This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Computing the Haar state on 𝒪(SLq(3)){\mathcal{O}(SL_{q}(3))}

Ting Lu Math department, Texas A&M University, College Station, TX 77843, USA [email protected]
Abstract.

This paper shows that to compute the Haar state on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)), it suffices to compute the Haar states of a special type of monomials which we define as standard monomials. Then, we provide an algorithm to explicitly compute the Haar states of standard monomials on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) with reasonable computational cost. The numerical results on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) will be used in the future study of the qq-deformed Weingarten function.

Keywords — Quantum groups; quantum special linear group; Haar state.

1. Introduction

The Haar measure on a compact topological group is a well-studied object. In particular, when the group is U(n)U(n), the group of n×nn\times n unitary matrices, there is an elegant formula for the integral of matrix coefficients with respect to the Haar measure. This formula is given by so-called Weingarten functions, introduced by Collins in 2003 [3]. The current paper will study a qq-deformation of the Haar measure on the Drinfeld–Jimbo [4] [5] quantum groups 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) which is dual to Uq(sln)U_{q}(sl_{n}) [7].

In the context of 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)), the most relevant algebraic structure is that it is a co-semisimple Hopf algebra. From Sweedler [14], any co-semisimple Hopf algebra has a unique “Haar state” up to normalization. In the context here, co-semisimplicity plays the role of compactness: the Lie algebra of a compact Lie group is always a semisimple Lie algebra. 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) becomes a –Hopf algebra when setting xi,j=S(xj,i)x_{i,j}^{*}=S(x_{j,i}) where SS is the antipode. In this case, we call the –Hopf algebra 𝒪(SUq(n))\mathcal{O}(SU_{q}(n)). In particular, when q1q\rightarrow 1, the space of coordinate functions O(SU(n))O(SU(n)) on SU(n)SU(n) is a co-semisimple Hopf algebra, and its Haar state is simply the integral of a function with respect to Haar measure on SU(n)SU(n). Thus, Haar states serves as the integral functional on these deformed 𝒪(SUq(n))\mathcal{O}(SU_{q}(n))’s. Since the Haar state on 𝒪(SUq(n))\mathcal{O}(SU_{q}(n)) is defined by extending the Haar state on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) by the operation, we will focus on the Haar state of 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) only in this paper.

In the qq-deformed case, there are no explicit formulas in terms of parameter qq for the Haar state 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) except when n=2n=2 (Klimyk and Schmüdgen [6]). The difficulty when n>2n>2 arises from the form of the qq–determinant. When n=2n=2, the qq-determinant is of the form adqbc=1ad-qbc=1, where a,b,c,da,b,c,d are the generators of 𝒪(SLq(2))\mathcal{O}(SL_{q}(2)). Because the qq-determinant only has two terms, once the Haar state of bcbc is computed, then so is the Haar state of adad. However, this simplification does not work in general because the qq-determinant generally has n!n! terms. For other related works on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)), see Nagy [10], Vaksman and Soibelman [15] [8].

In this paper, the generator of 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) is denoted as xijx_{ij} for 1i,jn1\leq i,j\leq n.

Definition 1.

The counting matrix of a monomial x𝒪(SLq(n))x\in\mathcal{O}(SL_{q}(n)), denoted as θ(x)\theta(x), is a n×nn\times n matrix with entries aij,i,j=1,,na_{ij},i,j=1,\dots,n where aija_{ij} equals the number of appearance of generator xijx_{ij} in xx.

Definition 2.

The row sum and column sum of a n×nn\times n matrix A=(aij)i,j=1nA=(a_{ij})_{i,j=1}^{n}, denoted as α(A)\alpha(A) and β(A)\beta(A), are vectors in n\mathbb{R}^{n}:

α(A)=(j=1naij)i=1n,β(A)=(i=1naij)j=1n.\begin{split}\alpha(A)=\left(\sum_{j=1}^{n}a_{ij}\right)_{i=1}^{n},\ \ \ \ \ \ \beta(A)=\left(\sum_{i=1}^{n}a_{ij}\right)_{j=1}^{n}.\end{split}

Here, we denote (k)i=1n(k)_{i=1}^{n} as a vector whose entries all equal to kk.

Definition 3.

Let AA be a n×nn\times n matrix with non-negative integer entries. Then AA is a 𝒌\boldsymbol{k}-doubly stochastic matrix [13] if there is a positive integer kk such that α(A)=(k)i=1n=β(A)\alpha(A)=(k)_{i=1}^{n}=\beta(A).

Definition 4.

Let SnS_{n} be the permutation group on nn letters. Monomials in form σiSn(xσi)mi\prod_{\sigma_{i}\in S_{n}}(x_{\sigma_{i}})^{m_{i}}, where mi0m_{i}\in\mathbb{N}_{0} and xσi=k=1nxkσi(k)x_{\sigma_{i}}=\prod_{k=1}^{n}x_{k\sigma_{i}(k)} and (xσi)0=1(x_{\sigma_{i}})^{0}=1, are called standard monomials. m=i=1n!mim=\sum_{i=1}^{n!}m_{i} is called the order and each xσix_{\sigma_{i}} is called a segment.

The current paper will prove the following theorem on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)):

Theorem 1.

The following are true on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)):

  • a)

    Let xx be a monomial. Then h(x)0h(x)\neq 0 implies that there exist k+k\in\mathbb{N}^{+} such that θ(x)\theta(x) is a k{k}-doubly stochastic matrix.

  • b)

    Every monomial with non-zero Haar state value can be written as a linear combination of standard monomials.

  • c)

    Let sls_{l}, lml\in\mathcal{I}_{m} be the set of standard monomials of order mm. Then, we can write (Idh)Δ(sl)(Id\otimes h)\circ\Delta(s_{l}) and (hId)Δ(sl)(h\otimes Id)\circ\Delta(s_{l}) as linear combinations of sjs_{j}’s and the coefficient of each sjs_{j} is a linear combination of h(si)h(s_{i})’s.

  • d)

    Let l(τ)l(\tau) be the inverse number of τSn\tau\in S_{n}. Then :

    h(Πk=1nxk,τ(k))=(q)l(τ)σSn(q)2l(σ)=(q)l(τi)[n]q2!,h(\Pi_{k=1}^{n}x_{k,\tau(k)})=\frac{(-q)^{l(\tau)}}{\sum_{\sigma\in S_{n}}(-q)^{2l(\sigma)}}=\frac{(-q)^{l(\tau_{i})}}{[n]_{q^{2}}!},

    where [n]q2=1q2n1q2[n]_{q^{2}}=\frac{1-q^{2n}}{1-q^{2}} and [n]q2!=j=1n[j]q2[n]_{q^{2}}!=\prod_{j=1}^{n}[j]_{q^{2}}

  • e)

    When changing the order of generators in a monomial, the newly generated monomials cannot contain more generator x11x_{11} and xnnx_{nn} and cannot contain less generator x1nx_{1n} and xn1x_{n1}, comparing to the monomial being reordered.

For simplicity, the generators of on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) are denoted as:

abcdefghk.\begin{matrix}a&b&c\\ d&e&f\\ g&h&k.\end{matrix}

Then, standard monomials of order m=c1+c2+c3+c4+c5+c6m=c_{1}+c_{2}+c_{3}+c_{4}+c_{5}+c_{6} are in the form:

(aek)c1(afh)c2(bdk)c3(bfg)c4(cdh)c5(ceg)c6.(aek)^{c_{1}}(afh)^{c_{2}}(bdk)^{c_{3}}(bfg)^{c_{4}}(cdh)^{c_{5}}(ceg)^{c_{6}}.
Definition 5.

Segments aekaek, afhafh, and bdkbdk are high-complexity segments.

Definition 6.

Segments bfgbfg, cdhcdh, and cegceg are low-complexity segments.

Remark.

Low complexity segments commute with each other but high complexity segments do not commute with any other segments.

The current paper will provide an algorithm for explicitly computing the Haar states of monomials on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) with 0<|q|<10<|q|<1. Explicit expressions in terms of parameter qq are provided for a special type of monomials, and explicit expressions for general monomials can be computed given enough computational resources.

Using this qq–deformed Haar measure, we hope to pursue qq–deformed Weingarten functions in future work. Examples of qq–deformed Weingarten functions are provided in Appendix C. For all of these examples, it can be seen directly that when q1q\rightarrow 1, the usual Haar measure is recovered.

2. Haar state on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n))

By Noumi et al. [11], monomials on 𝒪(GLq(n))\mathcal{O}(GL_{q}(n)) form a basis. As a quotient group of 𝒪(GLq(n))\mathcal{O}(GL_{q}(n)), monomials on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) form a basis as well. To define the Haar state on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)), it suffices to define the Haar state of each monomial.

2.1. Characterization of monomial 𝒙\boldsymbol{x} such that 𝒉(𝒙)𝟎\boldsymbol{h(x)\neq 0}

Not every monomial has a non-zero Haar state value. In this section, we will give a criterion to determine whether the Haar state of a monomial is zero or not.

Let DnD_{n} be the diagonal subgroup of SLq(n)SL_{q}(n). Recall that the coordinate Hopf algebra 𝒪(Dn)\mathcal{O}(D_{n}) is the commutative algebra [t1,t11,,tn,tn1]\mathbb{C}[t_{1},t_{1}^{-1},\cdots,t_{n},t_{n}^{-1}] of all Laurent polynomials in nn indeterminates t1,t2,,tnt_{1},t_{2},\dots,t_{n} with comultiplication Δ(ti)=titi\Delta(t_{i})=t_{i}\otimes t_{i} and counit ε(ti)=1\varepsilon(t_{i})=1. The surjective homomorphism πDn:𝒪(SLq(n))𝒪(Dn)\pi_{D_{n}}:\mathcal{O}(SL_{q}(n))\mapsto\mathcal{O}(D_{n}) is given by πDn(xij)=δijti\pi_{D_{n}}(x_{ij})=\delta_{ij}t_{i}. Since we have Dqk=1𝒪(SLq(n))D_{q}^{k}=1_{\mathcal{O}(SL_{q}(n))} for all k+k\in\mathbb{N}^{+}, πDn\pi_{D_{n}} tells us 1𝒪(Dn)=πDn(1𝒪(SLq(n)))=πDn(Dqk)=(Πi=1nti)k1_{\mathcal{O}(D_{n})}=\pi_{D_{n}}(1_{\mathcal{O}(SL_{q}(n))})=\pi_{D_{n}}(D_{q}^{k})=(\Pi_{i=1}^{n}t_{i})^{k}.

The right and left action of 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) on 𝒪(Dn)\mathcal{O}(D_{n}), denoted as LDnL_{D_{n}} and RDnR_{D_{n}}, is defined as:

LDn=(πDnId)Δ,RDn=(IdπDn)Δ.\begin{split}L_{D_{n}}&=(\pi_{D_{n}}\otimes Id)\circ\Delta,\\ R_{D_{n}}&=(Id\otimes\pi_{D_{n}})\circ\Delta.\end{split}

Given vector v=(v1,v2,,vn)nv=(v_{1},v_{2},\dots,v_{n})\in\mathbb{R}^{n}, we write tv=Πi=1ntivit^{v}=\Pi_{i=1}^{n}t_{i}^{v_{i}}. If xx is a monomial, we have:

LDn(x)=tα(θ(x))x,RDn(x)=xtβ(θ(x)).\begin{split}L_{D_{n}}(x)&=t^{\alpha(\theta(x))}\otimes x,\\ R_{D_{n}}(x)&=x\otimes t^{\beta(\theta(x))}.\end{split}

The next theorem is a generalization of Klimyk and Schmudgen’s observation [6]. It gives the necessary condition such that h(x)0h(x)\neq 0 for x𝒪(SLq(n))x\in\mathcal{O}(SL_{q}(n)):

Theorem 1 a): Let xx be a monomial. Then h(x)0h(x)\neq 0 implies that there exist k+k\in\mathbb{N}^{+} such that θ(x)\theta(x) is a k{k}-doubly stochastic matrix.

Proof: Consider (πDnh)Δ(x)(\pi_{D_{n}}\otimes h)\circ\Delta(x). There are two ways to compute this object:

(πDnh)Δ(x)=πDn(Idh)Δ(x)=πDn(h(x)1𝒪(SLq(n)))=h(x)1𝒪(Dn),(πDnh)Δ(x)=(idh)(πDnid)Δ(x)=(idh)LDn(x)=(idh)(tα(θ(x))x)=h(x)tα(θ(x)).\begin{split}(\pi_{D_{n}}\otimes h)\circ\Delta(x)&=\pi_{D_{n}}\circ(Id\otimes h)\circ\Delta(x)=\pi_{D_{n}}(h(x)\cdot 1_{\mathcal{O}(SL_{q}(n))})\\ &=h(x)\cdot 1_{\mathcal{O}(D_{n})},\\ (\pi_{D_{n}}\otimes h)\circ\Delta(x)&=(id\otimes h)\circ(\pi_{D_{n}}\otimes id)\circ\Delta(x)=(id\otimes h)\circ L_{D_{n}}(x)\\ &=(id\otimes h)(t^{\alpha(\theta(x))}\otimes x)\\ &=h(x)\cdot t^{\alpha(\theta(x))}.\end{split}

Thus, h(x)1𝒪(Dn)=h(x)tα(θ(x))h(x)\cdot 1_{\mathcal{O}(D_{n})}=h(x)\cdot t^{\alpha(\theta(x))}. Since h(x)0h(x)\neq 0, we get 1𝒪(Dn)=tα(θ(x))1_{\mathcal{O}(D_{n})}=t^{\alpha(\theta(x))}. This means that we can find integer k1>0k_{1}>0 such that tα(θ(x))=(Πi=1nti)k1t^{\alpha(\theta(x))}=(\Pi_{i=1}^{n}t_{i})^{k_{1}}. Thus, α(θ(x))=(k1)i=1n\alpha(\theta(x))=(k_{1})_{i=1}^{n}.

Apply the same argument to (hπDn)Δ(x)(h\otimes\pi_{D_{n}})\circ\Delta(x), we get 1𝒪(Dn)=tβ(θ(x))1_{\mathcal{O}(D_{n})}=t^{\beta(\theta(x))}. Thus, we can find k2>0k_{2}>0 such that β(θ(x))=(k2)i=1n\beta(\theta(x))=(k_{2})_{i=1}^{n}. But we must have k1=k2k_{1}=k_{2} since

nk1=i=1nj=1naij=nk2.nk_{1}=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}=nk_{2}.

\blacksquare

2.2. The linear subspace spanned by monomials with non-zero Haar states

Let 𝒩𝒵\mathcal{NZ} be the linear subspace spanned by monomials with non-zero Haar states. In this section, we give a criterion to pick a basis for 𝒩𝒵\mathcal{NZ}. We write An(m),m+A_{n}(m),\ m\in\mathbb{N}^{+} as the set of n×nn\times n mm-doubly stochastic matrices and Bn(m)B_{n}(m) as the set of monomials on 𝒪(SLq(n))\mathcal{O}(SL_{q}(n)) whose counting matrices belong to An(m)A_{n}(m).

First, we introduce a total order ’<<’ on An(m)A_{n}(m). For every C=(cij)i,jk=1nAn(m)C=(c_{ij})_{i,jk=1}^{n}\in A_{n}(m), we associate a vector

𝒱(C)=(c11,c12,,c1n,c21,c22,,cnn),\mathcal{V}(C)=(c_{11},c_{12},\dots,c_{1n},c_{21},c_{22},\dots,c_{nn}),

and we compare such vectors in lexicographic order. We say matrices C<DC<D if 𝒱(C)<𝒱(D)\mathcal{V}(C)<\mathcal{V}(D). With this total order, we have the following observation:

If x=PxikxjlQBn(m)x=P\cdot x_{ik}x_{jl}\cdot Q\in B_{n}(m) (i<j,k<l)(i<j,k<l) where P,QP,Q are two monomials and we switch the order of xikxjlx_{ik}x_{jl} so that:

x=y+(qq1)z,x=y+(q-q^{-1})z,

where y=PxjlxikQy=P\cdot x_{jl}x_{ik}\cdot Q and z=PxilxjkQz=P\cdot x_{il}x_{jk}\cdot Q, then we have: θ(z)An(m)\theta(z)\in A_{n}(m) and θ(z)<θ(x)=θ(y)\theta(z)<\theta(x)=\theta(y).

Based on the observation, we get the following lemma:
Lemma 1: For each AAn(m)A\in A_{n}(m), we fix monomial xABn(m)x_{A}\in B_{n}(m) such that θ(xA)=A\theta(x_{A})=A. If ϕBn(m)\phi\in B_{n}(m) is a monomial with counting matrix MM, then we can decompose ϕ\phi as:

ϕ=cMxM+P<MPAn(m)cPxP.\phi=c_{M}\cdot x_{M}+\sum_{\begin{subarray}{c}P<M\\ P\in A_{n}(m)\end{subarray}}c_{P}\cdot x_{P}. (1)

Proof: Since ϕ\phi and xMx_{M} have the same counting matrix, we can permute the generators in ϕ\phi to the same order as in xMx_{M}. We denote this process as a chain:

ϕ=ϕ0ϕ1ϕ2ϕk=xM,\phi=\phi_{0}\rightarrow\phi_{1}\rightarrow\phi_{2}\rightarrow\cdots\rightarrow\phi_{k}=x_{M},

where each ϕi\phi_{i} is a reordering of ϕ\phi and we get ϕi+1\phi_{i+1} by switching the order of two adjacent generators in ϕi\phi_{i}. From ϕi\phi_{i} to ϕi+1\phi_{i+1}, we may get a new term φi+1\varphi_{i+1}. As discussed before, θ(φi+1)An(m)\theta(\varphi_{i+1})\in A_{n}(m) and θ(φi+1)<θ(ϕi+1)=M\theta(\varphi_{i+1})<\theta(\phi_{i+1})=M. We can permute these newly generated φi\varphi_{i}’s to their corresponding xθ(φi+1)x_{\theta(\varphi_{i+1})}’s, and we may get new terms in this process as well. However, each time we repeat this permuting process to a monomial yy, the counting matrix of the newly generated monomial is always smaller than θ(y)\theta(y). Since the counting matrix of the newly generated monomial is always descending, we can finish this permuting process in finite steps. In other words, we will get a chain on which every transposition does not generate new monomials. Then, every monomial appearing in the summation will be in the desired form, and we get Equation (1). \blacksquare

Lemma 1 provides a criterion for picking a basis for 𝒩𝒵\mathcal{NZ}. Let Sn(m)={xM,MAn(m)}S_{n}(m)=\{x_{M},M\in A_{n}(m)\}. Then, we can write

𝒩𝒵=i=1Sn(i).\mathcal{NZ}=\left\langle\bigcup_{i=1}^{\infty}S_{n}(i)\right\rangle.

Theorem 1 b): Every monomial with non-zero Haar state value can be written as a linear combination of standard monomials.

Proof: By the Birkhoff-Von Neumann Theorem [2] [16], every MAn(m)M\in A_{n}(m) can be decomposed into M=m1σ1+m2σ2++mn!σn!M=m_{1}\sigma_{1}+m_{2}\sigma_{2}+\cdots+m_{n!}\sigma_{n!}, where σi\sigma_{i}’s are matrix in An(1)A_{n}(1) and mim_{i}’s are non-negative integers whose sum is mm. Notice that each matrix σi\sigma_{i} can be identified with a permutation on nn letters. We denote the corresponding permutation as σi\sigma_{i} as well. Then, the counting matrix of the monomial σiSn(xσi)mi\prod_{\sigma_{i}\in S_{n}}(x_{\sigma_{i}})^{m_{i}} is MM. This implies that for every MAn(m)M\in A_{n}(m), we can choose xMx_{M} in form σiSn(xσi)mi\prod_{\sigma_{i}\in S_{n}}(x_{\sigma_{i}})^{m_{i}}. Combining Lemma 1, the statement in Main Theorem b) is clear. \blacksquare

Notice that the set of all standard monomials contains a basis of 𝒩𝒵\mathcal{NZ}, but the set itself is not a basis of 𝒩𝒵\mathcal{NZ}. The reason is that the different standard monomials could have the same counting matrix. In this case, standard monomials with the same counting matrix are linearly dependent(see Appendix A, Equation (22) and (23)). To find a basis of 𝒩𝒵\mathcal{NZ}, for each MA(m)M\in A(m), we have to preserve only one standard monomial corresponding to MM and filter out ’unnecessary’ standard monomials.

2.3. Comultiplication of standard monomials

Once we solve the Haar state of standard monomials of each order, we can find the Haar state for other monomials according to their linear combination. We will use the defining relation ((idh)Δ)(x)=h(x)1=((hid)Δ)(x)((id\otimes h)\circ\Delta)(x)=h(x)\cdot 1=((h\otimes id)\circ\Delta)(x) to solve the Haar state of every standard basis. We start with the investigation of the comultiplication of a monomial.

Lemma 2: Let xx be a monomial and we write:

Δ(x)=iIziyi,\Delta(x)=\sum_{i\in I}z_{i}\otimes y_{i},

with II an index set and yi,ziy_{i},z_{i} monomials. Then we have the following equations:

α(θ(x))=α(θ(zi))β(θ(x))=β(θ(yi))β(θ(zi))=α(θ(yi)).\alpha(\theta(x))=\alpha(\theta(z_{i}))\ \ \ \beta(\theta(x))=\beta(\theta(y_{i}))\ \ \ \beta(\theta(z_{i}))=\alpha(\theta(y_{i})).

Proof: Recall that Δ(xij)=k=1nxikxkj\Delta(x_{ij})=\sum_{k=1}^{n}x_{ik}\otimes x_{kj} and Δ\Delta is a morphism of algebra. If x=Πl=1pxiljlx=\Pi_{l=1}^{p}x_{i_{l}j_{l}}, then

Δ(x)=Δ(Πl=1pxil,jl)=Πl=1pΔ(xil,jl)=l=1p(k=1nxil,kxk,jl).\Delta(x)=\Delta(\Pi_{l=1}^{p}x_{i_{l},j_{l}})=\Pi_{l=1}^{p}\Delta(x_{i_{l},j_{l}})=\prod_{l=1}^{p}\left(\sum_{k=1}^{n}x_{i_{l},k}\otimes x_{k,j_{l}}\right).

For each ziz_{i} the ll-th generator is in the same row as the ll-th generator in xx, and for each yiy_{i} the ll-th generator is in the same column as the ll-th generator in xx. The column index of the ll-th generator in ziz_{i} is the same as the row index of the ll-th generator in yiy_{i}. Thus, the row sum of xx equals the row sum of ziz_{i}; the column sum of xx equals the column sum of yiy_{i}, and the column sum of ziz_{i} equals the row sum of yiy_{i}. \blacksquare

With Lemma 2, we have the following result:

Lemma 3: If θ(x)An(m)\theta(x)\in A_{n}(m) then h(yi)0h(y_{i})\neq 0 (or h(zi)0h(z_{i})\neq 0) if and only if θ(yi)An(m)\theta(y_{i})\in A_{n}(m) ( or θ(zi)An(m)\theta(z_{i})\in A_{n}(m)). Moreover, θ(yi)An(m)\theta(y_{i})\in A_{n}(m) if and only if θ(zi)An(m)\theta(z_{i})\in A_{n}(m).

Proof: Use Theorem 1 a) and Lemma 2. \blacksquare

Theorem 1 c): Let {sl}lm\{s_{l}\}_{l\in\mathcal{I}_{m}}, be the set of standard monomials of order mm. Then, we can write (Idh)Δ(sl)(Id\otimes h)\circ\Delta(s_{l}) and (hId)Δ(sl)(h\otimes Id)\circ\Delta(s_{l}) as linear combinations of sjs_{j}’s and the coefficient of each sjs_{j} is a linear combination of h(si)h(s_{i})’s.

Proof: If slBn(m)s_{l}\in B_{n}(m) is a standard basis, Lemma 3 implies that

(idh)Δ(sl)=yBn(m)zBn(m)h(y)z=ih(yi)zi(id\otimes h)\circ\Delta(s_{l})=\sum_{\begin{subarray}{c}y\in B_{n}(m)\\ z\in B_{n}(m)\end{subarray}}h(y)\cdot z=\sum_{i}h(y_{i})\cdot z_{i} (2)

Then, by Lemma 1, we can decompose each yiy_{i} and ziz_{i} as:

yi=j=1kdjyisj,y_{i}=\sum_{j=1}^{k}d_{j}^{y_{i}}\cdot s_{j}, (3)
zi=j=1kdjzisj.z_{i}=\sum_{j=1}^{k}d_{j}^{z_{i}}\cdot s_{j}. (4)

Substitute Equation (3) and Equation (4) into Equation (2), we get:

(idh)Δ(sl)=j=1k(i=1kcijh(si))sj.(id\otimes h)\circ\Delta(s_{l})=\sum_{j=1}^{k}\left(\sum_{i=1}^{k}c_{ij}h(s_{i})\right)\cdot s_{j}. (5)

\blacksquare

Remark.

