This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Concentration inequality around the thermal equilibrium measure of Coulomb gases

David Padilla-Garza
Abstract

This article deals with Coulomb gases at an intermediate temperature regime, which are governed by a Gibb’s measure in which the inverse temperature is much larger than 1N,\frac{1}{N}, where NN is the number of particles. Our main result is a concentration inequality around the thermal equilibrium measure, stating that with probability exponentially close to 1,1, the empirical measure is 𝒪(1N1d)\mathcal{O}\left(\frac{1}{N^{\frac{1}{d}}}\right) close to the thermal equilibrium measure. We also prove that this concentration inequality is optimal in some sense. The main new tool are functional inequalities that allow us to compare the bounded Lipschitz norm of a measure to its H1H^{-1} norm in some cases when the measure does not have compact support.

1 Introduction

1.1 Introduction to Coulomb gases

Coulomb gases are a system of particles that interact via a repulsive kernel, and are confined by an external potential. Let XN=(x1,x2,xN)X_{N}=(x_{1},x_{2},...x_{N}) with xi𝐑dx_{i}\in\mathbf{R}^{d} and let

N(XN)=121ijNg(xixj)+Ni=1NV(xi),\mathcal{H}_{N}\left(X_{N}\right)=\frac{1}{2}\sum_{1\leq i\neq j\leq N}g\left(x_{i}-x_{j}\right)+N\sum_{i=1}^{N}V\left(x_{i}\right), (1)

where

{g(x)=c¯d|x|d2 if d3,g(x)=c¯2log(|x|) if d=2\begin{cases}g(x)=\frac{\overline{c}_{d}}{|x|^{d-2}}\text{ if }d\geq 3,\\ g(x)=-\overline{c}_{2}\log(|x|)\text{ if }d=2\end{cases} (2)

is the Coulomb kernel, i.e. gg satisfies

Δg=δ0,\Delta g=\delta_{0}, (3)

where the laplacian operator Δ\Delta is defined as the divergence of the gradient. In equation (2), c¯d\overline{c}_{d} is a constant that depends only on dd. If d=1,d=1, then log(|x|)-\log(|x|) is not the fundamental solution of laplacian. Systems given by (1) with g(x)=log(|x|)g(x)=-\log(|x|) in d=1d=1 are called log gases. Consider the Gibbs measure on 𝐑d×N\mathbf{R}^{d\times N}

d𝐏N=1ZN,βexp(βN)dXN,d\mathbf{P}_{N}=\frac{1}{Z_{{N},\beta}}\exp\left(-\beta\mathcal{H}_{N}\right)dX_{N}, (4)

where

ZN,β=𝐑d×Nexp(βN)𝑑XN.Z_{N,\beta}=\int_{\mathbf{R}^{d\times N}}\exp\left(-\beta\mathcal{H}_{N}\right)d\,X_{N}. (5)

In this notation, XN=(x1,x2,xN)X_{N}=\left(x_{1},x_{2},...x_{N}\right), β\beta is the inverse temperature (which we assume to depend on NN), and dXN=dx1dx2dxNdX_{N}=dx_{1}dx_{2}...dx_{N}.

We will use the notation

V(μ)=12𝐑d×𝐑dg(xy)𝑑μ(x)𝑑μ(y)+𝐑dV(x)𝑑x\mathcal{I}_{V}\left(\mu\right)=\frac{1}{2}\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}}g(x-y)d\mu(x)\,d\mu(y)+\int_{\mathbf{R}^{d}}V(x)\,dx (6)

for the mean-field limit of N.\mathcal{H}_{N}. The functional 6 has a unique minimizer in the space of probability measures, called the equilibrium measure and denoted by μV\mu_{V} (see [31]). The empricial measure empN\text{emp}_{N} is defined as

empN=1Ni=1Nδxi.\text{emp}_{N}=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}. (7)

Throughout the paper, we will use the notation

(ν)=𝐑d×𝐑dΔg(xy)𝑑ν(x)𝑑ν(y),\mathcal{E}(\nu)=\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}\setminus\Delta}g(x-y)d\nu(x)\,d\nu(y), (8)

where

Δ={(x,x)𝐑d×𝐑d}.\Delta=\{(x,x)\in\mathbf{R}^{d}\times\mathbf{R}^{d}\}. (9)

The main purpose of this paper is to prove a rate of convergence of the empirical measure to the thermal equilibrium measure, defined as

μβ=argminμ{V(μ)+1Nβ𝐑dμlog(μ)},\mu_{\beta}=\text{argmin}_{\mu}\left\{\mathcal{I}_{V}\left(\mu\right)+\frac{1}{N\beta}\int_{\mathbf{R}^{d}}\mu\log\left(\mu\right)\right\}, (10)

where V\mathcal{I}_{V} is given by (6) and μ\mu is taken on the set of probability measures. For existence and uniqueness of μβ\mu_{\beta} given by (10), see [3].

2 Statement of main results

We will need the following hypotheses on μV\mu_{V}:

  • 1.

    μV\mu_{V} has compact support, denoted by Σ.\Sigma.

  • 2.

    μV\mu_{V} has a density with respect to Lebesgue measure which has LL^{\infty} regularity.

We also need the following hypotheses on β:\beta:

  • 1.

    NβN\beta\to\infty

  • 2.

    There exists a compact set KK such that

    {𝐑dKexp(cNβV(x))𝑑x1N1d if d3,𝐑dKexp(cNβ[V(x)log(|x|)])𝑑x1N12 if d=2,\begin{cases}\int_{\mathbf{R}^{d}\setminus K}\exp\left(-cN\beta V(x)\right)\,dx\ll\frac{1}{N^{\frac{1}{d}}}\text{ if }d\geq 3,\\ \int_{\mathbf{R}^{d}\setminus K}\exp\left(-cN\beta[V(x)-\log(|x|)]\right)\,dx\ll\frac{1}{N^{\frac{1}{2}}}\text{ if }d=2,\end{cases} (11)

    for all c>0,c>0, where the notation \ll means o().o().

  • 3.

    There exists a compact set KK such that

    {(exp(cNβV)𝟏𝐑dK)1N1d, if d3,(exp(cNβ[Vlog(|x|)])𝟏𝐑dK)1N12, if d=2.\begin{cases}\mathcal{E}\left(\exp\left(-cN\beta V\right)\mathbf{1}_{\mathbf{R}^{d}\setminus K}\right)\ll\frac{1}{N^{\frac{1}{d}}},\text{ if }d\geq 3,\\ \mathcal{E}\left(\exp\left(-cN\beta[V-\log(|x|)]\right)\mathbf{1}_{\mathbf{R}^{d}\setminus K}\right)\ll\frac{1}{N^{\frac{1}{2}}},\text{ if }d=2.\end{cases} (12)

    for all c>0.c>0.

Note that conditions 33 is not a consequence of conditions 11 and 2.2. As a counterexample take β=log(log(N))N.\beta=\frac{\log(\log(N))}{N}. However, these are not very restrictive hypotheses. For example, they are satisfied if

β=1Nαα(0,1)\beta=\frac{1}{N^{\alpha}}\quad\alpha\in(0,1) (13)

and there exists some compact set K𝐑dK\subset\mathbf{R}^{d} and c>0c>0 such that

V(x)c|x|sV(x)\geq c|x|^{s} (14)

for xK.x\notin K.

Lastly, we need the following hypotheses on the potential V:V:

  • 1.

    VV has C2C^{2} regularity

  • 2.

    VV has growth at infinity

    lim|x|V(x)= if d3lim inf|x|V(x)log(|x|)= if d=2.\begin{split}\lim_{|x|\to\infty}V(x)=\infty\ &\text{ if }d\geq 3\\ \liminf_{|x|\to\infty}V(x)-\log(|x|)=\infty\ &\text{ if }d=2.\end{split} (15)
  • 3.

    VV is bounded from below. Without loss of generality, we assume V0.V\geq 0.

  • 4.
    |x|1exp(NβV)𝑑x<\int_{|x|\geq 1}\exp\left(-N\beta V\right)\,dx<\infty (16)

    if d3,d\geq 3, and

    |x|1exp(NβVlog(|x|))𝑑x<\int_{|x|\geq 1}\exp\left(-N\beta V-\log(|x|)\right)\,dx<\infty (17)

    if d=2.d=2.

We need a brief definition before stating the main theorem.

Definition 2.1.

For any real valued function ff which is measurable and weakly differentiable, define the W1,W^{1,\infty} norm as

fW1,=max{fL,fL}.\|f\|_{W^{1,\infty}}=\max\{\|f\|_{L^{\infty}},\|\nabla f\|_{L^{\infty}}\}. (18)

Define the space W1,(𝐑d)W^{1,\infty}(\mathbf{R}^{d}) as W1,(𝐑d)={f|fW1,<}W^{1,\infty}(\mathbf{R}^{d})=\{f|\|f\|_{W^{1,\infty}}<\infty\}. For a measure μ\mu on 𝐑d,\mathbf{R}^{d}, define the bounded Lipschitz norm as

μBL=supfW1,(𝐑d)f𝑑μfW1.\|\mu\|_{BL}=\sup_{f\in W^{1,\infty}(\mathbf{R}^{d})}\frac{\int f\,d\mu}{\|f\|_{W^{1\infty}}}. (19)

Our reason for working with this norm is that the topology it induces is equivalent to the topology of weak convergence, as we state in the following remark. For a proof, see [1].

Remark 1.

Let μN\mu_{N} be a sequence of measures on 𝐑d.\mathbf{R}^{d}. Then μNμ\mu_{N}\to\mu weakly in the sense of measures, i.e.

μN(A)μ(A)\mu_{N}(A)\to\mu(A) (20)

for any measurable A𝐑dA\subset\mathbf{R}^{d} such that A\partial A has measure 0, if and only if μNμBL0.\|\mu_{N}-\mu\|_{BL}\to 0.

The main result in this paper is this theorem:

Theorem 2.2.

Let d2d\geq 2 and assume that 1Nβ,\frac{1}{N}\ll\beta, let

empN=1Ni=1Nδxi,\text{emp}_{N}=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}, (21)

then there exists a constant k>0k^{*}>0 such that

limN𝐏N,β(empNμβBLkN1d)=1.\lim_{N\to\infty}\mathbf{P}_{N,\beta}\left(\parallel\text{emp}_{N}-\mu_{\beta}\parallel_{BL}\leq\frac{k^{*}}{N^{\frac{1}{d}}}\right)=1. (22)

More specifically, there exist constants c1,c2,c3>0c_{1},c_{2},c_{3}>0 such that for any k>0,k>0, we have

𝐏N,β(empNμβBLkN1d)1exp(N22dβ(c1(kc2)+2c3)),\mathbf{P}_{N,\beta}\left(\parallel\text{emp}_{N}-\mu_{\beta}\parallel_{BL}\leq\frac{k}{N^{\frac{1}{d}}}\right)\geq 1-\exp\left(-N^{2-\frac{2}{d}}\beta\left(c_{1}(k-c_{2})_{+}^{2}-c_{3}\right)\right), (23)

where

x+=12(x+|x|).x_{+}=\frac{1}{2}\left(x+|x|\right). (24)

3 Applications and motivation

Coulomb gases have a wide range of applications in physics and mathematics, see [32] for a further discussion. Let us remark that despite the wide attention that Coulomb gases have received, the regime 1Nβ1\frac{1}{N}\ll\beta\ll 1 remains largely unexplored.

Coulomb gases have applications in Statistical Physics and Quantum Mechanics ([1],[20],[19],[30], [9], [15],[35], [29], [27],[20],[24],[25]). In all cases, the interactions governed by the Gibbs measure 𝐏N,β\mathbf{P}_{N,\beta} are considered difficult systems because the interactions are truly long-range, singular, and the points are not constrained to live on a lattice. As always in statistical mechanics [18], one would like to understand if there are phase transitions for particular values of the (inverse) temperature β\beta. For the systems studied here, one may expect what physicists call a liquid for small β\beta, and a crystal for large β\beta.

Apart from its direct connection with physics, the Gibbs measure (4) is related to random matrix theory (we refer to [12] for a comprehensive treatment). Random matrix theory (RMT) is a relatively old theory, pioneered by statisticians and physicists such as Wishart, Wigner and Dyson, and originally motivated by the understanding of the spectrum of heavy atoms, see [26]. For more recent mathematical reference see [2],[10],[12]. The main question asked by RMT is: what is the law of the spectrum of a large random matrix? As first noticed in the foundational papers of [36],[11], in the particular cases d=1,2d=1,2 the Gibbs measure (4) corresponds in some particular instances to the joint law of the eigenvalues (which can be computed algebraically) of some famous random matrix ensembles:

  • \bullet

    For d=2d=2, β=2\beta=2 and V(x)=|x|2V(x)=|x|^{2}, (4) is the law of the (complex) eigenvalues of an N×NN\times N matrix where the entries are chosen to be normal Gaussian i.i.d. This is called the Ginibre ensemble.

  • \bullet

    For d=1d=1, β=2\beta=2 and V(x)=x22V(x)=\frac{x^{2}}{2}, (4) is the law of the (real) eigenvalues of an N×NN\times N Hermitian matrix with complex normal Gaussian i.i.d. entries. This is called the Gaussian Unitary Ensemble.

  • \bullet

    For d=1d=1, β=1\beta=1 and V(x)=x22V(x)=\frac{x^{2}}{2}, (4) is the law of the(real) eigenvalues of an N×NN\times N real symmetric matrix with normal Gaussian i.i.d. entries. This is called the Gaussian Orthogonal Ensemble.

  • \bullet

    For d=1d=1, β=4\beta=4 and V(x)=x22V(x)=\frac{x^{2}}{2}, (4) is the law of the eigenvalues of an N×NN\times N quaternionic symmetric matrix with normal Gaussian i.i.d. entries. This is called the Gaussian Symplectic Ensemble.

4 Comparison with literature and discussion of the temperature regime

This paper deals with the case 1Nβ.\frac{1}{N}\ll\beta. The cases β=CN2d1\beta=CN^{\frac{2}{d}-1} has been studied extensively 111Note that the authors may use a different definition of the Gibbs measure. Hence, β=CN2d1\beta=CN^{\frac{2}{d}-1} may correspond to β\beta constant. (see for example [4], [16], [23], [6], [22], [28], [5], [8]). The regime β=cN\beta=\frac{c}{N} has also been studied in the literature (see for example [14], [17], [21]).

The regime β=β0N\beta=\frac{\beta_{0}}{N} has been studied, for example, in [14, 13]. In this case the effect of temperature is so big that particles do not converge to the equilibrium measure. More precisely, empNemp_{N} (defined by (7)) converges a.s. under the Gibbs measure to μβ0,\mu_{\beta_{0}}, defined as

μβ0=argminμF(μ),\mu_{\beta_{0}}=\text{argmin}_{\mu}F(\mu), (25)

where

F(μ):=12(μ)+𝐑dV𝑑μ+1β0ent[μ],F(\mu):=\frac{1}{2}\mathcal{E}(\mu)+\int_{\mathbf{R}^{d}}Vd\mu+\frac{1}{\beta_{0}}\text{ent}[\mu], (26)

\mathcal{E} was defined by (8) and the argmin is taken over probability measures. In equation (26), ent[μ]\text{ent}[\mu] is defined as

ent[μ]=𝐑dμlogμdx.\text{ent}[\mu]=\int_{\mathbf{R}^{d}}\mu\log\mu\,dx. (27)

Moreover, empNemp_{N} satisfies a LDP with rate function FminFF-\min F([13]).

The regime studied in the present paper stands in the middle of the two regimes studied before. This is a regime in which, unlike the β=β0N\beta=\frac{\beta_{0}}{N} the effect of temperature is weak enough that the particles remain confined to a compact subset, in other words, empNemp_{N} converges weakly to μV\mu_{V} a.s. under the Gibbs measure.

