle=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)} ϱ(𝐡)|𝐡|dB(𝟎,ε)ϱ(𝐰)|𝐰|[\displaystyle\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}
(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)))𝐰|𝐰|\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}
\displaystyle- (𝐡|𝐡|(𝐮(𝐱+𝐰)𝐮(𝐱)))𝐰|𝐰|\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}
\displaystyle- (𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))
+\displaystyle+ (𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐰)𝐮(𝐱))]d𝐰d𝐡.\displaystyle\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\Bigg{]}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,.

Since the last expression in the double integral is majorized by

(4.12) Cχ{|𝐡|ε}χ{|𝐰|ε}𝐮L(d)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|L1(d×d)C\chi_{\{|\mathbf{h}|\geq\varepsilon\}}\chi_{\{|\mathbf{w}|\geq\varepsilon^{\prime}\}}\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\in L^{1}(\mathbb{R}^{d}\times\mathbb{R}^{d})

we can use linearity of the double integral to separate the two former terms from the latter two. This gives

𝒞ϱ,ε𝒞ϱ,ε𝐮(𝐱)=\displaystyle\mathcal{C}_{\varrho,\varepsilon}\circ\mathcal{C}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})= dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|[\displaystyle\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}
(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)))𝐰|𝐰|(𝐡|𝐡|(𝐮(𝐱+𝐰)𝐮(𝐱)))𝐰|𝐰|]d𝐰d𝐡\displaystyle\qquad\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}-\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\right)\frac{\mathbf{w}}{|\mathbf{w}|}\Bigg{]}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}
dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|[\displaystyle\quad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}
(𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))(𝐡|𝐡|𝐰|𝐰|)(𝐮(𝐱+𝐰)𝐮(𝐱))]d𝐰d𝐡\displaystyle\qquad\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))-\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\Bigg{]}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}
:=I(first two lines above)II(last two lines above).\displaystyle:=I\,(\text{first two lines above})-II\,(\text{last two lines above}).

Now, we use the vector identity

(𝐚𝐛)𝐜=(𝐜𝐚)𝐛(\mathbf{a}\cdot\mathbf{b})\mathbf{c}=(\mathbf{c}\otimes\mathbf{a})\mathbf{b}

and write

(4.13) II=dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|[((𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))𝐰|𝐰|)𝐡|𝐡|+((𝐮(𝐱+𝐰)𝐮(𝐱))𝐰|𝐰|)𝐡|𝐡|]d𝐰d𝐡=dB(𝟎,ε)ϱ(𝐡)|𝐡|[(dB(𝟎,ε)ϱ(𝐰)|𝐰|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))𝐰|𝐰|d𝐰)𝐡|𝐡|(dB(𝟎,ε)ϱ(𝐰)|𝐰|(𝐮(𝐱+𝐰)𝐮(𝐱))𝐰|𝐰|d𝐰)𝐡|𝐡|]d𝐡=dB(𝟎,ε)ϱ(𝐡)|𝐡|[𝒢ϱ,ε𝐮(𝐱+𝐡)𝐡|𝐡|𝒢ϱ,ε𝐮(𝐱)𝐡|𝐡|]d𝐡=𝒟ϱ,ε𝒢ϱ,ε𝐮(𝐱).\begin{split}II&=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}\\ &\qquad\left((\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\right)\frac{\mathbf{h}}{|\mathbf{h}|}+\left((\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\right)\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{]}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\Bigg{[}\left(\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h}))\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\right)\frac{\mathbf{h}}{|\mathbf{h}|}\\ &\qquad-\left(\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}(\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x}))\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\right)\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{]}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\Bigg{[}\mathcal{G}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x}+\mathbf{h})\frac{\mathbf{h}}{|\mathbf{h}|}-\mathcal{G}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{]}\,\mathrm{d}\mathbf{h}\\ &=\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})\,.\end{split}

Using linearity of the inner integral is again justified since the double integrand of IIII is majorized by the function in (4.12).

Last, the double integrand of II is also majorized by the function in (4.12). Therefore using Fubini’s theorem and linearity of the integral

(4.14) I=dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|[𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱))]𝐰|𝐰|d𝐰d𝐡=dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐡)|𝐡|ϱ(𝐰)|𝐰|[(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐰)))(𝐡|𝐡|(𝐮(𝐱+𝐡)𝐮(𝐱)))]𝐰|𝐰|d𝐰d𝐡=dB(𝟎,ε)dB(𝟎,ε)ϱ(𝐰)|𝐰|[ϱ(𝐡)|𝐡|(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐰)))ϱ(𝐡)|𝐡|(𝐡|𝐡|(𝐮(𝐱+𝐡)𝐮(𝐱)))]𝐰|𝐰|d𝐡d𝐰=dB(𝟎,ε)ϱ(𝐰)|𝐰|[dB(𝟎,ε)ϱ(𝐡)|𝐡|(𝐡|𝐡|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐰)))d𝐡dB(𝟎,ε)ϱ(𝐡)|𝐡|(𝐡|𝐡|(𝐮(𝐱+𝐡)𝐮(𝐱)))d𝐡]𝐰|𝐰|d𝐰=dB(𝟎,ε)ϱ(𝐰)|𝐰|[𝒟ϱ,ε𝐮(𝐱+𝐰)𝒟ϱ,ε𝐮(𝐱)]𝐰|𝐰|d𝐰=𝒢ϱ,ε𝒟ϱ,ε𝐮(𝐱).\begin{split}I&=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x}))\Bigg{]}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{w}))\right)\\ &\qquad\qquad\qquad-\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}))\right)\Bigg{]}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{w}))\right)\\ &\qquad\qquad\qquad-\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}))\right)\Bigg{]}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{h}\,\mathrm{d}\mathbf{w}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Bigg{[}\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{w}))\right)\,\mathrm{d}\mathbf{h}\\ &\qquad\qquad\qquad-\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon)}\frac{\varrho(\mathbf{h})}{|\mathbf{h}|}\left(\frac{\mathbf{h}}{|\mathbf{h}|}\cdot(\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}))\right)\,\mathrm{d}\mathbf{h}\Bigg{]}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\\ &=\int_{\mathbb{R}^{d}\setminus B({\bf 0},\varepsilon^{\prime})}\frac{\varrho(\mathbf{w})}{|\mathbf{w}|}\Big{[}\mathcal{D}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathcal{D}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})\Big{]}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\\ &=\mathcal{G}_{\varrho,\varepsilon^{\prime}}\circ\mathcal{D}_{\varrho,\varepsilon}\mathbf{u}(\mathbf{x})\,.\end{split}

Putting together (4.13) and (4.14) gives us the theorem. ∎

Proof of Proposition 4.6.

Follows from Theorem 4.1 by passing to the limit as ε\varepsilon, ε0\varepsilon^{\prime}\to 0 in (4.10). ∎

5. Equivalence Kernel

In this section we rigorously show that for bounded C2C^{2} functions, there exists an equivalence kernel for which the composition of the divergence and gradient operators corresponds to the (unweighted) nonlocal Laplace operator, i.e. 𝒟ϱ𝒢ϱ=(Δ)ϱ-\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}=(-\Delta)_{\varrho}. Furthermore, we use the kernel examples described in Section 2 to illustrate our equivalence result.

Theorem 5.1.

Let dd and NN be positive integers. Suppose ϱ\varrho is a radial kernel that satisfies (K), and suppose that

(K-INT) ϱ(|𝜼|)|𝜼|L1(d).\frac{\varrho(|\boldsymbol{\eta}|)}{|\boldsymbol{\eta}|}\in L^{1}(\mathbb{R}^{d})\,.

Then for functions 𝐮Cb2(d;N)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d};\mathbb{R}^{N}) the formula

(5.1) 𝒟ϱ𝒢ϱ𝐮(𝐱)=12dϱeq(|𝐲|)(2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲))|𝐲|2d𝐲-\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})=\frac{1}{2}\int_{\mathbb{R}^{d}}\varrho_{\text{eq}}(|\mathbf{y}|)\frac{(2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y}))}{|\mathbf{y}|^{2}}\,\mathrm{d}\mathbf{y}

holds, where the measurable function ϱeq\varrho_{\text{eq}} is defined as

(5.2) ϱeq(|𝜼|):=|𝜼|ddϱ(|𝜼||𝐳|)|𝐳|ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳,|𝜼|>0.\varrho_{\text{eq}}(|\boldsymbol{\eta}|):=|\boldsymbol{\eta}|^{d}\int_{\mathbb{R}^{d}}\frac{\varrho(|\boldsymbol{\eta}||\mathbf{z}|)}{|\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}||\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\,,\quad|\boldsymbol{\eta}|>0\,.

Henceforth we define the operator appearing in (5.1) as

(5.3) (Δ)ϱ𝐮(𝐱):=12dϱeq(|𝐲|)(2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲))|𝐲|2d𝐲.(-\Delta)_{\varrho}\mathbf{u}(\mathbf{x}):=\frac{1}{2}\int_{\mathbb{R}^{d}}\varrho_{\text{eq}}(|\mathbf{y}|)\frac{(2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y}))}{|\mathbf{y}|^{2}}\,\mathrm{d}\mathbf{y}\,.
Proof of Theorem 5.1.

Unpacking the operator 𝒟ϱ𝒢ϱ𝐮\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u} and changing coordinates,

𝒟ϱ𝒢ϱ𝐮(𝐱)=dϱ(|𝐡|)𝒢ϱ𝐮(𝐱+𝐡)𝒢ϱ𝐮(𝐱)|𝐡|𝐡|𝐡|d𝐡=dϱ(|𝐡|)|𝐡|(dϱ(|𝐰|)|𝐰|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡))𝐰|𝐰|d𝐰dϱ(|𝐰|)|𝐰|(𝐮(𝐱+𝐰)𝐮(𝐱))𝐰|𝐰|d𝐰)𝐡|𝐡|d𝐡=dϱ(|𝐡|)|𝐡|(dϱ(|𝐰|)|𝐰|(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱))𝐰|𝐰|d𝐰)𝐡|𝐡|d𝐡.\begin{split}&\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})\\ &=\int_{\mathbb{R}^{d}}\varrho(|\mathbf{h}|)\frac{\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\Bigg{(}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})\Big{)}\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\\ &\qquad-\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Big{(}\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})\Big{)}\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\Bigg{)}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\\ &=\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\Bigg{(}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\otimes\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\Bigg{)}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\,.\end{split}

We are justified in using linearity of the integral in the last equality, since by (K-INT) 𝐰ϱ(𝐰)|𝐮(𝐱+𝐰)𝐮(𝐱)||𝐰|L1(d)\mathbf{w}\mapsto\varrho(\mathbf{w})\frac{|\mathbf{u}(\mathbf{x}+\mathbf{w})-\mathbf{u}(\mathbf{x})|}{|\mathbf{w}|}\in L^{1}(\mathbb{R}^{d}) for any 𝐮L(d)\mathbf{u}\in L^{\infty}(\mathbb{R}^{d}), for any ε>0\varepsilon>0 and for any 𝐱d\mathbf{x}\in\mathbb{R}^{d}. Using the vector identity (𝐚𝐛)𝐜=(𝐛𝐜)𝐚(\mathbf{a}\otimes\mathbf{b})\mathbf{c}=(\mathbf{b}\cdot\mathbf{c})\mathbf{a} brings us to

𝒟ϱ𝒢ϱ𝐮(𝐱)=ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)(𝐮(𝐱+𝐡+𝐰)𝐮(𝐱+𝐡)𝐮(𝐱+𝐰)+𝐮(𝐱))d𝐰d𝐡.\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})-\mathbf{u}(\mathbf{x}+\mathbf{h})-\mathbf{u}(\mathbf{x}+\mathbf{w})+\mathbf{u}(\mathbf{x})\big{)}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,.

