This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


11affiliationtext: NYU Abu Dhabi, UAE & Courant Institute, USA22affiliationtext: Tsinghua University, China

Conformal covariance of connection probabilities
in the 2D critical FK-Ising model

Federico Camia Yu Feng
Abstract

We study connection probabilities between vertices of the square lattice for the critical random-cluster (FK) model with cluster weight 22, which is related to the critical Ising model. We consider the model on the plane and on domains conformally equivalent to the upper half-plane. We prove that, when appropriately rescaled, the connection probabilities between vertices in the domain or on the boundary have nontrivial limits, as the mesh size of the square lattice is sent to zero, and that those limits are conformally covariant. Because of the relation between the FK and Ising models, this provides an alternative proof of the conformal covariance of the Ising spin correlation functions. In an appendix, we also derive exact formulas for some Ising boundary spin correlation functions.

Keywords: connection probability, FK-Ising model, Ising model, random-cluster model, conformal field theory, correlation function, conformal invariance

MSC: Primary 82B20, 82B27, 60K35; Secondary 60J67

1 Introduction

1.1 Background and motivation

Fortuin and Kasteleyn introduced the random-cluster model in the 1970s (see [FK72]) as a general family of discrete percolation models that combines together Bernoulli percolation, graphical representations of spin models (Ising & Potts models), and polymer models (as a limiting case). Generally, in such models, edges are declared open or closed according to a given probability measure, the simplest being the independent product measure of Bernoulli percolation. Of particular interest are percolation properties, that is, whether various points in space are connected by paths of open edges.

The random-cluster model has been actively investigated in the past decades, for instance, because of its important feature of criticality: for certain parameter values the model exhibits a continuous phase transition. Criticality can be practically identified as follows. On a lattice with a small mesh, say δ2\delta\mathbb{Z}^{2}, consider the probability that an open path connects two opposite sides of a topological rectangle (i.e., a bounded domain with four marked points on its boundary). This probability tends to zero as δ0\delta\to 0 when the model is “subcritical,” while it tends to one as δ0\delta\to 0 when the model is “supercritical.” At the critical point, the connection probability has a nontrivial limit, which belongs to (0,1)(0,1) and depends on the “shape” (i.e., the conformal modulus) of the topological rectangle. The exact identification of the limit of the connection probability, though, is highly nontrivial.

The phase transition in the random-cluster model has been argued to result in conformal invariance and universality for the scaling limit of the model (see, e.g., [Car96]). For generic values of the cluster weight parameter q[1,4]q\in[1,4], it was recently shown [DCKK+20] that correlations in the critical random-cluster model become rotationally invariant in the scaling limit. This provides strong evidence of conformal invariance, while still not being enough to prove it. Conformal invariance had been previously rigorously established for the FK-Ising model (cluster weight q=2q=2) and for Bernoulli site percolation on the triangular lattice (related to Bernoulli bond percolation, corresponding to cluster weight q=1q=1) [Smi01, CN06, CN07, Smi10, CS12, CDCH+14, KS16, KS19, Izy22].

In addition to proving conformal invariance, identifying in the scaling limit objects that have a conformal field theory (CFT) interpretation is crucial in order to get access to the full power of the CFT formalism applicable to critical lattice models (see, e.g., [Hen13]). In this direction, in the case of critical site percolation on the triangular lattice, one of us recently established [Cam24a, Cam24b] the conformal covariance of connection probabilities in the scaling limit, showing that they can be interpreted as CFT correlations functions and proving a conjecture formalized by Aizenman in the 1990s. We then moved one step forward and started to explore the CFT structure of critical percolation [CF24a, CF24b], identifying the scaling limits of various connection probabilities with CFT correlation functions and proving a rigorous version of an operator product expansion (OPE).

The first main motivation of this article is to provide a natural extension of the aforementioned works [Cam24a, Cam24b] to the FK-Ising model, which is of great interest to both mathematicians and physicists. In those works, the local independence of percolation is used in the proofs, so it is natural to ask whether one can adapt the arguments developed for percolation to deal with the critical random-cluster model with cluster weight q1q\neq 1. In this paper, we focus on the case q=2q=2, the only one for which the conformal invariance of the scaling limit of interfaces has been proved so far. As we will see, extending the results of [Cam24a, Cam24b] to the FK model with q=2q=2 requires additional work and involves new ingredients, namely a classical result by Wu [MW73] on Ising two-point functions, a spatial mixing property and, in the case of connection probabilities involving boundary points, Smirnov’s FK-Ising fermionic observable (see [Smi10])111Wu’s result on the Ising two-point function and Smirnov’s FK-Ising observable are only used to figure out the exact orders of the normalization factors in Theorems 1.1 and 1.4..

The second main motivation is to provide an alternative approach to study the conformal covariance and the CFT structure of spin and energy correlations in the Ising and Potts models, which are classical models of ferromagnetism and are among the most studied models of statistical mechanics. In the case of the Ising model, the conformal covariance and the CFT structure of spin and energy correlations have been established rigorously to a large extent [HS13, CI13, CHI15, CHI21, CIM23] using discrete complex analysis tools, where the s-holomorphicity of certain observables plays an essential role. However, s-holomorphicity is difficult to prove beyond the cases of the Ising and FK-Ising models. Since the correlations of some of the most basic Ising and Potts fields, such as the spin and energy fields, can be expressed in terms of point-to-point connection probabilities in the random-cluster model via the Edwards-Sokal coupling222In particular, the FK-Ising random-cluster model is related to the Ising spin model. [ES88], it is interesting to develop a geometric approach to study conformal covariance and the CFT structure of spin and energy correlations based on connection probabilities and interfaces in the random-cluster model.333It would also be interesting to construct spin or energy correlations directly for CLE\mathrm{CLE} in the continuum. Such an approach is already interesting for the case of the Ising model, but could prove potentially even more useful to study the scaling limits of Potts model with values of q2q\neq 2.

We will show that, for the 2D critical FK-Ising model, (normalized) point-to-point connection probabilities of various kinds of link patterns have conformally covariant scaling limits (see Theorems 1.1 and 1.4 below). As a corollary, we provide a new proof of conformal covariance of Ising spin correlations (see Corollary 2.4 below). The main inputs of the proofs are the FKG inequality, RSW estimates, the one-arm exponent for CLE\mathrm{CLE} computed in [SSW09], and the convergence of interfaces towards CLE16/3\mathrm{CLE}_{16/3} in the Camia-Newman topology444See [CN06]. [KS16, KS19]. We also use a spatial mixing property, which is essentially a consequence of the FKG inequality and RSW estimates, as shown in [DCHN11]. We note that, although [DCHN11] deals with FK percolation with q=2q=2, there seems to be no fundamental obstacle to extending the arguments in that paper to other values of q[1,4]q\in[1,4].

In the present paper, results proved using discrete complex analysis techniques are needed directly only when dealing with correlation functions involving boundary vertices, namely in Section 4555In Section 4, they are used to replace a classical result by Wu on Ising correlations between pairs of points in the bulk. and in the appendix. They are also used indirectly because the proofs of convergence of discrete interfaces towards CLE16/3\mathrm{CLE}_{16/3} involve the s-holomorphicity of certain observables (see [KS16, KS19]). However, the recent groundbreaking work [DCKK+20] suggests that a proof of convergence and conformal invariance of interfaces for q[1,4]q\in[1,4] without using s-holomorphicity may be possible in the future.

We emphasize that, for our results involving only vertices in the bulk, the convergence of interfaces to CLE16/3\mathrm{CLE}_{16/3} is the only place where s-holomorphicity is used. If one could prove convergence to CLEκ\mathrm{CLE}_{\kappa} for other FK models with q[1,4]q\in[1,4], then a combination of our arguments in this paper and standard percolation techniques would allow us to extend our results to those FK models, at least in a weaker form (normalizing connection probabilities with the probability of the one-arm event).

1.2 Random-cluster model

For definiteness, we consider subgraphs of the square lattice 2\mathbb{Z}^{2}, which is the graph with vertex set V(2):={z=(m,n):m,n}V(\mathbb{Z}^{2}):=\{z=(m,n)\colon m,n\in\mathbb{Z}\} and edge set E(2)E(\mathbb{Z}^{2}) given by edges z,w\langle z,w\rangle between vertices z,wV(2)z,w\in V(\mathbb{Z}^{2}) whose Euclidean distance equals one (called neighbors). This is our primal lattice. Its standard dual lattice is denoted by (2)(\mathbb{Z}^{2})^{\bullet}. The medial lattice (2)(\mathbb{Z}^{2})^{\diamond} is the graph whose vertices are the centers of the edges of the square lattice and whose edges connect vertices at distance 1/21/\sqrt{2}. For a subgraph G2G\subset\mathbb{Z}^{2}, we define its boundary to be the following set of vertices:

G={zV(G):wV(G) such that z,wE(2)},\displaystyle\partial G=\{z\in V(G)\,\colon\,\exists\;w\not\in V(G)\text{ such that }\langle z,w\rangle\in E(\mathbb{Z}^{2})\},

and similarly for subgraphs of (2)(\mathbb{Z}^{2})^{\bullet} and (2)(\mathbb{Z}^{2})^{\diamond}. When we add the subscript or superscript aa, we mean that the lattices 2,(2),(2)\mathbb{Z}^{2},(\mathbb{Z}^{2})^{\bullet},(\mathbb{Z}^{2})^{\diamond} have been scaled by a>0a>0. We consider the models in the scaling limit a0a\to 0. For zz\in\mathbb{C} and r>0r>0, we write

Br(z)={w:|zw|<r}.B_{r}(z)=\{w\in\mathbb{C}:|z-w|<r\}.

Let G=(V(G),E(G))G=(V(G),E(G)) be a finite subgraph of 2\mathbb{Z}^{2}. A random-cluster configuration ω=(ωe)eE(G)\omega=(\omega_{e})_{e\in E(G)} is an element of {0,1}E(G)\{0,1\}^{E(G)}. An edge eE(G)e\in E(G) is said to be open (resp. closed) if ωe=1\omega_{e}=1 (resp. ωe=0\omega_{e}=0). We view the configuration ω\omega as a subgraph of GG with vertex set V(G)V(G) and edge set {eE(G):ωe=1}\{e\in E(G)\colon\omega_{e}=1\}. We denote by o(ω)o(\omega) (resp. c(ω)c(\omega)) the number of open (resp. closed) edges in ω\omega.

We are interested in the connectivity properties of the graph ω\omega with various boundary conditions. The maximal connected666Two vertices zz and ww are said to be connected by ω\omega if there exists a sequence {zj:0jl}\{z_{j}\colon 0\leq j\leq l\} of vertices such that z0=zz_{0}=z, zl=wz_{l}=w, and each edge zj,zj+1\langle z_{j},z_{j+1}\rangle is open in ω\omega for 0j<l0\leq j<l. components of ω\omega are called clusters. The boundary conditions encode how the vertices are connected outside of GG. More precisely, by a boundary condition π\pi we refer to a partition π1πm\pi_{1}\sqcup\cdots\sqcup\pi_{m} of G\partial G. Two vertices z,wGz,w\in\partial G are said to be wired in π\pi if z,wπjz,w\in\pi_{j} for some jj. In contrast, free boundary segments comprise vertices that are not wired with any other vertex (so the corresponding part πj\pi_{j} is a singleton). We denote by ωπ\omega^{\pi} the (quotient) graph obtained from the configuration ω\omega by identifying the wired vertices in π\pi.

Finally, the random-cluster model on GG with edge-weight p[0,1]p\in[0,1], cluster-weight q>0q>0, and boundary condition π\pi, is the probability measure μp,q,Gπ\smash{\mu^{\pi}_{p,q,G}} on the set {0,1}E(G)\{0,1\}^{E(G)} of configurations ω\omega defined by

μp,q,Gπ[ω]:=\displaystyle\mu^{\pi}_{p,q,G}[\omega]:=\; po(ω)(1p)c(ω)qk(ωπ)ω{0,1}E(G)po(ω)(1p)c(ω)qk(ωπ),\displaystyle\frac{p^{o(\omega)}(1-p)^{c(\omega)}q^{k(\omega^{\pi})}}{\underset{\omega\in\{0,1\}^{E(G)}}{\sum}p^{o(\omega)}(1-p)^{c(\omega)}q^{k(\omega^{\pi})}},

where k(ωπ)k(\omega^{\pi}) is the number of connected components of the graph ωπ\omega^{\pi}. For q=2q=2, this model is also known as the FK-Ising model, while for q=1q=1, it is simply the Bernoulli bond percolation (i.e., it is a product measure, with the edges taking independent values). The random-cluster model combines together several important models in the same family. For integer values of qq, it is very closely related to the qq-state Potts model, and by taking a suitable limit, the case of q=0q=0 corresponds to the uniform spanning tree (see, e.g., [DC20]). For q[1,4]q\in[1,4], it was proven [DCST17] that, for a suitable choice of edge-weight pp, namely

p=pc(q):=q1+q,\displaystyle p=p_{c}(q):=\frac{\sqrt{q}}{1+\sqrt{q}},

the random-cluster model exhibits a continuous phase transition in the sense that, for p>pc(q)p>p_{c}(q), there almost surely exists an infinite cluster, while for p<pc(q)p<p_{c}(q), there is no infinite cluster almost surely. Moreover, the limit ppc(q)p\searrow p_{c}(q) is approached in a continuous way. (This is also expected to hold when q(0,1)q\in(0,1), while it is known that the phase transition is discontinuous when q>4q>4 [DCGH+21].) Therefore, the scaling limit is expected to be conformally invariant for all q[0,4]q\in[0,4]. In the present article, we consider point-to-point connection probabilities in the critical FK-Ising model.

1.3 Connection probabilities of interior vertices

Fix n2n\geq 2, let 𝐐=(Q1,,Qr)\mathbf{Q}=(Q_{1},\ldots,Q_{r}) be a partition of {1,2,,n}\{1,2,\ldots,n\}. For a>0a>0, we denote by a2a\mathbb{Z}^{2} the scaled square lattice. For a simply connected subgraph Ωaa2\Omega^{a}\subseteq a\mathbb{Z}^{2}, we denote by a=Ωa\mathbb{P}^{a}=\mathbb{P}^{a}_{\Omega} the critical FK-Ising measure on Ωa\Omega^{a} with free boundary conditions777The boundary condition chosen here is not essential. We can change to, for instance, wired or alternating wired/free boundary conditions.. Let z1a,,znaΩaz_{1}^{a},\ldots,z_{n}^{a}\in\Omega^{a} be nn distinct vertices. Denote by G(𝐐;z1a,,zna)G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a}) the event that z1a,,znaz_{1}^{a},\ldots,z_{n}^{a} are connected to each other according to the partition 𝐐\mathbf{Q}, meaning that ziaz_{i}^{a} and zjaz_{j}^{a} are in the same open cluster if and only if ii and jj are in the same element of 𝑸\boldsymbol{Q}. See Figure 1.1 for a schematic example.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 1.1: The event G(𝐐;z1a,z2a,z3a,z4a)G(\mathbf{Q};z_{1}^{a},z_{2}^{a},z_{3}^{a},z_{4}^{a}) with (a) 𝐐=({1,2,3,4})\mathbf{Q}=(\{1,2,3,4\}); (b) 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}); (c) 𝐐=({1,3},{2,4})\mathbf{Q}=(\{1,3\},\{2,4\}); and (d) 𝐐=({1,4},{2,3})\mathbf{Q}=(\{1,4\},\{2,3\}). The yellow regions represent open clusters and two yellow regions are disjoint if and only if they represent distinct open clusters.
Theorem 1.1.

Let Ω\Omega\subseteq\mathbb{C} be a simply connected domain and z1,,znΩz_{1},\ldots,z_{n}\in\Omega be nn distinct points. Let Ωaa2\Omega^{a}\subseteq a\mathbb{Z}^{2} be a sequence of simply connected domains that converges to Ω\Omega in the Hausdorff metric888Our proofs can be generalized to the Carathédory convergence of discrete domains easily, which is weaker than the Hausdorff convergence used in this paper for simplicity. as a0a\to 0. Suppose that z1a,,znaΩaz_{1}^{a},\ldots,z_{n}^{a}\in\Omega^{a} are vertices satisfying lima0zja=zj\lim_{a\to 0}z_{j}^{a}=z_{j} for 1jn1\leq j\leq n. Let 𝐐\mathbf{Q} be a partition of {1,2,,n}\{1,2,\ldots,n\} that contains no singletons. Then we have the following:

  1. (1)

    The limit

    P(Ω;𝐐;z1,,zn):=lima0an8×Ωa[G(𝐐;z1a,,zna)]P(\Omega;\mathbf{Q};z_{1},\ldots,z_{n}):=\lim_{a\to 0}a^{-\frac{n}{8}}\times\mathbb{P}^{a}_{\Omega}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right] (1.1)

    exists and belongs to (0,)(0,\infty).

  2. (2)

    The function PP defined via (1.1) satisfies the following conformal covariance property: if φ\varphi is a conformal map from Ω\Omega onto some Ω\Omega^{\prime} such that φ(zj)\varphi(z_{j})\neq\infty for 1jn1\leq j\leq n, then we have

    P(Ω;𝐐;φ(z1),,φ(zn))=P(Ω;𝐐;z1,,zn)×j=1n|φ(zj)|18.P(\Omega^{\prime};\mathbf{Q};\varphi(z_{1}),\ldots,\varphi(z_{n}))=P(\Omega;\mathbf{Q};z_{1},\ldots,z_{n})\times\prod_{j=1}^{n}|\varphi^{\prime}(z_{j})|^{-\frac{1}{8}}. (1.2)

The normalization factor a18a^{\frac{1}{8}} in (1.1) is related to the interior one-arm exponent for the FK-Ising model and can be derived using Wu’s result on the full-plane Ising two-point spin correlation (see [MW73] and Theorem 2.3 below for more details). As we will see in the proof, without Wu’s result (Theorem 2.3), we can still prove the results in Theorem 1.1 by combining Lemmas 3.33.4 and 3.6 below, but with the normalization factor a18a^{\frac{1}{8}} replaced by 2a[0B1(0)]\mathbb{P}_{\mathbb{Z}^{2}}^{a}[0\longleftrightarrow\partial B_{1}(0)].

We emphasize that the domain Ω\Omega in Theorem 1.1 is not necessarily bounded. For n2n\geq 2, we write 𝐐n=({1,2,,n})\mathbf{Q}_{n}=(\{1,2,\ldots,n\}) for the special partition with a single element, corresponding to the case in which z1a,znaz_{1}^{a},\ldots z_{n}^{a} belong to the same cluster. Then Theorem 1.1 immediately implies that there exists a constant C1(0,)C_{1}\in(0,\infty) such that

P(;𝐐2;z1,z2)=C1|z1z2|14,P(\mathbb{C};\mathbf{Q}_{2};z_{1},z_{2})=C_{1}|z_{1}-z_{2}|^{-\frac{1}{4}},

which can also be derived from the rotational invariance of the full-plane Ising correlations given by [CHI15, Remark 2.26] (or [Pin12]) and the Edwards-Sokal coupling (see [ES88]). Moreover, since Möbius transformations have three degrees of freedom, we can also conclude from Theorem 1.1 that there exists a constant C2(0,)C_{2}\in(0,\infty) such that

P(;𝐐3;z1,z2,z3)=C2|z1z2|18|z1z3|18|z2z3|18.P(\mathbb{C};\mathbf{Q}_{3};z_{1},z_{2},z_{3})=C_{2}|z_{1}-z_{2}|^{-\frac{1}{8}}|z_{1}-z_{3}|^{-\frac{1}{8}}|z_{2}-z_{3}|^{-\frac{1}{8}}. (1.3)

Consequently, we have the following factorization formula

P(;𝐐3;z1,z2,z3)=C2C132P(;𝐐2;z1,z2)×P(;𝐐2;z1,z3)×P(;𝐐2;z2,z3).P(\mathbb{C};\mathbf{Q}_{3};z_{1},z_{2},z_{3})=\frac{C_{2}}{C_{1}^{\frac{3}{2}}}\sqrt{P(\mathbb{C};\mathbf{Q}_{2};z_{1},z_{2})\times P(\mathbb{C};\mathbf{Q}_{2};z_{1},z_{3})\times P(\mathbb{C};\mathbf{Q}_{2};z_{2},z_{3})}.

Analogous results are derived in [Cam24a, Section 1.1] for percolation, in which case, one knows the value of the constant C2/C13/2C_{2}/C_{1}^{3/2} (see [ACSW24]). According to a private communication with one of the authors of [ACSW24], it seems that one may be able to compute the ratio C2/C13/2C_{2}/C_{1}^{3/2} also for the FK-Ising model, using the techniques developed in [ACSW24], which rely on Liouville quantum gravity and the imaginary DOZZ formula.

As another application of Theorem 1.1, we can partially recover results from [CHI15]:

Corollary 1.2.

Assume the same setup as in Theorem 1.1. Consider the critical Ising model on Ωa\Omega^{a} with free999The boundary condition here is not essential. We can change to, for instance, \oplus boundary condition or alternating /free\oplus/{\mathrm{free}} boundary conditions. boundary condition and denote by 𝔼Ωa\mathbb{E}^{a}_{\Omega} the corresponding expectation. Then

σz1σznΩ:=lima0an8×𝔼Ωa[σz1aσzna]\langle\sigma_{z_{1}}\ldots\sigma_{z_{n}}\rangle_{\Omega}:=\lim_{a\to 0}a^{-\frac{n}{8}}\times\mathbb{E}^{a}_{\Omega}\left[\sigma_{z_{1}^{a}}\ldots\sigma_{z_{n}^{a}}\right]

exists and belongs to [0,)[0,\infty). The limit equals 0 if and only if nn is odd. Moreover, σz1σznΩ\langle\sigma_{z_{1}}\cdots\sigma_{z_{n}}\rangle_{\Omega} satisfies the same conformal covariance property as in (1.2).

Proof.

Let 𝒬\mathcal{Q} be the set of all partitions 𝐐=(Q1,,Ql)\mathbf{Q}=\left(Q_{1},\ldots,Q_{l}\right) of {1,2,,n}\{1,2,\ldots,n\} such that each QrQ_{r} contains an even number of elements. According to the Edwards-Sokal coupling (see [ES88]), we have

𝔼Ωa[σz1aσzna]=𝐐𝒬Ωa[G(𝐐;z1a,,zna)].\mathbb{E}^{a}_{\Omega}\left[\sigma_{z_{1}^{a}}\cdots\sigma_{z_{n}^{a}}\right]=\sum_{\mathbf{Q}\in\mathcal{Q}}\mathbb{P}^{a}_{\Omega}\left[G\left(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a}\right)\right]. (1.4)

Then the desired conclusions follow immediately from (1.4) and Theorem 1.1. ∎

The proof of Theorem 1.1 follows the spirit in [Cam24a], that is, relating connection probabilities of interior vertices to the probabilities of events involving interfaces on the lattice and CLE loops in the continuum, conditional on certain crossing events that have probability 0 in the continuum. However, compared with the percolation case in [Cam24a], in the present case, one encounters additional difficulties due to the lack of independence of the states (open or closed) of different edges. We deal with this problem using the so-called spatial mixing property proved in [DCHN11], which intuitively reads as follows: given two events 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2} that depend only on the states of edges inside edge sets E1E_{1} and E2E_{2}, respectively, then 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2} are almost independent when E1E_{1} is far from E2E_{2} (see Lemma 3.2 for more details).