Our main result is a lower bound on the probability that the empirical measure is close to the thermal equilibrium measure. Similar results were obtained in [7] for the equilibrium measure. The main difference in the result is that in the current work we derive a concentration inequality around the thermal equilibrium measure, not the equilibrium measure. The main difference in the techniques is that, in our case, we must compare the bounded Lipschitz norm of a measure to its electric energy even if a measure has non-compact support. A substantial part of this paper is devoted to proving an inequality which allows this comparison.

Before beginning the proof section, we make two remarks: one is that, throughout the paper, CC will denote a generic constant which depends only on the input parameters, and may change from line to line. We will also make the following abuse of notation: we will not distinguish between a measure and its density.

5 Preliminaries

5.1 Approximating continuous measures by atomic measures

It is natural to ask if it is possible to approximate the empirical measure to better accuracy that 𝒪(1N1d).\mathcal{O}\left(\frac{1}{N^{\frac{1}{d}}}\right). The next proposition shows this is not possible, at least with a family of measures that has reasonable regularity.

Proposition 5.1.

Let μN\mu_{N} be a sequence of absolutely continuous probability measures, with density dμN.d\mu_{N}. Assume that

dμNLd\mu_{N}\in L^{\infty} (28)

and that

supN{dμNL}M.\text{sup}_{N}\{\|d\mu_{N}\|_{L^{\infty}}\}\leq M. (29)

Let

νN=1Ni=1NδxiN,\nu_{N}=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}^{N}}, (30)

Then there exists k>0k>0 such that

νNμNBLkN1d.\parallel\nu_{N}-\mu_{N}\parallel_{BL}\geq\frac{k}{N^{\frac{1}{d}}}. (31)
Proof.

Let

X¯N=i=1N{xiN}.\overline{X}_{N}=\bigcup_{i=1}^{N}\{x_{i}^{N}\}. (32)

For each λ>0,\lambda>0, define the function φλ:𝐑d𝐑+\varphi_{\lambda}:\mathbf{R}^{d}\to\mathbf{R}^{+} as

φλ(x)=(λN1ddist(x,X¯N))+.\varphi_{\lambda}(x)=\left(\frac{\lambda}{N^{\frac{1}{d}}}-\text{dist}(x,\overline{X}_{N})\right)_{+}. (33)

Note that, for every λ>0,\lambda>0, the function φλ\varphi_{\lambda} satisfies

φλL=λN1d,φλL=1.\|\varphi_{\lambda}\|_{L^{\infty}}=\frac{\lambda}{N^{\frac{1}{d}}},\quad\|\nabla\varphi_{\lambda}\|_{L^{\infty}}=1. (34)

Also note that

supp(φλ)=i=1NB¯(xiN,λN1d).\text{supp}(\varphi_{\lambda})=\bigcup_{i=1}^{N}\overline{B}\left(x_{i}^{N},\frac{\lambda}{N^{\frac{1}{d}}}\right). (35)

We will now show that for some value of λ\lambda to be determined later, we have

|𝐑dφλd(νNμN)|kN1d,\left|\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\mu_{N})\right|\geq\frac{k}{N^{\frac{1}{d}}}, (36)

for kk to be determined later (independent of λ\lambda).

In order to do this, we introduce the function

μ~N=Mi=1N𝟏B(xiN,λN1d).\widetilde{\mu}_{N}=M\sum_{i=1}^{N}\mathbf{1}_{{B}\left(x_{i}^{N},\frac{\lambda}{N^{\frac{1}{d}}}\right)}. (37)

We recall the abuse of notation of not distinguishing between a measure and its density.

We now compute

𝐑dφλd(νNμ~N)=λN1d𝐑dφλ𝑑μ~N=λN1dM(i=1NB¯(xiN,λN1d)(λN1ddist(x,X¯N))𝑑x)λN1dM(i=1NB¯(xiN,λN1d)λN1d𝑑x)=λN1dMλN1d(Nkd(λN1d)d)=λN1dMλd+1kdN1d=λN1d(1Mkdλd),\begin{split}\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\widetilde{\mu}_{N})&=\frac{\lambda}{N^{\frac{1}{d}}}-\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d\widetilde{\mu}_{N}\\ &=\frac{\lambda}{N^{\frac{1}{d}}}-M\left(\sum_{i=1}^{N}\int_{\overline{B}\left(x_{i}^{N},\frac{\lambda}{N^{\frac{1}{d}}}\right)}\left(\frac{\lambda}{N^{\frac{1}{d}}}-\text{dist}(x,\overline{X}_{N})\right)\,dx\right)\\ &\geq\frac{\lambda}{N^{\frac{1}{d}}}-M\left(\sum_{i=1}^{N}\int_{\overline{B}\left(x_{i}^{N},\frac{\lambda}{N^{\frac{1}{d}}}\right)}\frac{\lambda}{N^{\frac{1}{d}}}\,dx\right)\\ &=\frac{\lambda}{N^{\frac{1}{d}}}-M\frac{\lambda}{N^{\frac{1}{d}}}\left(Nk_{d}\left(\frac{\lambda}{N^{\frac{1}{d}}}\right)^{d}\right)\\ &=\frac{\lambda}{N^{\frac{1}{d}}}-\frac{M\lambda^{d+1}k_{d}}{N^{\frac{1}{d}}}\\ &=\frac{\lambda}{N^{\frac{1}{d}}}\left(1-Mk_{d}\lambda^{d}\right),\end{split} (38)

where kdk_{d} is the volume of the dd-dimensional unit ball. By taking

λ=1(2Mkd)1d,\lambda=\frac{1}{\left(2Mk_{d}\right)^{\frac{1}{d}}}, (39)

we get that

𝐑dφλd(νNμ~N)λN1d(1Mkdλd)=1N1d(12(2Mkd)1d).\begin{split}\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\widetilde{\mu}_{N})&\geq\frac{\lambda}{N^{\frac{1}{d}}}\left(1-Mk_{d}\lambda^{d}\right)\\ &=\frac{1}{N^{\frac{1}{d}}}\left(\frac{1}{2\left(2Mk_{d}\right)^{\frac{1}{d}}}\right).\end{split} (40)

We will now show that

|𝐑dφλd(νNμN)|𝐑dφλd(νNμ~N)\left|\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\mu_{N})\right|\geq\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\widetilde{\mu}_{N}) (41)

for

λ=1(2Mkd)1d.\lambda=\frac{1}{\left(2Mk_{d}\right)^{\frac{1}{d}}}. (42)

In order to show this, note that since φλ\varphi_{\lambda} is positive, and dμNLM,\|d\mu_{N}\|_{L^{\infty}}\leq M, we have that

𝐑dφλ𝑑μNM𝐑dφλ𝑑xMi=1N𝐑d𝟏B(xiN,λN1d)φλ𝑑x=𝐑dφλ𝑑μ~N.\begin{split}\int_{\mathbf{R}^{d}}\varphi_{\lambda}d\mu_{N}&\leq M\int_{\mathbf{R}^{d}}\varphi_{\lambda}dx\\ &\leq M\sum_{i=1}^{N}\int_{\mathbf{R}^{d}}\mathbf{1}_{{B}\left(x_{i}^{N},\frac{\lambda}{N^{\frac{1}{d}}}\right)}\varphi_{\lambda}dx\\ &=\int_{\mathbf{R}^{d}}\varphi_{\lambda}d\widetilde{\mu}_{N}.\end{split} (43)

We can now conclude by taking λ\lambda as in (39):

νNμNBL|𝐑dφλd(νNμN)|𝐑dφλd(νNμ~N)=1N1d(12(2Mkd)1d).\begin{split}\|\nu_{N}-\mu_{N}\|_{BL}&\geq\left|\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\mu_{N})\right|\\ &\geq\int_{\mathbf{R}^{d}}\varphi_{\lambda}\,d(\nu_{N}-\widetilde{\mu}_{N})\\ &=\frac{1}{N^{\frac{1}{d}}}\left(\frac{1}{2\left(2Mk_{d}\right)^{\frac{1}{d}}}\right).\end{split} (44)

5.2 On the H1H^{-1} norm

This paper will make extensive use of the H1H^{-1} norm. We begin with an introduction about its basic properties, and relation to the Coulomb energy.

Definition 5.2.

The H1H^{-1} norm is defined for a measure μ\mu on 𝐑d\mathbf{R}^{d} as

μH1=supfC0f𝑑μfL2.\parallel\mu\parallel_{H^{-1}}=\sup_{f\in C^{\infty}_{0}}\frac{\int f\,d\mu}{\parallel\nabla f\parallel_{L^{2}}}. (45)

We now introduce a quantity which will be a key element when comparing the bounded Lipschitz norm of a measure to its electric energy.

Definition 5.3.

Given an open bounded set Ω𝐑d,\Omega\subset\mathbf{R}^{d}, we also define the H1H^{-1} norm restricted to Ω,\Omega, which we define, for any measure μ\mu on Ω\Omega as

μH1(Ω)=supfH1(Ω)f𝑑μfH1.\parallel\mu\parallel_{H^{-1}(\Omega)}=\sup_{f\in H^{1}(\Omega)}\frac{\int f\,d\mu}{\parallel f\parallel_{H^{1}}}. (46)

In the last equation

fH12=fL22+fL22.\|f\|_{H^{1}}^{2}=\|f\|_{L^{2}}^{2}+\|\nabla f\|_{L^{2}}^{2}. (47)

Our reasons for working with this norm are

  • 1.

    Unlike the H1H^{-1} norm, we can directly compare this quantity to the BLBL norm. This comparison is actually a very easy consequence of duality and Holder’s inequality.

  • 2.

    Proposition 6.4 is essential to the proof of the main result, it is not clear how to obtain a similar statement for the H1H^{-1} norm.

A useful inequality relates the H1H^{-1} norm to the bounded Lipschitz norm, which we will use in the statement of the theorem.

Proposition 5.4.

Let μ\mu be a measure with compact support K.K.

Then

μBL1d+1|K|d2μH1(K).\parallel\mu\parallel_{BL}\leq\frac{1}{\sqrt{d+1}|K|^{\frac{d}{2}}}\parallel\mu\parallel_{H^{-1}(K)}. (48)
Proof.

Using Holder’s inequality, we obtain

fL2|K|d2fLandDfL2d|K|d2DfL.\parallel f\parallel_{L^{2}}\leq|K|^{\frac{d}{2}}\parallel f\parallel_{L^{\infty}}\quad\text{and}\quad\parallel Df\parallel_{L^{2}}\leq\sqrt{d}|K|^{\frac{d}{2}}\parallel Df\parallel_{L^{\infty}}. (49)

Then we have that

fH1d+1|K|d2fW1,,\parallel f\parallel_{H^{1}}\leq\sqrt{d+1}|K|^{\frac{d}{2}}\parallel f\parallel_{W^{1,\infty}}, (50)

hence, using the fact that W1,(𝐑d)W^{1,\infty}(\mathbf{R}^{d}) is dense in H1(𝐑d)H^{1}(\mathbf{R}^{d}) we get by duality that

μH1(K)=supfH1𝐑df𝑑μfH1=supfW1,𝐑df𝑑μfH11d+1|K|d2supfW1,𝐑df𝑑μfW1,=1d+1|K|d2μBL.\begin{split}\parallel\mu\parallel_{H^{-1}(K)}&=\sup_{f\in H^{1}}\frac{\int_{\mathbf{R}^{d}}fd\,\mu}{\parallel f\parallel_{H^{1}}}\\ &=\sup_{f\in W^{1,\infty}}\frac{\int_{\mathbf{R}^{d}}fd\,\mu}{\parallel f\parallel_{H^{1}}}\\ &\geq\frac{1}{\sqrt{d+1}|K|^{\frac{d}{2}}}\sup_{f\in W^{1,\infty}}\frac{\int_{\mathbf{R}^{d}}fd\,\mu}{\parallel f\parallel_{W^{1,\infty}}}\\ &=\frac{1}{\sqrt{d+1}|K|^{\frac{d}{2}}}\parallel\mu\parallel_{BL}.\end{split} (51)

A simple but useful property relates the electrostatic energy of a measure to its H1H^{-1} norm:

Proposition 5.5.

Let μ\mu be a signed measure on 𝐑2\mathbf{R}^{2} of bounded variation and such that

𝐑d𝑑μ=0,\int_{\mathbf{R}^{d}}d\mu=0, (52)

or an arbitrary signed measure on 𝐑d\mathbf{R}^{d} for d3d\geq 3 of bounded variation. Let gg be the Coulomb kernel, then

μH12=(μ).\parallel\mu\parallel_{H^{-1}}^{2}=\mathcal{E}(\mu). (53)
Proof.

We will continue the abuse of notation of not distinguishing between and measure and its density. Without loss of generality, we may assume that μ\mu has a density which lies in C0(𝐑d)C^{\infty}_{0}(\mathbf{R}^{d}), where C0(𝐑d)C^{\infty}_{0}(\mathbf{R}^{d}) denotes the space of smooth functions with compact support. Let fC0(𝐑d)f\in C^{\infty}_{0}(\mathbf{R}^{d}) and let hμ=gμ.h^{\mu}=g\ast\mu. Using integration by parts and Cauchy-Schwartz inequality we have that

𝐑dfμ𝑑x=𝐑dfΔhμ𝑑x=𝐑d(f)(1μ)𝑑x+limRB(0,R)hμνf𝑑d1𝐑d|f|2𝑑x𝐑d|1μ|2𝑑x+limRB(0,R)hμνf𝑑d1,\begin{split}\int_{\mathbf{R}^{d}}f\mu\,dx&=\int_{\mathbf{R}^{d}}f\Delta h^{\mu}\,dx\\ &=\int_{\mathbf{R}^{d}}(\nabla f)\cdot(\nabla^{-1}\mu)\,dx+\lim_{R\to\infty}\int_{\partial B(0,R)}\frac{\partial h^{\mu}}{\partial\nu}fd\mathcal{H}^{d-1}\\ &\leq\sqrt{\int_{\mathbf{R}^{d}}\left|\nabla f\right|^{2}\,dx\int_{\mathbf{R}^{d}}\left|\nabla^{-1}\mu\right|^{2}\,dx}+\lim_{R\to\infty}\int_{\partial B(0,R)}\frac{\partial h^{\mu}}{\partial\nu}fd\mathcal{H}^{d-1},\end{split} (54)

where 1μ\nabla^{-1}\mu is defined as

1μ=(μg),\nabla^{-1}\mu=\nabla(\mu\ast g), (55)

and d1\mathcal{H}^{d-1} denotes the d1d-1 dimensional Hausdorff measure.

Note that for RR big enough,

B(0,R)hμνf𝑑d1=0,\int_{\partial B(0,R)}\frac{\partial h^{\mu}}{\partial\nu}fd\mathcal{H}^{d-1}=0, (56)

therefore

𝐑dfμ𝑑x𝐑d|f|2𝑑x𝐑d|1μ|2𝑑x\int_{\mathbf{R}^{d}}f\mu\,dx\leq\sqrt{\int_{\mathbf{R}^{d}}\left|\nabla f\right|^{2}\,dx\int_{\mathbf{R}^{d}}\left|\nabla^{-1}\mu\right|^{2}\,dx} (57)

and

μH12(μ).\parallel\mu\parallel_{H^{-1}}^{2}\leq\mathcal{E}(\mu). (58)

In order to prove that

μH12(μ),\parallel\mu\parallel_{H^{-1}}^{2}\geq\mathcal{E}(\mu), (59)

we claim that there exists a sequence fnC0(𝐑d)f_{n}\in C_{0}^{\infty}(\mathbf{R}^{d}) such that

hμfnL20.\|\nabla h^{\mu}-\nabla f_{n}\|_{L^{2}}\to 0. (60)

We first deal with the case d3.d\geq 3. We assume that

μH1<\parallel\mu\parallel_{H^{-1}}<\infty (61)

since otherwise inequality (59) is trivial. Equation (61) implies that

𝐑d𝑑μ<.\int_{\mathbf{R}^{d}}\,d\mu<\infty. (62)

Without loss of generality we assume

𝐑d𝑑μ{0,1}.\int_{\mathbf{R}^{d}}\,d\mu\in\{0,1\}. (63)

Now consider, for R>0R>0 a function φRC0\varphi_{R}\in C^{\infty}_{0} such that

φR=1 in B(0,R)supp(φR)B(0,2R).\begin{split}\varphi_{R}=1\text{ in }B(0,R)\\ \text{supp}(\varphi_{R})\subset B(0,2R).\end{split} (64)

Note that we can chose φR\varphi_{R} such that

|φR|CR1\begin{split}|\nabla\varphi_{R}|\leq CR^{-1}\end{split} (65)

for some universal C𝐑+.C\in\mathbf{R}^{+}.