The expression in the double integral is majorized by

(5.4) C𝐮L(d)ϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|,C\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\,,

which belongs to L1(d×d)L^{1}(\mathbb{R}^{d}\times\mathbb{R}^{d}) by Tonelli’s theorem. Therefore, Fubini’s theorem is justified in the following splitting of the integrand:

𝒟ϱ𝒢ϱ𝐮(𝐱)=ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)𝐮(𝐱+𝐡+𝐰)d𝐰d𝐡dϱ(|𝐡|)|𝐡|([dϱ(|𝐰|)|𝐰|𝐰|𝐰|d𝐰]𝐡|𝐡|)𝐮(𝐱+𝐡)d𝐡dϱ(|𝐰|)|𝐰|([dϱ(|𝐡|)|𝐡|𝐡|𝐡|d𝐡]𝐰|𝐰|)𝐮(𝐱+𝐰)d𝐰+ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)d𝐰d𝐡𝐮(𝐱).\begin{split}\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})&=\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &\qquad-\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\left(\left[\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\frac{\mathbf{w}}{|\mathbf{w}|}\,\mathrm{d}\mathbf{w}\right]\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\right)\mathbf{u}(\mathbf{x}+\mathbf{h})\,\mathrm{d}\mathbf{h}\\ &\qquad-\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\left(\left[\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\mathbf{h}}{|\mathbf{h}|}\,\mathrm{d}\mathbf{h}\right]\cdot\frac{\mathbf{w}}{|\mathbf{w}|}\right)\mathbf{u}(\mathbf{x}+\mathbf{w})\,\mathrm{d}\mathbf{w}\\ &\qquad+\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,\mathbf{u}(\mathbf{x})\,.\end{split}

The inner integrals on the second and third lines are both zero, since the respective integrands are odd. The last line is zero for the same reason. Therefore, we can subtract any multiple of the last line from 𝒟ϱ𝒢ϱ𝐮(𝐱)\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x}). Combining this fact, along with splitting the integral and changing coordinates, gives

𝒟ϱ𝒢ϱ𝐮(𝐱)=12ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)𝐮(𝐱+𝐡+𝐰)d𝐰d𝐡+12ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)𝐮(𝐱+𝐡+𝐰)d𝐰d𝐡=12ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)𝐮(𝐱+𝐡+𝐰)d𝐰d𝐡+12ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)𝐮(𝐱𝐡𝐰)d𝐰d𝐡=12ddϱ(|𝐡|)|𝐡|ϱ(|𝐰|)|𝐰|(𝐰|𝐰|𝐡|𝐡|)(𝐮(𝐱+𝐡+𝐰)+𝐮(𝐱𝐡𝐰)2𝐮(𝐱))d𝐰d𝐡.\begin{split}\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})&=\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &\qquad+\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &=\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &\qquad+\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\mathbf{u}(\mathbf{x}-\mathbf{h}-\mathbf{w})\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\\ &=\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{w}|)}{|\mathbf{w}|}\Bigg{(}\frac{\mathbf{w}}{|\mathbf{w}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}\Bigg{)}\\ &\qquad\qquad\cdot\big{(}\mathbf{u}(\mathbf{x}+\mathbf{h}+\mathbf{w})+\mathbf{u}(\mathbf{x}-\mathbf{h}-\mathbf{w})-2\mathbf{u}(\mathbf{x})\big{)}\,\mathrm{d}\mathbf{w}\,\mathrm{d}\mathbf{h}\,.\end{split}

Now, we iterate the integrals and introduce the coordinate change 𝐲=𝐰+𝐡\mathbf{y}=\mathbf{w}+\mathbf{h}:

𝒟ϱ𝒢ϱ𝐮(𝐱)=12ddϱ(|𝐡|)|𝐡|ϱ(|𝐲𝐡|)|𝐲𝐡|𝐲𝐡|𝐲𝐡|𝐡|𝐡|(𝐮(𝐱+𝐲)+𝐮(𝐱𝐲)2𝐮(𝐱))d𝐲d𝐡.\begin{split}\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})&=\frac{1}{2}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{y}-\mathbf{h}|)}{|\mathbf{y}-\mathbf{h}|}{\frac{\mathbf{y}-\mathbf{h}}{|\mathbf{y}-\mathbf{h}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}}\big{(}\mathbf{u}(\mathbf{x}+\mathbf{y})+\mathbf{u}(\mathbf{x}-\mathbf{y})-2\mathbf{u}(\mathbf{x})\big{)}\,\mathrm{d}\mathbf{y}\,\mathrm{d}\mathbf{h}\,.\end{split}

We can interchange the order of integration, since the integrand remains majorized by (5.4). So we have

𝒟ϱ𝒢ϱ𝐮(𝐱)=12dϱeq(𝐲)(2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲))|𝐲|2d𝐲,-\mathcal{D}_{\varrho}\circ\mathcal{G}_{\varrho}\mathbf{u}(\mathbf{x})=\frac{1}{2}\int_{\mathbb{R}^{d}}\varrho_{eq}(\mathbf{y})\frac{\big{(}2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y})\big{)}}{|\mathbf{y}|^{2}}\,\mathrm{d}\mathbf{y}\,,

where

ϱeq(𝐲)=|𝐲|2dϱ(|𝐡|)|𝐡|ϱ(|𝐲𝐡|)|𝐲𝐡|𝐲𝐡|𝐲𝐡|𝐡|𝐡|d𝐡.\varrho_{\text{eq}}(\mathbf{y})=|\mathbf{y}|^{2}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{h}|)}{|\mathbf{h}|}\frac{\varrho(|\mathbf{y}-\mathbf{h}|)}{|\mathbf{y}-\mathbf{h}|}{\frac{\mathbf{y}-\mathbf{h}}{|\mathbf{y}-\mathbf{h}|}\cdot\frac{\mathbf{h}}{|\mathbf{h}|}}\,\mathrm{d}\mathbf{h}\,.

In order to conclude with the formula (5.2) we will show that ϱeq\varrho_{\text{eq}} actually only depends on |𝐲||\mathbf{y}|. For any 𝐲𝟎\mathbf{y}\neq{\bf 0}, let 𝐰=𝐡|𝐲|\mathbf{w}=\frac{\mathbf{h}}{|\mathbf{y}|} and change coordinates:

ϱeq(𝐲):=|𝐲|ddϱ(|𝐲||𝐰|)|𝐰|ϱ(|𝐲||𝐲|𝐲|𝐰|)|𝐲|𝐲|𝐰|𝐲|𝐲|𝐰|𝐲|𝐲|𝐰|𝐰|𝐰|d𝐰.\varrho_{\text{eq}}(\mathbf{y}):=|\mathbf{y}|^{d}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{y}||\mathbf{w}|)}{|\mathbf{w}|}\frac{\varrho(|\mathbf{y}||\frac{\mathbf{y}}{|\mathbf{y}|}-\mathbf{w}|)}{|\frac{\mathbf{y}}{|\mathbf{y}|}-\mathbf{w}|}{\frac{\frac{\mathbf{y}}{|\mathbf{y}|}-\mathbf{w}}{|\frac{\mathbf{y}}{|\mathbf{y}|}-\mathbf{w}|}\cdot\frac{\mathbf{w}}{|\mathbf{w}|}}\,\mathrm{d}\mathbf{w}\,.

Let 𝐑(𝐲)\mathbf{R}(\mathbf{y}) be the rotation such that 𝐑𝐲|𝐲|=𝐞1\mathbf{R}\frac{\mathbf{y}}{|\mathbf{y}|}=\mathbf{e}_{1}, where 𝐞1=(1,0,,0)\mathbf{e}_{1}=(1,0,\ldots,0). Then letting 𝐳=𝐑𝐰\mathbf{z}=\mathbf{R}\mathbf{w} and changing coordinates gives

ϱeq(𝐲)=|𝐲|ddϱ(|𝐲||𝐳|)|𝐳|ϱ(|𝐲||𝐞1𝐳|)|𝐞1𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳.\varrho_{\text{eq}}(\mathbf{y})=|\mathbf{y}|^{d}\int_{\mathbb{R}^{d}}\frac{\varrho(|\mathbf{y}||\mathbf{z}|)}{|\mathbf{z}|}\frac{\varrho(|\mathbf{y}||\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\,.

The previous theorem relies heavily on the assumption (K-INT), which does not hold for singular kernels such as ϱs\varrho_{s}. Nevertheless, a pointwise equivalence kernel can be defined, as we show in the next lemma.

Lemma 5.2.

Suppose that a radial kernel ϱ\varrho satisfies (K). Assume that ϱ\varrho satisfies the following conditions. Define the function

Ψ(r):=rϱ(θ)θdθ<,r>0.\Psi(r):=\int_{r}^{\infty}\frac{\varrho(\theta)}{\theta}\,\mathrm{d}\theta<\infty\,,\qquad r>0\,.

Note that Ψ:(0,)(0,)\Psi:(0,\infty)\to(0,\infty) is well-defined by assumption. Suppose that Ψ\Psi satisfies

(K-EQ) rd1Ψ(r)Lloc1([0,)),ΨC2((0,)).r^{d-1}\Psi(r)\in L^{1}_{\text{loc}}([0,\infty))\,,\qquad\Psi\in C^{2}((0,\infty))\,.

Then a pointwise equivalence kernel can be defined in the following way:

ϱeq(|𝜼|):=limε,ε0ϱeq,ε,ε(|𝜼|),\varrho_{\text{eq}}(|\boldsymbol{\eta}|):=\lim\limits_{\varepsilon,\varepsilon^{\prime}\to 0}\varrho_{\text{eq},\varepsilon,\varepsilon^{\prime}}(|\boldsymbol{\eta}|)\,,

for any |𝛈|>0,|\boldsymbol{\eta}|>0\,, where the measurable function ϱeq,ε,ε\varrho_{\text{eq},\varepsilon,\varepsilon^{\prime}} is defined for ε>0\varepsilon>0 and ε>0\varepsilon^{\prime}>0 as

(5.5) ϱeq,ε,ε(|𝜼|):=|𝜼|ddχ{|𝐞1𝐳|>ε}χ{|𝐳|>ε}ϱ(|𝜼||𝐳|)|𝐳|ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳.\varrho_{\text{eq},\varepsilon,\varepsilon^{\prime}}(|\boldsymbol{\eta}|):=|\boldsymbol{\eta}|^{d}\int_{\mathbb{R}^{d}}\chi_{\{|\mathbf{e}_{1}-\mathbf{z}|>\varepsilon^{\prime}\}}\chi_{\{|\mathbf{z}|>\varepsilon\}}\frac{\varrho(|\boldsymbol{\eta}||\mathbf{z}|)}{|\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}||\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}.
Proof.

To begin, we split the integral. For any ε>0\varepsilon>0, define the sets

Aε,1:={𝐳:ε|𝐳|12},Aε,2:={𝐳:ε|𝐞1𝐳|12},A1:={𝐳:12|𝐳| and 12|𝐞1𝐳|}.A_{\varepsilon,1}:=\{\mathbf{z}\,:\,\varepsilon\leq|\mathbf{z}|\leq\frac{1}{2}\}\,,\quad A_{\varepsilon,2}:=\{\mathbf{z}\,:\,\varepsilon\leq|\mathbf{e}_{1}-\mathbf{z}|\leq\frac{1}{2}\}\,,\quad A_{1}:=\{\mathbf{z}\,:\,\frac{1}{2}\leq|\mathbf{z}|\text{ and }\frac{1}{2}\leq|\mathbf{e}_{1}-\mathbf{z}|\}\,.