We denote by ¯a=¯Ωa\overline{\mathbb{P}}^{a}=\overline{\mathbb{P}}^{a}_{\Omega} the critical FK-Ising measure on Ωa\Omega^{a} with wired boundary conditions. The same strategy can be used to show the following result (an analogous result for percolation is proved in [Cam24b]):

Theorem 1.3.

Let Ω\Omega\subset\mathbb{C} be a simply connected domain and zΩz\in\Omega. Let Ωaa2\Omega^{a}\subseteq a\mathbb{Z}^{2} be a sequence of simply connected domains that converges to Ω\Omega under the Hausdorff metric as a0a\to 0. Suppose that zaΩz^{a}\in\Omega satisfies lima0za=z\lim_{a\to 0}z^{a}=z. Then, there exists a constant C3(0,)C_{3}\in(0,\infty) such that

g(Ω;z):=lima0a18ׯΩa[zaΩa]=C3rad(z,Ω)18,g(\Omega;z):=\lim_{a\to 0}a^{-\frac{1}{8}}\times\overline{\mathbb{P}}_{\Omega}^{a}\left[z^{a}\longleftrightarrow\partial\Omega^{a}\right]=C_{3}\mathrm{rad}(z,\Omega)^{-\frac{1}{8}}, (1.5)

where rad(z,Ω)\mathrm{rad}(z,\Omega) denotes the conformal radius of Ω\Omega from zz.

We denote by 𝔼Ω(a,𝐩)\mathbb{E}_{\Omega}^{(a,\mathbf{p})} the expectation of the critical Ising measure on Ωa\Omega^{a} with \oplus boundary condition. Thanks to the Edwards-Sokal coupling (see [ES88]), we have

𝔼Ω(a,𝐩)[σza]=¯Ωa[zaΩa].\mathbb{E}_{\Omega}^{(a,\mathbf{p})}\left[\sigma_{z^{a}}\right]=\overline{\mathbb{P}}_{\Omega}^{a}\left[z^{a}\longleftrightarrow\partial\Omega^{a}\right]. (1.6)

Consequently, a combination of Theorem 1.3 and (1.6) gives the scaling limit of the Ising magnetization 𝔼Ω(a,𝐩)[σza]\mathbb{E}_{\Omega}^{(a,\mathbf{p})}\left[\sigma_{z^{a}}\right] normalized by a18a^{-\frac{1}{8}}, which was derived in [CHI15, Corollary 1.3] using discrete complex analysis techniques, with an explicit constant C3=2512e32ζ(1)C_{3}=2^{\frac{5}{12}}e^{-\frac{3}{2}\zeta^{\prime}(-1)}, where ζ\zeta^{\prime} denotes the derivative of Riemann’s zeta function.

1.4 Connection probabilities involving boundary vertices

This section concerns the case in which some (or all) of z1a,,znaz_{1}^{a},\ldots,z_{n}^{a} are on the boundary of Ωa\Omega^{a}. In such a situation, we can derive results similar to those in the previous section, but with different normalization factors for the points on the boundary.

For simplicity, we only consider the critical FK-Ising model on the scaled upper half-plane a(2)a\left(\mathbb{H}\cap\mathbb{Z}^{2}\right) with free boundary condition on \mathbb{R}. We use a\mathbb{P}_{\mathbb{H}}^{a} to denote the corresponding measure.

Theorem 1.4.

Let n,n,\ell be non-negative integers such that n+2n+\ell\geq 2. Let z1,,znz_{1},\ldots,z_{n}\in\mathbb{H} and x1,,xx_{1},\ldots,x_{\ell}\in\mathbb{R}. Suppose that z1a,,znaa(2)z_{1}^{a},\ldots,z_{n}^{a}\in a(\mathbb{H}\cap\mathbb{Z}^{2}) and x1a,,xa(2)x_{1}^{a},\ldots,x_{\ell}^{a}\in\partial(\mathbb{H}\cap\mathbb{Z}^{2}) are vertices satisfying lima0zja=zj,lima0xka=xk\lim_{a\to 0}z_{j}^{a}=z_{j},\lim_{a\to 0}x_{k}^{a}=x_{k} for 1jn1\leq j\leq n and 1k1\leq k\leq\ell. Let 𝐐\mathbf{Q} be a partition of {1,2,,n+}\{1,2,\ldots,n+\ell\} that contains no singletons. Then

R(𝐐;z1,,zn;x1,,x):=lima0an82×a[G(𝐐;z1a,,zna,x1a,,xa)]R(\mathbf{Q};z_{1},\ldots,z_{n};x_{1},\ldots,x_{\ell}):=\lim_{a\to 0}a^{-\frac{n}{8}-\frac{\ell}{2}}\times\mathbb{P}^{a}_{\mathbb{H}}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a},x_{1}^{a},\ldots,x_{\ell}^{a})\right] (1.7)

exists and belongs to (0,)(0,\infty). Moreover, if φ\varphi is a conformal map from \mathbb{H} onto itself such that φ(xk)\varphi(x_{k})\neq\infty for 1k1\leq k\leq\ell, φ(zj)\varphi(z_{j})\neq\infty for 1jn1\leq j\leq n, then we have

R(𝐐;φ(z1),,φ(zn);φ(x1),,φ(x))=R(𝐐;z1,,zn;x1,,x)×j=1n|φ(zj)|18×k=1|φ(xk)|12.R(\mathbf{Q};\varphi(z_{1}),\ldots,\varphi(z_{n});\varphi(x_{1}),\ldots,\varphi(x_{\ell}))=R(\mathbf{Q};z_{1},\ldots,z_{n};x_{1},\ldots,x_{\ell})\times\prod_{j=1}^{n}|\varphi^{\prime}(z_{j})|^{-\frac{1}{8}}\times\prod_{k=1}^{\ell}|\varphi^{\prime}(x_{k})|^{-\frac{1}{2}}.

When the number of vertices is small, we have explicit expressions for RR up to multiplicative constants:

  1. (1)

    For n=0n=0 and {2,3}\ell\in\{2,3\}, there exist constants C4,C5(0,)C_{4},C_{5}\in(0,\infty) such that

    R(𝐐2;x1,x2)=C4|x1x2|1,R(𝐐3;x1,x2,x3)=C5|x1x2|12|x1x3|12|x2x3|12.R(\mathbf{Q}_{2};x_{1},x_{2})=C_{4}|x_{1}-x_{2}|^{-1},\quad R(\mathbf{Q}_{3};x_{1},x_{2},x_{3})=C_{5}|x_{1}-x_{2}|^{-\frac{1}{2}}|x_{1}-x_{3}|^{-\frac{1}{2}}|x_{2}-x_{3}|^{-\frac{1}{2}}. (1.8)

    As a consequence, we have the factorization formula

    R(𝐐3;x1,x2,x3)=C5C432R(𝐐2;x1,x2)×R(𝐐2;x1,x3)×R(𝐐2;x2,x3).R(\mathbf{Q}_{3};x_{1},x_{2},x_{3})=\frac{C_{5}}{C_{4}^{\frac{3}{2}}}\sqrt{R(\mathbf{Q}_{2};x_{1},x_{2})\times R(\mathbf{Q}_{2};x_{1},x_{3})\times R(\mathbf{Q}_{2};x_{2},x_{3})}.
  2. (2)

    For n==1n=\ell=1, x1=0x_{1}=0 and z1=re𝔦θ=x+𝔦yz_{1}=re^{\mathfrak{i}\theta}=x+\mathfrak{i}y\in\mathbb{H}, there exists a constant C6(0,)C_{6}\in(0,\infty) such that

    R(𝐐;0;z)=C6y38|z|=C6(sinθ)38r58.R(\mathbf{Q};0;z)=C_{6}\frac{y^{\frac{3}{8}}}{|z|}=C_{6}\frac{\left(\sin\theta\right)^{\frac{3}{8}}}{r^{\frac{5}{8}}}.

The normalization factor in (1.7) is related to the boundary one-arm exponent for the FK-Ising model (see [Wu18, Theorems 1 and 2]). As part of the proof of (1.9), we will derive

lima0a12a[0B1(0)]=C7\lim_{a\to 0}a^{-\frac{1}{2}}\mathbb{P}^{a}_{\mathbb{H}}\left[0\longleftrightarrow\partial B_{1}(0)\right]=C_{7} (1.9)

using Smirnov’s FK-Ising fermionic observable (see [Smi10]). We note that, without (1.9), one can still obtain a result like (1.7), but with a12a^{\frac{1}{2}} replaced by a[0B1(0)]\mathbb{P}_{\mathbb{H}}^{a}\left[0\longleftrightarrow\partial B_{1}(0)\right]. This follows from the observation that

lima0a[0Bϵ(0)]a[0B1(0)]=ϵ12,ϵ>0,\lim_{a\to 0}\frac{\mathbb{P}_{\mathbb{H}}^{a}\left[0\longleftrightarrow\partial B_{\epsilon}(0)\right]}{\mathbb{P}_{\mathbb{H}}^{a}\left[0\longleftrightarrow\partial B_{1}(0)\right]}=\epsilon^{-\frac{1}{2}},\quad\forall\epsilon>0, (1.10)

which can be derived using the boundary one-arm exponent obtained in [Wu18, Theorems 1 and 2] and the argument in [GPS13, Proof of Proposition 4.9].

1.5 Organization of the rest of the paper and outlook

In Section 2, we collect some known results that will be used in the proofs of the main results of the paper. In Section 3, we study the connection probabilities of points in the bulk and prove Theorem 1.1. In Section 4, we study connection probabilities of points that can be either in the bulk or on the boundary, and prove Theorem 1.4. The paper ends with an appendix dedicated to the Ising model in a domain with a boundary, in which we provide explicit formulas for some Ising boundary spin correlations.

Theorems 1.1 and 1.4 consider connection probabilities between points at fixed Euclidean distance from each other, which are related to correlation functions of the Ising spin (magnetization) field. The Ising energy correlations on the lattice can also be expressed in terms of point-to-point connection probabilities in the FK-Ising model via the Edwards-Sokal coupling. It would be interesting if one could give a more geometric approach to establish the conformal covariance of Ising energy correlations, as explained in Section 1.1. A fundamental difference is that, in this case, one would need to consider vertices that are a finite number of lattice spaces apart.

In recent works [CF24a, CF24b] on critical Bernoulli site percolation on the triangular lattice, we studied the asymptotic behavior of certain limiting connection probabilities as two points get close to each, identifying the presence of a logarithmic correction to the leading-order power-law behavior. It would be interesting to extend that analysis to the FK model. However, the arguments and ideas in [CF24a, CF24b] are not sufficient to deal with the critical random-cluster models with q1q\neq 1 (even if we assume the convergence of interfaces towards CLEκ\mathrm{CLE}_{\kappa}) because, when q1q\neq 1, one loses independence and, in particular, one needs to consider the influence of the boundary on the states of edges in the bulk.

In future work, we plan to study the Ising energy field and explore a new proof of conformal covariance of Ising energy correlations at criticality based on the convergence of interfaces in the critical FK-Ising model towards CLE16/3\mathrm{CLE}_{16/3}, with the hope that it can be generalized to deal with the Potts model with other values of qq (assuming the convergence of interfaces towards CLEκ\mathrm{CLE}_{\kappa} for the corresponding critical random-cluster model).

2 Preliminaries

In this section, we collect some known results that will be used in various places of our proofs. The first one is the convergence of FK-Ising interfaces in domains with Dobrushin boundary conditions towards SLE16/3\mathrm{SLE}_{16/3} curves, which was proven in a celebrated group effort summarized in [CDCH+14]. The second one is the convergence of FK-Ising loop ensembles towards CLE16/3\mathrm{CLE}_{16/3} given in [KS16, KS19]. The third one is Wu’s classic result [Wu66] on the scaling limit of Ising two-point correlation functions. The last one is the convergence of Smirnov’s FK-Ising fermionic observable [Smi10]. As explained in the introduction, Wu’s result on the Ising two-point function and the convergence of Smirnov’s FK-Ising observable are only used to figure out the exact orders of the normalization factors in Theorems 1.1 and 1.4.

2.1 Conformal invariance of interfaces and loop ensembles

Dobrushin domains

A discrete Dobrushin domain is a simply connected subgraph of 2\mathbb{Z}^{2}, or a2a\mathbb{Z}^{2}, with two marked boundary points x1,x2x_{1},x_{2} in counterclockwise order, whose precise definition is given below.

Firstly, we define the medial Dobrushin domain. Edges are oriented in such a way that the four edges around a vertex of 2\mathbb{Z}^{2} (respectively, (2)(\mathbb{Z}^{2})^{\bullet}) form a circuit that winds around the vertex clockwise (resp., counterclockwise). Let x1,x2x_{1}^{\diamond},x_{2}^{\diamond} be distinct medial vertices. Let (x1x2),(x2x1)(x_{1}^{\diamond}\,x_{2}^{\diamond}),(x_{2}^{\diamond}\,x_{1}^{\diamond}) be two oriented paths on (2)(\mathbb{Z}^{2})^{\diamond} satisfying the following conditions (where we use the convention x3=x1x_{3}^{\diamond}=x_{1}^{\diamond}):

  • the two paths are edge-avoiding and satisfy (x1x2)(x2x1)={x1,x2}(x_{1}^{\diamond}x_{2}^{\diamond})\cap(x_{2}^{\diamond}x_{1}^{\diamond})=\{x_{1}^{\diamond},x_{2}^{\diamond}\};

  • the infinite connected component of (2)j=12(xjxj+1)(\mathbb{Z}^{2})^{\diamond}\setminus\smash{\overset{2}{\underset{j=1}{\bigcup}}}(x_{j}^{\diamond}\,x_{j+1}^{\diamond}) lies on the right (resp., left) of the oriented path (x1x2)(x_{1}^{\diamond}\,x_{2}^{\diamond}) (resp., (x2x2)(x_{2}^{\diamond}\,x_{2}^{\diamond})).

Given {(xjxj+1):1j2}\{(x_{j}^{\diamond}\,x_{j+1}^{\diamond})\colon 1\leq j\leq 2\}, the medial Dobrushin domain (Ω;x1,x2)(\Omega^{\diamond};x_{1}^{\diamond},x_{2}^{\diamond}) is defined as the subgraph of (2)(\mathbb{Z}^{2})^{\diamond} induced by the vertices lying on or enclosed by the circuit obtained by concatenating (x1x2)(x_{1}^{\diamond}x_{2}^{\diamond}) and (x2x1)(x_{2}^{\diamond}x_{1}^{\diamond}). For each j{1,2}j\in\{1,2\}, the outer corner wj(2)Ωw_{j}^{\diamond}\in(\mathbb{Z}^{2})^{\diamond}\setminus\Omega^{\diamond} is defined to be a medial vertex adjacent to xjx_{j}^{\diamond}, and the outer corner edge eje_{j}^{\diamond} is defined to be the medial edge connecting xjx_{j}^{\diamond} and wjw_{j}^{\diamond}.

Secondly, we define the primal Dobrushin domain (Ω;x1,x2)(\Omega;x_{1},x_{2}) induced by (Ω;x1,x2)(\Omega^{\diamond};x_{1}^{\diamond},x_{2}^{\diamond}) as follows:

  • the edge set E(Ω)E(\Omega) consists of edges passing through endpoints of medial edges in E(Ω)(x2x1)E(\Omega^{\diamond})\setminus(x_{2}^{\diamond}x_{1}^{\diamond});

  • the vertex set V(Ω)V(\Omega) consists of endpoints of edges in E(G)E(G);

  • the marked boundary vertex xjx_{j} is defined to be the vertex in Ω\Omega nearest to xjx_{j}^{\diamond} for each j=1,2j=1,2;

  • the arc (x1x2)(x_{1}\,x_{2}) is the set of edges whose midpoints are vertices in (x1x2)Ω(x_{1}^{\diamond}\,x_{2}^{\diamond})\cap\partial\Omega.

Lastly, we define the dual Dobrushin domain (Ω;x1,x2)(\Omega^{\bullet};x_{1}^{\bullet},x_{2}^{\bullet}) induced by (Ω;x1,x2)(\Omega^{\diamond};x_{1}^{\diamond},x_{2}^{\diamond}) in a similar way. More precisely, Ω\Omega^{\bullet} is the subgraph of (2)(\mathbb{Z}^{2})^{\bullet} with edge set consisting of edges passing through endpoints of medial edges in E(Ω)(x2x1)E(\Omega^{\diamond})\setminus(x_{2}^{\diamond}x_{1}^{\diamond}) and vertex set consisting of the endpoints of these edges. The marked boundary vertex xjx_{j}^{\bullet} is defined to be the vertex in V(Ω)V(\Omega^{\bullet}) nearest to xjx_{j}^{\diamond} for j=1,2j=1,2. The boundary arc (x2x1)(x_{2}^{\bullet}\,x_{1}^{\bullet}) is the set of edges whose midpoints are vertices in (x2x1)Ω(x_{2}^{\diamond}\,x_{1}^{\diamond})\cap\Omega^{\diamond}.

Boundary conditions, loops and interfaces

We will consider the critical FK-Ising model on Ωa\Omega^{a} with two types of boundary conditions:

  1. 1.

    free boundary conditions,

  2. 2.

    Dobrushin boundary conditions, that is, free on (x2ax1a)(x_{2}^{a}x_{1}^{a}) and wired on (x1ax2a)(x_{1}^{a}x_{2}^{a}).

We note that the first type can be considered a degenerate case of the second, with x1a=x2ax_{1}^{a}=x_{2}^{a}.

Let ω{0,1}E(Ωa)\omega\in\{0,1\}^{E(\Omega^{a})} be a configuration of the FK-Ising model on Ωa\Omega^{a}. For both types of boundary conditions mentioned above, we can draw edge-self-avoiding interfaces on Ωa,\Omega^{a,\diamond} using the edges of the medial lattice as follows:

  • each edge belongs to a unique interface,

  • edges are connected in such a way that no interface crosses an open primal edge or open dual edge.

In the case of free boundary conditions, the edges of the medial lattice form a collection Γa\Gamma^{a} of loops that do not cross each other or themselves. In the (non-degenerate) case of Dobrushin boundary conditions, in addition to loops, there is an edge-self-avoiding interface γa\gamma^{a} connecting the outer corners w1a,w_{1}^{a,\diamond} and w2a,w_{2}^{a,\diamond} on the medial Dobrushin domain (Ωa,;x1a,,x2a,)(\Omega^{a,\diamond};x_{1}^{a,\diamond},x_{2}^{a,\diamond}). Both Γa\Gamma^{a} and γa\gamma^{a} have a conformally invariant scaling limit, and we will make use of this fact.

Topologies and convergence of interfaces

In this section, we specify the topologies used to formulate the convergence of loops and interfaces and the convergence of collections of loops.

First, as in [Cam24a], we define a distance function Δ\Delta on ×\mathbb{C}\times\mathbb{C} given by

Δ(u,v):=infϕ0a|ϕ(t)|1+|ϕ(t)|2dt,\Delta(u,v):=\inf_{\phi}\int_{0}^{a}\frac{|\phi^{\prime}(t)|}{1+|\phi(t)|^{2}}\mathrm{d}t,

where the infimum is over all differentiable curves ϕ:[0,1]\phi:[0,1]\to\mathbb{C} with ϕ(0)=u\phi(0)=u and ϕ(1)=v\phi(1)=v. Note that, if we write ^:={}\widehat{\mathbb{C}}:=\mathbb{C}\cup\{\infty\} and extend Δ\Delta to be a function on ^×^\widehat{\mathbb{C}}\times\widehat{\mathbb{C}}, then (^,Δ)\left(\widehat{\mathbb{C}},\Delta\right) is compact.

Second, for two planar continuous oriented curves γ1,γ2:[0,1]\gamma_{1},\gamma_{2}:[0,1]\to\mathbb{C}, we define

dist(γ1,γ2):=infψ,ψ~supt[0,1]Δ(γ1(ψ(t)),γ2(ψ~(t))),\mathrm{dist}\left(\gamma_{1},\gamma_{2}\right):=\inf_{\psi,\tilde{\psi}}\sup_{t\in[0,1]}\Delta\left(\gamma_{1}(\psi(t)),\gamma_{2}(\tilde{\psi}(t))\right), (2.1)

where the infimum is taken over all increasing homeomorphisms ψ,ψ~:[0,1][0,1]\psi,\tilde{\psi}:[0,1]\to[0,1].

Third, for two sets of loops, Γ1\Gamma_{1} and Γ2\Gamma_{2}, we define

Dist(Γ1,Γ2):=inf{ϵ>0:γ1Γ1,γ2Γ2 s.t. dist(γ1,γ2)ϵ and vice versa}.\mathrm{Dist}\left(\Gamma_{1},\Gamma_{2}\right):=\inf\left\{\epsilon>0:\forall\gamma_{1}\in\Gamma_{1},\enspace\exists\gamma_{2}\in\Gamma_{2}\text{ s.t. }\mathrm{dist}(\gamma_{1},\gamma_{2})\leq\epsilon\text{ and vice versa}\right\}. (2.2)
Theorem 2.1.

([CDCH+14]) Let Ω\Omega\subseteq\mathbb{C} be a simply connected domain with locally connected boundary and let x1,x2Ωx_{1},x_{2}\in\partial\Omega be 22 distinct points. Let (Ωa;x1a,x2a)(\Omega^{a};x_{1}^{a},x_{2}^{a}) be a sequence of primal Dobrushin domains satisfying: Ωa\Omega^{a} converges to Ω\Omega under the Hausdorff metric and x1ax1,x2ax2x_{1}^{a}\to x_{1},x_{2}^{a}\to x_{2}, as a0a\to 0. Consider the critical FK-Ising model on (Ωa;x1a,x2a)(\Omega^{a};x_{1}^{a},x_{2}^{a}) with Dobrushin boundary conditions described above. Then the interface γa\gamma^{a} converges weakly, as a0a\to 0, under the topology induced by dist\mathrm{dist} (see (2.1)) towards SLE16/3\mathrm{SLE}_{16/3} on Ω\Omega from x1x_{1} to x2x_{2} (for more details on SLE\mathrm{SLE}, see [Law05] or [RS05]).

Theorem 2.2.