We now define

fn=hμφRn,f_{n}=h^{\mu}\varphi_{R_{n}}, (66)

for a sequence Rn.R_{n}\to\infty.

Note that

fn=hμφRn+hμφRn.\nabla f_{n}=\nabla h^{\mu}\varphi_{R_{n}}+h^{\mu}\nabla\varphi_{R_{n}}. (67)

Since we are assuming

𝐑d𝑑μ{0,1},\int_{\mathbf{R}^{d}}\,d\mu\in\{0,1\}, (68)

and μ\mu has compact support, we have that for RR big enough,

|hμ|CRd1|\nabla h^{\mu}|\leq\frac{C}{R^{d-1}} (69)

and

|hμ|CRd2,|h^{\mu}|\leq\frac{C}{R^{d-2}}, (70)

where CC depends only on d.d.

Therefore

|fn(x)|CR1d|\nabla f_{n}(x)|\leq CR^{1-d} (71)

for xB(0,2R)B(0,R).x\in B(0,2R)\setminus B(0,R). Therefore

B(0,2R)B(0,R)|fn|2𝑑xB(0,2R)B(0,R)CR2(1d)𝑑xCR2d.\begin{split}\int_{B(0,2R)\setminus B(0,R)}|\nabla f_{n}|^{2}\,dx&\leq\int_{B(0,2R)\setminus B(0,R)}CR^{2(1-d)}\,dx\\ &\leq CR^{2-d}.\end{split} (72)

On the other hand,

𝐑dB(0,R)|hμ|2C𝐑dB(0,R)R2(1d)CR2d.\begin{split}\int_{\mathbf{R}^{d}\setminus B(0,R)}|\nabla h^{\mu}|^{2}&\leq C\int_{\mathbf{R}^{d}\setminus B(0,R)}R^{2(1-d)}\\ &\leq CR^{2-d}.\end{split} (73)

Therefore

𝐑d|fnhμ|2𝑑xC(𝐑dB(0,R)|hμ|2+B(0,2R)B(0,R)|fn|2)CR2d.\begin{split}\int_{\mathbf{R}^{d}}|\nabla f_{n}-\nabla h^{\mu}|^{2}\,dx&\leq C\left(\int_{\mathbf{R}^{d}\setminus B(0,R)}|\nabla h^{\mu}|^{2}+\int_{B(0,2R)\setminus B(0,R)}|\nabla f_{n}|^{2}\right)\\ &\leq CR^{2-d}.\end{split} (74)

Therefore

limn𝐑dμfn𝑑x=limn𝐑d1μfn=𝐑d|1μ|2,\begin{split}\lim_{n\to\infty}\int_{\mathbf{R}^{d}}\mu f_{n}\,dx&=\lim_{n\to\infty}\int_{\mathbf{R}^{d}}\nabla^{-1}\mu\cdot\nabla f_{n}\\ &=\int_{\mathbf{R}^{d}}\left|\nabla^{-1}\mu\right|^{2},\end{split} (75)

and

limnfnL2=hμL2,\lim_{n\to\infty}\|\nabla f_{n}\|_{L^{2}}=\|\nabla h^{\mu}\|_{L^{2}}, (76)

which implies

μH1supfC0f𝑑μfL2=𝐑d|1μ|2.\begin{split}\parallel\mu\parallel_{H^{-1}}&\geq\sup_{f\in C^{\infty}_{0}}\frac{\int f\,d\mu}{\parallel\nabla f\parallel_{L^{2}}}\\ &=\sqrt{\int_{\mathbf{R}^{d}}\left|\nabla^{-1}\mu\right|^{2}}.\end{split} (77)

The proof in the case d=2d=2 and

𝐑d𝑑μ=0\int_{\mathbf{R}^{d}}\,d\mu=0 (78)

is almost the same. We only have to note that for μ\mu with compact support, and for RR big enough (depending on suppμ\text{supp}\mu),

|hμ|CR1|h^{\mu}|\leq CR^{-1} (79)

and

|hμ|CR2,|\nabla h^{\mu}|\leq CR^{-2}, (80)

for a constant CC which depends on supp(μ):=K{\rm supp}(\mu):=K. In order to see this, let mm be the mass of the positive part of μ\mu, and let supp(μ):=K{\rm supp}(\mu):=K, with diameter of KK equal to r>0r>0. W.lo.g we may assume m=1m=1. Then, for RR big enough (depending on rr), we have

|hμ||log(Rr)log(R+r)|2rR.\begin{split}|h^{\mu}|&\leq\left|\log(R-r)-\log(R+r)\right|\\ &\leq\frac{2r}{R}.\end{split} (81)

Similarly,

|hμ||1Rr1R+r|2rR2.\begin{split}|\nabla h^{\mu}|&\leq\left|\frac{1}{R-r}-\frac{1}{R+r}\right|\\ &\leq\frac{2r}{R^{2}}.\end{split} (82)

Note that, in general, μ|ΩH1μ|ΩH1(Ω)\parallel\mu|_{\Omega}\parallel_{H^{-1}}\neq\parallel\mu|_{\Omega}\parallel_{H^{-1}(\Omega)} for a measure μ\mu defined on 𝐑d,\mathbf{R}^{d}, however, the two quantities are related, as we show in the next proposition. This proposition is not used in the proof, but we include it since it might be of independent interest.

Proposition 5.6.

Let KK be a compact set in 𝐑d\mathbf{R}^{d} with d2,d\geq 2, and let μ\mu be a measure of bounded variation defined on KK. Then

  • a)

    If d=2d=2 and

    K𝑑μ=0,\int_{K}d\,\mu=0, (83)

    then there exists a constant CC such that

    μH1(K)C(μ).\|\mu\|_{H^{-1}(K)}\leq C\sqrt{\mathcal{E}(\mu)}. (84)
  • b)

    If d3d\geq 3, then there exists a constant cc such that

    μH1(K)c(μ).\|\mu\|_{H^{-1}(K)}\leq c\sqrt{\mathcal{E}(\mu)}. (85)

    Additionally, if

    𝐑dμ0,\int_{\mathbf{R}^{d}}\mu\neq 0, (86)

    then there exists a constant cc such that

    (μ)1cμH1(K).\sqrt{\mathcal{E}(\mu)}\leq\frac{1}{c}\|\mu\|_{H^{-1}(K)}. (87)
Proof.

We first prove part a) and the first inequality of part b). Let fH1(K),f\in H^{1}(K), and recall that there exists an extension operator, f¯\overline{f} i.e. there exists an operator f¯H1(𝐑d)\overline{f}\in H^{1}(\mathbf{R}^{d}) which satisfies

f¯L2CfH1,f¯|K=f,\begin{split}\|\nabla\overline{f}\|_{L^{2}}&\leq C\|f\|_{H^{1}},\\ \overline{f}|_{K}&=f,\end{split} (88)

and f¯\overline{f} has compact support.

Using Proposition 5.5, and the existence of the extension operator, we have that

(μ)=supfH01(𝐑d)f𝑑μfL2supfH1(K)f𝑑μf¯L2csupfH1(K)f𝑑μfH1=cμH1(K).\begin{split}\sqrt{\mathcal{E}(\mu)}&=\sup_{f\in H^{1}_{0}(\mathbf{R}^{d})}\frac{\int f\,d\mu}{\parallel\nabla f\parallel_{L^{2}}}\\ &\geq\sup_{f\in H^{1}(K)}\frac{\int{f}\,d\mu}{\parallel\nabla\overline{f}\parallel_{L^{2}}}\\ &\geq c\sup_{f\in H^{1}(K)}\frac{\int{f}\,d\mu}{\parallel{f}\parallel_{H^{1}}}\\ &=c\|\mu\|_{H^{-1}(K)}.\end{split} (89)

We now turn to the second inequality of part b), for which we assume that

𝐑dμ0.\int_{\mathbf{R}^{d}}\mu\neq 0. (90)

We further assume that μH1(K)<\|\mu\|_{H^{-1}(K)}<\infty since otherwise the inequality is trivial. This implies

|K𝑑μ|<.\left|\int_{K}d\mu\right|<\infty. (91)

Since both μH1(K)\|\mu\|_{H^{-1}(K)} and (μ)\sqrt{\mathcal{E}(\mu)} are homogeneous of degree 1,1, we may assume that

K𝑑μ=1.\int_{K}d\,\mu=1. (92)

Let

hμ=μg.h^{\mu}=\mu\ast g. (93)

Let φR\varphi_{R} be as in the proof of Proposition 5.5 and let

hRμ=hμφR.h^{\mu}_{R}=h^{\mu}\varphi_{R}. (94)

Proceeding as in Proposition 5.5, we have that for RR big enough,

|hRμ(x)|CRd1,|\nabla h^{\mu}_{R}(x)|\leq\frac{C}{R^{d-1}}, (95)

for xB(0,2R)B(0,R),x\in B(0,2R)\setminus B(0,R), with CC independent of R.R. Therefore

B(0,2R)B(0,R)|hRμ|2CR2d.\int_{B(0,2R)\setminus B(0,R)}|\nabla h^{\mu}_{R}|^{2}\leq CR^{2-d}. (96)

Let RR_{*} be such that (96) holds and in addition,

CR2dm:=minμ(K)|μ=1(μ),KB(0,R),\begin{split}&CR_{*}^{2-d}\leq m:=\min_{\mu\in\mathcal{M}(K)|\int\mu=1}\mathcal{E}(\mu),\\ &K\subset B(0,R_{*}),\end{split} (97)

where the CC in equation (97) is the same as in equation (96).

Then, using that (μ)=|hμ|2\mathcal{E}(\mu)=\int\left|\nabla h^{\mu}\right|^{2} for d3d\geq 3, we have that

hRμL22=B(0,R)|hμ|2+B(0,2R)B(0,R)|hRμ|22hμL22.\begin{split}\|\nabla h^{\mu}_{R_{*}}\|_{L^{2}}^{2}&=\int_{B(0,R_{*})}|\nabla h^{\mu}|^{2}+\int_{B(0,2R_{*})\setminus B(0,R_{*})}|\nabla h^{\mu}_{R_{*}}|^{2}\\ &\leq 2\|\nabla h^{\mu}\|_{L^{2}}^{2}.\end{split} (98)

Now consider

f=hRμ|K=hμ|K.\begin{split}f_{*}&=h^{\mu}_{R_{*}}|_{K}\\ &=h^{\mu}|_{K}.\end{split} (99)

By Poincare inequality, we get that

fH1ChμL2,\|f_{*}\|_{H^{1}}\leq C\|\nabla h^{\mu}\|_{L^{2}}, (100)

with CC depending only on R,R_{*}, hence independent of μ.\mu.

Then

μH1(K)f𝑑μfH1chμ𝑑μhμL2=c(μ).\begin{split}\|\mu\|_{H^{-1}(K)}&\geq\frac{\int f_{*}\,d\mu}{\parallel f_{*}\parallel_{H^{1}}}\\ &\geq c\frac{\int h^{\mu}\,d\mu}{\parallel\nabla h^{\mu}\parallel_{L^{2}}}\\ &=c\sqrt{\mathcal{E}(\mu)}.\end{split} (101)

A notable challenge in this paper is that the H1H^{-1} norm is not local, as this simple example shows.

Example 1.

Let d3,d\geq 3, then there exists ff such that fH1<\|f\|_{H^{-1}}<\infty and a compact set K𝐑dK\in\mathbf{R}^{d} such that

f|KH1>fH1.\parallel f|_{K}\parallel_{H^{-1}}>\parallel f\parallel_{H^{-1}}. (102)
Proof.

Let μ\mu be a bump function, i.e. μ\mu is smooth, positive, has integral 11, and is supported in B(0,1).B(0,1). Let

fλ(x)=μ(x)λμ(x10𝟏d),f_{\lambda}(x)=\mu(x)-\lambda\mu(x-10\mathbf{1}_{d}), (103)

where

𝟏d=(1,1,1)𝐑d.\mathbf{1}_{d}=(1,1,...1)\in\mathbf{R}^{d}. (104)

Let

ν(x)=μ(x10𝟏d),\nu(x)=\mu(x-10\mathbf{1}_{d}), (105)

then

fλH12=g(xy)𝑑μx𝑑μyλg(xy)𝑑μx𝑑νy+λ2g(xy)𝑑νx𝑑νy.\begin{split}\parallel f_{\lambda}\parallel_{H^{-1}}^{2}=&\iint g(x-y)d\mu_{x}d\mu_{y}-\\ &\lambda\iint g(x-y)d\mu_{x}d\nu_{y}+\\ &\lambda^{2}\iint g(x-y)d\nu_{x}d\nu_{y}.\end{split} (106)

On the other hand, for K=B(0,5)¯K=\overline{B(0,5)} for example,

fλ|KH1=g(xy)𝑑μx𝑑μy.\parallel f_{\lambda}|_{K}\parallel_{H^{-1}}=\iint g(x-y)d\mu_{x}d\mu_{y}. (107)

Therefore for λ\lambda small enough, we have that

fλ|KH1>fλH1.\parallel f_{\lambda}|_{K}\parallel_{H^{-1}}>\parallel f_{\lambda}\parallel_{H^{-1}}. (108)

5.3 On the thermal equilibrium measure

Before writing the proofs, we need a few properties of the thermal equilibrium measure μβ.\mu_{\beta}.

Proposition 5.7.

The measure μβ\mu_{\beta} has support in the whole of 𝐑d.\mathbf{R}^{d}.

Proof.

See [3]

Proposition 5.8.

The measure μβ\mu_{\beta} is uniformly bounded in LL^{\infty} for all Nβ>2N\beta>2 if μV\mu_{V} is bounded in LL^{\infty}.

Proof.

See [3]. Note that NβN\beta in our notation corresponds to β\beta in the notation of [3]. ∎

Next, we derive a splitting formula expanding around μβ:\mu_{\beta}:

Proposition 5.9.

The Hamiltonian N\mathcal{H}_{N} can be split into (rewritten as):

N(XN)=N2β(μβ)+Ni=1Nζβ(xi)+N22𝐑d×𝐑dΔg(xy)d(empNμβ)(x)d(empNμβ)(y),\begin{split}\mathcal{H}_{N}\left(X_{N}\right)=N^{2}\mathcal{E}_{\beta}\left(\mu_{\beta}\right)&+N\sum_{i=1}^{N}\zeta_{\beta}\left(x_{i}\right)\\ &+\frac{N^{2}}{2}\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}\setminus\Delta}g(x-y)d\left(\text{emp}_{N}-\mu_{\beta}\right)(x)d\left(\text{emp}_{N}-\mu_{\beta}\right)(y),\end{split} (109)

where

β(μ)=V(μ)+1Nβ𝐑dμlog(μ)\mathcal{E}_{\beta}\left(\mu\right)=\mathcal{I}_{V}\left(\mu\right)+\frac{1}{N\beta}\int_{\mathbf{R}^{d}}\mu\log\left(\mu\right) (110)

and

ζβ=1Nβlog(μβ).\zeta_{\beta}=-\frac{1}{N\beta}\log\left(\mu_{\beta}\right). (111)
Proof.