Then

ϱeq,ε,ε(|𝜼|)=Aε,1+Aε,2+A1\varrho_{\text{eq},\varepsilon,\varepsilon^{\prime}}(|\boldsymbol{\eta}|)=\int_{A_{\varepsilon,1}}\cdots+\int_{A_{\varepsilon^{\prime},2}}\cdots+\int_{A_{1}}\cdots

Clearly the third integral is an absolutely convergent integral. Letting 𝐲=𝐞1𝐳\mathbf{y}=\mathbf{e}_{1}-\mathbf{z}, a change of coordinates gives

Aε,2ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|ϱ(|𝜼||𝐳|)|𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳=dχ{12|𝐞1𝐳|ε}ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|ϱ(|𝜼||𝐳|)|𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳=dχ{12|𝐲|ε}ϱ(|𝜼||𝐲|)|𝐲|ϱ(|𝜼||𝐞1𝐲|)|𝐞1𝐲|𝐲|𝐲|𝐞1𝐲|𝐞1𝐲|d𝐲=Aε,1ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|ϱ(|𝜼||𝐳|)|𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳.\begin{split}&\int_{A_{\varepsilon^{\prime},2}}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{z}|)}{|\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\\ &\quad=\int_{\mathbb{R}^{d}}\chi_{\{\frac{1}{2}\geq|\mathbf{e}_{1}-\mathbf{z}|\geq\varepsilon^{\prime}\}}\cdot\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{z}|)}{|\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\\ &\quad=\int_{\mathbb{R}^{d}}\chi_{\{\frac{1}{2}\geq|\mathbf{y}|\geq\varepsilon^{\prime}\}}\cdot\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{y}|)}{|\mathbf{y}|}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{e}_{1}-\mathbf{y}|)}{|\mathbf{e}_{1}-\mathbf{y}|}{\frac{\mathbf{y}}{|\mathbf{y}|}\cdot\frac{\mathbf{e}_{1}-\mathbf{y}}{|\mathbf{e}_{1}-\mathbf{y}|}}\,\mathrm{d}\mathbf{y}\\ &\quad=\int_{A_{\varepsilon^{\prime},1}}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{z}|)}{|\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\,.\end{split}

Thus it suffices to show that the quantity

(5.6) supε>0ϱ~eq,ε,1(|𝜼|):=dχ{12|𝐳|ε}ϱ(|𝜼||𝐞1𝐳|)|𝐞1𝐳|ϱ(|𝜼||𝐳|)|𝐳|𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳<\displaystyle\begin{split}\sup_{\varepsilon>0}\widetilde{\varrho}_{\text{eq},\varepsilon,1}(|\boldsymbol{\eta}|)&:=\int_{\mathbb{R}^{d}}\chi_{\{\frac{1}{2}\geq|\mathbf{z}|\geq\varepsilon\}}\cdot\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{e}_{1}-\mathbf{z}|)}{|\mathbf{e}_{1}-\mathbf{z}|}\frac{\varrho(|\boldsymbol{\eta}|\,|\mathbf{z}|)}{|\mathbf{z}|}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}\\ &<\infty\end{split}

for any fixed |𝜼|>0|\boldsymbol{\eta}|>0. We assume ε<1/4\varepsilon<1/4 from here on.

Note for any fixed δ>0\delta>0 and for 𝐚{𝟎,𝐞1}\mathbf{a}\in\{{\bf 0},\mathbf{e}_{1}\}

𝐳Ψ(δ|𝐚𝐳|)=ϱ(δ|𝐚𝐳|)δ|𝐚𝐳|δ𝐚𝐳|𝐚𝐳|;\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{a}-\mathbf{z}|)=\frac{\varrho(\delta|\mathbf{a}-\mathbf{z}|)}{\delta|\mathbf{a}-\mathbf{z}|}\cdot\delta\frac{\mathbf{a}-\mathbf{z}}{|\mathbf{a}-\mathbf{z}|}\,;

Thus

ϱ~eq,ε,1(δ)={12|𝐳|ε}𝐳Ψ(δ|𝐞1𝐳|)𝐳Ψ(δ|𝐳|)d𝐳={12|𝐳|ε}Δ𝐳Ψ(δ|𝐞1𝐳|)Ψ(δ|𝐳|)d𝐳+{|𝐳|=ε}𝐳Ψ(δ|𝐞1𝐳|)𝐳|𝐳|Ψ(δ|𝐳|)dσ(𝐳)+{|𝐳|=1/2}𝐳Ψ(δ|𝐞1𝐳|)𝐳|𝐳|Ψ(δ|𝐳|)dσ(𝐳).\begin{split}\widetilde{\varrho}_{\text{eq},\varepsilon,1}(\delta)&=\int_{\{\frac{1}{2}\geq|\mathbf{z}|\geq\varepsilon\}}{\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{e}_{1}-\mathbf{z}|)\,\cdot\,\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{z}|)}\,\mathrm{d}\mathbf{z}\\ &=\int_{\{\frac{1}{2}\geq|\mathbf{z}|\geq\varepsilon\}}\Delta_{\mathbf{z}}\Psi(\delta|\mathbf{e}_{1}-\mathbf{z}|)\,\Psi(\delta|\mathbf{z}|)\,\mathrm{d}\mathbf{z}+\int_{\{|\mathbf{z}|=\varepsilon\}}\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{e}_{1}-\mathbf{z}|)\cdot\frac{\mathbf{z}}{|\mathbf{z}|}\,\Psi(\delta|\mathbf{z}|)\,\mathrm{d}\sigma(\mathbf{z})\\ &\quad+\int_{\{|\mathbf{z}|=1/2\}}\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{e}_{1}-\mathbf{z}|)\cdot\frac{\mathbf{z}}{|\mathbf{z}|}\,\Psi(\delta|\mathbf{z}|)\,\mathrm{d}\sigma(\mathbf{z})\,.\end{split}

Note that ΨC2((0,))\Psi\in C^{2}((0,\infty)) and the argument δ|𝐞1𝐳|\delta|\mathbf{e}_{1}-\mathbf{z}| lives in a bounded set far away from 0. Note also that Ψ(δ|𝐳|)Lloc1(d)\Psi(\delta|\mathbf{z}|)\in L^{1}_{\text{loc}}(\mathbb{R}^{d}) by assumption. Therefore the first and third integrals are both finite and bounded uniformly in ε\varepsilon. As for the second integral, a change of variables gives

(5.7) C{|𝐱|=ε}𝐳Ψ(δ|𝐞1𝐳|)𝐳|𝐳|Ψ(δ|𝐳|)dσ(𝐳)=C𝕊d1εd1Ψ(δε)ϱ(δ|𝐞1ε𝐰|)|𝐞1ε𝐰|𝐞1ε𝐰|𝐞1ε𝐰|𝐰dσ(𝐰):=I.C\int_{\{|\mathbf{x}|=\varepsilon\}}\nabla_{\mathbf{z}}\Psi(\delta|\mathbf{e}_{1}-\mathbf{z}|)\cdot\frac{\mathbf{z}}{|\mathbf{z}|}\,\Psi(\delta|\mathbf{z}|)\,\mathrm{d}\sigma(\mathbf{z})\\ =C\int_{\mathbb{S}^{d-1}}\varepsilon^{d-1}\Psi(\delta\varepsilon)\frac{\varrho(\delta|\mathbf{e}_{1}-\varepsilon\mathbf{w}|)}{|\mathbf{e}_{1}-\varepsilon\mathbf{w}|}{\frac{\mathbf{e}_{1}-\varepsilon\mathbf{w}}{|\mathbf{e}_{1}-\varepsilon\mathbf{w}|}\cdot\mathbf{w}}\,\mathrm{d}\sigma(\mathbf{w}):=I\,.

Now for 𝐰𝕊d1\mathbf{w}\in\mathbb{S}^{d-1} and for ε[0,1/4)\varepsilon\in[0,1/4) define the function h𝐰,δ(ε):=Ψ(δ|𝐞1ε𝐰|)h_{\mathbf{w},\delta}(\varepsilon):=\Psi(\delta|\mathbf{e}_{1}-\varepsilon\mathbf{w}|). For any choice of 𝐰\mathbf{w}, we have that εh𝐰,δ(ε)\varepsilon\mapsto h_{\mathbf{w},\delta}(\varepsilon) is C2C^{2} and its derivatives are uniformly bounded (the bound is also uniform with respect to 𝐰\mathbf{w}). Thus we can write II as

I=C𝕊d1εdΨ(δε)h𝐰,δ(ε)εdσ(𝐰).I=C\int_{\mathbb{S}^{d-1}}\varepsilon^{d}\Psi(\delta\varepsilon)\frac{h_{\mathbf{w},\delta}^{\prime}(\varepsilon)}{\varepsilon}\,\mathrm{d}\sigma(\mathbf{w})\,.

Note that h𝐰,δ(0)=ϱ(δ)𝐞1𝐰h_{\mathbf{w},\delta}^{\prime}(0)=\varrho(\delta){\mathbf{e}_{1}\cdot\mathbf{w}} and thus 𝕊d1h𝐰,δ(0)dσ(𝐰)=0\int_{\mathbb{S}^{d-1}}h_{\mathbf{w},\delta}^{\prime}(0)\,\mathrm{d}\sigma(\mathbf{w})=0. We then see by applying the mean value theorem that

I=C𝕊d1εdΨ(δε)h𝐰,δ(ε)h𝐰,δ(0)εdσ(𝐰)=O(εdΨ(δε)).I=C\int_{\mathbb{S}^{d-1}}\varepsilon^{d}\Psi(\delta\varepsilon)\frac{h_{\mathbf{w},\delta}^{\prime}(\varepsilon)-h_{\mathbf{w},\delta}^{\prime}(0)}{\varepsilon}\,\mathrm{d}\sigma(\mathbf{w})=O\left(\varepsilon^{d}\Psi(\delta\varepsilon)\right)\,.

We claim that limε0εdΨ(δε)=0\lim\limits_{\varepsilon\to 0}\varepsilon^{d}\Psi(\delta\varepsilon)=0, and so (5.6) will follow. To see this claim, note that for any nonincreasing function fLloc1([0,))C0((0,))f\in L^{1}_{\text{loc}}([0,\infty))\cap C^{0}((0,\infty))

xf(x)2x/2xf(y)dy0 as x0,\frac{xf(x)}{2}\leq\int_{x/2}^{x}f(y)\,\mathrm{d}y\to 0\text{ as }x\to 0\,,

by continuity of the integral. ∎

By the calculations in the proof of Theorem 5.1 it follows that

(5.8) 𝒟ϱ,ε𝒢ϱ,ε𝐮(𝐱)=12dϱeq,ε,ε(|𝐲|)2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲)|𝐲|2d𝐲 for ε,ε>0.\mathcal{D}_{\varrho,\varepsilon}\circ\mathcal{G}_{\varrho,\varepsilon^{\prime}}\mathbf{u}(\mathbf{x})=\frac{1}{2}\int_{\mathbb{R}^{d}}\varrho_{\text{eq},\varepsilon,\varepsilon^{\prime}}(|\mathbf{y}|)\frac{2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y})}{|\mathbf{y}|^{2}}\,\mathrm{d}\mathbf{y}\text{ for }\varepsilon\,,\varepsilon^{\prime}>0\,.

Unfortunately it is unclear if the limit as ε\varepsilon, ε0\varepsilon^{\prime}\to 0 can be taken for general kernels satisfying (K-EQ), even if 𝐮\mathbf{u} is smooth. However, for specific examples of ϱ\varrho we can show that the integrand on the right-hand side of (5.8) is bounded by an L1L^{1} function uniformly in ε\varepsilon and ε\varepsilon^{\prime}. Then the limit can be taken on both sides of (5.8) by Theorem 4.1 and by the Lebesgue Dominated Convergence theorem to conclude that formula (5.1) holds for any 𝐮Cb2(d)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d}). The following examples illustrate the situation.

Example 5.1.