Here, {si}i=1k{sl}lm\{s_{i}\}_{i=1}^{k}\subset\{s_{l}\}_{l\in\mathcal{I}_{m}} is a basis of standard monomials of order mm.

In Equation (2), we call yiy_{i} the relation component and call ziz_{i} the comparing component. We will say 𝒛𝒊\boldsymbol{z_{i}} (or yi\boldsymbol{y_{i}}) contains 𝒔𝒋\boldsymbol{s_{j}} if djzi0d_{j}^{z_{i}}\neq 0 (or djyi0d_{j}^{y_{i}}\neq 0).

Since we can identify 11 with DqmD_{q}^{m}, we get (idh)Δ(sl)=h(sl)Dqm(id\otimes h)\circ\Delta(s_{l})=h(s_{l})\cdot D_{q}^{m}. Notice that we can decompose DqmD_{q}^{m} as a linear combination of standard monomials of order mm. Thus, by comparing the coefficient of the same standard monomial on both sides of (idh)Δ(sl)=h(sl)Dqm(id\otimes h)\circ\Delta(s_{l})=h(s_{l})\cdot D_{q}^{m}, we can find a linear relation consisting of the Haar states of standard monomials of order mm (See section 2.5 for more detail). We call such a linear relation linear relation of order 𝒎\boldsymbol{m}. We call a linear system consisting of linear relations of order mm a system of order 𝒎\boldsymbol{m}.

2.4. System of order 1

In this section, we will prove Theorem 1 d). The standard basis for Bn(1)B_{n}(1) is in the form of xτi=Πk=1nxk,τi(k)x_{\tau_{i}}=\Pi_{k=1}^{n}x_{k,\tau_{i}(k)} where τi\tau_{i} is a permutation on nn letters. We have:

Δ(xτi)=Δ(Πk=1nxk,τi(k))=k=1n(p=1nxk,pxp,τi(k)).\Delta(x_{\tau_{i}})=\Delta(\Pi_{k=1}^{n}x_{k,\tau_{i}(k)})=\displaystyle{\prod_{k=1}^{n}\left(\sum_{p=1}^{n}x_{k,p}\otimes x_{p,\tau_{i}(k)}\right)}.

By Lemma 3, after apply (idh)(id\otimes h) to Δ(xτi)\Delta(x_{\tau_{i}}), we get:

(idh)Δ(xτi)=σjSnh(Πk=1nxσj(k),τi(k))Πk=1nxk,σj(k).\begin{split}(id\otimes h)\circ\Delta(x_{\tau_{i}})=\sum_{\sigma_{j}\in S_{n}}h(\Pi_{k=1}^{n}x_{\sigma_{j}(k),\tau_{i}(k)})\cdot\Pi_{k=1}^{n}x_{k,\sigma_{j}(k)}.\end{split} (6)

On the other hand, recall that

1=Dq=σjSn(q)l(σj)k=1nxk,σj(k),1=D_{q}=\sum_{\sigma_{j}\in S_{n}}(-q)^{l(\sigma_{j})}\prod_{k=1}^{n}x_{k,\sigma_{j}(k)}, (7)

where l(σj)l(\sigma_{j}) is the inverse number of σj\sigma_{j}.

Thus, using (idh)Δ(xτi)=h(xτi)1(id\otimes h)\circ\Delta(x_{\tau_{i}})=h(x_{\tau_{i}})\cdot 1 and comparing the coefficients of each standard basis, we get for every σjSn\sigma_{j}\in S_{n}:

h(Πk=1nxσj(k),τi(k))=(q)l(σj)h(xτi).h(\Pi_{k=1}^{n}x_{\sigma_{j}(k),\tau_{i}(k)})=(-q)^{l(\sigma_{j})}h(x_{\tau_{i}}). (8)

In general, Πk=1nxσj(k),τi(k)\Pi_{k=1}^{n}x_{\sigma_{j}(k),\tau_{i}(k)} is not a standard monomial. However, if we choose σj\sigma_{j} such that σj(k)=n+1τi(k)\sigma_{j}(k)=n+1-\tau_{i}(k), then every generator in Πk=1nxσj(k),τi(k)\Pi_{k=1}^{n}x_{\sigma_{j}(k),\tau_{i}(k)} commutes with each other and Πk=1nxσj(k),τi(k)=Πk=1nxk,n+1k\Pi_{k=1}^{n}x_{\sigma_{j}(k),\tau_{i}(k)}=\Pi_{k=1}^{n}x_{k,n+1-k}. Moreover, l(σj)=n(n1)2l(τi)l(\sigma_{j})=\frac{n(n-1)}{2}-l(\tau_{i}). Thus, from Equation (8) we get:

h(Πk=1nxk,n+1k)=(q)n(n1)2l(τi)h(Πk=1nxk,τi(k)).h(\Pi_{k=1}^{n}x_{k,n+1-k})=(-q)^{\frac{n(n-1)}{2}-l(\tau_{i})}h(\Pi_{k=1}^{n}x_{k,\tau_{i}(k)}). (9)

Therefore, using Equation (9) and Equation (7) we get:

1=h(1)=σjSn(q)l(σj)h(Πk=1nxk,σj(k))=(σjSn(q)2l(σj)n(n1)2)h(Πk=1nxk,n+1k),\begin{split}1&=h(1)=\sum_{\sigma_{j}\in S_{n}}(-q)^{l(\sigma_{j})}h(\Pi_{k=1}^{n}x_{k,\sigma_{j}(k)})\\ &=\left(\sum_{\sigma_{j}\in S_{n}}(-q)^{2l(\sigma_{j})-\frac{n(n-1)}{2}}\right)h(\Pi_{k=1}^{n}x_{k,n+1-k}),\end{split} (10)

which gives

h(Πk=1nxk,n+1k)=(q)n(n1)2σjSn(q)2l(σj).h(\Pi_{k=1}^{n}x_{k,n+1-k})=\frac{(-q)^{\frac{n(n-1)}{2}}}{\sum_{\sigma_{j}\in S_{n}}(-q)^{2l(\sigma_{j})}}. (11)

Then by Equation (8), notice that the inverse number for the τi\tau_{i} corresponding to Πk=1nxk,n+1k\Pi_{k=1}^{n}x_{k,n+1-k} is just n(n1)2\frac{n(n-1)}{2}, we get for every τiSn\tau_{i}\in S_{n}:

h(Πk=1nxk,τi(k))=(q)l(τi)σjSn(q)2l(σj).h(\Pi_{k=1}^{n}x_{k,\tau_{i}(k)})=\frac{(-q)^{l(\tau_{i})}}{\sum_{\sigma_{j}\in S_{n}}(-q)^{2l(\sigma_{j})}}. (12)

Now, let In(k)I_{n}(k) be the number of permutations on nn letters with kk inversions. Then, the denominator of Equation (12) can be rewritten as:

σjSn(q)2l(σj)=k=0n(n+1)2In(k)q2k.\sum_{\sigma_{j}\in S_{n}}(-q)^{2l(\sigma_{j})}=\sum_{k=0}^{\frac{n(n+1)}{2}}I_{n}(k)q^{2k}.

By Andrews [1], the generating function of In(k)I_{n}(k) is

k=0n(n+1)2In(k)xk=j=1n1xj1x.\sum_{k=0}^{\frac{n(n+1)}{2}}I_{n}(k)x^{k}=\prod_{j=1}^{n}\frac{1-x^{j}}{1-x}.

So the denominator of Equation (12) can be rewritten as

σjSn(q)2l(σj)=j=1n1q2j1q2=[n]q2!,\sum_{\sigma_{j}\in S_{n}}(-q)^{2l(\sigma_{j})}=\prod_{j=1}^{n}\frac{1-q^{2j}}{1-q^{2}}=[n]_{q^{2}}!,

and we get:

h(Πk=1nxk,τi(k))=(q)l(τi)[n]q2!.h(\Pi_{k=1}^{n}x_{k,\tau_{i}(k)})=\frac{(-q)^{l(\tau_{i})}}{[n]_{q^{2}}!}.

2.5. Liner relations of higher order

In this section, let {sl}l=1Km\{s_{l}\}_{l=1}^{K_{m}} be a set of linearly independent standard monomials of order mm. Recall Equation (5):

(idh)Δ(sl)=j=1Km(i=1Kmcijh(si))sj.\begin{split}(id\otimes h)\circ\Delta(s_{l})=\sum_{j=1}^{K_{m}}\left(\sum_{i=1}^{K_{m}}c_{ij}h(s_{i})\right)\cdot s_{j}.\end{split}

We can do the same thing to h(sl)1=h(sl)Dqmh(s_{l})\cdot 1=h(s_{l})\cdot D_{q}^{m} and get:

h(sl)1=h(sl)Dqm=j=1Kmbjh(sl)sj.h(s_{l})\cdot 1=h(s_{l})\cdot D_{q}^{m}=\sum_{j=1}^{K_{m}}b_{j}h(s_{l})\cdot s_{j}. (13)

By comparing the coefficients of standard bases in (idh)Δ(sl)(id\otimes h)\circ\Delta(s_{l}) and in h(sl)1h(s_{l})\cdot 1, we get:

i=1Kmcijh(si)=bjh(sl)\sum_{i=1}^{K_{m}}c_{ij}h(s_{i})=b_{j}h(s_{l}) (14)

for every 1jKm1\leq j\leq K_{m}. We will call Equation (14) the linear relation derived from equation basis sl\boldsymbol{s_{l}} and comparing basis sj\boldsymbol{s_{j}}. Each index 1lKm1\leq l\leq K_{m} corresponds to KmK_{m} linear relations, so there are Km2K_{m}^{2} linear relations. Since there are KmK_{m} unknowns, it is possible to construct more than one system of order mm. Notice that these linear relations all have the zero right-hand side. One way to get a linear relation with the non-zero right-hand side is by decomposing 1=h(1)=h(Dqm)1=h(1)=h(D_{q}^{m}) into a sum of standard monomials. Although we can construct more than one system of order mm, not every system is invertible. We will give a more robust approach to compute the Haar state of 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) later.

In the order 1 case, finding Equation (5) and (13) is an easy task. However, the situation is much more complicate in higher order case. To understand the difficulty to find the two equations in higher order case, we introduce the order restriction for each summand appearing in the comultiplication of a monomial:

Let x=kIxik,jkx=\prod_{k\in I}x_{i_{k},j_{k}} be a monomial and the comultiplication of xx be

Δ(x)=kIΔ(xik,jk)=kI(lk=1nxik,lkxlk,jk)=iIziyi.\Delta(x)=\prod_{k\in I}\Delta(x_{i_{k},j_{k}})=\prod_{k\in I}\left(\sum_{l_{k}=1}^{n}x_{i_{k},l_{k}}\otimes x_{l_{k},j_{k}}\right)=\sum_{i\in I^{\prime}}z_{i}\otimes y_{i}.

Then:

  • i)

    the kk-th generator of the left component ziz_{i} is in the iki_{k}-th row

  • ii)

    the kk-th generator of the right component yiy_{i} is in the jkj_{k}-th column

  • iii)

    The column index of the ll-th generator in ziz_{i} equals to the row index of the ll-th generator in yiy_{i}.

The order restriction is a direct consequence of the fact that the comultiplication is an algebra homomorphism. Since each index lkl_{k} ranges from 11 to nn, every possible combination of ziyiz_{i}\otimes y_{i} that satisfies the order restriction will appear in the summation of Δ(x)\Delta(x). In higher order case, this means that Equation (2) includes not only summand whose left and right components are standard monomials but also summand whose left and right components are reordering of standard monomials satisfying the order restriction. As an example in 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)), if (x1,1x2,3x3,2)(x1,2x2,1x3,3)(x_{1,1}x_{2,3}x_{3,2})(x_{1,2}x_{2,1}x_{3,3}) is the left component of one of the tensor products in Δ((x1,1x2,2,x3,3)2)\Delta\left((x_{1,1}x_{2,2,}x_{3,3})^{2}\right) then all reordering of the left component satisfying property i) of the order restriction are:

  • 1)

    (x1,1x2,3x3,2)(x1,2x2,1x3,3)(x_{1,1}x_{2,3}x_{3,2})(x_{1,2}x_{2,1}x_{3,3})

  • 2)

    (x1,2x2,3x3,2)(x1,1x2,1x3,3)(x_{1,2}x_{2,3}x_{3,2})(x_{1,1}x_{2,1}x_{3,3})

  • 3)

    (x1,1x2,1x3,2)(x1,2x2,3x3,3)(x_{1,1}x_{2,1}x_{3,2})(x_{1,2}x_{2,3}x_{3,3})

  • 4)

    (x1,1x2,3x3,3)(x1,2x2,1x3,2)(x_{1,1}x_{2,3}x_{3,3})(x_{1,2}x_{2,1}x_{3,2})

  • 5)

    (x1,2x2,1x3,2)(x1,1x2,3x3,3)(x_{1,2}x_{2,1}x_{3,2})(x_{1,1}x_{2,3}x_{3,3})

  • 6)

    (x1,2x2,3x3,3)(x1,1x2,1x3,2)(x_{1,2}x_{2,3}x_{3,3})(x_{1,1}x_{2,1}x_{3,2})

  • 7)

    (x1,1x2,1x3,3)(x1,2x2,3x3,2)(x_{1,1}x_{2,1}x_{3,3})(x_{1,2}x_{2,3}x_{3,2})

  • 8)

    (x1,2x2,1x3,3)(x1,1x2,3x3,2)(x_{1,2}x_{2,1}x_{3,3})(x_{1,1}x_{2,3}x_{3,2}).

Thus, the comultipilcation of a standard monomial of higher order contains not only standard monomials but also variations of standard monomials satisfying the order restriction. This is the major difference between the case of order 1 and higher order cases. To find a linear relation derived from equation basis sls_{l} and comparing basis sjs_{j} in higher order case, we have to:

  • i)

    find all left (or right) component appearing in Δ(sl)\Delta(s_{l}) that contains sjs_{j} and compute the corresponding coefficient djzd_{j}^{z} in Equation (4);

  • ii)

    find the decomposition of the right (or left) component in Δ(sl)\Delta(s_{l}) corresponding to the left (or right) component in i) and sum all such decomposition together to get a linear relation;

  • iii)

    decompose every summand containing sjs_{j} in Equation (13) to find bjb_{j}.

All 3 steps involve decomposing non-standard monomials into a linear combination of standard monomials and such decomposition is not easy in general. However, there is a simple criterion to determine whether a standard monomial appears in the decomposition of a non-standard monomial or not.

Theorem 1 e):When changing the order of generators in a monomial, the newly generated monomials cannot contain more generator x1,1x_{1,1} and xn,nx_{n,n} and cannot contain less generator x1,nx_{1,n} and xn,1x_{n,1} comparing to the monomial being reordered.

Proof.

When a new monomial is generated, we replace a pair of xi,kxj,lx_{i,k}x_{j,l} (i<j,k<li<j,k<l) by a pair of xi,lxj,kx_{i,l}x_{j,k} to get the new monomial. Notice that none of xi,kx_{i,k} and xj,lx_{j,l} can be x1,nx_{1,n} or xn,1x_{n,1} and none of xi,lx_{i,l} and xj,kx_{j,k} can be x1,1x_{1,1} or xn,nx_{n,n}. Thus, x1,nx_{1,n} and xn,1x_{n,1} can never be replaced by other generators and x1,1x_{1,1} and xn,nx_{n,n} can never be used as the generator to replace other generators. This finishes the proof. ∎

Remark.

The decomposition of a monomial xx does not contain those standard monomials whose number of generator x11x_{11} and xnnx_{nn} (or x1nx_{1n} and xn1x_{n1}) exceeds (or less than) that of monomial xx.

Notice that every standard monomial in 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) contains at least one of x11x_{11}, x13x_{13}, x31x_{31}, and x33x_{33}. Thus, Theorem 1 e) will play an important role in the computation of the Haar state on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) later.

3. A monomial basis for 𝒩𝒵\mathcal{NZ} in 𝒪(SLq(3))\mathcal{O}(SL_{q}(3))

As mentioned in section 2.2, the set of standard monomials is not a basis for linear subspace 𝒩𝒵\mathcal{NZ}. In this section, we will provide a criterion to pick a monomial basis for 𝒩𝒵\mathcal{NZ} from the set of standard monomials in 𝒪(SLq(3))\mathcal{O}(SL_{q}(3)) and define a monomials basis for 𝒩𝒵\mathcal{NZ} based on the criterion.

Proposition 2.

Let M=(mij)i,j=13M=(m_{ij})_{i,j=1}^{3} be a 3×33\times 3 kk-doubly stochastic matrix. If there exist 1i,j31\leq i^{\prime},j^{\prime}\leq 3 such that mi,j=0m_{i^{\prime},j^{\prime}}=0, then MM is uniquely decomposed into a linear combination of matrices in A3(1)A_{3}(1).

Proof.

Index the six matrices in A3(1)A_{3}(1) as:

  1. S1=[100010001]S_{1}=\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}
  2. S2=[100001010]S_{2}=\begin{bmatrix}1&0&0\\ 0&0&1\\ 0&1&0\end{bmatrix}
  3. S3=[001010100]S_{3}=\begin{bmatrix}0&0&1\\ 0&1&0\\ 1&0&0\end{bmatrix}
  4. S4=[010100001]S_{4}=\begin{bmatrix}0&1&0\\ 1&0&0\\ 0&0&1\end{bmatrix}
  5. S5=[010001100]S_{5}=\begin{bmatrix}0&1&0\\ 0&0&1\\ 1&0&0\end{bmatrix}
  6. S6=[001100010]S_{6}=\begin{bmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{bmatrix}

Without loss of generality, assume that m11=0m_{11}=0. Then, matrix S1S_{1} and S2S_{2} cannot appear in the decomposition of MM. The only matrix in A3(1)A_{3}(1) whose (2,2)(2,2)-entry is not zero is S3S_{3}. Hence, the coefficient of S3S_{3} in the decomposition of MM is m22m_{22}. Similarly, the only matrix in A3(1)A_{3}(1) whose (3,3)(3,3)-entry is not zero is S4S_{4}, so the coefficient of S4S_{4} in the decomposition of MM is m33m_{33}; the only matrix in A3(1)A_{3}(1) whose (2,3)(2,3)-entry is not zero is S5S_{5}, so the coefficient of S5S_{5} in the decomposition of MM is m23m_{23}; the only matrix in A3(1)A_{3}(1) whose (3,2)(3,2)-entry is not zero is S6S_{6}, so the coefficient of S6S_{6} in the decomposition of MM is m32m_{32}. Hence, MM is decomposed into:

M=m22S3+m33S4+m23S5+m32S6.M=m_{22}\cdot S_{3}+m_{33}\cdot S_{4}+m_{23}\cdot S_{5}+m_{32}\cdot S_{6}.

The arguments for other cases are identical to m11=0m_{11}=0

Denote

F=[111111111]F=\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}

Then, every 3×33\times 3 kk-doubly stochastic matrix MM can be written as:

M=aF+NM=a\cdot F+N

where a=min{mi,j,1i,j3}a=\text{min}\{m_{i,j},1\leq i,j\leq 3\} and NN is a (k3a)(k-3a)-doubly stochastic matrix with at least one entry equals to 0. By Proposition 2, the decomposition of NN is unique. To define a monomial basis consisting of standard monomials, we need to specify the decomposition of matrix FF. There are two possible choices for FF: aekbfgcdhaekbfgcdh and afhbdkcegafhbdkceg. They satisfy Equation (22) in Appendix A. In this paper, we choose the standard monomial corresponding to matrix FF as:

aekbfgcdh.aekbfgcdh.

Thus, if the unique standard monomial corresponding to NN is:

(aek)n1(afh)n2(bdk)n3(bfg)n4(cdh)n5(ceg)n6,(aek)^{n_{1}}(afh)^{n_{2}}(bdk)^{n_{3}}(bfg)^{n_{4}}(cdh)^{n_{5}}(ceg)^{n_{6}},

the standard monomial corresponding to MM is:

(aek)n1+a(afh)n2(bdk)n3(bfg)n4+a(cdh)n5+a(ceg)n6.(aek)^{n_{1}+a}(afh)^{n_{2}}(bdk)^{n_{3}}(bfg)^{n_{4}+a}(cdh)^{n_{5}+a}(ceg)^{n_{6}}.

Notice that in the monomial corresponding to NN, at least one of n1n_{1}, n4n_{4}, and n5n_{5} has to be zero since NN has a zero entry. For the same reason, at least one of n2n_{2}, n3n_{3}, and n6n_{6} has to be zero. This implies that for every kk-doubly stochastic matrix MM, the corresponding standard monomial contains at most two of the three segments afhafh, bdkbdk, cegceg. Hence, we define the monomial basis consisting of standard monomials as:

{(aek)m1(afh)m2(bdk)m3(bfg)m4(cdh)m5(ceg)m6,mi𝐍0 and m2m3m6=0}\{(aek)^{m_{1}}(afh)^{m_{2}}(bdk)^{m_{3}}(bfg)^{m_{4}}(cdh)^{m_{5}}(ceg)^{m_{6}},m_{i}\in\mathbf{N}_{0}\text{ and }m_{2}\cdot m_{3}\cdot m_{6}=0\}

4. Explicit formulas for special standard monomials on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3))

In this section, we will construct a linear systems of order mm called the Source Matrix of order 𝒎\boldsymbol{m} based on the relation ((idh)Δ)(x)=h(x)1((id\otimes h)\circ\Delta)(x)=h(x)\cdot 1 and the explicit solution to the Source Matrix is given. Then, we derive the explicit recursive relation between the Haar state of standard monomials in the form of (cdh)l(ceg)ml(cdh)^{l}(ceg)^{m-l}. We start with the motivation of the construction of the Source matrix.

4.1. The Source Matrix of order mm

Recall the 3 difficulties we introduced in section 2.5. To reduce the computation in step i), we prefer to pick a comparing basis sjs_{j} such that the number of ziz_{i}’s in Equation (2) whose decomposition contain sjs_{j} is as small as possible. To reduce the computation in step ii), we prefer to pick a equation basis sls_{l} such that in Equation (2) the decomposition of the yjy_{j}’s corresponding to the zjz_{j}’s in step i) is as simple as possible. To reduce the computation in step iii), we prefer to pick a comparing basis sjs_{j} such that the number of terms in the expansion of DqmD_{q}^{m} whose decomposition contain sjs_{j} is as small as possible.

According to Theorem 1 e), the decomposition of a monomial does not contain those standard monomials whose number of generator aa and kk exceed that of the original monomial. Thus, we should pick those standard monomials containing as many generator aa and kk as possible to be the comparing basis sjs_{j} so that only limited number of zjz_{j}’s in Equation (2) contains sjs_{j}. Theorem 1 e) also tells us that the decomposition of a monomial contains only those standard monomials whose number of generator cc and gg equals to or exceeds that of the original monomial. Thus, we should pick those equation basis sls_{l} such that in Equation (2) the yjy_{j}’s corresponding to those zjz_{j}’s which contains sjs_{j} contain as many generator cc and gg as possible so that the decomposition of yjy_{j}’s contain only a limited number of standard monomials.

Based on the analysis, we pick standard monomial (ceg)m(ceg)^{m} as the equation basis and consider the linear relation derived from comparing basis (aek)m1afh(aek)^{m-1}afh, (aek)m1bdk(aek)^{m-1}bdk, (aek)m2afhbdk(aek)^{m-2}afhbdk, (aek)m1bfg(aek)^{m-1}bfg, (aek)m1cdh(aek)^{m-1}cdh, and (aek)m1ceg(aek)^{m-1}ceg, respectively. Notice that these comparing basis contains at least m1m-1 generator aa and at least m1m-1 generator kk. We exclude the comparing basis (aek)m(aek)^{m} since the corresponding linear relation is an identity. According to the order restriction, we list all the terms zjyjz_{j}\otimes y_{j} in Δ((ceg)m)\Delta\left((ceg)^{m}\right) whose zjz_{j} contains one of our chosen comparing basis. Notice that these zjz_{j}’s are variations of our chosen comparing basis under the order restriction.