See [4]. ∎

In analogy with previous work in this field ([4], [23], [6], [22]), we define a next order partition function KN,β,K_{N,\beta}, as

KN,β=ZN,βexp(N2ββ(μβ)).K_{N,\beta}=Z_{N,\beta}\exp\left(N^{2}\beta\mathcal{E}_{\beta}\left(\mu_{\beta}\right)\right). (112)

Using (112), we may rewrite the Gibbs measure as

d𝐏N,β(x1xN)=1KN,βexp(12N2β(empNμβ))Πi=1Ndμβ(xi).d\mathbf{P}_{N,\beta}(x_{1}...x_{N})=\frac{1}{K_{N,\beta}}\exp\left(-\frac{1}{2}N^{2}\beta\mathcal{E}(\text{emp}_{N}-\mu_{\beta})\right)\Pi_{i=1}^{N}d\mu_{\beta}(x_{i}). (113)

We need an elementary bound on KN,β,K_{N,\beta}, which can be easily deduced from [4].

Proposition 5.10.

In dimension d3,d\geq 3, the next order partition function is greater than 11, in other words,

log(KN,β)0.\log\left(K_{N,\beta}\right)\geq 0. (114)

In dimension 2,2, we have the bound

log(KN,β)+14βNlog(N)cVβN,\log(K_{N,\beta})\geq+\frac{1}{4}\beta N\log(N)-c_{V}\beta N, (115)

for Nβ1N\beta\geq 1, where cVc_{V} depends only on VV.

Proof.

We start by characterizing the thermal equilibrium measure. A standard computation (see for example, [3]) shows that μβ\mu_{\beta} satisfies the equation

hμβ+V+1Nβlogμβ=c,h^{\mu_{\beta}}+V+\frac{1}{N\beta}\log\mu_{\beta}=c, (116)

for some constant c𝐑c\in\mathbf{R}. Multiplying by μβ\mu_{\beta}, integrating and using that μβ\mu_{\beta} is a probability measure, we get that

hμβ+V+1Nβlogμβ=12(μβ)+β(μβ).h^{\mu_{\beta}}+V+\frac{1}{N\beta}\log\mu_{\beta}=\frac{1}{2}\mathcal{E}(\mu_{\beta})+\mathcal{E}_{\beta}(\mu_{\beta}). (117)

We now use the variational characterization of the partition function (see for example [28]):

logZN,ββ=minμ𝒫(𝐑d×N)N(XN)μ(XN)𝑑XN+1βμlogμ,-\frac{\log Z_{N,\beta}}{\beta}=\min_{\mu\in\mathcal{P}(\mathbf{R}^{d\times N})}\int\mathcal{H}_{N}(X_{N})\mu(X_{N})dX_{N}+\frac{1}{\beta}\int\mu\log\mu, (118)

where 𝒫(𝐑d×N)\mathcal{P}(\mathbf{R}^{d\times N}) denotes the space of probability measures on 𝐑d×N\mathbf{R}^{d\times N}.

Taking μ=μβN\mu=\mu_{\beta}^{\otimes N} as a trial function, and using the splitting formula, we have that

logZN,ββN2β(μβ)N2(μβ)N2β(μβ),\begin{split}-\frac{\log Z_{N,\beta}}{\beta}&\leq N^{2}\mathcal{E}_{\beta}(\mu_{\beta})-\frac{N}{2}\mathcal{E}(\mu_{\beta})\\ &\leq N^{2}\mathcal{E}_{\beta}(\mu_{\beta}),\end{split} (119)

which implies that

log(KN,β)0.\log\left(K_{N,\beta}\right)\geq 0. (120)

Note that this equation is true also in dimension d2d\geq 2, but we will need a stronger bound in dimension 22 in order to conclude.

In dimension 22, the statement follows from Theorem 22 of [33], or Proposition 2.13 of [23].

Next we derive an elementary concentration inequality, which will be the foundation of the theorem. We will use the notation

𝒫N={μ𝒫(𝐑n)μ=1Ni=1Nδxi},\mathcal{P}_{N}=\left\{\mu\in\mathcal{P}\left(\mathbf{R}^{n}\right)\ \mu=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}}\right\}, (121)

where 𝒫(𝐑n)\mathcal{P}\left(\mathbf{R}^{n}\right) is the set of probability measures on 𝐑d.\mathbf{R}^{d}. In other words, 𝒫N\mathcal{P}_{N} is the set of probability measures that consist of NN equally weighted point masses.

Lemma 5.11.

Let AA be an open set in the space of probability measures. Then

1βN2log(𝐏N,β(empNA))logKN,ββN2infμA𝒫NG(μμβ,μμβ),\frac{1}{\beta N^{2}}\log\left(\mathbf{P}_{N,\beta}\left(\text{emp}_{N}\in A\right)\right)\leq-\frac{\log K_{N,\beta}}{\beta N^{2}}-\inf_{\mu\in A\cap\mathcal{P}_{N}}G(\mu-\mu_{\beta},\mu-\mu_{\beta}), (122)

where

G(μ,ν)=𝐑d×𝐑dΔg(xy)𝑑μx𝑑νy.G(\mu,\nu)=\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}\setminus\Delta}g(x-y)d\mu_{x}d\nu_{y}. (123)
Proof.

Using Proposition 5.9, we start by writing

𝐏N,β(empNA)=1KN,βempNAexp(β[Ni=1Nζβ(xi)+N22G(empNμβ,empNμβ)])𝑑XN.\begin{split}&\mathbf{P}_{N,\beta}\left(\text{emp}_{N}\in A\right)=\\ &\frac{1}{K_{N,\beta}}\int_{\text{emp}_{N}\in A}\exp\left(-\beta\left[N\sum_{i=1}^{N}\zeta_{\beta}\left(x_{i}\right)+\frac{N^{2}}{2}G\left(\text{emp}_{N}-\mu_{\beta},\text{emp}_{N}-\mu_{\beta}\right)\right]\right)dX_{N}.\end{split} (124)

Using the definition of ζβ,\zeta_{\beta}, we have

𝐏N,β(empNA)1KN,βempNAexp(G(empNμβ,empNμβ))Πi=iN𝑑μβ(xi)1KN,βexp(N2βinfμA𝒫NG(μμβ,μμβ))empNAΠi=iN𝑑μβ(xi)1KN,βexp(N2βinfμA𝒫NG(μμβ,μμβ)).\begin{split}\mathbf{P}_{N,\beta}\left(\text{emp}_{N}\in A\right)&\leq\frac{1}{K_{N,\beta}}\int_{\text{emp}_{N}\in A}\exp\left(-G\left(\text{emp}_{N}-\mu_{\beta},\text{emp}_{N}-\mu_{\beta}\right)\right)\Pi_{i=i}^{N}\,d\mu_{\beta}(x_{i})\\ &\leq\frac{1}{K_{N,\beta}}\exp\left(-N^{2}\beta\inf_{\mu\in A\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\right)\int_{\text{emp}_{N}\in A}\Pi_{i=i}^{N}\,d\mu_{\beta}(x_{i})\\ &\leq\frac{1}{K_{N,\beta}}\exp\left(-N^{2}\beta\inf_{\mu\in A\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\right).\end{split} (125)

The proposition follows by taking log\log on both sides. ∎

We need one more technical proposition. It will be based on the following result:

Lemma 5.12.

There exists a constant CC and a compact set KK (both depending only on VV and dd) such that, for every Nβ>2N\beta>2, in dimension 33 and higher

μβ(x)Cexp(CNβV(x)),\mu_{\beta}(x)\leq C\exp\left(-CN\beta V(x)\right), (126)

for xKx\notin K and in dimension 2,2,

μβ(x)Cexp(CNβ[V(x)log(|x|)]),\mu_{\beta}(x)\leq C\exp\left(-CN\beta[V(x)-\log(|x|)]\right), (127)

for xKx\notin K.

Proof.

See [3].

6 Proofs

Unless otherwise stated, if μ𝒫(𝐑d)\mu\in\mathcal{P}(\mathbf{R}^{d}) and ϵ>0,\epsilon>0, the notation B(μ,ϵ)B(\mu,\epsilon) denotes

B(μ,ϵ)={ν𝒫(𝐑d)|μνBL<ϵ}.B(\mu,\epsilon)=\{\nu\in\mathcal{P}(\mathbf{R}^{d})|\|\mu-\nu\|_{BL}<\epsilon\}. (128)

In this section we prove the results stated in Section 2. The strategy is to use the elementary concentration inequality in proposition 5.11 as a foundation. The challenge is to estimate

infμA𝒫NG(μμβ,μμβ)\inf_{\mu\in A\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right) (129)

when

A=(B(μβ,kN1d))C.A=\left(B\left(\mu_{\beta},\frac{k}{N^{\frac{1}{d}}}\right)\right)^{C}. (130)

The way to do this will be to pass from atomic measures to absolutely continuous probability measures (this will make an additive error of order 1N2d\frac{1}{N^{\frac{2}{d}}} in the energy if d3d\geq 3 or an error of size CN+logN2N\frac{C}{N}+\frac{\log N}{2N} if d=2d=2, plus an error of order 1N1d\frac{1}{N^{\frac{1}{d}}} in the distance to μβ\mu_{\beta}), then from absolutely continuous probability measures to absolutely continuous probability measures with compact support, and then use Proposition 5.4 (this will make a multiplicative error of a constant).

Next, we show that we can reduce to absolutely continuous probability measures. The next proposition is proved in the appendix (it is restated as Proposition 7.1).

Proposition 6.1.

Let λ=1d,\lambda=\frac{1}{d}, and let AN=𝒫(𝐑d)B(μβ,k1Nλ),A_{N}=\mathcal{P}(\mathbf{R}^{d})\setminus B\left(\mu_{\beta},\frac{k_{1}}{N^{\lambda}}\right), where 𝒫(𝐑d)\mathcal{P}(\mathbf{R}^{d}) is the set of probability measures on 𝐑d,\mathbf{R}^{d}, with d3.d\geq 3. Let 𝒮\mathcal{S} denote the set of absolutely continuous probability measures, then there exists a constant CC such that, if d3d\geq 3 then

infμAN𝒫NG(μμβ,μμβ)infμBN𝒮G(μμβ,μμβ)CN2d,\inf_{\mu\in A_{N}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\geq\inf_{\mu\in B_{N}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N^{\frac{2}{d}}}, (131)

where

BN=𝒫(𝐑d)B(μβ,(k1k2)+Nλ),B_{N}=\mathcal{P}(\mathbf{R}^{d})\setminus B\left(\mu_{\beta},\frac{(k_{1}-k_{2})_{+}}{N^{\lambda}}\right), (132)

for some absolute constant k2,k_{2}, where

(x)+={x if x00 o.w.(x)_{+}=\begin{cases}x\text{ if }x\geq 0\\ 0\text{ o.w.}\end{cases} (133)

The constant CC depends only on μVL.\|\mu_{V}\|_{L^{\infty}}.

If d=2d=2 then

infμAN𝒫NG(μμβ,μμβ)infμBN𝒮G(μμβ,μμβ)CN12Nlog(N).\inf_{\mu\in A_{N}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\geq\inf_{\mu\in B_{N}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N}-\frac{1}{2N}\log(N). (134)

The constant CC depends only on μVL.\|\mu_{V}\|_{L^{\infty}}.

We will need the following proposition in order to reduce ourselves to probability measures with compact support.

Proposition 6.2.

Let νN\nu_{N} be a sequence of probability measures such that

νNμβBLϵN1d,\parallel\nu_{N}-\mu_{\beta}\parallel_{BL}\geq\frac{\epsilon}{N^{\frac{1}{d}}}, (135)

then there exists a compact set KK^{*} such that

(νNμβ)𝟏KBLϵ4N1d.\parallel\left(\nu_{N}-\mu_{\beta}\right)\mathbf{1}_{K^{*}}\parallel_{BL}\geq\frac{\epsilon}{4N^{\frac{1}{d}}}. (136)

Furthermore, (136) also holds for any compact set K{K} which contains K.K^{*}.

Proof.

Let KK^{*} be a compact set as in lemma 5.12 and such that property 22 of β\beta (equation (11)) holds. We define, for any compact set KK which contains K,K^{*}, the probability measure

μβK=μβ|KKμβ𝑑x.\mu_{\beta}^{K}=\frac{\mu_{\beta}|_{K}}{\int_{K}\mu_{\beta}\,dx}. (137)

We claim that

μβμβKBL2μβμβKBL,\parallel\mu_{\beta}-\mu_{\beta}^{K}\parallel_{BL}\leq 2\|\mu_{\beta}-\mu_{\beta}^{K^{*}}\|_{BL}, (138)

for any KK that contains K.K^{*}.

To see this, note that

μβμβKBLμβμβ|KBL+μβ|KμβKBL.\|\mu_{\beta}-\mu_{\beta}^{K}\|_{BL}\leq\|\mu_{\beta}-\mu_{\beta}|_{K}\|_{BL}+\|\mu_{\beta}|_{K}-\mu_{\beta}^{K}\|_{BL}. (139)

Then, we have that

μβμβ|KBL=𝐑dKμβ𝑑x,\|\mu_{\beta}-\mu_{\beta}|_{K}\|_{BL}=\int_{\mathbf{R}^{d}\setminus K}\mu_{\beta}dx, (140)

and therefore

μβμβ|KBLμβμβ|KBL.\|\mu_{\beta}-\mu_{\beta}|_{K}\|_{BL}\leq\|\mu_{\beta}-\mu_{\beta}|_{K^{*}}\|_{BL}. (141)

We also have that

μβKμβ|KBL=(1Kμβ𝑑x1)μβ|KBL=𝐑dKμβ𝑑xμβμβ|KBL.\begin{split}\|\mu_{\beta}^{K}-\mu_{\beta}|_{K}\|_{BL}&=\left(\frac{1}{\int_{K}\mu_{\beta}dx}-1\right)\|\mu_{\beta}|_{K}\|_{BL}\\ &=\int_{\mathbf{R}^{d}\setminus K}\mu_{\beta}dx\\ &\leq\|\mu_{\beta}-\mu_{\beta}|_{K^{*}}\|_{BL}.\end{split} (142)

Hence, we have that

μβμβKBL2μβμβ|KBL,\parallel\mu_{\beta}-\mu_{\beta}^{K}\parallel_{BL}\leq 2\parallel\mu_{\beta}-\mu_{\beta}|_{K^{*}}\parallel_{BL}, (143)

Note that

μβμβ|KBL1N1d\parallel\mu_{\beta}-\mu_{\beta}|_{K^{*}}\parallel_{BL}\ll\frac{1}{N^{\frac{1}{d}}} (144)

by property 22 of β\beta and Lemma 5.12. Hence, there exists an N0N_{0} such that, for any compact set KK which contains KK^{*} and N>N0N>N_{0} we have

νNμβKBLνNμβBLμβKμβBL23ϵN1d.\begin{split}\parallel\nu_{N}-\mu_{\beta}^{K}\parallel_{BL}&\geq\parallel\nu_{N}-\mu_{\beta}\parallel_{BL}-\parallel\mu_{\beta}^{K}-\mu_{\beta}\parallel_{BL}\\ &\geq\frac{2}{3}\frac{\epsilon}{N^{\frac{1}{d}}}.\end{split} (145)

We now claim that

νNKμβKBL13ϵN1d,\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}\geq\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}, (146)

where

νNK=𝟏KνN.\nu_{N}^{K}=\mathbf{1}_{K}\nu_{N}. (147)