Direct calculation shows that the fractional kernel ϱs(|𝜼|)\varrho_{s}(|\boldsymbol{\eta}|) satisfies the conditions of Lemma 5.2. Moreover, (5.5) for this particular kernel becomes ϱs,eq,ε,ε(|𝜼|)=Cd,s,ε,ε|𝜼|d+2s2,\varrho_{s,\text{eq},\varepsilon,\varepsilon^{\prime}}(|\boldsymbol{\eta}|)=\frac{C_{d,s,\varepsilon,\varepsilon^{\prime}}}{|\boldsymbol{\eta}|^{d+2s-2}}\,, where the sequence of constants Cd,s,ε,εC_{d,s,\varepsilon,\varepsilon^{\prime}} is given by

Cd,s,ε,ε:=dχ{|𝐞1𝐳|>ε}χ{|𝐳|>ε}1|𝐳|d+2s21|𝐞1𝐳|d+2s2𝐞1𝐳|𝐞1𝐳|𝐳|𝐳|d𝐳.C_{d,s,\varepsilon,\varepsilon^{\prime}}:=\int_{\mathbb{R}^{d}}\chi_{\{|\mathbf{e}_{1}-\mathbf{z}|>\varepsilon^{\prime}\}}\chi_{\{|\mathbf{z}|>\varepsilon\}}\frac{1}{|\mathbf{z}|^{d+2s-2}}\frac{1}{|\mathbf{e}_{1}-\mathbf{z}|^{d+2s-2}}{\frac{\mathbf{e}_{1}-\mathbf{z}}{|\mathbf{e}_{1}-\mathbf{z}|}\cdot\frac{\mathbf{z}}{|\mathbf{z}|}}\,\mathrm{d}\mathbf{z}.

By the same line of reasoning as in the proof of Lemma 5.2 we see that the constants Cd,s,ε,εC_{d,s,\varepsilon,\varepsilon^{\prime}} converge to a constant Cd,sC_{d,s} as ε\varepsilon, ε0\varepsilon^{\prime}\to 0. Using the Fourier transform (see D’Elia et al. (2021a)) it follows that Cd,s:=22ssΓ(d2+s)πd/2Γ(1s)C_{d,s}:=\frac{2^{2s}s\Gamma(\frac{d}{2}+s)}{\pi^{d/2}\Gamma(1-s)}. We can therefore conclude that (5.1) holds. We summarize this result in the following proposition:

Proposition 5.3.

Let s(0,1)s\in(0,1). Suppose that either 𝐮Cb2(d;N)\mathbf{u}\in C^{2}_{b}(\mathbb{R}^{d};\mathbb{R}^{N}), or 𝐮L2s1(d;N)𝒞2s+σ(d;N)\mathbf{u}\in L^{1}_{2s}(\mathbb{R}^{d};\mathbb{R}^{N})\cap\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{N}) for some σ>0\sigma>0 small. Then the function (Δ)ϱs𝐮(𝐱)(-\Delta)_{\varrho_{s}}\mathbf{u}(\mathbf{x}) defined in (5.3) coincides with the fractional Laplacian

(Δ)s𝐮(𝐱):=Cd,sd2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲)|𝐲|d+2sd𝐡,𝐱d.(-\Delta)^{s}\mathbf{u}(\mathbf{x}):=C_{d,s}\int_{\mathbb{R}^{d}}\frac{2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y})}{|\mathbf{y}|^{d+2s}}\,\mathrm{d}\mathbf{h}\,,\qquad\mathbf{x}\in\mathbb{R}^{d}\,.

Put another way,

𝒟s𝒢s𝐮(𝐱)=(Δ)s𝐮(𝐱) for every 𝐱d.-\mathcal{D}_{s}\circ\mathcal{G}_{s}\mathbf{u}(\mathbf{x})=(-\Delta)^{s}\mathbf{u}(\mathbf{x})\text{ for every }\mathbf{x}\in\mathbb{R}^{d}\,.
Proof.

If 𝐮\mathbf{u} is in either set of function spaces, the limit as ε,ε0\varepsilon,\varepsilon^{\prime}\to 0 can be taken on the left-hand side of (5.8) by Theorem 4.1. The limit on the right-hand side will follow by the Lebesgue Dominated Convergence theorem. First note that Cd,s,ε,εC_{d,s,\varepsilon,\varepsilon^{\prime}} is bounded by some constant C~(d,s)\widetilde{C}(d,s). Then the integrand is majorized by

4C~(d,s)χ{|𝐲|<1}|γ|=2Dγ𝐮L(d)|𝐲|d+2s2+4C~(d,s)χ{|𝐲|1}𝐮L(d)|𝐲|d+2s4\widetilde{C}(d,s)\chi_{\{|\mathbf{y}|<1\}}\frac{\sum_{|\gamma|=2}\left\|D^{\gamma}\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d+2s-2}}+4\widetilde{C}(d,s)\chi_{\{|\mathbf{y}|\geq 1\}}\frac{\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d+2s}}

in case 1, or by

2C~(d,s)χ{|𝐲|<1}[𝐮]C0,2s+σ(d)|𝐲|dσ+4C~(d,s)χ{|𝐲|1}𝐮L(d)|𝐲|d+2s2\widetilde{C}(d,s)\chi_{\{|\mathbf{y}|<1\}}\frac{[\mathbf{u}]_{C^{0,2s+\sigma}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d-\sigma}}+4\widetilde{C}(d,s)\chi_{\{|\mathbf{y}|\geq 1\}}\frac{\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d+2s}}

in case 2 with s<1/2s<1/2. In case 2 with s1/2s\geq 1/2 we have the bound

|2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲)|𝐲|d+2s|=|χ{|𝐲|<1}01(𝐮(𝐱t𝐲)𝐮(𝐱+t𝐲))𝐲dt|𝐲|d+2s+χ{|𝐲|1}2𝐮(𝐱)𝐮(𝐱+𝐲)𝐮(𝐱𝐲)|𝐲|d+2s|χ{|𝐲|<1}[𝐮]C0,2s+σ1(d)|𝐲|dσ+4χ{|𝐲|1}𝐮L(d)|𝐲|d+2s.\begin{split}\left|\frac{2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y})}{|\mathbf{y}|^{d+2s}}\right|=&\left|\chi_{\{|\mathbf{y}|<1\}}\frac{\int_{0}^{1}\big{(}\nabla\mathbf{u}(\mathbf{x}-t\mathbf{y})-\nabla\mathbf{u}(\mathbf{x}+t\mathbf{y})\big{)}\mathbf{y}\,\mathrm{d}t}{|\mathbf{y}|^{d+2s}}\right.\\ &\left.+\chi_{\{|\mathbf{y}|\geq 1\}}\frac{2\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{x}+\mathbf{y})-\mathbf{u}(\mathbf{x}-\mathbf{y})}{|\mathbf{y}|^{d+2s}}\right|\\ \leq&\chi_{\{|\mathbf{y}|<1\}}\frac{[\nabla\mathbf{u}]_{C^{0,2s+\sigma-1}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d-\sigma}}+4\chi_{\{|\mathbf{y}|\geq 1\}}\frac{\left\|\mathbf{u}\right\|_{L^{\infty}(\mathbb{R}^{d})}}{|\mathbf{y}|^{d+2s}}\,.\end{split}

In all cases the bounding function is in L1(d)L^{1}(\mathbb{R}^{d}), and the proof is complete. ∎

Example 5.2.

The truncated fractional kernel ϱs,δ(|𝜼|)\varrho_{s,\delta}(|\boldsymbol{\eta}|) does not satisfy the conditions of Lemma 5.2. Nevertheless, when d=1d=1 the formula (5.5) holds for almost every η0\eta\neq 0. This can be seen directly by computing the equivalence kernel:

ϱs,δ,eq,ε,ε(|η|)=(c1,s)2|η|1+2s2χ{ε<|z|<δ|η|}χ{ε<|z1|<δ|η|}1z|1z|2+sz|z|2+sdz,η0.\varrho_{s,\delta,\text{eq},\varepsilon,\varepsilon^{\prime}}(|\eta|)=\frac{(c_{1,s})^{2}}{|\eta|^{1+2s-2}}\int_{\mathbb{R}}\chi_{\{\varepsilon<|z|<\frac{\delta}{|\eta|}\}}\chi_{\{\varepsilon^{\prime}<|z-1|<\frac{\delta}{|\eta|}\}}\frac{1-z}{|1-z|^{2+s}}\cdot\frac{z}{|z|^{2+s}}\,\mathrm{d}z\,,\qquad\eta\neq 0\,.

The integral can be computed explicitly. Let F12(a,b;c;z){}_{2}F_{1}(a,b;c;z) denote the hypergeometric function; see (Abramowitz et al., 1988, Equation 15.1.1) and Appendix A for the definition.

The derivative identity (A.1) implies that the function

Fs(x):={1s(x)s2F1(s,1+s;1s;x),x0,1s(1x)s2F1(s,1+s;1s;1x),0<x<1,1s(x1)s2F1(s,1+s;1s;1x),x<1,F_{s}(x):=\begin{cases}-\frac{1}{s(-x)^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;x)\,,&\quad x\leq 0\,,\\ \frac{1}{s(1-x)^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;1-x)\,,&\quad 0<x<1\,,\\ \frac{1}{s(x-1)^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;1-x)\,,&\quad x<1\,,\\ \end{cases}

satisfies Fs(x)=1x|1x|2+sx|x|2+sF_{s}^{\prime}(x)=\frac{1-x}{|1-x|^{2+s}}\cdot\frac{x}{|x|^{2+s}} for all x{0,1}x\in\mathbb{R}\setminus\{0,1\}. Therefore,

ϱs,δ,eq,ε,ε(|η|)\displaystyle\varrho_{s,\delta,\text{eq},\varepsilon,\varepsilon^{\prime}}(|\eta|)
=(c1,s)2|η|1+2s2{Fs(ε)Fs(1δ|η|)+Fs(1ε)Fs(ε)+Fs(δ|η|)Fs(1+ε),δ|η|>1,Fs(δ|η|)Fs(1δ|η|),12<δ|η|<1,0,12δ|η|.\displaystyle=\frac{(c_{1,s})^{2}}{|\eta|^{1+2s-2}}\begin{cases}F_{s}(-\varepsilon)-F_{s}(1-\frac{\delta}{|\eta|})+F_{s}(1-\varepsilon^{\prime})-F_{s}(\varepsilon)+F_{s}(\frac{\delta}{|\eta|})-F_{s}(1+\varepsilon^{\prime})\,,&\quad\frac{\delta}{|\eta|}>1\,,\\ F_{s}(\frac{\delta}{|\eta|})-F_{s}(1-\frac{\delta}{|\eta|})\,,&\quad\frac{1}{2}<\frac{\delta}{|\eta|}<1\,,\\ 0\,,&\quad\frac{1}{2}\geq\frac{\delta}{|\eta|}\,.\end{cases}

Now we compute the limit as ε\varepsilon, ε0\varepsilon^{\prime}\to 0. To do this, we need the following limits for Fs(z)F_{s}(z).

Theorem 5.4.

For s(0,1)s\in(0,1),

(5.9) limε0Fs(ε)Fs(ε)=κs:={Γ(1s)Γ(s)sΓ(2s), if s1/2,0 if s=1/2,\lim\limits_{\varepsilon\to 0}F_{s}(\varepsilon)-F_{s}(-\varepsilon)=\kappa_{s}:=\begin{cases}\frac{\Gamma(1-s)\Gamma(-s)}{s\Gamma(-2s)}\,,&\quad\text{ if }s\neq 1/2\,,\\ 0&\quad\text{ if }s=1/2\,,\end{cases}

and

(5.10) limε0Fs(1+ε)Fs(1ε)=0.\lim\limits_{\varepsilon\to 0}F_{s}(1+\varepsilon)-F_{s}(1-\varepsilon)=0\,.

See Appendix A for the proof. An immediate corollary is the explicit formula for ϱs,δ,eq\varrho_{s,\delta,\text{eq}}.

Corollary 5.5.

