This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Condensates, massive gauge fields and confinement in the SU(3) gauge theory

Hirohumi Sawayanagi National Institute of Technology, Kushiro College, Kushiro, 084-0916, Japan
 E-mail:[email protected]
Abstract

SU(3) gauge theory in the nonlinear gauge of the Curci–Ferrari type is studied. In the low-energy region, ghost condensation and subsequent gauge field condensation can happen. The latter condensation makes classical gauge fields massive. If the color electric potential with string is chosen as the classical gauge field, it produces the static potential with the linear potential. We apply this static potential to the three-quark system, and show, different from the YY-type potential, infrared divergence remains in the Δ\Delta-type potential. The color electric flux is also studied, and show that the current which plays the role of the magnetic current appears.

\subjectindex

B0,B3,B6

1 Introduction

In the dual superconductor picture of quark confinement, it is expected that monopole condensation appears in the low energy region. This condensation produces a mass of gauge fields, and confinement happens. To describe this scenario, the dual Ginzburg–Landau model has been considered (See, e.g., Ref. rip ).

Based on the SU(2) gauge theory in a nonlinear gauge, we considered another possibility to give a mass for gauge fields hs17 . In the low-energy region below ΛQCD\Lambda_{\mathrm{QCD}}, which is the QCD scale parameter, the ghost condensation happens. Although this condensation gives rise to a tachyonic gluon mass, a gauge field condensate A+μAμ\langle A^{+\mu}A^{-}_{\mu}\rangle can remove the tachyonic mass. If there is a classical U(1) gauge field, this classical field becomes massive by this condensate.

In Ref. hs19 , referring to the Zwanziger’s formalism zwa , the electric potential and its dual potential were introduced as a classical field. Due to the string structure of these classical fields, the linear potential was obtained.

In this paper, we extend the previous approach to the SU(3) case. In the next section, the ghost condensation is studied at the one-loop level. In Sect. 3, under the ghost condensation, tachyonic gluon masses and the gluon condensates AaμAμa\langle A^{a\mu}A^{a}_{\mu}\rangle are calculated in the low momentum limit. The Lagrangian of the massive classical gauge fields is also presented. In Sect. 4, as the classical fields, the color electric potential and its dual potential are introduced, and the static potential between two charges is calculated. Using the result of Sect. 4, the mesonic potential and the baryonic potential are discussed in Sect. 5. Different from the dual Ginzburg–Landau model, there is no magnetic current originally. The Maxwell’s equations in the present model are studied in Sect. 6. The behavior of the color flux tube is also considered. Section 7 is devoted to summary and comment. In Appendix A, the relation between the ghost condensation and ΛQCD\Lambda_{\mathrm{QCD}} is derived. Tachyonic gluon masses are calculated in Appendix B. To make the article self-contained, an example of the electric potential and its dual potential for a color charge is presented in Appendix C. In Appendix D, the static potential between two charges is calculated in detail. Based on a phenomenological Lagrangian for order parameters, the type of the dual superconductivity in the present model is considered in Appendix E.

2 Ghost condensation

2.1 Notation

We consider the SU(3) gauge theory with structure constants fabcf_{abc} in the Minkowski space. The Lagrangian in the nonlinear gauge of the Curci–Ferrari type cf is given by hs03

\displaystyle\mathcal{L} =inv+NL,inv=14FμνaFaμν,\displaystyle=\mathcal{L}_{inv}+\mathcal{L}_{NL},\quad\mathcal{L}_{inv}=-\frac{1}{4}F_{\mu\nu}^{a}F^{a\mu\nu},
NL\displaystyle\mathcal{L}_{NL} =BaμAaμ+ic¯a(μDμc)a+α12BaBa+α22B¯aB¯aBawa,(a=1,,8)\displaystyle=B^{a}\partial_{\mu}A^{a\mu}+i\bar{c}^{a}(\partial_{\mu}D^{\mu}c)^{a}+\frac{\alpha_{1}}{2}B^{a}B^{a}+\frac{\alpha_{2}}{2}\bar{B}^{a}\bar{B}^{a}-B^{a}w^{a},\quad(a=1,\cdots,8)

where BaB^{a} is the Nakanishi–Lautrup field, cc (c¯)(\bar{c}) is the ghost (antighost), B¯a=Ba+igfabcc¯bcc\bar{B}^{a}=-B^{a}+igf_{abc}\bar{c}^{b}c^{c}, α1\alpha_{1} and α2\alpha_{2} are gauge parameters, and waw^{a} is a constant to keep the BRS symmetry. The Lagrangian NL\mathcal{L}_{NL} is rewritten as

φ=α12BaBa+Ba(μAaμ+φawa)+ic¯a[(μDμ)ac+gfabcφb]ccφaφa2α2,\mathcal{L}_{\varphi}=\frac{\alpha_{1}}{2}B^{a}B^{a}+B^{a}(\partial_{\mu}A^{a\mu}+\varphi^{a}-w^{a})+i\bar{c}^{a}\left[(\partial_{\mu}D^{\mu})^{ac}+gf_{abc}\varphi^{b}\right]c^{c}-\frac{\varphi^{a}\varphi^{a}}{2\alpha_{2}},

where the auxiliary field φa\varphi^{a} represents α2B¯a-\alpha_{2}\bar{B}^{a}.

Let us expand the gauge field AμA_{\mu} as

Aμ=Aμaλa2=AμH+α=13(WμαEα+WμαEα),A_{\mu}=A^{a}_{\mu}\frac{\lambda^{a}}{2}=\vec{A}_{\mu}\cdot\vec{H}+\sum_{\alpha=1}^{3}\left(W_{\mu}^{-{\alpha}}E_{\alpha}+W_{\mu}^{\alpha}E_{-\alpha}\right), (2.1)

where the diagonal components are

Aμ=(Aμ3,Aμ8),H=(H3,H8)=(λ32,λ82),\vec{A}_{\mu}=(A_{\mu}^{3},A_{\mu}^{8}),\quad\vec{H}=(H^{3},H^{8})=\left(\frac{\lambda^{3}}{2},\frac{\lambda^{8}}{2}\right),

and AμH=A=3,8AμAHA=Aμ3H3+Aμ8H8\vec{A}_{\mu}\cdot\vec{H}=\sum_{A=3,8}A^{A}_{\mu}H^{A}=A^{3}_{\mu}H^{3}+A^{8}_{\mu}H^{8}. The off-diagonal components are given by

Wμ±1=12(Aμ1±iAμ2),Wμ±2=12(Aμ4iAμ5),Wμ±3=12(Aμ6±iAμ7),W_{\mu}^{\pm 1}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{1}\pm iA_{\mu}^{2}\right),\quad W_{\mu}^{\pm 2}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{4}\mp iA_{\mu}^{5}\right),\quad W_{\mu}^{\pm 3}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{6}\pm iA_{\mu}^{7}\right),
E±1=122(λ1±iλ2),E±2=122(λ4iλ5),E±3=122(λ6±iλ7).E_{\pm 1}=\frac{1}{2\sqrt{2}}(\lambda^{1}\pm i\lambda^{2}),\quad E_{\pm 2}=\frac{1}{2\sqrt{2}}(\lambda^{4}\mp i\lambda^{5}),\quad E_{\pm 3}=\frac{1}{2\sqrt{2}}(\lambda^{6}\pm i\lambda^{7}).

Using the root vectors of the SU(3) group

ϵ1=(1,0),ϵ2=(12,32),ϵ3=(12,32),\vec{\epsilon}_{1}=(1,0),\quad\vec{\epsilon}_{2}=\left(\frac{-1}{2},\frac{-\sqrt{3}}{2}\right),\quad\vec{\epsilon}_{3}=\left(\frac{-1}{2},\frac{\sqrt{3}}{2}\right), (2.2)

the above matrices satisfy

[H,E±α]=±ϵαE±α,[Eα,Eα]=ϵαH,[E±α,E±β]=12εαβγEγ[\vec{H},E_{\pm\alpha}]=\pm\vec{\epsilon}_{\alpha}E_{\pm\alpha},\quad[E_{\alpha},E_{-\alpha}]=\vec{\epsilon}_{\alpha}\cdot\vec{H},\quad[E_{\pm\alpha},E_{\pm\beta}]=\frac{\mp 1}{\sqrt{2}}\varepsilon_{\alpha\beta\gamma}E_{\mp\gamma}

and

tr(HAHB)=δAB2,tr(EαEβ)=δαβ2.\mathrm{tr}\left(H^{A}H^{B}\right)=\frac{\delta^{AB}}{2},\quad\mathrm{tr}\left(E_{\alpha}E_{-\beta}\right)=\frac{\delta^{\alpha\beta}}{2}.

In the same way, cc and c¯\bar{c} are expressed as

c=cH+α=13(CαEα+CαEα),c¯=c¯H+α=13(C¯αEα+C¯αEα),c=\vec{c}\cdot\vec{H}+\sum_{\alpha=1}^{3}\left(C^{-\alpha}E_{\alpha}+C^{\alpha}E_{-\alpha}\right),\quad\bar{c}=\vec{\bar{c}}\cdot\vec{H}+\sum_{\alpha=1}^{3}\left(\bar{C}^{-\alpha}E_{\alpha}+\bar{C}^{\alpha}E_{-\alpha}\right), (2.3)

where

C±1=12(c1±ic2),C±2=12(c4ic5),C±3=12(c6±ic7),C^{\pm 1}=\frac{1}{\sqrt{2}}\left(c^{1}\pm ic^{2}\right),\quad C^{\pm 2}=\frac{1}{\sqrt{2}}\left(c^{4}\mp ic^{5}\right),\quad C^{\pm 3}=\frac{1}{\sqrt{2}}\left(c^{6}\pm ic^{7}\right),

and C¯±α(α=1,2,3)\bar{C}^{\pm\alpha}\ (\alpha=1,2,3) are defined as well.

2.2 Ghost condensation

To obtain the one-loop effective potential of φA\varphi^{A}, we diagonalize φaλa2\displaystyle\varphi^{a}\frac{\lambda^{a}}{2} as φH\vec{\varphi}\cdot\vec{H}. Then, using the expressions (2.1) and (2.3), the Lagrangian ic¯aca+ic¯agfabcφbcc=2tr(ic¯c+c¯[gφ,c])i\bar{c}^{a}\Box c^{a}+i\bar{c}^{a}gf_{abc}\varphi^{b}c^{c}=2\mathrm{tr}(i\bar{c}\Box c+\bar{c}[g\varphi,c]) becomes

A=3,8c¯AicA+α=13{C¯α(i+gϵαφ)Cα+C¯α(igϵαφ)Cα}.\sum_{A=3,8}\bar{c}^{A}i\Box c^{A}+\sum_{\alpha=1}^{3}\left\{\bar{C}^{\alpha}(i\Box+g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})C^{-\alpha}+\bar{C}^{-\alpha}(i\Box-g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})C^{\alpha}\right\}. (2.4)

Next, as in the SU(2) case hs07 , we integrate out C±αC^{\pm\alpha} and C¯α\bar{C}^{\mp\alpha} with the momentum μkΛ\mu\leq k\leq\Lambda. After the Wick rotation, we obtain the potential

α=13V1(ϵαφ)\displaystyle\sum_{\alpha=1}^{3}V_{1}\left(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}\right) =α=13μΛd4k(2π)4ln[(k2)2+g2(ϵαφ)2]\displaystyle=-\sum_{\alpha=1}^{3}\int_{\mu}^{\Lambda}\frac{d^{4}k}{(2\pi)^{4}}\ln\left[(-k^{2})^{2}+g^{2}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right]
=132π2α=13[{Λ4+g2(ϵαφ)2}ln{Λ4+g2(ϵαφ)2}\displaystyle=-\frac{1}{32\pi^{2}}\sum_{\alpha=1}^{3}\left[\left\{\Lambda^{4}+g^{2}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right\}\ln\left\{\Lambda^{4}+g^{2}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right\}\right.
{μ4+g2(ϵαφ)2}ln{μ4+g2(ϵαφ)2}].\displaystyle\hskip 51.21504pt\left.-\left\{\mu^{4}+g^{2}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right\}\ln\left\{\mu^{4}+g^{2}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right\}\right].

Since we can rewrite φaφa/(2α2)\varphi^{a}\varphi^{a}/(2\alpha_{2}) as

12α2φaφa=12α2φφ=13α2α=13(ϵαφ)2,\frac{1}{2\alpha_{2}}\varphi^{a}\varphi^{a}=\frac{1}{2\alpha_{2}}\vec{\varphi}\cdot\vec{\varphi}=\frac{1}{3\alpha_{2}}\sum_{\alpha=1}^{3}(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2},

the one-loop effective potential of φ\varphi becomes ks

V(φ)=α=13[(ϵαφ)23α2+V1(ϵαφ)].V(\varphi)=\sum_{\alpha=1}^{3}\left[\frac{(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}{3\alpha_{2}}+V_{1}\left(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}\right)\right]. (2.5)

To study minimum points of V(φ)V(\varphi), we consider

Vφ8\displaystyle\frac{\partial V}{\partial\varphi^{8}} =φ8α232g2φ8{L(ϵ2φ)+L(ϵ3φ)}32g2φ3{L(ϵ2φ)L(ϵ3φ)},\displaystyle=\frac{\varphi^{8}}{\alpha_{2}}-\frac{3}{2}g^{2}\varphi^{8}\left\{L(\vec{\epsilon}_{2}\cdot\vec{\varphi})+L(\vec{\epsilon}_{3}\cdot\vec{\varphi})\right\}-\frac{\sqrt{3}}{2}g^{2}\varphi^{3}\left\{L(\vec{\epsilon}_{2}\cdot\vec{\varphi})-L(\vec{\epsilon}_{3}\cdot\vec{\varphi})\right\},
Vφ3\displaystyle\frac{\partial V}{\partial\varphi^{3}} =φ3α2g2φ3[2L(ϵ1φ)+12{L(ϵ2φ)+L(ϵ3φ)}]32g2φ8{L(ϵ2φ)L(ϵ3φ)},\displaystyle=\frac{\varphi^{3}}{\alpha_{2}}-g^{2}\varphi^{3}\left[2L(\vec{\epsilon}_{1}\cdot\vec{\varphi})+\frac{1}{2}\left\{L(\vec{\epsilon}_{2}\cdot\vec{\varphi})+L(\vec{\epsilon}_{3}\cdot\vec{\varphi})\right\}\right]-\frac{\sqrt{3}}{2}g^{2}\varphi^{8}\left\{L(\vec{\epsilon}_{2}\cdot\vec{\varphi})-L(\vec{\epsilon}_{3}\cdot\vec{\varphi})\right\},
L(ϵαφ)=132π2ln{Λ4+(gϵαφ)2μ4+(gϵαφ)2}.\displaystyle L(\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})=\frac{1}{32\pi^{2}}\ln\left\{\frac{\Lambda^{4}+(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}{\mu^{4}+(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}\right\}.

The explicit forms of gϵαφ(α=1,2,3)g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}\ (\alpha=1,2,3) are

gϵ1φ=gφ3,gϵ2φ=g2(φ3+3φ8),gϵ3φ=g2(φ3+3φ8),g\vec{\epsilon}_{1}\cdot\vec{\varphi}=g\varphi^{3},\quad g\vec{\epsilon}_{2}\cdot\vec{\varphi}=-\frac{g}{2}\left(\varphi^{3}+\sqrt{3}\varphi^{8}\right),\quad g\vec{\epsilon}_{3}\cdot\vec{\varphi}=\frac{g}{2}\left(-\varphi^{3}+\sqrt{3}\varphi^{8}\right),

and φ8=0\varphi^{8}=0 leads to ϵ2φ=ϵ3φ\vec{\epsilon}_{2}\cdot\vec{\varphi}=\vec{\epsilon}_{3}\cdot\vec{\varphi}. So, the equation V/φ8=0\partial V/\partial\varphi^{8}=0 has the solution φ8=0\varphi^{8}=0. Now we assume gφ=(v,0)\langle g\vec{\varphi}\rangle=(v,0) is a minimum point. Since the potential V(φ)V(\varphi) is invariant under the interchange ϵαφϵβφ(αβ)\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}\longleftrightarrow\vec{\epsilon}_{\beta}\cdot\vec{\varphi}\ (\alpha\neq\beta), and has the symmetry ϵαφϵαφ\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}\to-\vec{\epsilon}_{\alpha}\cdot\vec{\varphi}, there are six minimum points 111These minimum points were found in Ref. ks . It also contains the three-dimensional figure of V(φ)V(\varphi).

(v,0),(v2,32v),(v2,32v),\displaystyle(v,0),\quad\left(-\frac{v}{2},-\frac{\sqrt{3}}{2}v\right),\quad\left(-\frac{v}{2},\frac{\sqrt{3}}{2}v\right),
(v,0),(v2,32v),(v2,32v).\displaystyle(-v,0),\quad\left(\frac{v}{2},\frac{\sqrt{3}}{2}v\right),\quad\left(\frac{v}{2},-\frac{\sqrt{3}}{2}v\right). (2.6)

To determine the value of vv, we consider the case (v,0)(v,0). The condition V/φ3=0\partial V/\partial\varphi^{3}=0 with gφ3=v0g\varphi^{3}=v\neq 0 becomes

32π2α2g2=ln{(v2+Λ4v2+μ4)2(v2+4Λ4v2+4μ4)}.\frac{32\pi^{2}}{\alpha_{2}g^{2}}=\ln\left\{\left(\frac{v^{2}+\Lambda^{4}}{v^{2}+\mu^{4}}\right)^{2}\left(\frac{v^{2}+4\Lambda^{4}}{v^{2}+4\mu^{4}}\right)\right\}. (2.7)

If we set v=0v=0 at μ=μ0\mu=\mu_{0}, μ0=Λexp[8π2/3α2g2]\mu_{0}=\Lambda\exp[-8\pi^{2}/3\alpha_{2}g^{2}] is obtained. When the cut-off Λ\Lambda is large enough, Eq.(2.7) gives v21/3μ02v\simeq 2^{1/3}\mu_{0}^{2} in the limit μ0\mu\to 0.

In Appendix A, we show 3α2=β03\alpha_{2}=\beta_{0} is the ultraviolet fixed point of α2\alpha_{2}, where β0=11N/3\beta_{0}=11N/3 with N=3N=3 is the first coefficient of the β\beta function. Substituting this value into μ0\mu_{0}, we find

μ0=Λexp[8π2β0g2]=ΛQCD,\mu_{0}=\Lambda\exp\left[-\frac{8\pi^{2}}{\beta_{0}g^{2}}\right]=\Lambda_{\mathrm{QCD}},

where ΛQCD\Lambda_{\mathrm{QCD}} is the QCD scale parameter. Thus we obtain the ghost condensate vv that behaves as

v=0(μΛQCD),v0(μ<ΛQCD),v21/3ΛQCD2(μ0).v=0\ (\mu\geq\Lambda_{\mathrm{QCD}}),\quad v\neq 0\ (\mu<\Lambda_{\mathrm{QCD}}),\quad v\simeq 2^{1/3}\Lambda_{\mathrm{QCD}}^{2}\ (\mu\to 0).