To see this, note that

νNμβK=νNKμβK+νNKC,\nu_{N}-\mu_{\beta}^{K}=\nu_{N}^{K}-\mu_{\beta}^{K}+\nu_{N}^{K^{C}}, (148)

where

νNKC=νN𝟏𝐑dK.\nu_{N}^{K^{C}}=\nu_{N}\mathbf{1}_{\mathbf{R}^{d}\setminus K}. (149)

Therefore by triangle inequality,

νNμβKBLνNKμβKBL+νNKCBL.\parallel\nu_{N}-\mu_{\beta}^{K}\parallel_{BL}\leq\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}+\parallel\nu_{N}^{K^{C}}\parallel_{BL}. (150)

Therefore either

νNKμβKBL13ϵN1d\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}\geq\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}} (151)

or

νNKCBL13ϵN1d.\parallel\nu_{N}^{K^{C}}\parallel_{BL}\geq\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}. (152)

We proceed by contradiction and assume that

νNKμβKBL<13ϵN1d.\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}<\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}. (153)

Then

νNKCBL>13ϵN1d.\parallel\nu_{N}^{K^{C}}\parallel_{BL}>\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}. (154)

Since νNKC\nu_{N}^{K^{C}} is positive, we have

νNKCBL=𝐑dKνN𝑑x>13ϵN1d.\begin{split}\parallel\nu_{N}^{K^{C}}\parallel_{BL}&=\int_{\mathbf{R}^{d}\setminus K}\nu_{N}\,dx\\ &>\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}.\end{split} (155)

Since

𝐑dνN=1,\int_{\mathbf{R}^{d}}\nu_{N}=1, (156)

we have that

KνN<113ϵN1d.\int_{K}\nu_{N}<1-\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}. (157)

But this means

νNKμβKBLKμβKνNdx13ϵN1d.\begin{split}\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}&\geq\int_{K}\mu_{\beta}^{K}-\nu_{N}dx\\ &\geq\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}.\end{split} (158)

This is a contradiction and therefore

νNKμβKBL13ϵN1d.\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}\geq\frac{1}{3}\frac{\epsilon}{N^{\frac{1}{d}}}. (159)

Proceeding as before, and using property 33 of β\beta and Lemma 5.12, there exists an N1N_{1} such that, for any compact set KK which contains KK^{*} and N>N1N>N_{1} we have

μβKμβ𝟏KBL112ϵN1d.\parallel\mu_{\beta}^{K}-\mu_{\beta}\mathbf{1}_{K}\parallel_{BL}\leq\frac{1}{12}\frac{\epsilon}{N^{\frac{1}{d}}}. (160)

Therefore for Nmax{N0,N1}N\geq\max\{N_{0},N_{1}\} we have

(νNμβ)𝟏KBLνNKμβKBLμβKμβ𝟏KBL14ϵN1d.\begin{split}\parallel(\nu_{N}-\mu_{\beta})\mathbf{1}_{K}\parallel_{BL}&\geq\parallel\nu_{N}^{K}-\mu_{\beta}^{K}\parallel_{BL}-\parallel\mu_{\beta}^{K}-\mu_{\beta}\mathbf{1}_{K}\parallel_{BL}\\ &\geq\frac{1}{4}\frac{\epsilon}{N^{\frac{1}{d}}}.\end{split} (161)

We need one more result, proposition 6.4. After we prove it, the main theorem of this section will be a corollary. Proposition 6.4 is itself based on the following lemma, which is a refinement of the extension lemma for H1H^{1} functions and will be proved in the appendix (it is restated as Lemma 8.1).

Lemma 6.3.

Let Ω𝐑d\Omega\subset\mathbf{R}^{d} be a bounded open set with a C2C^{2} boundary, and let fH1(Ω).f\in H^{1}({\Omega}). For every ϵ>0\epsilon>0 there exists fϵH1(𝐑d)f_{\epsilon}\in H^{1}(\mathbf{R}^{d}) such that

  • \bullet

    The restriction satisfies fϵ|Ω=f.f_{\epsilon}|_{\Omega}=f.

  • \bullet

    The support satisfies supp(fϵ)Ω¯ϵ,\mbox{supp}(f_{\epsilon})\subset\overline{\Omega}_{\epsilon}, where

    Ωϵ={x𝐑d|d(x,Ω)<ϵ}.\Omega_{\epsilon}=\{x\in\mathbf{R}^{d}|d(x,\Omega)<\epsilon\}. (162)
  • \bullet

    We have control of the norms:

    fϵL2CϵfH1fϵL2(1+Cϵ)fL2,\begin{split}\parallel\nabla f_{\epsilon}\parallel_{L^{2}}&\leq\frac{C}{\sqrt{\epsilon}}\parallel f\parallel_{H^{1}}\\ \parallel f_{\epsilon}\parallel_{L^{2}}&\leq(1+C\sqrt{\epsilon})\parallel f\parallel_{L^{2}},\end{split} (163)

    where CC is a constant that depends only on Ω\Omega.

In addition, if tr(f)0,\text{tr}(f)\geq 0, then fϵf_{\epsilon} is non negative in ΩϵΩ.\Omega_{\epsilon}\setminus\Omega.

With the the help of the last lemma, we can prove a proposition, which will be needed in the proof of the concentration inequality.

Proposition 6.4.

Let ν\nu be a measure such that νH1<\|\nu\|_{H^{-1}}<\infty and assume that there exists a compact set KK such that ν\nu is nonpositive or nonnegative outside of K,K, and the boundary of KK has C2C^{2} regularity. Then there exists a compact set K1K_{1} which contains K,K, and a constant cc such that

νH1cν|K1H1(K1).\parallel\nu\parallel_{H^{-1}}\geq c\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}. (164)

Furthermore, cc and K1K_{1} depend only on K.K.

The proof is found in the appendix. This proposition is restated as Proposition 8.3.

With the last propositions, we can prove Theorem 2.2:

Proof.

(Of Theorem 2.2). Let k>0,k>0, we have that

𝐏N,β(empNμβBLkN1d)=1𝐏N,β(empNμβBL>kN1d)11KN,βexp(N2β2infμ(B(μβ,kN1d))C𝒫NG(μμβ,μμβ)).\begin{split}&\mathbf{P}_{N,\beta}\left(\parallel\text{emp}_{N}-\mu_{\beta}\parallel_{BL}\leq\frac{k}{N^{\frac{1}{d}}}\right)=\\ &1-\mathbf{P}_{N,\beta}\left(\parallel\text{emp}_{N}-\mu_{\beta}\parallel_{BL}>\frac{k}{N^{\frac{1}{d}}}\right)\geq\\ &1-\frac{1}{K_{N,\beta}}\exp\left(-\frac{N^{2}\beta}{2}\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{k}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\right).\end{split} (165)

Using Propositions 5.5 and 6.1, we have that in dimension 33 or higher,

infμ(B(μβ,kN1d))C𝒫NG(μμβ,μμβ)infμ(B(μβ,(kc1)+N1d))C𝒮G(μμβ,μμβ)CN2d=infμ(B(μβ,(kc1)+N1d))C𝒮μμβH12CN2d.\begin{split}&\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{k}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\geq\\ &\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N^{\frac{2}{d}}}=\\ &\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{S}}\parallel\mu-\mu_{\beta}\parallel_{H^{-1}}^{2}-\frac{C}{N^{\frac{2}{d}}}.\end{split} (166)

In dimension 2, using Propositions 5.10 and 6.1 we have that

log(KN,β)N2β2infμ(B(μβ,kN1d))C𝒫NG(μμβ,μμβ)log(KN,β)N2β2(infμ(B(μβ,(kc1)+N1d))C𝒮G(μμβ,μμβ)CN12Nlog(N))=N2β2infμ(B(μβ,(kc1)+N1d))C𝒮μμβH12CN.\begin{split}&\ -\log(K_{N,\beta})-\frac{N^{2}\beta}{2}\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{k}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\\ &\leq-\log(K_{N,\beta})-\frac{N^{2}\beta}{2}\left(\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N}-\frac{1}{2N}\log(N)\right)\\ &=\frac{N^{2}\beta}{2}\inf_{\mu\in\left(B\left(\mu_{\beta},\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}\right)\right)^{C}\cap\mathcal{S}}\parallel\mu-\mu_{\beta}\parallel_{H^{-1}}^{2}-\frac{C}{N}.\end{split} (167)

Now we use Propositions 6.2 and 6.4 to get a lower bound on the expression on the last line. Let νN\nu_{N} be a sequence of absolutely continuous probability measures such that

νNμβBL(kc1)+N1d.\parallel\nu_{N}-\mu_{\beta}\parallel_{BL}\geq\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}. (168)

Then we claim that there exists c2>0c_{2}>0 such that

νNμβH1c2(kc1)+N1d.\parallel\nu_{N}-\mu_{\beta}\parallel_{H^{-1}}\geq c_{2}\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}. (169)

In order to show this, note that using properties 33 and 44 of VV and β\beta (equations (11) and (12)) there exists a compact set K1K_{1} such that

μβK1:=1K1μβ𝑑xμβ|K1\mu_{\beta}^{K_{1}}:=\frac{1}{\int_{K_{1}}\mu_{\beta}\,dx}\mu_{\beta}|_{K_{1}} (170)

satisfies that

μβK1μβBL1N1d(μβμβK1)1N1d.\begin{split}\parallel\mu_{\beta}^{K_{1}}-\mu_{\beta}\parallel_{BL}&\ll\frac{1}{N^{\frac{1}{d}}}\\ \mathcal{E}\left(\mu_{\beta}-\mu_{\beta}^{K_{1}}\right)&\ll\frac{1}{N^{\frac{1}{d}}}.\end{split} (171)

Furthermore, equation (171) also holds for any compact set that contains K1.K_{1}. By equation (136), we also know that there exists a compact set K2K_{2} such that

(μβK2νN)𝟏K2BL14μβνNBL,\parallel(\mu_{\beta}^{K_{2}}-\nu_{N})\mathbf{1}_{K_{2}}\parallel_{BL}\geq\frac{1}{4}\parallel\mu_{\beta}-\nu_{N}\parallel_{BL}, (172)

furthermore, (172) also holds for any compact set that contains K2K_{2}. Also by hypothesis

μβνNBL(kc1)+N1d.\parallel\mu_{\beta}-\nu_{N}\parallel_{BL}\geq\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}. (173)

Let K3=K1K2,K_{3}=K_{1}\bigcup K_{2}, then νNμβK3\nu_{N}-\mu_{\beta}^{K_{3}} is non negative outside of K3,K_{3}, and therefore by Proposition 6.4 there exists a compact set KK which contains K3K_{3} and a constant c4c_{4} such that

(μβKνN)|KH1(K)c4μβKνNH1.\parallel(\mu_{\beta}^{K}-\nu_{N})|_{K}\parallel_{H^{-1}(K)}\leq c_{4}\parallel\mu_{\beta}^{K}-\nu_{N}\parallel_{H^{-1}}. (174)

Putting everything together, we get that

μβKνNH1c(μβKνN)|KH1(K)c(μβKνN)𝟏KBLcμβνNBLc2(kc1)+N1d.\begin{split}\parallel\mu_{\beta}^{K}-\nu_{N}\parallel_{H^{-1}}&\geq c\parallel(\mu_{\beta}^{K}-\nu_{N})|_{K}\parallel_{H^{-1}(K)}\\ &\geq c\parallel(\mu_{\beta}^{K}-\nu_{N})\mathbf{1}_{K}\parallel_{BL}\\ &\geq c\parallel\mu_{\beta}-\nu_{N}\parallel_{BL}\\ &\geq c_{2}^{*}\frac{(k-c_{1})_{+}}{N^{\frac{1}{d}}}.\end{split} (175)

Lastly, we have that if

νNμβBLkN1d,\|\nu_{N}-\mu_{\beta}\|_{BL}\geq\frac{k}{N^{\frac{1}{d}}}, (176)

then for some c2𝐑+c_{2}^{*}\in\mathbf{R}^{+} and NN big enough

(νNμβ)c6(νNμβK)c7(μβμβK)=c6νNμβKH1c7(μβμβK)c2(kc5)+N1dc7(μβμβK).\begin{split}\mathcal{E}(\nu_{N}-\mu_{\beta})&\geq c_{6}\mathcal{E}(\nu_{N}-\mu_{\beta}^{K})-c_{7}\mathcal{E}(\mu_{\beta}-\mu_{\beta}^{K})\\ &=c_{6}\|\nu_{N}-\mu_{\beta}^{K}\|_{H^{-1}}-c_{7}\mathcal{E}(\mu_{\beta}-\mu_{\beta}^{K})\\ &\geq c_{2}^{*}\frac{(k-c_{5})_{+}}{N^{\frac{1}{d}}}-c_{7}\mathcal{E}(\mu_{\beta}-\mu_{\beta}^{K}).\end{split} (177)

Therefore for NN big enough, we have that

𝐏N,β(empNμβBLkN1d)1exp(12N22dβ(c1(kc2)+2c3))1,\begin{split}\mathbf{P}_{N,\beta}\left(\parallel\text{emp}_{N}-\mu_{\beta}\parallel_{BL}\leq\frac{k}{N^{\frac{1}{d}}}\right)&\geq 1-\exp\left(-\frac{1}{2}N^{2-\frac{2}{d}}\beta\left(c_{1}(k-c_{2})_{+}^{2}-c_{3}\right)\right)\\ &\to 1,\end{split} (178)

where convergence happens for all k>c3c1+c2.k>\sqrt{\frac{c_{3}}{c_{1}}}+c_{2}.

As a consequence of our methods, we obtain the following theorems relating the bounded Lipschitz norm to the H1H^{-1} norm (electrostatic energy).

Remark 2.

Let μ\mu be a measure of bounded variation. Assume further that if μ\mu is defined on 𝐑2\mathbf{R}^{2} then μ\mu has mean 0, and assume that there exists a compact set KK such that μ\mu has a definite sign outside of K,K, and KK has C2C^{2} regularity. Then there exists a constant k,k, and a compact set K2K_{2} which depend only on KK such that

μ|K2BL2k(μ).\parallel\mu|_{K_{2}}\parallel_{BL}^{2}\leq k\mathcal{E}(\mu). (179)
Proof.

By Proposition 6.4, we have that for some k,k,

μH1kμ|K1H1(K1).\|\mu\|_{H^{-1}}\geq k\|\mu|_{K_{1}}\|_{H^{-1}(K_{1})}. (180)

Together with Proposition 5.4, this implies

μH1kμ|K1H1(K1)kμ|K1BL.\begin{split}\|\mu\|_{H^{-1}}&\geq k\|\mu|_{K_{1}}\|_{H^{-1}(K_{1})}\\ &\geq k\|\mu|_{K_{1}}\|_{BL}.\end{split} (181)

Using Proposition 5.5 we can conclude. ∎

Remark 3.

Let μ\mu be a measure of bounded variation. Assume further that if μ\mu is defined on 𝐑2\mathbf{R}^{2} then μ\mu has mean 0 and assume that there exist compacts sets K1,K2K_{1},K_{2} such that μ|K2K1\mu|_{K_{2}\setminus K_{1}} has a density which is in L2,L^{2}, and K1K_{1} has C2C^{2} regularity. Then there exists a constant k,k, which depends on K1,K2,K_{1},K_{2}, and μ|K2K1L2\parallel\mu|_{K_{2}\setminus K_{1}}\parallel_{L^{2}} such that

μ|K1BL2k(μ).\parallel\mu|_{K_{1}}\parallel_{BL}^{2}\leq k\mathcal{E}(\mu). (182)
Proof.