Variations of (aek)m1afh(aek)^{m-1}afh:

  1. 1)

    (aek)lafh(aek)m1l(ceg)lchd(ceg)m1l(aek)^{l}afh(aek)^{m-1-l}\otimes\\ (ceg)^{l}chd(ceg)^{m-1-l}

  2. 2)

    (aek)lafk(aek)kaeh(aek)m2lk(ceg)lchg(ceg)kced(ceg)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-2-l-k}

  3. 3)

    (aek)laeh(aek)kafk(aek)m2lk(ceg)lced(ceg)kchg(ceg)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-2-l-k}

Variations of (aek)m1bdk(aek)^{m-1}bdk:

  1. 1)

    (aek)lbdk(aek)m1l(ceg)lfbg(ceg)m1l(aek)^{l}bdk(aek)^{m-1-l}\otimes\\ (ceg)^{l}fbg(ceg)^{m-1-l}

  2. 2)

    (aek)lbek(aek)kadk(aek)m2lk(ceg)lfeg(ceg)kcbg(ceg)m2lk(aek)^{l}bek(aek)^{k}adk(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}feg(ceg)^{k}cbg(ceg)^{m-2-l-k}

  3. 3)

    (aek)ladk(aek)kbek(aek)m2lk(ceg)lcbg(ceg)kfeg(ceg)m2lk(aek)^{l}adk(aek)^{k}bek(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}cbg(ceg)^{k}feg(ceg)^{m-2-l-k}

Variations of (aek)m2afhbdk(aek)^{m-2}afhbdk:

  1. 1)

    (aek)i1b(eka)i2dk(aek)i3af(kae)i4h(aek)m2i1i2i3i4(ceg)i1f(egc)i2bg(ceg)i3ch(gce)i4d(ceg)m2i1i2i3i4(aek)^{i_{1}}b(eka)^{i_{2}}dk(aek)^{i_{3}}af(kae)^{i_{4}}h(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}f(egc)^{i_{2}}bg(ceg)^{i_{3}}ch(gce)^{i_{4}}d(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  2. 2)

    (aek)i1af(kae)i2h(aek)i3b(eka)i4dk(aek)m2i1i2i3i4(ceg)i1ch(gce)i2d(ceg)i3f(egc)i4bg(ceg)m2i1i2i3i4(aek)^{i_{1}}af(kae)^{i_{2}}h(aek)^{i_{3}}b(eka)^{i_{4}}dk(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ch(gce)^{i_{2}}d(ceg)^{i_{3}}f(egc)^{i_{4}}bg(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  3. 3)

    (aek)i1be(kae)i2h(aek)i3afk(aek)i4adk(aek)m3i1i2i3i4(ceg)i1fe(gce)i2d(ceg)i3chg(ceg)i4cbg(ceg)m3i1i2i3i4(aek)^{i_{1}}be(kae)^{i_{2}}h(aek)^{i_{3}}afk(aek)^{i_{4}}adk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}fe(gce)^{i_{2}}d(ceg)^{i_{3}}chg(ceg)^{i_{4}}cbg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  4. 4)

    (aek)i1afk(aek)i2adk(aek)i3be(kae)i4h(aek)m3i1i2i3i4(ceg)i1chg(ceg)i2cbg(ceg)i3fe(gce)i4d(ceg)m3i1i2i3i4(aek)^{i_{1}}afk(aek)^{i_{2}}adk(aek)^{i_{3}}be(kae)^{i_{4}}h(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}chg(ceg)^{i_{2}}cbg(ceg)^{i_{3}}fe(gce)^{i_{4}}d(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  5. 5)

    (aek)i1adk(aek)i2be(kae)i3h(aek)i4afk(aek)m3i1i2i3i4(ceg)i1cbg(ceg)i2fe(gce)i3d(ceg)i4chg(ceg)m3i1i2i3i4(aek)^{i_{1}}adk(aek)^{i_{2}}be(kae)^{i_{3}}h(aek)^{i_{4}}afk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cbg(ceg)^{i_{2}}fe(gce)^{i_{3}}d(ceg)^{i_{4}}chg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  6. 6)

    (aek)i1adk(aek)i2af(kae)i3h(aek)i4bek(aek)m3i1i2i3i4(ceg)i1cbg(ceg)i2ch(gce)i3d(ceg)i4feg(ceg)m3i1i2i3i4(aek)^{i_{1}}adk(aek)^{i_{2}}af(kae)^{i_{3}}h(aek)^{i_{4}}bek(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cbg(ceg)^{i_{2}}ch(gce)^{i_{3}}d(ceg)^{i_{4}}feg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  7. 7)

    (aek)i1aeh(aek)i2b(eka)i3dk(aek)i4afk(aek)m3i1i2i3i4(ceg)i1ced(ceg)i2f(egc)i3bg(ceg)i4chg(ceg)m3i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}b(eka)^{i_{3}}dk(aek)^{i_{4}}afk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}f(egc)^{i_{3}}bg(ceg)^{i_{4}}chg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  8. 8)

    (aek)i1aeh(aek)i2afk(aek)i3adk(aek)i4bek(aek)m4i1i2i3i4(ceg)i1ced(ceg)i2chg(ceg)i3fbg(ceg)i4feg(ceg)m4i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}afk(aek)^{i_{3}}adk(aek)^{i_{4}}bek(aek)^{m-4-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}chg(ceg)^{i_{3}}fbg(ceg)^{i_{4}}feg(ceg)^{m-4-i_{1}-i_{2}-i_{3}-i_{4}}

  9. 9)

    (aek)i1b(eka)i2fk(aek)i3ad(kae)i4h(aek)m2i1i2i3i4(ceg)i1f(egc)i2hg(ceg)i3cb(gce)i4d(ceg)m2i1i2i3i4(aek)^{i_{1}}b(eka)^{i_{2}}fk(aek)^{i_{3}}ad(kae)^{i_{4}}h(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}f(egc)^{i_{2}}hg(ceg)^{i_{3}}cb(gce)^{i_{4}}d(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  10. 10)

    (aek)i1b(eka)i2f(kae)i3h(aek)i4adk(aek)m2i1i2i3i4(ceg)i1f(egc)i2h(gce)i3d(ceg)i4cbg(ceg)m2i1i2i3i4(aek)^{i_{1}}b(eka)^{i_{2}}f(kae)^{i_{3}}h(aek)^{i_{4}}adk(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}f(egc)^{i_{2}}h(gce)^{i_{3}}d(ceg)^{i_{4}}cbg(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  11. 11)

    (aek)i1afk(aek)i2b(eka)i3d(kae)i4h(aek)m2i1i2i3i4(ceg)i1chg(ceg)i2f(egc)i3b(gce)i4d(ceg)m2i1i2i3i4(aek)^{i_{1}}afk(aek)^{i_{2}}b(eka)^{i_{3}}d(kae)^{i_{4}}h(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}chg(ceg)^{i_{2}}f(egc)^{i_{3}}b(gce)^{i_{4}}d(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  12. 12)

    (aek)i1afk(aek)i2be(kae)i3h(aek)i4adk(aek)m3i1i2i3i4(ceg)i1chg(ceg)i2fe(gce)i3d(ceg)i4cbg(ceg)m3i1i2i3i4(aek)^{i_{1}}afk(aek)^{i_{2}}be(kae)^{i_{3}}h(aek)^{i_{4}}adk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}chg(ceg)^{i_{2}}fe(gce)^{i_{3}}d(ceg)^{i_{4}}cbg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  13. 13)

    (aek)i1ad(kae)i2h(eka)i3b(eka)i4fk(aek)m2i1i2i3i4(ceg)i1cb(gce)i2d(ceg)i3f(egc)i4hg(ceg)m2i1i2i3i4(aek)^{i_{1}}ad(kae)^{i_{2}}h(eka)^{i_{3}}b(eka)^{i_{4}}fk(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cb(gce)^{i_{2}}d(ceg)^{i_{3}}f(egc)^{i_{4}}hg(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  14. 14)

    (aek)i1ad(kae)i2h(aek)i3afk(aek)i4bek(aek)m3i1i2i3i4(ceg)i1cb(gce)i2d(ceg)i3chg(ceg)i4feg(ceg)m3i1i2i3i4(aek)^{i_{1}}ad(kae)^{i_{2}}h(aek)^{i_{3}}afk(aek)^{i_{4}}bek(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cb(gce)^{i_{2}}d(ceg)^{i_{3}}chg(ceg)^{i_{4}}feg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  15. 15)

    (aek)i1aeh(aek)i2adk(aek)i3b(eka)i4fk(aek)m3i1i2i3i4(ceg)i1ced(ceg)i2cbg(ceg)i3f(egc)i4hg(ceg)m3i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}adk(aek)^{i_{3}}b(eka)^{i_{4}}fk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}cbg(ceg)^{i_{3}}f(egc)^{i_{4}}hg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  16. 16)

    (aek)i1aeh(aek)i2adk(aek)i3afk(aek)i4bek(aek)m4i1i2i3i4(ceg)i1ced(ceg)i2cbg(ceg)i3chg(ceg)i4feg(ceg)m4i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}adk(aek)^{i_{3}}afk(aek)^{i_{4}}bek(aek)^{m-4-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}cbg(ceg)^{i_{3}}chg(ceg)^{i_{4}}feg(ceg)^{m-4-i_{1}-i_{2}-i_{3}-i_{4}}

  17. 17)

    (aek)i1b(eka)i2d(kae)i3h(aek)i4afk(aek)m2i1i2i3i4(ceg)i1f(egc)i2b(gce)i3d(ceg)i4chg(ceg)m2i1i2i3i4(aek)^{i_{1}}b(eka)^{i_{2}}d(kae)^{i_{3}}h(aek)^{i_{4}}afk(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}f(egc)^{i_{2}}b(gce)^{i_{3}}d(ceg)^{i_{4}}chg(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  18. 18)

    (aek)i1be(kae)i2h(aek)i3adk(aek)i4afk(aek)m3i1i2i3i4(ceg)i1fe(gce)i2d(ceg)i3cbg(ceg)i4chg(ceg)m3i1i2i3i4(aek)^{i_{1}}be(kae)^{i_{2}}h(aek)^{i_{3}}adk(aek)^{i_{4}}afk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}fe(gce)^{i_{2}}d(ceg)^{i_{3}}cbg(ceg)^{i_{4}}chg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  19. 19)

    (aek)i1afk(aek)i2ad(kae)i3h(aek)i4bek(aek)m3i1i2i3i4(ceg)i1chg(ceg)i2cb(gce)i3d(ceg)i4feg(ceg)m3i1i2i3i4(aek)^{i_{1}}afk(aek)^{i_{2}}ad(kae)^{i_{3}}h(aek)^{i_{4}}bek(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}chg(ceg)^{i_{2}}cb(gce)^{i_{3}}d(ceg)^{i_{4}}feg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  20. 20)

    (aek)i1af(kae)i2h(kae)i3adk(aek)i4bek(aek)m3i1i2i3i4(ceg)i1ch(gce)i2d(ceg)i3cbg(ceg)i4feg(ceg)m3i1i2i3i4(aek)^{i_{1}}af(kae)^{i_{2}}h(kae)^{i_{3}}adk(aek)^{i_{4}}bek(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ch(gce)^{i_{2}}d(ceg)^{i_{3}}cbg(ceg)^{i_{4}}feg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  21. 21)

    (aek)i1adk(aek)i2b(eka)i3f(kae)i4h(aek)m2i1i2i3i4(ceg)i1cbg(ceg)i2f(egc)i3h(gce)i4d(ceg)m2i1i2i3i4(aek)^{i_{1}}adk(aek)^{i_{2}}b(eka)^{i_{3}}f(kae)^{i_{4}}h(aek)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cbg(ceg)^{i_{2}}f(egc)^{i_{3}}h(gce)^{i_{4}}d(ceg)^{m-2-i_{1}-i_{2}-i_{3}-i_{4}}

  22. 22)

    (aek)i1adk(aek)i2afk(aek)i3be(kae)i4h(aek)m3i1i2i3i4(ceg)i1cbg(ceg)i2chg(ceg)i3fe(gce)i4d(ceg)m3i1i2i3i4(aek)^{i_{1}}adk(aek)^{i_{2}}afk(aek)^{i_{3}}be(kae)^{i_{4}}h(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}cbg(ceg)^{i_{2}}chg(ceg)^{i_{3}}fe(gce)^{i_{4}}d(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  23. 23)

    (aek)i1aeh(aek)i2b(eka)i3fk(aek)i4adk(aek)m3i1i2i3i4(ceg)i1ced(ceg)i2f(egc)i3hg(ceg)i4cbg(ceg)m3i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}b(eka)^{i_{3}}fk(aek)^{i_{4}}adk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}f(egc)^{i_{3}}hg(ceg)^{i_{4}}cbg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

  24. 24)

    (aek)i1aeh(aek)i2afk(aek)i3b(eka)i4dk(aek)m3i1i2i3i4(ceg)i1ced(ceg)i2chg(ceg)i3f(egc)i4bg(ceg)m3i1i2i3i4(aek)^{i_{1}}aeh(aek)^{i_{2}}afk(aek)^{i_{3}}b(eka)^{i_{4}}dk(aek)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}chg(ceg)^{i_{3}}f(egc)^{i_{4}}bg(ceg)^{m-3-i_{1}-i_{2}-i_{3}-i_{4}}

Variations of (aek)m1bfg(aek)^{m-1}bfg:

  1. 1)

    (aek)i1b(eka)i2f(kae)i3g(aek)m1i1i2i3(ceg)i1f(egc)i2h(gce)i3a(ceg)m1i1i2i3(aek)^{i_{1}}b(eka)^{i_{2}}f(kae)^{i_{3}}g(aek)^{m-1-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}f(egc)^{i_{2}}h(gce)^{i_{3}}a(ceg)^{m-1-i_{1}-i_{2}-i_{3}}

  2. 2)

    (aek)i1afk(aek)i2be(kae)i3g(aek)m2i1i2i3(ceg)i1chg(ceg)i2fe(gce)i3a(ceg)m2i1i2i3(aek)^{i_{1}}afk(aek)^{i_{2}}be(kae)^{i_{3}}g(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}chg(ceg)^{i_{2}}fe(gce)^{i_{3}}a(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  3. 3)

    (aek)i1be(kae)i2g(aek)i3afk(aek)m2i1i2i3(ceg)i1fe(gce)i2a(ceg)i3chg(ceg)m2i1i2i3(aek)^{i_{1}}be(kae)^{i_{2}}g(aek)^{i_{3}}afk(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}fe(gce)^{i_{2}}a(ceg)^{i_{3}}chg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  4. 4)

    (aek)i1af(kae)i2g(aek)i3bek(aek)m2i1i2i3(ceg)i1ch(gce)i2a(ceg)i3feg(ceg)m2i1i2i3(aek)^{i_{1}}af(kae)^{i_{2}}g(aek)^{i_{3}}bek(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}ch(gce)^{i_{2}}a(ceg)^{i_{3}}feg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  5. 5)

    (aek)i1aeg(aek)i2b(eka)i3fk(aek)m2i1i2i3(ceg)i1cea(ceg)i2f(egc)i3hg(ceg)m2i1i2i3(aek)^{i_{1}}aeg(aek)^{i_{2}}b(eka)^{i_{3}}fk(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}cea(ceg)^{i_{2}}f(egc)^{i_{3}}hg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  6. 6)

    (aek)i1aeg(aek)i2afk(aek)i3bek(aek)m3i1i2i3(ceg)i1cea(ceg)i2chg(ceg)i3feg(ceg)m3i1i2i3(aek)^{i_{1}}aeg(aek)^{i_{2}}afk(aek)^{i_{3}}bek(aek)^{m-3-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}cea(ceg)^{i_{2}}chg(ceg)^{i_{3}}feg(ceg)^{m-3-i_{1}-i_{2}-i_{3}}

Variations of (aek)m1cdh(aek)^{m-1}cdh:

  1. 1)

    (aek)i1c(eka)i2d(kae)i3h(aek)m1i1i2i3(ceg)i1k(egc)i2b(gce)i3d(ceg)m1i1i2i3(aek)^{i_{1}}c(eka)^{i_{2}}d(kae)^{i_{3}}h(aek)^{m-1-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}k(egc)^{i_{2}}b(gce)^{i_{3}}d(ceg)^{m-1-i_{1}-i_{2}-i_{3}}

  2. 2)

    (aek)i1ce(kae)i2h(aek)i3adk(aek)m2i1i2i3(ceg)i1k(egc)i2ed(ceg)i3cbg(ceg)m2i1i2i3(aek)^{i_{1}}ce(kae)^{i_{2}}h(aek)^{i_{3}}adk(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}k(egc)^{i_{2}}ed(ceg)^{i_{3}}cbg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  3. 3)

    (aek)i1aeh(aek)i2c(eka)i3dk(aek)m2i1i2i3(ceg)i1ced(ceg)i2k(egc)i3bg(ceg)m2i1i2i3(aek)^{i_{1}}aeh(aek)^{i_{2}}c(eka)^{i_{3}}dk(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}k(egc)^{i_{3}}bg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  4. 4)

    (aek)i1adk(aek)i2ce(kae)i3h(aek)m2i1i2i3(ceg)i1cbg(ceg)i2k(egc)i3ed(ceg)m2i1i2i3(aek)^{i_{1}}adk(aek)^{i_{2}}ce(kae)^{i_{3}}h(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}cbg(ceg)^{i_{2}}k(egc)^{i_{3}}ed(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  5. 5)

    (aek)i1ad(kae)i2h(aek)i3cek(aek)m2i1i2i3(ceg)i1cb(gce)i2d(ceg)i3keg(ceg)m2i1i2i3(aek)^{i_{1}}ad(kae)^{i_{2}}h(aek)^{i_{3}}cek(aek)^{m-2-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}cb(gce)^{i_{2}}d(ceg)^{i_{3}}keg(ceg)^{m-2-i_{1}-i_{2}-i_{3}}

  6. 6)

    (aek)i1aeh(aek)i2adk(aek)i3cek(aek)m3i1i2i3(ceg)i1ced(ceg)i2cbg(ceg)i3keg(ceg)m3i1i2i3(aek)^{i_{1}}aeh(aek)^{i_{2}}adk(aek)^{i_{3}}cek(aek)^{m-3-i_{1}-i_{2}-i_{3}}\otimes\\ (ceg)^{i_{1}}ced(ceg)^{i_{2}}cbg(ceg)^{i_{3}}keg(ceg)^{m-3-i_{1}-i_{2}-i_{3}}

Variations of (aek)m1ceg(aek)^{m-1}ceg:

  1. 1)

    (aek)laeg(aek)kcek(aek)m2lk(ceg)lcea(ceg)kkeg(ceg)m2lk(aek)^{l}aeg(aek)^{k}cek(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}cea(ceg)^{k}keg(ceg)^{m-2-l-k}

  2. 2)

    (aek)lce(kae)kg(aek)m2lk(ceg)lke(gce)ka(ceg)m1lk(aek)^{l}ce(kae)^{k}g(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}ke(gce)^{k}a(ceg)^{m-1-l-k}

The right components corresponding to our chosen comparing basis contain at least m1m-1 generator cc and at least m1m-1 generator gg. Thus, the unknowns in these linear relations are the Haar state of aek(ceg)m1aek(ceg)^{m-1}, afh(ceg)m1afh(ceg)^{m-1}, bdk(ceg)m1bdk(ceg)^{m-1}, bfgcdh(ceg)m2bfgcdh(ceg)^{m-2}, bfg(ceg)m1bfg(ceg)^{m-1}, cdh(ceg)m1cdh(ceg)^{m-1}, and (ceg)m(ceg)^{m}. Now we get 66 linear relations containing 77 unknowns. To get a solvable linear system, we add the quantum determinant relation:

h((ceg)m1)=h(Dq(ceg)m1)=h(aek(ceg)m1)qh(afh(ceg)m1)qh(bdk(ceg)m1)+q2h(bfg(ceg)m1)+q2h(cdh(ceg)m1)q3h(ceg(ceg)m1).\begin{split}&h\left((ceg)^{m-1}\right)=h\left(D_{q}(ceg)^{m-1}\right)\\ =&h\left(aek(ceg)^{m-1}\right)-q\cdot h\left(afh(ceg)^{m-1}\right)-q\cdot h\left(bdk(ceg)^{m-1}\right)\\ &+q^{2}\cdot h\left(bfg(ceg)^{m-1}\right)+q^{2}\cdot h\left(cdh(ceg)^{m-1}\right)-q^{3}\cdot h\left(ceg(ceg)^{m-1}\right).\end{split}

The linear system of order mm consisting of the 7 equations is called the Source Matrix of order 𝒎\boldsymbol{m}. Besides the quantum determinant relation, the right-hand-sides of all other linear relations are zero. Thus, the linear system is recursive. The Haar state of (ceg)m1(ceg)^{m-1} is solved from the Source Matrix of order m1m-1 and then used as the only non-zero right-hand-side term in the Source Matrix of order mm. The general solution to the Source Matrix of order mm is:

h(aek(ceg)m1)=(q)3m2(q21)3(q41)(1+q4q2q2m+2)q(q2m1)2(q2m+21)2(q2m+41)h(afh(ceg)m1)=(q)3m2(q21)4(q41)(q2m1)2(q2m+21)2(q2m+41)h(bdk(ceg)m1)=(q)3m2(q21)4(q41)(q2m1)2(q2m+21)2(q2m+41)h(bfgcdh(ceg)m2)=(q)3m2(q21)4(q41)(q2m1)2(q2m+21)2(q2m+41)h(bfg(ceg)m1)=(q)3m1(q21)3(q41)(q2m1)(q2m+21)2(q2m+41)h(cdh(ceg)m1)=(q)3m1(q21)3(q41)(q2m1)(q2m+21)2(q2m+41)h((ceg)m)=(q)3m(q21)2(q41)(q2m+21)2(q2m+41).\begin{split}h(aek(ceg)^{m-1})&=\frac{(-q)^{3m-2}(q^{2}-1)^{3}(q^{4}-1)(1+q^{4}-q^{2}-q^{2m+2})}{q(q^{2m}-1)^{2}(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h(afh(ceg)^{m-1})&=\frac{(-q)^{3m-2}(q^{2}-1)^{4}(q^{4}-1)}{(q^{2m}-1)^{2}(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h(bdk(ceg)^{m-1})&=\frac{(-q)^{3m-2}(q^{2}-1)^{4}(q^{4}-1)}{(q^{2m}-1)^{2}(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h(bfgcdh(ceg)^{m-2})&=\frac{(-q)^{3m-2}(q^{2}-1)^{4}(q^{4}-1)}{(q^{2m}-1)^{2}(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h(bfg(ceg)^{m-1})&=\frac{(-q)^{3m-1}(q^{2}-1)^{3}(q^{4}-1)}{(q^{2m}-1)(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h(cdh(ceg)^{m-1})&=\frac{(-q)^{3m-1}(q^{2}-1)^{3}(q^{4}-1)}{(q^{2m}-1)(q^{2m+2}-1)^{2}(q^{2m+4}-1)}\\ h((ceg)^{m})&=\frac{(-q)^{3m}(q^{2}-1)^{2}(q^{4}-1)}{(q^{2m+2}-1)^{2}(q^{2m+4}-1)}.\end{split}

For the entries of the Source matrix of order mm, see Table 1 on the next page.