3 Gluon mass

3.1 Tachyonic gluon mass

In the SU(2) gauge theory, ghost loops with v0v\neq 0 produce the tachyonic gluon mass terms hs03 ; dv . To study the SU(3) case, we choose the vacuum (v,0)(v,0) in Eq.(2.6), and write gφa=vδ3a+gφ~ag\varphi^{a}=v\delta^{3a}+g\tilde{\varphi}^{a}, where φ~a\tilde{\varphi}^{a} is the quantum part. Neglecting φ~a\tilde{\varphi}^{a}, the Lagrangian (2.4) becomes

A=3,8ic¯AcA+α=13{iC¯α(iϵα3v)Cα+iC¯α(+iϵα3v)Cα},\sum_{A=3,8}i\bar{c}^{A}\Box c^{A}+\sum_{\alpha=1}^{3}\left\{i\bar{C}^{\alpha}(\Box-i\epsilon^{3}_{\alpha}v)C^{-\alpha}+i\bar{C}^{-\alpha}(\Box+i\epsilon^{3}_{\alpha}v)C^{\alpha}\right\},

and it leads to the ghost propagators

cAc¯A=i(A=3,8),\displaystyle\langle c^{A}\bar{c}^{A}\rangle=-\frac{i}{\Box}\quad(A=3,8),
CαC¯α=i+iϵα3v,CαC¯α=iiϵα3v(α=1,2,3).\displaystyle\langle C^{\alpha}\bar{C}^{-\alpha}\rangle=-\frac{i}{\Box+i\epsilon^{3}_{\alpha}v},\quad\langle C^{-\alpha}\bar{C}^{\alpha}\rangle=-\frac{i}{\Box-i\epsilon^{3}_{\alpha}v}\quad(\alpha=1,2,3). (3.1)

Using Eqs.(2.1) and (2.3), the vertex iμc¯agfabcAbμcc-i\partial_{\mu}\bar{c}^{a}gf_{abc}A^{b\mu}c^{c} in ic¯a(μDμ)abcbi\bar{c}^{a}(\partial_{\mu}D^{\mu})^{ab}c^{b} is rewritten as

A=3,8[gAAμα=13ϵαA{(μC¯α))Cα(μC¯α)Cα}+g(μc¯A)α=13ϵαA(WαμCαWαμCα)\displaystyle\sum_{A=3,8}\left[-gA^{A\mu}\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}\left\{(\partial_{\mu}\bar{C}^{\alpha)})C^{-\alpha}-(\partial_{\mu}\bar{C}^{-\alpha})C^{\alpha}\right\}+g(\partial_{\mu}\bar{c}^{A})\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}(W^{\alpha\mu}C^{-\alpha}-W^{-\alpha\mu}C^{\alpha})\right.
gα=13ϵαA{Wαμ(μC¯α)Wαμ(μC¯α)}cA]+(α,β,γ)sgn(γ)g2ϵαβγ(μC¯α)CβWγμ,\displaystyle\left.-g\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}\left\{W^{\alpha\mu}(\partial_{\mu}\bar{C}^{-\alpha})-W^{-\alpha\mu}(\partial_{\mu}\bar{C}^{\alpha})\right\}c^{A}\right]+\sum_{(\alpha,\beta,\gamma)}\mathrm{sgn}(\gamma)\frac{g}{\sqrt{2}}\epsilon_{\alpha\beta\gamma}(\partial_{\mu}\bar{C}^{\alpha})C^{\beta}W^{\gamma\mu}, (3.2)

where sgn(γ)\mathrm{sgn}(\gamma) is the sign of γ\gamma, and (α,β,γ)\sum_{(\alpha,\beta,\gamma)} implies the sum for the permutations of (1,2,3)(1,2,3) and (1,2,3)(-1,-2,-3).

Now we consider the two-point function

Aμa(x)Aνb(y)=Gμνab(x,y)\langle A^{a}_{\mu}(x)A^{b}_{\nu}(y)\rangle=G^{ab}_{\mu\nu}(x,y) (3.3)

at the one-loop level. As in the SU(2) case, using the ghost propagators (3.1) and the interactions (3.2), the ghost loop in Fig.1(b) gives rise to tachyonic masses in the low momentum limit p0p\to 0. The details are presented in Appendix B. From Eqs.(B.3) and (B.7), we find the tachyonic mass terms are

12(52m2)A3μAμ312(32m2)A8μAμ8α=13(54m2)WαμWμα,m2=g2v64π.-\frac{1}{2}\left(\frac{5}{2}m^{2}\right)A^{3\mu}A_{\mu}^{3}-\frac{1}{2}\left(\frac{3}{2}m^{2}\right)A^{8\mu}A_{\mu}^{8}-\sum_{\alpha=1}^{3}\left(\frac{5}{4}m^{2}\right)W^{\alpha\mu}W^{-\alpha}_{\mu},\quad m^{2}=\frac{g^{2}v}{64\pi}. (3.4)
Refer to caption
Figure 1: The diagrams that contribute to the inverse propagator for AμaA_{\mu}^{a}. Fig. 1(b) gives rise to the tachyonic mass in the limit p0p\to 0, and Fig. 1(c) yields the condensate Gμμ(0)(x,x)G_{\mu\mu}^{(0)}(x,x).

3.2 Condensate AaμAμa\langle A^{a\mu}A^{a}_{\mu}\rangle

To remove the tachyonic masses, we consider the condensate AaμAμa\langle A^{a\mu}A^{a}_{\mu}\rangle hs17 ; hs19 . Let us introduce the source terms

A=3,8KAAAμAμA+α=13𝒦αWαμWμα.\sum_{A=3,8}K_{A}A^{A\mu}A^{A}_{\mu}+\sum_{\alpha=1}^{3}\mathcal{K}_{\alpha}W^{\alpha\mu}W^{\alpha}_{\mu}.

Although the sources may depend on the momentum scale, for simplicity, the constant sources

KA\displaystyle K_{A} =KA(0)+KA(1)+,KA(n)=O(n),KA(0)=12MA2(A=3,8)\displaystyle=K_{A}^{(0)}+K_{A}^{(1)}+\cdots,\quad K_{A}^{(n)}=O(\hslash^{n}),\quad K_{A}^{(0)}=\frac{1}{2}M_{A}^{2}\quad(A=3,8)
𝒦α\displaystyle\mathcal{K}_{\alpha} =𝒦α(0)+𝒦α(1)+,𝒦α(n)=O(n),𝒦α(0)=α2(α=1,2,3)\displaystyle=\mathcal{K}_{\alpha}^{(0)}+\mathcal{K}_{\alpha}^{(1)}+\cdots,\quad\mathcal{K}_{\alpha}^{(n)}=O(\hslash^{n}),\quad\mathcal{K}_{\alpha}^{(0)}=\mathcal{M}_{\alpha}^{2}\quad(\alpha=1,2,3)

are considered. The interaction (gfabcAμbAνc)2/4-(gf_{abc}A^{b}_{\mu}A^{c}_{\nu})^{2}/4 in (Fμνa)2/4-(F^{a}_{\mu\nu})^{2}/4 contains the terms

g22α=13WαμWμαWανWναg24αβWαμWμαWβνWνβ\displaystyle-\frac{g^{2}}{2}\sum_{\alpha=1}^{3}W^{\alpha\mu}W^{-\alpha}_{\mu}W^{\alpha\nu}W^{-\alpha}_{\nu}-\frac{g^{2}}{4}\sum_{\alpha\neq\beta}W^{\alpha\mu}W^{-\alpha}_{\mu}W^{\beta\nu}W^{-\beta}_{\nu}
g2α=13(ϵαAμ)(ϵαAμ)WανWνα.\displaystyle-g^{2}\sum_{\alpha=1}^{3}\left(\vec{\epsilon}_{\alpha}\cdot\vec{A}^{\mu}\right)\left(\vec{\epsilon}_{\alpha}\cdot\vec{A}_{\mu}\right)W^{\alpha\nu}W^{-\alpha}_{\nu}. (3.5)

So, at O()O(\hslash), the diagram in Fig.1(c) gives the condensate AaμAμa(0)=gμνGμν(0)aa(x,x)\langle A^{a\mu}A^{a}_{\mu}\rangle^{(0)}=g^{\mu\nu}G^{(0)aa}_{\mu\nu}(x,x), where Gμν(0)ab(x,y)G^{(0)ab}_{\mu\nu}(x,y) is the free propagator with the mass MAM_{A} or α\mathcal{M}_{\alpha}. If the other divergent diagrams of O()O(\hslash) are subtracted by the terms with KA(1)K_{A}^{(1)} or 𝒦α(1)\mathcal{K}_{\alpha}^{(1)}, the condensate AaμAμa(0)\langle A^{a\mu}A^{a}_{\mu}\rangle^{(0)} is determined to remove the tachyonic masses in Eq.(3.4).

As an example, we consider the self-energy of Wμ1W^{1}_{\mu} in the limit p0p\to 0. The diagram Fig.1(c) with the first interaction in Eq.(3.5) gives g2W1μWμ1(0)-g^{2}\langle W^{1\mu}W^{-1}_{\mu}\rangle^{(0)}. Similarly, from the second term in Eq.(3.5), we obtain g2[W2μWμ2(0)+W3μWμ3(0)]/2-g^{2}\left[\langle W^{2\mu}W^{-2}_{\mu}\rangle^{(0)}+\langle W^{3\mu}W^{-3}_{\mu}\rangle^{(0)}\right]/2. Since ϵ1Aμ=Aμ3\vec{\epsilon}_{1}\cdot\vec{A}_{\mu}=A^{3}_{\mu}, the third term in Eq.(3.5) gives g2A3μAμ3(0)-g^{2}\langle A^{3\mu}A^{3}_{\mu}\rangle^{(0)}. So, Fig.1(c) for Wμ1W^{1}_{\mu} leads to

g2{𝒢1+12(𝒢2+𝒢3)+G3},-g^{2}\left\{\mathcal{G}^{1}+\frac{1}{2}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)+G^{3}\right\},

where 𝒢α=WαμWμα(0)(α=1,2,3)\mathcal{G}^{\alpha}=\langle W^{\alpha\mu}W^{-\alpha}_{\mu}\rangle^{(0)}\ (\alpha=1,2,3) and GA=AAμAμA(0)(A=3,8)G^{A}=\langle A^{A\mu}A^{A}_{\mu}\rangle^{(0)}\ (A=3,8). The condition that these condensates remove the tachyonic mass of Wμ1W^{1}_{\mu} becomes

54m2g2{𝒢1+12(𝒢2+𝒢3)+G3}=0.-\frac{5}{4}m^{2}-g^{2}\left\{\mathcal{G}^{1}+\frac{1}{2}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)+G^{3}\right\}=0.

In the same way, we find the conditions

54m2g2{𝒢2+12(𝒢3+𝒢1)+14(G3+3G8)}=0,\displaystyle-\frac{5}{4}m^{2}-g^{2}\left\{\mathcal{G}^{2}+\frac{1}{2}\left(\mathcal{G}^{3}+\mathcal{G}^{1}\right)+\frac{1}{4}\left(G^{3}+3G^{8}\right)\right\}=0, (3.6)
54m2g2{𝒢3+12(𝒢1+𝒢2)+14(G3+3G8)}=0,\displaystyle-\frac{5}{4}m^{2}-g^{2}\left\{\mathcal{G}^{3}+\frac{1}{2}\left(\mathcal{G}^{1}+\mathcal{G}^{2}\right)+\frac{1}{4}\left(G^{3}+3G^{8}\right)\right\}=0,
54m2g2{𝒢1+14(𝒢2+𝒢3)}=0,\displaystyle-\frac{5}{4}m^{2}-g^{2}\left\{\mathcal{G}^{1}+\frac{1}{4}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)\right\}=0, (3.7)
34m23g24(𝒢2+𝒢3)=0,\displaystyle-\frac{3}{4}m^{2}-\frac{3g^{2}}{4}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)=0, (3.8)

for Wμ2W^{2}_{\mu}, Wμ3W^{3}_{\mu}, Aμ3A^{3}_{\mu} and Aμ8A^{8}_{\mu}, respectively.

The solutions of these five equations are

𝒢1=m2g2,𝒢2=𝒢3=m22g2,G3=m24g2,G8=m212g2.\mathcal{G}^{1}=-\frac{m^{2}}{g^{2}},\quad\mathcal{G}^{2}=\mathcal{G}^{3}=-\frac{m^{2}}{2g^{2}},\quad G^{3}=\frac{m^{2}}{4g^{2}},\quad G^{8}=-\frac{m^{2}}{12g^{2}}. (3.9)

We note, although the diagonal component A3μAμ3(0)\langle A^{3\mu}A^{3}_{\mu}\rangle^{(0)} vanishes in the SU(2) case hs17 ; hs19 , the diagonal components AAμAμA(0)(A=3,8)\langle A^{A\mu}A^{A}_{\mu}\rangle^{(0)}\ (A=3,8) do not vanish in SU(3).

3.3 Inclusion of classical solutions

To incorporate U(1)3 and U(1)8 classical solutions into the above scheme, we divide AμAA^{A}_{\mu} into the classical part bμAb^{A}_{\mu} and the quantum fluctuation aμAa^{A}_{\mu} as

AμA=bμA+aμA(A=3,8),A^{A}_{\mu}=b^{A}_{\mu}+a^{A}_{\mu}\quad(A=3,8),

and divide the gauge transformation δAμ=Dμ(A)ε\delta A_{\mu}=D_{\mu}(A)\varepsilon as

δaμ=Dμ(a,W)ε,(δbμ)a=gfabcbbεc,δWμ=Dμ(a,W)ε,\delta a_{\mu}=D_{\mu}(a,W)\varepsilon,\quad(\delta b_{\mu})^{a}=gf_{abc}b^{b}\varepsilon^{c},\quad\delta W_{\mu}=D_{\mu}(a,W)\varepsilon, (3.10)

where Dμ(A)ab=μδab+gfacbAμcD_{\mu}(A)^{ab}=\partial_{\mu}\delta^{ab}+gf_{acb}A_{\mu}^{c}, and Dμ(a,W)D_{\mu}(a,W) is obtained by removing bμb_{\mu} from Dμ(A)D_{\mu}(A), i.e., Dμ(a,W)=Dμ(A)|bμ=0D_{\mu}(a,W)=D_{\mu}(A)|_{b_{\mu}=0}. Using the gauge-fixing function G(a,W)=μAμ|bν=0+φwG(a,W)=\partial_{\mu}A^{\mu}|_{b_{\nu}=0}+\varphi-w, the transformation (3.10) gives the ghost Lagrangian

ic¯a[(μDμ(A))ac+gfabcφb]cc|bμ=0=ic¯a[(μDμ(a,W))ac+gfabcφb]cc.\left.i\bar{c}^{a}\left[\left(\partial_{\mu}D^{\mu}(A)\right)^{ac}+gf_{abc}\varphi^{b}\right]c^{c}\right|_{b_{\mu}=0}=i\bar{c}^{a}\left[\left(\partial_{\mu}D^{\mu}(a,W)\right)^{ac}+gf_{abc}\varphi^{b}\right]c^{c}.

So, after the ghost condensation, the tachyonic mass terms are obtained by replacing AμaA^{a}_{\mu} with aμAa^{A}_{\mu} and WμαW^{\alpha}_{\mu} as 222We can use the background covariant gauge. In this case, as the ghost Lagrangian is ic¯a[(D(b)μDμ(A))ac+gfabcφb]cci\bar{c}^{a}\left[\left(D(b)_{\mu}D^{\mu}(A)\right)^{ac}+gf_{abc}\varphi^{b}\right]c^{c}, c¯\bar{c} and cc couple with bμb_{\mu}. However, this ghost Lagrangian has the U(1)3×U(1)8\mathrm{U(1)}_{3}\times\mathrm{U(1)}_{8} symmetry δεbμ=μεH/g\delta_{\varepsilon}b_{\mu}=-\partial_{\mu}\vec{\varepsilon}\cdot\vec{H}/g, δεaμ=0\delta_{\varepsilon}a_{\mu}=0 and δεWμ±α=iεϵαWμ±α\delta_{\varepsilon}W^{\pm\alpha}_{\mu}=\mp i\vec{\varepsilon}\cdot\vec{\epsilon}_{\alpha}W^{\pm\alpha}_{\mu}. Therefore, as in the SU(2) case hs17 , this symmetry prevents bμAb_{\mu}^{A} from getting tachyonic mass terms, and Eq.(3.11) is obtained.

12(52m2)a3μaμ312(32m2)a8μaμ8α=13(54m2)WαμWμα.-\frac{1}{2}\left(\frac{5}{2}m^{2}\right)a^{3\mu}a_{\mu}^{3}-\frac{1}{2}\left(\frac{3}{2}m^{2}\right)a^{8\mu}a_{\mu}^{8}-\sum_{\alpha=1}^{3}\left(\frac{5}{4}m^{2}\right)W^{\alpha\mu}W^{-\alpha}_{\mu}. (3.11)

The above tachyonic mass terms are removed by the condensates 𝒢α=WαμWμα(0)(α=1,2,3)\mathcal{G}^{\alpha}=\langle W^{\alpha\mu}W^{-\alpha}_{\mu}\rangle^{(0)}\ (\alpha=1,2,3) and GA=aAμaμA(0)(A=3,8)G^{A}=\langle a^{A\mu}a^{A}_{\mu}\rangle^{(0)}\ (A=3,8) in Eq.(3.9). When 𝒢α0\mathcal{G}^{\alpha}\neq 0, the interaction

g2α=13(ϵα(a+b)μ)(ϵα(a+b)μ)WανWνα-g^{2}\sum_{\alpha=1}^{3}\left(\vec{\epsilon}_{\alpha}\cdot(\vec{a}+\vec{b})^{\mu}\right)\left(\vec{\epsilon}_{\alpha}\cdot(\vec{a}+\vec{b})_{\mu}\right)W^{\alpha\nu}W^{-\alpha}_{\nu}

in Eq.(3.5) leads to the mass terms

g2α=13(ϵαbμ)(ϵαbμ)𝒢α=g2{𝒢1+14(𝒢2+𝒢3)}b3μbμ33g24(𝒢2+𝒢3)b8μbμ8.-g^{2}\sum_{\alpha=1}^{3}(\vec{\epsilon}_{\alpha}\cdot\vec{b}^{\mu})(\vec{\epsilon}_{\alpha}\cdot\vec{b}_{\mu})\mathcal{G}^{\alpha}=-g^{2}\left\{\mathcal{G}^{1}+\frac{1}{4}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)\right\}b^{3\mu}b^{3}_{\mu}-\frac{3g^{2}}{4}\left(\mathcal{G}^{2}+\mathcal{G}^{3}\right)b^{8\mu}b^{8}_{\mu}.