By Proposition 8.2, we have that

μH1kμ|K2H1(K2).\|\mu\|_{H^{-1}}\geq k\|\mu|_{K_{2}}\|_{H^{-1}(K_{2})}. (183)

Together with Proposition 5.4, this implies

μH1kμ|K2H1(K2)kμ|K2BL.\begin{split}\|\mu\|_{H^{-1}}&\geq k\|\mu|_{K_{2}}\|_{H^{-1}(K_{2})}\\ &\geq k\|\mu|_{K_{2}}\|_{BL}.\end{split} (184)

Using proposition 5.5 we can conclude. ∎

Remark 4.

Clearly there is no positive constant kk such that

μBLkμH1.\parallel\mu\parallel_{BL}\leq k\parallel\mu\parallel_{H^{-1}}. (185)

7 Appendix 1

This appendix is devoted to proving the following proposition:

Proposition 7.1.

Let λ=1d,\lambda=\frac{1}{d}, and let AN=𝒫(𝐑d)B(μβ,k1Nλ),A_{N}=\mathcal{P}(\mathbf{R}^{d})\setminus B\left(\mu_{\beta},\frac{k_{1}}{N^{\lambda}}\right), where 𝒫(𝐑d)\mathcal{P}(\mathbf{R}^{d}) is the set of probability measures on 𝐑d.\mathbf{R}^{d}. Let 𝒮\mathcal{S} denote the set of absolutely continuous probability measures, then there exists a constant CC (which depends only on μVL\|\mu_{V}\|_{L^{\infty}}) such that, if d3d\geq 3 then

infμAN𝒫NG(μμβ,μμβ)infμBN𝒮G(μμβ,μμβ)CN2d,\inf_{\mu\in A_{N}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\geq\inf_{\mu\in B_{N}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N^{\frac{2}{d}}}, (186)

where

BN=𝒫(𝐑d)B(μβ,(k1k2)+Nλ),B_{N}=\mathcal{P}(\mathbf{R}^{d})\setminus B\left(\mu_{\beta},\frac{(k_{1}-k_{2})_{+}}{N^{\lambda}}\right), (187)

for some absolute constant k2,k_{2}, where

(x)+={x if x00 o.w.(x)_{+}=\begin{cases}x\text{ if }x\geq 0\\ 0\text{ o.w.}\end{cases} (188)

If d=2d=2 then

infμAN𝒫NG(μμβ,μμβ)infμBN𝒮G(μμβ,μμβ)CN12Nlog(N).\inf_{\mu\in A_{N}\cap\mathcal{P}_{N}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)\geq\inf_{\mu\in B_{N}\cap\mathcal{S}}G\left(\mu-\mu_{\beta},\mu-\mu_{\beta}\right)-\frac{C}{N}-\frac{1}{2N}\log(N). (189)

This Proposition was already stated as Proposition 6.1. This section uses ideas very similar to ones found in [28] and [16]. We begin by recalling a few facts about the Coulomb Kernel. These can be found in [7], or deduced using superharmonicity.

Lemma 7.2.

Let λR\lambda_{R} be the uniform probability measure on a ball of radius RR centered at 0, then for every x𝐑d,x\in\mathbf{R}^{d}, we have that

𝐑dg(x+u)λR(u)𝑑ug(x)\int_{\mathbf{R}^{d}}g(x+u)\lambda_{R}(u)\,du\leq g(x) (190)

and also that

𝐑d×𝐑dg(x+uv)λR(u)λR(v)𝑑u𝑑vg(x).\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}}g(x+u-v)\lambda_{R}(u)\lambda_{R}(v)\,du\,dv\leq g(x). (191)

Furthermore, eqs (190) and (191) become an equality if |x|>R.|x|>R.

The next lemma can also be found in [7] (or verified by direct computation).

Lemma 7.3.

Let λR\lambda_{R} be the uniform measure on the ball of radius R,R, then for d3d\geq 3

G(λR,λR)=g(R)g(1)G(λ1,λ1).G(\lambda_{R},\lambda_{R})=\frac{g(R)}{g(1)}G(\lambda_{1},\lambda_{1}). (192)

For d=2d=2 we have that

G(λR,λR)=g(R)+G(λ1,λ1).G(\lambda_{R},\lambda_{R})=g(R)+G(\lambda_{1},\lambda_{1}). (193)

We need one more lemma before embarking on the proof of 7.1.

Lemma 7.4.

Let {xi}i=1N𝐑d,\left\{x_{i}\right\}_{i=1}^{N}\in\mathbf{R}^{d}, let P=1Ni=1NδxiP=\frac{1}{N}\sum_{i=1}^{N}\delta_{x_{i}} and Pϵ=Pλϵ.P_{\epsilon}=P\ast\lambda_{\epsilon}. Then, if d3d\geq 3,

1N2ijg(xixj)G(Pϵ,Pϵ)1Ng(1)g(ϵ)G(λ1,λ1).\frac{1}{N^{2}}\sum_{i\neq j}g(x_{i}-x_{j})\geq G\left(P_{\epsilon},P_{\epsilon}\right)-\frac{1}{Ng(1)}g(\epsilon)G(\lambda_{1},\lambda_{1}). (194)

Furthermore, eq. (194) is an equality if ϵmin{|xixj|}.\epsilon\leq\min\left\{|x_{i}-x_{j}|\right\}.

Proof.

The proof is found in [34] and in [7]. ∎

We now give the proof of Proposition 7.1:

Proof.

(Of Proposition 7.1)

Our goal is to prove that

G(Pμβ,Pμβ)G(Pϵμβ,Pϵμβ)CN2dG\left(P-\mu_{\beta},P-\mu_{\beta}\right)\geq G\left(P_{\epsilon}-\mu_{\beta},P_{\epsilon}-\mu_{\beta}\right)-\frac{C}{N^{\frac{2}{d}}} (195)

for some constant CC, and the right choice of ϵ\epsilon (which will depend on NN).

Expanding, we get

G(Pϵμβ,Pϵμβ)=G(Pϵ,Pϵ)2G(Pϵ,μβ)+G(μβ,μβ).G\left(P_{\epsilon}-\mu_{\beta},P_{\epsilon}-\mu_{\beta}\right)=G\left(P_{\epsilon},P_{\epsilon}\right)-2G\left(P_{\epsilon},\mu_{\beta}\right)+G\left(\mu_{\beta},\mu_{\beta}\right). (196)

Using equation (194) we immediately get that, if d3d\geq 3 then

G(Pϵ,Pϵ)G(P,P)+Cg(ϵ)N.G\left(P_{\epsilon},P_{\epsilon}\right)\geq G\left(P,P\right)+\frac{Cg(\epsilon)}{N}. (197)

Our goal is now to get an upper bound for G(Pϵ,μβ)G\left(P_{\epsilon},\mu_{\beta}\right) in terms of G(P,μβ),G\left(P,\mu_{\beta}\right), which we do using superharmonicity. For any ϵ>0,\epsilon>0, we begin by writing, for d3d\geq 3 (recall the abuse of notation of not distinguishing between a measure and its density):

G(P,μβ)=1Ni=1N𝐑dg(yxi)μβ(y)𝑑y=1Ni=1N𝐑dB(xi,ϵ)g(yxi)μβ(y)𝑑y+B(xi,ϵ)g(yxi)μβ(y)𝑑y=1Ni=1Ny𝐑dB(xi,ϵ),s𝐑dg(yxi+s)λϵ(s)μβ(y)𝑑s𝑑y+B(xi,ϵ)g(yxi)μβ(y)𝑑y=1Ni=1Ny𝐑dB(xi,ϵ),s𝐑dg(yxi+s)λϵ(s)μβ(y)𝑑s𝑑y+yB(xi,ϵ),s𝐑dg(yxi+s)μβ(y)𝑑yd(δ0+λϵλϵ)(s)=1Ni=1N𝐑d×𝐑dg(yxi+s)λϵ(s)μβ(y)𝑑s𝑑y+yB(xi,ϵ),s𝐑dg(yxi+s)μβ(y)𝑑yd(δ0λϵ)(s)=G(Pϵ,μβ)+1Ni=1NyB(xi,ϵ)[s𝐑dg(yxi+s)λϵ(s)𝑑s+g(xiy)]μβ(y)𝑑yG(Pϵ,μβ)+1Ni=1NyB(xi,ϵ)g(xiy)μβ(y)𝑑y.\begin{split}&G(P,\mu_{\beta})=\\ &\frac{1}{N}\sum_{i=1}^{N}\int_{\mathbf{R}^{d}}g(y-x_{i})\mu_{\beta}(y)\,dy=\\ &\frac{1}{N}\sum_{i=1}^{N}\int_{\mathbf{R}^{d}\setminus B(x_{i},\epsilon)}g(y-x_{i})\mu_{\beta}(y)\,dy+\int_{B(x_{i},\epsilon)}g(y-x_{i})\mu_{\beta}(y)\,dy=\\ &\frac{1}{N}\sum_{i=1}^{N}\iint_{y\in\mathbf{R}^{d}\setminus B(x_{i},\epsilon)\,,s\in\mathbf{R}^{d}}g(y-x_{i}+s)\lambda_{\epsilon}(s)\mu_{\beta}(y)\,ds\,dy\ +\\ &\quad\quad\quad\quad\int_{B(x_{i},\epsilon)}g(y-x_{i})\mu_{\beta}(y)\,dy=\\ &\frac{1}{N}\sum_{i=1}^{N}\iint_{y\in\mathbf{R}^{d}\setminus B(x_{i},\epsilon)\,,s\in\mathbf{R}^{d}}g(y-x_{i}+s)\lambda_{\epsilon}(s)\mu_{\beta}(y)\,ds\,dy\ +\\ &\quad\quad\quad\quad\int_{y\in B(x_{i},\epsilon),\,s\in\mathbf{R}^{d}}g(y-x_{i}+s)\mu_{\beta}(y)\,dy\,d(\delta_{0}+\lambda_{\epsilon}-\lambda_{\epsilon})(s)=\\ &\frac{1}{N}\sum_{i=1}^{N}\iint_{\mathbf{R}^{d}\times\mathbf{R}^{d}}g(y-x_{i}+s)\lambda_{\epsilon}(s)\mu_{\beta}(y)\,ds\,dy\ +\\ &\quad\quad\quad\quad\int_{y\in B(x_{i},\epsilon),\,s\in\mathbf{R}^{d}}g(y-x_{i}+s)\mu_{\beta}(y)\,dy\,d(\delta_{0}-\lambda_{\epsilon})(s)=\\ &G(P_{\epsilon},\mu_{\beta})+\frac{1}{N}\sum_{i=1}^{N}\int_{y\in B(x_{i},\epsilon)}\left[-\int_{s\in\mathbf{R}^{d}}g(y-x_{i}+s)\lambda_{\epsilon}(s)\,ds+g(x_{i}-y)\right]\mu_{\beta}(y)\,dy\leq\\ &G(P_{\epsilon},\mu_{\beta})+\frac{1}{N}\sum_{i=1}^{N}\int_{y\in B(x_{i},\epsilon)}g(x_{i}-y)\mu_{\beta}(y)\,dy.\end{split} (198)

Since μβ\mu_{\beta} is uniformly bounded in LL^{\infty} by Proposition 5.8, we then have that, for d3d\geq 3,

G(Pϵ,μβ)G(P,μβ)maxβ{μβL}yB(0,ϵ)g(y)𝑑y=G(P,μβ)Cϵ2,\begin{split}G(P_{\epsilon},\mu_{\beta})&\geq G(P,\mu_{\beta})-\max_{\beta}\{\parallel\mu_{\beta}\parallel_{L^{\infty}}\}\int_{y\in B(0,\epsilon)}g(y)\,dy\\ &=G(P,\mu_{\beta})-C\epsilon^{2},\end{split} (199)

where CC depends on μVL\|\mu_{V}\|_{L^{\infty}}

In the last equation, we have used that, if d3d\geq 3 then

yB(0,ϵ)g(y)𝑑y=cd0ϵrd1rd2=Cdϵ2\begin{split}\int_{y\in B(0,\epsilon)}g(y)\,dy&=c_{d}\int_{0}^{\epsilon}\frac{r^{d-1}}{r^{d-2}}\\ &=C_{d}\epsilon^{2}\end{split} (200)

where cdc_{d} depends on d.d.

In conclusion, we have, for d3,d\geq 3,

G(Pμβ,Pμβ)G(Pϵμβ,Pϵμβ)Cg(ϵ)NCdϵ2.G\left(P-\mu_{\beta},P-\mu_{\beta}\right)\geq G\left(P_{\epsilon}-\mu_{\beta},P_{\epsilon}-\mu_{\beta}\right)-C\frac{g(\epsilon)}{N}-C_{d}\epsilon^{2}. (201)

Taking ϵ=1N1d,\epsilon=\frac{1}{N^{\frac{1}{d}}}, we have that, for d3d\geq 3

G(Pμβ,Pμβ)G(P1N1dμβ,P1N1dμβ)Cg(1N1d)NCd(1N1d)2=G(P1N1dμβ,P1N1dμβ)CN2d.\begin{split}G\left(P-\mu_{\beta},P-\mu_{\beta}\right)&\geq G\left(P_{\frac{1}{N^{\frac{1}{d}}}}-\mu_{\beta},P_{\frac{1}{N^{\frac{1}{d}}}}-\mu_{\beta}\right)-C\frac{g\left(\frac{1}{N^{\frac{1}{d}}}\right)}{N}-C_{d}\left(\frac{1}{N^{\frac{1}{d}}}\right)^{2}\\ &=G\left(P_{\frac{1}{N^{\frac{1}{d}}}}-\mu_{\beta},P_{\frac{1}{N^{\frac{1}{d}}}}-\mu_{\beta}\right)-CN^{-\frac{2}{d}}.\end{split} (202)

To deal with the case d=2,d=2, we start from the penultimate line of equation (198) (note that until this point, equation (198) is valid for d=2d=2) and proceed as in lemma 3.5 of [28]:

|yB(xi,ϵ)[s𝐑dg(yxi+s)λϵ(s)𝑑s+g(xiy)]μβ(y)𝑑y|μβLyB(xi,ϵ)|s𝐑dlog|yxi+s|λϵ(s)𝑑slog|xiy||𝑑y=μβLϵ2yB(0,1)|s𝐑dlog|y+s|λ1(s)𝑑slog|y||𝑑yCμβLϵ2.\begin{split}&\ \left|\int_{y\in B(x_{i},\epsilon)}\left[-\int_{s\in\mathbf{R}^{d}}g(y-x_{i}+s)\lambda_{\epsilon}(s)\,ds+g(x_{i}-y)\right]\mu_{\beta}(y)\,dy\right|\\ &\leq\|\mu_{\beta}\|_{L^{\infty}}\int_{y\in B(x_{i},\epsilon)}\left|\int_{s\in\mathbf{R}^{d}}\log|y-x_{i}+s|\lambda_{\epsilon}(s)\,ds-\log|x_{i}-y|\right|\,dy\\ &=\|\mu_{\beta}\|_{L^{\infty}}\epsilon^{2}\int_{y\in B(0,1)}\left|\int_{s\in\mathbf{R}^{d}}\log|y+s|\lambda_{1}(s)\,ds-\log|y|\right|\,dy\\ &\leq C\|\mu_{\beta}\|_{L^{\infty}}\epsilon^{2}.\end{split} (203)

In conclusion, we have, for d=2,d=2,

G(Pμβ,Pμβ)G(Pϵμβ,Pϵμβ)g(ϵ)1NC1ϵ2c2N.G\left(P-\mu_{\beta},P-\mu_{\beta}\right)\geq G\left(P_{\epsilon}-\mu_{\beta},P_{\epsilon}-\mu_{\beta}\right)-g(\epsilon)\frac{1}{N}-C_{1}\epsilon^{2}-c_{2}N. (204)

Taking ϵ=1N12,\epsilon=\frac{1}{N^{\frac{1}{2}}}, we have that

G(Pμβ,Pμβ)infμBN𝒮G(P1N12μβ,P1N12μβ)CN12NlogN,G\left(P-\mu_{\beta},P-\mu_{\beta}\right)\geq\inf_{\mu\in B_{N}\cap\mathcal{S}}G\left(P_{\frac{1}{N^{\frac{1}{2}}}}-\mu_{\beta},P_{\frac{1}{N^{\frac{1}{2}}}}-\mu_{\beta}\right)-\frac{C}{N}-\frac{1}{2N}\log N, (205)

where CC depends on μVL.\|\mu_{V}\|_{L^{\infty}}.