([KS16, Theorem 1.1],  [KS19, Theorem 1.1]) Assume the same setup as in Theorem 1.1. Consider the critical FK-Ising model on Ωa\Omega^{a} with free boundary conditions. Then the collection of loops Γa\Gamma^{a} converges weakly as a0a\to 0 under the topology induced by Dist\mathrm{Dist} (see (2.2)). We denote the limiting measure by =Ω\mathbb{P}=\mathbb{P}_{\Omega}. Moreover, Ω\mathbb{P}_{\Omega} is conformally invariant. For wired boundary conditions, the corresponding conclusions also hold and we denote by ¯=¯Ω\overline{\mathbb{P}}=\overline{\mathbb{P}}_{\Omega} the limiting measure.

We emphasize that the hypothesis on the convergence of discrete domains is not optimal here, but the present version will be sufficient for our purposes.

2.2 Scaling limit of two-point Ising correlation functions and FK-Ising connection probabilities

Consider the critical Ising measure on a2a\mathbb{Z}^{2} and let 𝔼2a\mathbb{E}_{\mathbb{Z}^{2}}^{a} denote the corresponding expectation.

Theorem 2.3.

([Wu66, MW73]) Let y1a,y2aa2y_{1}^{a},y_{2}^{a}\in a\mathbb{Z}^{2} satisfy lima0y1a=0\lim_{a\to 0}y_{1}^{a}=0 and lima0y2a=1\lim_{a\to 0}y_{2}^{a}=1. Then we have

lima0a14×𝔼2a[σy1aσy2a]=C8,\lim_{a\to 0}a^{-\frac{1}{4}}\times\mathbb{E}_{\mathbb{Z}^{2}}^{a}\left[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}\right]=C_{8}, (2.3)

where C8>0C_{8}>0 is a universal constant.

Corollary 2.4.

Let y1a,y2aa2y_{1}^{a},y_{2}^{a}\in a\mathbb{Z}^{2} satisfy lima0y1a=0\lim_{a\to 0}y_{1}^{a}=0 and lima0y2a=1\lim_{a\to 0}y_{2}^{a}=1. Then we have

lima0a14×2a[y1ay2a]=C8,\lim_{a\to 0}a^{-\frac{1}{4}}\times\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]=C_{8},

where C8C_{8} is the same universal constant in (2.3).

Proof.

The Edwards-Sokal coupling (see [ES88]) implies that

2a[y1ay2a]=𝔼2a[σy1aσy2a].\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]=\mathbb{E}^{a}_{\mathbb{Z}^{2}}\left[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}\right]. (2.4)

The desired conclusion follows readily from (2.4) and Theorem 2.3. ∎

2.3 Scaling limit of Smirnov’s FK-Ising fermionic observable

To deal with connection probabilities involving boundary vertices, Theorem 2.3, which is a main ingredient in the proof of Theorem 1.1, is not sufficient. A manifestation of this fact is that the boundary arm exponents are typically different than the interior ones. This affects the normalization of crossing probabilities involving boundary vertices. For this case, unable to use Theorem 2.3, we will find the exact order of the proper normalization using Smirnov’s FK-Ising fermionic observable (see [Smi10]), as explained below.

Refer to caption
Figure 2.1: An illustration of the Dobrushin domain 2a\Box_{2}^{a} and the vertices, medial vertices, and (oriented) medial edges described in Section 2.3. Recall that the four medial edges around a vertex of a2a\mathbb{Z}^{2} (respectively, a(2)a(\mathbb{Z}^{2})^{\bullet}) form a circuit that winds around the vertex clockwise (resp., counterclockwise).

Let 2a=[2,2]2a2\Box_{2}^{a}=[-2,2]^{2}\cap a\mathbb{Z}^{2}, consider the the Dobrushin domain (2a;u1a,u2a)(\Box_{2}^{a};u_{1}^{a},u_{2}^{a}) and recall the definitions of the medial vertices u1a,u_{1}^{a,\diamond} and u2a,u_{2}^{a,\diamond} adjacent to u1au_{1}^{a} and u2au_{2}^{a} and of the outer corners w1a,w_{1}^{a,\diamond} and w2a,w_{2}^{a,\diamond} adjacent to u1a,u_{1}^{a,\diamond} and u2a,u_{2}^{a,\diamond}, respectively (see Figure 2.1).

Proposition 2.5.

Let u1au_{1}^{a} and u2au_{2}^{a} be the southwest and southeast corners of the box 2a\Box_{2}^{a}, respectively. Let u3a=2a{𝔦y:y>0}u_{3}^{a}=\partial\Box_{2}^{a}\cap\{\mathfrak{i}y:y>0\}. Consider the critical FK-Ising model on (2a;u1a,u2a)(\Box_{2}^{a};u_{1}^{a},u_{2}^{a}) with Dobrushin boundary conditions and denote by a\mathbb{P}_{*}^{a} the corresponding measure. Then there exists a universal constant C9C_{9} such that

lima0a12×a[u3a(u1au2a)]=C9.\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{P}_{*}^{a}\left[u_{3}^{a}\longleftrightarrow(u_{1}^{a}u_{2}^{a})\right]=C_{9}. (2.5)

Note that (2.5) gives the sharpness of the boundary one-arm exponent for the FK-Ising model.

The proof of Proposition 2.5 relies on the following observations: (1) the choice of Dobrushin boundary conditions implies that the edges of the medial lattice form a collection Γa\Gamma^{a} of non-crossing loops and an edge-self-avoiding interface γa\gamma^{a} parameterized from w1a,w_{1}^{a,\diamond} to w2a,w_{2}^{a,\diamond}; (2) denoting by u3a,2a,u_{3}^{a,\diamond}\in\partial\Box_{2}^{a,\diamond} the medial vertex to the north of u3au_{3}^{a} closest to u3au_{3}^{a} and letting e3,a,,e3,+a,e_{3,-}^{a,\diamond},e_{3,+}^{a,\diamond} be the oriented101010Recall that medial edges are oriented in such a way that the four edges around a vertex of 2\mathbb{Z}^{2} (respectively, (2)(\mathbb{Z}^{2})^{\bullet}) form a circuit that winds around the vertex clockwise (resp., counterclockwise). medial edges around u3au_{3}^{a} with u3a,u_{3}^{a,\diamond} as their end vertex and beginning vertex, respectively (see Figure 2.1), then

{u3a(u1au2a)}={γa passes through e3,a,}={γa passes through e3,+a,};\{u_{3}^{a}\longleftrightarrow(u_{1}^{a}u_{2}^{a})\}=\{\gamma^{a}\text{ passes through }e_{3,-}^{a,\diamond}\}=\{\gamma^{a}\text{ passes through }e_{3,+}^{a,\diamond}\}; (2.6)

(3) the probabilities of the latter two events in (2.6) can be related to the value of Smirnov’s observable on the medial vertex u3a,u_{3}^{a,\diamond}.

We interpret each oriented medial edge ee^{\diamond} as a complex number and define

ν(e):=(e|e|)12.\nu\left(e^{\diamond}\right):=\left(\frac{e^{\diamond}}{|e^{\diamond}|}\right)^{-\frac{1}{2}}.

Note that ν(e)\nu(e^{\diamond}) is defined up to a sign, which we will specify when necessary. We denote by 𝔼a\mathbb{E}_{*}^{a} the expectation corresponding to a\mathbb{P}_{*}^{a}. Now let us recall the definition of FK-Ising fermionic observable given in [Smi10]. Recall that in the Dobrushin domain (2a;u1a,u2a)(\Box_{2}^{a};u_{1}^{a},u_{2}^{a}), the outer corner w2a,(a2)2a,w_{2}^{a,\diamond}\in(a\mathbb{Z}^{2})^{\diamond}\setminus\Box_{2}^{a,\diamond} is a medial vertex adjacent to u2a,u_{2}^{a,\diamond}, and the outer corner edge e2a,e_{2}^{a,\diamond} is the medial edge connecting u2a,u_{2}^{a,\diamond} and w2a,w_{2}^{a,\diamond}.

  • First, define the edge observable on edges and outer corner edges ee of 2a,\Box_{2}^{a,\diamond} as

    Fa(e):=ν(e2a,)𝔼a[𝟙{eγa}exp(𝔦2Wγa(e2δ,a,e))],\displaystyle F^{a}(e):=\nu(e_{2}^{a,\diamond})\;\mathbb{E}^{a}_{*}\Big{[}\mathbb{1}\{e\in\gamma^{a}\}\exp\Big{(}-\frac{\mathfrak{i}}{2}W_{\gamma^{a}}\big{(}e_{2}^{\delta,a},e\big{)}\Big{)}\Big{]},

    where e2a,e_{2}^{a,\diamond} is the oriented outer corner edge connecting to w2a,w_{2}^{a,\diamond} and oriented to have w2a,w_{2}^{a,\diamond} as its end vertex, Wγa(e2a,,e)W_{\gamma^{a}}\big{(}e_{2}^{a,\diamond},e\big{)}{\in\mathbb{R}} is the winding number from w2a,w_{2}^{a,\diamond} to ee along the reversal of γa\gamma^{a}. Note that FaF^{a} is only defined up to a sign.

  • Second, we define the vertex observable on interior vertices zz^{\diamond} of 2a,\Box_{2}^{a,\diamond} as

    Fa(z):=12ezFa(e),\displaystyle F^{a}(z^{\diamond}):=\frac{1}{2}\sum_{e^{\diamond}\sim z^{\diamond}}F^{a}(e^{\diamond}),

    where the sum is over the four medial edges eze^{\diamond}\sim z^{\diamond} having zz^{\diamond} as an endpoint.

  • Third, we define the vertex observable on vertices in 2a,{u1a,,u2a,}\partial\Box_{2}^{a,\diamond}\setminus\{u_{1}^{a,\diamond},u_{2}^{a,\diamond}\} as follows. For any za,2a,{u1a,,u2a,}z^{a,\diamond}\in\partial\Box_{2}^{a,\diamond}\setminus\{u_{1}^{a,\diamond},u_{2}^{a,\diamond}\}, let ea,,e+a,2a,{u1a,,u2a,}e_{-}^{a,\diamond},e_{+}^{a,\diamond}\in\partial\Box_{2}^{a,\diamond}\setminus\{u_{1}^{a,\diamond},u_{2}^{a,\diamond}\} be the oriented medial edges having za,z^{a,\diamond} as their end vertex and beginning vertex, respectively. Set

    Fa(z)={2exp(𝔦π4)Fa(e+a,)+2exp(𝔦π4)Fa(ea,),if za, (u1a,u2a,),2exp(𝔦π4)Fa(ea,)+2exp(𝔦π4)Fa(e+a,),if za, (u2a,u1a,).\displaystyle F^{a}(z^{\diamond})=\begin{cases}\sqrt{2}\exp(-\mathfrak{i}\frac{\pi}{4})F^{a}(e_{+}^{a,\diamond})+\sqrt{2}\exp(\mathfrak{i}\frac{\pi}{4})F^{a}(e_{-}^{a,\diamond}),&\text{if $z^{a,\diamond}$ $\in(u_{1}^{a,\diamond}u_{2}^{a,\diamond})$},\\[5.0pt] \sqrt{2}\exp(-\mathfrak{i}\frac{\pi}{4})F^{a}(e_{-}^{a,\diamond})+\sqrt{2}\exp(\mathfrak{i}\frac{\pi}{4})F^{a}(e_{+}^{a,\diamond}),&\text{if $z^{a,\diamond}$ $\in(u_{2}^{a,\diamond}u_{1}^{a,\diamond})$}.\end{cases}
Lemma 2.6.

With an appropriate choice of the sign of ν(e2a,)\nu(e_{2}^{a,\diamond}), we have

Fa(u3a,)=22cos(π8)×a[γapasses through e3,a,]=22cos(π8)×a[u3a(u1au2a)].F^{a}(u_{3}^{a,\diamond})=2\sqrt{2}\cos\left(\frac{\pi}{8}\right)\times\mathbb{P}_{*}^{a}\left[\gamma^{a}\text{passes through }{e_{3,-}^{a,\diamond}}\right]=2\sqrt{2}\cos\left(\frac{\pi}{8}\right)\times\mathbb{P}_{*}^{a}\left[u_{3}^{a}\longleftrightarrow(u_{1}^{a}u_{2}^{a})\right]. (2.7)
Proof.

The first equal sign in (2.7) follows from [FPW24, Eq. (3.25)] and the observation that the winding number Wγa(e2a,,e3,a,)W_{\gamma^{a}}(e_{2}^{a,\diamond},e_{3,-}^{a,\diamond}) is the same for all FK-Ising configurations. The second equal sign follows from (2.6). ∎

It is a celebrated result in [Smi10] that, as a0a\to 0, the function 21/4a12Fa()2^{-1/4}a^{-\frac{1}{2}}F^{a}(\cdot) converges locally uniformly towards an explicit holomorphic function on [2,2]2[-2,2]^{2}. Since the boundary of our discrete domain 2a\Box_{2}^{a} is flat near u3au_{3}^{a}, we also have the convergence of 21/4a12Fa(u3a,)2^{-1/4}a^{-\frac{1}{2}}F^{a}(u_{3}^{a,\diamond}).

Lemma 2.7.

We have the convergence

lima021/4a12|Fa(u3a,)|=|ϕ(𝔦;[2,2]2;1𝔦,1𝔦)|,\lim_{a\to 0}2^{-1/4}a^{-\frac{1}{2}}|F^{a}(u_{3}^{a,\diamond})|=|\phi(\mathfrak{i};[-2,2]^{2};-1-\mathfrak{i},1-\mathfrak{i})|,

where ϕ(;[2,2]2;1𝔦,1+𝔦)\phi(\cdot;[-2,2]^{2};-1-\mathfrak{i},-1+\mathfrak{i}) is the unique (up to a sign) holomorphic function defined in [FPW24, Proposition 3.6 and Remark 3.9].

Proof.

The boundary of 2a\Box_{2}^{a} near u3au_{3}^{a} satisfies the regularity assumption in [CI13, Definition 3.14]. Thus, we can repeat the argument in [CI13, Proof of Lemma 4.8] to obtain the desired convergence. ∎

Proof of Proposition 2.5.

The desired conclusion follows immediately from Lemmas 2.6 and 2.7. ∎

3 Connection probabilities of interior vertices

3.1 One-arm event coupling and the spatial mixing property

For 0<r<R0<r<R, we denote by 𝒜r,R(z)\mathcal{A}_{r,R}(z) the event {Br(z)BR(z)}\{\partial B_{r}(z)\longleftrightarrow\partial B_{R}(z)\} and by 𝒪r,R(z)\mathcal{O}_{r,R}(z) the event that there exists an open circuit surrounding zz inside BR(z)Br(z)B_{R}(z)\setminus B_{r}(z). If AA\subseteq\mathbb{C}, we define

d(z,A):=infwA|zw|.d(z,A):=\inf_{w\in A}|z-w|. (3.1)

The following lemma is an analog of [Cam24a, Lemma 2.1] for the FK-Ising model.

Lemma 3.1.

Let Ωaa2\Omega^{a}\subseteq a\mathbb{Z}^{2} and zΩaz\in\Omega^{a}. Let ϵ>0\epsilon>0 satisfy ϵ<d(Ωa,z)10\epsilon<\frac{d(\partial\Omega^{a},z)}{10}. Consider the critical FK-Ising measure πa\mathbb{P}^{a}_{\pi} on Ωa\Omega^{a} with arbitrary boundary condition π\pi. Then for any ϵ>δ>η>a\epsilon>\delta>\eta>a, there exists a coupling, η,δa\mathbb{P}^{a}_{\eta,\delta}, between Λ~aπa[|zBϵ(z)]\tilde{\Lambda}^{a}\sim\mathbb{P}^{a}_{\pi}\left[\cdot|z\longleftrightarrow\partial B_{\epsilon}(z)\right] and Λ^aπa[|𝒜η,ϵ(z)]\widehat{\Lambda}^{a}\sim\mathbb{P}^{a}_{\pi}\left[\cdot|\mathcal{A}_{\eta,\epsilon}(z)\right], and an event 𝒮\mathcal{S}, such that

𝒪^η,δ(z)𝒮,\widehat{\mathcal{O}}_{\eta,\delta}(z)\subseteq\mathcal{S},

where 𝒪^η,δ(z)\widehat{\mathcal{O}}_{\eta,\delta}(z) denotes the event that there exists an open circuit surrounding zz inside Bδ(z)Bη(z)B_{\delta}(z)\setminus B_{\eta}(z) in Λ^a\widehat{\Lambda}^{a}, and such that if 𝒮\mathcal{S} happens, then status of edges outside Bδ(z)B_{\delta}(z) is the same under both configurations Λ~a\tilde{\Lambda}^{a} and Λ^a\widehat{\Lambda}^{a}. In particular, there exist universal constants c1,c2(0,)c_{1},c_{2}\in(0,\infty) such that

η,δa[𝒮]1c1(ηδ)c2.\mathbb{P}^{a}_{\eta,\delta}[\mathcal{S}]\geq 1-c_{1}\left(\frac{\eta}{\delta}\right)^{c_{2}}.
Proof.

The proof is essentially the same as that of [Cam24a, Lemma 2.1]. The same strategy works here because the proof of [Cam24a, Lemma 2.1] is based on the FKG inequality and RSW estimates. Like percolation, the FK-Ising model also satisfies the FKG inequality (see, e.g., [BK89]) and RSW estimates (as shown in [DCHN11]). ∎

We denote by μGπ\mu_{G}^{\pi} the critical FK-Ising measure on G2G\subseteq\mathbb{Z}^{2} with boundary condition π\pi. For N1N\geq 1, write N=[N,N]22\Box_{N}=[-N,N]^{2}\cap\mathbb{Z}^{2}. We will also use the “spatial mixing property” of the critical FK-Ising model:

Lemma 3.2.

There exist two universal constants c3,c4(0,)c_{3},c_{4}\in(0,\infty) such that, for any 10N<M10N<M, any boundary conditions τ,π\tau,\pi on M\partial\Box_{M} and any event 𝒜\mathcal{A} that depends only on state of edges inside N\Box_{N}, we have

|μMπ(𝒜)μMτ(𝒜)|c3(NM)c4×μMπ(𝒜).|\mu_{\Box_{M}}^{\pi}(\mathcal{A})-\mu_{\Box_{M}}^{\tau}(\mathcal{A})|\leq c_{3}\left(\frac{N}{M}\right)^{c_{4}}\times\mu_{\Box_{M}}^{\pi}(\mathcal{A}).
Proof.

See [DCHN11, Proposition 5.11]. ∎

3.2 Proof of Theorem 1.1

In the rest of the paper, let {δm}m=1\{\delta_{m}\}_{m=1}^{\infty} be a decreasing sequence such that limmδm=0\lim_{m\to\infty}\delta_{m}=0.

3.2.1 Reduction to CLE conditional probabilities

We use the same strategy as in [Cam24a] to prove the following result:

Lemma 3.3.

Let 𝐐\mathbf{Q} be a partition of {1,2,,n}\{1,2,\ldots,n\} that contains no singletons. Then, for any ϵ>0\epsilon>0 with

ϵ<min{minjk|zjzk|,min1jnd(Ω,zj)}100,\epsilon<\frac{\min\{\min_{j\neq k}|z_{j}-z_{k}|,\min_{1\leq j\leq n}d(\Omega,z_{j})\}}{100},

we have the convergence

lima0a[G(𝐐;z1a,,zna)]a[ziaBϵ(zja),1jn]=[G(𝐐;z1,,zn)|zjBϵ(zj),1jn],\lim_{a\to 0}\frac{\mathbb{P}^{a}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]}{\mathbb{P}^{a}\left[z_{i}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}=\mathbb{P}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right], (3.2)

where the right hand side of (3.2), which belongs to (0,)(0,\infty), can be defined in terms of conditional crossing probabilities as in (3.6) and (3.7) below for 𝐐n=({1,2,,n})\mathbf{Q}_{n}=(\{1,2,\ldots,n\}), and in (3.10) below for 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}). For general 𝐐\mathbf{Q}, the quantity

[G(𝐐;z1,,zn)|zjBϵ(zj),1jn]\mathbb{P}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]

can be defined analogously.

By standard RSW arguments (see, e.g., the proofs of Lemmas 2.1 and 2.2 of [CN09]), there exists a constant c>0c>0, independent of aa, such that

c<a[G(𝐐;z1a,,zna)]a[zjaBϵ(zja),1jn]=a[G(𝐐;z1a,,zna)|zjaBϵ(zja),1jn]1.c<\frac{\mathbb{P}^{a}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]}{\mathbb{P}^{a}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}=\mathbb{P}^{a}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]\leq 1. (3.3)

Thus, any subsequential limit of a[G(𝐐;z1a,,zna)]/a[zjaBϵ(zja),1jn]\mathbb{P}^{a}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]/\mathbb{P}^{a}\big{[}z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\big{]} must belong to (0,)(0,\infty). We will prove Lemma 3.3 in two steps: first, we will prove it for general nn and 𝐐=𝐐n=({1,2,,n})\mathbf{Q}=\mathbf{Q}_{n}=(\{1,2,\ldots,n\}), that is, when all vertices belong to the same open cluster; then, we will give the proof for n=4n=4 and 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}). All other cases can be treated similarly.

Proof of Lemma 3.3 for 𝐐=𝐐n\mathbf{Q}=\mathbf{Q}_{n}.

Since the strategy is essentially the same as in [Cam24a, Proof of Theorem 1.1], we only sketch the proof here.

For fixed δm\delta_{m}, choose η>0\eta>0 such that a<η<δm<ϵa<\eta<\delta_{m}<\epsilon. Thanks to Lemma 3.1, there exists a coupling, η,δma\mathbb{P}^{a}_{\eta,\delta_{m}}, between configurations Λ~a\tilde{\Lambda}^{a} and Λ^a\widehat{\Lambda}^{a} distributed to a[|zjaBϵ(zja),1jn]\mathbb{P}^{a}\left[\;\cdot\;|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right] and a[|𝒜η,ϵ(zja),1jn]\mathbb{P}^{a}\left[\;\cdot\;|\mathcal{A}_{\eta,\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right], respectively, and an event 𝒮a\mathcal{S}_{a} such that

i=1n𝒪^η,δm(zja)𝒮a,\cap_{i=1}^{n}\widehat{\mathcal{O}}_{\eta,\delta_{m}}(z_{j}^{a})\subseteq\mathcal{S}_{a},

where 𝒪^η,δm(zja)\widehat{\mathcal{O}}_{\eta,\delta_{m}}(z_{j}^{a}) denotes the event that there exists an open circuit surrounding zjaz_{j}^{a} inside Bδm(zja)Bη(zja)B_{\delta_{m}}(z_{j}^{a})\setminus B_{\eta}(z_{j}^{a}) in Λ^a\widehat{\Lambda}^{a}, and such that if 𝒮a\mathcal{S}_{a} happens, then the states of the edges outside j=1nBδm(zja)\cup_{j=1}^{n}B_{\delta_{m}}(z_{j}^{a}) are the same in Λ~a\tilde{\Lambda}^{a} and Λ^a\widehat{\Lambda}^{a}. Thanks to RSW estimates, we have

η,δma[𝒮a]1nc1(ηδm)c2,\mathbb{P}^{a}_{\eta,\delta_{m}}\left[\mathcal{S}_{a}\right]\geq 1-nc_{1}\left(\frac{\eta}{\delta_{m}}\right)^{c_{2}}, (3.4)

where c1c_{1} and c2c_{2} are constants in Lemma 3.2.