Since the classical part bμAb^{A}_{\mu} has no tachyonic mass, the equations (3.7) and (3.8) imply that these mass terms become

A=3,8mA22bAμbμA,m32=5m22,m82=3m22.\sum_{A=3,8}\frac{m_{A}^{2}}{2}b^{A\mu}b^{A}_{\mu},\quad m_{3}^{2}=\frac{5m^{2}}{2},\quad m_{8}^{2}=\frac{3m^{2}}{2}. (3.12)

Thus, after integrating out cc and c¯\bar{c}, we obtain the low-energy effective Lagrangian

eff=\displaystyle\mathcal{L}_{\mathrm{eff}}= cl+A=3,8{14(aA)μν(aA)μν+MA22aAμaμA}\displaystyle\mathcal{L}_{\mathrm{cl}}+\sum_{A=3,8}\left\{-\frac{1}{4}(\partial\wedge a^{A})^{\mu\nu}(\partial\wedge a^{A})_{\mu\nu}+\frac{M_{A}^{2}}{2}a^{A\mu}a^{A}_{\mu}\right\}
+α=13{14(Wα)μν(Wα)μν+α2WαμWμα}+,\displaystyle+\sum_{\alpha=1}^{3}\left\{-\frac{1}{4}(\partial\wedge W^{\alpha})^{\mu\nu}(\partial\wedge W^{\alpha})_{\mu\nu}+\mathcal{M}_{\alpha}^{2}W^{\alpha\mu}W^{\alpha}_{\mu}\right\}+\cdots,
cl=\displaystyle\mathcal{L}_{\mathrm{cl}}= A=3,8{14(bA)μν(bA)μν+mA22bAμbμA},\displaystyle\sum_{A=3,8}\left\{-\frac{1}{4}(\partial\wedge b^{A})^{\mu\nu}(\partial\wedge b^{A})_{\mu\nu}+\frac{m_{A}^{2}}{2}b^{A\mu}b^{A}_{\mu}\right\}, (3.13)

where (Aa)μν=μAνaνAμa(\partial\wedge A^{a})_{\mu\nu}=\partial_{\mu}A^{a}_{\nu}-\partial_{\nu}A^{a}_{\mu}.

We ignored the momentum dependence of the sources KAK_{A} and 𝒦α\mathcal{K}_{\alpha}, and applied the \hslash expansion. Because it is difficult to modify this treatment, we use cl\mathcal{L}_{\mathrm{cl}} as the first approximation of the low energy Lagrangian.

4 Classical fields and static potential

4.1 The classical electric potential B~μA\tilde{B}^{A}_{\mu} and its dual potential μA\mathcal{B}^{A}_{\mu}

It is expected that the Abelian component of the gauge field dominates in confinement ei . Based on the previous works hs18 ; hs19 , we choose the dual electric potential μA\mathcal{B}_{\mu}^{A} as the classical field bμA(A=3,8)b_{\mu}^{A}\ (A=3,8). It describes the electric monopole solution hs19 . The color electric current jμAj_{\mu}^{A} is incorporated by the replacement

(A)μνdFAμν=(A)μν+ϵμναβ(n)1nαjβA,(\partial\wedge\mathcal{B}^{A})^{\mu\nu}\to\ ^{d}F^{A\mu\nu}=(\partial\wedge\mathcal{B}^{A})^{\mu\nu}+\epsilon^{\mu\nu\alpha\beta}(n\cdot\partial)^{-1}n_{\alpha}j^{A}_{\beta},

where the space-like vector nμn^{\mu} zwa is chosen as nμ=(0,𝒏)n^{\mu}=(0,\mbox{\boldmath$n$}) with |𝒏|=1|\mbox{\boldmath$n$}|=1, and n=nμμn\cdot\partial=n^{\mu}\partial_{\mu}. We note this is the Zwanziger’s dual field strength Fd=(B)+(n)1(nje)dF^{d}=(\partial\wedge B)+(n\cdot\partial)^{-1}(n\wedge j_{e})^{d} in Ref. zwa . Then the Lagrangian .(3.13) becomes

cl=A=3,8[14{(A)μν+ϵμναβ(n)1nαjβA}2+mA22(μA)2].\mathcal{L}_{\mathrm{cl}}=\sum_{A=3,8}\left[-\frac{1}{4}\left\{(\partial\wedge\mathcal{B}^{A})^{\mu\nu}+\epsilon^{\mu\nu\alpha\beta}(n\cdot\partial)^{-1}n_{\alpha}j^{A}_{\beta}\right\}^{2}+\frac{m_{A}^{2}}{2}\left(\mathcal{B}_{\mu}^{A}\right)^{2}\right]. (4.1)

The equation of motion for μA\mathcal{B}_{\mu}^{A} is

(DmA1)μννA=ϵμραβ(n)1nραjβA,(DmA1)μν=(+mA2)gμνμν,(D_{m_{A}}^{-1})^{\mu\nu}\mathcal{B}_{\nu}^{A}=-\epsilon^{\mu\rho\alpha\beta}(n\cdot\partial)^{-1}n_{\rho}\partial_{\alpha}j_{\beta}^{A},\quad(D_{m_{A}}^{-1})^{\mu\nu}=(\square+m_{A}^{2})g^{\mu\nu}-\partial^{\mu}\partial^{\nu}, (4.2)

and μA\mathcal{B}_{\mu}^{A} is solved as

μA=(DmA)μνϵνραβ(n)1nραjβA,(DmA)μν=gμνμν/+mA2+μνmA2.\mathcal{B}_{\mu}^{A}=-(D_{m_{A}})_{\mu\nu}\epsilon^{\nu\rho\alpha\beta}(n\cdot\partial)^{-1}n_{\rho}\partial_{\alpha}j_{\beta}^{A},\quad(D_{m_{A}})_{\mu\nu}=\frac{g_{\mu\nu}-\partial_{\mu}\partial_{\nu}/\square}{\square+m_{A}^{2}}+\frac{\partial_{\mu}\partial_{\nu}}{m_{A}^{2}\square}. (4.3)

If we use Eq.(4.3), Eq.(4.1) becomes

jj=A=3,8[12jμA1+mA2jAμ12jμAmA2+mA2nn(n)2(gμνnμnνnn)jνA].\mathcal{L}_{jj}=\sum_{A=3,8}\left[-\frac{1}{2}j_{\mu}^{A}\frac{1}{\square+m_{A}^{2}}j^{A\mu}-\frac{1}{2}j_{\mu}^{A}\frac{m_{A}^{2}}{\square+m_{A}^{2}}\frac{n\cdot n}{(n\cdot\partial)^{2}}\left(g^{\mu\nu}-\frac{n^{\mu}n^{\nu}}{n\cdot n}\right)j_{\nu}^{A}\right]. (4.4)

Although we used the dual electric potential μA\mathcal{B}^{A}_{\mu} above, we can use the electric potential B~μA\tilde{B}^{A}_{\mu}. The relation between B~μA\tilde{B}^{A}_{\mu} and μA\mathcal{B}^{A}_{\mu} is hs19

ϵμναβαβA\displaystyle-\epsilon^{\mu\nu\alpha\beta}\partial_{\alpha}\mathcal{B}^{A}_{\beta} =(B~A)μν+ΛeAμν,\displaystyle=(\partial\wedge\tilde{B}^{A})^{\mu\nu}+\Lambda_{e}^{A\mu\nu}, (4.5)
ΛeAμν\displaystyle\Lambda_{e}^{A\mu\nu} =nμnσ(B~A)σν+nνnσ(B~A)σμ.\displaystyle=-\frac{n^{\mu}}{n\cdot\partial}\partial_{\sigma}(\partial\wedge\tilde{B}^{A})^{\sigma\nu}+\frac{n^{\nu}}{n\cdot\partial}\partial_{\sigma}(\partial\wedge\tilde{B}^{A})^{\sigma\mu}.

The dual potential μA\mathcal{B}^{A}_{\mu} has the electric correspondent of the Dirac string, which we call the electric string. The term ΛeAμν\Lambda_{e}^{A\mu\nu} represents this string. 333 In Appendix C, as an example, we present the massless fields B~μA\tilde{B}^{A}_{\mu} and μA\mathcal{B}^{A}_{\mu} for a point charge, and show that ΛeAμν\Lambda_{e}^{A\mu\nu} describes the electric string. The relation (4.5) is also used to consider the color electric flux in Sect. 6. The field B~μA\tilde{B}^{A}_{\mu} satisfies the equation of motion

(DmA1)μνB~AνjμA=0,(D_{m_{A}}^{-1})_{\mu\nu}\tilde{B}^{A\nu}-j^{A}_{\mu}=0,

and the Lagrangian that is equivalent to Eq.(4.1) is hs19

ecl=A=3,8{14(B~A)2+mA22B~μAB~AμB~μAjAμmA22B~Aμnn(n)2(gμνnμnνnn)jAν}.\mathcal{L}_{\mathrm{ecl}}=\sum_{A=3,8}\left\{-\frac{1}{4}(\partial\wedge\tilde{B}^{A})^{2}+\frac{m_{A}^{2}}{2}\tilde{B}^{A}_{\mu}\tilde{B}^{A\mu}-\tilde{B}^{A}_{\mu}j^{A\mu}-\frac{m_{A}^{2}}{2}\tilde{B}^{A\mu}\frac{n\cdot n}{(n\cdot\partial)^{2}}\left(g_{\mu\nu}-\frac{n_{\mu}n_{\nu}}{n\cdot n}\right)j^{A\nu}\right\}.

The last term comes from the electric string. Substituting B~Aμ=(DmA)μνjνA\tilde{B}^{A\mu}=(D_{m_{A}})^{\mu\nu}j_{\nu}^{A} into ecl\mathcal{L}_{\mathrm{ecl}}, we can obtain jj\mathcal{L}_{jj} in Eq.(4.4).

4.2 Potential between static charges

We consider the static charges QaAQ^{A}_{a} at 𝒂a and QbAQ^{A}_{b} at 𝒃b. Substituting the static current

jμA(x)=gμ0{QaAδ(𝒙𝒂)+QbAδ(𝒙𝒃)}j^{A}_{\mu}(x)=g_{\mu 0}\left\{Q^{A}_{a}\delta(\mbox{\boldmath$x$}-\mbox{\boldmath$a$})+Q^{A}_{b}\delta(\mbox{\boldmath$x$}-\mbox{\boldmath$b$})\right\} (4.6)

into jj\mathcal{L}_{jj}, we get the potential

V(𝒓)\displaystyle V(\mbox{\boldmath$r$}) =A=3,8{VYA(r)+VLA(𝒓)},\displaystyle=\sum_{A=3,8}\left\{V_{Y}^{A}(r)+V_{L}^{A}(\mbox{\boldmath$r$})\right\},
VYA(r)\displaystyle V_{Y}^{A}(r) =d3q(2π)3((QaA)2+(QbA)22+QaAQbAei𝒒𝒓)1q2+mA2,\displaystyle=\int\frac{d^{3}q}{(2\pi)^{3}}\left(\frac{(Q^{A}_{a})^{2}+(Q^{A}_{b})^{2}}{2}+Q^{A}_{a}Q^{A}_{b}e^{i\mbox{\boldmath$q$}\cdot\mbox{\boldmath$r$}}\right)\frac{1}{q^{2}+m_{A}^{2}}, (4.7)
VLA(𝒓)\displaystyle V_{L}^{A}(\mbox{\boldmath$r$}) =d3q(2π)3((QaA)2+(QbA)22+QaAQbAei𝒒𝒓)mA2(q2+mA2)qn2,\displaystyle=\int\frac{d^{3}q}{(2\pi)^{3}}\left(\frac{(Q^{A}_{a})^{2}+(Q^{A}_{b})^{2}}{2}+Q^{A}_{a}Q^{A}_{b}e^{i\mbox{\boldmath$q$}\cdot\mbox{\boldmath$r$}}\right)\frac{m_{A}^{2}}{(q^{2}+m_{A}^{2})q_{n}^{2}}, (4.8)

where 𝒓=𝒂𝒃\mbox{\boldmath$r$}=\mbox{\boldmath$a$}-\mbox{\boldmath$b$}, q=|𝒒|q=|\mbox{\boldmath$q$}| and qn=𝒒𝒏q_{n}=\mbox{\boldmath$q$}\cdot\mbox{\boldmath$n$}. The first (second) term in jj\mathcal{L}_{jj} leads to VYAV^{A}_{Y} (VLAV^{A}_{L}). Historically, these potentials were obtained by using the dual Ginzburg–Landau model suz ; mts ; sst ; sst2 . These potentials are calculated in Appendix D. Assuming that mAm_{A} disappears above the scale Λc\Lambda_{c}, Eq.(4.7) gives hs21

VYA(r)\displaystyle V_{Y}^{A}(r) =QaAQbA(14πrmA22π20Λc𝑑qsinqrqr1q2+mA2)\displaystyle=Q^{A}_{a}Q^{A}_{b}\left(\frac{1}{4\pi r}-\frac{m_{A}^{2}}{2\pi^{2}}\int_{0}^{\Lambda_{c}}dq\frac{\sin qr}{qr}\frac{1}{q^{2}+m_{A}^{2}}\right)
=QaAQbAg2(αA(r)r),αA(r)=g24πg2mA2r2π20Λc𝑑qsinqrqr1q2+mA2.\displaystyle=-\frac{Q_{a}^{A}Q_{b}^{A}}{g^{2}}\left(-\frac{\alpha^{A}(r)}{r}\right),\quad\alpha^{A}(r)=\frac{g^{2}}{4\pi}-\frac{g^{2}m_{A}^{2}r}{2\pi^{2}}\int_{0}^{\Lambda_{c}}dq\frac{\sin qr}{qr}\frac{1}{q^{2}+m_{A}^{2}}. (4.9)

The first term in VYA(r)V_{Y}^{A}(r) is the usual Coulomb potential, which is the main term for small rr.

Under the same assumption that mA=0m_{A}=0 above Λc\Lambda_{c}, Eq.(4.8) gives

VLA(𝒓)=\displaystyle V_{L}^{A}(\mbox{\boldmath$r$})= VIRA(rt)QaAQbAmA24πK0(mArt,Λc)rn+,\displaystyle V_{\mathrm{IR}}^{A}(r_{t})-\frac{Q^{A}_{a}Q^{A}_{b}m_{A}^{2}}{4\pi}K_{0}(m_{A}r_{t},\Lambda_{c})r_{n}+\cdots, (4.10)
VIRA(rt)=\displaystyle V_{\mathrm{IR}}^{A}(r_{t})= mA22π2ε{(QaA)2+(QbA)22mAtan1ΛcmA+QaAQbAH(mA,Λc,rt)},\displaystyle\frac{m_{A}^{2}}{2\pi^{2}\varepsilon}\left\{\frac{(Q^{A}_{a})^{2}+(Q^{A}_{b})^{2}}{2m_{A}}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}+Q^{A}_{a}Q^{A}_{b}H(m_{A},\Lambda_{c},r_{t})\right\}, (4.11)

where the functions K0(mArt,Λc)K_{0}(m_{A}r_{t},\Lambda_{c}) and H(mA,Λc,rt)H(m_{A},\Lambda_{c},r_{t}) are defined in Eq.(D.11). We have chosen 𝒏n as rn=𝒓𝒏0r_{n}=\mbox{\boldmath$r$}\cdot\mbox{\boldmath$n$}\geq 0, and 𝒓=(rn,𝒓t)\mbox{\boldmath$r$}=(r_{n},\mbox{\boldmath$r$}_{t}). The vector 𝒓t\mbox{\boldmath$r$}_{t} satisfies 𝒓t𝒏\mbox{\boldmath$r$}_{t}\bot\mbox{\boldmath$n$}, and rt=|𝒓t|r_{t}=|\mbox{\boldmath$r$}_{t}|. The term VIRAV_{\mathrm{IR}}^{A} has infrared divergence 1/ε1/\varepsilon, where the infrared cut-off ε\varepsilon satisfies 0<ε10<\varepsilon\ll 1. To remove this divergence, since the direction 𝒏n of the electric string is arbitrary, we choose 𝒓𝒏\mbox{\boldmath$r$}\parallel\mbox{\boldmath$n$} sst2 ; hs19 ; hs21 . In this case, as (rn,rt)=(r,0)(r_{n},r_{t})=(r,0), Eq.(4.10) becomes

VLA(r)\displaystyle V_{L}^{A}(r) =VIRAQaAQbAg2σAr+,σA=g2mA28πln(Λc2+mA2mA2),\displaystyle=V_{\mathrm{IR}}^{A}-\frac{Q_{a}^{A}Q_{b}^{A}}{g^{2}}\sigma^{A}r+\cdots,\quad\sigma^{A}=\frac{g^{2}m_{A}^{2}}{8\pi}\ln\left(\frac{\Lambda_{c}^{2}+m_{A}^{2}}{m_{A}^{2}}\right), (4.12)
VIRA\displaystyle V_{\mathrm{IR}}^{A} =mA4π2ε(QaA+QbA)2tan1ΛcmA,\displaystyle=\frac{m_{A}}{4\pi^{2}\varepsilon}(Q^{A}_{a}+Q^{A}_{b})^{2}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}, (4.13)

where K0(0,Λc)K_{0}(0,\Lambda_{c}) and H(mA,Λc,0)H(m_{A},\Lambda_{c},0) are presented in Eq.(D.12). Eq.(4.13) shows that VIRAV_{\mathrm{IR}}^{A} vanishes if QaA+QbA=0Q_{a}^{A}+Q_{b}^{A}=0. Therefore, the conditions to remove the infrared divergence are

rt=0,QaA+QbA=0.r_{t}=0,\quad Q^{A}_{a}+Q^{A}_{b}=0. (4.14)

When Eq.(4.14) holds, the leading term of Eq.(4.12) is the linear potential (QaAQbA/g2)σAr-(Q_{a}^{A}Q_{b}^{A}/g^{2})\sigma^{A}r, which is the main term for large rr.

We note the infrared divergence implies the existence of the electric string with infinite length and the mass mAm_{A}. The relation between the conditions in Eq.(4.14) and the length of the electric string are depicted in Fig. 2.

Refer to caption
Figure 2: The relation between the conditions in Eq.(4.14) and the length of the electric string. The case (a) with rt0r_{t}\neq 0 and the case (b) with (rt=0,QaA+QbA0)(r_{t}=0,Q_{a}^{A}+Q_{b}^{A}\neq 0) have the string with infinite length. The length of the string in (c), which satisfies Eq.(4.14), is finite.