For all |η|0|\eta|\neq 0 and |η|δ|\eta|\neq\delta

(5.11) ϱs,δ,eq(|η|)=limε0ϱs,δ,eq,ε,ε(|η|)=(c1,s)2|η|1+2s2Gs(δ|η|),\varrho_{s,\delta,\text{eq}}(|\eta|)=\lim\limits_{\varepsilon\to 0}\varrho_{s,\delta,\text{eq},\varepsilon,\varepsilon^{\prime}}(|\eta|)=\frac{(c_{1,s})^{2}}{|\eta|^{1+2s-2}}G_{s}\left(\frac{\delta}{|\eta|}\right)\,,

where Gs:(0,){1}G_{s}:(0,\infty)\setminus\{1\}\to\mathbb{R} is defined as

(5.12) Gs(x):={0,0<x12,Fs(x)Fs(1x),12<x<1,Fs(x)Fs(1x)κs,1<x.G_{s}(x):=\begin{cases}0\,,&\quad 0<x\leq\frac{1}{2}\,,\\ F_{s}(x)-F_{s}(1-x)\,,&\quad\frac{1}{2}<x<1\,,\\ F_{s}(x)-F_{s}(1-x)-\kappa_{s}\,,&\quad 1<x\,.\\ \end{cases}

We now investigate properties of ϱs,δ,eq\varrho_{s,\delta,\text{eq}} that are desirable for applications. To do this we need the following results concerning GsG_{s}.

Theorem 5.6.

For every s(0,1)s\in(0,1) and for every τ>0\tau>0, the function Gs|(0,)(1τ,1+τ)G_{s}\big{|}_{(0,\infty)\setminus(1-\tau,1+\tau)} is continuous and bounded. Moreover,

(5.13) limxGs(x)=2Γ(1s)Γ(1+2s)sΓ(1+s)κs\lim\limits_{x\to\infty}G_{s}(x)=\frac{2\Gamma(1-s)\Gamma(1+2s)}{s\Gamma(1+s)}-\kappa_{s}

and

(5.14) limx1|x1|sGs(x)=2s.\lim\limits_{x\to 1}|x-1|^{s}G_{s}(x)=\frac{2}{s}\,.

See Appendix A for the proof.

Theorem 5.7 (Properties of ϱs,δ,eq\varrho_{s,\delta,\text{eq}}).

Let δ>0\delta>0 and s(0,1)s\in(0,1). Then ϱs,δ,eq\varrho_{s,\delta,\text{eq}} is finite and differentiable for all η{δ,0,δ}\eta\in\mathbb{R}\setminus\{-\delta,0,\delta\}. At |η|=δ|\eta|=\delta the function has a singularity of order ss; that is,

(5.15) lim|η|δ|η|1+2s2|δ|η|1|sϱs,δ,eq(|η|)=2(c1,s)2s.\lim\limits_{|\eta|\to\delta}|\eta|^{1+2s-2}\left|\frac{\delta}{|\eta|}-1\right|^{s}\varrho_{s,\delta,\text{eq}}(|\eta|)=\frac{2(c_{1,s})^{2}}{s}.

Additionally, ϱs,δ,eq\varrho_{s,\delta,\text{eq}} is compactly supported with suppϱs,δ,eq=B(0,2δ)¯\operatorname*{supp}\varrho_{s,\delta,\text{eq}}=\overline{B(0,2\delta)},

(5.16) ϱs,δ,eq(|η|)0 for all η{δ,0,δ},\varrho_{s,\delta,\text{eq}}(|\eta|)\geq 0\text{ for all }\eta\in\mathbb{R}\setminus\{-\delta,0,\delta\}\,,

and

(5.17) ϱs,δ,eqL1(d).\varrho_{s,\delta,\text{eq}}\in L^{1}(\mathbb{R}^{d})\,.

Moreover, ϱs,δ,eq\varrho_{s,\delta,\text{eq}} is consistent with ϱs,eq\varrho_{s,\text{eq}}; that is, for every fixed |η|>0|\eta|>0

(5.18) limδϱs,δ,eq(|η|)=C1,s|η|1+2s2=ϱs,eq(|η|).\lim\limits_{\delta\to\infty}\varrho_{s,\delta,\text{eq}}(|\eta|)=\frac{C_{1,s}}{|\eta|^{1+2s-2}}=\varrho_{s,\text{eq}}(|\eta|)\,.
Proof.

The smoothness and compact support of ϱs,δ,eq\varrho_{s,\delta,\text{eq}} is apparent from the definition, and (5.15) follows easily from (5.14). To see (5.16), we recall that Fs(x)=1x|1x|2+sx|x|2+sF_{s}^{\prime}(x)=\frac{1-x}{|1-x|^{2+s}}\cdot\frac{x}{|x|^{2+s}}, so therefore Fs(x)F_{s}(x) is increasing for x(0,1)x\in(0,1), and thus ϱs,δ,eq(|η|)0\varrho_{s,\delta,\text{eq}}(|\eta|)\geq 0 for δ<|η|<2δ\delta<|\eta|<2\delta. Next, for t(0,δ)t\in(0,\delta)

ddt(Fs(δt)Fs(1δt)κs)=21δt|1δt|1+sδt|δt|2+s(δt2)>0.\frac{d}{dt}\Big{(}F_{s}\Big{(}\frac{\delta}{t}\Big{)}-F_{s}\Big{(}1-\frac{\delta}{t}\Big{)}-\kappa_{s}\Big{)}=2\frac{1-\frac{\delta}{t}}{|1-\frac{\delta}{t}|^{1+s}}\cdot\frac{\frac{\delta}{t}}{|\frac{\delta}{t}|^{2+s}}\cdot\Big{(}\frac{-\delta}{t^{2}}\Big{)}>0\,.

To see that ϱs,δ,eq(|η|)0\varrho_{s,\delta,\text{eq}}(|\eta|)\geq 0 for 0<|η|<δ0<|\eta|<\delta it suffices to show that

(5.19) lim|η|0|η|1+2s2ϱs,δ,eq(|η|)=(c1,s)2(2Γ(1s)Γ(1+2s)sΓ(1+s)κs)=C1,s,\lim\limits_{|\eta|\to 0}|\eta|^{1+2s-2}\varrho_{s,\delta,\text{eq}}(|\eta|)=(c_{1,s})^{2}\left(\frac{2\Gamma(1-s)\Gamma(1+2s)}{s\Gamma(1+s)}-\kappa_{s}\right)=C_{1,s}\,,

where C1,s=22ssΓ(12+s)π1/2Γ(1s)C_{1,s}=\frac{2^{2s}s\Gamma(\frac{1}{2}+s)}{\pi^{1/2}\Gamma(1-s)} was defined in Example 5.1. The first equality follows from (5.13), and the second equality follows from well-known identities satisfied by the Gamma function; these calculations are in Appendix A. Since C1,sC_{1,s} is clearly a positive number, we have established (5.16).

Now we prove (5.17). By a change of variables and by definition of the support of GsG_{s},

|ϱδ,s,eq(|η|)|dη=2(c1,s)20|Gs(δη)|η22sdηη=2(c1,s)2δ22s0|Gs(r)|r22sdrr=C(s,δ)1/2|Gs(r)|r32sdr.\begin{split}\int_{\mathbb{R}}\big{|}\varrho_{\delta,s,\text{eq}}(|\eta|)\big{|}\,\mathrm{d}\eta&=2(c_{1,s})^{2}\int_{0}^{\infty}\left|G_{s}\left(\frac{\delta}{\eta}\right)\right|\eta^{2-2s}\,\frac{\mathrm{d}\eta}{\eta}\\ &=2(c_{1,s})^{2}\delta^{2-2s}\int_{0}^{\infty}\frac{|G_{s}(r)|}{r^{2-2s}}\,\frac{\mathrm{d}r}{r}\\ &=C(s,\delta)\int_{1/2}^{\infty}\frac{|G_{s}(r)|}{r^{3-2s}}\,\mathrm{d}r\,.\end{split}

Since GsG_{s} is continuous, by (5.14) there exists a τ>0\tau>0 small such that |Gs(r)|4s|r1|s|G_{s}(r)|\leq\frac{4}{s}|r-1|^{-s} for all r(1τ,1+τ)r\in(1-\tau,1+\tau). Therefore since GsG_{s} is bounded

1/2|Gs(r)|r32sdrC(12,)(1τ,1+τ)1r32sdr+C(1τ,1+τ)1|r1|s1r32sdr<.\begin{split}\int_{1/2}^{\infty}\frac{|G_{s}(r)|}{r^{3-2s}}\,\mathrm{d}r&\leq C\int_{(\frac{1}{2},\infty)\setminus(1-\tau,1+\tau)}\frac{1}{r^{3-2s}}\,\mathrm{d}r+C\int_{(1-\tau,1+\tau)}\frac{1}{|r-1|^{s}}\frac{1}{r^{3-2s}}\,\mathrm{d}r<\infty\,.\end{split}

Thus (5.17) is proved.

Finally, (5.18) follows from the definition (5.11), (5.13), and the second equality in (5.19). ∎

The properties of ϱs,δ,eq\varrho_{s,\delta,\text{eq}} just established allow us to conclude that the formula (5.1) holds.

Example 5.3.

The tempered fractional kernel ϱs,temp(|𝜼|)\varrho_{s,\text{temp}}(|\boldsymbol{\eta}|) satisfies the conditions of Lemma 5.2. Upper and lower bounds for d=1d=1 are calculated in Olson et al. (2020). Furthermore, we can show the following equivalence of energy spaces.

Theorem 5.8.

For s(0,1)s\in(0,1), α>0\alpha>0, there exists C=C(d,s,α)C=C(d,s,\alpha) such that

1Cddeα|𝐱𝐲||𝐮(𝐱)𝐮(𝐲)|2|𝐱𝐲|d+2sd𝐲d𝐱ddϱs,temp,eq(|𝐱𝐲|)|𝐮(𝐱)𝐮(𝐲)|2|𝐱𝐲|2d𝐲d𝐱Cddeα|𝐱𝐲||𝐮(𝐱)𝐮(𝐲)|2|𝐱𝐲|d+2sd𝐲d𝐱\begin{split}\frac{1}{C}&\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\mathrm{e}^{-\alpha|\mathbf{x}-\mathbf{y}|}\frac{|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})|^{2}}{|\mathbf{x}-\mathbf{y}|^{d+2s}}\,\mathrm{d}\mathbf{y}\,\mathrm{d}\mathbf{x}\\ &\leq\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\varrho_{s,\text{temp},\text{eq}}(|\mathbf{x}-\mathbf{y}|)\frac{|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})|^{2}}{|\mathbf{x}-\mathbf{y}|^{2}}\,\mathrm{d}\mathbf{y}\,\mathrm{d}\mathbf{x}\\ &\leq C\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}\mathrm{e}^{-\alpha|\mathbf{x}-\mathbf{y}|}\frac{|\mathbf{u}(\mathbf{x})-\mathbf{u}(\mathbf{y})|^{2}}{|\mathbf{x}-\mathbf{y}|^{d+2s}}\,\mathrm{d}\mathbf{y}\,\mathrm{d}\mathbf{x}\end{split}

for every 𝐮𝒮(d;d)\mathbf{u}\in\mathscr{S}(\mathbb{R}^{d};\mathbb{R}^{d}).

The proof uses techniques that are outside the scope of this paper, and so it will be reported elsewhere.

Example 5.4.

The kernel defined in terms of the characteristic function

ϱχ,δ(|𝜼|):=dωd1δdχB(𝟎,δ)(|𝜼|)\varrho_{\chi,\delta}(|\boldsymbol{\eta}|):=\frac{d}{\omega_{d-1}\delta^{d}}\chi_{B({\bf 0},\delta)}(|\boldsymbol{\eta}|)

satisfies (K-INT), and so (5.1) holds immediately. Moreover, when d=1d=1 we can find the equivalence kernel explicitly. A straightforward calculation shows that

ϱχ,δ,eq(|η|)={2|η|δ2log(δ|η||1δ|η||),0<|η|<2δ,0,|η|2δ.\varrho_{\chi,\delta,\text{eq}}(|\eta|)=\begin{cases}\frac{2|\eta|}{\delta^{2}}\log\left(\frac{\frac{\delta}{|\eta|}}{|1-\frac{\delta}{|\eta|}|}\right)\,,&0<|\eta|<2\delta\,,\\ 0\,,&|\eta|\geq 2\delta\,.\end{cases}

Thus, ϱχ,δ,eq\varrho_{\chi,\delta,\text{eq}} is a nonnegative, integrable function.