Note that

a[jk({Bδm(zja)Bδm(zka)}𝒪δm,ϵ(zja)𝒪δm,ϵ(zka))|zjaBϵ(zja),1jn]\displaystyle\mathbb{P}^{a}\left[\cap_{j\neq k}\left(\left\{B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a})\right\}\cap\mathcal{O}_{\delta_{m},\epsilon}(z_{j}^{a})\cap\mathcal{O}_{\delta_{m},\epsilon}(z_{k}^{a})\right)|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right] (3.5)
\displaystyle\leq a[zjazka,1j<kn|zjaBϵ(zja),1jn]\displaystyle\mathbb{P}^{a}\left[z_{j}^{a}\longleftrightarrow z_{k}^{a},\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
\displaystyle\leq a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn].\displaystyle\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow\partial B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right].

On the one hand, one can show that

lim supa0a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn]\displaystyle\limsup_{a\to 0}\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
\displaystyle\leq [Bδm(zj)Bδm(zk),1j<kn|𝒜η,ϵ(zk),1jn]+lim supa0(1η,δma[𝒮a]).\displaystyle\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|\mathcal{A}_{\eta,\epsilon}(z_{k}),\enspace 1\leq j\leq n\right]+\limsup_{a\to 0}\left(1-\mathbb{P}^{a}_{\eta,\delta_{m}}\left[\mathcal{S}_{a}\right]\right).

Thanks to (3.4), letting η0\eta\to 0 (along some subsequence {ηr}r=1\{\eta_{r}\}_{r=1}^{\infty}) yields

lim supa0a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn]\displaystyle\limsup_{a\to 0}\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
\displaystyle\leq limr[Bδm(zj)Bδm(zk),1j<kn|𝒜ηr,ϵ(zj),1jn].\displaystyle\lim_{r\to\infty}\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|\mathcal{A}_{\eta_{r},\epsilon}(z_{j}),\enspace 1\leq j\leq n\right].

Similarly, one can also show that

lim infa0a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn]\displaystyle\liminf_{a\to 0}\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
\displaystyle\geq limr[Bδm(zj)Bδm(zk),1j<kn|𝒜ηr,ϵ(zj),1jn].\displaystyle\lim_{r\to\infty}\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|\mathcal{A}_{\eta_{r},\epsilon}(z_{j}),\enspace 1\leq j\leq n\right].

Thus, we have

lima0a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn]\displaystyle\lim_{a\to 0}\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
=\displaystyle= limη0[Bδm(zj)Bδm(zk),1j<kn|𝒜η,ϵ(zj),1jn]\displaystyle\lim_{\eta\to 0}\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|\mathcal{A}_{\eta,\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]
=:\displaystyle=: [Bδm(zj)Bδm(zk),1j<kn|zjBϵ(zj),1jn].\displaystyle\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]. (3.6)

Since the quantities in the above equation are decreasing in mm, we have

limmlima0a[Bδm(zja)Bδm(zka),1j<kn|zjaBϵ(zja),1jn]\displaystyle\lim_{m\to\infty}\lim_{a\to 0}\mathbb{P}^{a}\left[B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a}),\enspace 1\leq j<k\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
=\displaystyle= limm[Bδm(zj)Bδm(zk),1j<kn|zjBϵ(zj),1jn]\displaystyle\lim_{m\to\infty}\mathbb{P}\left[B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k}),\enspace 1\leq j<k\leq n|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]
=:\displaystyle=: [zjzk,1j<kn|zjBϵ(zj),1jn].\displaystyle\mathbb{P}\left[z_{j}\longleftrightarrow z_{k},\enspace 1\leq j<k\leq n|z_{j}\longleftrightarrow B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]. (3.7)

On the other hand, for the term in (3.5), one can use (thanks to the FKG inequality and RSW estimates)

limmlim infa0a[j=1n𝒪δm,ϵ|jk({Bδm(zj)Bδm(zk)}{zjBϵ(zj)}{zkBϵ(zk)})]=1,\lim_{m\to\infty}\liminf_{a\to 0}\mathbb{P}^{a}\left[\cap_{j=1}^{n}\mathcal{O}_{\delta_{m},\epsilon}|\cap_{j\neq k}\left(\{B_{\delta_{m}}(z_{j})\longleftrightarrow B_{\delta_{m}}(z_{k})\}\cap\{z_{j}\longrightarrow B_{\epsilon}(z_{j})\}\cap\{z_{k}\longleftrightarrow B_{\epsilon}(z_{k})\}\right)\right]=1,

to show that

limmlim infa0a[jk({Bδm(zja)Bδm(zka)}𝒪δm,ϵ(zja)𝒪δm,ϵ(zka))|zjaBϵ(zja),1jn]\displaystyle\lim_{m\to\infty}\liminf_{a\to 0}\mathbb{P}^{a}\left[\cap_{j\neq k}\left(\left\{B_{\delta_{m}}(z_{j}^{a})\longleftrightarrow B_{\delta_{m}}(z_{k}^{a})\right\}\cap\mathcal{O}_{\delta_{m},\epsilon}(z_{j}^{a})\cap\mathcal{O}_{\delta_{m},\epsilon}(z_{k}^{a})\right)|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]
=\displaystyle= [zjzk,1j<kn|zjBϵ(zj),1jn].\displaystyle\mathbb{P}\left[z_{j}\longleftrightarrow z_{k},\enspace 1\leq j<k\leq n|z_{j}\longleftrightarrow B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right].

Combining the observations above, we obtain the desired result. ∎

Proof of Lemma 3.3 for 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}).

One can proceed as above to show that for k,m1k,m\geq 1,

[Bδm(z1)Bδm(z2),Bδm(z3)Bδm(z4),Bδk(z1)\centernotBδk(z3)|zjBϵ(zj),1j4\displaystyle\mathbb{P}\left[B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2}),B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4}),B_{\delta_{k}}(z_{1})\centernot{\longleftrightarrow}B_{\delta_{k}}(z_{3})|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4
:=\displaystyle:= limη0[Bδm(z1)Bδm(z2),Bδm(z3)Bδm(z4),Bδk(z1)\centernotBδk(z3)|𝒜η,ϵ(zj),1j4]\displaystyle\lim_{\eta\to 0}\mathbb{P}\left[B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2}),B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4}),B_{\delta_{k}}(z_{1})\centernot{\longleftrightarrow}B_{\delta_{k}}(z_{3})|\mathcal{A}_{\eta,\epsilon}(z_{j}),\enspace 1\leq j\leq 4\right]

exists. We define

[z1z2\centernotz3z4|zjBϵ(zj),1j4]\displaystyle\mathbb{P}\left[z_{1}\longleftrightarrow z_{2}\centernot{\longleftrightarrow}z_{3}\longleftrightarrow z_{4}|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4\right]
:=[m1km{Bδm(z1)Bδm(z2),Bδm(z3)Bδm(z4),Bδk(z1)\centernotBδk(z3)}\displaystyle\quad:=\mathbb{P}\big{[}\cap_{m\geq 1}\cap_{k\leq m}\{B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2}),B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4}),B_{\delta_{k}}(z_{1})\centernot{\longleftrightarrow}B_{\delta_{k}}(z_{3})\} (3.8)
|zjBϵ(zj),1j4]\displaystyle\qquad\qquad\qquad\qquad\qquad|\,z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4\big{]}
=limklimm[Bδm(z1)Bδm(z2),Bδm(z3)Bδm(z4),Bδk(z1)\centernotBδk(z3)\displaystyle\quad=\lim_{k\to\infty}\lim_{m\to\infty}\mathbb{P}\big{[}B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2}),B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4}),B_{\delta_{k}}(z_{1})\centernot{\longleftrightarrow}B_{\delta_{k}}(z_{3}) (3.9)
|zjBϵ(zj),1j4].\displaystyle\qquad\qquad\qquad\qquad\qquad|\,z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4\big{]}. (3.10)

We denote by {Bδm(z1)Bδm(z2)Bδm(z3)Bδm(z4)}\{B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2})\circ B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4})\} the event that, outside j=14Bδm(zj)\cup_{j=1}^{4}B_{\delta_{m}}(z_{j}), there are two disjoint open clusters connecting Bδm(z1)B_{\delta_{m}}(z_{1}) to Bδm(z2)B_{\delta_{m}}(z_{2}) and Bδm(z3)B_{\delta_{m}}(z_{3}) to Bδm(z4)B_{\delta_{m}}(z_{4}), respectively. Then one can proceed as in [Cam24a, Proof of Theorem 1.5] to show that

lima0a[z1az2a\centernotz3az4a|zjaBϵ(zja),1j4]\displaystyle\lim_{a\to 0}\mathbb{P}^{a}\left[z_{1}^{a}\longleftrightarrow z_{2}^{a}\centernot{\longleftrightarrow}z_{3}^{a}\longleftrightarrow z_{4}^{a}|z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq 4\right]
=[z1z2\centernotz3z4|zjBϵ(zj),1j4],\displaystyle\quad=\mathbb{P}\left[z_{1}\longleftrightarrow z_{2}\centernot{\longleftrightarrow}z_{3}\longleftrightarrow z_{4}|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4\right],

with [Cam24a, Eq. (2.56)] replaced by

[{Bδm(z1)Bδm(z2)Bδm(z3)Bδm(z4)}{Bδk(z1)Bδk(z3)}|zjBϵ(zj),1j4]\displaystyle\mathbb{P}\left[\{B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2})\circ B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4})\}\cap\{B_{\delta_{k}}(z_{1})\longleftrightarrow B_{\delta_{k}}(z_{3})\}|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq 4\right]
=limη0[{Bδm(z1)Bδm(z2)Bδm(z3)Bδm(z4)}{Bδk(z1)Bδk(z3)}|𝒜η,ϵ(zj),1j4]\displaystyle=\lim_{\eta\to 0}\mathbb{P}\left[\{B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2})\circ B_{\delta_{m}}(z_{3})\longleftrightarrow B_{\delta_{m}}(z_{4})\}\cap\{B_{\delta_{k}}(z_{1})\longleftrightarrow B_{\delta_{k}}(z_{3})\}|\mathcal{A}_{\eta,\epsilon}(z_{j}),\enspace 1\leq j\leq 4\right]
limη0[(j=14δm,L(zj)){𝒜η,δm(zj),1j4}][𝒜η,ϵ(zj),1j4]\displaystyle\leq\lim_{\eta\to 0}\frac{\mathbb{P}\left[(\cup_{j=1}^{4}\mathcal{F}_{\sqrt{\delta_{m}},L}(z_{j}))\cap\{\mathcal{A}_{\eta,\delta_{m}}(z_{j}),\enspace 1\leq j\leq 4\}\right]}{\mathbb{P}[\mathcal{A}_{\eta,\epsilon}(z_{j}),\enspace 1\leq j\leq 4]}
c[δm,L(z1)](δmϵ)12c~(δmL)35241100×(δmϵ)1/2,\displaystyle\leq c\,\mathbb{P}\left[\mathcal{F}_{\sqrt{\delta_{m}},L}(z_{1})\right]\left(\frac{\delta_{m}}{\epsilon}\right)^{-\frac{1}{2}}\leq\tilde{c}\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}-\frac{1}{100}}\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1/2},

for some L>0L>0 independent of mm (when mm is large enough), where c,c~(0,)c,\tilde{c}\in(0,\infty) are two constants that do not depend on mm, the first inequality in the last line is due to the spatial mixing property in Lemma 3.2 and the exponent in Theorem 2.3111111Indeed, one can replace Theorem 2.3 with Lemma 3.6 below., and where the last inequality follows from the fact that [δm,L(z1)](δmL)3524+o(1)\mathbb{P}\left[\mathcal{F}_{\sqrt{\delta_{m}},L}(z_{1})\right]\sim\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}+o(1)} as δmL0\frac{\sqrt{\delta_{m}}}{L}\to 0, which follows from [Wu18, Theorems 3 and 4]. ∎

3.2.2 Proper normalization and proof of part 1.1 of Theorem 1.1

Lemma 3.3 provides an intermediate convergence result for crossing probabilities. In order to obtain part 1.1 of Theorem 1.1, we need to replace the denominator in (3.2), which depends on Ωa\Omega^{a} and z1a,,znaz_{1}^{a},\ldots,z_{n}^{a}, with a normalization that is independent of Ωa\Omega^{a} and z1a,,znaz_{1}^{a},\ldots,z_{n}^{a}. This is the goal of the present section. We note that such a step, which is crucial for the FK-Ising model, is not needed for percolation because in the latter model independence implies that the analog of the denominator in (3.2) can be immediately written as the nthn^{th} power of a one-arm probability.

Recall that we denote by Ωa\mathbb{P}^{a}_{\Omega} the critical FK-Ising measure on Ωa\Omega^{a} with free boundary condition, and by Ω\mathbb{P}_{\Omega} the law of the limiting FK-Ising loop ensemble in Ω\Omega with free boundary condition. For M1M\geq 1, let M=[M,M]2\Box_{M}=[-M,M]^{2} and Ma=Ma2\Box_{M}^{a}=\Box_{M}\cap a\mathbb{Z}^{2}.

Lemma 3.4.

With the notation of Theorem 1.1, for small enough ϵ>0\epsilon>0, we have

lima0Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])n\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}
=limmΩ[zjBϵ(zj),1jn|zjBδm(zj),1jn]([0B1(0)|0Bδm(0)])n,\displaystyle\quad=\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}},

where the equation means that the limits on both sides exist in (0,)(0,\infty) and that they are equal, and where

[0B1(0)|0Bδm(0)]:=limM[M,M]2[0B1(0)|0Bδm(0)].\displaystyle\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]:=\lim_{M\to\infty}\mathbb{P}_{[-M,M]^{2}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right].
Proof.

Let M10M\geq 10. We write

Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])n=Ωa[zjaBϵ(zja),1jn|zjaBδm(zja),1jn](Ma[0B1(0)|0Bδm(0)])nT1(a,m)×(Ma[0B1(0)|0Bδm(0)]2a[0B1(0)|0Bδm(0)])nT2(a,m)×Ωa[zjaBδm(zja),1jn](2a[0Bδm(0)])nT3(a,m).\displaystyle\begin{split}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}=&\underbrace{\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n|z_{j}^{a}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\Box_{M}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}}_{T_{1}^{(a,m)}}\\ &\quad\times\underbrace{\left(\frac{\mathbb{P}^{a}_{\Box_{M}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]}\right)^{n}}_{T_{2}^{(a,m)}}\\ &\quad\times\underbrace{\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}[0\longleftrightarrow\partial B_{\delta_{m}}(0)]\Big{)}^{n}}}_{T_{3}^{(a,m)}}.\end{split} (3.11)

For the term T1(a,m)T_{1}^{(a,m)}, one can proceed as in the proof of Lemma 3.3 to show that

Vm,M:=lima0T1(a,m)=\displaystyle V_{m,M}:=\lim_{a\to 0}T_{1}^{(a,m)}= Ω[zjBϵ(zj),1jn|zjBδm(zj),1jn](M[0B1(0)|0Bδm(0)])n\displaystyle\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\Box_{M}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}
:=\displaystyle:= limklimη0Ω[Bδk(zj)Bϵ(zj),1jn|Bη(zj)Bδm(zj),1jn](M[Bδk(0)B1(0)|Bη(0)Bδm(0)])n.\displaystyle\lim_{k\to\infty}\lim_{\eta\to 0}\frac{\mathbb{P}_{\Omega}\left[\partial B_{\delta_{k}}(z_{j})\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|\partial B_{\eta}(z_{j})\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\Box_{M}}\left[\partial B_{\delta_{k}}(0)\longleftrightarrow\partial B_{1}(0)|\partial B_{\eta}(0)\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}.

From the spatial mixing property in Lemma 3.2, we conclude that {Vm,M}M=10\{V_{m,M}\}_{M=10}^{\infty} is a Cauchy sequence. Consequently, we can define

Vm:=limMVm,M:=limMΩ[zjBϵ(zj),1jn|zjBδm(zj),1jn](M[0B1(0)|0Bδm(0)])n.\displaystyle V_{m}:=\lim_{M\to\infty}V_{m,M}:=\lim_{M\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\Box_{M}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}.

A direct application of RSW arguments and the FKG inequality (see, e.g., the proofs of Lemmas 2.1 and 2.2 of [CN09]) implies that there exist two constants c3c3(0,)c_{3}\,c_{3}\in(0,\infty) that do not depend on mm such that

c3Vmc4,c_{3}\leq V_{m}\leq c_{4},

which implies that any subsequential limit of the sequence {Vm}m=1\{V_{m}\}_{m=1}^{\infty} must belong to (0,)(0,\infty). Let VV be any subsequential limit of {Vm}m=1\{V_{m}\}_{m=1}^{\infty}.

For the terms T2(a,m)T_{2}^{(a,m)} and T3(a,m)T_{3}^{(a,m)}, it follows from the spatial mixing property in Lemma 3.2 that

limMlima0T2(a,m)=1,limmlima0T3(a,m)=1.\lim_{M\to\infty}\lim_{a\to 0}T_{2}^{(a,m)}=1,\quad\lim_{m\to\infty}\lim_{a\to 0}T_{3}^{(a,m)}=1.

Combining these observations with (3.11) yields

Vlim infa0Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])nlim supa0Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])nV,\displaystyle V\leq\liminf_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}\leq\limsup_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}\leq V,

which implies that VV is independent of the choice of subsequence and that

lima0Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])n=V=limmVm.\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}=V=\lim_{m\to\infty}V_{m}.

Lemma 3.5.

Let y1a,y2aa2y_{1}^{a},y_{2}^{a}\in a\mathbb{Z}^{2} satisfy lima0y1a=0\lim_{a\to 0}y_{1}^{a}=0 and lima0y2a=1\lim_{a\to 0}y_{2}^{a}=1. Then

lima02a[y1ay2a](2a[0B1(0)])2=C,\displaystyle\lim_{a\to 0}\frac{\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]}{\Big{(}\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{2}}=C,

for some constant C(0,)C\in(0,\infty).

Proof.

One can proceed as in the proof of Lemma 3.4 to show that

lima02a[y1ay2a](2a[0B1(0)])2=\displaystyle\lim_{a\to 0}\frac{\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]}{\Big{(}\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{2}}= limm[01|0Bδm(0), 1Bδm(1)]([0B1(0)|0Bδm(0)])2=:C(0,),\displaystyle\lim_{m\to\infty}\frac{\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow 1|0\longleftrightarrow\partial B_{\delta_{m}}(0),\,1\longleftrightarrow\partial B_{\delta_{m}}(1)\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{2}}=:C\in(0,\infty),

where

[01|0Bδm(0), 1Bδm(1)]([0B1(0)|0Bδm(0)])2:=limMM[01|0Bδm(0), 1Bδm(1)](M[0B1(0)|0Bδm(0)])2.\displaystyle\frac{\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow 1|0\longleftrightarrow\partial B_{\delta_{m}}(0),\,1\longleftrightarrow\partial B_{\delta_{m}}(1)\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{2}}:=\lim_{M\to\infty}\frac{\mathbb{P}_{\Box_{M}}\left[0\longleftrightarrow 1|0\longleftrightarrow\partial B_{\delta_{m}}(0),\,1\longleftrightarrow\partial B_{\delta_{m}}(1)\right]}{\Big{(}\mathbb{P}_{\Box_{M}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{2}}.

This completes the proof. ∎

With Lemmas 3.3-3.5 and Corollary 2.4 at hand, the proof of part 1.1 of Theorem 1.1 is straightforward.

Proof of part 1.1 of Theorem 1.1.

Let ϵ(0,min{minjk|zjzk|,min1jnd(Ω,zj)}100)\epsilon\in(0,\frac{\min\{\min_{j\neq k}|z_{j}-z_{k}|,\min_{1\leq j\leq n}d(\Omega,z_{j})\}}{100}) and y1a,y2aa2y_{1}^{a},y_{2}^{a}\in a\mathbb{Z}^{2} satisfy lima0y1a=0\lim_{a\to 0}y_{1}^{a}=0, lima0y2a=1\lim_{a\to 0}y_{2}^{a}=1. Write

an8×Ωa[G(𝐐;z1a,,zna)]=\displaystyle a^{-\frac{n}{8}}\times\mathbb{P}^{a}_{\Omega}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]= Ωa[G(𝐐;z1a,,zna)]Ωa[zjaBϵ(zja),1jn]×Ωa[zjaBϵ(zja),1jn](2a[0B1(0)])n\displaystyle\frac{\mathbb{P}^{a}_{\Omega}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]}{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}\times\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{\epsilon}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}
×(2a[0B1(0)])n(2a[z1az2a])n2×(a14×2a[y1ay2a])n2.\displaystyle\times\frac{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z_{1}^{a}\longleftrightarrow z_{2}^{a}\right]\Big{)}^{\frac{n}{2}}}\times\Big{(}a^{-\frac{1}{4}}\times\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]\Big{)}^{\frac{n}{2}}.

Then, as a consequence of Lemmas 3.3-3.5 and Corollary 2.4, we have

lima0an8×Ωa[G(𝐐;z1a,,zna)]=\displaystyle\lim_{a\to 0}a^{-\frac{n}{8}}\times\mathbb{P}^{a}_{\Omega}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]= limmΩ[zjBϵ(zj),1jn|zjBδm(zj),1jn]([0B1(0)|0Bδm(0)])n\displaystyle\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}
×(C1C8)n2Ω[G(𝐐;z1,,zn)|zjBϵ(zj),1jn](0,),\displaystyle\times\big{(}C^{-1}C_{8}\big{)}^{\frac{n}{2}}\mathbb{P}_{\Omega}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]\in(0,\infty),

where CC is the constant in Lemma 3.5 and C8C_{8} is the constant in Theorem 2.3 and Corollary 2.4. This completes the proof. ∎

3.2.3 Proof of part 1.2 of Theorem 1.1

Lemma 3.6.

For any 0<r<R0<r<R, we have

lima02a[0BR(0)]2a[0Br(0)]=(rR)18.\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{R}(0)\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{r}(0)\right]}=\Big{(}\frac{r}{R}\Big{)}^{\frac{1}{8}}.
Proof.