In the SU(2) case, comparing the qq¯q\bar{q} potential with VY(r)V_{Y}(r) and VL(r)V_{L}(r), we tried to determine the values of parameters, and reproduce the Coulomb plus linear type potential hs21 . However, in the SU(3) case, there are many parameters like MA(A=3,8)M_{A}\ (A=3,8) and α(α=1,2,3)\mathcal{M}_{\alpha}\ (\alpha=1,2,3). In addition, since m3m8m_{3}\neq m_{8}, we are not sure whether a single cut-off Λc\Lambda_{c} is usable or not. So we don’t try to determine the parameters in this paper. Instead, we study the consequences derived from the Lagrangian (4.1) and the potentials (4.9) and (4.12), below.

5 Mesonic and baryonic potentials

5.1 Notation

Corresponding to the three types of the color charge red, blue and green, we use C1C_{1}, C2C_{2} and C3C_{3}, respectively. The quark field is Ψ=t(ψC1ψC2ψC3)\Psi=\ ^{t}(\psi_{C_{1}}\ \psi_{C_{2}}\ \psi_{C_{3}}), and the current jμA=gΨ¯γμHAΨj_{\mu}^{A}=g\bar{\Psi}\gamma_{\mu}H^{A}\Psi (A=3,8)(A=3,8) is written as

jμA=i=13gwiAψ¯CiγμψCi,j_{\mu}^{A}=\sum_{i=1}^{3}gw_{i}^{A}\bar{\psi}_{C_{i}}\gamma_{\mu}\psi_{C_{i}},

where the weight vectors are

w1=(12,123),w2=(12,123),w3=(0,13).\vec{w}_{1}=\left(\frac{1}{2},\frac{1}{2\sqrt{3}}\right),\quad\vec{w}_{2}=\left(\frac{-1}{2},\frac{1}{2\sqrt{3}}\right),\quad\vec{w}_{3}=\left(0,-\frac{1}{\sqrt{3}}\right). (5.1)

When we use the static potentials (4.9) – (4.13), the static charges are given by

QCjA=gwjA=Q¯CjA(A=3,8,j=1,2,3).Q_{C_{j}}^{A}=gw_{j}^{A}=-\bar{Q}_{C_{j}}^{A}\quad(A=3,8,\ j=1,2,3). (5.2)

5.2 Mesonic potential

If a static quark (an antiquark) exists at 𝒂a (𝒃b), a meson is expressed by

13i=13|qCi(𝒂)q¯Ci(𝒃)\frac{1}{\sqrt{3}}\sum_{i=1}^{3}|q_{C_{i}}(\mbox{\boldmath$a$})\bar{q}_{C_{i}}(\mbox{\boldmath$b$})\rangle

We set QaA=QCiAQ_{a}^{A}=Q_{C_{i}}^{A}, QbA=Q¯CiA=QCiAQ_{b}^{A}=\bar{Q}_{C_{i}}^{A}=-Q_{C_{i}}^{A} and 𝒓=(𝒂𝒃)𝒏\mbox{\boldmath$r$}=(\mbox{\boldmath$a$}-\mbox{\boldmath$b$})\parallel\mbox{\boldmath$n$}. Then the two conditions in Eq.(4.14) are satisfied, and VIRAV_{\mathrm{IR}}^{A} vanishes. Using the relation

13i=13QCiAQ¯CiAg2=13i=13(wiA)2=16(A=3,8),\frac{1}{3}\sum_{i=1}^{3}\frac{-Q_{C_{i}}^{A}\bar{Q}_{C_{i}}^{A}}{g^{2}}=\frac{1}{3}\sum_{i=1}^{3}(w_{i}^{A})^{2}=\frac{1}{6}\quad(A=3,8),

Eqs.(4.9) and (4.12) give the mesonic potential

Vqq¯(r)=16A=3,8{αA(r)r+σAr+}=αqq¯(r)r+σqq¯r+,V_{q\bar{q}}(r)=\frac{1}{6}\sum_{A=3,8}\left\{-\frac{\alpha^{A}(r)}{r}+\sigma^{A}r+\cdots\right\}=-\frac{\alpha_{q\bar{q}}(r)}{r}+\sigma_{q\bar{q}}r+\cdots, (5.3)

where αqq¯(r)=A=3,8αA(r)/6\alpha_{q\bar{q}}(r)=\sum_{A=3,8}\alpha^{A}(r)/6 and σqq¯=A=3,8σA/6\sigma_{q\bar{q}}=\sum_{A=3,8}\sigma^{A}/6.

Refer to caption
Figure 3: The color flux between the charges. Fig. (a) is the Δ\Delta–type baryon and Fig. (b) is the YY–type baryon.

5.3 Δ\Delta-type 3q3q potential

Let us study the potential for the configuration in Fig. 3(a), which is called the Δ\Delta-ansatz cw . To apply Eqs.(4.9) and (4.12), we replace rr with rkl=|𝒓kl|=|𝒓k𝒓l|(kl)r_{kl}=|\mbox{\boldmath$r$}_{kl}|=|\mbox{\boldmath$r$}_{k}-\mbox{\boldmath$r$}_{l}|\ (k\neq l), and 𝒏n with 𝒏kl\mbox{\boldmath$n$}_{kl} which satisfies 𝒏kl𝒓kl\mbox{\boldmath$n$}_{kl}\parallel\mbox{\boldmath$r$}_{kl}. When static quarks are placed at 𝒓k\mbox{\boldmath$r$}_{k} (k=1,2,3)(k=1,2,3), a baryonic state is

16ijkεijk|qCi(𝒓1)qCj(𝒓2)qCk(𝒓3).\frac{1}{\sqrt{6}}\sum_{ijk}\varepsilon_{ijk}|q_{C_{i}}(\mbox{\boldmath$r$}_{1})q_{C_{j}}(\mbox{\boldmath$r$}_{2})q_{C_{k}}(\mbox{\boldmath$r$}_{3})\rangle.

If we set QaA=QCiAQ_{a}^{A}=Q_{C_{i}}^{A} and QbA=QCjAQ_{b}^{A}=Q_{C_{j}}^{A} with iji\neq j, and use the relation

16ijQCiAQCjAg2=16ijwiAwjA=112(A=3,8),\frac{1}{6}\sum_{i\neq j}\frac{-Q_{C_{i}}^{A}Q_{C_{j}}^{A}}{g^{2}}=-\frac{1}{6}\sum_{i\neq j}w_{i}^{A}w_{j}^{A}=\frac{1}{12}\quad(A=3,8),

Eqs.(4.9) and (4.12) give

V3qΔ(𝒓1,𝒓2,𝒓3)=A=3,8VIRA+112k>lA=3,8{αA(rkl)rkl+σArkl+,}.V_{3q}^{\Delta}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})=\sum_{A=3,8}V_{\mathrm{IR}}^{A}+\frac{1}{12}\sum_{k>l}\sum_{A=3,8}\left\{-\frac{\alpha^{A}(r_{kl})}{r_{kl}}+\sigma^{A}r_{kl}+\cdots,\right\}. (5.4)

We make two comments. First, from Eqs.(5.3) and (5.4), we obtain the relation afj

V3qΔ(𝒓1,𝒓2,𝒓3)A=3,8VIRA=12k>lVqq¯(rkl).V_{3q}^{\Delta}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})-\sum_{A=3,8}V_{\mathrm{IR}}^{A}=\frac{1}{2}\sum_{k>l}V_{q\bar{q}}(r_{kl}). (5.5)

Second, by the choice 𝒏kl𝒓kl\mbox{\boldmath$n$}_{kl}\parallel\mbox{\boldmath$r$}_{kl}, the first condition (rkl)t=0(r_{kl})_{t}=0 is satisfied. However, except for QC13+QC23=0Q^{3}_{C_{1}}+Q^{3}_{C_{2}}=0, the second condition QCiA+QCjA=0(ij)Q^{A}_{C_{i}}+Q^{A}_{C_{j}}=0\ (i\neq j) does not hold. So, using

16ij(QCiA+QCjA)2g2=16ij(wiA+wjA)2=16(A=3,8),\frac{1}{6}\sum_{i\neq j}\frac{(Q_{C_{i}}^{A}+Q_{C_{j}}^{A})^{2}}{g^{2}}=\frac{1}{6}\sum_{i\neq j}(w_{i}^{A}+w_{j}^{A})^{2}=\frac{1}{6}\quad(A=3,8),

we find the infrared divergent term

A=3,8VIRA=A=3,8mA24π2εtan1ΛcmA\sum_{A=3,8}V_{\mathrm{IR}}^{A}=\sum_{A=3,8}\frac{m_{A}}{24\pi^{2}\varepsilon}\tan^{-1}\frac{\Lambda_{c}}{m_{A}} (5.6)

remains. In the Δ\Delta-ansatz, there are electric strings with infinite length. When mA0m_{A}\neq 0, they give rise to the infrared divergence.

5.4 YY-type 3q3q potential

For large rklr_{kl}, the potential VLA(rkl)V_{L}^{A}(r_{kl}) in V3qΔ(𝒓1,𝒓2,𝒓3)V_{3q}^{\Delta}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3}) has the infrared divergence. On the other hand, based on the strong coupling argument, the YY-shaped baryon depicted in Fig. 3(b) was proposed ckp . The point S at 𝒓S\mbox{\boldmath$r$}_{S}, where the sum of the length LY=k=13rkS=k=13|𝒓k𝒓S|L_{Y}=\sum_{k=1}^{3}r_{kS}=\sum_{k=1}^{3}|\mbox{\boldmath$r$}_{k}-\mbox{\boldmath$r$}_{S}| becomes minimum, is the Steiner point. The color electric flux lines emanating from the three quarks meet and disappear there. Since the state at this point is color singlet, corresponding to the state |qC1(𝒓1)qC2(𝒓2)qC3(𝒓3)|q_{C_{1}}(\mbox{\boldmath$r$}_{1})q_{C_{2}}(\mbox{\boldmath$r$}_{2})q_{C_{3}}(\mbox{\boldmath$r$}_{3})\rangle, the state at 𝒓S\mbox{\boldmath$r$}_{S} is |q¯C1(𝒓S)q¯C2(𝒓S)q¯C3(𝒓S)|\bar{q}_{C_{1}}(\mbox{\boldmath$r$}_{S})\bar{q}_{C_{2}}(\mbox{\boldmath$r$}_{S})\bar{q}_{C_{3}}(\mbox{\boldmath$r$}_{S})\rangle. So, when rkSr_{kS} is large, the potential is the sum of the three qq¯q\bar{q} potentials for large rr. Thus we obtain

V3qLY(𝒓1,𝒓2,𝒓3)=k=13Vqq¯L(rkS)=16k=13A=3,8(σArkS+)=σYLY+,V_{3qL}^{Y}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})=\sum_{k=1}^{3}V_{q\bar{q}L}(r_{kS})=\frac{1}{6}\sum_{k=1}^{3}\sum_{A=3,8}(\sigma^{A}r_{kS}+\cdots)=\sigma_{Y}L_{Y}+\cdots, (5.7)

where σY=A=3,8σA/6\sigma_{Y}=\sum_{A=3,8}\sigma^{A}/6.

We note, when rklr_{kl} is large, Eq.(5.4) gives

V3qLΔ(𝒓1,𝒓2,𝒓3)A=3,8VIRA=σΔLΔ+,V_{3qL}^{\Delta}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})-\sum_{A=3,8}V_{\mathrm{IR}}^{A}=\sigma_{\Delta}L_{\Delta}+\cdots, (5.8)

where LΔ=k>lrklL_{\Delta}=\sum_{k>l}r_{kl} and σΔ=A=3,8σA/12\sigma_{\Delta}=\sum_{A=3,8}\sigma^{A}/12. From Eqs.(5.3), (5.7) and (5.8), the relations σΔ=σqq¯/2\sigma_{\Delta}=\sigma_{q\bar{q}}/2, σY=σqq¯\sigma_{Y}=\sigma_{q\bar{q}} and

V3qLΔ(𝒓1,𝒓2,𝒓3)A=3,8VIRA=V3qLY(𝒓1,𝒓2,𝒓3)σqq¯(LY12LΔ)V_{3qL}^{\Delta}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})-\sum_{A=3,8}V_{\mathrm{IR}}^{A}=V_{3qL}^{Y}(\mbox{\boldmath$r$}_{1},\mbox{\boldmath$r$}_{2},\mbox{\boldmath$r$}_{3})-\sigma_{q\bar{q}}\left(L_{Y}-\frac{1}{2}L_{\Delta}\right) (5.9)

are obtained at this level afj . As LY>LΔ/2L_{Y}>L_{\Delta}/2, the inequality V3qLY>V3qLΔA=3,8VIRAV_{3qL}^{Y}>V_{3qL}^{\Delta}-\sum_{A=3,8}V_{\mathrm{IR}}^{A} holds. However, different from V3qLΔV_{3qL}^{\Delta}, V3qLYV_{3qL}^{Y} is free from the infrared divergence.

Refer to caption
Figure 4: The cases that the maximum inner angle θmax\theta_{\mathrm{max}} satisfies 120θmax180120^{\circ}\leq\theta_{\mathrm{max}}\leq 180^{\circ}.

5.5 Comparison with the lattice results

In the present model, the classical Abelian potentials μA\mathcal{B}_{\mu}^{A} (A=3,8)(A=3,8) lead to the linear potential. The YY-type potential is preferable to the Δ\Delta-type potential, because the former has no infrared divergence. The string tension of the YY-type potential satisfies σY=σqq¯\sigma_{Y}=\sigma_{q\bar{q}}.

In the lattice simulation, the 3q3q baryon has been studied, and the YY-type potential is obtained bi ; sasu ; kk . In Ref. sasu , using the maximal Abelian gauge, it is shown that the three quark string tension σ3q\sigma_{3q} satisfies σ3qσqq¯\sigma_{3q}\simeq\sigma_{q\bar{q}}. In addition, the string tensions σ3qAbel\sigma_{3q}^{\mathrm{Abel}} and σqq¯Abel\sigma_{q\bar{q}}^{\mathrm{Abel}}, which are obtained from the Abelian part, satisfy σ3qσ3qAbel\sigma_{3q}\simeq\sigma_{3q}^{\mathrm{Abel}} and σqq¯σqq¯Abel\sigma_{q\bar{q}}\simeq\sigma_{q\bar{q}}^{\mathrm{Abel}} within a few percent deviation. These results show that the potential is YY-type, and the Abelian dominance is realized.

In Ref. kk , using the Polyakov loop correlation function, the cases with 60θmax<12060^{\circ}\leq\theta_{\mathrm{max}}<120^{\circ} and 120θmax180120^{\circ}\leq\theta_{\mathrm{max}}\leq 180^{\circ} are simulated, where θmax\theta_{\mathrm{max}} represents the maximum inner angle of a triangle. In the latter case, the Steiner point S\mathrm{S} is the point P1\mathrm{P}_{1} in Fig. 4. As r1S=0r_{1S}=0 in this case, the length LYL_{Y} is reduced to LY=r12+r13=LΔr23L_{Y}=r_{12}+r_{13}=L_{\Delta}-r_{23}. When 120θmax<180120^{\circ}\leq\theta_{\mathrm{max}}<180^{\circ}, they found that the long-range potential satisfies V3qLσqq¯LYV_{3qL}\simeq\sigma_{q\bar{q}}L_{Y}, and σ3qσqq¯\sigma_{3q}\simeq\sigma_{q\bar{q}} holds. On the other hand, when θmax=180\theta_{\mathrm{max}}=180^{\circ}, they obtained the Δ\Delta-type relation V3q=12k>lVqq¯(rkl)\displaystyle V_{3q}=\frac{1}{2}\sum_{k>l}V_{q\bar{q}}(r_{kl}).

In our approach, when 120θmax180120^{\circ}\leq\theta_{\mathrm{max}}\leq 180^{\circ}, the YY-type potential is calculable by setting r1S=0,r2S=r12r_{1S}=0,r_{2S}=r_{12} and r3S=r13r_{3S}=r_{13}. The result is

V3qLY=σYLY=σqq¯LY,LY=r12+r13.V_{3qL}^{Y}=\sigma_{Y}L_{Y}=\sigma_{q\bar{q}}L_{Y},\quad L_{Y}=r_{12}+r_{13}. (5.10)

When θmax=180\theta_{\mathrm{max}}=180^{\circ}, Fig. 4(b) shows r23=r12+r13r_{23}=r_{12}+r_{13} and LY=LΔ/2L_{Y}=L_{\Delta}/2. As σΔ=12σY\sigma_{\Delta}=\frac{1}{2}\sigma_{Y}, we find Eq.(5.10) becomes

σΔLΔ=12σqq¯LΔ,LΔ==r12+r13+r23=2LY.\sigma_{\Delta}L_{\Delta}=\frac{1}{2}\sigma_{q\bar{q}}L_{\Delta},\quad L_{\Delta}==r_{12}+r_{13}+r_{23}=2L_{Y}. (5.11)

Namely, if θmax=180\theta_{\mathrm{max}}=180^{\circ}, the YY-type relation Eq.(5.10) coincides with the Δ\Delta-type relation (5.11), which is expected from Eq.(5.9). Therefore we can say that the long-range potential is YY-type for θmax180\theta_{\mathrm{max}}\leq 180^{\circ}.

6 Color electric flux

6.1 Extended Maxwell’s equations

In Sect. 4, we introduced the electric potential B~μA\tilde{B}^{A}_{\mu} and its dual potential μA\mathcal{B}^{A}_{\mu} that are related by the Eq.(4.5). We also used the Zwanziger’s dual field strength FAμνd{}^{d}F^{A\mu\nu} zwa in the presence of the current jμAj^{A}_{\mu}. In this subsection, we study the Maxwell’s equations.

Using μA\mathcal{B}^{A}_{\mu} and B~μA\tilde{B}^{A}_{\mu}, the dual field strength is expressed by

FAμνd={}^{d}F^{A\mu\nu}= (A)μν+1nϵμναβnαjβA\displaystyle(\partial\wedge\mathcal{B}^{A})^{\mu\nu}+\frac{1}{n\cdot\partial}\epsilon^{\mu\nu\alpha\beta}n_{\alpha}j^{A}_{\beta}
=\displaystyle= ϵμναβαB~βA1nϵμναβnα{(B~A)jA}β,\displaystyle\epsilon^{\mu\nu\alpha\beta}\partial_{\alpha}\tilde{B}^{A}_{\beta}-\frac{1}{n\cdot\partial}\epsilon^{\mu\nu\alpha\beta}n_{\alpha}\left\{\partial\cdot(\partial\wedge\tilde{B}^{A})-j^{A}\right\}_{\beta},

and the field strength is

FAμν=\displaystyle F^{A\mu\nu}= ϵμναβαβA+1n(njA)μν\displaystyle-\epsilon^{\mu\nu\alpha\beta}\partial_{\alpha}\mathcal{B}^{A}_{\beta}+\frac{1}{n\cdot\partial}(n\wedge j^{A})^{\mu\nu}
=\displaystyle= (B~A)μν1n[n{(B~A)jA}]μν.\displaystyle(\partial\wedge\tilde{B}^{A})^{\mu\nu}-\frac{1}{n\cdot\partial}\left[n\wedge\left\{\partial\cdot(\partial\wedge\tilde{B}^{A})-j^{A}\right\}\right]^{\mu\nu}.