6. Helmholtz Decomposition for Fractional Operators

In this section we combine the vector calculus identities proved in Section 4 and the characterization of the equivalence kernel proved in Section 5 to obtain a weighted fractional Helmholtz decomposition in Hölder spaces. Thus, we restrict our attention to the case of the fractional kernel ϱs\varrho_{s} and utilize the results for Hölder spaces in Section 3.

First, we state the following result, whose proof can be obtained by using (Bucur, 2016, Theorem 2.8).

Theorem 6.1.

Let s(0,1)s\in(0,1) and σ>0\sigma>0 be a sufficiently small quantity. Suppose 𝐮𝒞2s+σ(d;d)\mathbf{u}\in\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}) with d>2sd>2s, and suppose 𝐮\mathbf{u} is compactly supported. Define the constant

κd,s:=Γ(d2s)22sπd/2Γ(s),\kappa_{d,s}:=\frac{\Gamma(\frac{d}{2}-s)}{2^{2s}\pi^{d/2}\Gamma(s)}\,,

and define the function

Φs(𝝃):=κd,s|𝝃|d2s.\Phi_{s}(\boldsymbol{\xi}):=\frac{\kappa_{d,s}}{|\boldsymbol{\xi}|^{d-2s}}\,.

Then Φs\Phi_{s} is the fundamental solution of (Δ)s(-\Delta)^{s} in the following sense: define the function

𝐯(𝐱):=Φs𝐮(𝐱),𝐱d.\mathbf{v}(\mathbf{x}):=\Phi_{s}\ast\mathbf{u}(\mathbf{x})\,,\qquad\mathbf{x}\in\mathbb{R}^{d}\,.

Then 𝐯\mathbf{v} belongs to 𝒞2s+σ(d;d)\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}), 𝐯\mathbf{v} has the “behavior at infinity”

𝐯L2s1(d)=d|𝐯(𝐱)|1+|𝐱|d+2sd𝐱<,\left\|\mathbf{v}\right\|_{L^{1}_{2s}(\mathbb{R}^{d})}=\int_{\mathbb{R}^{d}}\frac{|\mathbf{v}(\mathbf{x})|}{1+|\mathbf{x}|^{d+2s}}\,\mathrm{d}\mathbf{x}<\infty\,,

and both in the distributional sense and pointwise in d\mathbb{R}^{d}

(Δ)s𝐯(𝐱)=𝐮(𝐱).(-\Delta)^{s}\mathbf{v}(\mathbf{x})=\mathbf{u}(\mathbf{x})\,.

We can now state the main theorem of this section.

Theorem 6.2.

Let 0<s<10<s<1. Suppose that 𝐮𝒞2s+σ(d;d)\mathbf{u}\in\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}) with d=3d=3 for some σ>0\sigma>0 be sufficiently small. Suppose also that 𝐮\mathbf{u} is compactly supported with supp𝐮B(𝟎,R)\operatorname*{supp}\mathbf{u}\subset B({\bf 0},R) for some R>0R>0. Then there exist functions ψ\psi and 𝐰\mathbf{w} belonging to Ls1(d)C0,s+σ(d)L^{1}_{s}(\mathbb{R}^{d})\cap C^{0,s+\sigma}(\mathbb{R}^{d}) and Ls1(d;d)C0,s+σ(d;d)L^{1}_{s}(\mathbb{R}^{d};\mathbb{R}^{d})\cap C^{0,s+\sigma}(\mathbb{R}^{d};\mathbb{R}^{d}) respectively such that

(6.1) 𝐮(𝐱)=𝒢sψ(𝐱)𝒞s𝐰(𝐱) for all 𝐱d.\mathbf{u}(\mathbf{x})=\mathcal{G}_{s}\psi(\mathbf{x})-\mathcal{C}_{s}\mathbf{w}(\mathbf{x})\quad\text{ for all }\mathbf{x}\in\mathbb{R}^{d}\,.
Proof.

By Theorem 6.1

𝐮(𝐱)=(Δ)s[Φs𝐮(𝐱)].\mathbf{u}(\mathbf{x})=(-\Delta)^{s}\left[\Phi_{s}\ast\mathbf{u}(\mathbf{x})\right]\,.

Note that 𝐮L2s1(d;d)\mathbf{u}\in L^{1}_{2s}(\mathbb{R}^{d};\mathbb{R}^{d}) since 𝐮\mathbf{u} is continuous with compact support. By Proposition 4.6 and Proposition 5.3 we then have

(6.2) 𝐮(𝐱)=𝒢s𝒟s[Φs𝐮(𝐱)]𝒞s𝒞s[Φs𝐮(𝐱)].\mathbf{u}(\mathbf{x})=\mathcal{G}_{s}\circ\mathcal{D}_{s}\left[\Phi_{s}\ast\mathbf{u}(\mathbf{x})\right]-\mathcal{C}_{s}\circ\mathcal{C}_{s}\left[\Phi_{s}\ast\mathbf{u}(\mathbf{x})\right]\,.

Define

(6.3) ψ(𝐱):=𝒟s[Φs𝐮](𝐱),𝐰(𝐱):=𝒞s[Φs𝐮](𝐱).\begin{split}\psi(\mathbf{x})&:=\mathcal{D}_{s}[\Phi_{s}\ast\mathbf{u}](\mathbf{x})\,,\\ \mathbf{w}(\mathbf{x})&:=\mathcal{C}_{s}[\Phi_{s}\ast\mathbf{u}](\mathbf{x})\,.\end{split}

Thus the formula (6.1) will be established if we can show that ψ\psi and 𝐰\mathbf{w} are well-defined functions.

To this end, note that both ψ\psi and 𝐰\mathbf{w} are of the form 𝒵s[Φs𝐮]\mathcal{Z}_{s}[\Phi_{s}\ast\mathbf{u}]. These functions belong to C0,s+σ(d)C^{0,s+\sigma}(\mathbb{R}^{d}) by Theorem 3.1 since Φs𝐮𝒞2s+σ(d)\Phi_{s}\ast\mathbf{u}\in\mathscr{C}^{2s+\sigma}(\mathbb{R}^{d}) by Theorem 6.1. Second, both ψ\psi and 𝐰\mathbf{w} also belong to Ls1(d;d)L^{1}_{s}(\mathbb{R}^{d};\mathbb{R}^{d}), being in L(d)L^{\infty}(\mathbb{R}^{d}). Thus by Theorem 3.1, 1) the functions ψ\psi and 𝐰\mathbf{w} are well-defined. ∎

Acknowledgments

M. D’Elia and M. Gulian are partially supported by the U.S. Department of Energy, Office of Advanced Scientific Computing Research under the Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project (DE-SC0019453). They are also supported by Sandia National Laboratories (SNL). SNL is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper, SAND2021-15379, describes objective technical results and analysis. Any subjective views or opinions that might be expressed in this paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

T. Mengesha’s research is supported by the NSF DMS 1910180.

Appendix A The Hypergeometric Function and Related Functions

The power series defining the hypergeometric function F12(a,b;c;z){}_{2}F_{1}(a,b;c;z) converges for real parameters aa, bb, cc and complex zz in the unit disc – except for the point z=1z=1 – if cab(1,0]c-a-b\in(-1,0], which is the only range for the parameters that we are concerned about in this work. Its analytic continuation also exists everywhere except 11 for cab(1,0]c-a-b\in(-1,0].

Using the identities (Abramowitz et al., 1988, Equations 15.2.4 and 15.1.8), we get

(A.1) ddz(za2F1(a,b;a+1;z))=aza12F1(a,b;a;z)=aza12F1(b,a;a;z)=aza1(1z)b,\displaystyle\frac{d}{dz}\big{(}z^{a}\text{}_{2}F_{1}(a,b;a+1;z)\big{)}=az^{a-1}\text{}_{2}F_{1}(a,b;a;z)=az^{a-1}\text{}_{2}F_{1}(b,a;a;z)=\frac{az^{a-1}}{(1-z)^{b}}\,,
(A.2)  or ddz2F1(a,b;a+1;z)=az(1z)baz2F1(a,b;a+1;z).\displaystyle\text{ or }\quad\frac{d}{dz}\,\text{}_{2}F_{1}(a,b;a+1;z)=\frac{a}{z(1-z)^{b}}-\frac{a}{z}\,\text{}_{2}F_{1}(a,b;a+1;z)\,.
proof of Theorem 5.4.

To see (5.9) when s1/2s\neq 1/2, use the definition of FsF_{s} along with (Abramowitz et al., 1988, Equation 15.3.6):

Fs(ε)Fs(ε)=1s(1ε)s2F1(s,1+s;1s;1ε)+1sεs2F1(s,1+s;1s;ε)=1s(1ε)s(Γ(1s)Γ(s)Γ(2s)2F1(s,1+s;1+s;ε)+1εsΓ(1s)Γ(s)Γ(s)Γ(1+s)2F1(1,2s;1s;ε))+1sεs2F1(s,1+s;1s;ε).\begin{split}F_{s}(\varepsilon)-F_{s}(-\varepsilon)&=\frac{1}{s(1-\varepsilon)^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;1-\varepsilon)+\frac{1}{s\varepsilon^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;-\varepsilon)\\ &=\frac{1}{s(1-\varepsilon)^{s}}\bigg{(}\frac{\Gamma(1-s)\Gamma(-s)}{\Gamma(-2s)}\text{}_{2}F_{1}(-s,1+s;1+s;\varepsilon)\\ &\qquad+\frac{1}{\varepsilon^{s}}\frac{\Gamma(1-s)\Gamma(s)}{\Gamma(-s)\Gamma(1+s)}\text{}_{2}F_{1}(1,-2s;1-s;\varepsilon)\bigg{)}\\ &\qquad+\frac{1}{s\varepsilon^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;-\varepsilon)\,.\end{split}

Using Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x), we see that Γ(1s)Γ(s)Γ(s)Γ(1+s)=1\frac{\Gamma(1-s)\Gamma(s)}{\Gamma(-s)\Gamma(1+s)}=-1. Therefore,

Fs(ε)Fs(ε)=Γ(1s)Γ(s)sΓ(2s)1(1ε)s2F1(s,1+s;1+s;ε)+1sεs(2F1(s,1+s;1s;ε)1(1ε)s2F1(1,2s;1s;ε)).\begin{split}F_{s}(\varepsilon)-F_{s}(-\varepsilon)&=\frac{\Gamma(1-s)\Gamma(-s)}{s\Gamma(-2s)}\frac{1}{(1-\varepsilon)^{s}}\text{}_{2}F_{1}(-s,1+s;1+s;\varepsilon)\\ &\qquad+\frac{1}{s\varepsilon^{s}}\bigg{(}\text{}_{2}F_{1}(-s,1+s;1-s;-\varepsilon)-\frac{1}{(1-\varepsilon)^{s}}\text{}_{2}F_{1}(1,-2s;1-s;\varepsilon)\bigg{)}\,.\end{split}

By (Abramowitz et al., 1988, Equation 15.1.8) 2F1(s,1+s;1+s;ε)=(1ε)s\text{}_{2}F_{1}(-s,1+s;1+s;\varepsilon)=(1-\varepsilon)^{s}, and by using the series definition of 2F1\text{}_{2}F_{1} we get

Fs(ε)Fs(ε)=Γ(1s)Γ(s)sΓ(2s)+1sεs(11(1ε)s)+O(ε1s).\begin{split}F_{s}(\varepsilon)-F_{s}(-\varepsilon)&=\frac{\Gamma(1-s)\Gamma(-s)}{s\Gamma(-2s)}+\frac{1}{s\varepsilon^{s}}\bigg{(}1-\frac{1}{(1-\varepsilon)^{s}}\bigg{)}+O(\varepsilon^{1-s})\,.\end{split}

Now, by (Abramowitz et al., 1988, Equation 15.1.8)

1εs(1ε)s1(1ε)s=1εs2F1(s,1;1;ε)2F1(s,1;1;0)(1ε)s=O(ε1s).\begin{split}\frac{1}{\varepsilon^{s}}\frac{(1-\varepsilon)^{s}-1}{(1-\varepsilon)^{s}}=\frac{1}{\varepsilon^{s}}\frac{\text{}_{2}F_{1}(-s,1;1;\varepsilon)-\text{}_{2}F_{1}(-s,1;1;0)}{(1-\varepsilon)^{s}}=O(\varepsilon^{1-s})\,.\end{split}

Therefore (5.9) is proved in the case s1/2s\neq 1/2. When s=1/2s=1/2 we use the identities (Abramowitz et al., 1988, Equations 15.3.3 and 15.4.1) to explicitly compute the closed form of 2F1\text{}_{2}F_{1}:

(A.3) 2F1(12,32;12;z)=1(1z)1/22F1(1,1;12;z)=12z(1z)1/2.\text{}_{2}F_{1}\left(-\frac{1}{2},\frac{3}{2};\frac{1}{2};z\right)=\frac{1}{(1-z)^{1/2}}\text{}_{2}F_{1}\left(-1,1;\frac{1}{2};z\right)=\frac{1-2z}{(1-z)^{1/2}}\,.