Table 1. The source matrix with all its entries.
aekcegaekceg afhcegafhceg bdkcegbdkceg bfgcdhbfgcdh bfgcegbfgceg cdhcegcdhceg cegcegcegceg LHS
DqD_{q} 11 q-q q-q 0 q2q^{2} q2q^{2} q3-q^{3} h((ceg)m1)h((ceg)^{m-1})
aekcegaekceg q2(q2n1)2q2n(q21)2\frac{q^{2}(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)^{2}} q(q2n1)2q2n(q21)\frac{-q(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)} q3(1q2n)3q4n(q21)2\frac{q^{3}(1-q^{2n})^{3}}{q^{4n}(q^{2}-1)^{2}} (q3q2n+1)(q2n1)3q4n(q21)2\frac{(q^{3}-q^{2n+1})(q^{2n}-1)^{3}}{q^{4n}(q^{2}-1)^{2}} (q2n1)2q2n\frac{(q^{2n}-1)^{2}}{q^{2n}} n(q2n1)2q2n\frac{n(q^{2n}-1)^{2}}{q^{2n}} (q2n1)((n+1)q42nq2+n)q2n+1(q21)\frac{(q^{2n}-1)((n+1)q^{4}-2nq^{2}+n)}{q^{2n+1}(q^{2}-1)} 0
aekbfgaekbfg 0 q2(q2n1)3q2n(q21)3\frac{q^{2}(q^{2n}-1)^{3}}{q^{2n}(q^{2}-1)^{3}} 0 0 q(q2n1)2q2n(q21)\frac{-q(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)} nq(q2n1)2q2n(q21)\frac{-nq(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)} (q2n1)(n(n+1)q2)q2n(q21)\frac{(q^{2n}-1)(n-(n+1)q^{2})}{q^{2n}(q^{2}-1)} 0
aekcdhaekcdh 0 0 q4(q2n1)3q4n(q21)3\frac{q^{4}(q^{2n}-1)^{3}}{q^{4n}(q^{2}-1)^{3}} (q2n1)3(q2n+2q4)q4n(q21)3\frac{(q^{2n}-1)^{3}(q^{2n+2}-q^{4})}{q^{4n}(q^{2}-1)^{3}} q(q2n1)2q2n(q21)\frac{-q(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)} nq(q2n1)2q2n(q21)\frac{-nq(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)} (q2n1)(n(n+1)q2)q2n(q21)\frac{(q^{2n}-1)(n-(n+1)q^{2})}{q^{2n}(q^{2}-1)} 0
afhbdkafhbdk 0 0 0 (q2n1)3(q2n+2q4)q4n(q21)4\frac{(q^{2n}-1)^{3}(q^{2n+2}-q^{4})}{q^{4n}(q^{2}-1)^{4}} c1c_{1} c2c_{2} c3c_{3} 0
aekbdkaekbdk 0 0 0 0 q2(q2n1)2q2n(q21)2\frac{q^{2}(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)^{2}} 0 q(q2n1)q2n(q21)\frac{q(q^{2n}-1)}{q^{2n}(q^{2}-1)} 0
aekafhaekafh 0 0 0 0 0 q2(q2n1)2q2n(q21)2\frac{q^{2}(q^{2n}-1)^{2}}{q^{2n}(q^{2}-1)^{2}} q(q2n1)q2n(q21)\frac{q(q^{2n}-1)}{q^{2n}(q^{2}-1)} 0
c1=(q2n1)2(q2n2+(n1)q2n(n1)q2n+21)q4n3(q21)3c2=(q2n1)2(nq2n2(n1)q2n1)q4n3(q21)3c3=(q2n1)(q2n+4n(q41)q2nq2)q4n(q21)2\begin{split}c_{1}&=\frac{(q^{2n}-1)^{2}(q^{2n-2}+(n-1)q^{2n}-(n-1)q^{2n+2}-1)}{q^{4n-3}(q^{2}-1)^{3}}\\ c_{2}&=\frac{(q^{2n}-1)^{2}(nq^{2n-2}-(n-1)q^{2n}-1)}{q^{4n-3}(q^{2}-1)^{3}}\\ c_{3}&=\frac{(q^{2n}-1)(q^{2n+4}-n(q^{4}-1)q^{2n}-q^{2})}{q^{4n}(q^{2}-1)^{2}}\end{split}

Through direct computation, we can verify that the Source Matrix of order 22 and 33 fit in the general form. In following subsections we provide the steps to compute the contribution of tensor products in the forms of:

  1. 1)

    (aek)lafh(aek)m1l(ceg)lchd(ceg)m1l(aek)^{l}afh(aek)^{m-1-l}\otimes\\ (ceg)^{l}chd(ceg)^{m-1-l}

  2. 2)

    (aek)lafk(aek)kaeh(aek)m2lk(ceg)lchg(ceg)kced(ceg)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-2-l-k}

  3. 3)

    (aek)laeh(aek)kafk(aek)m2lk(ceg)lced(ceg)kchg(ceg)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}\otimes\\ (ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-2-l-k}

to each linear relation in the Source Matrix. The contributions of other tensor products to the Source Matrix are computed in a similar way.

4.1.1. Decomposition of left components

We start with left components in the form of (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}. Besides considering the coefficient of (aek)m1afh(aek)^{m-1}afh, the decomposition of the above Left components may contains other standard monomials with m1m-1 generator aa and m1m-1 generator kk. Since there is only m1m-1 generator kk’s in these left components, we may ignore the new monomials generated by switching kk with other generators.

(aek)lafh(aek)m1l=(aek)m1afh+(qq1)i=1m1l(aek)l+i1abdk(aek)m1lifh+(qq1)i=1m1l(aek)la(aek)i1cdek(aek)m1lih(qq1)i=1m1l(aek)laf(aek)i1bgek(aek)m1li\begin{split}&(aek)^{l}afh(aek)^{m-1-l}\\ =&(aek)^{m-1}afh+(q-q^{-1})\sum_{i=1}^{m-1-l}(aek)^{l+i-1}abdk(aek)^{m-1-l-i}fh+\cdots\\ &-(q-q^{-1})*\sum_{i=1}^{m-1-l}(aek)^{l}a(aek)^{i-1}cdek(aek)^{m-1-l-i}h\\ &-(q-q^{-1})*\sum_{i=1}^{m-1-l}(aek)^{l}af(aek)^{i-1}bgek(aek)^{m-1-l-i}\end{split}

Notice that every term appearing in the decomposition contains exactly m1m-1 generator aa and m1m-1 generator kk besides (aek)m1afh(aek)^{m-1}afh. Thus, we have:

(aek)l+i1abdk(aek)m1lifh=(aek)m2afhbdk+(q21)(aek)m1bfg+(q21)(aek)m1cdh(q21)2/q(aek)m1ceg,\begin{split}&(aek)^{l+i-1}abdk(aek)^{m-1-l-i}fh\\ =&(aek)^{m-2}afhbdk+(q^{2}-1)*(aek)^{m-1}bfg+(q^{2}-1)*(aek)^{m-1}cdh\\ &-(q^{2}-1)^{2}/q*(aek)^{m-1}ceg\cdots,\end{split}

and

(aek)la(aek)i1cdek(aek)m1lih=q2(aek)m1cdh+,\begin{split}&(aek)^{l}a(aek)^{i-1}cdek(aek)^{m-1-l-i}h\\ =&q^{2}*(aek)^{m-1}cdh+\cdots,\end{split}

and

(aek)laf(aek)i1bgek(aek)m1li=q2(aek)m1bfg(q3q)(aek)m1ceg+.\begin{split}&(aek)^{l}af(aek)^{i-1}bgek(aek)^{m-1-l-i}\\ =&q^{2}*(aek)^{m-1}bfg-(q^{3}-q)*(aek)^{m-1}ceg+\cdots.\end{split}

Together, we have:

(aek)lafh(aek)m1l=(aek)m1afh+(qq1)(m1l)(aek)m2afhbdk(qq1)(m1l)(aek)m1bfg(qq1)(m1l)(aek)m1cdh+(qq1)2(m1l)(aek)m1ceg+\begin{split}&(aek)^{l}afh(aek)^{m-1-l}\\ =&(aek)^{m-1}afh+(q-q^{-1})(m-1-l)*(aek)^{m-2}afhbdk\\ &-(q-q^{-1})(m-1-l)*(aek)^{m-1}bfg-(q-q^{-1})(m-1-l)*(aek)^{m-1}cdh\\ &+(q-q^{-1})^{2}(m-1-l)*(aek)^{m-1}ceg+\cdots\end{split}

Then, we consider left components in the form of (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}. Again, we may ignore the new monomials generated from switching generator kk with other generators. Thus, we get:

(aek)lafk(aek)kaeh(aek)m2lk=(aek)laf(aek)k+1h(aek)m2lk+(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}=(aek)^{l}af(aek)^{k+1}h(aek)^{m-2-l-k}+\cdots

For (aek)laf(aek)k+1h(aek)m2lk(aek)^{l}af(aek)^{k+1}h(aek)^{m-2-l-k}, we have:

(aek)laf(aek)k+1h(aek)m2lk=(aek)lafh(aek)m1l+(q21)q(k+1)(aek)lbfg(aek)m2l(q21)2(k+1)(aek)lceg(aek)m2l+\begin{split}&(aek)^{l}af(aek)^{k+1}h(aek)^{m-2-l-k}\\ =&(aek)^{l}afh(aek)^{m-1-l}\\ &+(q^{2}-1)q(k+1)*(aek)^{l}bfg(aek)^{m-2-l}\\ &-(q^{2}-1)^{2}(k+1)*(aek)^{l}ceg(aek)^{m-2-l}+\cdots\\ \end{split}

Then, using the result of the decomposition of (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}, we get:

(aek)lafk(aek)kaeh(aek)m2lk=(aek)m1afh+(qq1)(m1l)(aek)m2afhbdk+(qq1)[(k+1)q2(m1l)](aek)m1bfg(qq1)(m1l)(aek)m1cdh+(qq1)2[(m1l)(k+1)q2](aek)m1ceg+\begin{split}&(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}\\ =&(aek)^{m-1}afh+(q-q^{-1})(m-1-l)*(aek)^{m-2}afhbdk\\ &+(q-q^{-1})\left[(k+1)q^{2}-(m-1-l)\right]*(aek)^{m-1}bfg\\ &-(q-q^{-1})(m-1-l)*(aek)^{m-1}cdh\\ &+(q-q^{-1})^{2}\left[(m-1-l)-(k+1)q^{2}\right]*(aek)^{m-1}ceg+\cdots\end{split}

Finally we consider left components in the form of (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}. Similar to previous two cases, we may ignore the new monomials generated from switching generator kk with other generators. Thus, we get:

(aek)laeh(aek)kafk(aek)m2lk=q2(aek)l+1h(aek)kaf(aek)m2lk+(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}=q^{2}*(aek)^{l+1}h(aek)^{k}af(aek)^{m-2-l-k}+\cdots

For (aek)l+1h(aek)kaf(aek)m2lk(aek)^{l+1}h(aek)^{k}af(aek)^{m-2-l-k}, we have:

(aek)l+1h(aek)kaf(aek)m2lk=(aek)l+k+1afh(aek)m2lk(qq1)i=1k+1(aek)k+l+1bfg(aek)m2lk+\begin{split}&(aek)^{l+1}h(aek)^{k}af(aek)^{m-2-l-k}\\ =&(aek)^{l+k+1}afh(aek)^{m-2-l-k}\\ &-(q-q^{-1})*\sum_{i=1}^{k+1}(aek)^{k+l+1}bfg(aek)^{m-2-l-k}+\cdots\\ \end{split}

Then, using the result of the decomposition of (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}, we get:

(aek)laeh(aek)kafk(aek)m2lk=q2(aek)l+1h(aek)kaf(aek)m2lk+=q2(aek)m1afh+q2(qq1)(m2lk)(aek)m2afhbdkq2(qq1)(m1l)(aek)m1bfgq2(qq1)(m2lk)(aek)m1cdh+q2(qq1)2(m2lk)(aek)m1ceg+\begin{split}&(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}\\ =&q^{2}*(aek)^{l+1}h(aek)^{k}af(aek)^{m-2-l-k}+\cdots\\ =&q^{2}*(aek)^{m-1}afh+q^{2}(q-q^{-1})(m-2-l-k)*(aek)^{m-2}afhbdk\\ &-q^{2}(q-q^{-1})(m-1-l)*(aek)^{m-1}bfg\\ &-q^{2}(q-q^{-1})(m-2-l-k)*(aek)^{m-1}cdh\\ &+q^{2}(q-q^{-1})^{2}(m-2-l-k)*(aek)^{m-1}ceg+\cdots\end{split}

4.1.2. Decomposition of right components

When the left component is (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}, the corresponding right component is (ceg)lchd(ceg)m1l(ceg)^{l}chd(ceg)^{m-1-l}. We have:

(ceg)lchd(ceg)m1l=cdh(ceg)m1(qq1)(ceg)m(ceg)^{l}chd(ceg)^{m-1-l}=cdh(ceg)^{m-1}-(q-q^{-1})*(ceg)^{m}

Recall the decomposition of (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l} in subsection 4.1.1. By summing over index ll, the contribution of (ceg)lchd(ceg)m1l(ceg)^{l}chd(ceg)^{m-1-l} to the linear relation corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒂𝒇𝒉\boldsymbol{(aek)^{m-1}afh} is:

mcdh(ceg)m1m(qq1)(ceg)m.m*cdh(ceg)^{m-1}-m(q-q^{-1})*(ceg)^{m}.

The contribution to the linear relation corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟐𝒂𝒇𝒉𝒃𝒅𝒌\boldsymbol{(aek)^{m-2}afhbdk} is:

(qq1)l=0m1(m1l)[cdh(ceg)m1(qq1)(ceg)m]=(qq1)m(m1)2cdh(ceg)m1(qq1)2m(m1)2(ceg)m\begin{split}&(q-q^{-1})\sum_{l=0}^{m-1}(m-1-l)*\left[cdh(ceg)^{m-1}-(q-q^{-1})*(ceg)^{m}\right]\\ =&(q-q^{-1})\frac{m(m-1)}{2}*cdh(ceg)^{m-1}-(q-q^{-1})^{2}\frac{m(m-1)}{2}*(ceg)^{m}\end{split}

Similarly, the contribution to the linear relations corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒃𝒇𝒈\boldsymbol{(aek)^{m-1}bfg} and (𝒂𝒆𝒌)𝒎𝟏𝒄𝒅𝒉\boldsymbol{(aek)^{m-1}cdh} are the same:

(qq1)l=0m1(m1l)[cdh(ceg)m1(qq1)(ceg)m]=(qq1)m(m1)2cdh(ceg)m1+(qq1)2m(m1)2(ceg)m\begin{split}&-(q-q^{-1})\sum_{l=0}^{m-1}(m-1-l)*\left[cdh(ceg)^{m-1}-(q-q^{-1})*(ceg)^{m}\right]\\ =&-(q-q^{-1})\frac{m(m-1)}{2}*cdh(ceg)^{m-1}+(q-q^{-1})^{2}\frac{m(m-1)}{2}*(ceg)^{m}\end{split}

The contribution to the linear relations corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟏𝒄𝒆𝒈\boldsymbol{(aek)^{m-1}ceg} is:

(qq1)2l=0m1(m1l)[cdh(ceg)m1(qq1)(ceg)m]=(qq1)2m(m1)2cdh(ceg)m1(qq1)3m(m1)2(ceg)m\begin{split}&(q-q^{-1})^{2}\sum_{l=0}^{m-1}(m-1-l)*\left[cdh(ceg)^{m-1}-(q-q^{-1})*(ceg)^{m}\right]\\ =&(q-q^{-1})^{2}\frac{m(m-1)}{2}*cdh(ceg)^{m-1}-(q-q^{-1})^{3}\frac{m(m-1)}{2}*(ceg)^{m}\end{split}

When the left component is (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}, the corresponding right component is (ceg)lchg(ceg)kced(ceg)m2lk(ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-2-l-k}. We have:

(ceg)lchg(ceg)kced(ceg)m2lk=q2k2cdh(ceg)m1q2k2(qq1)(ceg)m\begin{split}&(ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-2-l-k}\\ =&q^{-2k-2}*cdh(ceg)^{m-1}-q^{-2k-2}(q-q^{-1})*(ceg)^{m}\end{split}

Recall the decomposition of (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k} in subsection 4.1.1. We write =cdh(ceg)m1(qq1)(ceg)m\mathcal{F}=cdh(ceg)^{m-1}-(q-q^{-1})*(ceg)^{m}. By summing over index ll and kk, the contribution of (ceg)lchg(ceg)kced(ceg)m2lk(ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-2-l-k} to the linear relation corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒂𝒇𝒉\boldsymbol{(aek)^{m-1}afh} is:

l=0m2k=0m2l[q2k2cdh(ceg)m1q2k2(qq1)(ceg)m]=[(m1)1q21+q2m+21(1q2)2]\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}\left[q^{-2k-2}*cdh(ceg)^{m-1}-q^{-2k-2}(q-q^{-1})*(ceg)^{m}\right]\\ =&\left[(m-1)\frac{1}{q^{2}-1}+\frac{q^{-2m+2}-1}{(1-q^{2})^{2}}\right]*\mathcal{F}\end{split}

The contribution to the linear relation corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟐𝒂𝒇𝒉𝒃𝒅𝒌\boldsymbol{(aek)^{m-2}afhbdk} is:

l=0m2k=0m2l(qq1)(m1l)q2k2=[m(m1)2qq2mq2m+(m1)q2m2q(1q2)2]\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}(q-q^{-1})(m-1-l)q^{-2k-2}*\mathcal{F}\\ =&\left[\frac{m(m-1)}{2q}-\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}\right]*\mathcal{F}\\ \end{split}

The contribution to the linear relations corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒃𝒇𝒈\boldsymbol{(aek)^{m-1}bfg} is:

k=0m2l=0m2k(qq1)[(k+1)q2(m1l)]q2k2=(mq52mq3+mq+q5+q3q)(q2m1)(1q2)2+4mq6(m2+5m)q4+2m2q2m2+m2q(1q2)2\begin{split}&\sum_{k=0}^{m-2}\sum_{l=0}^{m-2-k}(q-q^{-1})\left[(k+1)q^{2}-(m-1-l)\right]q^{-2k-2}*\mathcal{F}\\ =&\frac{(mq^{5}-2mq^{3}+mq+q^{5}+q^{3}-q)(q^{-2m}-1)}{(1-q^{2})^{2}}*\mathcal{F}\\ &+\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q(1-q^{2})^{2}}*\mathcal{F}\end{split}

The contribution to the linear relations corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒄𝒅𝒉\boldsymbol{(aek)^{m-1}cdh} is:

l=0m2k=0m2l(qq1)(m1l)q2k2=[q2mq2m+(m1)q2m2q(1q2)2m(m1)2q]\begin{split}&-\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}(q-q^{-1})(m-1-l)q^{-2k-2}*\mathcal{F}\\ =&\left[\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}-\frac{m(m-1)}{2q}\right]*\mathcal{F}\\ \end{split}

The contribution to the linear relations corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒄𝒆𝒈\boldsymbol{(aek)^{m-1}ceg} is:

k=0m2l=0m2k(qq1)2[(m1l)(k+1)q2]q2k2=(2mq64mq4+2mq2+2q6+2q42q2)(q2m1)2q2(1q2)+4mq6(m2+5m)q4+2m2q2m2+m2q2(1q2)\begin{split}&\sum_{k=0}^{m-2}\sum_{l=0}^{m-2-k}(q-q^{-1})^{2}\left[(m-1-l)-(k+1)q^{2}\right]q^{-2k-2}*\mathcal{F}\\ =&\frac{(2mq^{6}-4mq^{4}+2mq^{2}+2q^{6}+2q^{4}-2q^{2})(q^{-2m}-1)}{2q^{2}(1-q^{2})}*\mathcal{F}\\ &+\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q^{2}(1-q^{2})}*\mathcal{F}\end{split}

When the left component is (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}, the corresponding right component is (ceg)lced(ceg)kchg(ceg)m2lk(ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-2-l-k}. We have:

(ceg)lced(ceg)kchg(ceg)m2lk=q2kcdh(ceg)m1\begin{split}(ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-2-l-k}=q^{2k}*cdh(ceg)^{m-1}\\ \end{split}

Recall the decomposition of (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k} in subsection 4.1.1. By summing over index ll and kk, the contribution of (ceg)lced(ceg)kchg(ceg)m2lk(ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-2-l-k} to the linear relation corresponding to comparing basis (𝒂𝒆𝒌)𝒎𝟏𝒂𝒇𝒉\boldsymbol{(aek)^{m-1}afh} is:

l=0m2k=0m2lq2k+2cdh(ceg)m1=[(m1)1q21+q2m21(1q2)2]cdh(ceg)m1\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}q^{2k+2}*cdh(ceg)^{m-1}\\ =&\left[(m-1)\frac{1}{q^{-2}-1}+\frac{q^{2m-2}-1}{(1-q^{-2})^{2}}\right]*cdh(ceg)^{m-1}\\ \end{split}

The contribution to the linear relation corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟐𝒂𝒇𝒉𝒃𝒅𝒌\boldsymbol{(aek)^{m-2}afhbdk} is:

l=0m2k=0m2l(qq1)(m2lk)q2k+2cdh(ceg)m1=[q2m3(m1)q+(m2)q1(1q2)2(m2)(m1)q2]cdh(ceg)m1\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}(q-q^{-1})(m-2-l-k)q^{2k+2}*cdh(ceg)^{m-1}\\ =&\left[\frac{q^{2m-3}-(m-1)q+(m-2)q^{-1}}{(1-q^{-2})^{2}}-\frac{(m-2)(m-1)q}{2}\right]*cdh(ceg)^{m-1}\end{split}

The contribution to the linear relations corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟏𝒃𝒇𝒈\boldsymbol{(aek)^{m-1}bfg} is:

l=0m2k=0m2l(qq1)(m1l)q2k+2cdh(ceg)m1=[m(m1)q2q3mq2m+1+(m1)q2m+3(1q2)2]cdh(ceg)m1\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}-(q-q^{-1})(m-1-l)q^{2k+2}*cdh(ceg)^{m-1}\\ =&\left[\frac{m(m-1)q}{2}-\frac{q^{3}-mq^{2m+1}+(m-1)q^{2m+3}}{(1-q^{2})^{2}}\right]*cdh(ceg)^{m-1}\end{split}

The contribution to the linear relations corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟏𝒄𝒅𝒉\boldsymbol{(aek)^{m-1}cdh} is:

l=0m2k=0m2l(qq1)(m2lk)q2k+2cdh(ceg)m1=[(m2)(m1)q2q2m3(m1)q+(m2)q1(1q2)2]cdh(ceg)m1\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}-(q-q^{-1})(m-2-l-k)q^{2k+2}*cdh(ceg)^{m-1}\\ =&\left[\frac{(m-2)(m-1)q}{2}-\frac{q^{2m-3}-(m-1)q+(m-2)q^{-1}}{(1-q^{-2})^{2}}\right]*cdh(ceg)^{m-1}\end{split}

The contribution to the linear relations corresponding to comparing basis
(𝒂𝒆𝒌)𝒎𝟏𝒄𝒆𝒈\boldsymbol{(aek)^{m-1}ceg} is:

l=0m2k=0m2l(qq1)2(m2lk)q2k+2cdh(ceg)m1=[q2m2(m1)q2+(m2)(1q2)(m2)(m1)(q21)2]cdh(ceg)m1\begin{split}&\sum_{l=0}^{m-2}\sum_{k=0}^{m-2-l}(q-q^{-1})^{2}(m-2-l-k)q^{2k+2}*cdh(ceg)^{m-1}\\ =&\left[\frac{q^{2m-2}-(m-1)q^{2}+(m-2)}{(1-q^{-2})}-\frac{(m-2)(m-1)(q^{2}-1)}{2}\right]*cdh(ceg)^{m-1}\end{split}

4.1.3. Contribution to linear relations corresponding to different comparing basis

The contribution of the 3 types of tensor products determines the linear relation corresponding to comparing basis (aek)m1afh(aek)^{m-1}afh. The coefficient of cdh(ceg)m1cdh(ceg)^{m-1} is:

m+m1q21+q2m+21(1q2)2+m1q21+q2m21(1q2)2=q2(qmqm)2(1q2)2\begin{split}&m+\frac{m-1}{q^{2}-1}+\frac{q^{-2m+2}-1}{(1-q^{2})^{2}}+\frac{m-1}{q^{-2}-1}+\frac{q^{2m-2}-1}{(1-q^{-2})^{2}}\\ =&\frac{q^{2}(q^{m}-q^{-m})^{2}}{(1-q^{2})^{2}}\end{split}

When computing the coefficient of (ceg)m(ceg)^{m}, we have to consider the coefficient of (aek)m1afh(aek)^{m-1}afh in DqmD_{q}^{m}. By Theorem 1 e), terms in DqmD_{q}^{m} whose decomposition contains (aek)m1afh(aek)^{m-1}afh has to be in the form of (aek)lafh(aek)ml1(aek)^{l}afh(aek)^{m-l-1}. Thus, the coefficient of (aek)m1afh(aek)^{m-1}afh in DqmD_{q}^{m} is mq-mq. Then, the coefficient of (ceg)m(ceg)^{m} is:

m(qq1)+mq(qq1)(m1q21+q2m+21(1q2)2)=1qq2m+21q(q21)=q(1q2m)(q21)\begin{split}&-m(q-q^{-1})+mq-(q-q^{-1})*\left(\frac{m-1}{q^{2}-1}+\frac{q^{-2m+2}-1}{(1-q^{2})^{2}}\right)\\ =&\frac{1}{q}-\frac{q^{-2m+2}-1}{q(q^{2}-1)}=\frac{q(1-q^{-2m})}{(q^{2}-1)}\end{split}

The contribution of the 3 types of tensor products to the coefficient of cdh(ceg)m1cdh(ceg)^{m-1} in the linear relation corresponding to comparing basis (aek)m2afhbdk(aek)^{m-2}afhbdk is:

(qq1)m(m1)2+m(m1)2qq2mq2m+(m1)q2m2q(1q2)2+q2m3(m1)q+(m2)q1(1q2)2(m2)(m1)q2=(1q2m)(mq2q2mm+1)q2m1(1q2)2\begin{split}&(q-q^{-1})\frac{m(m-1)}{2}+\frac{m(m-1)}{2q}-\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}\\ &+\frac{q^{2m-3}-(m-1)q+(m-2)q^{-1}}{(1-q^{-2})^{2}}-\frac{(m-2)(m-1)q}{2}\\ =&\frac{(1-q^{2m})(mq^{2}-q^{2m}-m+1)}{q^{2m-1}(1-q^{2})^{2}}\end{split}

The contribution of the 3 types of tensor products to the coefficient of (ceg)m(ceg)^{m} in the linear relation corresponding to comparing basis (aek)m2afhbdk(aek)^{m-2}afhbdk is:

(qq1)2m(m1)2(qq1)m(m1)2q+(qq1)q2mq2m+(m1)q2m2q(1q2)2=(q21)m(m1)2+q2mq2m+(m1)q2m21q2\begin{split}&-(q-q^{-1})^{2}\frac{m(m-1)}{2}-(q-q^{-1})\frac{m(m-1)}{2q}\\ &+(q-q^{-1})\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}\\ =&-(q^{2}-1)\frac{m(m-1)}{2}+\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{1-q^{-2}}\\ \end{split}