Throughout this proof, we write BrB_{r} for Br(0)B_{r}(0). It suffices to show that, for any r>0r>0, we have

lima02a[0Br]2a[0B1]=r18.\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{r}\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}\right]}=r^{-\frac{1}{8}}. (3.12)

Without loss of generality, we may assume that r(0,1)r\in(0,1). To simplify the notation, we write fgf\asymp g if f/gf/g is bounded by a finite constant from above and so does g/fg/f.

On the one hand, according to [SSW09, Proof of Theorem 2] (the first displayed equation in the proof),

B1[B1Bδ]δ18,as δ0.\displaystyle\mathbb{P}_{B_{1}}\left[\partial B_{1}\longleftrightarrow\partial B_{\delta}\right]\asymp\delta^{\frac{1}{8}},\quad\text{as }\delta\to 0.

Then, a direct application of RSW arguments and the FKG inequality (see, e.g., the proofs of Lemmas 2.1 and 2.2 of [CN09]), combined with the spatial mixing property in Lemma 3.2, leads to

[B1Bδ]:=limMM[B1Bδ]B1[B1Bδ]δ18,\displaystyle\mathbb{P}_{\mathbb{C}}[\partial B_{1}\longleftrightarrow\partial B_{\delta}]:=\lim_{M\to\infty}\mathbb{P}_{\Box_{M}}\left[\partial B_{1}\longleftrightarrow\partial B_{\delta}\right]\asymp\mathbb{P}_{B_{1}}\left[\partial B_{1}\longleftrightarrow\partial B_{\delta}\right]\asymp\delta^{\frac{1}{8}}, (3.13)

as δ0\delta\to 0.

On the other hand, one can proceed as in the proof of Lemma 3.3 to show that

lima02a[0Br]2a[0B1]=limm[BrBδm][B1Bδm].\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{r}\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}\right]}=\lim_{m\to\infty}\frac{\mathbb{P}_{\mathbb{C}}[\partial B_{r}\longleftrightarrow\partial B_{\delta_{m}}]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{\delta_{m}}\right]}. (3.14)

We denote by τ\tau the quantity in (3.14). Since r(0,1)r\in(0,1), we have limmrm=0\lim_{m\to\infty}r^{m}=0. Using the scale invariance of \mathbb{P}_{\mathbb{C}}, we can write

[B1Brm]=\displaystyle\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m}}\right]= [B1Brm][B1Brm1][B1Brm1][B1Brm2][B1Br]1\displaystyle\frac{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m}}\right]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m-1}}\right]}\cdot\frac{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m-1}}\right]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m-2}}\right]}\cdots\frac{\mathbb{P}_{\mathbb{C}}[\partial B_{1}\longleftrightarrow\partial B_{r}]}{1}
=\displaystyle= [B1Brm][BrBrm][B1Brm1][BrBrm1][B1Br][BrBr].\displaystyle\frac{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m}}\right]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{r}\longleftrightarrow\partial B_{r^{m}}\right]}\cdot\frac{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r^{m-1}}\right]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{r}\longleftrightarrow\partial B_{r^{m-1}}\right]}\cdots\frac{\mathbb{P}_{\mathbb{C}}\left[\partial B_{1}\longleftrightarrow\partial B_{r}\right]}{\mathbb{P}_{\mathbb{C}}\left[\partial B_{r}\longleftrightarrow\partial B_{r}\right]}.

Using (3.14) and the convergence of the Cesàro mean gives

limm1mlog[B1Brm]=logτ.\displaystyle\lim_{m\to\infty}\frac{1}{m}\log\mathbb{P}_{\mathbb{C}}[\partial B_{1}\longleftrightarrow\partial B_{r^{m}}]=-\log\tau. (3.15)

Combing (3.13) with (3.15) gives τ=r18\tau=r^{-\frac{1}{8}}. This yields (3.12) and completes the proof. ∎

Proof of part 1.2 of Theorem 1.1.

According to Lemmas 3.3 and 3.4, for small enough ϵ>0\epsilon>0,

P^(Ω;𝑸;z1,,zn):=\displaystyle\hat{P}(\Omega;\boldsymbol{Q};z_{1},\ldots,z_{n}):= lima0(2a[0B1(0)])n×Ωa[G(𝐐;z1a,,zna)]\displaystyle\lim_{a\to 0}\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftarrow\partial B_{1}(0)\right]\Big{)}^{-n}\times\mathbb{P}^{a}_{\Omega}\left[G(\mathbf{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]
=\displaystyle= limmΩ[zjBϵ(zj),1jn|zjBδm(zj),1jn]([0B1(0)|0Bδm(0)])n\displaystyle\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}
×Ω[G(𝐐;z1,,zn)|zjBϵ(zj),1jn](0,).\displaystyle\times\mathbb{P}_{\Omega}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),\enspace 1\leq j\leq n\right]\in(0,\infty).

Thanks to Corollary 2.4 and Lemma 3.5,

P(Ω;𝑸;z1,,zn)=(C1C8)n2P^(Ω;𝑸;z1,,zn),\displaystyle P(\Omega;\boldsymbol{Q};z_{1},\ldots,z_{n})=\left(C^{-1}C_{8}\right)^{\frac{n}{2}}\hat{P}(\Omega;\boldsymbol{Q};z_{1},\ldots,z_{n}),

where CC is the constant in Lemma 3.5 and C8C_{8} is the constant in Theorem 2.3 and Corollary 2.4. Therefore, it suffices to show that the function P^\hat{P} satisfies the conformal covariance property expressed by (1.2).

Let φ\varphi be a conformal map from Ω\Omega onto some Ω\Omega^{\prime}. Let 1jn1\leq j\leq n. Write sj=|φ(zj)|s_{j}=|\varphi^{\prime}(z_{j})| and let BRj(ϵ)(zj)Brj(ϵ)(zj)B_{R_{j}(\epsilon)}(z_{j})\setminus B_{r_{j}(\epsilon)}(z_{j}) be the thinnest annulus that contains the symmetric difference121212If φ1(Bϵ(φ(zj))=Bϵ/sj(zj)\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j})\big{)}=B_{\epsilon/s_{j}}(z_{j}), we then let Rj(ϵ)=rj(ϵ)=ϵ/sjR_{j}(\epsilon)=r_{j}(\epsilon)=\epsilon/s_{j}. of φ1(Bϵ(φ(zj)))\varphi^{-1}\left(B_{\epsilon}(\varphi(z_{j}))\right) and Bϵ/sj(zj)B_{\epsilon/s_{j}}(z_{j}). Then we have

limϵ0rj(ϵ)ϵ=limϵ0Rj(ϵ)ϵ=1sj.\lim_{\epsilon\to 0}\frac{r_{j}(\epsilon)}{\epsilon}=\lim_{\epsilon\to 0}\frac{R_{j}(\epsilon)}{\epsilon}=\frac{1}{s_{j}}. (3.16)

Note that

P^(Ω;𝑸;φ(z1),,φ(zn))=limmΩ[φ(zj)Bϵ(φ(zj)),1jn|φ(zj)Bδm(φ(zj)),1jn]([0B1(0)|0Bδm(0)])n×Ω[G(𝐐;φ(z1),,φ(zn))|φ(zj)Bϵ(φ(zj)),1jn]=limmΩ[zjφ1(Bϵ(φ(zj))),1jn|zjφ1(Bδm(φ(zj))),1jn]([0B1(0)|0Bδm(0)])n×Ω[G(𝐐;z1,,zn)|zjφ1(Bϵ(φ(zj)))1jn]=limmΩ[zjφ1(Bϵ(φ(zj))),1jn|zjφ1(Bδm(φ(zj))),1jn]j=1n[zjB1(zj)|zjφ1(Bδm(φ(zj)))]T1×Ω[G(𝐐;z1,,zn)|zjφ1(Bϵ(φ(zj)))1jn]T2×limmj=1n[zjB1(zj)|zjφ1(Bδm(φ(zj)))]([0B1(0)|0Bδm(0)])nT3,\displaystyle\begin{split}&\qquad\hat{P}(\Omega^{\prime};\boldsymbol{Q};\varphi(z_{1}),\ldots,\varphi(z_{n}))\\ =&\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega^{\prime}}\left[\varphi(z_{j})\longleftrightarrow\partial B_{\epsilon}(\varphi(z_{j})),\enspace 1\leq j\leq n|\varphi(z_{j})\longleftrightarrow\partial B_{\delta_{m}}(\varphi(z_{j})),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}\\ &\times\mathbb{P}_{\Omega^{\prime}}\left[G(\mathbf{Q};\varphi(z_{1}),\ldots,\varphi(z_{n}))|\varphi(z_{j})\longleftrightarrow\partial B_{\epsilon}(\varphi(z_{j})),\enspace 1\leq j\leq n\right]\\ =&\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j}))\big{)},\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)},\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}\\ &\times\mathbb{P}_{\Omega}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j}))\big{)}\enspace 1\leq j\leq n\right]\\ =&\underbrace{\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j}))\big{)},\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)},\enspace 1\leq j\leq n\right]}{\prod_{j=1}^{n}\mathbb{P}_{\mathbb{C}}\left[z_{j}\longleftrightarrow\partial B_{1}(z_{j})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)}\right]}}_{T_{1}}\\ &\times\underbrace{\mathbb{P}_{\Omega}\left[G(\mathbf{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j}))\big{)}\enspace 1\leq j\leq n\right]}_{T_{2}}\\ &\times\underbrace{\lim_{m\to\infty}\frac{\prod_{j=1}^{n}\mathbb{P}_{\mathbb{C}}\left[z_{j}\longleftrightarrow\partial B_{1}(z_{j})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)}\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}}}_{T_{3}},\end{split} (3.17)

where we used the conformal invariance of Ω\mathbb{P}_{\Omega} (Theorem 2.2) to get the second equality.

We treat the terms T1T_{1}-T3T_{3} one by one. For the term T1T_{1}, according to Lemma 3.4 and its proof, we have

T1=\displaystyle T_{1}= lima0Ωa[zjaφ1(Bϵ(φ(zja))),1jn](2a[0B1(0)])n\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\epsilon}(\varphi(z_{j}^{a}))\big{)},\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}
\displaystyle\geq lima0Ωa[zjaBRj(ϵ)(zja),1jn](2a[0B1(0)])n\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{R_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}
=\displaystyle= lima0Ωa[zjaBrj(ϵ)(zja),1jn](2a[0B1(0)])n×Ωa[zjaBRj(ϵ)(zja),1jn]Ωa[zjaBrj(ϵ)(zja),1jn]\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}\times\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{R_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}
=\displaystyle= limmΩ[zjBrj(ϵ)(zj),1jn|zjφ1(Bδm(φ(zj))),1jn]j=1n[zjB1(zj)|zjφ1(Bδm(φ(zj)))]\displaystyle\lim_{m\to\infty}\frac{\mathbb{P}_{\Omega}\left[z_{j}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}),\enspace 1\leq j\leq n|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)},\enspace 1\leq j\leq n\right]}{\prod_{j=1}^{n}\mathbb{P}_{\mathbb{C}}\left[z_{j}\longleftrightarrow\partial B_{1}(z_{j})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)}\right]}
×lima0Ωa[zjaBRj(ϵ)(zja),1jn]Ωa[zjaBrj(ϵ)(zja),1jn]T4.\displaystyle\times\underbrace{\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{R_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}}_{T_{4}}.

For the new term T4T_{4}, note that

limϵ0T4=limϵ0lima0j=1n2a[zjaBRj(ϵ)(zja)]j=1n2a[zjaBrj(ϵ)(zja)]=limϵ0j=1n(rj(ϵ)Rj(ϵ))18=1,\displaystyle\lim_{\epsilon\to 0}T_{4}=\lim_{\epsilon\to 0}\lim_{a\to 0}\frac{\prod_{j=1}^{n}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z_{j}^{a}\longleftrightarrow\partial B_{R_{j}(\epsilon)}(z_{j}^{a})\right]}{\prod_{j=1}^{n}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z_{j}^{a}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}^{a})\right]}=\lim_{\epsilon\to 0}\prod_{j=1}^{n}\left(\frac{r_{j}(\epsilon)}{R_{j}(\epsilon)}\right)^{\frac{1}{8}}=1,

where we used the spatial mixing property in Lemma 3.2 to get the first equality, Lemma 3.6 to get the second equality and (3.16) to get the last equality. Similarly, for the term T2T_{2}, the proof of Lemma 3.4 can be used to show that

T2=\displaystyle T_{2}= lima0Ωa[G(𝑸;z1a,,zna)]Ωa[zjaφ1(Bδm(φ(zja)))]\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[G(\boldsymbol{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]}{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}^{a}))\big{)}\right]}
\displaystyle\geq lima0Ωa[G(𝑸;z1a,,zna)]Ωa[zjaBrj(ϵ)(zja),1jn]=Ω[G(𝑸;z1,,zn)|zjBrj(ϵ)(zj),1jn].\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\Omega}\left[G(\boldsymbol{Q};z_{1}^{a},\ldots,z_{n}^{a})\right]}{\mathbb{P}^{a}_{\Omega}\left[z_{j}^{a}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}^{a}),\enspace 1\leq j\leq n\right]}=\mathbb{P}_{\Omega}\left[G(\boldsymbol{Q};z_{1},\ldots,z_{n})|z_{j}\longleftrightarrow\partial B_{r_{j}(\epsilon)}(z_{j}),\enspace 1\leq j\leq n\right].

The proof of Lemma 3.3 can be used to show that, when mm is large enough,

[zjB1(zj)|zjφ1(Bδm(φ(zj)))]=\displaystyle\mathbb{P}_{\mathbb{C}}\left[z_{j}\longleftrightarrow\partial B_{1}(z_{j})|z_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)}\right]= lima0𝟚a[zjaB1(zja)]𝟚a[zjaφ1(Bδm(φ(zja)))],for 1jn,\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\mathbb{Z^{2}}}\left[z_{j}^{a}\longleftrightarrow\partial B_{1}(z_{j}^{a})\right]}{\mathbb{P}^{a}_{\mathbb{Z^{2}}}\left[z_{j}^{a}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}^{a}))\big{)}\right]},\quad\text{for }1\leq j\leq n,
[0B1(0)|0Bδm(0)]=\displaystyle\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]= lima02a[0B1(0)]2a[0Bδm(0)].\displaystyle\lim_{a\to 0}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]}.

Consequently, for the term T3T_{3}, according to the proof of Lemma 3.3,

limmlima0j=1n2a[zjaBδm(zja)]2a[zjaBrj(δm)(zja))]\displaystyle\lim_{m\to\infty}\lim_{a\to 0}\prod_{j=1}^{n}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial B_{\delta_{m}}(z^{a}_{j})\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial B_{r_{j}(\delta_{m})}(z^{a}_{j})\big{)}\right]}\leq T3=limmlima0j=1n2a[zjaBδm(zja)]2a[zjaφ1(Bδm(φ(zj)))]\displaystyle\;T_{3}=\lim_{m\to\infty}\lim_{a\to 0}\prod_{j=1}^{n}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial B_{\delta_{m}}(z^{a}_{j})\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial\varphi^{-1}\big{(}B_{\delta_{m}}(\varphi(z_{j}))\big{)}\right]}
\displaystyle\leq limmlima0j=1n2a[zjaBδm(zja)]2a[zjaBRj(δm)(zja))].\displaystyle\lim_{m\to\infty}\lim_{a\to 0}\prod_{j=1}^{n}\frac{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial B_{\delta_{m}}(z^{a}_{j})\right]}{\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[z^{a}_{j}\longleftrightarrow\partial B_{R_{j}(\delta_{m})}(z^{a}_{j})\big{)}\right]}.

Combining this with Lemma 3.6 and (3.16) gives

T3=j=1n|φ(zj)|18.T_{3}=\prod_{j=1}^{n}|\varphi^{\prime}(z_{j})|^{-\frac{1}{8}}.

Plugging these observations into (3.17) gives

P^(Ω;𝑸;φ(z1),,φ(zn))j=1n|φ(zj)|18×P^(Ω;𝑸;z1,,zn).\displaystyle\begin{split}\hat{P}(\Omega^{\prime};\boldsymbol{Q};\varphi(z_{1}),\ldots,\varphi(z_{n}))\geq\prod_{j=1}^{n}|\varphi^{\prime}(z_{j})|^{-\frac{1}{8}}\times\hat{P}(\Omega;\boldsymbol{Q};z_{1},\ldots,z_{n}).\end{split} (3.18)

Similarly, one can show that

P^(Ω;𝑸;φ(z1),,φ(zn))j=1n|φ(zj)|18×P^(Ω;𝑸;z1,,zn).\displaystyle\hat{P}(\Omega^{\prime};\boldsymbol{Q};\varphi(z_{1}),\ldots,\varphi(z_{n}))\leq\prod_{j=1}^{n}|\varphi^{\prime}(z_{j})|^{-\frac{1}{8}}\times\hat{P}(\Omega;\boldsymbol{Q};z_{1},\ldots,z_{n}). (3.19)

Combining (3.18) with (3.19) gives the desired conformal covariance property of the function P^\hat{P} and completes the proof. ∎

3.3 Proof of Theorem 1.3

Now we consider the FK-Ising model on Ωa\Omega^{a} with wired boundary conditions, whose measure is denoted by ¯Ωa\overline{\mathbb{P}}^{a}_{\Omega}.

Proof of Theorem 1.3.

First, one can proceed as in the proof of part 1.1 of Theorem 1.1 to show that, for small enough ϵ>0\epsilon>0,

g(Ω;z)=\displaystyle g(\Omega;z)= lima0a18ׯΩa[zaΩa]\displaystyle\lim_{a\to 0}a^{-\frac{1}{8}}\times\overline{\mathbb{P}}^{a}_{\Omega}\left[z^{a}\longleftrightarrow\partial\Omega^{a}\right]
=\displaystyle= (C1C8)12limm¯Ω[zBϵ(z)|zBδm(z)][0B1(0)|0Bδm(0)]ׯΩ[zΩ|zBϵ(z)](0,),\displaystyle\big{(}C^{-1}C_{8}\big{)}^{\frac{1}{2}}\lim_{m\to\infty}\frac{\overline{\mathbb{P}}_{\Omega}\left[z\longleftrightarrow\partial B_{\epsilon}(z)|z\longleftrightarrow\partial B_{\delta_{m}}(z)\right]}{\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]}\times\overline{\mathbb{P}}_{\Omega}\left[z\longleftrightarrow\partial\Omega|z\longleftrightarrow\partial B_{\epsilon}(z)\right]\in(0,\infty),

where CC is the constant in Lemma 3.5, C8C_{8} is the constant in Theorem 2.3,

¯Ω[zBϵ(z)|zBδm(z)]:=\displaystyle\overline{\mathbb{P}}_{\Omega}\left[z\longleftrightarrow\partial B_{\epsilon}(z)|z\longleftrightarrow\partial B_{\delta_{m}}(z)\right]:= limklimη0¯[Bδk(z)Bϵ(z)|𝒜η,δm(z)],\displaystyle\lim_{k\to\infty}\lim_{\eta\to 0}\overline{\mathbb{P}}\left[B_{\delta_{k}}(z)\longleftrightarrow\partial B_{\epsilon}(z)|\mathcal{A}_{\eta,\delta_{m}}(z)\right],

and

¯Ω[zΩ|zBϵ(z)]:=\displaystyle\overline{\mathbb{P}}_{\Omega}\left[z\longleftrightarrow\partial\Omega|z\longleftrightarrow\partial B_{\epsilon}(z)\right]:= limklimη0¯[Bδk(z)Ω|𝒜η,ϵ(z)].\displaystyle\lim_{k\to\infty}\lim_{\eta\to 0}\overline{\mathbb{P}}\left[B_{\delta_{k}}(z)\longleftrightarrow\partial\Omega|\mathcal{A}_{\eta,\epsilon}(z)\right].

Second, one can proceed as in the proof of part 1.2 of Theorem 1.1 to show that, for any conformal map φ:ΩΩ\varphi:\Omega\to\Omega^{\prime}, one has

g(Ω;φ(z))=g(Ω;z)×|φ(z)|18.g(\Omega^{\prime};\varphi(z))=g(\Omega;z)\times|\varphi^{\prime}(z)|^{-\frac{1}{8}}.

This conformal covariance property ensures that there exists a constant C3(0,)C_{3}\in(0,\infty) such that

g(Ω;z)=C3rad(z,Ω)18.g(\Omega;z)=C_{3}\mathrm{rad}(z,\Omega)^{-\frac{1}{8}}.

4 Connection probabilities involving boundary vertices

We will sketch the proof Theorem 1.4 for two particular cases: first, we will treat Theorem 1.4 for n+2n+\ell\geq 2 and 𝐐=𝐐n+=({1,2,,n+})\mathbf{Q}=\mathbf{Q}_{n+\ell}=(\{1,2,\ldots,n+\ell\}), that is, all vertices belong to the same cluster; second, we will treat Theorem 1.4 for n==2n=\ell=2 and 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}). All other cases can be treated similarly.

Proof of Theorem 1.4 for 𝐐=𝐐n+\mathbf{Q}=\mathbf{Q}_{n+\ell}.

First, we have to show the existence of nontrivial scaling limits. Write

an82×a[z1aznax1axa]\displaystyle a^{-\frac{n}{8}-\frac{\ell}{2}}\times\mathbb{P}_{\mathbb{H}}^{a}\left[z_{1}^{a}\longleftrightarrow\cdots\longleftrightarrow z_{n}^{a}\longleftrightarrow x_{1}^{a}\longleftrightarrow\cdots\longleftrightarrow x_{\ell}^{a}\right]
=\displaystyle= (an8×(2a[y1ay2a])n2)T1a×(a2×(a[u3a(u1au2a)]))T2a\displaystyle\underbrace{\left(a^{-\frac{n}{8}}\times\left(\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]\right)^{\frac{n}{2}}\right)}_{T^{a}_{1}}\times\underbrace{\left(a^{-\frac{\ell}{2}}\times\left(\mathbb{P}_{*}^{a}\left[u_{3}^{a}\longleftrightarrow(u_{1}^{a}u_{2}^{a})\right]\right)^{\ell}\right)}_{T^{a}_{2}}
×(2a[0B1(0)])n(2a[y1ay2a])n2T3a×(a[0B1(0)])(a[u3a(u1au2a)])T4a×a[z1aznax1axa](2a[oB1(0)])n×(a[0B1(0)])T5a.\displaystyle\times\underbrace{\frac{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{n}}{\Big{(}\mathbb{P}^{a}_{\mathbb{Z}^{2}}\left[y_{1}^{a}\longleftrightarrow y_{2}^{a}\right]\Big{)}^{\frac{n}{2}}}}_{T_{3}^{a}}\times\underbrace{\frac{\Big{(}\mathbb{P}^{a}_{\mathbb{H}}\left[0\longleftrightarrow\partial B_{1}(0)\right]\Big{)}^{\ell}}{\Big{(}\mathbb{P}^{a}_{*}\left[u_{3}^{a}\longleftrightarrow(u_{1}^{a}u_{2}^{a})\right]\Big{)}^{\ell}}}_{T_{4}^{a}}\times\underbrace{\frac{\mathbb{P}_{\mathbb{H}}^{a}\left[z_{1}^{a}\longleftrightarrow\cdots\longleftrightarrow z_{n}^{a}\longleftrightarrow x_{1}^{a}\longleftrightarrow\cdots\longleftrightarrow x_{\ell}^{a}\right]}{\left(\mathbb{P}_{\mathbb{Z}^{2}}^{a}\left[o\longleftrightarrow\partial B_{1}(0)\right]\right)^{n}\times\left(\mathbb{P}_{\mathbb{H}}^{a}\left[0\longleftrightarrow\partial B_{1}(0)\right]\right)^{\ell}}}_{T^{a}_{5}}.