The electric field EAi(j)=FAi0E^{Ai}(j)=F^{Ai0} and the magnetic field HAi(j)=dFAi0H^{Ai}(j)=\ ^{d}F^{Ai0} are

EAi(j)=\displaystyle E^{Ai}(j)= ϵijkjAk+ninjA0\displaystyle-\epsilon^{ijk}\partial_{j}\mathcal{B}^{Ak}+\frac{n^{i}}{n\cdot\partial}j^{A0}
=\displaystyle= iB~A00B~Ainin{(B~A)jA}0,\displaystyle-\partial_{i}\tilde{B}^{A0}-\partial_{0}\tilde{B}^{Ai}-\frac{n^{i}}{n\cdot\partial}\left\{\partial\cdot(\partial\wedge\tilde{B}^{A})-j^{A}\right\}^{0}, (6.1)
HAi(j)=\displaystyle H^{Ai}(j)= iA00AiϵijknjnjAk\displaystyle-\partial_{i}\mathcal{B}^{A0}-\partial_{0}\mathcal{B}^{Ai}-\epsilon^{ijk}\frac{n^{j}}{n\cdot\partial}j^{Ak} (6.2)
=\displaystyle= ϵijkjB~Ak+ϵijknjn{(B~A)jA}k,\displaystyle\epsilon^{ijk}\partial_{j}\tilde{B}^{Ak}+\epsilon^{ijk}\frac{n^{j}}{n\cdot\partial}\left\{\partial\cdot(\partial\wedge\tilde{B}^{A})-j^{A}\right\}^{k},

where n0=0n^{0}=0 has been used. From these expressions, it is easy to show the two Maxwell’s equations

𝑬A(j)=jA0,×𝑯A(j)0𝑬A(j)=𝒋A.\nabla\cdot\mbox{\boldmath$E$}^{A}(j)=j^{A0},\quad\nabla\times\mbox{\boldmath$H$}^{A}(j)-\partial_{0}\mbox{\boldmath$E$}^{A}(j)=\mbox{\boldmath$j$}^{A}. (6.3)

Next we consider the remaining two Maxwell’s equations. Using Aμ\mathcal{B}^{A\mu}, Eq.(6.2) gives

iHAi(j)=\displaystyle\partial_{i}H^{Ai}(j)= i(iA00AiϵijknjnjAk)\displaystyle\partial_{i}\left(-\partial_{i}\mathcal{B}^{A0}-\partial_{0}\mathcal{B}^{Ai}-\epsilon^{ijk}\frac{n^{j}}{n\cdot\partial}j^{Ak}\right)
=\displaystyle= (A)0𝒥A0,𝒥Aμ=1nϵμναβνnαjβA.\displaystyle\partial\cdot(\partial\wedge\mathcal{B}^{A})^{0}-\mathcal{J}^{A0},\quad\mathcal{J}^{A\mu}=\frac{1}{n\cdot\partial}\epsilon^{\mu\nu\alpha\beta}\partial_{\nu}n_{\alpha}j^{A}_{\beta}.

Since the classical fields Aμ\mathcal{B}^{A\mu} satisfies the equation of motion

(A)μ+mA2Aμ=𝒥Aμ,\partial\cdot(\partial\wedge\mathcal{B}^{A})^{\mu}+m_{A}^{2}\mathcal{B}^{A\mu}=\mathcal{J}^{A\mu}, (6.4)

the above equation becomes

𝑯A(j)=mA2A0.\nabla\cdot\mbox{\boldmath$H$}^{A}(j)=-m_{A}^{2}\mathcal{B}^{A0}. (6.5)

In the same way, we obtain

×𝑬A(j)0𝑯A(j)=mA2𝓑A.-\nabla\times\mbox{\boldmath$E$}^{A}(j)-\partial_{0}\mbox{\boldmath$H$}^{A}(j)=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}. (6.6)

Namely, because of the term mA2Aμ=mA2(A0,𝓑A)-m_{A}^{2}\mathcal{B}^{A\mu}=-m_{A}^{2}(\mathcal{B}^{A0},\mbox{\boldmath$\mathcal{B}$}^{A}), the remaining two Maxwell’s equations are modified.

If we consider a model with the magnetic current jmagAμ=(ρmagA,𝒋magA)j_{\mathrm{mag}}^{A\mu}=(\rho_{\mathrm{mag}}^{A},\mbox{\boldmath$j$}_{\mathrm{mag}}^{A}), ρmagA\rho_{\mathrm{mag}}^{A} and 𝒋magA\mbox{\boldmath$j$}_{\mathrm{mag}}^{A} will appear in the right hand side of Eqs.(6.5) and (6.6), respectively. In the dual superconductor model, there is the monopole field, and the static equation ×𝑬A(j)=𝒋magA-\nabla\times\mbox{\boldmath$E$}^{A}(j)=\mbox{\boldmath$j$}_{\mathrm{mag}}^{A} is often discussed rip ; kst . In the present model, there is no monopole field and no magnetic current originally. However, like the London equation in superconductivity, the relation 𝒋magA=mA2𝓑A\mbox{\boldmath$j$}_{\mathrm{mag}}^{A}=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A} appears.

6.2 Color flux tube

It is expected that the color flux tube connects color charges. In Ref. kst , using the dual superconductor model, the color flux is studied. From this flux and the equation ×𝑬A(j)=𝒋mag-\nabla\times\mbox{\boldmath$E$}^{A}(j)=\mbox{\boldmath$j$}_{\mathrm{mag}}, the magnetic current is also investigated. In this subsection, we consider the color flux tube.

Let us consider the electric flux between the charges QCiAQ^{A}_{C_{i}} at 𝒂=(0,0,a)\mbox{\boldmath$a$}=(0,0,a) and Q¯CiA\bar{Q}^{A}_{C_{i}} at 𝒃=(0,0,b)\mbox{\boldmath$b$}=(0,0,b). We set 𝒏=(0,0,1)\mbox{\boldmath$n$}=(0,0,1), and assume that the mass mAm^{A} is approximately constant for ρ>1/Λc\rho>1/\Lambda_{c}, where (ρ,θ,z)(\rho,\theta,z) are the cylindrical coordinates. To study the static flux tube solution, we set A0=0\mathcal{B}^{A0}=0 and

𝓑A(ρ,θ,z)B(ρ)f(z)𝒆θ,\mbox{\boldmath$\mathcal{B}$}^{A}(\rho,\theta,z)\approx B(\rho)f(z)\mbox{\boldmath$e$}_{\theta}, (6.7)

where the unit vectors are

𝒆ρ=(cosθ,sinθ,0),𝒆𝜽=(sinθ,cosθ,0),𝒆z=(0,0,1).\mbox{\boldmath$e$}_{\rho}=(\cos\theta,\sin\theta,0),\quad\mbox{\boldmath$e_{\theta}$}=(-\sin\theta,\cos\theta,0),\quad\mbox{\boldmath$e$}_{z}=(0,0,1).

Substituting Eq.(6.7) into Eq.(6.4), we obtain

(2ρ2+1ρρ1ρ2mA2)B(ρ)f(z)+B(ρ)f′′(z)=1zρj0A.\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-\frac{1}{\rho^{2}}-m_{A}^{2}\right)B(\rho)f(z)+B(\rho)f^{\prime\prime}(z)=\frac{1}{\partial_{z}}\frac{\partial}{\partial\rho}j^{A}_{0}. (6.8)

Since j0A=0j^{A}_{0}=0 holds for ρ>0\rho>0, if we assume f′′(z)0f^{\prime\prime}(z)\approx 0 in the interval b<z<ab<z<a, Eq.(6.8) reduces to the equation

(2ρ2+1ρρ1ρ2mA2)B(ρ)0\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-\frac{1}{\rho^{2}}-m_{A}^{2}\right)B(\rho)\approx 0

in the region (ρ>1/Λc,b<z<a)(\rho>1/\Lambda_{c},b<z<a). The solution of this equation with limρB(ρ)=0\lim_{\rho\to\infty}B(\rho)=0 is no

B(ρ)=λK1(mAρ),B(\rho)=\lambda K_{1}(m_{A}\rho),

where λ\lambda is a constant, and Kn(X)K_{n}(X) is the modified Bessel function. So, we obtain

𝓑AλK1(mAρ)f(z)𝒆θ.\mbox{\boldmath$\mathcal{B}$}^{A}\approx\lambda K_{1}(m_{A}\rho)f(z)\mbox{\boldmath$e$}_{\theta}. (6.9)

Using Eq.(6.9) and the equality XKn(X)+nKn(X)=XKn1(X)XK_{n}^{\prime}(X)+nK_{n}(X)=XK_{n-1}(X), the color electric field becomes

𝑬A(j)=×𝓑AmAλK0(mAρ)f(z)𝒆z+λK1(mAρ)f(z)𝒆ρ.\mbox{\boldmath$E$}^{A}(j)=-\nabla\times\mbox{\boldmath$\mathcal{B}$}^{A}\approx m_{A}\lambda K_{0}(m^{A}\rho)f(z)\mbox{\boldmath$e$}_{z}+\lambda K_{1}(m_{A}\rho)f^{\prime}(z)\mbox{\boldmath$e$}_{\rho}. (6.10)

In the same way, if we apply the relations XKn(X)nKn(X)=XKn+1(X)XK_{n}^{\prime}(X)-nK_{n}(X)=-XK_{n+1}(X) and K0(X)=K1(X)K_{0}^{\prime}(X)=-K_{1}(X), we get

mAλρK0(mAρ)f(z)(𝒆ρ×𝒆z)=mA2λK1(mAρ)f(z)𝒆θ=mA2𝓑A.m^{A}\lambda\frac{\partial}{\partial\rho}K_{0}(m^{A}\rho)f(z)(\mbox{\boldmath$e$}_{\rho}\times\mbox{\boldmath$e$}_{z})=-m_{A}^{2}\lambda K_{1}(m_{A}\rho)f(z)\mbox{\boldmath$e$}_{\theta}=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}.

From this equation and Eq.(6.10), we obtain

×𝑬A(j)=mA2𝓑A+λK1(mAρ)f′′(z)𝒆θ.-\nabla\times\mbox{\boldmath$E$}^{A}(j)=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}+\lambda K_{1}(m^{A}\rho)f^{\prime\prime}(z)\mbox{\boldmath$e$}_{\theta}. (6.11)

In the interval b<z<ab<z<a, f′′(z)0f^{\prime\prime}(z)\approx 0 is assumed, and Eq.(6.11) becomes Eq.(6.6) with 0𝑯A=0\partial_{0}\mbox{\boldmath$H$}^{A}=0.

6.3 Flux tube represented by B~Aμ\tilde{B}^{A\mu}

Next, we restudy the flux tube by using the electric potential B~Aμ\tilde{B}^{A\mu}. In the static case, Eq.(6.1) becomes

𝑬(j)A=B~A0𝒏nB~A0.\mbox{\boldmath$E$}(j)^{A}=-\nabla\tilde{B}^{A0}-\frac{\mbox{\boldmath$n$}}{n\cdot\partial}\Box\tilde{B}^{A0}. (6.12)

From the equation of motion

(B~A)μ+mA2B~Aμ=jAμ,\partial\cdot(\partial\wedge\tilde{B}^{A})^{\mu}+m_{A}^{2}\tilde{B}^{A\mu}=j^{A\mu},

B~A0\tilde{B}^{A0} satisfies

2B~A0mA2B~A0=jA0.\nabla^{2}\tilde{B}^{A0}-m_{A}^{2}\tilde{B}^{A0}=-j^{A0}.

If we can write B~A0D(ρ)h(z)\tilde{B}^{A0}\approx D(\rho)h(z) approximately, this equation becomes

(2ρ2+1ρρmA2)D(ρ)h(z)+D(ρ)h(z)=jA0.\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-m_{A}^{2}\right)D(\rho)h(z)+D(\rho)h^{\prime}(z)=-j^{A0}. (6.13)

As in the previous subsection, we set jA0=0j^{A0}=0 for ρ>0\rho>0, and assume h(z)0h^{\prime}(z)\approx 0 in the interval b<z<ab<z<a. Then Eq.(6.13) becomes

(2ρ2+1ρρmA2)D(ρ)0.\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-m_{A}^{2}\right)D(\rho)\approx 0.

Using the constant κ\kappa, the solution of this equation is

D(ρ)=κK0(mAρ).D(\rho)=\kappa K_{0}(m_{A}\rho).

Since we choose 𝒏=(0,0,1)\mbox{\boldmath$n$}=(0,0,1), B~A0κK0(mAρ)h(z)\tilde{B}^{A0}\approx\kappa K_{0}(m_{A}\rho)h(z) gives

B~A0\displaystyle-\nabla\tilde{B}^{A0} =mAκK1(mAρ)h(z)𝒆ρκK0(mAρ)h(z)𝒆z,\displaystyle=m_{A}\kappa K_{1}(m_{A}\rho)h(z)\mbox{\boldmath$e$}_{\rho}-\kappa K_{0}(m_{A}\rho)h^{\prime}(z)\mbox{\boldmath$e$}_{z},
𝒏nB~A0\displaystyle-\frac{\mbox{\boldmath$n$}}{n\cdot\partial}\Box\tilde{B}^{A0} =κmA2K0(mAρ)1zh(z)𝒆z+κK0(mAρ)h(z)𝒆z,\displaystyle=\kappa m_{A}^{2}K_{0}(m_{A}\rho)\frac{1}{\partial_{z}}h(z)\mbox{\boldmath$e$}_{z}+\kappa K_{0}(m_{A}\rho)h^{\prime}(z)\mbox{\boldmath$e$}_{z}, (6.14)

and Eq.(6.12) becomes

𝑬(j)A=κmA2K0(mAρ)1zh(z)𝒆z+mAκK1(mAρ)h(z)𝒆ρ.\mbox{\boldmath$E$}(j)^{A}=\kappa m_{A}^{2}K_{0}(m_{A}\rho)\frac{1}{\partial_{z}}h(z)\mbox{\boldmath$e$}_{z}+m_{A}\kappa K_{1}(m_{A}\rho)h(z)\mbox{\boldmath$e$}_{\rho}. (6.15)

Comparing Eqs.(6.10) and (6.15), we can identify 444The minus sign comes from the choice that the electric string is in the negative zz-direction. See Eq.(C.4).

κmA=λ,1zh(z)=f(z),h(z)=f(z).\kappa m_{A}=-\lambda,\quad-\frac{1}{\partial_{z}}h(z)=f(z),\quad-h(z)=f^{\prime}(z).

So, f(z)f(z) and h(z)h(z) can be approximated by

f(z)θ(az)θ(bz),h(z)δ(za)δ(zb),f(z)\approx\theta(a-z)-\theta(b-z),\quad h(z)\approx\delta(z-a)-\delta(z-b),

where θ(z)\theta(z) is the unit step function.

Thus, the electric potential

B~A0λmAK0(mAρ){δ(za)δ(zb)}\tilde{B}^{A0}\approx-\frac{\lambda}{m_{A}}K_{0}(m_{A}\rho)\left\{\delta(z-a)-\delta(z-b)\right\} (6.16)

produces the color electric flux

𝑬A(j)mAλK0(mAρ){θ(az)θ(bz)}𝒆z\mbox{\boldmath$E$}^{A}(j)\approx m_{A}\lambda K_{0}(m_{A}\rho)\left\{\theta(a-z)-\theta(b-z)\right\}\mbox{\boldmath$e$}_{z} (6.17)

in the region (ρ>1/Λc,b<z<a)(\rho>1/\Lambda_{c},b<z<a). The string part (6.14) is responsible for this flux tube. The corresponding dual potential is

𝓑AλK1(mAρ){θ(az)θ(bz)}𝒆θ,\mbox{\boldmath$\mathcal{B}$}^{A}\approx\lambda K_{1}(m_{A}\rho)\left\{\theta(a-z)-\theta(b-z)\right\}\mbox{\boldmath$e$}_{\theta}, (6.18)

which also gives the flux (6.17). This flux satisfies the extended Maxwell’s equation

×𝑬A(j)mA2𝓑A,-\nabla\times\mbox{\boldmath$E$}^{A}(j)\approx-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}, (6.19)

where the magnetic current is 𝒋magA=mA2𝓑A\mbox{\boldmath$j$}_{\mathrm{mag}}^{A}=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}.

We make a comment. The lattice simulation shows that the 3q3q baryon is YY-shaped bi ; sasu ; kk and the solenoidal magnetic current exists bi . In the present approach, the YY-type baryonic potential is free from infrared divergence, and it consists of three qq¯q\bar{q} potentials. So, although the flux tube of qq¯q\bar{q} is considered here, we can apply it to the YY-type 3q3q baryon. The flux tube of qq¯q\bar{q} can exist between 𝒓S\mbox{\boldmath$r$}_{S} and 𝒓k(k=1,2,3)\mbox{\boldmath$r$}_{k}\ (k=1,2,3). The current 𝒋magA=mA2𝓑A\mbox{\boldmath$j$}_{\mathrm{mag}}^{A}=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A} with (6.18), which has the solenoidal form, also appears. .

7 Summary and comment

In the dual superconductor picture of the quark confinement, the monopole condensation produces the gluon mass. To realize this scenario, the dual Ginzburg–Landau model introduces the monopole field, and its condensation, the gluon mass and the static potential have been studied.

In Ref. hs19 , we considered another possibility to make Abelian component of the gluon massive in the SU(2) gauge theory. The static potential was also studied hs21 . In this paper, we extended this approach to the SU(3) gauge theory. In the nonlinear gauge of the Curci–Ferrari type, quartic ghost interaction generates the ghost condensate vA=gφAv^{A}=g\langle\varphi^{A}\rangle below the scale ΛQCD\Lambda_{\mathrm{QCD}}. The ghost loop with vAv^{A} gives rise to the tachyonic mass to the quantum part of the gluon. This tachyonic mass is removable by the gluon condensate AμaAaμ\langle A_{\mu}^{a}A^{a\mu}\rangle. Since the classical part bμAb^{A}_{\mu} of the gluon has no tachyonic mass, the condensate AμaAaμ\langle A_{\mu}^{a}A^{a\mu}\rangle gives the mass mAm_{A} to this part. To study the color confinement, the dual color electric potential μA\mathcal{B}^{A}_{\mu}, which is equivalent to the color electric potential B~μA\tilde{B}^{A}_{\mu} with the string part ΛeAμν\Lambda_{e}^{A\mu\nu}, was chosen as bμAb^{A}_{\mu}. Thus, the classical Lagrangian we use is cl\mathcal{L}_{\mathrm{cl}} in Eq.(4.1).