In order to conclude, we now only need to show that

PPN1dBLkN1d\parallel P-P_{N^{-\frac{1}{d}}}\parallel_{BL}\leq\frac{k}{N^{\frac{1}{d}}} (206)

for any d2d\geq 2, where kk depends only on dd. The reason is elementary. Let φW1,\varphi\in W^{1,\infty} be such that

φW1,=1.\|\varphi\|_{W^{1,\infty}}=1. (207)

Then

|𝐑dφd(PPϵ)|1Ni=1N|\strokedintB(xi,ϵ)φ(x)dxφ(xi)|.\left|\int_{\mathbf{R}^{d}}\varphi\,d(P-P_{\epsilon})\right|\leq\frac{1}{N}\sum_{i=1}^{N}\left|\strokedint_{B(x_{i},\epsilon)}\varphi(x)dx-\varphi(x_{i})\right|. (208)

Since φW1,=1,\|\varphi\|_{W^{1,\infty}}=1, we have, for xB(xi,ϵ)x\in B(x_{i},\epsilon) that

φ(x)φ(xi)ϵ,\|\varphi(x)-\varphi(x_{i})\|\leq\epsilon, (209)

therefore

|\strokedintB(xi,ϵ)φ(x)dxφ(xi)|ϵ,\left|\strokedint_{B(x_{i},\epsilon)}\varphi(x)dx-\varphi(x_{i})\right|\leq\epsilon, (210)

and

|𝐑dφd(PPϵ)|ϵ.\left|\int_{\mathbf{R}^{d}}\varphi\,d(P-P_{\epsilon})\right|\leq\epsilon. (211)

8 Appendix 2

This appendix is devoted to proving results the related to H1(K)H^{-1}(K) and H1H^{-1} norms that we used in the paper. The first result we need is

Lemma 8.1.

Let Ω𝐑d\Omega\subset\mathbf{R}^{d} be an open bounded set with a C2C^{2} boundary, and let fH1(Ω).f\in H^{1}({\Omega}). Let

ϵ=sup{ϵ>0|xx+ϵν(x) is a diffeomorphism for all |δ|<ϵ},\epsilon_{*}=\sup\{\epsilon>0|x\mapsto x+\epsilon\nu(x)\text{ is a diffeomorphism for all }|\delta|<\epsilon\}, (212)

where ν(x)\nu(x) is the unit normal to Ω\partial\Omega at x.x. Then for every 0<ϵ<ϵ0<\epsilon<\epsilon_{*} there exists fϵH1(𝐑d)f_{\epsilon}\in H^{1}(\mathbf{R}^{d}) such that

  • \bullet

    The restriction satisfies fϵ|Ω=f.f_{\epsilon}|_{\Omega}=f.

  • \bullet

    The support satisfies supp(fϵ)Ω¯ϵ,\mbox{supp}(f_{\epsilon})\subset\overline{\Omega}_{\epsilon}, where

    Ωϵ={x𝐑d|d(x,Ω)<ϵ}.\Omega_{\epsilon}=\{x\in\mathbf{R}^{d}|d(x,\Omega)<\epsilon\}. (213)
  • \bullet

    We have control of the norms:

    fϵL2CϵfH1fϵL2(1+kϵ)fL2,\begin{split}\parallel\nabla f_{\epsilon}\parallel_{L^{2}}&\leq\frac{C}{\sqrt{\epsilon}}\parallel f\parallel_{H^{1}}\\ \parallel f_{\epsilon}\parallel_{L^{2}}&\leq(1+k\sqrt{\epsilon})\parallel f\parallel_{L^{2}},\end{split} (214)

    where CC and kk are constants that depend only on Ω\Omega.

In addition, if tr(f)0,\text{tr}(f)\geq 0, then fϵf_{\epsilon} is non negative in ΩϵΩ.\Omega_{\epsilon}\setminus\Omega.

Proof.

Step 1. Let xΩ.x\in\partial\Omega. We will use the notation

x=(x¯,xd),x=(\underline{x},x_{d}), (215)

where x¯𝐑d1\underline{x}\in\mathbf{R}^{d-1} and xd𝐑.x_{d}\in\mathbf{R}. Assume for now that Ω\partial\Omega is flat near x.x. In other words, that there exists some δ>0\delta>0 such that

B(x,δ)Ω={y|yd=0}B(x,δ),B(x,\delta)\bigcap\partial\Omega=\{y|y_{d}=0\}\bigcap B(x,\delta), (216)

and in addition ν=(0,0,1)\nu=(0,0,...1). Let

B¯(x,δ)={y|yd=0}B(x,δ).\underline{B}(x,\delta)=\{y|y_{d}=0\}\bigcap B(x,\delta). (217)

Let α>0\alpha>0 be such that

B¯(x,δ)×(α,0)Ω.\underline{B}(x,\delta)\times(-\alpha,0)\subset\Omega. (218)

Note that α\alpha exists since by hypothesis Ω\partial\Omega is C2.C^{2}. Define a function φ:B¯(x,δ)×(0,α)𝐑\varphi:\underline{B}(x,\delta)\times(0,\alpha)\to\mathbf{R} as

φ(y¯,yd)=f(y¯,yd).\varphi(\underline{y},y_{d})=f(\underline{y},-y_{d}). (219)

Let μC([0,α],𝐑+)\mu\in C^{\infty}([0,\alpha],\mathbf{R}^{+}) be such that μ(0)=1,μ(α)=0,\mu(0)=1,\ \mu(\alpha)=0, and μ\mu is decreasing. Consider now φ^:B¯(x,δ)×(0,α)𝐑\widehat{\varphi}:\underline{B}(x,\delta)\times(0,\alpha)\to\mathbf{R} defined as

φ^(y¯,yd)=φ(y¯,yd)μ(yd).\widehat{\varphi}(\underline{y},y_{d})=\varphi(\underline{y},y_{d})\mu(y_{d}). (220)

Lastly, define the function φϵ:B¯(x,δ)×(0,ϵ)𝐑\varphi_{\epsilon}:\underline{B}(x,\delta)\times(0,\epsilon)\to\mathbf{R} as

φϵ(y¯,yd)=φ^(y¯,αϵyd).\varphi_{\epsilon}(\underline{y},y_{d})=\widehat{\varphi}\left(\underline{y},\frac{\alpha}{\epsilon}y_{d}\right). (221)

We immediately get the estimates

φϵL2=ϵαφ^L2ϵαφL2ϵαfL2.\begin{split}\parallel\varphi_{\epsilon}\parallel_{L^{2}}&=\sqrt{\frac{\epsilon}{\alpha}}\parallel\widehat{\varphi}\parallel_{L^{2}}\\ &\leq\sqrt{\frac{\epsilon}{\alpha}}\parallel{\varphi}\parallel_{L^{2}}\\ &\leq\sqrt{\frac{\epsilon}{\alpha}}\parallel f\parallel_{L^{2}}.\end{split} (222)

We also have the estimates

φϵL2Cmax(αϵ,1)φ^L2Cmax(αϵ,1)((φ)μL2+φddxμL2)Cmax(αϵ,1)fH1,\begin{split}\parallel\nabla\varphi_{\epsilon}\parallel_{L^{2}}&\leq C\max\left(\frac{\sqrt{\alpha}}{\sqrt{\epsilon}},1\right)\parallel\nabla\widehat{\varphi}\parallel_{L^{2}}\\ &\leq C\max\left(\frac{\sqrt{\alpha}}{\sqrt{\epsilon}},1\right)\left(\parallel\nabla({\varphi})\mu\|_{L^{2}}+\|\varphi\frac{d}{dx}\mu\parallel_{L^{2}}\right)\\ &\leq C\max\left(\frac{\sqrt{\alpha}}{\sqrt{\epsilon}},1\right)\parallel f\parallel_{H^{1}},\end{split} (223)

where CC depends only on Ω.\Omega.

Lastly, if tr(f)0,\text{tr}(f)\geq 0, consider the function

Mφϵ=max(φϵ,0).M\varphi_{\epsilon}=\max\left(\varphi_{\epsilon},0\right). (224)

Then MφϵM\varphi_{\epsilon} is positive, and

Mφϵ(y¯,0)=φϵ(y¯,0)M\varphi_{\epsilon}(\underline{y},0)=\varphi_{\epsilon}(\underline{y},0) (225)

for any y¯B¯(x,δ).\underline{y}\in\underline{B}(x,\delta). Using the identity

Mφϵ=12(|φϵ|+φϵ),M\varphi_{\epsilon}=\frac{1}{2}\left(|\varphi_{\epsilon}|+\varphi_{\epsilon}\right), (226)

we get that

MφϵL2φϵL2MφϵL2φϵL2.\begin{split}\parallel\nabla M\varphi_{\epsilon}\parallel_{L^{2}}&\leq\parallel\nabla\varphi_{\epsilon}\parallel_{L^{2}}\\ \parallel M\varphi_{\epsilon}\parallel_{L^{2}}&\leq\parallel\varphi_{\epsilon}\parallel_{L^{2}}.\end{split} (227)

Step 2. Now we turn to the general case, where Ω\partial\Omega is not necessarily locally flat. Since by assumption Ω\partial\Omega is C2,C^{2}, there exist finitely many balls B(xi,ϵi)B(x_{i},\epsilon_{i}) and C2C^{2} diffeomorphisms gi:Ui𝐑d1𝐑dg_{i}:U_{i}\subset\mathbf{R}^{d-1}\to\mathbf{R}^{d} such that

gi(Ui)=B(xi,ϵi)Ω.g_{i}\left(U_{i}\right)=B(x_{i},\epsilon_{i})\bigcap\partial\Omega. (228)

For any δ<ϵ,\delta<\epsilon_{*}, we can extend gig_{i} to a C1C^{1} diffeomorphism g¯i:Ui×(δ,δ)Piδ,\overline{g}_{i}:U_{i}\times(-\delta,\delta)\to P_{i}^{\delta}, where

Piδ={x+sν(x)|xB(xi,ϵi)Ω,s(δ,δ)},P_{i}^{\delta}=\{x+s\nu(x)|x\in B(x_{i},\epsilon_{i})\bigcap\partial\Omega,s\in(-\delta,\delta)\}, (229)

where ν(x)\nu(x) is the unit normal to the point x.x. We define g¯i\overline{g}_{i} as

g¯i(x¯,s)=gi(x¯)+sν(gi(x¯)).\overline{g}_{i}(\underline{x},s)=g_{i}(\underline{x})+s\nu(g_{i}(\underline{x})). (230)

Now define for any ϵ<ϵ\epsilon<\epsilon_{*} the function φϵi:Ui×(ϵ,ϵ)\varphi_{\epsilon}^{i}:U_{i}\times(-\epsilon,\epsilon) as in step 1, with α=ϵ\alpha=\epsilon_{*}. If tr(f)0,\text{tr}(f)\geq 0, define MφϵiM\varphi_{\epsilon}^{i} as in step 1.

Define the functions ϕϵi\phi_{\epsilon}^{i} as

ϕϵi=g¯iφϵig¯i1.\phi_{\epsilon}^{i}=\overline{g}_{i}\circ\varphi_{\epsilon}^{i}\circ\overline{g}_{i}^{-1}. (231)

If tr(f)0,\text{tr}(f)\geq 0, define the functions MϕϵiM\phi_{\epsilon}^{i} as

Mϕϵi=g¯iMφϵig¯i1.M\phi_{\epsilon}^{i}=\overline{g}_{i}\circ M\varphi_{\epsilon}^{i}\circ\overline{g}_{i}^{-1}. (232)

Lastly, take a partition of unity qiq_{i} associated to Piϵ.P_{i}^{\epsilon_{*}}. Define the extension fϵf_{\epsilon} as

fϵ(x)={f(x) if xΩi(qiϕiϵ) if xPiδ0 o.w.f_{\epsilon}(x)=\begin{cases}f(x)\text{ if }x\in\Omega\\ \sum_{i}(q_{i}\phi_{i}^{\epsilon})\text{ if }x\in\bigcup P_{i}^{\delta}\\ 0\text{ o.w.}\end{cases} (233)

If tr(f)0,\text{tr}(f)\geq 0, define the extension MfϵMf_{\epsilon} as

Mfϵ(x)={f(x) if xΩi(qiMϕiϵ) if xPiδ0 o.w.Mf_{\epsilon}(x)=\begin{cases}f(x)\text{ if }x\in\Omega\\ \sum_{i}(q_{i}M\phi_{i}^{\epsilon})\text{ if }x\in\bigcup P_{i}^{\delta}\\ 0\text{ o.w.}\end{cases} (234)

It is easy to check that fϵ,Mfϵf_{\epsilon},Mf_{\epsilon} saitsfy the desired properties. ∎

Next is a proposition which is not directly related to the concentration inequality, but we include since it is needed to prove remark 3.

Proposition 8.2.

Let ν\nu be a measure such that νH1<\|\nu\|_{H^{-1}}<\infty. Assume that there exist compact sets K1,K2K_{1,}K_{2} with K1K_{1} properly contained in K2K_{2} such that ν|K2K1L2,\nu|_{K_{2}\setminus K_{1}}\in L^{2}, and the boundary of K1K_{1} is C2.C^{2}. Then there exists a constant c,c, which depends only on K1,K2,K_{1},K_{2}, and ν|K2K1L2\parallel\nu|_{K_{2}\setminus K_{1}}\parallel_{L^{2}} such that

νH1cν|K1H1(K1).\parallel\nu\parallel_{H^{-1}}\geq c\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}. (235)
Proof.

First, assume that

ν|K1H1(K1)=1.\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}=1. (236)

For the general case, we can apply this result to

ν~=1ν|K1H1(K1)ν.\widetilde{\nu}=\frac{1}{\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}}\nu. (237)

Let ϵ\epsilon_{*} be as in lema 6.3 for K1K_{1}, and let ϵ^<ϵ\widehat{\epsilon}<\epsilon_{*} be such that

K1ϵ^K2,K_{1}^{\widehat{\epsilon}}\subset K_{2}, (238)

where

K1ϵ^={x𝐑d|d(x,K1)<ϵ^}.K_{1}^{\widehat{\epsilon}}=\{x\in\mathbf{R}^{d}|d(x,K_{1})<\widehat{\epsilon}\}. (239)

We know that ϵ^\widehat{\epsilon} exists since K1K_{1} is properly contained in K2.K_{2}.