According to Corollary 2.4 and Lemma 3.5, if y1a0y^{a}_{1}\to 0 and y2a1y^{a}_{2}\to 1, we have

lima0T1a=C8n2,lima0T3a=Cn2\lim_{a\to 0}T^{a}_{1}=C_{8}^{\frac{n}{2}},\quad\lim_{a\to 0}T_{3}^{a}=C^{-\frac{n}{2}}

where C8C_{8} is the constant in Theorem 2.3 and CC is the constant in Lemma 3.5. Moreover, thanks to Proposition 2.5, we have

lima0T2a=C9,\lim_{a\to 0}T^{a}_{2}=C_{9}^{\ell},

where C9C_{9} is the constant in Proposition 2.5. For the term T4aT_{4}^{a}, one can proceed as in the proof of Lemma 3.4 to show that

lima0T4a=C^\lim_{a\to 0}T_{4}^{a}=\hat{C}^{\ell}

for some constant C^(0,)\hat{C}\in(0,\infty).

It remains to treat the term T5aT_{5}^{a}. We write 𝐍={1,2,,n}\mathbf{N}=\{1,2,\ldots,n\} and 𝐋={1,2,,}\mathbf{L}=\{1,2,\ldots,\ell\}. One then can proceed as in the proof of Lemma 3.3 to show that, for small enough ϵ>0\epsilon>0,

lima0T5a\displaystyle\lim_{a\to 0}T_{5}^{a}
=[z1znx1x|zjBϵ(zj),xkBϵ(xk),(j,k)𝐍×𝐋]\displaystyle=\mathbb{P}_{\mathbb{H}}\left[z_{1}\longleftrightarrow\cdots\longleftrightarrow z_{n}\longleftrightarrow x_{1}\longleftrightarrow\cdots\longleftrightarrow x_{\ell}|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),x_{k}\longleftrightarrow\partial B_{\epsilon}(x_{k}),\enspace(j,k)\in\mathbf{N}\times\mathbf{L}\right]
×limm[zjBϵ(zj),xkBϵ(xk),(j,k)𝐍×𝐋|zjBδm(zj),xkBδm(xk),(j,k)𝐍×𝐋]([0B1(0)|0Bδm(0)])n×(([0B1(0)|0Bδm(0)]),\displaystyle\times\lim_{m\to\infty}\frac{\mathbb{P}_{\mathbb{H}}\left[z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),x_{k}\longleftrightarrow\partial B_{\epsilon}(x_{k}),\,(j,k)\in\mathbf{N}\times\mathbf{L}|z_{j}\longleftrightarrow\partial B_{\delta_{m}}(z_{j}),x_{k}\longleftrightarrow\partial B_{\delta_{m}}(x_{k}),\,(j,k)\in\mathbf{N}\times\mathbf{L}\right]}{\Big{(}\mathbb{P}_{\mathbb{C}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{n}\times\Big{(}(\mathbb{P}_{\mathbb{H}}\left[0\longleftrightarrow\partial B_{1}(0)|0\longleftrightarrow\partial B_{\delta_{m}}(0)\right]\Big{)}^{\ell}},

where the conditional probabilities can be defined as in the proof of Lemma 3.3 and the proof of Lemma 3.4. Combining all of these observations, one derives the existence of the limit.

Second, one can proceed as in the proof of part (2) of Theorem 1.1 to get the desired conformal covariance property of the limiting function R(𝐐;z1,,zn;x1,,x)R(\mathbf{Q};z_{1},\ldots,z_{n};x_{1},\ldots,x_{\ell}), with the additional help of (1.10), which replaces Lemma 3.6 for the \ell boundary points.

Third, thanks to the conformal covariance property, the explicit expressions for R(𝑸n;x1,,xn)R(\boldsymbol{Q}_{n};x_{1},\ldots,x_{n}) with n=2,3n=2,3 are almost immediate.

Now, let us derive the explicit expression for R(𝐐2;z;0)R(\mathbf{Q}_{2};z;0). Define

f(z):=|zz¯|38|z|.f(z):=\frac{|z-\overline{z}|^{\frac{3}{8}}}{|z|}.

A simple calculation shows that, for any Möbius transformation φ:\varphi:\mathbb{H}\to\mathbb{H} with φ(0)=0\varphi(0)=0, one has

f(φ(z))=f(z)×|φ(z)|18×|φ(0)|12.f\left(\varphi(z)\right)=f(z)\times|\varphi^{\prime}(z)|^{-\frac{1}{8}}\times|\varphi^{\prime}(0)|^{-\frac{1}{2}}. (4.1)

Combining (4.1) with the conformal covariance property of R(𝐐2;z;0)R(\mathbf{Q}_{2};z;0), we conclude that for any Möbius transformation φ:\varphi:\mathbb{H}\to\mathbb{H} with φ(0)=0\varphi(0)=0, one has

R(𝐐2;z;0)f(z)=R(𝐐;φ(z);0)f(φ(z)).\frac{R(\mathbf{Q}_{2};z;0)}{f(z)}=\frac{R(\mathbf{Q};\varphi(z);0)}{f(\varphi(z))}.

In particular, take such a map φ\varphi with φ(z)=𝔦\varphi(z)=\mathfrak{i} (which must exist); then we have

R(𝐐2;z;0)=f(z)×R(𝐐2;𝔦;0)f(𝔦),R(\mathbf{Q}_{2};z;0)=f(z)\times\frac{R(\mathbf{Q}_{2};\mathfrak{i};0)}{f(\mathfrak{i})},

which completes the proof. ∎

Proof of Theorem 1.4 for n==2n=\ell=2 and 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}).

One can proceed as above and as in the proof of Lemma 3.3 for 𝐐=({1,2},{3,4})\mathbf{Q}=(\{1,2\},\{3,4\}) and in [Cam24a, Proof of Theorem 1.5] to show the existence of

R(𝐐;z1,z2;x1,x2):=lima0a141×a[z1az2a\centernotx1ax2a],R(\mathbf{Q};z_{1},z_{2};x_{1},x_{2}):=\lim_{a\to 0}a^{-\frac{1}{4}-1}\times\mathbb{P}^{a}_{\mathbb{H}}\left[z_{1}^{a}\longleftrightarrow z_{2}^{a}\centernot{\longleftrightarrow}x_{1}^{a}\longleftrightarrow x_{2}^{a}\right], (4.2)

with the following additional observation: we denote by 𝒞m:={Bδm(z1)Bδm(z2)Bδm(x1)Bδm(x2)}\mathcal{C}_{m}:=\{B_{\delta_{m}}(z_{1})\longleftrightarrow B_{\delta_{m}}(z_{2})\circ B_{\delta_{m}}(x_{1})\longleftrightarrow B_{\delta_{m}}(x_{2})\} the event that, if we declare closed all the edges inside Bδm(zj)B_{\delta_{m}}(z_{j}), j=1,2,3,4j=1,2,3,4, there are two disjoint open clusters connecting Bδm(x1)B_{\delta_{m}}(x_{1}) to Bδm(x2)B_{\delta_{m}}(x_{2}) and Bδm(z1)B_{\delta_{m}}(z_{1}) to Bδm(z2)B_{\delta_{m}}(z_{2}), respectively; and denote by 𝒢δm99100,L(xk)\mathcal{G}_{\delta_{m}^{\frac{99}{100}},L}(x_{k}) the event that there are three disjoint closed/open/closed arms crossing (BL(xk)Bδm99100(xk))\mathbb{H}\cap\left(B_{L}(x_{k})\setminus B_{\delta_{m}^{\frac{99}{100}}}(x_{k})\right); then we have (when mm is large enough) for some L>0L>0 that is independent of mm,

[𝒞m{Bδk(z1)Bδk(x1)}|zjBϵ(zj),xrBδk(xr),(j,r){1,2}2]\displaystyle\mathbb{P}_{\mathbb{H}}\left[\mathcal{C}_{m}\cap\{B_{\delta_{k}}(z_{1})\longleftrightarrow B_{\delta_{k}}(x_{1})\}|z_{j}\longleftrightarrow\partial B_{\epsilon}(z_{j}),x_{r}\longleftrightarrow\partial B_{\delta_{k}}(x_{r}),\enspace(j,r)\in\{1,2\}^{2}\right]
\displaystyle\leq c(δmL)35241100×(δmϵ)1/4+climη0[(r=12𝒢δm99100,L(xr))({𝒜η,δm(xr),1j2})][𝒜η,ϵ(xr),1j2]\displaystyle c\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}-\frac{1}{100}}\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1/4}+c\lim_{\eta\to 0}\frac{\mathbb{P}_{\mathbb{H}}\left[\left(\cup_{r=1}^{2}\mathcal{G}_{\delta_{m}^{\frac{99}{100}},L}(x_{r})\right)\cap\left(\left\{\mathcal{A}_{\eta,\delta_{m}}(x_{r}),\enspace 1\leq j\leq 2\right\}\right)\right]}{\mathbb{P}_{\mathbb{{H}}}\left[\mathcal{A}_{\eta,\epsilon}(x_{r}),\enspace 1\leq j\leq 2\right]}
\displaystyle\leq c(δmL)35241100×(δmϵ)1/4+c[𝒢δm99100,L(x1)]×(δmϵ)1\displaystyle c\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}-\frac{1}{100}}\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1/4}+c^{*}\mathbb{P}_{\mathbb{H}}\left[\mathcal{G}_{\delta_{m}^{\frac{99}{100}},L}(x_{1})\right]\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1}
\displaystyle\leq c(δmL)35241100×(δmϵ)1/4+c(δm99100L)531100×(δmϵ)1,\displaystyle c\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}-\frac{1}{100}}\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1/4}+c^{**}\left(\frac{\delta_{m}^{\frac{99}{100}}}{L}\right)^{\frac{5}{3}-\frac{1}{100}}\times\left(\frac{\delta_{m}}{\epsilon}\right)^{-1},

where c,c,c(0,)c,c^{*},c^{**}\in(0,\infty) are three constants that do not depend on mm and kk. The first inequality follows from the spatial mixing property in Lemma 3.2 and the proof of Lemma 3.3, the second inequality uses the boundary one-arm exponent given in [Wu18, Theorems 1 and 2] and the spatial mixing property, and the last inequality follows from the fact that [δm,L(z1)](δmL)3524+o(1)\mathbb{P}\left[\mathcal{F}_{\sqrt{\delta_{m}},L}(z_{1})\right]\sim\left(\frac{\sqrt{\delta_{m}}}{L}\right)^{\frac{35}{24}+o(1)} as δmL0\frac{\sqrt{\delta_{m}}}{L}\to 0 and that [𝒢δm99100,L(x1)](δm99100L)53+o(1)\mathbb{P}\left[\mathcal{G}_{\delta_{m}^{\frac{99}{100}},L}(x_{1})\right]\sim\big{(}\frac{\delta_{m}^{\frac{99}{100}}}{L}\big{)}^{\frac{5}{3}+o(1)} as δm99100L0\frac{\delta_{m}^{\frac{99}{100}}}{L}\to 0, which are consequences of [Wu18, Theorems 3 and 4] and [Wu18, Theorems 1 and 2], respectively.

The desired conformal covariance property of R(𝐐;z1,z2;x1,x2)R(\mathbf{Q};z_{1},z_{2};x_{1},x_{2}) can be derived as in the proof of part (2) of Theorem 1.1, with the additional help of (1.10), which replaces Lemma 3.6 for the boundary points. ∎

Appendix A Exact formulas for some boundary correlation functions of the critical Ising model

A.1 Definitions and main results

Suppose that G=(V(G),E(G))G=(V(G),E(G)) is a finite subgraph of 2\mathbb{Z}^{2}. The Ising model on GG is a random assignment σ=(σv)vV(G){,}V(G)\sigma=(\sigma_{v})_{v\in V(G)}\in\{\ominus,\oplus\}^{V(G)} of spins. The boundary condition τ\tau is specified by three disjoint subsets {}\{\oplus\}, {}\{\ominus\} and {𝐟}\{\mathbf{f}\}, which form a partition of the set of vertices in 2G\mathbb{Z}^{2}\setminus G that are adjacent to G\partial G. With boundary condition τ\tau, and inverse-temperature β>0\beta>0, the probability measure of the Ising model is given by

ϕβ,Gτ[σ]=exp(βv,wE(G)σvσw+βvV(G),w{}vwσvβvV(G),w{}vwσv)Zβ,Gτ\phi_{\beta,G}^{\tau}[\sigma]=\frac{\exp\big{(}\beta\sum_{\langle v,w\rangle\in E(G)}\sigma_{v}\sigma_{w}+\beta\sum_{\stackrel{{\scriptstyle v\sim w}}{{v\in V(G),w\in\{\oplus\}}}}\sigma_{v}-\beta\sum_{\stackrel{{\scriptstyle v\sim w}}{{v\in V(G),w\in\{\ominus\}}}}\sigma_{v}\big{)}}{Z_{\beta,G}^{\tau}}

with

Zβ,Gτ:=σexp(βv,wE(G)σvσw+βvV(G),w{}vwσvβvV(G),w{}vwσv).Z_{\beta,G}^{\tau}:=\sum_{\sigma}\exp\left(\beta\sum_{\langle v,w\rangle\in E(G)}\sigma_{v}\sigma_{w}+\beta\sum_{\stackrel{{\scriptstyle v\sim w}}{{v\in V(G),w\in\{\oplus\}}}}\sigma_{v}-\beta\sum_{\stackrel{{\scriptstyle v\sim w}}{{v\in V(G),w\in\{\ominus\}}}}\sigma_{v}\right).

In this article, we focus on the Ising model with critical inverse-temperature β=βc:=12log(1+2)\beta=\beta_{c}:=\frac{1}{2}\log(1+\sqrt{2}).

Let x1a<<xNa<xN+1a<xN+2ax_{1}^{a}<\ldots<x_{N}^{a}<x_{N+1}^{a}<x_{N+2}^{a} be vertices in aa\mathbb{Z}. We consider the Ising model on a(¯2)a(\overline{\mathbb{H}}\cap\mathbb{Z}^{2}) with two types of boundary conditions:

  • free boundary condition {𝐟}\{\mathbf{f}\}, with expectation denoted by 𝔼(a,𝐟)\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})};

  • mixed free/\oplus boundary condition {𝐦}\{\mathbf{m}\}:

     next to [xN+1axN+2a],andfree next to [xN+1axN+2a],\displaystyle\oplus\text{ next to }[x_{N+1}^{a}x_{N+2}^{a}],\quad\text{and}\quad\text{free next to }\mathbb{R}\setminus[x_{N+1}^{a}x_{N+2}^{a}], (A.1)

    where [xN+1axN+2a]:=[xN+1a,xN+2a]a[x_{N+1}^{a}x_{N+2}^{a}]:=[x_{N+1}^{a},x_{N+2}^{a}]\cap a\mathbb{Z}; we denote by 𝔼(a,𝐦)\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})} the corresponding expectation.

Let #{𝐟,𝐦}\#\in\{\mathbf{f},\mathbf{m}\}. We are interested in the spin correlation 𝔼(a,#)[σx1aσxNa]\mathbb{E}_{\mathbb{H}}^{(a,\#)}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{N}^{a}}\right]. We will show that these boundary spin correlations (when normalized properly) have nontrivial conformally covariant scaling limits σx1σxN#\langle\sigma_{x_{1}}\cdots\sigma_{x_{N}}\rangle_{\mathbb{H}}^{\#}, which have explicit expressions and satisfy certain BPZ equations [BPZ84a], [BPZ84b].

We introduce some notation to present the formulas. For n1n\geq 1, we let Πn\Pi_{n} denote the set of all pair partitions ϖ={{c1,d1},,{cn,dn}}\varpi=\{\{c_{1},d_{1}\},\ldots,\{c_{n},d_{n}\}\} of the set {1,2,,2n}\{1,2,\ldots,2n\}, that is, partitions of this set into nn disjoint two-element subsets {cj,dj}{1,2,,2n}\{c_{j},d_{j}\}\subseteq\{1,2,\ldots,2n\}, with the convention that

c1<c2<<cNc_{1}<c_{2}<\cdots<c_{N} and cj<djc_{j}<d_{j} for j{1,2,,n}j\in\{1,2,\ldots,n\}.

We also denote by sgn(ϖ)\mathrm{sgn}(\varpi) the sign of the partition ϖ\varpi defined as the sign of

the product (ce)(cf)(de)(df) over pairs of distinct elements {c,d},{e,f}ϖ.\displaystyle\text{the product }\prod(c-e)(c-f)(d-e)(d-f)\text{ over pairs of distinct elements $\{c,d\},\{e,f\}\in\varpi$.}
Proposition A.1.

Suppose that <x1<<x2n<-\infty<x_{1}<\cdots<x_{2n}<\infty and let x1a<<x2nax_{1}^{a}<\cdots<x_{2n}^{a} be 2n2n vertices in aa\mathbb{Z} satisfy lima0xja=xj\lim_{a\to 0}x_{j}^{a}=x_{j} for 1j2n1\leq j\leq 2n. Then we have,

σx1σx2N𝐟:=lima0a2n×𝔼(a,𝐟)[σx1aσx2na]=C4nPf[1xkxj]j,k=12n=C4nϖΠnsgn(ϖ){c,d}ϖ1xdxc,\begin{split}\langle\sigma_{x_{1}}\cdots\sigma_{x_{2N}}\rangle_{\mathbb{H}}^{\mathbf{f}}:=&\lim_{a\to 0}a^{-2n}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{2n}^{a}}\right]\\ =&C^{n}_{4}\mathrm{Pf}\left[\frac{1}{x_{k}-x_{j}}\right]_{j,k=1}^{2n}=C^{n}_{4}\sum_{\varpi\in\Pi_{n}}\mathrm{sgn}(\varpi)\prod_{\{c,d\}\in\varpi}\frac{1}{x_{d}-x_{c}},\end{split} (A.2)

where C4C_{4} is the constant in (1.8). As a consequence, for each j{1,2,,2n}j\in\{1,2,\ldots,2n\}, the function σx1σx2N𝐟\langle\sigma_{x_{1}}\ldots\sigma_{x_{2N}}\rangle_{\mathbb{H}}^{\mathbf{f}} defined by (A.2) is annihilated by

32j2+kj2xkxjk1(xkxj)2.\frac{3}{2}\partial^{2}_{j}+\sum_{k\neq j}\frac{2}{x_{k}-x_{j}}\partial_{k}-\frac{1}{(x_{k}-x_{j})^{2}}. (A.3)
Proof.

It is well-known that 𝔼(a,𝐟)[σx1aσx2Na]\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{2N}^{a}}\right] has the following Pfaffian expression131313The Pfaffian relation (A.4) is valid for all β0\beta\geq 0. [GBK78] (see also [ADCTW19, Section 1.4] for a new proof):

𝔼(a,𝐟)[σx1aσx2na]=Pf[𝔼(a,𝐟)[σxjaσxka]]j,k=12n=ϖΠnsgn(ϖ){c,d}ϖ𝔼(a,𝐟)[σxcaσxda].\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{2n}^{a}}\right]=\mathrm{Pf}\left[\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})}\left[\sigma_{x_{j}^{a}}\sigma_{x_{k}^{a}}\right]\right]_{j,k=1}^{2n}=\sum_{\varpi\in\Pi_{n}}\mathrm{sgn}(\varpi)\sum_{\{c,d\}\in\varpi}\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{f})}\left[\sigma_{x_{c}^{a}}\sigma_{x_{d}^{a}}\right]. (A.4)

Combining Theorem 1.4, (A.4) with Edwards-Sokal coupling (see [ES88]), we obtain (A.2). Combining (A.2) with [KP16, Proposition 4.6], we obtain (A.3). ∎

The situation for the mixed boundary condition (A.1) is more complicated, even though one still has the Pfaffian structure for the boundary spin correlations. Indeed, already for N=2N=2, the two-point spin correlation σx1σx2𝐦\langle\sigma_{x_{1}}\sigma_{x_{2}}\rangle_{\mathbb{H}}^{\mathbf{m}} in the continuum is a conformally covariant function of four variables, x1,x2,x3x_{1},x_{2},x_{3} and x4x_{4}, whose functional form, however, is not fully determined by its conformal covariance property. Instead, we will figure out its expression by relating it to the SLE3\mathrm{SLE}_{3} partition function via the high-temperature expansion of the Ising model (see Lemmas A.7 and A.8 below and [Izy15, Theorem 3.1]).

Theorem A.2.

Suppose that <x1<<xN<xN+1<xN+2<-\infty<x_{1}<\ldots<x_{N}<x_{N+1}<x_{N+2}<\infty and let x1a<<xNa<xN+1a<xN+2ax_{1}^{a}<\ldots<x_{N}^{a}<x_{N+1}^{a}<x_{N+2}^{a} be N+2N+2 vertices on aa\mathbb{Z} which satisfy lima0xja=xj\lim_{a\to 0}x_{j}^{a}=x_{j} for 1jN+21\leq j\leq N+2. Then there exist constants C9,C10(0,)C_{9},C_{10}\in(0,\infty) such that

σx1σxN𝐦:=lima0aN8×𝔼(a,𝐦)[σx1aσxNa]={C9n2n(x1,,x2n;x2n+1,x2n+2)if N=2n,C10C9n2n+1(x1,,x2n+1;x2n+2,x2n+3),if N=2n+1,\begin{split}\langle\sigma_{x_{1}}\ldots\sigma_{x_{N}}\rangle_{\mathbb{H}}^{\mathbf{m}}:=&\lim_{a\to 0}a^{-\frac{N}{8}}\times\mathbb{E}^{(a,\mathbf{m})}_{\mathbb{H}}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{N}^{a}}\right]\\ =&\begin{cases}C_{9}^{n}\mathcal{R}_{2n}(x_{1},\ldots,x_{2n};x_{2n+1},x_{2n+2})&\text{if }N=2n,\\ C_{10}C_{9}^{n}\mathcal{R}_{2n+1}(x_{1},\ldots,x_{2n+1};x_{2n+2},x_{2n+3}),&\text{if }N=2n+1,\end{cases}\end{split} (A.5)

where 2n\mathcal{R}_{2n} and 2n+1\mathcal{R}_{2n+1} are defined by (A.7) and (A.8) below. Moreover, for j{1,2,,N}j\in\{1,2,\ldots,N\}, the function σx1σxN𝐦\langle\sigma_{x_{1}}\ldots\sigma_{x_{N}}\rangle_{\mathbb{H}}^{\mathbf{m}} defined by (A.5) is annihilated by the differential operator

32j2+kj2xkxjj2Δk(xkxj)2,\frac{3}{2}\partial^{2}_{j}+\sum_{k\neq j}\frac{2}{x_{k}-x_{j}}\partial_{j}-\frac{2\Delta_{k}}{(x_{k}-x_{j})^{2}}, (A.6)

where Δ1=Δ2==ΔN=12\Delta_{1}=\Delta_{2}=\ldots=\Delta_{N}=\frac{1}{2} and ΔN+1=ΔN+2=0\Delta_{N+1}=\Delta_{N+2}=0.