Therefore

F12(ε)F12(ε)=2(1ε)1/22ε1ε1/2+2ε1/21+2ε(1ε)1/2=O(ε1/2).F_{\frac{1}{2}}(\varepsilon)-F_{\frac{1}{2}}(-\varepsilon)=\frac{2}{(1-\varepsilon)^{1/2}}\frac{2\varepsilon-1}{\varepsilon^{1/2}}+\frac{2}{\varepsilon^{1/2}}\frac{1+2\varepsilon}{(1-\varepsilon)^{1/2}}=O(\varepsilon^{1/2})\,.

The proof of (5.10) follows easily from the power series definition:

Fs(1+ε)Fs(1ε)=1sεs2F1(s,1+s;1s;ε)1sεs2F1(s,1+s;1s;ε)=O(ε1s).\begin{split}F_{s}(1+\varepsilon)-F_{s}(1-\varepsilon)=\frac{1}{s\varepsilon^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;-\varepsilon)-\frac{1}{s\varepsilon^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;\varepsilon)=O(\varepsilon^{1-s})\,.\end{split}

Proof of Theorem 5.6.

By definition GsG_{s} is CC^{\infty} on (0,)(1τ,1+τ)(0,\infty)\setminus(1-\tau,1+\tau). Then boundedness will follows from (5.13).

To prove (5.13) when s1/2s\neq 1/2, we use the identity (Abramowitz et al., 1988, Equation 15.3.7) along with the value 2F1(a,b;c;0)=1\text{}_{2}F_{1}(a,b;c;0)=1 for any aa, bb and cc:

limxGs(x)=limx2s(x1)s2F1(s,1+s;1s;1x)κs=limx2s(x1)s(Γ(1s)Γ(1+2s)Γ(1+s)1(x1)s2F1(s,0;2s;11x)Γ(1s)Γ(12s)Γ(s)Γ(2s)1(x1)1+s2F1(1+s,1+2s;2+2s;11x))κs=limx2s(Γ(1s)Γ(1+2s)Γ(1+s)2F1(s,0;2s;0)Γ(1s)Γ(12s)Γ(s)Γ(2s)1(x1)1+2s2F1(1+s,1+2s;2+2s;0))κs=2s(Γ(1s)Γ(1+2s)Γ(1+s))κs.\begin{split}\lim\limits_{x\to\infty}&G_{s}(x)\\ &=\lim\limits_{x\to\infty}\frac{2}{s(x-1)^{s}}\text{}_{2}F_{1}(-s,1+s;1-s;1-x)-\kappa_{s}\\ &=\lim\limits_{x\to\infty}\frac{2}{s(x-1)^{s}}\Bigg{(}\frac{\Gamma(1-s)\Gamma(1+2s)}{\Gamma(1+s)}\frac{1}{(x-1)^{-s}}\text{}_{2}F_{1}\left(-s,0;-2s;\frac{1}{1-x}\right)\\ &\qquad-\frac{\Gamma(1-s)\Gamma(-1-2s)}{\Gamma(-s)\Gamma(-2s)}\frac{1}{(x-1)^{1+s}}\text{}_{2}F_{1}\left(1+s,1+2s;2+2s;\frac{1}{1-x}\right)\Bigg{)}-\kappa_{s}\\ &=\lim\limits_{x\to\infty}\frac{2}{s}\Bigg{(}\frac{\Gamma(1-s)\Gamma(1+2s)}{\Gamma(1+s)}\text{}_{2}F_{1}\left(-s,0;-2s;0\right)\\ &\qquad-\frac{\Gamma(1-s)\Gamma(-1-2s)}{\Gamma(-s)\Gamma(-2s)}\frac{1}{(x-1)^{1+2s}}\text{}_{2}F_{1}\left(1+s,1+2s;2+2s;0\right)\Bigg{)}-\kappa_{s}\\ &=\frac{2}{s}\Bigg{(}\frac{\Gamma(1-s)\Gamma(1+2s)}{\Gamma(1+s)}\Bigg{)}-\kappa_{s}\,.\end{split}

To obtain (5.13) when s=1/2s=1/2 we use the the definition of the equivalence kernel for x>1x>1 and the identity (A.3):

G12(x)=4(x1)1/22F1(12,32;12;1x)0=4(x1)1/2(12(1x))x1/2.\begin{split}G_{\frac{1}{2}}(x)&=\frac{4}{(x-1)^{1/2}}\text{}_{2}F_{1}\left(-\frac{1}{2},\frac{3}{2};\frac{1}{2};1-x\right)-0\\ &=\frac{4}{(x-1)^{1/2}}\frac{\left(1-2\left(1-x\right)\right)}{x^{1/2}}\,.\end{split}

Thus

limxG12(x)=limx4((1x)1/2+1(1x)1/2)=8=2Γ(12)Γ(2)12Γ(32),\begin{split}\lim\limits_{x\to\infty}G_{\frac{1}{2}}(x)=\lim\limits_{x\to\infty}4\left(\left(1-x\right)^{1/2}+\frac{1}{\left(1-x\right)^{1/2}}\right)=8=\frac{2\Gamma(\frac{1}{2})\Gamma(2)}{\frac{1}{2}\Gamma(\frac{3}{2})}\,,\end{split}

as desired. The limit (5.14) follows from the left-hand and right-hand limits. First, since 2F1(a,b;c;0)=1\text{}_{2}F_{1}(a,b;c;0)=1

limx1+|x1|sGs(x)=limx1+2s2F1(s,1+s;1s;1x)κs|x1|s=2s2F1(s,1+s;1s;0)=2s.\begin{split}\lim\limits_{x\to 1^{+}}|x-1|^{s}G_{s}(x)&=\lim\limits_{x\to 1^{+}}\frac{2}{s}\,\,\text{}_{2}F_{1}\left(-s,1+s;1-s;1-x\right)-\kappa_{s}\left|x-1\right|^{s}\\ &=\frac{2}{s}\,\,\text{}_{2}F_{1}\left(-s,1+s;1-s;0\right)=\frac{2}{s}\,.\end{split}

Second,

limx1|x1|sGs(x)=limx11s(2F1(s,1+s;1s;1x)(1x)sxs2F1(s,1+s;1s;x))=1s1slimx1(1x)sxs2F1(s,1+s;1s;x).\begin{split}\lim\limits_{x\to 1^{-}}|x-1|^{s}G_{s}(x)&=\lim\limits_{x\to 1^{-}}\frac{1}{s}\Bigg{(}\text{}_{2}F_{1}\left(-s,1+s;1-s;1-x\right)-\frac{(1-x)^{s}}{x^{s}}\text{}_{2}F_{1}\left(-s,1+s;1-s;x\right)\Bigg{)}\\ &=\frac{1}{s}-\frac{1}{s}\lim\limits_{x\to 1^{-}}\frac{(1-x)^{s}}{x^{s}}\text{}_{2}F_{1}\left(-s,1+s;1-s;x\right)\,.\end{split}

We use the following limit for the hypergeometric function 2F1(a,b;c;z)\text{}_{2}F_{1}(a,b;c;z) to see the limit of this second expression: Using the transformation (Abramowitz et al., 1988, Equation 15.3.6) along with the the fact that 2F1(a,b;c;0)=1\text{}_{2}F_{1}(a,b;c;0)=1, we get

limz12F1(a,b;c;z)(1z)cab=Γ(c)Γ(a+bc)Γ(a)Γ(b) if cab<0.\lim\limits_{z\to 1^{-}}\frac{\text{}_{2}F_{1}(a,b;c;z)}{(1-z)^{c-a-b}}=\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}\quad\text{ if }c-a-b<0\,.

Therefore, since (1s)(s)(1+s)=s<0(1-s)-(-s)-(1+s)=-s<0

1s1slimx1(1x)sxs2F1(s,1+s;1s;x)=1s1sΓ(1s)Γ(s)Γ(s)Γ(1+s)=2s.\begin{split}\frac{1}{s}-\frac{1}{s}\lim\limits_{x\to 1^{-}}\frac{(1-x)^{s}}{x^{s}}\text{}_{2}F_{1}\left(-s,1+s;1-s;x\right)=\frac{1}{s}-\frac{1}{s}\frac{\Gamma(1-s)\Gamma(s)}{\Gamma(-s)\Gamma(1+s)}=\frac{2}{s}\,.\end{split}

In the last equality we used that Γ(z+1)=zΓ(z)\Gamma(z+1)=z\Gamma(z) for z{0,1,2,}z\notin\{0,-1,-2,\ldots\}

Proof of the second equality in (5.19).

First we assume s1/2s\neq 1/2 so that the relevant identities for the Gamma function are valid. Using the identity Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x),

(c1,s)2(2Γ(1s)Γ(1+2s)sΓ(1+s)Γ(1s)Γ(s)sΓ(2s))=22sπ(Γ(1+s2)Γ(1s2))2(Γ(1s)s)(2Γ(1+2s)Γ(1+s)Γ(s)Γ(2s))=22sπ(s2Γ(s2)Γ(1s2))2(Γ(1s)s)(4sΓ(2s)sΓ(s)Γ(s)Γ(2s))=22ss4π[Γ(s2)]21Γ(1s)(Γ(1s)Γ(1s2))2(4Γ(2s)Γ(s)Γ(s)Γ(2s)).\begin{split}&(c_{1,s})^{2}\left(\frac{2\Gamma(1-s)\Gamma(1+2s)}{s\Gamma(1+s)}-\frac{\Gamma(1-s)\Gamma(-s)}{s\Gamma(-2s)}\right)\\ &\quad=\frac{2^{2s}}{\pi}\left(\frac{\Gamma(1+\frac{s}{2})}{\Gamma(\frac{1-s}{2})}\right)^{2}\left(\frac{\Gamma(1-s)}{s}\right)\left(\frac{2\Gamma(1+2s)}{\Gamma(1+s)}-\frac{\Gamma(-s)}{\Gamma(-2s)}\right)\\ &\quad=\frac{2^{2s}}{\pi}\left(\frac{\frac{s}{2}\Gamma(\frac{s}{2})}{\Gamma(\frac{1-s}{2})}\right)^{2}\left(\frac{\Gamma(1-s)}{s}\right)\left(\frac{4s\Gamma(2s)}{s\Gamma(s)}-\frac{\Gamma(-s)}{\Gamma(-2s)}\right)\\ &\quad=\frac{2^{2s}s}{4\pi}\left[\Gamma\left(\frac{s}{2}\right)\right]^{2}\frac{1}{\Gamma(1-s)}\left(\frac{\Gamma(1-s)}{\Gamma(\frac{1-s}{2})}\right)^{2}\left(\frac{4\Gamma(2s)}{\Gamma(s)}-\frac{\Gamma(-s)}{\Gamma(-2s)}\right)\,.\end{split}