This Lagrangian becomes jj\mathcal{L}_{jj} in Eq.(4.4), and it gives the static potential between the charges QaAQ_{a}^{A} and QbAQ_{b}^{A} with distance rr. When rr is small, the leading term is VYA(r)V_{Y}^{A}(r) in Eq.(4.9). For large rr, VLA(𝒓)V_{L}^{A}(\mbox{\boldmath$r$}) in Eq.(4.10) is the main term. However, VLA(𝒓)V_{L}^{A}(\mbox{\boldmath$r$}) contains the infrared divergence VIRA(rt)V_{\mathrm{IR}}^{A}(r_{t}), which comes from the mass mAm_{A} and the electric string with infinite length. If the conditions rt=0r_{t}=0 and QaA+QbA=0Q_{a}^{A}+Q_{b}^{A}=0 in Eq.(4.14) are fulfilled, VIRA(rt)V_{\mathrm{IR}}^{A}(r_{t}) vanishes. In this case, VLA(r)V_{L}^{A}(r) becomes the linear potential in Eq.(4.12).

We stress the derivation of the Lagrangian cl\mathcal{L}_{\mathrm{cl}} is based on the one-loop calculation. In addition, the constant sources KAK_{A} and 𝒦α\mathcal{K}_{\alpha} are assumed. The mass mAm_{A} in Eq.(4.1) was also assumed to be constant below the cut-off Λc\Lambda_{c} and vanish above Λc\Lambda_{c}. These quantities must be determined. However, different from the SU(2) case, there are many parameters in SU(3). We skipped the determination in this paper, and studied the consequences of the Lagrangian cl\mathcal{L}_{\mathrm{cl}} and the potential VLA(𝒓)V_{L}^{A}(\mbox{\boldmath$r$}).

In the qq¯q\bar{q} case, the two conditions in Eq.(4.14) are satisfied, and the static potential Vqq¯(r)V_{q\bar{q}}(r) in Eq.(5.3) is obtained. In the 3q3q case, if the Δ\Delta-ansatz holds, the potential V3qΔV_{3q}^{\Delta} is given by Eq.(5.4). However, since the second condition of Eq.(4.14) is not fulfilled, the infrared divergence (5.6) remains. Contrary to the Δ\Delta-ansatz, the YY-ansatz satisfies the two conditions. The potential V3qLYV_{3qL}^{Y} in Eq.(5.7), which is free from the infrared divergence, is expected for large rr.

Using the color electric potential B~μA\tilde{B}^{A}_{\mu} and its dual potential μA\mathcal{B}^{A}_{\mu}, the color electric field 𝑬A\mbox{\boldmath$E$}^{A} and the magnetic field 𝑯A\mbox{\boldmath$H$}^{A} were investigated. Although they satisfy the two Maxwell’s equations (6.3), because of the mass mAm_{A}, the remaining two equations are modified as Eqs.(6.5) and (6.6). In the static case, Eq.(6.6) becomes ×𝑬A(j)=mA2𝓑A-\nabla\times\mbox{\boldmath$E$}^{A}(j)=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}. In the dual Ginzburg–Landau model, which contains the monopole field, the equation ×𝑬A(j)=𝒋mag-\nabla\times\mbox{\boldmath$E$}^{A}(j)=\mbox{\boldmath$j$}_{\mathrm{mag}} has been discussed. In our model, although there is no monopole field, the current mA2𝓑A-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A} plays the role of the magnetic current 𝒋mag\mbox{\boldmath$j$}_{\mathrm{mag}}.

It is expected that the color flux tube exists between color charges. The dual electric potential 𝓑A\mbox{\boldmath$\mathcal{B}$}^{A} in Eq.(6.18) produces the electric flux 𝑬A(j)\mbox{\boldmath$E$}^{A}(j) in Eq.(6.17), and they satisfy Eq.(6.19). Namely, without the monopole field, the flux tube 𝓑A\mbox{\boldmath$\mathcal{B}$}^{A} leads to the magnetic current 𝒋mag=mA2𝓑A\mbox{\boldmath$j$}_{\mathrm{mag}}=-m_{A}^{2}\mbox{\boldmath$\mathcal{B}$}^{A}. The corresponding electric potential B~A0\tilde{B}^{A0} is presented in Eq.(6.16). The string part (6.14) is the origin of the flux tube (6.17).

Comparing the SU(3) case with the SU(2) case in Ref. hs19 , there are some differences. For example, as we stated in Sect. 3, although the condensate of the diagonal component A3μAμ3\langle A^{3\mu}A^{3}_{\mu}\rangle vanishes in SU(2), the condensates AAμAμA\langle A^{A\mu}A^{A}_{\mu}\rangle (A=3,8A=3,8) exist in SU(3). Eq.(3.11) shows there are two different mass scales 5m/2\sqrt{5}m/2 and 3m/2\sqrt{3}m/2, and the classical electric potentials B~μ3\tilde{B}_{\mu}^{3} and B~μ8\tilde{B}_{\mu}^{8} have different masses, whereas the tachyonic mass term in SU(2) has one scale mm.

Since we have not determined the parameters yet, it is difficult to study differences between SU(2) and SU(3) concretely. In Ref. ks2 , the differences are discussed. One of the issues is the type of the dual superconductivity. Investigating the electric flux, it is concluded that the SU(3) theory is type-I, whereas the SU(2) theory is weak type-I or the border between type-I and type-II. In Appendix E, assuming the phenomenological Lagrangian for the order parameters 𝒢α\mathcal{G}^{\alpha} and GAG^{A}, we consider the type of dual superconductivity in the present model. Because of the condensate A8μAμ8\langle A^{8\mu}A^{8}_{\mu}\rangle and the two mass scales 5m/2\sqrt{5}m/2 and 3m/2\sqrt{3}m/2, the value of the Ginzburg-Landau parameter for SU(3) may become smaller than that for SU(2).

Appendix A ΛQCD\Lambda_{\mathrm{QCD}} and α2\alpha_{2}

In the momentum region μΛQCD\mu\geq\Lambda_{\mathrm{QCD}}, as the effective potential V(φ)V(\varphi) in Eq.(2.5) gives v=0v=0, we consider the Wilsonian effective action

Γ[μ,Λ]\displaystyle\Gamma_{[\mu,\Lambda]} =d4x{α=13((gϵαφ)23α2g2μΛd4k(2π)4ln[(k2)2+(gϵαφ)2])}\displaystyle=\int d^{4}x\left\{\sum_{\alpha=1}^{3}\left(\frac{(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}{3\alpha_{2}g^{2}}-\int_{\mu}^{\Lambda}\frac{d^{4}k}{(2\pi)^{4}}\ln\left[(-k^{2})^{2}+(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}\right]\right)\right\}
=d4x{α=13((gϵαφ)23α2g2μΛd4k(2π)4(gϵαφ)2(k2)2+)}\displaystyle=\int d^{4}x\left\{\sum_{\alpha=1}^{3}\left(\frac{(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}{3\alpha_{2}g^{2}}-\int_{\mu}^{\Lambda}\frac{d^{4}k}{(2\pi)^{4}}\frac{(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}}{(-k^{2})^{2}}+\cdots\right)\right\}
=d4x{α=13(13α2g218π2lnΛμ)(gϵαφ)2+}.\displaystyle=\int d^{4}x\left\{\sum_{\alpha=1}^{3}\left(\frac{1}{3\alpha_{2}g^{2}}-\frac{1}{8\pi^{2}}\ln\frac{\Lambda}{\mu}\right)(g\vec{\epsilon}_{\alpha}\cdot\vec{\varphi})^{2}+\cdots\right\}. (A.1)

If g¯\bar{g} and α¯2\bar{\alpha}_{2} represent the quantities at the scale μ\mu, Eq.(A.1) implies

1α¯2g¯2=1α2g238π2lnΛμ=38π2lnμ0μ,μ0=Λexp(8π23α2g2).\frac{1}{\bar{\alpha}_{2}\bar{g}^{2}}=\frac{1}{\alpha_{2}g^{2}}-\frac{3}{8\pi^{2}}\ln\frac{\Lambda}{\mu}=-\frac{3}{8\pi^{2}}\ln\frac{\mu_{0}}{\mu},\quad\mu_{0}=\Lambda\exp\left(-\frac{8\pi^{2}}{3\alpha_{2}g^{2}}\right). (A.2)

From Eq.(A.2), we obtain .

μμα¯2g¯2=38π2(α¯2g¯2)2.\mu\frac{\partial}{\partial\mu}\bar{\alpha}_{2}\bar{g}^{2}=-\frac{3}{8\pi^{2}}(\bar{\alpha}_{2}\bar{g}^{2})^{2}. (A.3)

Since g¯\bar{g} satisfies

μμg¯=β0(4pi)2g¯3,β0=113N\mu\frac{\partial}{\partial\mu}\bar{g}=-\frac{\beta_{0}}{(4pi)^{2}}\bar{g}^{3},\quad\beta_{0}=\frac{11}{3}N (A.4)

at the one-loop level, Eqs.(A.3) and (A.4) leads to the equation

μμα¯2=α¯2g¯28π2(β03α¯2).\mu\frac{\partial}{\partial\mu}\bar{\alpha}_{2}=\frac{\bar{\alpha}_{2}\bar{g}^{2}}{8\pi^{2}}(\beta_{0}-3\bar{\alpha}_{2}).

Namely α2=β0/3\alpha_{2}=\beta_{0}/3 is the ultraviolet fixed point hs07 ; ks , i.e.,

limμΛα¯2=α2=β03.\lim_{\mu\to\Lambda}\bar{\alpha}_{2}=\alpha_{2}=\frac{\beta_{0}}{3}.

Substituting this α2\alpha_{2}, we find μ0=Λexp(8π2/β0g2)=ΛQCD\mu_{0}=\Lambda\exp\left(-8\pi^{2}/\beta_{0}g^{2}\right)=\Lambda_{\mathrm{QCD}} hs07 ; ks .

Appendix B Tachyonic gluon masses

B.1 AμAAνB1\langle A^{A}_{\mu}A^{B}_{\nu}\rangle^{-1}

We consider the diagrams in Fig. B1(a) in the limit p0p\to 0, where pp is the external momentum. The ghost propagators in Eq.(3.1) and the interaction

A=3,8[gAAμα=13ϵαA{(μC¯α))Cα(μC¯α)Cα}]\sum_{A=3,8}\left[-gA^{A\mu}\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}\left\{(\partial_{\mu}\bar{C}^{\alpha)})C^{-\alpha}-(\partial_{\mu}\bar{C}^{-\alpha})C^{\alpha}\right\}\right]

in Eq.(3.2) gives the integral

α=13g2ϵαAϵαBid4k(2π)4{kμkν(k2+iϵα3v)2[k4+(ϵα3v)2]2+(vv)}.\sum_{\alpha=1}^{3}g^{2}\epsilon^{A}_{\alpha}\epsilon^{B}_{\alpha}i\int\frac{d^{4}k}{(2\pi)^{4}}\left\{\frac{k_{\mu}k_{\nu}(-k^{2}+i\epsilon^{3}_{\alpha}v)^{2}}{[k^{4}+(\epsilon^{3}_{\alpha}v)^{2}]^{2}}+(v\to-v)\right\}. (B.1)

Performing the Wick rotation and neglecting vv-independent terms, we obtain the formula

id4k(2π)4{kμ(k2+iηv)kν(k2+iξv)[k4+(ηv)2][k4+(ξv)2]+(vv)}\displaystyle i\int\frac{d^{4}k}{(2\pi)^{4}}\left\{\frac{k_{\mu}(-k^{2}+i\eta v)k_{\nu}(-k^{2}+i\xi v)}{[k^{4}+(\eta v)^{2}][k^{4}+(\xi v)^{2}]}+(v\to-v)\right\}
=2id4k(2π)4kμkν(k4ηξv2)[k4+(ηv)2][k4+(ξv)2]=v64πgμνη2+ξ2+ηξ+|ηξ||η|+|ξ|.\displaystyle=2i\int\frac{d^{4}k}{(2\pi)^{4}}\frac{k_{\mu}k_{\nu}(k^{4}-\eta\xi v^{2})}{[k^{4}+(\eta v)^{2}][k^{4}+(\xi v)^{2}]}=-\frac{v}{64\pi}g_{\mu\nu}\frac{\eta^{2}+\xi^{2}+\eta\xi+|\eta\xi|}{|\eta|+|\xi|}. (B.2)

If we apply this formula, we find Eq.(B.1) becomes

g2v32πgμνϵαAϵαB|ϵα3|.-\frac{g^{2}v}{32\pi}g_{\mu\nu}\epsilon^{A}_{\alpha}\epsilon^{B}_{\alpha}|\epsilon^{3}_{\alpha}|.

Using the values of ϵαA\epsilon^{A}_{\alpha} in Eq. (2.2), we obtain

52gμνm2(A=B=3),32gμνm2(A=B=8),m2=g2v64π.-\frac{5}{2}g_{\mu\nu}m^{2}\ (A=B=3),\quad-\frac{3}{2}g_{\mu\nu}m^{2}\ (A=B=8),\quad m^{2}=\frac{g^{2}v}{64\pi}. (B.3)
Refer to caption
Figure 5: The diagrams that contribute to the tachyonic gluon masses.

B.2 WμαWνα1\langle W^{\alpha}_{\mu}W^{-\alpha}_{\nu}\rangle^{-1}

The diagrams in Fig. B1(b), which come from the interaction

A=3,8[g(μc¯A)α=13ϵαA(WαμCαWαμCα)gα=13ϵαA{Wαμ(μC¯α)Wαμ(μC¯α)}cA],\sum_{A=3,8}\left[g(\partial_{\mu}\bar{c}^{A})\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}(W^{\alpha\mu}C^{-\alpha}-W^{-\alpha\mu}C^{\alpha})-g\sum_{\alpha=1}^{3}\epsilon_{\alpha}^{A}\left\{W^{\alpha\mu}(\partial_{\mu}\bar{C}^{-\alpha})-W^{-\alpha\mu}(\partial_{\mu}\bar{C}^{\alpha})\right\}c^{A}\right],

give the integral

A=3,8g2(ϵαA)2id4k(2π)4{kμkν(k2)(k2+iϵα3v)k4[k4+(ϵα3v)2]+(vv)}=A=3,8g2v64πgμν(ϵαA)2|ϵα3|.\sum_{A=3,8}g^{2}(\epsilon^{A}_{\alpha})^{2}i\int\frac{d^{4}k}{(2\pi)^{4}}\left\{\frac{k_{\mu}k_{\nu}(-k^{2})(-k^{2}+i\epsilon^{3}_{\alpha}v)}{k^{4}[k^{4}+(\epsilon^{3}_{\alpha}v)^{2}]}+(v\to-v)\right\}=-\sum_{A=3,8}\frac{g^{2}v}{64\pi}g_{\mu\nu}(\epsilon^{A}_{\alpha})^{2}|\epsilon^{3}_{\alpha}|.

Using the values of ϵαA\epsilon^{A}_{\alpha} in Eq.(2.2), we obtain

gμνm2(α=1),12gμνm2(α=2,3).-g_{\mu\nu}m^{2}\ (\alpha=1),\quad-\frac{1}{2}g_{\mu\nu}m^{2}\ (\alpha=2,3). (B.4)

In the same way, the interaction

(α,β,γ)sgn(γ)g2ϵαβγ(μC¯α)CβWγμ\sum_{(\alpha,\beta,\gamma)}\mathrm{sgn}(\gamma)\frac{g}{\sqrt{2}}\epsilon_{\alpha\beta\gamma}(\partial_{\mu}\bar{C}^{\alpha})C^{\beta}W^{\gamma\mu}

in Eq.(3.2) produces the diagram in Fig. B1(c). Applying the formula (B.2), this diagram gives

g22id4k(2π)4{kμkν(k2+iϵβ3v)(k2iϵγ3v)[k4+(ϵβ3v)2][k4+(ϵγ3v)2]+(vv)}\displaystyle\frac{g^{2}}{2}i\int\frac{d^{4}k}{(2\pi)^{4}}\left\{\frac{k_{\mu}k_{\nu}(-k^{2}+i\epsilon^{3}_{\beta}v)(-k^{2}-i\epsilon^{3}_{\gamma}v)}{[k^{4}+(\epsilon^{3}_{\beta}v)^{2}][k^{4}+(\epsilon^{3}_{\gamma}v)^{2}]}+(v\to-v)\right\}
=g2v64πgμν(ϵβ3)2+(ϵγ3)2ϵβ3ϵγ3+|ϵβ3ϵγ3||ϵβ3|+|ϵγ3|(β<γ,αβ,γ).\displaystyle=-\frac{g^{2}v}{64\pi}g_{\mu\nu}\frac{(\epsilon^{3}_{\beta})^{2}+(\epsilon^{3}_{\gamma})^{2}-\epsilon^{3}_{\beta}\epsilon^{3}_{\gamma}+|\epsilon^{3}_{\beta}\epsilon^{3}_{\gamma}|}{|\epsilon^{3}_{\beta}|+|\epsilon^{3}_{\gamma}|}\quad(\beta<\gamma,\ \alpha\neq\beta,\gamma). (B.5)

From the values of ϵαA\epsilon^{A}_{\alpha} in Eq.(2.2), we find Eq.(B.5) becomes

14gμνm2(α=1),34gμνm2(α=2,3).-\frac{1}{4}g_{\mu\nu}m^{2}\ (\alpha=1),\quad-\frac{3}{4}g_{\mu\nu}m^{2}\ (\alpha=2,3). (B.6)

Thus, by summing up Eqs.(B.4) and (B.6), we obtain

54gμνm2(α=1,2,3).-\frac{5}{4}g_{\mu\nu}m^{2}\ (\alpha=1,2,3). (B.7)

Appendix C Example of the electric potential and its dual potential

In this appendix, we present an example of the massless electric potential B~μA\tilde{B}^{A}_{\mu} and its dual potential μA\mathcal{B}^{A}_{\mu} for a color electric charge QAQ^{A}. The color electric current is

jAμ=QAδ(x)δ(y)δ(z)gμ0,j^{A\mu}=Q^{A}\delta(x)\delta(y)\delta(z)g^{\mu 0},

and the electric potential

B~Aμ=QA4π1rgμ0,r=x2+y2+z2\tilde{B}^{A\mu}=\frac{Q^{A}}{4\pi}\frac{1}{r}g^{\mu 0},\quad r=\sqrt{x^{2}+y^{2}+z^{2}} (C.1)

satisfies the equation of motion

μ(B~A)μνjAν=0.\partial_{\mu}(\partial\wedge\tilde{B}^{A})^{\mu\nu}-j^{A\nu}=0.