Now, let us define the functions N\mathcal{R}_{N} in Theorem A.2. For m1m\geq 1, we write

𝔛m:={(x1,,xm)m:x1<x2<<xm}.\mathfrak{X}_{m}:=\{(x_{1},\ldots,x_{m})\in\mathbb{R}^{m}:x_{1}<x_{2}<\ldots<x_{m}\}.

When N=2nN=2n with n1n\geq 1, we define N:𝔛N+2\mathcal{R}_{N}:\mathfrak{X}_{N+2}\to\mathbb{R} by

2n(x1,,x2n;x2n+1,x2n+2)=k=12n1(x2n+2xk)(x2n+1xk)×ϖΠnsgn(ϖ){c,d}ϖ(x2n+1xc)(x2n+2xd)+(x2n+1xd)(x2n+2xc)xdxc.\begin{split}&\mathcal{R}_{2n}(x_{1},\ldots,x_{2n};x_{2n+1},x_{2n+2})=\prod_{k=1}^{2n}\frac{1}{\sqrt{(x_{2n+2}-x_{k})(x_{2n+1}-x_{k})}}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\times\sum_{\varpi\in\Pi_{n}}\mathrm{sgn}(\varpi)\prod_{\{c,d\}\in\varpi}\frac{(x_{2n+1}-x_{c})(x_{2n+2}-x_{d})+(x_{2n+1}-x_{d})(x_{2n+2}-x_{c})}{x_{d}-x_{c}}.\end{split} (A.7)

When N=2n+1N=2n+1 with n0n\geq 0, we define :𝔛N+2\mathcal{R}:\mathfrak{X}_{N+2}\to\mathbb{R} by

2n+1(x1,,x2n+1;x2n+2,x2n+3)=(x2n+3x2n+2)12×k=12n+11(x2n+2xk)(x2n+3xk)×ϖΠn+1sgn(ϖ){c,d}ϖd2n+2(x2n+2xc)(x2n+3xd)+(x2n+2xd)(x2n+3xc)xdxc.\begin{split}&\mathcal{R}_{2n+1}(x_{1},\ldots,x_{2n+1};x_{2n+2},x_{2n+3})=(x_{2n+3}-x_{2n+2})^{\frac{1}{2}}\times\prod_{k=1}^{2n+1}\frac{1}{\sqrt{(x_{2n+2}-x_{k})(x_{2n+3}-x_{k})}}\\ &\qquad\qquad\qquad\qquad\qquad\quad\times\sum_{\varpi\in\Pi_{n+1}}\mathrm{sgn}(\varpi)\prod_{\genfrac{}{}{0.0pt}{}{\{c,d\}\in\varpi}{d\neq 2n+2}}\frac{(x_{2n+2}-x_{c})(x_{2n+3}-x_{d})+(x_{2n+2}-x_{d})(x_{2n+3}-x_{c})}{x_{d}-x_{c}}.\end{split} (A.8)
Remark A.3.

We emphasize that our arguments allow one to extend the boundary condition (A.1) to more general alternating free/wired\mathrm{free}/\mathrm{wired} boundary conditions, where a “wired\mathrm{wired}” boundary segment means that the spins on this segment are conditioned to be the same.

We now proceed with the proof of Theorem A.2.

A.2 Proof of Theorem A.2 modulo a key lemma

We start by showing that, with mixed boundary conditions (A.1), Ising boundary spin correlations have a Pfaffian structure analogous to (A.4), which is valid for free boundary conditions.

Lemma A.4.

Let x1a<x2a<<xNa<xN+1a<xN+2ax_{1}^{a}<x_{2}^{a}<\ldots<x_{N}^{a}<x_{N+1}^{a}<x_{N+2}^{a} be vertices in aa\mathbb{Z}\cap\mathbb{R}. Consider Ising model141414The results in Lemma A.4 hold for generic inverse temperature β0\beta\geq 0. on a(¯2)a(\overline{\mathbb{H}}\cap\mathbb{Z}^{2}) with the mixed boundary condition (A.1). If N=2nN=2n, then we have

𝔼(a,𝐦)[σx1aσx2na]=ϖΠnsgn(ϖ){c,d}ϖ𝔼(a,𝐦)[σxcaσxda].\displaystyle\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{2n}^{a}}\right]=\sum_{\varpi\in\Pi_{n}}\mathrm{sgn}(\varpi)\prod_{\{c,d\}\in\varpi}\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{c}^{a}}\sigma_{x_{d}^{a}}\right].

If N=2n+1N=2n+1, then we have

𝔼(a,𝐦)[σx1aσx2n+1a]=ϖΠn+1sgn(ϖ)𝔼(a,𝐦)[σxca]×{c,d}ϖd2n+2𝔼(a,𝐦)[σxcaσxda],\displaystyle\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{1}^{a}}\cdots\sigma_{x_{2n+1}^{a}}]=\sum_{\varpi\in\Pi_{n+1}}\mathrm{sgn}(\varpi)\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{c^{\prime}}^{a}}]\times\prod_{\{c,d\}\in\varpi\atop d\neq 2n+2}\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{c}^{a}}\sigma_{x_{d}^{a}}\right],

where cc^{\prime} denotes the index paired to 2n+22n+2 in ϖ\varpi.

Proof.

One can basically mimic the proof of the Pfaffian structure of the boundary spin correlations for the free boundary condition in [ADCTW19, Section 1.4]. Alternatively, one can use the same trick as in (A.13) below to express the spin correlations for the mixed boundary condition as the limit of a sequence of spin correlations for free boundary conditions and then utilize the known Pfaffian structure for the latter. ∎

Lemma A.5.

With the notation of Theorem A.2, suppose that N=1N=1, then there exists a constant C10(0,)C_{10}\in(0,\infty) such that

lima0a12×𝔼(a,𝐦)[σx1a]=C10x3x2x3x1x2x1.\displaystyle\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{1}^{a}}\right]=C_{10}\frac{\sqrt{x_{3}-x_{2}}}{\sqrt{x_{3}-x_{1}}\sqrt{x_{2}-x_{1}}}. (A.9)
Proof.

One can proceed as in the proof of Theorem 1.4 to show that

f(x1;x2,x3):=lima0a12×𝔼(a,𝐦)[σx1a](0,);\displaystyle f_{\mathbb{H}}(x_{1};x_{2},x_{3}):=\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{1}^{a}}\right]\in(0,\infty);

moreover, for any Möbius map φ\varphi of the upper half-plane with φ(xj)\varphi(x_{j})\neq\infty for 1j31\leq j\leq 3, we have

f(φ(x1);φ(x2),φ(x3))=|φ(x1)|12×f(x1;x2,x3).\displaystyle f_{\mathbb{H}}(\varphi(x_{1});\varphi(x_{2}),\varphi(x_{3}))=|\varphi^{\prime}(x_{1})|^{-\frac{1}{2}}\times f_{\mathbb{H}}(x_{1};x_{2},x_{3}).

This Möbius covariance of ff_{\mathbb{H}} implies that there exists a constant C10(0,)C_{10}\in(0,\infty) such that (A.9) holds. ∎

Lemma A.6.

With the notation of Theorem A.2, suppose that N=2N=2, then there exists a constant C9(0,)C_{9}\in(0,\infty) such that

lima0a1×𝔼(a,𝐦)[σx1aσx2a]=C9(x4x1)(x3x2)+(x4x2)(x3x1)(x2x1)x3x1x4x1x3x2x4x2.\displaystyle\lim_{a\to 0}a^{-1}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{1}^{a}}\sigma_{x_{2}^{a}}\right]=C_{9}\frac{(x_{4}-x_{1})(x_{3}-x_{2})+(x_{4}-x_{2})(x_{3}-x_{1})}{(x_{2}-x_{1})\sqrt{x_{3}-x_{1}}\sqrt{x_{4}-x_{1}}\sqrt{x_{3}-x_{2}}\sqrt{x_{4}-x_{2}}}. (A.10)

We note that the expression on the right-hand side of (A.10) is the partition function of some SLE3\mathrm{SLE}_{3} variant (see [Izy15, Section 3]). The proof of Lemma A.6 is more involved and we postpone it to the next section.

Proof of Theorem A.2.

The relation (A.5) follows directly from Lemmas A.4-A.6.

It remains to show that the function N\mathcal{R}_{N} defined by (A.7)-(A.8) satisfies the PDEs (A.6). Indeed, as a special case of [Izy15, Theorem 3.1], the function N\mathcal{R}_{N} is the partition function of certain local multiple SLE3\mathrm{SLE}_{3} paths. Then, the PDEs (A.6) follow from the commutation relations [Dub07, Theorem 7], see also [KP16, Appendix A]. ∎

A.3 Proof of Lemma A.6

With the notation of Theorem A.2, suppose that N=2N=2. One can proceed as in the proof of Theorem 1.4 to show that

f(x1,x2;x3,x4):=lima0a1×𝔼(a,𝐦)[σx1aσx2a](0,);\displaystyle f_{\mathbb{H}}(x_{1},x_{2};x_{3},x_{4}):=\lim_{a\to 0}a^{-1}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}\left[\sigma_{x_{1}^{a}}\sigma_{x_{2}^{a}}\right]\in(0,\infty);

moreover, for any Möbius map φ\varphi of the upper half-plane with φ(xj)\varphi(x_{j})\neq\infty for 1j41\leq j\leq 4, we have

f(φ(x1),φ(x2);φ(x3),φ(x4))=|φ(x1)|12|φ(x2)|12×f(x1,x2;x3,x4).\displaystyle f_{\mathbb{H}}(\varphi(x_{1}),\varphi(x_{2});\varphi(x_{3}),\varphi(x_{4}))=|\varphi^{\prime}(x_{1})|^{-\frac{1}{2}}|\varphi^{\prime}(x_{2})|^{-\frac{1}{2}}\times f_{\mathbb{H}}(x_{1},x_{2};x_{3},x_{4}).

However, this Möbius covariance property is not sufficient to specify the functional form of f(x1,x2;x3,x4)f_{\mathbb{H}}(x_{1},x_{2};x_{3},x_{4}). Instead, we adopt the following strategy:

  • First, at the critical point, using the high-temperature expansion, we relate the correlation 𝔼(a,𝐦)[σx1aσx2a]\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{1}^{a}}\sigma_{x_{2}^{a}}] to the low-temperature expansion of the Ising model on the dual graph;

  • Second, using the integrability result of Smirnov’s Ising fermionic observable for free boundary conditions studied in [Izy15], we figure out the scaling limit of the low-temperature expansion of the Ising model on the dual graph in the first step.

To this end, we need to consider the Ising model on a finite domain first.

Let M>0M>0 and let φ\varphi be a conformal map from \mathbb{H} onto [M,M]×[0,M][-M,M]\times[0,M] with M<φ(x1)<φ(x2)<φ(x3)<φ(x4)<M-M<\varphi(x_{1})<\varphi(x_{2})<\varphi(x_{3})<\varphi(x_{4})<M. Write yj=φ(xj)y_{j}=\varphi(x_{j}) for 1j41\leq j\leq 4. Define ΩM:=[M,M]×[0,M]\Omega_{M}:=[-M,M]\times[0,M] and ΩMa:=ΩMa𝟚\Omega^{a}_{M}:=\Omega_{M}\cap a\mathbb{Z^{2}}. Let yjaΩMay_{j}^{a}\in\partial\Omega^{a}_{M}\cap\mathbb{R} satisfy lima0yja=yj\lim_{a\to 0}y_{j}^{a}=y_{j} for 1j41\leq j\leq 4. We consider the critical Ising model on ΩMa\Omega^{a}_{M} with the following mixed boundary conditions:

 next to [y3ay4a],andfree next to ΩMa[y3ay4a],\displaystyle\oplus\text{ next to }[y_{3}^{a}y_{4}^{a}],\quad\text{and}\quad\text{free next to }\partial\Omega_{M}^{a}\setminus[y_{3}^{a}y_{4}^{a}],

and we denote by 𝔼ΩM(a,𝐟)\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{f})} the corresponding expectation.

We now introduce some notation that will be used to define the high-temperature expansion and the Ising fermionic observable for free boundary conditions initially introduced in [Izy15, Section 2]. Define Ω¯Ma\overline{\Omega}_{M}^{a} to be the graph whose vertex set V(Ω¯Ma)V(\overline{\Omega}_{M}^{a}) equals

V(ΩMa)([y3ay4a]𝔦a), where ([y3ay4a]𝔦a):={wV(ΩMa):v[y3ay4a] such that vw},V(\Omega_{M}^{a})\cup\big{(}[y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a\big{)},\;\text{ where }\big{(}[y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a\big{)}:=\{w\notin V(\Omega_{M}^{a}):\exists v\in[y_{3}^{a}y_{4}^{a}]\text{ such that }v\sim w\},

and whose edge set consists of edges in a2a\mathbb{Z}^{2} connecting vertices in V(Ω¯Ma)V(\overline{\Omega}_{M}^{a}).

For each vertex vv of Ω¯Ma\overline{\Omega}_{M}^{a}, we add four vertices cjc_{j} at v+2a4exp(𝔦π4+𝔦π2j)v+\frac{\sqrt{2}a}{4}\exp(\frac{\mathfrak{i}\pi}{4}+\frac{\mathfrak{i}\pi}{2}j), j=0,1,2,3j=0,1,2,3, and connect each cjc_{j} by an edge to vv; the four vertices are called corners and the corresponding edges are called corner edges. We add a vertex to the midpoint of each edge on a2a\mathbb{Z}^{2}. We will often identify a corner edge with the corresponding corner, and identify an edge of Ω¯Ma\overline{\Omega}_{M}^{a} with its midpoint. By a discrete outer normal at a vertex vΩ¯Mav\in\partial\overline{\Omega}_{M}^{a}, we mean an oriented edge connecting vv to a corner or to a midpoint adjacent to vv but not in Ω¯Ma\overline{\Omega}^{a}_{M}, pointing away from vv. We will often identify a discrete outer normal with the corresponding corner or midpoint. Denote by V~(Ω¯Ma)\tilde{V}(\overline{\Omega}^{a}_{M}) the set of vertices in Ω¯Ma\overline{\Omega}^{a}_{M}, together with the midpoints and corners adjacent to Ω¯Ma\overline{\Omega}^{a}_{M}. Denote by E~(Ω¯Ma)\tilde{E}(\overline{\Omega}^{a}_{M}) the set of primal edges, half-edges, corners, and discrete outer normals of Ω¯Ma\overline{\Omega}^{a}_{M}. Define the weights we\mathrm{w}_{e} for eE~(Ω¯Ma)e\in\tilde{E}(\overline{\Omega}^{a}_{M}) by

we:={21,if e is an edge in a2;(21)12,if e is a half-dege;(21)12cos(π8),if e is a corner edge.\mathrm{w}_{e}:=\begin{cases}\sqrt{2}-1,&\text{if $e$ is an edge in $a\mathbb{Z}^{2}$};\\ (\sqrt{2}-1)^{\frac{1}{2}},&\text{if $e$ is a half-dege};\\ (\sqrt{2}-1)^{\frac{1}{2}}\cos(\frac{\pi}{8}),&\text{if $e$ is a corner edge.}\end{cases}

For m0m\geq 0 and distinct elements z1,,z2mV~(Ω¯Ma)z_{1},\ldots,z_{2m}\in\tilde{V}(\overline{\Omega}_{M}^{a}), denote by Conf(Ω¯Ma;{z1,z2,,z2m})\text{Conf}(\overline{\Omega}_{M}^{a};\{z_{1},z_{2},\ldots,z_{2m}\}) the set of all subsets SS of E~(Ω¯Ma)\tilde{E}(\overline{\Omega}_{M}^{a}) such that all generalized vertices in V~(Ω¯Ma)\tilde{V}(\overline{\Omega}_{M}^{a}), except for z1,,z2mz_{1},\ldots,z_{2m}, have an even degree in SS, and write

Z(Ω¯Ma;{z1,z2,,zm}):=SConf(Ω¯Ma;{z1,z2,,z2m})eS([y3ay4a]𝔦a)we.\displaystyle Z(\overline{\Omega}_{M}^{a};\{z_{1},z_{2},\ldots,z_{m}\}):=\sum_{S\in\text{Conf}(\overline{\Omega}_{M}^{a};\{z_{1},z_{2},\ldots,z_{2m}\})}\prod_{e\in S\setminus\big{(}[y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a\big{)}}\mathrm{w}_{e}.
High-temperature expansion for the mixed boundary condition.

Let AV(ΩMa)A\subseteq V(\Omega_{M}^{a}) with cardinality #A1\#A\geq 1 and write σA:=vAσv\sigma_{A}:=\prod_{v\in A}\sigma_{v}. It follows from our definitions that

𝔼ΩM(a,𝐦)[σA]=σ{±1}V(ΩMa)σAexp(βv,wE(ΩMa)σvσw+βvwvΩMa,w([y3a,y4a]𝔦a)σv)σ{±1}V(ΩMa)exp(βv,wE(ΩMa)σvσw+βvwvΩMa,w([y3a,y4a]𝔦a)σv).\displaystyle\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{A}]=\frac{\sum_{\sigma\in\{\pm 1\}^{V(\Omega_{M}^{a})}}\sigma_{A}\exp\big{(}\beta\sum_{\langle v,w\rangle\in E(\Omega_{M}^{a})}\sigma_{v}\sigma_{w}+\beta\sum_{v\sim w\atop v\in\Omega_{M}^{a},w\in([y^{a}_{3},y^{a}_{4}]-\mathfrak{i}a)}\sigma_{v}\big{)}}{\sum_{\sigma\in\{\pm 1\}^{V(\Omega_{M}^{a})}}\exp\Big{(}\beta\sum_{\langle v,w\rangle\in E(\Omega_{M}^{a})}\sigma_{v}\sigma_{w}+\beta\sum_{v\sim w\atop v\in\Omega_{M}^{a},w\in([y^{a}_{3},y^{a}_{4}]-\mathfrak{i}a)}\sigma_{v}\Big{)}}. (A.11)
Lemma A.7.

Let AV(ΩMa)A\subseteq V(\Omega_{M}^{a}), then we have

𝔼ΩM(a,𝐦)[σA]={Z(Ω¯Ma;A)/Z(Ω¯Ma),if #A is even,Z(Ω¯Ma;A{y3a𝔦a})/Z(Ω¯Ma),if #A is odd.\displaystyle\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{A}]=\begin{cases}Z(\overline{\Omega}_{M}^{a};A)/Z(\overline{\Omega}_{M}^{a}),&\text{if }\#A\text{ is even},\\ Z(\overline{\Omega}_{M}^{a};A\cup\{y_{3}^{a}-\mathfrak{i}a\})/Z(\overline{\Omega}_{M}^{a}),&\text{if }\#A\text{ is odd}.\end{cases} (A.12)

In particular, we have

𝔼ΩM(a,𝐦)[σy1a]=Z(Ω¯Ma;{y1a,y3a𝔦a})Z(Ω¯Ma),𝔼ΩMa(a,𝐦)[σy1aσy2a]=Z(Ω¯Ma;{y1a,y2a})Z(Ω¯Ma).\displaystyle\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}]=\frac{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{3}^{a}-\mathfrak{i}a\})}{Z(\overline{\Omega}_{M}^{a})},\quad\mathbb{E}_{\Omega_{M}^{a}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}]=\frac{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{2}^{a}\})}{Z(\overline{\Omega}_{M}^{a})}.
Proof.