Now we use the Legendre duplication formula for the Gamma function:

22ss4π[Γ(s2)]21Γ(1s)(Γ(1s)Γ(1s2))2(4Γ(2s)Γ(s)Γ(s)Γ(2s))=22ss4π[Γ(s2)]21Γ(1s)(Γ(1s2)2sπ1/2)2(4Γ(s+12)212sπ1/221+2sπ1/2Γ(12s))=21+2ssΓ(s+12)π1/2Γ(1s)(Γ(s2)Γ(1s2)π)2(1πΓ(12s)Γ(s+12))=C1,s2(Γ(s2)Γ(1s2)π)2(1πΓ(12s)Γ(s+12)).\begin{split}&\frac{2^{2s}s}{4\pi}\left[\Gamma\left(\frac{s}{2}\right)\right]^{2}\frac{1}{\Gamma(1-s)}\left(\frac{\Gamma(1-s)}{\Gamma(\frac{1-s}{2})}\right)^{2}\left(\frac{4\Gamma(2s)}{\Gamma(s)}-\frac{\Gamma(-s)}{\Gamma(-2s)}\right)\\ &\quad=\frac{2^{2s}s}{4\pi}\left[\Gamma\left(\frac{s}{2}\right)\right]^{2}\frac{1}{\Gamma(1-s)}\left(\frac{\Gamma(1-\frac{s}{2})}{2^{s}\pi^{1/2}}\right)^{2}\left(4\frac{\Gamma(s+\frac{1}{2})}{2^{1-2s}\pi^{1/2}}-\frac{2^{1+2s}\pi^{1/2}}{\Gamma(\frac{1}{2}-s)}\right)\\ &\quad=\frac{2^{-1+2s}s\Gamma\big{(}s+\frac{1}{2}\big{)}}{\pi^{1/2}\Gamma(1-s)}\left(\frac{\Gamma(\frac{s}{2})\Gamma(1-\frac{s}{2})}{\pi}\right)^{2}\left(1-\frac{\pi}{\Gamma(\frac{1}{2}-s)\Gamma(s+\frac{1}{2})}\right)\\ &\quad=\frac{C_{1,s}}{2}\left(\frac{\Gamma(\frac{s}{2})\Gamma(1-\frac{s}{2})}{\pi}\right)^{2}\left(1-\frac{\pi}{\Gamma(\frac{1}{2}-s)\Gamma(s+\frac{1}{2})}\right)\,.\end{split}

Finally, by Euler’s reflection formula for the Gamma function and by elementary trigonometric identities,

(A.4) C1,s2(Γ(s2)Γ(1s2)π)2(1πΓ(12s)Γ(s+12))=C1,s21sin2(πs2)(1sin(π2+πs))=C1,s.\frac{C_{1,s}}{2}\left(\frac{\Gamma(\frac{s}{2})\Gamma(1-\frac{s}{2})}{\pi}\right)^{2}\left(1-\frac{\pi}{\Gamma(\frac{1}{2}-s)\Gamma(s+\frac{1}{2})}\right)\\ =\frac{C_{1,s}}{2}\frac{1}{\sin^{2}(\frac{\pi s}{2})}\left(1-\sin\left(\frac{\pi}{2}+\pi s\right)\right)=C_{1,s}\,.

When s=1/2s=1/2, we can compute both sides of the equality in (5.18) explicitly using Γ(x+1)=xΓ(x)\Gamma(x+1)=x\Gamma(x), Γ(1/2)=π\Gamma(1/2)=\sqrt{\pi} and Γ(3/2)=π2\Gamma(3/2)=\frac{\sqrt{\pi}}{2}:

(c1,12)2(2Γ(12)Γ(2)12Γ(32)0)=2π(Γ(54)Γ(14))28=16π(14Γ(14)Γ(14))2=1π,\begin{split}(c_{1,\frac{1}{2}})^{2}\left(\frac{2\Gamma(\frac{1}{2})\Gamma(2)}{\frac{1}{2}\Gamma(\frac{3}{2})}-0\right)=\frac{2}{\pi}\left(\frac{\Gamma(\frac{5}{4})}{\Gamma(\frac{1}{4})}\right)^{2}\cdot 8=\frac{16}{\pi}\left(\frac{\frac{1}{4}\Gamma(\frac{1}{4})}{\Gamma(\frac{1}{4})}\right)^{2}=\frac{1}{\pi}\,,\end{split}

while

C1,12=1πΓ(12)=1π.C_{1,\frac{1}{2}}=\frac{1}{\sqrt{\pi}\Gamma(\frac{1}{2})}=\frac{1}{\pi}\,.

References

  • A. Buades et al. [2010] A. A. Buades, B. Coll, and J. M. Morel. Image denoising methods. A new nonlocal principle. SIAM Review, 52:113–147, 2010.
  • Abramowitz et al. [1988] M. Abramowitz, I. A. Stegun, and R. H. Romer. Handbook of mathematical functions with formulas, graphs, and mathematical tables, 1988.
  • Alali and Lipton [2012] B. Alali and R. Lipton. Multiscale dynamics of heterogeneous media in the peridynamic formulation. Journal of Elasticity, 106(1):71–103, 2012.
  • Alali et al. [2014] B. Alali, K. Liu, and M. Gunzburger. A generalized nonlocal calculus with application to the peridynamics model for solid mechanics. arXiv:1402.0271, 2014.
  • Askari et al. [2008] E Askari, F Bobaru, RB Lehoucq, ML Parks, SA Silling, and O Weckner. Peridynamics for multiscale materials modeling. In Journal of Physics: Conference Series, volume 125, page 012078. IOP Publishing, 2008.
  • Benson et al. [2000] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert. Application of a fractional advection-dispersion equation. Water Resources Research, 36(6):1403–1412, 2000.
  • Bucur [2016] C. Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 15(2):657–699, 2016.
  • Burch et al. [2014] N. Burch, M. D’Elia, and R. Lehoucq. The exit-time problem for a Markov jump process. The European Physical Journal Special Topics, 223:3257–3271, 2014.
  • D’Elia and Gulian [2021] M. D’Elia and M. Gulian. Analysis of anisotropic nonlocal diffusion models: Well-posedness of fractional problems for anomalous transport. Numerical Mathematics: Theory, Methods and Applications, 2021. Accepted.
  • D’Elia and Gunzburger [2013] M. D’Elia and M. Gunzburger. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Computers and Mathematics with applications, 66:1245–1260, 2013.
  • D’Elia et al. [2017] M. D’Elia, Q. Du, M. Gunzburger, and R. Lehoucq. Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes. Computational Methods in Applied Mathematics, 29:71–103, 2017.
  • D’Elia et al. [2021a] M. D’Elia, M. Gulian, H. Olson, and G. E. Karniadakis. Towards a unified theory of fractional and nonlocal vector calculus. Fractional Calculus and Applied Analysis, 2021a. Accepted.
  • D’Elia et al. [2021b] M. D’Elia, J.C. De los Reyes, and A. Trujillo. Bilevel parameter optimization for nonlocal image denoising model. Journal of Mathematical Imaging and Vision, 2021b. in print.
  • Du and Tian [2018] Q. Du and X. Tian. Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling. SIAM Journal of Applied Math, 78(3):1536–1552, 2018.
  • Du and Tian [2020] Q. Du and X. Tian. Mathematics of smoothed particle hydrodynamics: A study via nonlocal stokes equations. Foundations of Computational Mathematics, 20:801–826, 2020.
  • Du et al. [2012] Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou. Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Review, 54(4):667–696, 2012.
  • Du et al. [2013a] Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou. A nonlocal vector calculus, nonlocal volume constrained problems, and nonlocal balance laws. Mathematical Models in Applied Science, 23(3):493–540, 2013a.
  • Du et al. [2013b] Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou. Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. Journal of Elasticity, 113(2):193–217, 2013b.
  • Du et al. [2016] Q. Du, R. Lipton, and T. Mengesha. Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media. ESAIM: M2AN, (5):1425–1455, 2016.
  • D’Elia et al. [2020] M. D’Elia, C. Flores, X. Li, P. Radu, and Y. Yu. Helmholtz-Hodge decompositions in the nonlocal framework. Journal of Peridynamics and Nonlocal Modeling, 2(4):401–418, 2020.
  • Gilboa and Osher [2007] G. Gilboa and S. Osher. Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul., 6:595–630, 2007.
  • Gunzburger and Lehoucq [2010] M. Gunzburger and R. Lehoucq. A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Modeling & Simulation, 8:1581–1598, 2010.
  • Haar and Radu [2020] A. Haar and P. Radu. Nonlocal Helmholtz decompositions and connections to classical counterparts, 2020. Poster presentation, UCARE Research Fair, University of Nebraska-Lincoln.
  • Lee and Du [2020] H. Lee and Q. Du. Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications. ESAIM: Mathematical Modelling and Numerical Analysis, 54(1):105–128, 2020.
  • Lischke et al. [2018] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. M. Meerschaert, M. Ainsworth, et al. What is the fractional Laplacian? arXiv preprint arXiv:1801.09767, 2018.
  • Meerschaert and Sikorskii [2012] M. M. Meerschaert and A. Sikorskii. Stochastic models for fractional calculus. Studies in mathematics, Gruyter, 2012.
  • Meerschaert et al. [2006] M. M. Meerschaert, J. Mortensen, and S. W. Wheatcraft. Fractional vector calculus for fractional advection–dispersion. Physica A: Statistical Mechanics and its Applications, 367:181–190, 2006.
  • Mengesha and Du [2014] T. Mengesha and Q. Du. Nonlocal constrained value problems for a linear peridynamic Navier equation. Journal of Elasticity, 116:27–51, 2014.
  • Mengesha and Du [2016] T. Mengesha and Q. Du. Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Analysis, 140:82–111, 2016.
  • Mengesha and Spector [2015] T. Mengesha and D. Spector. Localization of nonlocal gradients in various topologies. Calculus of Variations and Partial Differential Equations, 52(1):253–279, 2015.
  • Metzler and Klafter [2000] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports, 339:1–77, 2000.
  • Metzler and Klafter [2004] R. Metzler and J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal Physics A, 37:161–208, 2004.
  • Olson et al. [2020] H.A. Olson, M. Gulian, and M. D’Elia. The tempered fractional Laplacian as a special case of the nonlocal Laplace operator. in Computer Science Research Institute Summer Proceedings 2020, A.A. Rushdi and M.L. Parks, eds., Technical Report SAND2020-12580R, Sandia National Laboratories, 111–126, 2020.
  • Sabatelli et al. [2002] L. Sabatelli, S. Keating, J. Dudley, and P. Richmond. Waiting time distributions in financial markets. European Physics Journal B, 27:273–275, 2002.
  • Scalas et al. [2000] E. Scalas, R. Gorenflo, and F. Mainardi. Fractional calculus and continuous time finance. Physica A, 284:376–384, 2000.
  • Schumer et al. [2001] R. Schumer, D.A. Benson, M.M. Meerschaert, and S.W. Wheatcraft. Eulerian derivation of the fractional advection-dispersion equation. Journal of Contaminant Hydrology, 48:69–88, 2001.
  • Schumer et al. [2003] R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer. Multiscaling fractional advection-dispersion equations and their solutions. Water Resources Research, 39(1):1022–1032, 2003.
  • Šilhavỳ [2017] M. Šilhavỳ. Higher gradient expansion for linear isotropic peridynamic materials. Mathematics and Mechanics of Solids, 22(6):1483–1493, 2017.
  • Šilhavỳ [2020] M. Šilhavỳ. Fractional vector analysis based on invariance requirements (Critique of coordinate approaches). Continuum Mechanics and Thermodynamics, 32(1):207–228, 2020.
  • Stein [2016] E. M. Stein. Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30. Princeton University Press, 2016.
  • Tarasov [2008] V. E. Tarasov. Fractional vector calculus and fractional Maxwell’s equations. Annals of Physics, 323(11):2756–2778, 2008.