The dual electric potential that corresponds to (C.1) is

Aμ=QA4πzrrρ2(0,y,x,0),ρ=x2+y2.\mathcal{B}^{A\mu}=\frac{Q^{A}}{4\pi}\frac{z-r}{r\rho^{2}}(0,-y,x,0),\quad\rho=\sqrt{x^{2}+y^{2}}. (C.2)

This field fulfills the equation of motion

μ(A)μν+ϵναμβnαμnjβA=0,\partial_{\mu}(\partial\wedge\mathcal{B}^{A})^{\mu\nu}+\epsilon^{\nu\alpha\mu\beta}\frac{n_{\alpha}\partial_{\mu}}{n\cdot\partial}j^{A}_{\beta}=0,

and gives the color electric field

EAi=ϵi0jkjkA=QA4πxir3+δ3iQAδ(x)δ(y)θ(z),E^{Ai}=-\epsilon^{i0jk}\partial_{j}\mathcal{B}^{A}_{k}=\frac{Q^{A}}{4\pi}\frac{x^{i}}{r^{3}}+\delta^{i}_{3}Q^{A}\delta(x)\delta(y)\theta(-z), (C.3)

where θ(z)\theta(z) is the unit step function, and (x2+y2)lnρ=2πδ(x)δ(y)(\partial_{x}^{2}+\partial_{y}^{2})\ln\rho=2\pi\delta(x)\delta(y) has been used.

From Eq.(C.1), we get

(B~A)i0=QA4πxir3.(\partial\wedge\tilde{B}^{A})^{i0}=\frac{Q^{A}}{4\pi}\frac{x^{i}}{r^{3}}.

The string part in Eq.(C.3) comes from ΛeAμν\Lambda_{e}^{A\mu\nu} in Eq.(4.5). To choose the electric string in the negative zz-direction, we use

1zδ(z)=θ(z).\frac{1}{\partial_{z}}\delta(z)=-\theta(-z). (C.4)

Then Eq.(C.1) gives

(ΛeA)i0=δ3i1zj(B~A)j0=δ3iQAδ(x)δ(y)θ(z),(\Lambda_{e}^{A})^{i0}=-\delta^{i}_{3}\frac{1}{\partial_{z}}\partial_{j}(\partial\wedge\tilde{B}^{A})^{j0}=\delta^{i}_{3}Q^{A}\delta(x)\delta(y)\theta(-z),

where 2(1/r)=4πδ(𝒓)\nabla^{2}(1/r)=-4\pi\delta(\mbox{\boldmath$r$}) has been used. The sum (B~A)i0+(ΛeA)i0(\partial\wedge\tilde{B}^{A})^{i0}+(\Lambda_{e}^{A})^{i0} reproduces Eq.(C.3).

Appendix D The potentials VYA(r)V_{Y}^{A}(r) and VLA(r)V_{L}^{A}(r)

D.1 VYA(r)V_{Y}^{A}(r)

By subtracting rr-independent terms, which contain ultraviolet divergence, VYAV_{Y}^{A} in Eq.(4.7) becomes

d3q(2π)3QaAQbAq2+mA2ei𝒒𝒓.\int\frac{d^{3}q}{(2\pi)^{3}}\frac{Q^{A}_{a}Q^{A}_{b}}{q^{2}+m_{A}^{2}}e^{i\mbox{\boldmath$q$}\cdot\mbox{\boldmath$r$}}.

If the mass mAm_{A} disappears above some scale Λc\Lambda_{c}, this potential can be written as

0Λc𝑑qW(𝒒,m,r)+Λc𝑑qW(𝒒,0,r)=0𝑑qW(𝒒,0,r)+0Λc𝑑q{W(𝒒,m,r)W(𝒒,0,r)}.\int_{0}^{\Lambda_{c}}dqW(\mbox{\boldmath$q$},m,r)+\int_{\Lambda_{c}}^{\infty}dqW(\mbox{\boldmath$q$},0,r)=\int_{0}^{\infty}dqW(\mbox{\boldmath$q$},0,r)+\int_{0}^{\Lambda_{c}}dq\left\{W(\mbox{\boldmath$q$},m,r)-W(\mbox{\boldmath$q$},0,r)\right\}.

The first term on the right hand side gives the Coulomb potential, which contributes mainly in the small rr region. When rr becomes large, the second term weakens the effect of the first term. After performing the integration, we obtain hs21

VYA(r)=QaAQbA(14πrmA22π20Λc𝑑qsinqrqr1q2+mA2).V_{Y}^{A}(r)=Q^{A}_{a}Q^{A}_{b}\left(\frac{1}{4\pi r}-\frac{m_{A}^{2}}{2\pi^{2}}\int_{0}^{\Lambda_{c}}dq\frac{\sin qr}{qr}\frac{1}{q^{2}+m_{A}^{2}}\right). (D.1)

We note this potential satisfies

limΛcVYA(r)=QaAQbA4πemArr.\lim_{\Lambda_{c}\to\infty}V_{Y}^{A}(r)=\frac{Q^{A}_{a}Q^{A}_{b}}{4\pi}\frac{e^{-m^{A}r}}{r}. (D.2)

In the usual approach suz ; mts ; sst ; hs17 , the cut-off is not taken into account, and VYA(r)V_{Y}^{A}(r) becomes the Yukawa potential (D.2).

D.2 VLA(𝒓)V_{L}^{A}(\mbox{\boldmath$r$})

When mA=0m^{A}=0, the potential VLA(𝒓)V_{L}^{A}(\mbox{\boldmath$r$}) in Eq.(4.8) vanishes. So, different from VYA(r)V_{Y}^{A}(r), the momentum region q=|𝒒|Λcq=|\mbox{\boldmath$q$}|\leq\Lambda_{c} contributes to VLA(r)V_{L}^{A}(r). Let us write 𝒓=(rn,𝒓t)\mbox{\boldmath$r$}=(r_{n},\mbox{\boldmath$r$}_{t}), and choose 𝒏n as rn=𝒓𝒏0r_{n}=\mbox{\boldmath$r$}\cdot\mbox{\boldmath$n$}\geq 0. The vector 𝒓t\mbox{\boldmath$r$}_{t} satisfies 𝒓t𝒏=0\mbox{\boldmath$r$}_{t}\cdot\mbox{\boldmath$n$}=0, and rt=|𝒓t|r_{t}=|\mbox{\boldmath$r$}_{t}|. Similarly, we write 𝒒=(qn,𝒒t)\mbox{\boldmath$q$}=(q_{n},\mbox{\boldmath$q$}_{t}), and use the spherical coordinates

qn=qcosθ,qt1=qsinθcosφ,qt2=qsinθsinφ,(q<Λc, 0θπ, 0φ<2π),q_{n}=q\cos\theta,\ q_{t1}=q\sin\theta\cos\varphi,\ q_{t2}=q\sin\theta\sin\varphi,\ (q<\Lambda_{c},\ 0\leq\theta\leq\pi,\ 0\leq\varphi<2\pi), (D.3)

where qt1q_{t1} is chosen to satisfy 𝒒t𝒓t=qsinθcosφrt\mbox{\boldmath$q$}_{t}\cdot\mbox{\boldmath$r$}_{t}=q\sin\theta\cos\varphi r_{t}.

Refer to caption
Figure 6: The path CC on the complex plane.

Now we consider the integral

d3q(2π)3ei𝒒𝒓qn2(q2+mA2)\int\frac{d^{3}q}{(2\pi)^{3}}\frac{e^{i\mbox{\boldmath$q$}\cdot\mbox{\boldmath$r$}}}{q_{n}^{2}(q^{2}+m_{A}^{2})} (D.4)

in VLAV_{L}^{A}. It becomes

0Λcdq(2π)30π𝑑θsinθ02π𝑑φeiqrncosθeiqrtsinθcosφcos2θ(q2+mA2).\int_{0}^{\Lambda_{c}}\frac{dq}{(2\pi)^{3}}\int_{0}^{\pi}d\theta\sin\theta\int_{0}^{2\pi}d\varphi\frac{e^{iqr_{n}\cos\theta}e^{iqr_{t}\sin\theta\cos\varphi}}{\cos^{2}\theta(q^{2}+m_{A}^{2})}. (D.5)

By changing the variable θ\theta to u=cosθu=\cos\theta, we get

0π𝑑θsinθeiqrncosθeiqrtsinθcosφcos2θ=11𝑑ueiqrnueiqrt1u2cosφu2,\int_{0}^{\pi}d\theta\sin\theta\frac{e^{iqr_{n}\cos\theta}e^{iqr_{t}\sin\theta\cos\varphi}}{\cos^{2}\theta}=\int_{-1}^{1}du\frac{e^{iqr_{n}u}e^{iqr_{t}\sqrt{1-u^{2}}\cos\varphi}}{u^{2}},

which diverges at u=0u=0. If we choose the path CC in Fig. D1, the integral

C𝑑zeizqrneiqrt1z2cosφz2=0,\int_{C}dz\frac{e^{izqr_{n}}e^{iqr_{t}\sqrt{1-z^{2}}\cos\varphi}}{z^{2}}=0,

leads to

𝒫11𝑑ueiqrnueiqrt1u2cosφu2=IΓε+IΓ1,\displaystyle\mathcal{P}\int_{-1}^{1}du\frac{e^{iqr_{n}u}e^{iqr_{t}\sqrt{1-u^{2}}\cos\varphi}}{u^{2}}=I_{\Gamma_{\varepsilon}}+I_{\Gamma_{1}}, (D.6)
IΓε=Γε𝑑zeiqrnzeiqrt1z2cosφz2,IΓ1=Γ1𝑑zeiqrnzeiqrt1z2cosφz2,\displaystyle I_{\Gamma_{\varepsilon}}=-\int_{\Gamma_{\varepsilon}}dz\frac{e^{iqr_{n}z}e^{iqr_{t}\sqrt{1-z^{2}}\cos\varphi}}{z^{2}},\quad I_{\Gamma_{1}}=-\int_{\Gamma_{1}}dz\frac{e^{iqr_{n}z}e^{iqr_{t}\sqrt{1-z^{2}}\cos\varphi}}{z^{2}},

where 𝒫\mathcal{P} means the Cauchy principal value. To calculate IΓεI_{\Gamma_{\varepsilon}}, we use the variable z=εeiϕz=\varepsilon e^{i\phi}, and take the limit ε+0\varepsilon\to+0. Then it becomes

IΓε=limε+0{2επqrn+O(ε)}eiqrtcosφ.I_{\Gamma_{\varepsilon}}=\lim_{\varepsilon\to+0}\left\{\frac{2}{\varepsilon}-\pi qr_{n}+O(\varepsilon)\right\}e^{iqr_{t}\cos\varphi}. (D.7)

Similarly, by setting z=eiϕz=e^{i\phi} in IΓ1I_{\Gamma_{1}}, we find

IΓ1=i0π𝑑ϕeiϕeiqrneiϕeiqrtcosφ1e2iϕ.I_{\Gamma_{1}}=-i\int_{0}^{\pi}d\phi e^{-i\phi}e^{iqr_{n}e^{i\phi}}e^{iqr_{t}\cos\varphi\sqrt{1-e^{2i\phi}}}. (D.8)

We note Eq.(D.8) satisfies

|IΓ1|0π𝑑ϕeqrnsinϕeqrtcosφ2sinϕ{sin(2ϕπ)/4}πeqrt/2.\left|I_{\Gamma_{1}}\right|\leq\int_{0}^{\pi}d\phi e^{-qr_{n}\sin\phi}e^{-qr_{t}\cos\varphi\sqrt{2\sin\phi}\left\{\sin(2\phi-\pi)/4\right\}}\leq\pi e^{qr_{t}/2}. (D.9)

If we substitute Eqs. (D.6), (D.7) and (D.8) into Eq.(D.5), we find

d3q(2π)3ei𝒒𝒓qn2(q2+mA2)\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}\frac{e^{i\mbox{\boldmath$q$}\cdot\mbox{\boldmath$r$}}}{q_{n}^{2}(q^{2}+m_{A}^{2})} =12π2εH(mA,Λc,rt)14πK0(mArt,Λc)rn+(mA,Λc,rn,rt),\displaystyle=\frac{1}{2\pi^{2}\varepsilon}H(m_{A},\Lambda_{c},r_{t})-\frac{1}{4\pi}K_{0}(m_{A}r_{t},\Lambda_{c})r_{n}+\mathcal{I}(m_{A},\Lambda_{c},r_{n},r_{t}), (D.10)
(mA,Λc,rn,rt)\displaystyle\mathcal{I}(m_{A},\Lambda_{c},r_{n},r_{t}) =0Λcdq(2π)31q2+mA202π𝑑φIΓ1,\displaystyle=\int_{0}^{\Lambda_{c}}\frac{dq}{(2\pi)^{3}}\frac{1}{q^{2}+m_{A}^{2}}\int_{0}^{2\pi}d\varphi\ I_{\Gamma_{1}},

where, using the Bessel function J0(qrt)J_{0}(qr_{t}), H(mA,Λc,rt)H(m_{A},\Lambda_{c},r_{t}) and K0(mArt,Λc)K_{0}(m_{A}r_{t},\Lambda_{c}) are defined by

H(mA,Λc,rt)\displaystyle H(m_{A},\Lambda_{c},r_{t}) =0Λc𝑑q1q2+mA2J0(qrt),K0(mArt,Λc)=0Λc𝑑qqq2+mA2J0(qrt),\displaystyle=\int_{0}^{\Lambda_{c}}dq\frac{1}{q^{2}+m_{A}^{2}}J_{0}(qr_{t}),\quad K_{0}(m_{A}r_{t},\Lambda_{c})=\int_{0}^{\Lambda_{c}}dq\frac{q}{q^{2}+m_{A}^{2}}J_{0}(qr_{t}), (D.11)
J0(qrt)\displaystyle J_{0}(qr_{t}) =12π02π𝑑φeiqrtcosφ.\displaystyle=\frac{1}{2\pi}\int_{0}^{2\pi}d\varphi e^{iqr_{t}\cos\varphi}.

These functions satisfy

H(mA,Λc,0)\displaystyle H(m_{A},\Lambda_{c},0) =1mAtan1ΛcmA,limrt+0K0(mArt,Λc)=12ln(Λc2+mA2mA2),\displaystyle=\frac{1}{m_{A}}\mathrm{tan}^{-1}\frac{\Lambda_{c}}{m_{A}},\quad\lim_{r_{t}\to+0}K_{0}(m_{A}r_{t},\Lambda_{c})=\frac{1}{2}\ln\left(\frac{\Lambda_{c}^{2}+m_{A}^{2}}{m_{A}^{2}}\right), (D.12)
K0(mArt)\displaystyle K_{0}(m_{A}r_{t}) =limΛcK0(mArt,Λc),\displaystyle=\lim_{\Lambda_{c}\to\infty}K_{0}(m_{A}r_{t},\Lambda_{c}),

where K0(mArt)K_{0}(m_{A}r_{t}) is the modified Bessel function. The term \mathcal{I} in Eq.(D.10) has the properties

(mA,Λc,0,0)\displaystyle\mathcal{I}(m_{A},\Lambda_{c},0,0) =12π21mAtan1ΛcmA,\displaystyle=-\frac{1}{2\pi^{2}}\frac{1}{m_{A}}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}, (D.13)
|(mA,Λc,rn,rt)|\displaystyle\left|\mathcal{I}(m_{A},\Lambda_{c},r_{n},r_{t})\right| 18π30Λc𝑑q1q2+mA202π𝑑φ|IΓ1|14π0Λc𝑑q1q2+mA2eqrt/2\displaystyle\leq\frac{1}{8\pi^{3}}\int_{0}^{\Lambda_{c}}dq\frac{1}{q^{2}+m_{A}^{2}}\int_{0}^{2\pi}d\varphi\left|I_{\Gamma_{1}}\right|\leq\frac{1}{4\pi}\int_{0}^{\Lambda_{c}}dq\frac{1}{q^{2}+m_{A}^{2}}e^{qr_{t}/2}
14πmAtan1ΛcmA(rt0).\displaystyle\to\ \frac{1}{4\pi m_{A}}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}\quad(r_{t}\to 0). (D.14)

Thus, using Eqs.(D.10), (D.12) and (D.13), the potential VLAV_{L}^{A} in Eq.(4.8) becomes

VLA(𝒓)=\displaystyle V_{L}^{A}(\mbox{\boldmath$r$})= VIRA(rt)QaAQbAmA24πK0(mArt,Λc)rn\displaystyle V_{\mathrm{IR}}^{A}(r_{t})-\frac{Q_{a}^{A}Q_{b}^{A}m_{A}^{2}}{4\pi}K_{0}(m_{A}r_{t},\Lambda_{c})r_{n}
+mA2{(QaA)2+(QbA)2212π2mAtan1ΛcmA+QaAQbA(mA,Λc,rn,rt)},\displaystyle+m_{A}^{2}\left\{-\frac{(Q^{A}_{a})^{2}+(Q^{A}_{b})^{2}}{2}\frac{1}{2\pi^{2}m_{A}}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}+Q_{a}^{A}Q_{b}^{A}\mathcal{I}(m_{A},\Lambda_{c},r_{n},r_{t})\right\}, (D.15)
VIRA(rt)=\displaystyle V_{\mathrm{IR}}^{A}(r_{t})= mA22π2ε{(QaA)2+(QbA)221mAtan1ΛcmA+QaAQbAH(mA,Λc,rt)}.\displaystyle\frac{m_{A}^{2}}{2\pi^{2}\varepsilon}\left\{\frac{(Q^{A}_{a})^{2}+(Q^{A}_{b})^{2}}{2}\frac{1}{m_{A}}\tan^{-1}\frac{\Lambda_{c}}{m_{A}}+Q_{a}^{A}Q_{b}^{A}H(m_{A},\Lambda_{c},r_{t})\right\}. (D.16)

We note the first term has the infrared divergence 1/ε1/\varepsilon, and the second term leads to the linear potential. When rt0r_{t}\to 0, as Eq.(D.14) shows, the last term does not depend on rnr_{n} so much. Therefore, in Sect. 4, we study the potential VLA(r)V_{L}^{A}(r) based on the first and the second terms in Eq.(D.15).