The contribution of the 3 types of tensor products to the coefficient of cdh(ceg)m1cdh(ceg)^{m-1} in the linear relation corresponding to comparing basis (aek)m2bfg(aek)^{m-2}bfg is:

(qq1)m(m1)2+m(m1)q2q3mq2m+1+(m1)q2m+3(1q2)2+(2mq64mq4+2mq2+2q6+2q42q2)(q2m1)2q(1q2)2+4mq6(m2+5m)q4+2m2q2m2+m2q(1q2)2=2mq5(3m+1)q3+mq(1q2)2+mq2m+1(m1)q2m+3(1q2)2+(mq52mq3+mq+q5+q3q)(q2m1)(1q2)2\begin{split}&-(q-q^{-1})\frac{m(m-1)}{2}+\frac{m(m-1)q}{2}-\frac{q^{3}-mq^{2m+1}+(m-1)q^{2m+3}}{(1-q^{2})^{2}}\\ &+\frac{(2mq^{6}-4mq^{4}+2mq^{2}+2q^{6}+2q^{4}-2q^{2})(q^{-2m}-1)}{2q(1-q^{2})^{2}}\\ &+\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q(1-q^{2})^{2}}\\ =&\frac{2mq^{5}-(3m+1)q^{3}+mq}{(1-q^{2})^{2}}+\frac{mq^{2m+1}-(m-1)q^{2m+3}}{(1-q^{2})^{2}}\\ &+\frac{(mq^{5}-2mq^{3}+mq+q^{5}+q^{3}-q)(q^{-2m}-1)}{(1-q^{2})^{2}}\\ \end{split}

The contribution of the 3 types of tensor products to the coefficient of (ceg)m(ceg)^{m} in the linear relation corresponding to comparing basis (aek)m1bfg(aek)^{m-1}bfg is:

(qq1)2m(m1)2(qq1)4mq6(m2+5m)q4+2m2q2m2+m2q(1q2)2(qq1)(mq52mq3+mq+q5+q3q)(q2m1)(1q2)2=(5mm2)q4+(2m28m)q2+(3mm2)2(1q2)+(mq42mq2+m+q4+q21)(q2m1)1q2\begin{split}&(q-q^{-1})^{2}\frac{m(m-1)}{2}-(q-q^{-1})\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q(1-q^{2})^{2}}\\ &-(q-q^{-1})\frac{(mq^{5}-2mq^{3}+mq+q^{5}+q^{3}-q)(q^{-2m}-1)}{(1-q^{2})^{2}}\\ =&\frac{(5m-m^{2})q^{4}+(2m^{2}-8m)q^{2}+(3m-m^{2})}{2(1-q^{2})}\\ &+\frac{(mq^{4}-2mq^{2}+m+q^{4}+q^{2}-1)(q^{-2m}-1)}{1-q^{2}}\\ \end{split}

Notice that the sign of the coefficient of (aek)m1cdh(aek)^{m-1}cdh is always the opposite as that of (aek)m2afhbdk(aek)^{m-2}afhbdk in the decomposition of all 3 possible forms of right components. The contribution of the 3 types of tensor products to the coefficient of cdh(ceg)m1cdh(ceg)^{m-1} in the linear relation corresponding to comparing basis (aek)m1cdh(aek)^{m-1}cdh is:

(qq1)m(m1)2+q2mq2m+(m1)q2m2q(1q2)2m(m1)2q+(m2)(m1)q2q2m3(m1)q+(m2)q1(1q2)2=q2m3mq1+(m2)q3+mq2m1(m1)q2m3(1q2)2\begin{split}&-(q-q^{-1})\frac{m(m-1)}{2}+\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}-\frac{m(m-1)}{2q}\\ &+\frac{(m-2)(m-1)q}{2}-\frac{q^{2m-3}-(m-1)q+(m-2)q^{-1}}{(1-q^{-2})^{2}}\\ =&-\frac{q^{2m-3}-mq^{-1}+(m-2)q^{-3}+mq^{-2m-1}-(m-1)q^{-2m-3}}{(1-q^{-2})^{2}}\end{split}

The contribution of the 3 types of tensor products to the coefficient of (ceg)m(ceg)^{m} in the linear relation corresponding to comparing basis (aek)m1cdh(aek)^{m-1}cdh is:

(qq1)2m(m1)2+(qq1)m(m1)2q(qq1)q2mq2m+(m1)q2m2q(1q2)2=(q21)m(m1)2q2mq2m+(m1)q2m21q2\begin{split}&(q-q^{-1})^{2}\frac{m(m-1)}{2}+(q-q^{-1})\frac{m(m-1)}{2q}\\ &-(q-q^{-1})\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{q(1-q^{-2})^{2}}\\ &=(q^{2}-1)\frac{m(m-1)}{2}-\frac{q^{-2}-mq^{-2m}+(m-1)q^{-2m-2}}{1-q^{-2}}\end{split}

The contribution of the 3 types of tensor products to the coefficient of cdh(ceg)m1cdh(ceg)^{m-1} in the linear relation corresponding to comparing basis (aek)m1ceg(aek)^{m-1}ceg is:

(qq1)2m(m1)2+(2mq64mq4+2mq2+2q6+2q42q2)(q2m1)2q2(1q2)+4mq6(m2+5m)q4+2m2q2m2+m2q2(1q2)+q2m2(m1)q2+(m2)(1q2)(m2)(m1)(q21)2=(mq42mq2+m+q4+q21)(q2m1)(1q2)+2mq4+2mq2+q2m1q21\begin{split}&(q-q^{-1})^{2}\frac{m(m-1)}{2}+\frac{(2mq^{6}-4mq^{4}+2mq^{2}+2q^{6}+2q^{4}-2q^{2})(q^{-2m}-1)}{2q^{2}(1-q^{2})}\\ &+\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q^{2}(1-q^{2})}\\ &+\frac{q^{2m-2}-(m-1)q^{2}+(m-2)}{(1-q^{-2})}-\frac{(m-2)(m-1)(q^{2}-1)}{2}\\ =&\frac{(mq^{4}-2mq^{2}+m+q^{4}+q^{2}-1)(q^{-2m}-1)}{(1-q^{2})}+\frac{-2mq^{4}+2mq^{2}+q^{2m}-1}{q^{2}-1}\end{split}

The contribution of the 3 types of tensor products to the coefficient of (ceg)m(ceg)^{m} in the linear relation corresponding to comparing basis (aek)m1ceg(aek)^{m-1}ceg is:

(qq1)3m(m1)2(qq1)4mq6(m2+5m)q4+2m2q2m2+m2q2(1q2)(qq1)(mq42mq2+m+q4+q21)(q2m1)(1q2)=(3mm22)q32+(m22m1)q+m+2m22q+(m+1)q2m+3+(12m)q2m+1+(m1)q2m1\begin{split}&-(q-q^{-1})^{3}\frac{m(m-1)}{2}-(q-q^{-1})\frac{4mq^{6}-(m^{2}+5m)q^{4}+2m^{2}q^{2}-m^{2}+m}{2q^{2}(1-q^{2})}\\ &-(q-q^{-1})\frac{(mq^{4}-2mq^{2}+m+q^{4}+q^{2}-1)(q^{-2m}-1)}{(1-q^{2})}\\ =&\frac{(3m-m^{2}-2)q^{3}}{2}+(m^{2}-2m-1)q+\frac{m+2-m^{2}}{2q}+(m+1)q^{-2m+3}\\ &+(1-2m)q^{-2m+1}+(m-1)q^{-2m-1}\end{split}

4.2. The recursive relation for the Haar state of standard monomials in the form of (cdh)i(ceg)mi(cdh)^{i}(ceg)^{m-i}

In the following, we will derive the recursive relation of h((cdh)i(ceg)mi)h\left((cdh)^{i}(ceg)^{m-i}\right). The case i=1i=1 is solved in the Source Matrix. We will start with the general case 3im13\leq i\leq m-1 and then the case i=2,mi=2,m.

4.2.1. Recursive relation of 3im13\leq i\leq m-1

We will use equation basis (cdh)i1(ceg)mi+1(cdh)^{i-1}(ceg)^{m-i+1} and comparing basis (aek)m1afh(aek)^{m-1}afh to derive the recursive relation of the Haar state of (cdh)i(ceg)mi(cdh)^{i}(ceg)^{m-i}. In the comultiplication of (cdh)i1(ceg)mi+1(cdh)^{i-1}(ceg)^{m-i+1}, the left components containing (aek)m1afh(aek)^{m-1}afh are

  1. 1)

    (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}

  2. 2)

    (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}

  3. 3)

    (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}

When the left component is in the form (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l}, the coefficient of (aek)m1afh(aek)^{m-1}afh in the decomposition of (aek)lafh(aek)m1l(aek)^{l}afh(aek)^{m-1-l} is 11 and the corresponding relation components are:

  • 1)

    (cdh)lcge(cdh)i2l(ceg)mi+1(cdh)^{l}cge(cdh)^{i-2-l}(ceg)^{m-i+1}

  • 2)

    (cdh)i1(ceg)lchd(ceg)mil(cdh)^{i-1}(ceg)^{l}chd(ceg)^{m-i-l}

When the left component is in the form (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k}, the coefficient of (aek)m1afh(aek)^{m-1}afh in the decomposition of (aek)lafk(aek)kaeh(aek)m2lk(aek)^{l}afk(aek)^{k}aeh(aek)^{m-2-l-k} is 11 and the corresponding relation components are:

  • 3)

    (cdh)lcgh(cdh)kcde(cdh)i3lk(ceg)mi+1(cdh)^{l}cgh(cdh)^{k}cde(cdh)^{i-3-l-k}(ceg)^{m-i+1}

  • 4)

    (cdh)lcgh(cdh)i2l(ceg)kced(ceg)mik(cdh)^{l}cgh(cdh)^{i-2-l}(ceg)^{k}ced(ceg)^{m-i-k}

  • 5)

    (cdh)i1(ceg)lchg(ceg)kced(ceg)mi1lk(cdh)^{i-1}(ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-i-1-l-k}

When the left component is in the form (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k}, the coefficient of (aek)m1afh(aek)^{m-1}afh in the decomposition of (aek)laeh(aek)kafk(aek)m2lk(aek)^{l}aeh(aek)^{k}afk(aek)^{m-2-l-k} is q2q^{2} and the corresponding relation components are:

  • 6)

    (cdh)lcde(cdh)kcgh(cdh)i3lk(ceg)mi+1(cdh)^{l}cde(cdh)^{k}cgh(cdh)^{i-3-l-k}(ceg)^{m-i+1}

  • 7)

    (cdh)lcde(cdh)i2l(ceg)kchg(ceg)mik(cdh)^{l}cde(cdh)^{i-2-l}(ceg)^{k}chg(ceg)^{m-i-k}

  • 8)

    (cdh)i1(ceg)lced(ceg)kchg(ceg)mi1lk(cdh)^{i-1}(ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-i-1-l-k}

For case 1), we have:

(cdh)lcge(cdh)i2l(ceg)mi+1=(cdh)i2(ceg)mi+2(cdh)^{l}cge(cdh)^{i-2-l}(ceg)^{m-i+1}=(cdh)^{i-2}(ceg)^{m-i+2}

The contribution of case 1) to the linear relation is:

(i1)(cdh)i2(ceg)mi+2(i-1)*(cdh)^{i-2}(ceg)^{m-i+2}

For case 2), we have:

(cdh)i1(ceg)lchd(ceg)mil=(cdh)i(ceg)mi(q1/q)(cdh)i1(ceg)mi+1(cdh)^{i-1}(ceg)^{l}chd(ceg)^{m-i-l}=(cdh)^{i}(ceg)^{m-i}-(q-1/q)*(cdh)^{i-1}(ceg)^{m-i+1}

The contribution of case 2) to the linear relation is:

(mi+1)(cdh)i(ceg)mi(mi+1)(q1/q)(cdh)i1(ceg)mi+1(m-i+1)*(cdh)^{i}(ceg)^{m-i}-(m-i+1)(q-1/q)*(cdh)^{i-1}(ceg)^{m-i+1}

For case 3), we have:

(cdh)lcgh(cdh)kcde(cdh)i3lk(ceg)mi+1=(cdh)l(chd)k+1(cdh)i3lk(ceg)mi+2=(cdh)l(cdh(q1/q)ceg)k+1(cdh)i3lk(ceg)mi+2=j=0k+1((q1/q))j(k+1j)(cdh)i2j(ceg)mi+2+j\begin{split}&(cdh)^{l}cgh(cdh)^{k}cde(cdh)^{i-3-l-k}(ceg)^{m-i+1}\\ &=(cdh)^{l}(chd)^{k+1}(cdh)^{i-3-l-k}(ceg)^{m-i+2}\\ &=(cdh)^{l}(cdh-(q-1/q)*ceg)^{k+1}(cdh)^{i-3-l-k}(ceg)^{m-i+2}\\ &=\sum_{j=0}^{k+1}(-(q-1/q))^{j}{k+1\choose j}*(cdh)^{i-2-j}(ceg)^{m-i+2+j}\end{split}

The contribution of case 3) to the linear relation is:

l=0i3k=0i3lj=0k+1((q1/q))j(k+1j)(cdh)i2j(ceg)mi+2+j+l=0i3j=1i2l((q1/q))j(i1lj+1)(cdh)i2j(ceg)mi+2+j=(i1)(i2)2(cdh)i2(ceg)mi+2+k=3i((q1/q))k2(ik)(cdh)ik(ceg)mi+k\begin{split}&\sum_{l=0}^{i-3}\sum_{k=0}^{i-3-l}\sum_{j=0}^{k+1}(-(q-1/q))^{j}{k+1\choose j}*(cdh)^{i-2-j}(ceg)^{m-i+2+j}\\ &+\sum_{l=0}^{i-3}\sum_{j=1}^{i-2-l}(-(q-1/q))^{j}{i-1-l\choose j+1}*(cdh)^{i-2-j}(ceg)^{m-i+2+j}\\ =&\frac{(i-1)(i-2)}{2}*(cdh)^{i-2}(ceg)^{m-i+2}\\ &+\sum_{k=3}^{i}(-(q-1/q))^{k-2}{i\choose k}*(cdh)^{i-k}(ceg)^{m-i+k}\\ \end{split}

For case 4), we have:

(cdh)lcgh(cdh)i2l(ceg)kced(ceg)mik=q2k1(cdh)l(chd)i1l(ceg)mi+1=q2k1j=0i1l((q1/q))j(i1lj)(cdh)i1j(ceg)mi+1+j\begin{split}&(cdh)^{l}cgh(cdh)^{i-2-l}(ceg)^{k}ced(ceg)^{m-i-k}\\ &=q^{-2k-1}*(cdh)^{l}(chd)^{i-1-l}(ceg)^{m-i+1}\\ &=q^{-2k-1}\sum_{j=0}^{i-1-l}(-(q-1/q))^{j}{i-1-l\choose j}*(cdh)^{i-1-j}(ceg)^{m-i+1+j}\\ \end{split}

The contribution of case 4) to the linear relation is:

k=0miq2k1l=0i2j=0i1l((q1/q))j(i1lj)(cdh)i1j(ceg)mi+1+jk=0miq2k1l=1i1j=0l((q1/q))j(lj)(cdh)i1j(ceg)mi+1+j=q11q2(mi+1)1q2((i1)(cdh)i1(ceg)mi+1+k=2i((q1/q))k1(ik)(cdh)ik(ceg)mi+k)\begin{split}&\sum_{k=0}^{m-i}q^{-2k-1}\sum_{l=0}^{i-2}\sum_{j=0}^{i-1-l}(-(q-1/q))^{j}{i-1-l\choose j}*(cdh)^{i-1-j}(ceg)^{m-i+1+j}\\ &\sum_{k=0}^{m-i}q^{-2k-1}\sum_{l=1}^{i-1}\sum_{j=0}^{l}(-(q-1/q))^{j}{l\choose j}*(cdh)^{i-1-j}(ceg)^{m-i+1+j}\\ =&q^{-1}\frac{1-q^{-2(m-i+1)}}{1-q^{-2}}((i-1)*(cdh)^{i-1}(ceg)^{m-i+1}\\ &+\sum_{k=2}^{i}(-(q-1/q))^{k-1}{i\choose k}*(cdh)^{i-k}(ceg)^{m-i+k})\end{split}

For case 5), we have:

(cdh)i1(ceg)lchg(ceg)kced(ceg)mi1lk=(cdh)i1(ceg)lch(ceg)k+1d(ceg)mi1lk=q2k2(cdh)i1chd(ceg)mi=q2k2((cdh)i(ceg)mi(q1/q)(cdh)i1(ceg)mi+1)\begin{split}&(cdh)^{i-1}(ceg)^{l}chg(ceg)^{k}ced(ceg)^{m-i-1-l-k}\\ =&(cdh)^{i-1}(ceg)^{l}ch(ceg)^{k+1}d(ceg)^{m-i-1-l-k}\\ =&q^{-2k-2}*(cdh)^{i-1}chd(ceg)^{m-i}\\ =&q^{-2k-2}*((cdh)^{i}(ceg)^{m-i}-(q-1/q)*(cdh)^{i-1}(ceg)^{m-i+1})\end{split}

The contribution of case 5) to the linear relation is:

l=0mi1k=0mi1lq2k2((cdh)i(ceg)mi(q1/q)(cdh)i1(ceg)mi+1)=(miq21+q2(mi)1(1q2)2)((cdh)i(ceg)mi(q1/q)(cdh)i1(ceg)mi+1)\begin{split}&\sum_{l=0}^{m-i-1}\sum_{k=0}^{m-i-1-l}q^{-2k-2}*((cdh)^{i}(ceg)^{m-i}-(q-1/q)*(cdh)^{i-1}(ceg)^{m-i+1})\\ =&(\frac{m-i}{q^{2}-1}+\frac{q^{-2(m-i)}-1}{(1-q^{2})^{2}})*((cdh)^{i}(ceg)^{m-i}-(q-1/q)*(cdh)^{i-1}(ceg)^{m-i+1})\end{split}

For case 6), we have:

(cdh)lcde(cdh)kcgh(cdh)i3lk(ceg)mi+1=q2(cdh)lcd(cdh)kh(cdh)i3lk(ceg)mi+2=q2(cdh)lcd(hcd+(q+1/q)ceg)kh(cdh)i3lk(ceg)mi+2=q2j=0k(q1/q)j(kj)(cdh)l+kjcd(ceg)jh(cdh)i3lk(ceg)mi+2=q2j=0k(q1/q)jq2j(kj)(cdh)i2j(ceg)mi+2+j\begin{split}&(cdh)^{l}cde(cdh)^{k}cgh(cdh)^{i-3-l-k}(ceg)^{m-i+1}\\ =&q^{2}*(cdh)^{l}cd(cdh)^{k}h(cdh)^{i-3-l-k}(ceg)^{m-i+2}\\ =&q^{2}*(cdh)^{l}cd(hcd+(q+1/q)*ceg)^{k}h(cdh)^{i-3-l-k}(ceg)^{m-i+2}\\ =&q^{2}\sum_{j=0}^{k}(q-1/q)^{j}{k\choose j}*(cdh)^{l+k-j}cd(ceg)^{j}h(cdh)^{i-3-l-k}(ceg)^{m-i+2}\\ =&q^{2}\sum_{j=0}^{k}(q-1/q)^{j}q^{2j}{k\choose j}*(cdh)^{i-2-j}(ceg)^{m-i+2+j}\\ \end{split}

The contribution of case 6) to the linear relation is:

q4l=0i3k=0i3lj=0k(q1/q)jq2j(kj)(cdh)i2j(ceg)mi+2+j=k=2i1(q1/q)k2q2k(i1k)(cdh)ik(ceg)mi+k\begin{split}&q^{4}\sum_{l=0}^{i-3}\sum_{k=0}^{i-3-l}\sum_{j=0}^{k}(q-1/q)^{j}q^{2j}{k\choose j}*(cdh)^{i-2-j}(ceg)^{m-i+2+j}\\ &=\sum_{k=2}^{i-1}(q-1/q)^{k-2}q^{2k}{i-1\choose k}*(cdh)^{i-k}(ceg)^{m-i+k}\end{split}

For case 7), we have:

(cdh)lcde(cdh)i2l(ceg)kchg(ceg)mik=q2k+1j=0i2l(q1/q)jq2j(i2lj)(cdh)i1j(ceg)mi+1+j\begin{split}&(cdh)^{l}cde(cdh)^{i-2-l}(ceg)^{k}chg(ceg)^{m-i-k}\\ =&q^{2k+1}\sum_{j=0}^{i-2-l}(q-1/q)^{j}q^{2j}{i-2-l\choose j}*(cdh)^{i-1-j}(ceg)^{m-i+1+j}\\ \end{split}

The contribution of case 7) to the linear relation is:

q2k=0miq2k+1l=0i2j=0i2l(q1/q)jq2j(i2lj)(cdh)i1j(ceg)mi+1+j=q1q2(mi+1)1q2k=1i1(q1/q)k1q2k(i1k)(cdh)ik(ceg)mi+k\begin{split}&q^{2}\sum_{k=0}^{m-i}q^{2k+1}\sum_{l=0}^{i-2}\sum_{j=0}^{i-2-l}(q-1/q)^{j}q^{2j}{i-2-l\choose j}*(cdh)^{i-1-j}(ceg)^{m-i+1+j}\\ =&q\frac{1-q^{2(m-i+1)}}{1-q^{2}}\sum_{k=1}^{i-1}(q-1/q)^{k-1}q^{2k}{i-1\choose k}*(cdh)^{i-k}(ceg)^{m-i+k}\end{split}

For case 8), we have:

(cdh)i1(ceg)lced(ceg)kchg(ceg)mi1lk=q2k(cdh)i(ceg)mi\begin{split}&(cdh)^{i-1}(ceg)^{l}ced(ceg)^{k}chg(ceg)^{m-i-1-l-k}\\ =&q^{2k}*(cdh)^{i}(ceg)^{m-i}\end{split}

The contribution of case 8) to the linear relation is:

q2l=0mi1k=0mi1lq2k(cdh)i(ceg)mi=((mi)q21q2+q4(q2(mi)1)(1q2)2)(cdh)i(ceg)mi\begin{split}&q^{2}\sum_{l=0}^{m-i-1}\sum_{k=0}^{m-i-1-l}q^{2k}*(cdh)^{i}(ceg)^{m-i}\\ =&\left(\frac{(m-i)q^{2}}{1-q^{2}}+\frac{q^{4}(q^{2(m-i)}-1)}{(1-q^{2})^{2}}\right)*(cdh)^{i}(ceg)^{m-i}\end{split}

The term (cdh)i(ceg)mi(cdh)^{i}(ceg)^{m-i} appears in case 2), 5), and 8). Summing the contributions from these cases, the coefficient of (cdh)i(ceg)mi(cdh)^{i}(ceg)^{m-i} is:

q2(qmi+1q(mi+1))2(1q2)2\begin{split}&\frac{q^{2}(q^{m-i+1}-q^{-(m-i+1)})^{2}}{(1-q^{2})^{2}}\end{split}

The term (cdh)i1(ceg)mi+1(cdh)^{i-1}(ceg)^{m-i+1} appears in case 2), 4), 5), 7), and the right-hand side of Equation (14). Summing the contributions from these cases, the coefficient of (cdh)i1(ceg)mi+1(cdh)^{i-1}(ceg)^{m-i+1} is:

(i1)q2(mi)+5+iq2(mi)1q(1q2)\begin{split}&\frac{-(i-1)q^{2(m-i)+5}+iq^{-2(m-i)-1}-q}{(1-q^{2})}\end{split}

The term (cdh)i2(ceg)mi+2(cdh)^{i-2}(ceg)^{m-i+2} appears in case 1), 3), 4), 6), and 7). Notice that if we combine the contribution of case 1) and case 3), we get:

(i1)+(i1)(i2)2=i(i1)2=(i2)(i-1)+\frac{(i-1)(i-2)}{2}=\frac{i(i-1)}{2}={i\choose 2}

which corresponds to k=2k=2 in the summation of case 3). Thus, we can treat (cdh)i2(ceg)mi+2(cdh)^{i-2}(ceg)^{m-i+2} in the same way as the general case (cdh)ik(ceg)mi+k(cdh)^{i-k}(ceg)^{m-i+k}, 3ki13\leq k\leq i-1 which appears in case 3), 4), 6), and 7). Summing the contributions from these cases, the coefficient of (cdh)ik(ceg)mi+k(cdh)^{i-k}(ceg)^{m-i+k} for 2ki12\leq k\leq i-1 is:

(q1q)k2(ik)q2(mi+1)+(qq1)k2q2k(i1k)q2(mi+1)\begin{split}&(q^{-1}-q)^{k-2}{i\choose k}q^{-2(m-i+1)}+(q-q^{-1})^{k-2}q^{2k}{i-1\choose k}q^{2(m-i+1)}\end{split}

Notice that if we put k=1k=1 in the above coefficient, we get:

(q1q)1iq2(mi+1)+(qq1)1q2(i1)q2(mi+1)=iq2m+2i1(i1)q2m2i+51q2\begin{split}&(q^{-1}-q)^{-1}iq^{-2(m-i+1)}+(q-q^{-1})^{-1}q^{2}(i-1)q^{2(m-i+1)}\\ =&\frac{iq^{-2m+2i-1}-(i-1)q^{2m-2i+5}}{1-q^{2}}\end{split}

The term (ceg)m(ceg)^{m} appears in case 3) and 4). Summing the contributions from these cases, the coefficient of (ceg)m(ceg)^{m} is:

(q1q)i2q2(mi+1)\begin{split}&(q^{-1}-q)^{i-2}q^{-2(m-i+1)}\end{split}

The expressions of the coefficients of (cdh)i2(ceg)mi+2(cdh)^{i-2}(ceg)^{m-i+2} and (cdh)ik(ceg)mi+k(cdh)^{i-k}(ceg)^{m-i+k} for 3ki13\leq k\leq i-1 are consistent. Thus, the expression of (cdh)i(ceg)mi(cdh)^{i}(ceg)^{m-i} is:

q2(qmi+1q(mi+1))2(1q2)2h((cdh)i(ceg)mi)=qq21h((cdh)i1(ceg)mi+1)k=1i1ckh((cdh)ik(ceg)mi+k)(q1q)i2q2(mi+1)h((ceg)m)\begin{split}&\frac{q^{2}(q^{m-i+1}-q^{-(m-i+1)})^{2}}{(1-q^{2})^{2}}*h((cdh)^{i}(ceg)^{m-i})\\ =&-\frac{q}{q^{2}-1}*h((cdh)^{i-1}(ceg)^{m-i+1})\\ &-\sum_{k=1}^{i-1}c_{k}*h((cdh)^{i-k}(ceg)^{m-i+k})-(q^{-1}-q)^{i-2}q^{-2(m-i+1)}h((ceg)^{m})\\ \end{split} (15)

where

ck=(q1q)k2(ik)q2(mi+1)+(q1/q)k2q2k(i1k)q2(mi+1).\begin{split}c_{k}=(q^{-1}-q)^{k-2}{i\choose k}q^{-2(m-i+1)}+(q-1/q)^{k-2}q^{2k}{i-1\choose k}q^{2(m-i+1)}.\end{split}

4.2.2. Special case i=2i=2

We use the linear relation derived from cdh(ceg)m1cdh(ceg)^{m-1} and equation basis (aek)m1afh(aek)^{m-1}afh. The situation in this subsection is similar to the previous subsection but we do not have case 3) and 6) anymore. The linear relation in this case only involves (cdh)2(ceg)m2(cdh)^{2}(ceg)^{m-2}, cdh(ceg)m1cdh(ceg)^{m-1}, and (ceg)m(ceg)^{m}. Here, (ceg)m(ceg)^{m} is the same as (cdh)i2(ceg)mi+2(cdh)^{i-2}(ceg)^{m-i+2} in the previous subsection. If we substitute i=2i=2 into the contribution of case 3) and 6), we find that the contributions corresponding the two cases are automatically zero. Thus, recursive relation Equation (15) is consistent with the case in subsection 4.2.2.