Let φH1(K1)\varphi\in H^{1}(K_{1}) be such that

K1νφ12ν|K1H1(K1)=12.\begin{split}\int_{K_{1}}\nu\varphi&\geq\frac{1}{2}\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}\\ &=\frac{1}{2}.\end{split} (240)

and

φH1=1.\parallel\varphi\parallel_{H^{1}}=1. (241)

For any ϵ<ϵ^,\epsilon<\widehat{\epsilon}, consider an extension φϵ\varphi_{\epsilon} of φ\varphi as in lemma 6.3. Note that

|K1ϵK1νφϵ|ν|K1ϵK1L2φϵ|K1ϵK1L2c1ϵM,\begin{split}\left|\int_{K_{1}^{\epsilon}\setminus K_{1}}\nu\varphi_{\epsilon}\right|&\leq\parallel\nu|_{K_{1}^{\epsilon}\setminus K_{1}}\parallel_{L^{2}}\parallel\varphi_{\epsilon}|_{K_{1}^{\epsilon}\setminus K_{1}}\parallel_{L^{2}}\\ &\leq c_{1}\sqrt{\epsilon}M,\end{split} (242)

where

M=ν|K2K1L2M=\parallel\nu|_{K_{2}\setminus K_{1}}\parallel_{L^{2}} (243)

and c1c_{1} depends only on K1.K_{1}. We then have that

|𝐑dνφϵ|=|K1ϵνφϵ|=|K1νφ+K1ϵK1νφϵ|12c1Mϵ.\begin{split}\left|\int_{\mathbf{R}^{d}}\nu\varphi_{\epsilon}\right|&=\left|\int_{K_{1}^{\epsilon}}\nu\varphi_{\epsilon}\right|\\ &=\left|\int_{K_{1}}\nu\varphi+\int_{K_{1}^{\epsilon}\setminus K_{1}}\nu\varphi_{\epsilon}\right|\\ &\geq\frac{1}{2}-c_{1}M\sqrt{\epsilon}.\end{split} (244)

And hence, we have

νH11φϵL2𝐑dνφϵc2ϵ(12c1Mϵ),\begin{split}\parallel\nu\parallel_{H^{-1}}&\geq\frac{1}{\parallel\nabla\varphi_{\epsilon}\parallel_{L^{2}}}\int_{\mathbf{R}^{d}}\nu\varphi_{\epsilon}\\ &\geq c_{2}\sqrt{\epsilon}\left(\frac{1}{2}-c_{1}M\sqrt{\epsilon}\right),\end{split} (245)

where c2c_{2} depends on K1,K2,ν|K2K1L2.K_{1},K_{2},\|\nu|_{K_{2}\setminus K_{1}}\|_{L^{2}}. Letting ϵ\epsilon be small enough (for example ϵ=14Mc1\sqrt{\epsilon}=\frac{1}{4Mc_{1}}), we obtain the conclusion. ∎

We now prove the main proposition used in the proof of the concentration inequality, which is a restatement of Proposition 6.4:

Proposition 8.3.

Let ν\nu be a measure such that νH1\|\nu\|_{H^{-1}} and assume that there exists a compact set KK such that ν\nu is nonpositive or nonnegative outside of K,K, and the boundary of KK has C2C^{2} regularity. Then there exists a compact set K1K_{1} which contains K,K, and a constant cc such that

νH1cν|K1H1(K1).\parallel\nu\parallel_{H^{-1}}\geq c\parallel\nu|_{K_{1}}\parallel_{H^{-1}(K_{1})}. (246)

Furthermore, cc and K1K_{1} depend only on K.K.

The proof of proposition 8.3 depends on the following claim.

Claim 8.4.

Let ν\nu be a measure such that νH1<\|\nu\|_{H^{-1}}<\infty and assume that there exists a compact set KK such that ν\nu is nonpositive or nonnegative outside of K.K. Let

Kϵ={x𝐑d|d(x,K)ϵ}K_{\epsilon}=\{x\in\mathbf{R}^{d}|d(x,K)\leq\epsilon\} (247)

Then there exists a compact set K2K_{2} which contains K,K, a constant c2,c_{2}, and a function ϕH1(K2)\phi\in H^{1}(K_{2}) such that

K2νϕc2ν|K2H1(K2),\int_{K_{2}}\nu\phi\geq c_{2}\parallel\nu|_{K_{2}}\parallel_{H^{-1}(K_{2})}, (248)

ϕH1=1\parallel\phi\parallel_{H^{1}}=1, and tr(ϕ)0.\text{tr}(\phi)\geq 0. Furthermore, c2c_{2} depends only on KK and ϵ.\epsilon.

Proof.

Since

νH1=νH1,\parallel\nu\parallel_{H^{-1}}=\parallel-\nu\parallel_{H^{-1}}, (249)

we assume without loss of generality that ν\nu is positive outside of K.K. Note that

ν|KϵH1(Kϵ)<,\parallel\nu|_{K_{\epsilon}}\parallel_{H^{-1}(K_{\epsilon})}<\infty, (250)

and hence, there exists some φH1(Kϵ)\varphi\in H^{1}(K_{\epsilon}) such that

φH1=1\parallel\varphi\parallel_{H^{1}}=1 (251)

and

Kϵνφ12ν|KϵH1(Kϵ).\int_{K_{\epsilon}}\nu\varphi\geq\frac{1}{2}\parallel\nu|_{K_{\epsilon}}\parallel_{H^{-1}(K_{\epsilon})}. (252)

Consider now φ¯=φ|K.\overline{\varphi}=\varphi|_{K}. By the extension lemma, there exists an extension φ~\widetilde{\varphi} of φ¯\overline{\varphi} such that

supp(φ~)Kϵ\text{supp}\left(\widetilde{\varphi}\right)\subset K_{\epsilon} (253)

and

φ~H1Cϵ,\parallel\widetilde{\varphi}\parallel_{H^{1}}\leq C_{\epsilon}, (254)

since

φH1(Kϵ)=1,\parallel\varphi\parallel_{H^{1}(K_{\epsilon})}=1, (255)

where CϵC_{\epsilon} depends on KK and ϵ\epsilon. Note that tr(φ~|Kϵ)=0.\text{tr}\left(\widetilde{\varphi}|_{K_{\epsilon}}\right)=0. Consider now

ϕ=max{φ,φ~}.\phi=\max\{\varphi,\widetilde{\varphi}\}. (256)

Then since ϕφ~,\phi\geq\widetilde{\varphi}, we know that tr(ϕ)0.\text{tr}\left(\phi\right)\geq 0. We also know that

φ(x)=ϕ(x) for xKφ(x)ϕ(x) for xKϵK,\begin{split}\varphi(x)&=\phi(x)\text{ for }x\in K\\ \varphi(x)&\leq\phi(x)\text{ for }x\in K_{\epsilon}\setminus K,\\ \end{split} (257)

which implies

KϵνφKϵνϕ,\int_{K_{\epsilon}}\nu\varphi\leq\int_{K_{\epsilon}}\nu\phi, (258)

since ν\nu is positive outside of K.K. Using the pointwise identity

max{φ,φ~}=12(φ+φ~+|φφ~|),\max\{\varphi,\widetilde{\varphi}\}=\frac{1}{2}\left(\varphi+\widetilde{\varphi}+|\varphi-\widetilde{\varphi}|\right), (259)

along with triangle inequality, we get

ϕH1φH1+φ~H11+Cϵ.\begin{split}\parallel\phi\parallel_{H^{1}}&\leq\parallel\varphi\parallel_{H^{1}}+\parallel\widetilde{\varphi}\parallel_{H^{1}}\\ &\leq 1+C_{\epsilon}.\end{split} (260)

Taking ϕ^=ϕϕH1\widehat{\phi}=\frac{\phi}{\parallel\phi\parallel_{H^{1}}}, c2=12(1+Cϵ)c_{2}=\frac{1}{2(1+C_{\epsilon})} and K2=K¯ϵK_{2}=\overline{K}_{\epsilon} we obtain the result. ∎

We now turn to the proof of proposition 8.3

Proof.

(Of Proposition 8.3) Again, since

νH1=νH1,\parallel\nu\parallel_{H^{-1}}=\parallel-\nu\parallel_{H^{-1}}, (261)

we assume without loss of generality that ν\nu is positive outside of K.K. Then by Claim 6.3 there exists a φH1(Kϵ)\varphi\in H^{1}(K_{\epsilon}) such that

  • \bullet

    The function φ\varphi has norm 1,1, i.e.

    φH1=1.\parallel\varphi\parallel_{H^{1}}=1. (262)
  • \bullet

    The trace of φ\varphi is positive, i.e.

    tr(φ)0.\text{tr}(\varphi)\geq 0. (263)
  • \bullet

    We have that

    Kϵνφcν|KϵH1(Kϵ),\int_{K_{\epsilon}}\nu\varphi\geq c\parallel\nu|_{K_{\epsilon}}\parallel_{H^{-1}(K_{\epsilon})}, (264)

    where cc depends only on KK and ϵ.\epsilon.

By Claim 6.3, there exists an extension φ^\widehat{\varphi} of φ\varphi such that

  • \bullet

    The support of φ^\widehat{\varphi} is contained in K¯1+ϵ\overline{K}_{1+\epsilon}

  • \bullet

    The norm of φ^\nabla\widehat{\varphi} is controlled by

    φ^L2k,\parallel\nabla\widehat{\varphi}\parallel_{L^{2}}\leq k, (265)

    where kk depends only on KK and ϵ.\epsilon.

  • \bullet

    We have that φ^\widehat{\varphi} is nonnegative in K1+ϵKϵ.K_{1+\epsilon}\setminus K_{\epsilon}.

Since ν\nu is positive outside of KK and φ^\widehat{\varphi} is positive outside of Kϵ,K_{\epsilon}, we have that

Kϵνφ𝐑dνφ^.\int_{K_{\epsilon}}\nu\varphi\leq\int_{\mathbf{R}^{d}}\nu\widehat{\varphi}. (266)

Finally, we have that

νH11φ^L2𝐑dνφ^1φ^L2Kϵνφ1kν|KϵH1(Kϵ),\begin{split}\parallel\nu\parallel_{H^{-1}}&\geq\frac{1}{\parallel\nabla\widehat{\varphi}\parallel_{L^{2}}}\int_{\mathbf{R}^{d}}\nu\widehat{\varphi}\\ &\geq\frac{1}{\parallel\nabla\widehat{\varphi}\parallel_{L^{2}}}\int_{K_{\epsilon}}\nu\varphi\\ &\geq\frac{1}{k}\parallel\nu|_{K_{\epsilon}}\parallel_{H^{-1}(K_{\epsilon})},\end{split} (267)

where kk depends only on KK and ϵ.\epsilon.

9 Acknowledgements

The author wants to thank Sylvia Serfaty, for many useful discussions.

The author has been funded by the Deutsche Forschungsgemeinschaft (DFG) - project number 417223351, and a McCracken Scholarship.

References

  • [1] A Alastuey and B Jancovici. On the classical two-dimensional one-component coulomb plasma. Journal de Physique, 42(1):1–12, 1981.
  • [2] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices, volume 118. Cambridge university press, 2010.
  • [3] Scott Armstrong and Sylvia Serfaty. Thermal approximation of the equilibrium measure and obstacle problem. arXiv preprint arXiv:1912.13018, 2019.
  • [4] Scott Armstrong and Sylvia Serfaty. Local laws and rigidity for coulomb gases at any temperature. The Annals of Probability, 49(1):46–121, 2021.
  • [5] G Ben Arous and Alice Guionnet. Large deviations for wigner’s law and voiculescu’s non-commutative entropy. Probability theory and related fields, 108(4):517–542, 1997.
  • [6] Florent Bekerman, Thomas Leblé, Sylvia Serfaty, et al. Clt for fluctuations of β\beta-ensembles with general potential. Electronic Journal of Probability, 23, 2018.
  • [7] Djalil Chafai, Adrien Hardy, and Mylène Maïda. Concentration for coulomb gases and coulomb transport inequalities. Journal of Functional Analysis, 275(6):1447–1483, 2018.
  • [8] Tom Claeys, Benjamin Fahs, Gaultier Lambert, and Christian Webb. How much can the eigenvalues of a random hermitian matrix fluctuate? Duke Mathematical Journal, 170(9):2085–2235, 2021.
  • [9] David S Dean, Pierre Le Doussal, Satya N Majumdar, and Grégory Schehr. Noninteracting fermions at finite temperature in a d-dimensional trap: Universal correlations. Physical Review A, 94(6):063622, 2016.
  • [10] Percy Deift. Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, volume 3. American Mathematical Soc., 1999.
  • [11] Freeman J Dyson. Statistical theory of the energy levels of complex systems. iii. Journal of Mathematical Physics, 3(1):166–175, 1962.
  • [12] Peter J Forrester. Log-gases and random matrices (LMS-34). Princeton University Press, 2010.
  • [13] David García-Zelada. A large deviation principle for empirical measures on polish spaces: Application to singular gibbs measures on manifolds. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 55, pages 1377–1401. Institut Henri Poincaré, 2019.
  • [14] David García-Zelada et al. Concentration for coulomb gases on compact manifolds. Electronic Communications in Probability, 24, 2019.
  • [15] Steven M Girvin. Introduction to the fractional quantum hall effect. In The Quantum Hall Effect, pages 133–162. Springer, 2005.
  • [16] Douglas P Hardin, Thomas Leblé, Edward B Saff, and Sylvia Serfaty. Large deviation principles for hypersingular riesz gases. Constructive Approximation, 48(1):61–100, 2018.
  • [17] Adrien Hardy and Gaultier Lambert. Clt for circular beta-ensembles at high temperature. Journal of Functional Analysis, 280(7):108869, 2021.
  • [18] K Huang. Statistical mechanics 2nd edn, 1987.
  • [19] B Jancovici. Classical coulomb systems: screening and correlations revisited. Journal of statistical physics, 80(1-2):445–459, 1995.
  • [20] B Jancovici, Joel L Lebowitz, and G Manificat. Large charge fluctuations in classical coulomb systems. Journal of statistical physics, 72(3-4):773–787, 1993.
  • [21] Gaultier Lambert. Poisson statistics for gibbs measures at high temperature. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 57, pages 326–350. Institut Henri Poincaré, 2021.
  • [22] Thomas Leblé and Sylvia Serfaty. Large deviation principle for empirical fields of log and riesz gases. Inventiones mathematicae, 210(3):645–757, 2017.
  • [23] Thomas Leblé and Sylvia Serfaty. Fluctuations of two dimensional coulomb gases. Geometric and Functional Analysis, 28(2):443–508, 2018.
  • [24] Elliott H Lieb and Joel L Lebowitz. The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei. Advances in Mathematics, 9(3):316–398, 1972.
  • [25] Elliott H Lieb and Heide Narnhofer. The thermodynamic limit for jellium. In The Stability of Matter: From Atoms to Stars, pages 583–603. Springer, 2005.
  • [26] Madan Lal Mehta. Random matrices. Elsevier, 2004.
  • [27] O Penrose and ER Smith. Thermodynamic limit for classical systems with coulomb interactions in a constant external field. Communications in Mathematical Physics, 26(1):53–77, 1972.
  • [28] Nicolas Rougerie and Sylvia Serfaty. Higher-dimensional coulomb gases and renormalized energy functionals. Communications on Pure and Applied Mathematics, 69(3):519–605, 2016.
  • [29] Etienne Sandier and Sylvia Serfaty. Vortices in the magnetic Ginzburg-Landau model, volume 70. Springer Science & Business Media, 2008.
  • [30] RR Sari and D Merlini. On the ν\nu-dimensional one-component classical plasma: the thermodynamic limit problem revisited. Journal of Statistical Physics, 14(2):91–100, 1976.
  • [31] Sylvia Serfaty. Coulomb gases and Ginzburg–Landau vortices. 2015.
  • [32] Sylvia Serfaty. Microscopic description of log and coulomb gases. arXiv preprint arXiv:1709.04089, 2017.
  • [33] Sylvia Serfaty. Gaussian fluctuations and free energy expansion for coulomb gases at any temperature. arXiv preprint arXiv:2003.11704, 2020.
  • [34] Sylvia Serfaty. Mean field limit for coulomb-type flows. Duke Mathematical Journal, 169(15):2887–2935, 2020.
  • [35] Horst L Stormer, Daniel C Tsui, and Arthur C Gossard. The fractional quantum hall effect. Reviews of Modern Physics, 71(2):S298, 1999.
  • [36] Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions i. In The Collected Works of Eugene Paul Wigner, pages 524–540. Springer, 1993.