Throughout the proof, we let σy3a𝔦a=1\sigma_{y_{3}^{a}-\mathfrak{i}a}=1. Now we express (A.11) in a different way:

𝔼ΩM(a,𝐦)[σA]=limβ+σ{±1}V(Ω¯Ma{y3a𝔦a})σAexp(βcv,wE(Ω¯Ma)([y3ay4a]𝔦a)σvσw+βv,w([y3ay4a]𝔦a)σvσw)σ{±1}V(Ω¯Ma{y3a𝔦a})exp(βcv,wE(Ω¯Ma)([y3ay4a]𝔦a)σvσw+βv,w([y3ay4a]𝔦a)σvσw).\displaystyle\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{A}]=\lim_{\beta\to+\infty}\frac{\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\exp\big{(}\beta_{c}\sum_{\langle v,w\rangle\in E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}+\beta\sum_{\langle v,w\rangle\in([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}\big{)}}{\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\exp\big{(}\beta_{c}\sum_{\langle v,w\rangle\in E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}+\beta\sum_{\langle v,w\rangle\in([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}\big{)}}. (A.13)

Note that for σv,σw{±1}\sigma_{v},\sigma_{w}\in\{\pm 1\}, we have

exp(βσvσw)=cosh(β)[1+tanh(β)σvσw],tanh(βc)=21,limβ+tanh(β)=1.\displaystyle\exp(\beta\sigma_{v}\sigma_{w})=\cosh(\beta)\left[1+\tanh(\beta)\sigma_{v}\sigma_{w}\right],\quad\tanh(\beta_{c})=\sqrt{2}-1,\quad\lim_{\beta\to+\infty}\tanh(\beta)=1. (A.14)

As a consequence of (A.14), we have

σ{±1}V(Ω¯Ma{y3a𝔦a})σAexp(βcv,wE(Ω¯Ma)([y3ay4a]𝔦a)σvσw+βv,w([y3ay4a]𝔦a)σvσw)=SE(Ω¯Ma)(21)#S([y3ay4a]𝔦a)tanh(β)#S([y3ay4a]𝔦a)σ{±1}V(Ω¯Ma){y3a𝔦a}σAv,wσvσw×cosh(βc)#E(Ω¯Ma)([y3ay4a]𝔦a)cosh(β)#([y3ay4a]𝔦a).\displaystyle\begin{split}&\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\exp\big{(}\beta_{c}\sum_{\langle v,w\rangle\in E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}+\beta\sum_{\langle v,w\rangle\in([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}\big{)}\\ &\quad=\sum_{S\subseteq E(\overline{\Omega}_{M}^{a})}(\sqrt{2}-1)^{\#S\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\tanh(\beta)^{\#S\cap([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a})\setminus\{y_{3}^{a}-\mathfrak{i}a\}}}\sigma_{A}\prod_{\langle v,w\rangle}\sigma_{v}\sigma_{w}\\ &\quad\quad\quad\times\cosh(\beta_{c})^{\#E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\cosh(\beta)^{\#([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}.\end{split} (A.15)

Note that, if #A\#A is even, then

σ{±1}V(Ω¯Ma{y3a𝔦a})σAv,wσvσw={2#V(Ω¯Ma{y3a𝔦a}),if SConf(Ω¯Ma;A),0,otherwise;\displaystyle\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\prod_{\langle v,w\rangle}\sigma_{v}\sigma_{w}=\begin{cases}2^{\#V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})},&\text{if }S\in\mathrm{Conf}(\overline{\Omega}_{M}^{a};A),\\ 0,&\text{otherwise};\end{cases}

if #A\#A is odd, then

σ{±1}V(Ω¯Ma{y3a𝔦a})σAv,wσvσw={2#V(Ω¯Ma{y3a𝔦a}),if SConf(Ω¯Ma;A,y3a𝔦a),0,otherwise.\displaystyle\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\prod_{\langle v,w\rangle}\sigma_{v}\sigma_{w}=\begin{cases}2^{\#V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})},&\text{if }S\in\mathrm{Conf}(\overline{\Omega}_{M}^{a};A,y_{3}^{a}-\mathfrak{i}a),\\ 0,&\text{otherwise}.\end{cases}

Plugging these two observations into (A.15) shows that, if #A\#A is even, then

σ{±1}V(Ω¯Ma{y3a𝔦a})σAexp(βcv,wE(Ω¯Ma)([y3ay4a]𝔦a)σvσw+βv,w([y3ay4a]𝔦a)σvσw)=cosh(βc)#E(Ω¯Ma)([y3ay4a]𝔦a)cosh(β)#([y3ay4a]𝔦a)2#V(Ω¯Ma{y3a𝔦a})×SConf(Ω¯Ma;A)(21)#S([y3ay4a]𝔦a)tanh(β)#S([y3ay4a]𝔦a);\displaystyle\begin{split}&\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\exp\big{(}\beta_{c}\sum_{\langle v,w\rangle\in E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}+\beta\sum_{\langle v,w\rangle\in([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}\big{)}\\ &\quad=\cosh(\beta_{c})^{\#E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\cosh(\beta)^{\#([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}2^{\#V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}\\ &\quad\quad\times\sum_{S\in\mathrm{Conf}(\overline{\Omega}_{M}^{a};A)}(\sqrt{2}-1)^{\#S\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\tanh(\beta)^{\#S\cap([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)};\end{split} (A.16)

if #A\#A is odd, then

σ{±1}V(Ω¯Ma{y3a𝔦a})σAexp(βcv,wE(Ω¯Ma)([y3ay4a]𝔦a)σvσw+βv,w([y3ay4a]𝔦a)σvσw)=cosh(βc)#E(Ω¯Ma)([y3ay4a]𝔦a)cosh(β)#([y3ay4a]𝔦a)2#V(Ω¯Ma{y3a𝔦a})×SConf(Ω¯Ma;A,y3a𝔦a)(21)#S([y3ay4a]𝔦a)tanh(β)#S([y3ay4a]𝔦a).\displaystyle\begin{split}&\sum_{\sigma\in\{\pm 1\}^{V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}}\sigma_{A}\exp\big{(}\beta_{c}\sum_{\langle v,w\rangle\in E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}+\beta\sum_{\langle v,w\rangle\in([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\sigma_{v}\sigma_{w}\big{)}\\ &\quad=\cosh(\beta_{c})^{\#E(\overline{\Omega}_{M}^{a})\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\cosh(\beta)^{\#([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}2^{\#V(\overline{\Omega}_{M}^{a}\setminus\{y_{3}^{a}-\mathfrak{i}a\})}\\ &\quad\quad\times\sum_{S\in\mathrm{Conf}(\overline{\Omega}_{M}^{a};A,y_{3}^{a}-\mathfrak{i}a)}(\sqrt{2}-1)^{\#S\setminus([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}\tanh(\beta)^{\#S\cap([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a)}.\end{split} (A.17)

Plugging (A.16) and (A.17) into (A.13) gives (A.12) and completes the proof. ∎

Recall that φ\varphi is a conformal map from \mathbb{H} onto [M,M]×[0,M][-M,M]\times[0,M] with yj=φ(xj)y_{j}=\varphi(x_{j}) for 1j41\leq j\leq 4.

Lemma A.8.

There exists a constant C11(0,)C_{11}\in(0,\infty) such that

lima0a12×Z(Ω¯Ma;{y1a,y2a})Z(Ω¯Ma;{y1a,y3a𝔦a})=C11|φ(x2)|12×(x4x1)(x3x2)+(x4x2)(x3x1)(x2x1)x3x2x4x2x4x3.\displaystyle\lim_{a\to 0}a^{-\frac{1}{2}}\times\frac{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{2}^{a}\})}{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{3}^{a}-\mathfrak{i}a\})}=C_{11}|\varphi^{\prime}(x_{2})|^{-\frac{1}{2}}\times\frac{(x_{4}-x_{1})(x_{3}-x_{2})+(x_{4}-x_{2})(x_{3}-x_{1})}{(x_{2}-x_{1})\sqrt{x_{3}-x_{2}}\sqrt{x_{4}-x_{2}}\sqrt{x_{4}-x_{3}}}. (A.18)

We postpone the proof of Lemma A.8 to the end of this section. With Lemmas A.5A.7 and A.8 at hand, we are ready to prove Lemma A.6.

Proof of Lemma A.6.

On the one hand, one can proceed as in the proof of Theorem 1.4 to show that

lima0a12×𝔼ΩM(a,𝐦)[σy1a]=\displaystyle\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}]= |φ(x1)|12×lima0a12×𝔼(a,𝐦)[σx1a],\displaystyle|\varphi^{\prime}(x_{1})|^{-\frac{1}{2}}\times\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{1}^{a}}], (A.19)
lima0a1×𝔼ΩM(a,𝐦)[σy1aσy2a]=\displaystyle\lim_{a\to 0}a^{-1}\times\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}]= |φ(x1)|12|φ(x2)|12×lima0a1×𝔼(a,𝐦)[σx1aσx2a].\displaystyle|\varphi^{\prime}(x_{1})|^{-\frac{1}{2}}|\varphi^{\prime}(x_{2})|^{-\frac{1}{2}}\times\lim_{a\to 0}a^{-1}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{1}^{a}}\sigma_{x_{2}^{a}}]. (A.20)

On the other hand, thanks to Lemma A.7, we can write

a1×𝔼ΩM(a,𝐦)[σy1aσy2a]=a12×𝔼ΩMa(a,𝐦)[σy1a]×a12×Z(Ω¯Ma;{y1a,y2a})Z(Ω¯Ma;{y1a,y3a𝔦a}).\displaystyle a^{-1}\times\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}]=a^{-\frac{1}{2}}\times\mathbb{E}_{\Omega_{M}^{a}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}]\times a^{-\frac{1}{2}}\times\frac{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{2}^{a}\})}{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{3}^{a}-\mathfrak{i}a\})}.

According to Lemma A.5, we have

lima0a12×𝔼(a,𝐦)[σx1a]=C10x4x3x4x1x3x1,\displaystyle\lim_{a\to 0}a^{-\frac{1}{2}}\times\mathbb{E}_{\mathbb{H}}^{(a,\mathbf{m})}[\sigma_{x_{1}^{a}}]=C_{10}\frac{\sqrt{x_{4}-x_{3}}}{\sqrt{x_{4}-x_{1}}\sqrt{x_{3}-x_{1}}},

where C10C_{10} is the constant in Lemma A.5. Combining these with (A.19), Lemma A.8 gives

lima0a1×𝔼ΩM(a,𝐦)[σy1aσy2a]=C10C11|φ(x1)|12|φ(x2)|12×(x4x1)(x3x2)+(x4x2)(x3x1)(x2x1)x3x1x4x1x3x2x4x2,\displaystyle\lim_{a\to 0}a^{-1}\times\mathbb{E}_{\Omega_{M}}^{(a,\mathbf{m})}[\sigma_{y_{1}^{a}}\sigma_{y_{2}^{a}}]=C_{10}C_{11}|\varphi^{\prime}(x_{1})|^{-\frac{1}{2}}|\varphi^{\prime}(x_{2})|^{-\frac{1}{2}}\times\frac{(x_{4}-x_{1})(x_{3}-x_{2})+(x_{4}-x_{2})(x_{3}-x_{1})}{(x_{2}-x_{1})\sqrt{x_{3}-x_{1}}\sqrt{x_{4}-x_{1}}\sqrt{x_{3}-x_{2}}\sqrt{x_{4}-x_{2}}}, (A.21)

where C11C_{11} is the constant in Lemma A.8. Combining (A.20) with (A.21) gives (A.10) with C9=C10C11C_{9}=C_{10}C_{11}. This completes the proof. ∎

The remaining goal is to prove Lemma A.8.

Ising fermionic observable for free boundary conditions

We will use the observable initially introduced in [Izy15, Section 2]. We briefly recall its construction in our setup.

We denote by b1ab_{1}^{a} the discrete outer normal pointing from y1ay_{1}^{a} to y1a𝔦ay_{1}^{a}-\mathfrak{i}a, by b2ab_{2}^{a} the discrete outer normal pointing from y2ay_{2}^{a} to y2a𝔦ay_{2}^{a}-\mathfrak{i}a, and by b3ab_{3}^{a} the corner edge pointing from y3a𝔦ay_{3}^{a}-\mathfrak{i}a to y3a𝔦a2a4exp(𝔦π4)y_{3}^{a}-\mathfrak{i}a-\frac{\sqrt{2}a}{4}\exp(\frac{\mathfrak{i}\pi}{4}). For each oriented edge ee, view it as a complex number, and associate another number ϰ(e)\varkappa(e)\in\mathbb{C} to it defined by

ϰ(e):=(𝔦e|e|)1/2,\varkappa(e):=\left(\frac{\mathfrak{i}e}{|e|}\right)^{-1/2},

where ee is interpreted as a complex number. Note that ϰ(e)\varkappa(e) is defined up to a sign. We define FaF^{a} on V~(Ω¯Ma){y1a𝔦a}\tilde{V}(\overline{\Omega}_{M}^{a})\setminus\{y_{1}^{a}-\mathfrak{i}a\}, except for the midpoints on ([y3ay4a]𝔦a)([y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a), as

Fa(z):=𝔦ϰ(b1a)SConf(Ω¯Ma;b1δ,z)(eS([y3ay4a]𝔦a)we)exp(𝔦W(S)/2)(21)32cosπ8×Z(Ω¯Ma;{y1a,y3a𝔦a}),F^{a}(z):=\mathfrak{i}\varkappa(b_{1}^{a})\frac{\sum_{S\in\text{Conf}(\overline{\Omega}_{M}^{a};b_{1}^{\delta},z)}\left(\prod_{e\in S\setminus\big{(}[y_{3}^{a}y_{4}^{a}]-\mathfrak{i}a\big{)}}w_{e}\right)\exp(-\mathfrak{i}W(S)/2)}{(\sqrt{2}-1)^{\frac{3}{2}}\cos\frac{\pi}{8}\times Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{3}^{a}-\mathfrak{i}a\})}, (A.22)

where W(S)W(S) is defined as follows: SS can be decomposed into a union of loops and a path γ\gamma from y1a𝔦ay_{1}^{a}-\mathfrak{i}a to zz in such a way that no edge is traced twice, and the loops and γ\gamma do not cross each other or themselves transversally; the number W(S)W(S) is defined to be the winding of the path γ\gamma; the winding factor exp(𝔦W(S)/2)\exp(\mathfrak{i}W(S)/2) does not depend on the decomposition of SS. Note that FaF^{a} is only defined up to a sign.

Define

F(z;;x1,x3,x4)=1π×(x4x1)(x3x1)x4x3×(1x4x1+1x3x1)(zx1)2zx3zx4(zx1),z,\displaystyle F(z;\mathbb{H};x_{1},x_{3},x_{4})=\frac{1}{\sqrt{\pi}}\times\frac{(x_{4}-x_{1})(x_{3}-x_{1})}{\sqrt{x_{4}-x_{3}}}\times\frac{\left(\frac{1}{x_{4}-x_{1}}+\frac{1}{x_{3}-x_{1}}\right)(z-x_{1})-2}{\sqrt{z-x_{3}}\sqrt{z-x_{4}}(z-x_{1})},\quad z\in\mathbb{H}, (A.23)

and

F(z;y1,y3,y4):=|(φ1)(z)|12×F(φ1(z);;x1,x2,x3),z[M,M]×[0,M]({M,M}×{0,M}).\displaystyle F(z;y_{1},y_{3},y_{4}):=|(\varphi^{-1})^{\prime}(z)|^{\frac{1}{2}}\times F(\varphi^{-1}(z);\mathbb{H};x_{1},x_{2},x_{3}),\quad z\in[-M,M]\times[0,M]\setminus\big{(}\{-M,M\}\times\{0,M\}\big{)}. (A.24)

Note that the function FF is defined up to a sign.

Lemma A.9.

[Izy15, Proposition 1.1] We have the following convergence of the scaled observable (here FaF^{a} is viewed as a function on midpoints of Ω¯Ma\overline{\Omega}_{M}^{a}):

214a12Fa()F(;y1,y3,y4)locally uniformly as a0,\displaystyle 2^{-\frac{1}{4}}a^{-\frac{1}{2}}F^{a}(\cdot)\to F(\cdot;y_{1},y_{3},y_{4})\quad\text{locally uniformly as }a\to 0,

where both sides are defined up to a sign and where F(;y1,y3,y4)F(\cdot;y_{1},y_{3},y_{4}) is defined by (A.23) and (A.24).

Lemma A.10.

We have the convergence

lima0|214a12Fa(b2a)|=|F(y2;y1,y3,y4)|,\displaystyle\lim_{a\to 0}|2^{-\frac{1}{4}}a^{-\frac{1}{2}}F^{a}(b_{2}^{a})|=|F(y_{2};y_{1},y_{3},y_{4})|, (A.25)

where F(;y1,y3,y4)F(\cdot;y_{1},y_{3},y_{4}) is defined by (A.23) and (A.24).

Proof.

The boundary of ΩMa\Omega_{M}^{a} near y2ay_{2}^{a} satisfies the regularity assumption in [CI13, Definition 3.14]. Thus, we can repeat the argument in [CI13, Proof of Lemma 4.8] to obtain the desired convergence on the boundary. ∎

Now, we are ready to prove Lemma A.8.

Proof of Lemma A.8.

According to [Izy15, Eq. (1.7)], we have

|Fa(b2a)|=1(21)12cosπ8×Z(Ω¯Ma;{y1a,y2a})Z(Ω¯Ma;{y1a,y3a𝔦a}).\displaystyle|F^{a}(b_{2}^{a})|=\frac{1}{(\sqrt{2}-1)^{\frac{1}{2}}\cos\frac{\pi}{8}}\times\frac{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{2}^{a}\})}{Z(\overline{\Omega}_{M}^{a};\{y_{1}^{a},y_{3}^{a}-\mathfrak{i}a\})}. (A.26)

Combining (A.25) with (A.26) gives (A.18) and completes the proof. ∎


Acknowledgments. The authors thank Xin Sun and Baojun Wu for explaining their work [ACSW24]. Y.F. thanks NYUAD for its hospitality during two visits in the fall of 2023 and of 2024. The first visit was partially supported by the Short-Term Visiting Fund for Doctoral Students of Tsinghua University.

References

  • [ACSW24] Morris Ang, Gefei Cai, Xin Sun, and Baojun Wu. Integrability of Conformal Loop Ensemble: Imaginary DOZZ Formula and Beyond. Preprint in arXiv:2107.01788, 2024.
  • [ADCTW19] Michael Aizenman, Hugo Duminil-Copin, Vincent Tassion, and Simone Warzel. Emergent planarity in two-dimensional Ising models with finite-range interactions. Invent. Math., 216(3):661–743, 2019.
  • [BK89] R. M. Burton and M. Keane. Density and uniqueness in percolation. Comm. Math. Phys., 121(3):501–505, 1989.
  • [BPZ84a] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B, 241(2):333–380, 1984.
  • [BPZ84b] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys., 34(5-6):763–774, 1984.
  • [Cam24a] Federico Camia. Conformal covariance of connection probabilities and fields in 2D critical percolation. Comm. Pure Appl. Math., 77(3):2138–2176, 2024.
  • [Cam24b] Federico Camia. On the density of 2D critical percolation gaskets and anchored clusters. Lett. Math. Phys., 114:45, 2024.
  • [Car96] John L. Cardy. Scaling and renormalization in statistical physics, volume 5 of Cambridge Lecture Notes in Physics. Cambridge University Press, 1996.
  • [CDCH+14] Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, and Stanislav Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Math. Acad. Sci. Paris, 352(2):157–161, 2014.
  • [CF24a] Federico Camia and Yu Feng. Conformally covariant probabilities, operator product expansions, and logarithmic correlations in two-dimensional critical percolation. Preprint in arXiv:2407.04246, 2024.
  • [CF24b] Federico Camia and Yu Feng. Logarithmic correlation functions in 2D critical percolation. J. High Energy Phys., 2024(8):Paper No. 103, 2024.
  • [CHI15] Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov. Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2), 181(3):1087–1138, 2015.
  • [CHI21] Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov. Correlations of primary fields in the critical planar Ising model. Preprint in arXiv:2103.10263, 2021.
  • [CI13] Dmitry Chelkak and Konstantin Izyurov. Holomorphic spinor observables in the critical Ising model. Comm. Math. Phys., 322(2):303–332, 2013.
  • [CIM23] Dmitry Chelkak, Konstantin Izyurov, and Rémy Mahfouf. Universality of spin correlations in the Ising model on isoradial graphs. Ann. Probab., 51(3):840–898, 2023.
  • [CN06] Federico Camia and Charles M. Newman. Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys., 268(1):1–38, 2006.
  • [CN07] Federico Camia and Charles M. Newman. Critical percolation exploration path and SLE6{\rm SLE}_{6}: a proof of convergence. Probab. Theory Related Fields, 139(3-4):473–519, 2007.
  • [CN09] Federico Camia and Charles M. Newman. Ising (conformal) fields and cluster area measures. Proc. Natl. Acad. Sci. USA, 106(14):5547–5463, 2009.
  • [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515–580, 2012.
  • [DC20] Hugo Duminil-Copin. Lectures on the Ising and Potts models on the hypercubic lattice. In Random graphs, phase transitions, and the Gaussian free field, volume 304 of Springer Proc. Math. Stat., pages 35–161. Springer, Cham, [2020] ©2020.
  • [DCGH+21] Hugo Duminil-Copin, Maxime Gagnebin, Matan Harel, Ioan Manolescu, and Vincent Tassion. Discontinuity of the phase transition for the planar random-cluster and Potts models with q>4q>4. Ann. Sci. Éc. Norm. Supér. (4), 54(6):1363–1413, 2021.
  • [DCHN11] Hugo Duminil-Copin, Clément Hongler, and Pierre Nolin. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math., 64(9):1165–1198, 2011.
  • [DCKK+20] Hugo Duminil-Copin, Karol Kajetan Kozlowski, Dmitry Krachun, Ioan Manolescu, and Mendes Oulamara. Rotational invariance in critical planar lattice models. Preprint in arXiv:2012.11672, 2020.
  • [DCST17] Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Continuity of the phase transition for planar random-cluster and Potts models with 1q41\leq q\leq 4. Comm. Math. Phys., 349(1):47–107, 2017.
  • [Dub07] Julien Dubédat. Commutation relations for Schramm-Loewner evolutions. Comm. Pure Appl. Math., 60(12):1792–1847, 2007.
  • [ES88] Robert G. Edwards and Alan D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3), 38(6):2009–2012, 1988.
  • [FK72] C.M. Fortuin and P.W. Kasteleyn. On the random-cluster model: I. introduction and relation to other models. Physica, 57(4):536–564, 1972.
  • [FPW24] Yu Feng, Eveliina Peltola, and Hao Wu. Connection probabilities of multiple FK-Ising interfaces. Probab. Theory Related Fields, 189(1-2):281–367, 2024.
  • [GBK78] J. Groeneveld, R.J. Boel, and P.W. Kasteleyn. Correlation-function identities for general planar Ising systems. Physica A: Statistical Mechanics and its Applications, 93(1):138–154, 1978.
  • [GPS13] Christophe Garban, Gábor Pete, and Oded Schramm. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc., 26(4):939–1024, 2013.
  • [Hen13] Malte Henkel. Conformal invariance and critical phenomena. Springer Science & Business Media, 2013.
  • [HS13] Clément Hongler and Stanislav Smirnov. The energy density in the planar Ising model. Acta Math., 211(2):191–225, 2013.
  • [Izy15] Konstantin Izyurov. Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Comm. Math. Phys., 337(1):225–252, 2015.
  • [Izy22] Konstantin Izyurov. On multiple SLE for the FK-Ising model. Ann. Probab., 50(2):771–790, 2022.
  • [KP16] Kalle Kytölä and Eveliina Peltola. Pure partition functions of multiple SLEs. Comm. Math. Phys., 346(1):237–292, 2016.
  • [KS16] Antti Kemppainen and Stanislav Smirnov. Conformal invariance in random cluster models. II. Full scaling limit as a branching SLE. Preprint in arXiv:1609.08527, 2016.
  • [KS19] Antti Kemppainen and Stanislav Smirnov. Conformal invariance of boundary touching loops of FK Ising model. Comm. Math. Phys., 369(1):49–98, 2019.
  • [Law05] Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
  • [MW73] Barry M. McCoy and Tai Tsun Wu. The Two-Dimensional Ising Model. Harvard University Press, Cambridge, MA and London, England, 1973.
  • [Pin12] Haru Pinson. Rotational invariance of the 2d spin-spin correlation function. Comm. Math. Phys., 314(3):807–816, 2012.
  • [RS05] Steffen Rohde and Oded Schramm. Basic properties of SLE. Ann. of Math. (2), 161(2):883–924, 2005.
  • [Smi01] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.
  • [Smi10] Stanislav Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2), 172(2):1435–1467, 2010.
  • [SSW09] Oded Schramm, Scott Sheffield, and David B. Wilson. Conformal radii for conformal loop ensembles. Comm. Math. Phys., 288(1):43–53, 2009.
  • [Wu66] Tai Tsun Wu. Theory of toeplitz determinants and the spin correlations of the two-dimensional Ising model. I. Phys. Rev., 149:380–401, Sep 1966.
  • [Wu18] Hao Wu. Polychromatic arm exponents for the critical planar FK-Ising model. J. Stat. Phys., 170(6):1177–1196, 2018.