4.2.3. Special case i=mi=m

We use the linear relation derived from (cdh)m1ceg(cdh)^{m-1}ceg and equation basis (aek)m1afh(aek)^{m-1}afh. The situation in this subsection is similar to the previous subsection but we do not have case 5) and 8) anymore. Thus, the coefficient of (cdh)m(cdh)^{m} is 11 and the coefficient of (cdh)m1ceg(cdh)^{m-1}ceg is:

(q1/q)+q1(m1)+q3(m1)+mq=mq1+(m1)q+(m1)q3\begin{split}&-(q-1/q)+q^{-1}(m-1)+q^{3}(m-1)+mq\\ &=mq^{-1}+(m-1)q+(m-1)q^{3}\end{split}

On the other hand, if we substitute i=mi=m in to the coefficient of (cdh)i(ceg)mi=(cdh)m(cdh)^{i}(ceg)^{m-i}=(cdh)^{m}, we get 11 and coefficient of (cdh)i1(ceg)mi+1=(cdh)m1ceg(cdh)^{i-1}(ceg)^{m-i+1}=(cdh)^{m-1}ceg, we get:

mq1(m1)q5q1q2=(m1)q3+(m1)q+mq1\begin{split}&\frac{mq^{-1}-(m-1)q^{5}-q}{1-q^{2}}\\ &=(m-1)q^{3}+(m-1)q+mq^{-1}\end{split}

Thus, recursive relation Equation (15) is consistent with the case in subsection 4.2.3.

4.3. The recursive relation for the Haar state of standard monomials in the form of (bfg)i(ceg)mi(bfg)^{i}(ceg)^{m-i}

We will use equation basis (bfg)i1(ceg)mi+1(bfg)^{i-1}(ceg)^{m-i+1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk to derive the recursive relation for h((bfg)i(ceg)mi)h\left((bfg)^{i}(ceg)^{m-i}\right). The computation involved in finding this recursive relation is similar to that of finding the recursive relation of h((cdh)i(ceg)mi)h\left((cdh)^{i}(ceg)^{m-i}\right) and the derived recursive relation of h((bfg)i(ceg)mi)h\left((bfg)^{i}(ceg)^{m-i}\right) is the same as Equation (15).

5. General algorithm to compute the Haar states of standard monomials on 𝒪(SLq(3))\mathcal{O}(SL_{q}(3))

In this section, we assume that the Haar states of all standard monomials of order m1m-1 are known and we want to compute the Haar states of all standard monomials of order mm. For the simplicity of our argument, we will show that our proposed algorithm is able to compute the Haar state of all standard monomials, not just the monomials basis we picked.

5.1. Zigzag recursive pattern for standard monomials in the form
(bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with r+s=1r+s=1

We start with the Haar state of (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j}, r+s=1r+s=1. In this case, we compute the Haar state of monomials in form bdk(cdh)j1(ceg)mjbdk(cdh)^{j-1}(ceg)^{m-j} and bfg(cdh)j1(ceg)mjbfg(cdh)^{j-1}(ceg)^{m-j}. We use an induction on the value jj. We know the Haar state for case j=1j=1 from the solution of the source matrix of order mm. For j=2j=2, the Haar state of bfgcdh(ceg)m2bfgcdh(ceg)^{m-2} is know as well. To compute the Haar state of bdkcdh(ceg)m2bdkcdh(ceg)^{m-2}, we use the linear relation derived from equation basis bdk(ceg)m1bdk(ceg)^{m-1} and comparing basis (aek)m1afh(aek)^{m-1}afh. Assume we have solved all the Haar state for jt1j\leq t-1. Then, we can compute the Haar state of bfg(cdh)t(ceg)mt1bfg(cdh)^{t}(ceg)^{m-t-1} by the linear relation derived from equation basis bfg(cdh)t1(ceg)mtbfg(cdh)^{t-1}(ceg)^{m-t} and comparing basis (aek)m1afh(aek)^{m-1}afh. Next, we compute the Haar state of of bdk(cdh)t(ceg)mt1bdk(cdh)^{t}(ceg)^{m-t-1} by the linear relation derived from equation basis bdk(cdh)t1(ceg)mtbdk(cdh)^{t-1}(ceg)^{m-t} and comparing basis (aek)m1afh(aek)^{m-1}afh. During the process, the only monomial with unknown Haar state appearing in the linear relation is the monomial which we are pursuing. The order that we used to compute these Haar states are depicted in Appendix B. Since we solve the Haar state of bfg(cdh)j(ceg)m1j{bfg(cdh)^{j}(ceg)^{m-1-j}} and bdk(cdh)j(ceg)m1j{bdk(cdh)^{j}(ceg)^{m-1-j}} in a “zigzag” pattern in the figure, we call this recursive relation the Zigzag recursive relation.

We can compute the Haar states of monomials in form afh(bfg)j(ceg)mj1afh(bfg)^{j}(ceg)^{m-j-1} and cdh(bfg)j(ceg)mj1cdh(bfg)^{j}(ceg)^{m-j-1} in the same order. When we derive linear relations, we use equation basis afh(bfg)j1(ceg)mjafh(bfg)^{j-1}(ceg)^{m-j} to substitute bdk(cdh)j1(ceg)mjbdk(cdh)^{j-1}(ceg)^{m-j} and cdh(bfg)j1(ceg)mjcdh(bfg)^{j-1}(ceg)^{m-j} to substitute bfg(cdh)j1(ceg)mjbfg(cdh)^{j-1}(ceg)^{m-j} and use comparing basis (aek)m1bdk(aek)^{m-1}bdk to substitute (aek)m1afh(aek)^{m-1}afh.

5.2. Standard monomials ending with (𝒄𝒆𝒈)𝒎𝟐\boldsymbol{(ceg)^{m-2}} and standard monomials ending with 𝒃𝒇𝒈𝒃𝒇𝒈(𝒄𝒆𝒈)𝒎𝟑\boldsymbol{bfgbfg(ceg)^{m-3}}, 𝒄𝒅𝒉𝒄𝒅𝒉(𝒄𝒆𝒈)𝒎𝟑\boldsymbol{cdhcdh(ceg)^{m-3}}, and 𝒃𝒇𝒈𝒄𝒅𝒉(𝒄𝒆𝒈)𝒎𝟑\boldsymbol{bfgcdh(ceg)^{m-3}}.

5.2.1. Standard monomials ending with cdh(ceg)m2cdh(ceg)^{m-2} or bfg(ceg)m2bfg(ceg)^{m-2}

First, notice that if we choose (bfg)2(ceg)m2(bfg)^{2}(ceg)^{m-2} as the equation basis and use (aek)m1afh(aek)^{m-1}afh as the comparing basis, the derived linear relation only includes the Haar state of bdkbfg(ceg)m2bdkbfg(ceg)^{m-2}, cdh(bfg)2(ceg)m3cdh(bfg)^{2}(ceg)^{m-3}, (bfg)2(ceg)m2(bfg)^{2}(ceg)^{m-2}, and bfg(ceg)m1bfg(ceg)^{m-1}. Combining the results from previous subsections, we can find the Haar state of bdkbfg(ceg)m2{bdkbfg(ceg)^{m-2}}.

Similarly, if we choose (cdh)2(ceg)m2(cdh)^{2}(ceg)^{m-2} as the equation basis and use (aek)m1bdk(aek)^{m-1}bdk as the comparing basis, the derived linear relation only includes the Haar state of afhcdh(ceg)m2afhcdh(ceg)^{m-2}, bfg(cdh)2(ceg)m3bfg(cdh)^{2}(ceg)^{m-3}, (cdh)2(ceg)m2(cdh)^{2}(ceg)^{m-2}, and cdh(ceg)m1cdh(ceg)^{m-1}. Combining the results from previous subsections, we can find the Haar state of afhcdh(ceg)m2{afhcdh(ceg)^{m-2}}.

Next, we consider equation bases aek(ceg)m1aek(ceg)^{m-1} with comparing basis (aek)m1afh(aek)^{m-1}afh and (aek)m1bdk(aek)^{m-1}bdk. The linear relation derived by comparing basis (aek)m1afh(aek)^{m-1}afh includes aekcdh(ceg)m2aekcdh(ceg)^{m-2}, afhcdh(ceg)m2afhcdh(ceg)^{m-2}, aek(ceg)m1aek(ceg)^{m-1}, and afh(ceg)m1afh(ceg)^{m-1}. Thus, we can solve the Haar state of aekcdh(ceg)m2{aekcdh(ceg)^{m-2}} from this linear relation. Similarly, The linear relation derived by comparing basis (aek)m1bdk(aek)^{m-1}bdk includes aekbfg(ceg)m2aekbfg(ceg)^{m-2}, afhbfg(ceg)m2afhbfg(ceg)^{m-2}, aek(ceg)m1aek(ceg)^{m-1}, and afh(ceg)m1afh(ceg)^{m-1}. Thus, we can solve the Haar state of aekbfg(ceg)m2{aekbfg(ceg)^{m-2}} from this linear relation.

5.2.2. Standard monomials ending with cdhcdh(ceg)m3cdhcdh(ceg)^{m-3} or bfgbfg(ceg)m3bfgbfg(ceg)^{m-3}

First, we consider standard monomials ending with cdhcdh(ceg)m3cdhcdh(ceg)^{m-3}. They are ceg(cdh)2(ceg)m3ceg(cdh)^{2}(ceg)^{m-3} (cdh)3(ceg)m3(cdh)^{3}(ceg)^{m-3}, bfg(cdh)2(ceg)m3bfg(cdh)^{2}(ceg)^{m-3}, bdk(cdh)2(ceg)m3bdk(cdh)^{2}(ceg)^{m-3},
afh(cdh)2(ceg)m3afh(cdh)^{2}(ceg)^{m-3}, and aek(cdh)2(ceg)m3aek(cdh)^{2}(ceg)^{m-3}. Here, the Haar states of afh(cdh)2(ceg)m3afh(cdh)^{2}(ceg)^{m-3} and aek(cdh)2(ceg)m3aek(cdh)^{2}(ceg)^{m-3} are still unknown. To compute the Haar states of the two monomial, we construct a 2×22\times 2 linear system consisting of:

  • 1)

    the quantum determinant condition: Dq(cdh)2(ceg)m3=(cdh)2(ceg)m3D_{q}*(cdh)^{2}(ceg)^{m-3}=(cdh)^{2}(ceg)^{m-3};

  • 2)

    the linear relation derived from equation basis afhcdh(ceg)m2afhcdh(ceg)^{m-2} and comparing basis (aek)mafh(aek)^{m}afh.

Similarly, we need to compute the Haar state of monomials bdk(bfg)2(ceg)m3bdk(bfg)^{2}(ceg)^{m-3} and aek(bfg)2(ceg)m3aek(bfg)^{2}(ceg)^{m-3}. We construct a 2×22\times 2 linear system consisting of:

  • 1)

    the quantum determinant condition: Dq(bfg)2(ceg)m3=(bfg)2(ceg)m3D_{q}*(bfg)^{2}(ceg)^{m-3}=(bfg)^{2}(ceg)^{m-3};

  • 2)

    the linear relation derived from equation basis bdkbfg(ceg)m2bdkbfg(ceg)^{m-2} and comparing basis (aek)mbdk(aek)^{m}bdk.

5.2.3. Matrix of aekbfgcdh(ceg)m3aekbfgcdh(ceg)^{m-3}, afhbfgcdh(ceg)m3afhbfgcdh(ceg)^{m-3}, and bdkbfgcdh(ceg)m3bdkbfgcdh(ceg)^{m-3}

To compute the Haar state of these three monomials, we construct a 3×33\times 3 linear system consisting of:

  • 1)

    the quantum determinant condition: Dqbfgcdh(ceg)m3=bfgcdh(ceg)m3D_{q}*bfgcdh(ceg)^{m-3}=bfgcdh(ceg)^{m-3};

  • 2)

    the linear relation derived from equation basis afhbfg(ceg)m2afhbfg(ceg)^{m-2} and comparing basis (aek)m1afh(aek)^{m-1}afh;

  • 3)

    the linear relation derived from equation basis bdkcdh(ceg)m2bdkcdh(ceg)^{m-2} and comparing basis (aek)m1bdk(aek)^{m-1}bdk.

Entries of the system matrix are listed below:

Table 2. Entries in the system matrix
Relation Haar State aekbfgcdh(ceg)m3aekbfgcdh(ceg)^{m-3} afhbfgcdh(ceg)m3afhbfgcdh(ceg)^{m-3} bdkbfgcdh(ceg)m3bdkbfgcdh(ceg)^{m-3}
Quantum Determinant 1 q-q q-q
afhbfg(ceg)m2afhbfg(ceg)^{m-2} (q+1/q)q2q2(m2)q21(q+1/q)\frac{q^{2}-q^{-2(m-2)}}{q^{2}-1} (q2(m1)1)(q6q2q2m+1)(q21)2\frac{(q^{-2(m-1)}-1)(q^{6}-q^{2}-q^{2m}+1)}{(q^{2}-1)^{2}} 0
bdkcdh(ceg)m2bdkcdh(ceg)^{m-2} q+1/q+q(q2+1)1q2(m2)1q2q+1/q+q(q^{2}+1)\frac{1-q^{2(m-2)}}{1-q^{2}} (q2+1)(q2q2(m2))(q^{2}+1)(q^{-2}-q^{2(m-2)}) q2(m2)+q2(m1)q21(q21)2\frac{q^{-2(m-2)}+q^{2(m-1)}-q^{2}-1}{(q^{2}-1)^{2}}

Using Gauss elimination, we have:

[1qq0q2(m1)+q2mq21(q21)2(q2+1)(q2(m2)q2)1q20(q2+1)(q2q2(m2))1q2q2(q2(m1)+q2mq21)(q21)2]\begin{bmatrix}1&-q&-q\\ 0&\frac{q^{-2(m-1)}+q^{2m}-q^{2}-1}{(q^{2}-1)^{2}}&\frac{(q^{2}+1)(q^{-2(m-2)}-q^{2})}{1-q^{2}}\\ 0&\frac{(q^{2}+1)(q^{-2}-q^{2(m-2)})}{1-q^{2}}&\frac{q^{2}(q^{-2(m-1)}+q^{2m}-q^{2}-1)}{(q^{2}-1)^{2}}\end{bmatrix}

The determinant of the matrix is:

q2(q2(m1)+q2mq21(q21)2)2(q2+1)2(q2q2(m2))(q2(m2)q2)(1q2)2=(q2(m1)1)2(q4q2m)(1q2(m+2))q2(q21)4.\begin{split}&q^{2}\left(\frac{q^{-2(m-1)}+q^{2m}-q^{2}-1}{(q^{2}-1)^{2}}\right)^{2}-\frac{(q^{2}+1)^{2}(q^{-2}-q^{2(m-2)})(q^{-2(m-2)}-q^{2})}{(1-q^{2})^{2}}\\ &=\frac{(q^{-2(m-1)}-1)^{2}(q^{4}-q^{2m})(1-q^{2(m+2)})}{q^{2}(q^{2}-1)^{4}}.\end{split}

Since m3m\geq 3, the determinant is always positive for 0<|q|<10<|q|<1. Thus, the matrix is invertible.

5.2.4. Standard monomials with two segments of aekaek, afhafh, or bdkbdk

Consider equation basis bdkbfg(ceg)m2bdkbfg(ceg)^{m-2} with comparing basis (aek)m1afh(aek)^{m-1}afh. The derived linear relation includes (bdk)2(ceg)m2(bdk)^{2}(ceg)^{m-2}, bdkbfgcdh(ceg)m3bdkbfgcdh(ceg)^{m-3},
bdkbfg(ceg)m2bdkbfg(ceg)^{m-2}, (bfg)2cdh(ceg)m3(bfg)^{2}cdh(ceg)^{m-3}, and (bfg)2(ceg)m2(bfg)^{2}(ceg)^{m-2}. Thus, we can solve the Haar state of bdkbdk(ceg)m2{bdkbdk(ceg)^{m-2}} from this linear relation.

Similarly, consider equation basis afhcdh(ceg)m2afhcdh(ceg)^{m-2} with comparing basis (aek)m2bdk(aek)^{m-2}bdk. The derived linear relation includes (afh)2(ceg)m2(afh)^{2}(ceg)^{m-2}, afhbfgcdh(ceg)m3afhbfgcdh(ceg)^{m-3},
afhcdh(ceg)m2afhcdh(ceg)^{m-2}, bfg(cdh)2(ceg)m3bfg(cdh)^{2}(ceg)^{m-3}, and (cdh)2(ceg)m2(cdh)^{2}(ceg)^{m-2}. Thus, we can solve the Haar state of afhafh(ceg)m2{afhafh(ceg)^{m-2}} from this linear relation.

Next, by Equation (22) and Equation (23) in Appendix A, we can compute the Haar state of afhbdk(ceg)m2{afhbdk(ceg)^{m-2}} and bdkafh(ceg)m2{bdkafh(ceg)^{m-2}}.

Then, using the equality bdk(ceg)m2=Dqbdk(ceg)m2bdk(ceg)^{m-2}=D_{q}*bdk(ceg)^{m-2}, we can solve the Haar state of aekbdk(ceg)m2{aekbdk(ceg)^{m-2}}. Replacing bdk(ceg)m2bdk(ceg)^{m-2} by afh(ceg)m2afh(ceg)^{m-2} in the above equation, we can find the Haar state of aekafh(ceg)m2{aekafh(ceg)^{m-2}}. Finally, using the equality aek(ceg)m2=aekDq(ceg)m2aek(ceg)^{m-2}=aek*D_{q}*(ceg)^{m-2}, we can solve the Haar state of (aek)2(ceg)m2{(aek)^{2}(ceg)^{m-2}}.

At this point, we have computed all the Haar states of standard monomials ending with (ceg)m2(ceg)^{m-2} or ending with bfgbfg(ceg)m3bfgbfg(ceg)^{m-3}, cdhcdh(ceg)m3cdhcdh(ceg)^{m-3}, and bfgcdh(ceg)m3bfgcdh(ceg)^{m-3}. Also, we computed the Haar state of standard monomials (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with r+s=1r+s=1. In the next subsection, we assume that the Haar state of standard monomials ending with (ceg)mi(ceg)^{m-i} or ending with bfgbfg(ceg)mi1bfgbfg(ceg)^{m-i-1}, cdhcdh(ceg)mi1cdhcdh(ceg)^{m-i-1}, and bfgcdh(ceg)mi1bfgcdh(ceg)^{m-i-1} are known. We will also assume that the Haar state of standard monomials (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with r+si1r+s\leq i-1 are known. Based on this assumption, we will compute the Haar state of standard monomials ending with (ceg)mi1(ceg)^{m-i-1} or ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}. We will also compute the Haar state of standard monomials (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with r+s=ir+s=i.

5.3. Standard monomials ending with (𝒄𝒆𝒈)𝒎𝒊𝟏\boldsymbol{(ceg)^{m-i-1}} and standard monomials ending with𝒃𝒇𝒈𝒃𝒇𝒈(𝒄𝒆𝒈)𝒎𝒊𝟐\boldsymbol{bfgbfg(ceg)^{m-i-2}}, 𝒄𝒅𝒉𝒄𝒅𝒉(𝒄𝒆𝒈)𝒎𝒊𝟐\boldsymbol{cdhcdh(ceg)^{m-i-2}}, and 𝒃𝒇𝒈𝒄𝒅𝒉(𝒄𝒆𝒈)𝒎𝒊𝟐\boldsymbol{bfgcdh(ceg)^{m-i-2}}

We can apply an inductive approach to compute the pursuing Haar states.

5.3.1. Monomials in form (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and
(afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with r+s=ir+s=i and 0jmi0\leq j\leq m-i

First, notice that by our assumption, we already know the Haar states of
(bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} and (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j} with s1s\geq 1 and j=1j=1 since these monomials end with bfgcdh(ceg)mi1bfgcdh(ceg)^{m-i-1}.

To compute the Haar state of (bdk)icdh(ceg)mi1(bdk)^{i}cdh(ceg)^{m-i-1}, we use equation basis (bdk)i(ceg)mi(bdk)^{i}(ceg)^{m-i} with comparing basis (aek)m1afh(aek)^{m-1}afh. Using the Theorem 1 e), we know that the derived linear relation only contains standard monomials in the form
(bdk)r(bfg)s(cdh)j(ceg)mjrs(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-j-r-s} since no generator aa can appear in the newly generated monomials. Thus, the only monomial with unknown Haar state appearing in the linear relation is (bdk)icdh(ceg)mi1(bdk)^{i}cdh(ceg)^{m-i-1} and we can compute its Haar state. This finish the case j=1j=1 for (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j}. Similarly, we can compute the Haar state of (afh)ibfg(ceg)mi1(afh)^{i}bfg(ceg)^{m-i-1} using the linear relation derived from equation basis (afh)i(ceg)mi(afh)^{i}(ceg)^{m-i} with comparing basis (aek)m1bdk(aek)^{m-1}bdk.

Now assume we know the Haar state of (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j} for all jt1j\leq t-1. To compute the Haar state of case j=tj=t, we use equation basis
(bdk)r(bfg)s(cdh)t1(ceg)mit+1(bdk)^{r}(bfg)^{s}(cdh)^{t-1}(ceg)^{m-i-t+1} and comparing basis (aek)m1afh(aek)^{m-1}afh. Here, we have to compute the case r=0r=0 first, then the case r=1r=1, case r=2r=2, until the case r=ir=i. This is an analog to the zigzag recursive relation. To solve (afh)r(cdh)s(bfg)j(ceg)mij(afh)^{r}(cdh)^{s}(bfg)^{j}(ceg)^{m-i-j}, we use equation basis (afh)r(cdh)s(bfg)j1(ceg)mij+1(afh)^{r}(cdh)^{s}(bfg)^{j-1}(ceg)^{m-i-j+1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk and use the same strategy as for monomials (bdk)r(bfg)s(cdh)j(ceg)mij(bdk)^{r}(bfg)^{s}(cdh)^{j}(ceg)^{m-i-j}.