We make a comment. Usually, the ultraviolet cut-off Λc\Lambda_{c} is introduced as |qt|<Λc|q_{t}|<\Lambda_{c} suz ; mts ; sst ; hs19 . The domain of integration is |qn|<|q_{n}|<\infty and |qt|<Λc|q_{t}|<\Lambda_{c}. The infrared divergence and the linear potential come from the region with |qn|=εn(εn1)|q_{n}|=\varepsilon_{n}\ (\varepsilon_{n}\ll 1). In this article, as mA=0m_{A}=0 above Λc\Lambda_{c}, the domain of integration is q=|𝒒|<Λcq=|\mbox{\boldmath$q$}|<\Lambda_{c}. The infrared divergence and the linear potential result from cosθ=ε(ε1)\cos\theta=\varepsilon\ (\varepsilon\ll 1). Although the linear potential in these references coincides with that in this article, the coefficient of the infrared divergent term is different. From qn=qcosθq_{n}=q\cos\theta, we find εn\varepsilon_{n} is related to ε\varepsilon as εn=qε\varepsilon_{n}=q\varepsilon. By using this relation, the infrared divergence in Ref. hs19 becomes (D.16).

Appendix E Type of the dual superconductivity

In the Ginzburg-Landau (GL) theory of the superconductivity, the space dependence of an order parameter Φ\Phi is considered (See, e.g., Ref. nk ). To see the coherence length, the xx-dependence is introduced as Φ(x)=Φf(x)\Phi(x)=\Phi f(x) with f(0)=0f(0)=0 and limxf(x)=1\lim_{x\to\infty}f(x)=1. From the phenomenological Lagrangian for Φ(x)\Phi(x), the function f(x)f(x) satisfies the equation

ξ2d2f(x)dx2=[1{f(x)}2]f(x).\xi^{2}\frac{d^{2}f(x)}{dx^{2}}=-\left[1-\left\{f(x)\right\}^{2}\right]f(x). (E.1)

The solution is f(x)=tanhx2ξ\displaystyle f(x)=\tanh\frac{x}{\sqrt{2}\xi}, and ξ\xi is the coherence length. The penetration depth λ\lambda is determined by the mass of the magnetic field, and the parameter κ=λ/ξ\kappa=\lambda/\xi is called the GL parameter. When κ<1/2\kappa<1/\sqrt{2} (κ>1/2)\kappa>1/\sqrt{2}), the superconductor is called type-I (type-II).

In the following subsections, under some assumptions, we consider the coherence length and the GL parameter in the present model.

E.1 SU(2) case

First, we consider the SU(2) case. In Refs. hs17 ; hs19 , we showed that the tachyonic mass term for the off-diagonal component Aμ±=(Aμ1±Aμ2)/2A_{\mu}^{\pm}=(A_{\mu}^{1}\pm A_{\mu}^{2})/\sqrt{2} is m2Aμ+Aμ-m^{2}A_{\mu}^{+}A^{-\mu}, and the interaction in Fμν2/4-F_{\mu\nu}^{2}/4 contains the term g2(Aμ+Aμ)2/2-g^{2}(A_{\mu}^{+}A^{-\mu})^{2}/2. From these terms, we obtain the gauge field condensate 𝒢=Aμ+Aμ(0)=m2/g2\mathcal{G}=\langle A_{\mu}^{+}A^{-\mu}\rangle^{(0)}=-m^{2}/g^{2} at the one-loop level. This condensate makes the classical U(1) field bμb_{\mu} massive. As its mass term becomes m2bμbμm^{2}b_{\mu}b^{\mu}, the penetration depth of bμb_{\mu} is λ=1/2m\lambda=1/\sqrt{2}m.

Now we consider the spatial behavior of the condensate 𝒢\mathcal{G}. Since 𝒢\mathcal{G} has the mass dimension 2, we assume its xx-dependence is expressed by 𝒢(x)={𝒢f(x)}2\mathcal{G}(x)=\left\{\sqrt{\mathcal{G}}f(x)\right\}^{2} with f(0)=0f(0)=0 and limxf(x)=1\lim_{x\to\infty}f(x)=1. As 𝒢(x)\mathcal{G}(x) depends on xx, we introduce the kinetic energy in the form of {𝒢f(x)}2\left\{\sqrt{\mathcal{G}}f^{\prime}(x)\right\}^{2}. Thus, using this kinetic term, the above tachyonic mass term and the interaction, we assume the following phenomenological Lagrangian for 𝒢(x)\mathcal{G}(x):

2ph=η2𝒢{df(x)dx}2m2𝒢{f(x)}2g22[𝒢{f(x)}2]2,\mathcal{L}_{2\mathrm{ph}}=\eta^{2}\mathcal{G}\left\{\frac{df(x)}{dx}\right\}^{2}-m^{2}\mathcal{G}\left\{f(x)\right\}^{2}-\frac{g^{2}}{2}\left[\mathcal{G}\left\{f(x)\right\}^{2}\right]^{2},

where η\eta is a parameter to adjust the effect of the assumed kinetic term. This Lagrangian leads to the equation

η2d2f(x)dx2=m2f(x)g2𝒢{f(x)}3=m2[1{f(x)}2]f(x),\eta^{2}\frac{d^{2}f(x)}{dx^{2}}=-m^{2}f(x)-g^{2}\mathcal{G}\left\{f(x)\right\}^{3}=-m^{2}\left[1-\left\{f(x)\right\}^{2}\right]f(x),

where 𝒢=m2/g2\mathcal{G}=-m^{2}/g^{2} has been used. This equation implies ξ=η/m\xi=\eta/m. From λ=1/2m\lambda=1/\sqrt{2}m and ξ=η/m\xi=\eta/m, we find κ=1/2η\kappa=1/\sqrt{2}\eta. If η1\eta\simeq 1, it implies the border between type-I and type-II.

E.2 SU(3) case

As in the SU(2) case, we assume the xx-dependent order parameters 𝒢α(x)={𝒢αfα(x)}2\mathcal{G}^{\alpha}(x)=\left\{\sqrt{\mathcal{G}^{\alpha}}f_{\alpha}(x)\right\}^{2} (α=1,2,3)(\alpha=1,2,3) and GA(x)={GAϕA(x)}2G^{A}(x)=\left\{\sqrt{G^{A}}\phi_{A}(x)\right\}^{2} (A=3,8)(A=3,8). Using the tachyonic mass terms (3.4), the interaction terms (3.5) and the assumed kinetic terms with the same parameter η\eta, we consider the phenomenological Lagrangian

3ph=\displaystyle\mathcal{L}_{3\mathrm{ph}}= α=13𝒢α{η2(dfαdx)254m2(fα)2]+A=3,8GA{η2(dϕAdx)2mA22(ϕA)2}\displaystyle\sum_{\alpha=1}^{3}\mathcal{G}^{\alpha}\left\{\eta^{2}\left(\frac{df_{\alpha}}{dx}\right)^{2}-\frac{5}{4}m^{2}\left(f_{\alpha}\right)^{2}\right]+\sum_{A=3,8}G^{A}\left\{\eta^{2}\left(\frac{d\phi_{A}}{dx}\right)^{2}-\frac{m_{A}^{2}}{2}\left(\phi_{A}\right)^{2}\right\}
g22α=13(𝒢α)2{(fα)2}2g24αβ𝒢α𝒢β(fα)2(fβ)2\displaystyle-\frac{g^{2}}{2}\sum_{\alpha=1}^{3}(\mathcal{G}^{\alpha})^{2}\left\{\left(f_{\alpha}\right)^{2}\right\}^{2}-\frac{g^{2}}{4}\sum_{\alpha\neq\beta}\mathcal{G}^{\alpha}\mathcal{G}^{\beta}\left(f_{\alpha}\right)^{2}\left(f_{\beta}\right)^{2}
g2{G3𝒢1(ϕ3)2(f1)2+14{G3(ϕ3)2+3G8(ϕ8)2}α=23𝒢α(fα)2}.\displaystyle-g^{2}\left\{G^{3}\mathcal{G}^{1}(\phi_{3})^{2}(f_{1})^{2}+\frac{1}{4}\left\{G^{3}(\phi_{3})^{2}+3G^{8}(\phi_{8})^{2}\right\}\sum_{\alpha=2}^{3}\mathcal{G}^{\alpha}\left(f_{\alpha}\right)^{2}\right\}.

From 3ph\mathcal{L}_{3\mathrm{ph}}, we obtain the equations for f2(x)f_{2}(x) and ϕ8(x)\phi_{8}(x) given by

η2d2f2dx2=\displaystyle\eta^{2}\frac{d^{2}f_{2}}{dx^{2}}= 5m24f2\displaystyle-\frac{5m^{2}}{4}f_{2}
g2[𝒢2(f2)2+12{𝒢1(f1)2+𝒢3(f3)2}+14{G3(ϕ3)2+3G8(ϕ8)2}]f2,\displaystyle-g^{2}\left[\mathcal{G}^{2}(f_{2})^{2}+\frac{1}{2}\left\{\mathcal{G}^{1}(f_{1})^{2}+\mathcal{G}^{3}(f_{3})^{2}\right\}+\frac{1}{4}\left\{G^{3}(\phi_{3})^{2}+3G^{8}(\phi_{8})^{2}\right\}\right]f_{2}, (E.2)
η2d2ϕ8dx2=\displaystyle\eta^{2}\frac{d^{2}\phi_{8}}{dx^{2}}= 3m24ϕ83g24{𝒢2(f2)2+𝒢3(f3)2}ϕ8.\displaystyle-\frac{3m^{2}}{4}\phi_{8}-\frac{3g^{2}}{4}\left\{\mathcal{G}^{2}(f_{2})^{2}+\mathcal{G}^{3}(f_{3})^{2}\right\}\phi_{8}. (E.3)

If we assume the relation fα(x)ϕA(x)f_{\alpha}(x)\simeq\phi_{A}(x) (α=1,2,3,A=3,8)(\alpha=1,2,3,\ A=3,8), these equations become

η2d2f2dx2\displaystyle\eta^{2}\frac{d^{2}f_{2}}{dx^{2}}\simeq 5m24{1(f2)2}f2,\displaystyle-\frac{5m^{2}}{4}\left\{1-(f_{2})^{2}\right\}f_{2}, (E.4)
η2d2ϕ8dx2\displaystyle\eta^{2}\frac{d^{2}\phi_{8}}{dx^{2}}\simeq 3m24{1(ϕ8)2}ϕ8,\displaystyle-\frac{3m^{2}}{4}\left\{1-(\phi_{8})^{2}\right\}\phi_{8}, (E.5)

where Eqs.(3.6) and (3.8) have been used. In the same way, we find f1,f3f_{1},f_{3} and ϕ3\phi_{3} also satisfy Eq.(E.4). Therefore, comparing these equations with Eq.(E.1), we find

fα(x)ϕ3(x)tanhx2ξ3,ξ3=2η5m,ϕ8(x)tanhx2ξ8,ξ8=2η3m.f_{\alpha}(x)\simeq\phi_{3}(x)\simeq\tanh\frac{x}{\sqrt{2}\xi_{3}},\ \xi_{3}=\frac{2\eta}{\sqrt{5}m},\quad\phi_{8}(x)\simeq\tanh\frac{x}{\sqrt{2}\xi_{8}},\ \xi_{8}=\frac{2\eta}{\sqrt{3}m}. (E.6)

Eq.(E.6) shows that we have to modify Eqs.(E.4) and (E.5) to satisfy the relation fαϕ3ϕ8f_{\alpha}\simeq\phi_{3}\neq\phi_{8}. If we use this relation, Eqs.(E.2) and (E.3) become

η2d2f2dx2\displaystyle\eta^{2}\frac{d^{2}f_{2}}{dx^{2}}\simeq 5m24{1(f2)2}f23g24G8{(ϕ8)2(f2)2}f2,\displaystyle-\frac{5m^{2}}{4}\left\{1-(f_{2})^{2}\right\}f_{2}-\frac{3g^{2}}{4}G^{8}\left\{(\phi_{8})^{2}-(f_{2})^{2}\right\}f_{2}, (E.7)
η2d2ϕ8dx2\displaystyle\eta^{2}\frac{d^{2}\phi_{8}}{dx^{2}}\simeq 3m24{1(ϕ8)2}ϕ83g22𝒢2{(f2)2(ϕ8)2}ϕ8,\displaystyle-\frac{3m^{2}}{4}\left\{1-(\phi_{8})^{2}\right\}\phi_{8}-\frac{3g^{2}}{2}\mathcal{G}^{2}\left\{(f_{2})^{2}-(\phi_{8})^{2}\right\}\phi_{8}, (E.8)

where Eqs.(3.6) and (3.8) have been used again. Now we use Eq.(3.9), and rewrite the second terms on the right hand side as

3g24G8{(ϕ8)2(f2)2}f2=m216δ2(x){1(f2)2}f2,δ2(x)=(f2)2(ϕ8)21(f2)2,\displaystyle-\frac{3g^{2}}{4}G^{8}\left\{(\phi_{8})^{2}-(f_{2})^{2}\right\}f_{2}=-\frac{m^{2}}{16}\delta_{2}(x)\left\{1-(f_{2})^{2}\right\}f_{2},\quad\delta_{2}(x)=\frac{(f_{2})^{2}-(\phi_{8})^{2}}{1-(f_{2})^{2}},
3g22𝒢2{(f2)2(ϕ8)2}ϕ8=3m24δ8(x){1(ϕ8)2}ϕ8,δ8(x)=(f2)2(ϕ8)21(ϕ8)2.\displaystyle-\frac{3g^{2}}{2}\mathcal{G}^{2}\left\{(f_{2})^{2}-(\phi_{8})^{2}\right\}\phi_{8}=\frac{3m^{2}}{4}\delta_{8}(x)\left\{1-(\phi_{8})^{2}\right\}\phi_{8},\quad\delta_{8}(x)=\frac{(f_{2})^{2}-(\phi_{8})^{2}}{1-(\phi_{8})^{2}}.

Then Eqs.(E.7) and(E.8) become

η2d2f2dx2\displaystyle\eta^{2}\frac{d^{2}f_{2}}{dx^{2}}\simeq 5m24{1+δ2(x)20}{1(f2)2}f2,\displaystyle-\frac{5m^{2}}{4}\left\{1+\frac{\delta_{2}(x)}{20}\right\}\left\{1-(f_{2})^{2}\right\}f_{2}, (E.9)
η2d2ϕ8dx2\displaystyle\eta^{2}\frac{d^{2}\phi_{8}}{dx^{2}}\simeq 3m24{1δ8(x)}{1(ϕ8)2}ϕ8.\displaystyle-\frac{3m^{2}}{4}\left\{1-\delta_{8}(x)\right\}\left\{1-(\phi_{8})^{2}\right\}\phi_{8}. (E.10)

We note, as |f2|<1,|ϕ8|<1|f_{2}|<1,|\phi_{8}|<1 and |f2|>|ϕ8||f_{2}|>|\phi_{8}|, δ2\delta_{2} and δ8\delta_{8} satisfy 0<δa<10<\delta_{a}<1 (a=2,8)(a=2,8).

Since δ2\delta_{2} and δ8\delta_{8} depend on xx, it is difficult to solve Eqs.(E.9) and (E.10). However, Eq.(E.5) becomes Eq.(E.10), if we replace 3m2/43m^{2}/4 with 3m2(1δ2)/43m^{2}(1-\delta_{2})/4. Therefore, it is expected that the coherence length ξmax\xi_{\mathrm{max}} obtained from Eq.(E.10) is longer than ξ8=2η/3m\xi_{8}=2\eta/\sqrt{3}m. From the masses for the classical fields in Eq.(3.12), the corresponding penetration depth is λ8=2/3m\lambda_{8}=\sqrt{2}/{\sqrt{3}m}. If we can use ξmax\xi_{\mathrm{max}} and λ8\lambda_{8}, the GL parameter becomes κ=λ8/ξmax<λ8/ξ8=1/2η\displaystyle\kappa=\lambda_{8}/\xi_{\mathrm{max}}<\lambda_{8}/\xi_{8}=1/\sqrt{2}\eta. If η1\eta\simeq 1, we can expect type-I.

References

  • (1) G. Ripka, arXiv:hep-ph/0310102.
  • (2) H. Sawayanagi, Prog. Theor. Exp.  Phys. 2017, 113B02 (2017).
  • (3) H. Sawayanagi, Prog. Theor. Exp.  Phys. 2019, 033B03 (2019).
  • (4) D. Zwanziger, Phys. Rev. D 3, 880 (1971).
  • (5) G. Curci and R. Ferrari, Phys. Lett. B63, 91 (1976).
  • (6) H. Sawayanagi, Phys. Rev. D 67, 045002 (2003).
  • (7) H. Sawayanagi, Prog. Theor. Phys. 117, 305 (2007).
  • (8) K. -I. Kondo and T. Shinohara, Phys. Lett. B491, 263 (2000).
  • (9) D. Dudal and H. Verschelde, J. Phys. A 36, 8507 (2003).
  • (10) Z. F. Ezawa and A. Iwazaki, Phys. Rev. D 25, 2681 (1982).
  • (11) H. Sawayanagi, Prog. Theor. Exp.  Phys. 2018, 093B01 (2018).
  • (12) T. Suzuki, Prog. Theor. Phys. 80, 929 (1988).
  • (13) S. Maedan and T. Suzuki, Prog. Theor. Phys. 81, 229 (1989).
  • (14) S. Sasaki, H. Suganuma and H. Toki, Prog. Theor. Phys. 94, 373 (1995).
  • (15) H. Suganuma, S. Sasaki and H. Toki, Nucl. Phys. B 435, 207 (1995).
  • (16) H. Sawayanagi, Prog. Theor. Exp.  Phys. 2021, 023B07 (2021).
  • (17) J. M. Cornwall, Phys. Rev. D 54, 6527 (1996).
  • (18) J. Carlson, J. Kogut and V. R. Pandharipande, Phys. Rev. D 27, 233 (1983).
  • (19) C. Alexandrou, Ph. de Forcrand and O. Jahn, Nucl. Phys. B (Proc. Suppl.) 119, 667 (2003).
  • (20) V. G. Bornyakov et al., Phys. Rev. D 70, 054506 (2004).
  • (21) N. Sakumichi and H. Suganuma, Phys. Rev. D 92, 034511 (2015).
  • (22) Y. Koma and M. Koma, Phys. Rev. D 95, 094513 (2017).
  • (23) Y. Koma et al., Phys. Rev. D 64, 014015 (2001).
  • (24) H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).
  • (25) K. -I. Kondo et al., Phys. Rep. 579, 1 (2015).
  • (26) S. Nakajima, Introduction to Superconductivity, (Baifukan, Tokyo, 1971) (in Japanese).