5.3.2. Monomials with one high-complexity segment ending with cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}

The monomials we are considering are in the form:

aek(cdh)i+1(ceg)mi2,afh(cdh)i+1(ceg)mi2,bdk(cdh)i+1(ceg)mi2;aek(cdh)^{i+1}(ceg)^{m-i-2},afh(cdh)^{i+1}(ceg)^{m-i-2},bdk(cdh)^{i+1}(ceg)^{m-i-2};

and

aek(bfg)i+1(ceg)mi2,afh(bfg)i+1(ceg)mi2,bdk(bfg)i+1(ceg)mi2;aek(bfg)^{i+1}(ceg)^{m-i-2},afh(bfg)^{i+1}(ceg)^{m-i-2},bdk(bfg)^{i+1}(ceg)^{m-i-2};

and

aek(bfg)r+1(cdh)s+1(ceg)mi2,afh(bfg)r+1(cdh)s+1(ceg)mi2,bdk(bfg)r+1(cdh)s+1(ceg)mi2.\begin{split}&aek(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2},afh(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2},\\ &bdk(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2}.\end{split}

We start with monomials ending with cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}. From subsection 4.2, we already know the Haar state of bdk(cdh)i+1(ceg)mi2bdk(cdh)^{i+1}(ceg)^{m-i-2} by the zigzag recursive relation. To compute the Haar state of aek(cdh)i+1(ceg)mi2aek(cdh)^{i+1}(ceg)^{m-i-2} and afh(cdh)i+1(ceg)mi2afh(cdh)^{i+1}(ceg)^{m-i-2}, we build a 2×22\times 2 linear system consisting of:

  • 1)

    Dq(cdh)i+1(ceg)mi2=(cdh)i+1(ceg)mi2D_{q}*(cdh)^{i+1}(ceg)^{m-i-2}=(cdh)^{i+1}(ceg)^{m-i-2};

  • 2)

    the linear relation derived from equation basis afh(cdh)i(ceg)mi1afh(cdh)^{i}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

Similarly, the Haar state of afh(bfg)i+1(ceg)mi2afh(bfg)^{i+1}(ceg)^{m-i-2} is known from subsection 4.2. To compute the Haar state of aek(bfg)i+1(ceg)mi2aek(bfg)^{i+1}(ceg)^{m-i-2} and bdk(bfg)i+1(ceg)mi2bdk(bfg)^{i+1}(ceg)^{m-i-2}, we build a 2×22\times 2 linear system consisting of:

  • 1)

    Dq(bfg)i+1(ceg)mi2=(bfg)i+1(ceg)mi2D_{q}*(bfg)^{i+1}(ceg)^{m-i-2}=(bfg)^{i+1}(ceg)^{m-i-2};

  • 2)

    the linear relation derived from equation basis bdk(bfg)i(ceg)mi1bdk(bfg)^{i}(ceg)^{m-i-1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk.

Then, we compute the Haar state of aek(bfg)r+1(cdh)s+1(ceg)mi2aek(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2},
bdk(bfg)r+1(cdh)s+1(ceg)mi2bdk(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2}, and afh(bfg)r+1(cdh)s+1(ceg)mi2afh(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2}. By our assumption, we have solved the Haar state of bdk(bfg)i1l(cdh)2+l(ceg)mi2bdk(bfg)^{i-1-l}(cdh)^{2+l}(ceg)^{m-i-2},
afh(cdh)i1l(bfg)2+l(ceg)mi2afh(cdh)^{i-1-l}(bfg)^{2+l}(ceg)^{m-i-2}, (bfg)il(cdh)2+l(ceg)mi2(bfg)^{i-l}(cdh)^{2+l}(ceg)^{m-i-2},
(cdh)il(bfg)2+l(ceg)mi2(cdh)^{i-l}(bfg)^{2+l}(ceg)^{m-i-2}, and ceg(cdh)i1l(bfg)2+l(ceg)mi2ceg(cdh)^{i-1-l}(bfg)^{2+l}(ceg)^{m-i-2} for 0li10\leq l\leq i-1. Thus, to compute the Haar state of aek(bfg)i1l(cdh)2+l(ceg)mi2aek(bfg)^{i-1-l}(cdh)^{2+l}(ceg)^{m-i-2}, 0li10\leq l\leq i-1, we use equation Dq(bfg)i1l(cdh)2+l(ceg)mi2=(bfg)i1l(cdh)2+l(ceg)mi2D_{q}*(bfg)^{i-1-l}(cdh)^{2+l}(ceg)^{m-i-2}=(bfg)^{i-1-l}(cdh)^{2+l}(ceg)^{m-i-2}.

To compute the case l=il=i, notice that by our assumption the Haar states of afh(bfg)icdh(ceg)mi2afh(bfg)^{i}cdh(ceg)^{m-i-2} and bdk(cdh)ibfg(ceg)mi2bdk(cdh)^{i}bfg(ceg)^{m-i-2} are known by our assumption. To construct a linear system of aek(bfg)icdh(ceg)mi2aek(bfg)^{i}cdh(ceg)^{m-i-2} and
bdk(bfg)icdh(ceg)mi2bdk(bfg)^{i}cdh(ceg)^{m-i-2}, we use linear relation derived from:

  • 1)

    Equation Dq(bfg)icdh(ceg)mi2=(bfg)icdh(ceg)mi2D_{q}*(bfg)^{i}cdh(ceg)^{m-i-2}=(bfg)^{i}cdh(ceg)^{m-i-2}.

  • 2)

    Equation basis bdk(bfg)i1cdh(ceg)mi1bdk(bfg)^{i-1}cdh(ceg)^{m-i-1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk.

To construct a linear system of aek(cdh)ibfg(ceg)mi2aek(cdh)^{i}bfg(ceg)^{m-i-2} and afh(cdh)ibfg(ceg)mi2afh(cdh)^{i}bfg(ceg)^{m-i-2}, we use linear relation derived from

  • 1)

    Equation Dq(cdh)ibfg(ceg)mi2=(cdh)ibfg(ceg)mi2D_{q}*(cdh)^{i}bfg(ceg)^{m-i-2}=(cdh)^{i}bfg(ceg)^{m-i-2}.

  • 2)

    Equation basis afh(cdh)i1bfg(ceg)mi1afh(cdh)^{i-1}bfg(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

5.3.3. Monomials with two high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1}

Finally, we compute the Haar states of monomials with two high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1}. We start with monomials in form
afhbdk(bfg)r(cdh)s(ceg)mi1afhbdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1} and bdkafh(bfg)r(cdh)s(ceg)mi1bdkafh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}. Notice that afhbdkcegafhbdkceg and bdkafhcegbdkafhceg can be written as a linear combination of aekbfgcdhaekbfgcdh and other monomials with at most one high-complexity segment. Thus,
afhbdk(bfg)r(cdh)s(ceg)mi1afhbdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1} and bdkafh(bfg)r(cdh)s(ceg)mi1bdkafh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1} can be written as a linear combination of aek(bfg)r+1(cdh)s+1(ceg)mi2aek(bfg)^{r+1}(cdh)^{s+1}(ceg)^{m-i-2} and other monomials with at most one high-complexity segment. Thus, we can compute the Haar state of afhbdk(bfg)r(cdh)s(ceg)mi1afhbdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1} and bdkafh(bfg)r(cdh)s(ceg)mi1bdkafh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1} using the Haar states we known. To compute the Haar state of (bdk)2(bfg)r(cdh)s(ceg)mi1(bdk)^{2}(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}, we use equation basis bdk(bfg)r+1(cdh)s(ceg)mi1bdk(bfg)^{r+1}(cdh)^{s}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh. To compute the Haar state of (afh)2(bfg)r(cdh)s(ceg)mi1(afh)^{2}(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}, we use equation basis afh(bfg)r(cdh)s+1(ceg)mi1afh(bfg)^{r}(cdh)^{s+1}(ceg)^{m-i-1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk. At last, to compute the Haar state of aekafh(bfg)r(cdh)s(ceg)mi1aekafh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}, we use the equation Dqafh(bfg)r(cdh)s(ceg)mi1=afh(bfg)r(cdh)s(ceg)mi1D_{q}*afh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}=afh(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}. To compute the Haar state of aekbdk(bfg)r(cdh)s(ceg)mi1aekbdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}, we use the equation Dqbdk(bfg)r(cdh)s(ceg)mi1=bdk(bfg)r(cdh)s(ceg)mi1D_{q}*bdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}=bdk(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}. To compute the Haar state of aekaek(bfg)r(cdh)s(ceg)mi1aekaek(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}, we use the equation
aekDq(bfg)r(cdh)s(ceg)mi1=aek(bfg)r(cdh)s(ceg)mi1aek*D_{q}*(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}=aek(bfg)^{r}(cdh)^{s}(ceg)^{m-i-1}.

At this point, we have solved the Haar state of all monomials with at most two high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1} and monomials with at most one high-complexity segment ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}.

Starting from the next sub-section, we assume that the Haar states of monomials with at most wiw\leq i high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1} and monomials with at most w1w-1 high-complexity segments ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2} are known. Now, we compute the Haar states of monomials with w+1w+1 high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1} and monomials with ww high-complexity segments ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}.

5.3.4. Monomials with ww high-complexity segments ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, and cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}

We start with monomials ending with cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}. By subsection 4.4.2, we know the Haar state of standard monomials (bdk)r(bfg)s(cdh)irs+2(ceg)mi2(bdk)^{r}(bfg)^{s}(cdh)^{i-r-s+2}(ceg)^{m-i-2} with r+sir+s\leq i. Thus, we know the Haar state of (bdk)w(cdh)iw+2(ceg)mi2(bdk)^{w}(cdh)^{i-w+2}(ceg)^{m-i-2}. Then, we construct a 2×22\times 2 linear system of aek(bdk)w1(cdh)iw+2(ceg)mi2aek(bdk)^{w-1}(cdh)^{i-w+2}(ceg)^{m-i-2} and afh(bdk)w1(cdh)iw+2(ceg)mi2afh(bdk)^{w-1}(cdh)^{i-w+2}(ceg)^{m-i-2} consisting of:

  • 1)

    Dq(bdk)w1(cdh)iw+2(ceg)mi2=(bdk)w1(cdh)iw+2(ceg)mi2D_{q}*(bdk)^{w-1}(cdh)^{i-w+2}(ceg)^{m-i-2}=(bdk)^{w-1}(cdh)^{i-w+2}(ceg)^{m-i-2};

  • 2)

    linear relation derived from equation basis afh(bdk)w1(cdh)i+1w(ceg)mi1afh(bdk)^{w-1}(cdh)^{i+1-w}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

Next, we compute the Haar state of monomials in the form
aek(afh)j1(bdk)wj(cdh)i+2w(ceg)mi2aek(afh)^{j-1}(bdk)^{w-j}(cdh)^{i+2-w}(ceg)^{m-i-2} and (afh)j(bdk)wj(cdh)i+2w(ceg)mi2(afh)^{j}(bdk)^{w-j}(cdh)^{i+2-w}(ceg)^{m-i-2}. We have solve the case j=1j=1. Now, assume that we have solved all jt1j\leq t-1. When j=1j=1, we have the following equation:

(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2=Dq(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2=aek(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2q(afh)t(bdk)wt(cdh)i+2w(ceg)mi2qbdk(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2+q2bfg(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2+q2cdh(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2q3ceg(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2\begin{split}&(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &=D_{q}*(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &=aek(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &-q*(afh)^{t}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &-q*bdk(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &+q^{2}*bfg(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &+q^{2}*cdh(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &-q^{3}*ceg(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\end{split}

By the Theorem 1 e), bdk(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2bdk(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2} can be written as a linear combination of (afh)t1(bdk)wt+1(cdh)i+2w(ceg)mi2(afh)^{t-1}(bdk)^{w-t+1}(cdh)^{i+2-w}(ceg)^{m-i-2} and other standard monomials with at most w1w-1 high-complexity segments ending with (ceg)mi2(ceg)^{m-i-2}. Thus, the Haar state of bdk(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2bdk(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2} is known. Similarly, the Haar states of bfg(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2bfg(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}, cdh(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2cdh(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}, and
ceg(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2ceg(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2} are known. So the above equation is a linear relation between aek(afh)t1(bdk)wt(cdh)i+2w(ceg)mi2aek(afh)^{t-1}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2} and
(afh)t(bdk)wt(cdh)i+2w(ceg)mi2(afh)^{t}(bdk)^{w-t}(cdh)^{i+2-w}(ceg)^{m-i-2}. For the other linear relation between the two monomials, we use the linear relation derived from equation basis
(afh)t(bdk)wt(cdh)i+1w(ceg)mi1(afh)^{t}(bdk)^{w-t}(cdh)^{i+1-w}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

Finally, we compute the Haar states of monomials in the form
(aek)n(afh)j(bdk)wjn(cdh)i+2w(ceg)mi2(aek)^{n}(afh)^{j}(bdk)^{w-j-n}(cdh)^{i+2-w}(ceg)^{m-i-2}. From the previous paragraph, we have solve the case n=1n=1. Assume that we know the Haar state of all nt1n\leq t-1. to compute the case n=tn=t, we use the quantum determinant condition

(aek)t1Dq(afh)j(bdk)wjt(cdh)i+2w(ceg)mi2=(aek)t1(afh)j(bdk)wjt(cdh)i+2w(ceg)mi2,\begin{split}&(aek)^{t-1}*D_{q}*(afh)^{j}(bdk)^{w-j-t}(cdh)^{i+2-w}(ceg)^{m-i-2}\\ &=(aek)^{t-1}(afh)^{j}(bdk)^{w-j-t}(cdh)^{i+2-w}(ceg)^{m-i-2},\end{split}

in which the only monomial with unknown Haar state is
(aek)t(afh)j(bdk)wjt(cdh)i+2w(ceg)mi2(aek)^{t}(afh)^{j}(bdk)^{w-j-t}(cdh)^{i+2-w}(ceg)^{m-i-2}.

The Haar state of monomials with ww high-complexity segments ending with
bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2} can be computed by an approach similar to the case of
cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2} with every afhafh segment replaced by bdkbdk and every cdhcdh segment replaced by bfgbfg.

5.3.5. Monomials in form (afh)w(cdh)j+1(bfg)iwj+1(ceg)mi2(afh)^{w}(cdh)^{j+1}(bfg)^{i-w-j+1}(ceg)^{m-i-2},
bdk(afh)w1(cdh)j+1(bfg)iwj+1(ceg)mi2bdk(afh)^{w-1}(cdh)^{j+1}(bfg)^{i-w-j+1}(ceg)^{m-i-2}, and
aek(afh)w1(cdh)j+1(bfg)iwj+1(ceg)mi2aek(afh)^{w-1}(cdh)^{j+1}(bfg)^{i-w-j+1}(ceg)^{m-i-2} with 0jiw0\leq j\leq i-w

From the previous sub-section, we know the Haar states of
(afh)w(cdh)j+1(bfg)iwj+1(ceg)mi2(afh)^{w}(cdh)^{j+1}(bfg)^{i-w-j+1}(ceg)^{m-i-2} for all 0jiw10\leq j\leq i-w-1. Thus, when 0jiw10\leq j\leq i-w-1, we only need to focus on bdk(afh)w1(cdh)j(bfg)iwj+2(ceg)mi2bdk(afh)^{w-1}(cdh)^{j}(bfg)^{i-w-j+2}(ceg)^{m-i-2} and aek(afh)w1(cdh)j(bfg)iwj+2(ceg)mi2aek(afh)^{w-1}(cdh)^{j}(bfg)^{i-w-j+2}(ceg)^{m-i-2}. To construct a linear system containing the two monomials, we use linear relation derived from

  • 1)

    Dq(afh)w1(cdh)j(bfg)iwj+2(ceg)mi2=(afh)w1(cdh)j(bfg)iwj+2(ceg)mi2D_{q}*(afh)^{w-1}(cdh)^{j}(bfg)^{i-w-j+2}(ceg)^{m-i-2}\\ =(afh)^{w-1}(cdh)^{j}(bfg)^{i-w-j+2}(ceg)^{m-i-2}.

  • 2)

    Equation basis (afh)w(cdh)j(bfg)iwj+1(ceg)mi1(afh)^{w}(cdh)^{j}(bfg)^{i-w-j+1}(ceg)^{m-i-1} and comparing basis (aek)m1bdk(aek)^{m-1}bdk.

When j=i+1wj=i+1-w, we need to solve the Haar state of (afh)w(cdh)i+1wbfg(ceg)mi2(afh)^{w}(cdh)^{i+1-w}bfg(ceg)^{m-i-2}, bdk(afh)w1(cdh)i+1wbfg(ceg)mi2bdk(afh)^{w-1}(cdh)^{i+1-w}bfg(ceg)^{m-i-2}, and aek(afh)w1(cdh)i+1wbfg(ceg)mi2aek(afh)^{w-1}(cdh)^{i+1-w}bfg(ceg)^{m-i-2} at the same time. To construct a linear system containing the three monomials, we use linear relation derived from

  • 1)

    Dq(afh)w1(cdh)i+1wbfg(ceg)mi2=(afh)w1(cdh)i+1wbfg(ceg)mi2D_{q}*(afh)^{w-1}(cdh)^{i+1-w}bfg(ceg)^{m-i-2}=(afh)^{w-1}(cdh)^{i+1-w}bfg(ceg)^{m-i-2}.

  • 2)

    Equation basis (afh)w(cdh)iwbfg(ceg)mi1(afh)^{w}(cdh)^{i-w}bfg(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

  • 3)

    Equation basis bdk(afh)w1(cdh)iw+1(ceg)mi1bdk(afh)^{w-1}(cdh)^{i-w+1}(ceg)^{m-i-1} and comparing
    basis (aek)m1bdk(aek)^{m-1}bdk.

5.3.6. Monomials in form (aek)n(bdk)jn(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2(aek)^{n}(bdk)^{j-n}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} with njwn\leq j\leq w

To start, we compute the Haar states of monomials in form
(bdk)j(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2(bdk)^{j}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} and
aek(bdk)j1(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2aek(bdk)^{j-1}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}, with 1jw1\leq j\leq w and s+r=iws+r=i-w at the same time. We already solve the case j=1j=1. Without loss of generality, we assume that the Haar states of all 1jt1w11\leq j\leq t-1\leq w-1 are known. To solve the case j=tj=t, firstly, notice that we have the following equation:

(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2=Dq(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2=aek(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2q(bdk)t(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2qafh(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2+q2bfg(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2+q2cdh(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2q3ceg(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2.\begin{split}&(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &=D_{q}*(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &=aek(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &-q*(bdk)^{t}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &-q*afh(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &+q^{2}*bfg(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &+q^{2}*cdh(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}\\ &-q^{3}*ceg(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}.\end{split}

Here, afh(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2afh(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} can be written as a linear combination of (bdk)t1(afh)wt+1(cdh)s+1(bfg)r+1(ceg)mi2(bdk)^{t-1}(afh)^{w-t+1}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} and other monomials with less number of high-complexity segments. Thus, besides the Haar states of aek(bdk)t1(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2aek(bdk)^{t-1}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} and
(bdk)t(afh)wt(cdh)s+1(bfg)r+1(ceg)mi2(bdk)^{t}(afh)^{w-t}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}, the Haar state of other monomials re known. So, in case j=tj=t, we only need one more linear relation to construct a system of the two monomials. We will use the linear relation derived from equation basis (bdk)j1(afh)wj+1(cdh)s(bfg)r+1(ceg)mi1(bdk)^{j-1}(afh)^{w-j+1}(cdh)^{s}(bfg)^{r+1}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

Then, we compute the Haar state of monomials in the form
(aek)n(bdk)jn(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2(aek)^{n}(bdk)^{j-n}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2} with njwn\leq j\leq w. We already compute the case of n=1n=1. After solving the case of n=t1n=t-1, we can compute the case n=tn=t by the equation (aek)t1(bdk)jt(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2=(aek)t1Dq(bdk)jt(afh)wj(cdh)s+1(bfg)r+1(ceg)mi2(aek)^{t-1}(bdk)^{j-t}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}=(aek)^{t-1}*D_{q}*(bdk)^{j-t}(afh)^{w-j}(cdh)^{s+1}(bfg)^{r+1}(ceg)^{m-i-2}for all tjwt\leq j\leq w.

5.3.7. Monomials with w+1w+1 high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1}

We start with monomials in form (aek)n(bdk)j(afh)wjn+1(cdh)s(bfg)r(ceg)mi1(aek)^{n}(bdk)^{j}(afh)^{w-j-n+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} with 1jw1\leq j\leq w and 0nwj0\leq n\leq w-j. Monomials in this form contain at least one afhafh segment and one bdkbdk segment. We can write the monomial as a linear combination of (aek)n(bdk)j1(afh)wjn[afhbdk](cdh)s(bfg)r(ceg)mi1(aek)^{n}(bdk)^{j-1}(afh)^{w-j-n}[afhbdk](cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} and other monomials with less number of high-complexity segments. To compute the Haar state of (aek)n(bdk)j1(afh)wjn[afhbdk](cdh)s(bfg)r(ceg)mi1(aek)^{n}(bdk)^{j-1}(afh)^{w-j-n}[afhbdk](cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}, we can apply Equation (22) and Equation (23) in Appendix A to rewrite it as a linear combination of monomials with known Haar states.

Next, we compute the Haar state of monomials in form (afh)w+1(cdh)s(bfg)r(ceg)mi1(afh)^{w+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} and (bdk)w+1(cdh)s(bfg)r(ceg)mi1(bdk)^{w+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}. To compute (afh)w+1(cdh)s(bfg)r(ceg)mi1(afh)^{w+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}, we use equation basis (afh)w(cdh)s+1(bfg)r(ceg)mi1(afh)^{w}(cdh)^{s+1}(bfg)^{r}(ceg)^{m-i-1} and comparing basis
(aek)m1bdk(aek)^{m-1}bdk. To compute (bdk)w+1(cdh)s(bfg)r(ceg)mi1(bdk)^{w+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}, we use equation basis (bdk)w(cdh)s(bfg)r+1(ceg)mi1(bdk)^{w}(cdh)^{s}(bfg)^{r+1}(ceg)^{m-i-1} and comparing basis (aek)m1afh(aek)^{m-1}afh.

Finally, we consider monomials in the form (aek)j(afh)wj+1(cdh)s(bfg)r(ceg)mi1(aek)^{j}(afh)^{w-j+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} and (aek)j(bdk)wj+1(cdh)s(bfg)r(ceg)mi1(aek)^{j}(bdk)^{w-j+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} with 1jw1\leq j\leq w. To start, we compute the Haar state of aek(afh)w(cdh)s(bfg)r(ceg)mi1aek(afh)^{w}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} using the equation Dq(afh)w(cdh)s(bfg)r(ceg)mi1=(afh)w(cdh)s(bfg)r(ceg)mi1D_{q}*(afh)^{w}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}=(afh)^{w}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}. If we have computed the Haar state for all jnj\leq n, to compute the case j=n+1j=n+1, we use the following equation (aek)n(afh)wn(cdh)s(bfg)r(ceg)mi1=(aek)nDq(afh)wn(cdh)s(bfg)r(ceg)mi1(aek)^{n}(afh)^{w-n}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}=(aek)^{n}*D_{q}*(afh)^{w-n}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}. We can compute the Haar state of
(aek)j(bdk)wj+1(cdh)s(bfg)r(ceg)mi1(aek)^{j}(bdk)^{w-j+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} in the same way. When j=w+1j=w+1, we use the equation (aek)w(cdh)s(bfg)r(ceg)mi1=(aek)wDq(cdh)s(bfg)r(ceg)mi1(aek)^{w}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}=(aek)^{w}*D_{q}*(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1} to compute the Haar state of (aek)w+1(cdh)s(bfg)r(ceg)mi1(aek)^{w+1}(cdh)^{s}(bfg)^{r}(ceg)^{m-i-1}.

At this point, we have solved the Haar state of all monomials with at most w+1w+1 high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1} and monomials with at most ww high-complexity segments ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}. Using an induction argument, we can compute the Haar state of all monomials with at most i+1i+1 high-complexity segments ending with (ceg)mi1(ceg)^{m-i-1} and monomials with at most ii high-complexity segments ending with bfgbfg(ceg)mi2bfgbfg(ceg)^{m-i-2}, cdhcdh(ceg)mi2cdhcdh(ceg)^{m-i-2}, and bfgcdh(ceg)mi2bfgcdh(ceg)^{m-i-2}. Thus, this subsection shows that we can use induction on the value of ii from 11 until m2m-2 and compute the Haar states of all monomials ending with cegceg, bfgbfgbfgbfg, cdhcdhcdhcdh or bfgcdhbfgcdh.

5.4. Monomials with at most one low-complexity segment

5.4.1. Monomials ending with cdhcdh or bfgbfg

Here, we only show the procedure to compute monomials ending with cdhcdh. The case of bfgbfg is solved similarly.

We start with monomials in form aek(bdk)i(cdh)m1iaek(bdk)^{i}(cdh)^{m-1-i} and afh(bdk)i(cdh)m1iafh(bdk)^{i}(cdh)^{m-1-i} with m1i1m-1-i\geq 1. We have to solve the Haar states of the two monomials at the same time. The first linear relation comes from equation Dq(bdk)i(cdh)mi1=(bdk)i(cdh)mi1D_{q}*(bdk)^{i}(cdh)^{m-i-1}=(bdk)^{i}(cdh)^{m-i-1}. The second linear relation is derived from equation basis
afh(bdk)i(cdh)mi2cegafh(bdk)^{i}(cdh)^{m-i-2}ceg and comparing basis (aek)m1afh(aek)^{m-1}afh.

Next, we consider monomials in the form aek(afh)j(bdk)n1(cdh)mnjaek(afh)^{j}(bdk)^{n-1}(cdh)^{m-n-j} and
(afh)j+1(bdk)n1(cdh)mnj(afh)^{j+1}(bdk)^{n-1}(cdh)^{m-n-j} with mnj1m-n-j\geq 1, j1j\geq 1. We solve the case j=0j=0 in the last paragraph. If we have known the Haar states of all jt1j\leq t-1, we can solve the case j=tj=t by linear relations derived from

  • 1)

    (afh)t(bdk)n1(cdh)mnt=Dq(afh)t(bdk)n1(cdh)mnt(afh)^{t}(bdk)^{n-1}(cdh)^{m-n-t}=D_{q}*(afh)^{t}(bdk)^{n-1}(cdh)^{m-n-t}.

  • 2)

    Equation basis (afh)t+1(bdk)n1(cdh)mnt1ceg(afh)^{t+1}(bdk)^{n-1}(cdh)^{m-n-t-1}ceg and comparing
    basis (aek)m1afh(aek)^{m-1}afh.

Finally, we compute the Haar states of monomials in the form (aek)n(afh)j(bdk)i(cdh)r(aek)^{n}(afh)^{j}(bdk)^{i}(cdh)^{r} with n2n\geq 2, r1r\geq 1, and i+j+n+r=mi+j+n+r=m. The case n=1n=1 is solved in the last paragraph. Assume that we have solved the Haar state for all jt1j\leq t-1. To solve the case n=tn=t, we use equation (aek)t(afh)j1(bdk)n(cdh)r=(aek)tDq(afh)j1(bdk)n(cdh)r(aek)^{t}(afh)^{j-1}(bdk)^{n}(cdh)^{r}=(aek)^{t}*D_{q}*(afh)^{j-1}(bdk)^{n}(cdh)^{r} where j+n+r=mtj+n+r=m-t and j,r1j,r\geq 1.

At this point, we have solved the Haar states of all monomials ending with cdhcdh.

5.4.2. Monomials without low-complexity segment

Now, we are able to solve the Haar states of all monomials with at least one low-complexity segment since the number of generators cc and gg cannot decrease. We start with monomial in form (afh)mi(bdk)i(afh)^{m-i}(bdk)^{i}. When i2i\geq 2, we use equation basis (afh)mi(bdk)i1bfg(afh)^{m-i}(bdk)^{i-1}bfg and comparing basis (aek)m1afh(aek)^{m-1}afh. When i=1i=1, we use equation basis (afh)m1cdh(afh)^{m-1}cdh and comparing basis (aek)m1bdk(aek)^{m-1}bdk. Finally, we compute monomials in form (aek)n(afh)r(bfg)s(aek)^{n}(afh)^{r}(bfg)^{s}. To compute the case n=1n=1, we use equation Dq(afh)r(bfg)s=(afh)r(bfg)sD_{q}*(afh)^{r}(bfg)^{s}=(afh)^{r}(bfg)^{s} with r+s=m1r+s=m-1. Now, we assume that the Haar state of monomials in the form (aek)n1(afh)r(bdk)s(aek)^{n-1}(afh)^{r}(bdk)^{s} with r+s=mn+1r+s=m-n+1 are known. To compute (aek)n(afh)r(bdk)s(aek)^{n}(afh)^{r^{\prime}}(bdk)^{s^{\prime}} with r+s=mnr^{\prime}+s^{\prime}=m-n, we use equation (aek)n1(afh)r(bdk)s=(aek)n1Dq(afh)r(bdk)s(aek)^{n-1}(afh)^{r^{\prime}}(bdk)^{s^{\prime}}=(aek)^{n-1}*D_{q}*(afh)^{r^{\prime}}(bdk)^{s^{\prime}}.

At this point, we have computed the Haar states of all monomials of order mm.

Acknowledgement

This author is advised by Professor Jeffrey Kuan from Texas A&M University and Professor Micheal Brannan from University of Waterloo. This work is partially funded by National Science Foundation (NSF grant DMS-2000331).

References

  • [1] George E Andrews. The theory of partitions. Number 2. Cambridge university press, 1998.
  • [2] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A, 5:147–151, 1946.
  • [3] Benoît Collins. Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability. International Mathematics Research Notices, 2003(17):953–982, 2003.
  • [4] Vladimir Gershonovich Drinfeld. Quantum groups. Proc. Int. Congr. Math., 1:798–820, 1986.
  • [5] Michio Jimbo. A qq-difference analogue of Uq(g)U_{q}(g) and the Yang-Baxter equation. Letters in Mathematical Physics, 10(1):63–69, 1985.
  • [6] Anatoli Klimyk and Konrad Schmüdgen. Quantum groups and their representations. Springer Science & Business Media, 2012.
  • [7] Leonid I Korogodski, Yan S Soibelman, et al. Algebras of functions on quantum groups: Part I, volume 56. American Mathematical Soc., 1998.
  • [8] Serge Levendorskii and Yan Soibelman. Algebras of functions on compact quantum groups, schubert cells and quantum tori. Communications in Mathematical Physics, 139(1):141–170, 1991.
  • [9] Max Holst Mikkelsen and Jens Kaad. The haar state on the vaksman-soibelman quantum spheres. arXiv preprint arXiv:2212.10903, 2022.
  • [10] Gabriel Nagy. On the haar measure of the quantum su (n) group. Communications in mathematical physics, 153:217–217, 1993.
  • [11] Masatoshi Noumi, Hirofumi Yamada, and Katsuhisa Mimachi. Finite Dimensional representations of the quantum group GLq(n;C)GL_{q}(n;C) and the zonal spherical functions on Uq(n1)Uq(n)U_{q}(n-1)\setminus U_{q}(n). Japanese journal of mathematics. New series, 19(1):31–80, 1993.
  • [12] Nicolai Reshetikhin and Milen Yakimov. Quantum invariant measures. Communications in Mathematical Physics, 224(2):399–426, 2001.
  • [13] ML Stein and PR Stein. Enumeration of stochastic matrices with integer elements. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1970.
  • [14] M.E. Sweedler. Hopf Algebras. Mathematics lecture note series. W. A. Benjamin, 1969.
  • [15] Leonid L’vovich Vaksman and Yakov Sergeevich Soibel’man. Algebra of functions on the quantum group su(n+1) and odd-dimensional quantum spheres. Algebra i analiz, 2(5):101–120, 1990.
  • [16] John Von Neumann. A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2(0):5–12, 1953.

Appendix A Useful equations

When we switch the order of high complexity segments
with cegceg segment:

cegaek=aekceg+(q3q)afhceg(q1/q)bdkceg(q21)2/qbfgcdh,cegafh=q2afhceg+(1q2)bfgcdh,cegbdk=q2bdkceg+(1q2)bfgcdh,\begin{split}cegaek&=aekceg+(q^{3}-q)*afhceg-(q-1/q)*bdkceg-(q^{2}-1)^{2}/q*bfgcdh,\\ cegafh&=q^{2}*afhceg+(1-q^{2})*bfgcdh,\\ cegbdk&=q^{-2}*bdkceg+(1-q^{-2})*bfgcdh,\end{split} (16)

with cdhcdh segment:

cdhaek=aekcdh+(q4q2)afhceg+(1q2)bdkceg(q21)2bfgcdh,cdhafh=afhcdh+(q3q)afhceg(q3q)bfgcdh,cdhbdk=bdkcdh(q1/q)bdkceg+(q1/q)bfgcdh,\begin{split}cdhaek&=aekcdh+(q^{4}-q^{2})*afhceg+(1-q^{2})*bdkceg-(q^{2}-1)^{2}*bfgcdh,\\ cdhafh&=afhcdh+(q^{3}-q)*afhceg-(q^{3}-q)*bfgcdh,\\ cdhbdk&=bdkcdh-(q-1/q)*bdkceg+(q-1/q)*bfgcdh,\end{split} (17)

with bfgbfg segment:

bfgaek=aekbfg+(q4q2)afhceg+(1q2)bdkceg(q21)2bfgcdh,bfgafh=afhbfg+(q3q)afhceg(q3q)bfgcdh,bfgbdk=bdkbfg(q1/q)bdkceg+(q1/q)bfgcdh.\begin{split}bfgaek&=aekbfg+(q^{4}-q^{2})*afhceg+(1-q^{2})*bdkceg-(q^{2}-1)^{2}*bfgcdh,\\ bfgafh&=afhbfg+(q^{3}-q)*afhceg-(q^{3}-q)*bfgcdh,\\ bfgbdk&=bdkbfg-(q-1/q)*bdkceg+(q-1/q)*bfgcdh.\end{split} (18)

The key observation is that when we switch the order of a high-complexity segment with a low-complexity segment, the newly generated monomials contain at most one high-complexity segment.

When we switch the order of two high complexity segments:

bdkafh=q2afhbdk+(1q2)aekbfg+(1q2)aekcdh(q21)2/q3aekceg+(q21)2(q2+1)q2afhceg(q4q2)bfgcdh,\begin{split}bdkafh=&q^{-2}*afhbdk+(1-q^{-2})*aekbfg\\ &+(1-q^{-2})*aekcdh-(q^{2}-1)^{2}/q^{3}*aekceg\\ &+\frac{(q^{2}-1)^{2}(q^{2}+1)}{q^{2}}*afhceg-(q^{4}-q^{2})*bfgcdh,\end{split} (19)
afhaek=aekafh+(q1/q)afhbdk(q1/q)aekbfg(q1/q)aekcdh+(q1/q)2aekceg+(q1/q)afhceg,\begin{split}afhaek=&aekafh+(q-1/q)*afhbdk-(q-1/q)*aekbfg\\ &-(q-1/q)*aekcdh+(q-1/q)^{2}*aekceg+(q-1/q)*afhceg,\\ \end{split} (20)
bdkaek=aekbdk(q1/q)afhbdk+(q1/q)aekbfg+(q1/q)aekcdh(q1/q)2aekceg+(q21)2(q2+1)qafhceg(q3q)bdkcegq(q21)2bfgcdh.\begin{split}bdkaek=&aekbdk-(q-1/q)*afhbdk+(q-1/q)*aekbfg\\ &+(q-1/q)*aekcdh-(q-1/q)^{2}*aekceg\\ &+\frac{(q^{2}-1)^{2}(q^{2}+1)}{q}*afhceg-(q^{3}-q)*bdkceg\\ &-q(q^{2}-1)^{2}*bfgcdh.\end{split} (21)

In Equation (19), the newly generated monomials contain at most one high-complexity segment. In Equation (LABEL:apeq:5) and Equation (21), the newly generated monomials contain at most one high-complexity segment except the monomial afhbdkafhbdk.

Standard monomials afhbdkcegafhbdkceg, bdkafhcegbdkafhceg and aekbfgcdhaekbfgcdh have the same counting matrix:

[111111111].\begin{bmatrix}1&1&1\\ 1&1&1\\ 1&1&1\end{bmatrix}.

We have the following equation:

afhbdkceg=qaekbfgcdh+(1q2)aekbfgceg+(1q2)aekcdhceg+(q21)2/qaek(ceg)2+(1q2)afhbfgcdh+(q3q)afhbfgceg+(q3q)afhcdhceg(q21)2afh(ceg)2.\begin{split}afhbdkceg=&q*aekbfgcdh+(1-q^{2})*aekbfgceg\\ &+(1-q^{2})*aekcdhceg+(q^{2}-1)^{2}/q*aek(ceg)^{2}\\ &+(1-q^{2})*afhbfgcdh+(q^{3}-q)*afhbfgceg\\ &+(q^{3}-q)*afhcdhceg-(q^{2}-1)^{2}*afh(ceg)^{2}.\end{split} (22)
bdkafhceg=1/qaekbfgcdh(1q2)afhbfgcdh+(qq1)afhbfgceg+(qq1)afhcdhceg+(q21)2afh(ceg)2(q4q2)bfgcdh(ceg)2.\begin{split}bdkafhceg=&1/q*aekbfgcdh-(1-q^{-2})*afhbfgcdh\\ &+(q-q^{-1})*afhbfgceg+(q-q^{-1})*afhcdhceg\\ &+(q^{2}-1)^{2}*afh(ceg)^{2}-(q^{4}-q^{2})*bfgcdh(ceg)^{2}.\end{split} (23)

Appendix B Illustration of the Zigzag Recursive Relation

\mathbf{\vdots}

\mathbf{\vdots}

bfg(cdh)j1(ceg)nj+1bfg(cdh)^{j-1}(ceg)^{n-j+1}bdk(cdh)j1(ceg)nj+1bdk(cdh)^{j-1}(ceg)^{n-j+1}bfg(cdh)j(ceg)njbfg(cdh)^{j}(ceg)^{n-j}bdk(cdh)j(ceg)njbdk(cdh)^{j}(ceg)^{n-j}bfg(cdh)j+1(ceg)nj1bfg(cdh)^{j+1}(ceg)^{n-j-1}bdk(cdh)j+1(ceg)nj1bdk(cdh)^{j+1}(ceg)^{n-j-1}

\mathbf{\vdots}

\mathbf{\vdots}

13572468
Figure 1. Illustration of the Zigzag recursive relation. Arrow 1 to 8 means that we are using the monomial in the upper box as the equation basis and (aek)m1afh(aek)^{m-1}afh as the comparing basis to derive the linear relation containing the monomial in the lower box as the only unknown. The zigzagging arrows indicate the order that we follow to solve the Haar states of these monomials.

Appendix C Example of qq-Deformed Weingarten Function

We know that when q1q\rightarrow 1, 𝒪(SUq(n))\mathcal{O}(SU_{q}(n)) becomes SU(n)SU(n) and the Haar state on SUq(n)SU_{q}(n) becomes the Haar measure on SU(n)SU(n). This implies that

h(xi1j1xinjnxi1j1xinjn)q1SU(n)Ui1j1UinjnUi1j1Uinjn𝑑U,\begin{split}{h(x_{i_{1}j_{1}}\cdots x_{i_{n}j_{n}}x_{i_{1}^{\prime}j_{1}^{\prime}}^{*}\cdots x_{i_{n}^{\prime}j_{n}^{\prime}}^{*})\xrightarrow{q\rightarrow 1}\int_{SU(n)}U_{i_{1}j_{1}}\cdots U_{i_{n}j_{n}}U_{i_{1}^{\prime}j_{1}^{\prime}}^{*}\cdots U_{i_{n}^{\prime}j_{n}^{\prime}}^{*}\ dU},\end{split}

where xi,jx_{i,j}’s are generators of 𝒪(SUq(n))\mathcal{O}(SU_{q}(n)) and Ui,jU_{i,j}’s are coordinate function on SU(n)SU(n). The Haar state on the quantum sphere serves as an example of qq-deformed Weingarten function on SU(n)SU(n)(for detail, see Noumi et al. [11], Reshetikhin et al. [12], Mikkelsen et al. [9]).

One major difference between the Haar state and the integral is that the order of generators affects the Haar state. However, the order of the coordinate functions does not affect the integral. In the following examples on 𝒪(SUq(3))\mathcal{O}(SU_{q}(3)), we show that the order of generators in the Haar state does not affect the limit at q=1q=1.

Example 1:

h(x11x22x11x22)=h(aeae)=h(ae(ekqfh)(akqcg))=h(aeekak)qh(aefhak)qh(aeekcg)+q2h(aefhcg)q2(q2+1)2(q4+1).\begin{split}h(x_{11}x_{22}x_{11}^{*}x_{22}^{*})&=h(aea^{*}e^{*})=h(ae(ek-q\cdot fh)(ak-q\cdot cg))\\ &=h(aeekak)-q\cdot h(aefhak)-q\cdot h(aeekcg)+q^{2}\cdot h(aefhcg)\\ &\frac{q^{2}}{(q^{2}+1)^{2}(q^{4}+1)}.\end{split}
h(x22x11x11x22)=h(eaae)=h(ea(ekqfh)(akqcg))=h(eaekak)qh(eafhak)qh(eaekcg)+q2h(eafhcg)=q2(q2+1)2(q4+1)q6+q2+1q4+q2+1.\begin{split}h(x_{22}x_{11}x_{11}^{*}x_{22}^{*})&=h(eaa^{*}e^{*})=h(ea(ek-q\cdot fh)(ak-q\cdot cg))\\ &=h(eaekak)-q\cdot h(eafhak)-q\cdot h(eaekcg)+q^{2}\cdot h(eafhcg)\\ &=\frac{q^{2}}{(q^{2}+1)^{2}(q^{4}+1)}\frac{q^{6}+q^{2}+1}{q^{4}+q^{2}+1}\end{split}.
h(x11x22x22x11)=h(aeea)=h(ae(akqcg)(ekqfh))=h(aeakek)qh(aecgek)qh(aeakfh)+q2h(aecgfh)=1(q2+1)2(q4+1)q6+q4+1q4+q2+1.\begin{split}h(x_{11}x_{22}x_{22}^{*}x_{11}^{*})&=h(aee^{*}a^{*})=h(ae(ak-q\cdot cg)(ek-q\cdot fh))\\ &=h(aeakek)-q\cdot h(aecgek)-q\cdot h(aeakfh)+q^{2}\cdot h(aecgfh)\\ &=\frac{1}{(q^{2}+1)^{2}(q^{4}+1)}\frac{q^{6}+q^{4}+1}{q^{4}+q^{2}+1}.\end{split}
h(x11x11x22x22)=h(aaee)=h((aekqafh)(eakqceg))=h(aekeak)qh(aekceg)qh(afheak)+q2h(afhceg)=q2(q2+1)2(q4+1).\begin{split}h(x_{11}x_{11}^{*}x_{22}x_{22}^{*})&=h(aa^{*}ee^{*})=h((aek-q\cdot afh)(eak-q\cdot ceg))\\ &=h(aekeak)-q\cdot h(aekceg)-q\cdot h(afheak)+q^{2}\cdot h(afhceg)\\ &=\frac{q^{2}}{(q^{2}+1)^{2}(q^{4}+1)}.\end{split}

The Haar states of monomials in other orders can be computed by the relation h(yϕ(x))=h(xy)h(y\phi(x))=h(xy) where ϕ\phi is the homomorphism on 𝒪(SUq(3))\mathcal{O}(SU_{q}(3)) such that ϕ(xij)=q2(i+j4)xij\phi(x_{ij})=q^{2(i+j-4)}x_{ij}. When q1q\rightarrow 1, all Haar state values goes to 1/81/8 which is consistent with

SU(3)U11U22U11U22𝑑U=Wg(12,3)=1321=18.\int_{SU(3)}U_{11}U_{22}U_{11}^{*}U_{22}^{*}\ dU=Wg(1^{2},3)=\frac{1}{3^{2}-1}=\frac{1}{8}.

Example 2:

h(x11x32x31x12)=h(ahgb)=(q)1h(ah(bfqce)(dkqfg))=q1[h(ahbfdk)qh(ahcedk)qh(ahbffg)+q2h(ahcefg)]=q(q2+1)2(q4+1)(q4+q2+1).\begin{split}h(x_{11}x_{32}x_{31}^{*}x_{12}^{*})&=h(ahg^{*}b^{*})=(-q)^{-1}\cdot h(ah(bf-q\cdot ce)(dk-q\cdot fg))\\ &=-q^{-1}[h(ahbfdk)-q\cdot h(ahcedk)-q\cdot h(ahbffg)+q^{2}\cdot h(ahcefg)]\\ &=\frac{-q}{(q^{2}+1)^{2}(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}
h(x32x11x31x12)=h(hagb)=(q)1h(ha(bfqce)(dkqfg))=q1[h(habfdk)qh(hacedk)qh(habffg)+q2h(hacefg)]=q7(q2+1)2(q4+1)(q4+q2+1).\begin{split}h(x_{32}x_{11}x_{31}^{*}x_{12}^{*})&=h(hag^{*}b^{*})=(-q)^{-1}\cdot h(ha(bf-q\cdot ce)(dk-q\cdot fg))\\ &=-q^{-1}[h(habfdk)-q\cdot h(hacedk)-q\cdot h(habffg)+q^{2}\cdot h(hacefg)]\\ &=\frac{-q^{7}}{(q^{2}+1)^{2}(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}
h(x11x32x12x31)=h(ahbg)=(q)1h(ah(dkqfg)(bfqce))=q1[h(ahdkbf)qh(ahdkce)qh(ahfgbf)+q2h(ahfgce)]=q(q2+1)2(q4+1)(q4+q2+1).\begin{split}h(x_{11}x_{32}x_{12}^{*}x_{31}^{*})&=h(ahb^{*}g^{*})=(-q)^{-1}\cdot h(ah(dk-q\cdot fg)(bf-q\cdot ce))\\ &=-q^{-1}[h(ahdkbf)-q\cdot h(ahdkce)-q\cdot h(ahfgbf)+q^{2}\cdot h(ahfgce)]\\ &=\frac{-q}{(q^{2}+1)^{2}(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}
h(x11x12x32x31)=h(abhg)=(q)1h(a(dkqfg)h(bfqce))=q1[h(adkhbf)qh(adkhce)qh(afghbf)+q2h(afghce)]=q4(q2+1)2(q4+1)(q4+q2+1).\begin{split}h(x_{11}x_{12}^{*}x_{32}x_{31}^{*})&=h(ab^{*}hg^{*})=(-q)^{-1}\cdot h(a(dk-q\cdot fg)h(bf-q\cdot ce))\\ &=-q^{-1}[h(adkhbf)-q\cdot h(adkhce)-q\cdot h(afghbf)+q^{2}\cdot h(afghce)]\\ &=\frac{-q^{4}}{(q^{2}+1)^{2}(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}

When q1q\rightarrow 1, all Haar state values goes to 1/24-1/24 which is consistent with

SU(3)U11U32U31U12𝑑U=Wg(2,3)=13(321)=124.\int_{SU(3)}U_{11}U_{32}U_{31}^{*}U_{12}^{*}\ dU=Wg(2,3)=-\frac{1}{3(3^{2}-1)}=-\frac{1}{24}.

Example 3:

h(x11x11x11x11)=h(aaaa)=h(aa(ekqfh)(ekqfh))=h(aaekek)qh(aafhek)qh(aaekfh)+q2h(aafhfh)=1(q4+1)(q4+q2+1).\begin{split}h(x_{11}x_{11}x_{11}^{*}x_{11}^{*})&=h(aaa^{*}a^{*})=h(aa(ek-q\cdot fh)(ek-q\cdot fh))\\ &=h(aaekek)-q\cdot h(aafhek)-q\cdot h(aaekfh)+q^{2}\cdot h(aafhfh)\\ &=\frac{1}{(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}
h(x11x11x11x11)=h(aaaa)=h(a(ekqfh)a(ekqfh))=h(aekaek)qh(afhaek)qh(aekafh)+q2h(afhafh)=q4q2+1(q4+1)(q4+q2+1).\begin{split}h(x_{11}x_{11}^{*}x_{11}x_{11}^{*})&=h(aa^{*}aa^{*})=h(a(ek-q\cdot fh)a(ek-q\cdot fh))\\ &=h(aekaek)-q\cdot h(afhaek)-q\cdot h(aekafh)+q^{2}\cdot h(afhafh)\\ &=\frac{q^{4}-q^{2}+1}{(q^{4}+1)(q^{4}+q^{2}+1)}.\end{split}

When q1q\rightarrow 1, all Haar state values goes to 1/61/6 which is consistent with

SU(3)U112(U11)2𝑑U=2Wg(12,3)+2Wg(2,3)=21321213(321)=16.\begin{split}\int_{SU(3)}U_{11}^{2}(U_{11}^{*})^{2}\ dU&=2Wg(1^{2},3)+2Wg(2,3)\\ &=2\frac{1}{3^{2}-1}-2\frac{1}{3(3^{2}-1)}=\frac{1}{6}.\end{split}