This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

composition operators with closed range on the Dirichlet space

Guangfu Cao Cao: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China. [email protected]  and  Li He He: School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China. [email protected]
Abstract.

It is well known that the composition operator on Hardy or Bergman space has a closed range if and only if its Navanlinna counting function induces a reverse Carleson measure. Similar conclusion is not available on the Dirichlet space. Specifically, the reverse Carleson measure is not enough to ensure that the range of the corresponding composition operator is closed. However, under certain assumptions, we in this paper set the necessary and sufficient condition for a composition operator on the Dirichlet space to have closed range.

Key words and phrases:
Dirichlet space, composition operator, closed range, counting function.
2010 Mathematics Subject Classification:
47B33, 47A53
G.C. was supported by NNSF of China (Grant No. 12071155), and L.H. was supported by NNSF of China (Grant No. 11871170).
*Corresponding author, email: [email protected]

1. Introduction

Let 𝔻{\mathbb{D}} be the unit disc in the complex plane ,{\mathbb{C}}, 𝕋\mathbb{T} be the unit circle, and let dAdA denote area measure on 𝔻{\mathbb{D}}. The Dirichlet space, denoted by 𝔇(𝔻)\mathfrak{D}({\mathbb{D}}), consists of analytic functions ff on 𝔻{\mathbb{D}} such that

f2=|f(0)|2+𝔻|f(z)|2𝑑A(z)<.\|f\|^{2}=|f(0)|^{2}+\int_{\mathbb{D}}|f^{\prime}(z)|^{2}\,dA(z)<\infty.

Obviously, 𝔇(𝔻)\mathfrak{D}({\mathbb{D}}) is a Hilbert space with the inner product

f,g=f(0)g(0)¯+𝔻f(z)g(z)¯𝑑A(z).\langle f,g\rangle=f(0)\overline{g(0)}+\int_{\mathbb{D}}f^{\prime}(z)\overline{g^{\prime}(z)}\,dA(z).

Set e0(z)=1,en(z)=1πznn,(n=1,2,,),e_{0}(z)=1,\quad e_{n}(z)=\frac{1}{\sqrt{\pi}}\frac{z^{n}}{\sqrt{n}},\qquad(n=1,2,,\cdots), then {en}\{e_{n}\} is the standard orthonormal basis of 𝔇(𝔻).\mathfrak{D}({\mathbb{D}}). It follows that the reproducing kernel of 𝔇(𝔻)\mathfrak{D}({\mathbb{D}}) is

K(z,w)=n=0en(z)en(w)¯=1+1πlog11zw¯.K(z,w)=\sum_{n=0}^{\infty}e_{n}(z)\overline{e_{n}(w)}=1+\frac{1}{\pi}\log\frac{1}{1-z\overline{w}}.

Given an analytic self-map φ:𝔻𝔻\varphi:{\mathbb{D}}\to{\mathbb{D}}, for any wφ(𝔻),w\in\varphi({\mathbb{D}}), write nφ(w)n_{\varphi}(w) is the cardinality of the set φ1(w),\varphi^{-1}(w), Nφ(w)N_{\varphi}(w) is the (Nevanlinna) counting number function of φ,\varphi, and

τφ(w)=Nφ(w)log1|w|.\tau_{\varphi}(w)=\frac{N_{\varphi}(w)}{log\frac{1}{|w|}}.

In the past few decades, the closed-range composition operators on various function spaces has attracted wide attention, we refer to [1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18] and the references therein. In 1974 Cima, Thompson, and Wogen determined when the composition operators on Hardy space H2H^{2} have closed-ranges by utilizing the boundary behaviour of the inducing maps (see [2]). In the end of their paper, they posed the problem of characterizing the closed-range composition operators using the properties of the range of the inducing maps on the unit disc rather than the properties of the boundary. Zorboska [17] gave an answer to this question by using the Nevanlinna counting function and Luecking’s measure theoretic results on inequalities on Bergman spaces. He proved the following

Theorem Z.

([17]). Let φ\varphi be an analytic self-mapping of 𝔻.{\mathbb{D}}. Assume that CφC_{\varphi} is a bounded composition operator on the Hardy space H2(𝔻)H^{2}({\mathbb{D}}) defined as

Cφf(z)=(fφ)(z),fH2(𝔻).C_{\varphi}f(z)=(f\circ\varphi)(z),\hskip 14.22636pt\forall\hskip 5.69054ptf\in H^{2}({\mathbb{D}}).

Then CφC_{\varphi} has closed range if and only if there exists a positive constant c>0c>0 such that the set Gc={z𝔻:τφ(z)>c}G_{c}=\{z\in{\mathbb{D}}:\tau_{\varphi}(z)>c\} satisfies the condition:

There exists a constant δ>0\delta>0 such that

A(GcS(ζ,r))>δA(𝔻S(ζ,r))()A(G_{c}\cap S(\zeta,r))>\delta A({\mathbb{D}}\cap S(\zeta,r))\hskip 28.45274pt(*)

for all ζ𝕋\zeta\in\mathbb{T} and r>0,r>0, where S(ζ,r)={z𝔻:|zζ|<r}.S(\zeta,r)=\{z\in{\mathbb{D}}:|z-\zeta|<r\}.

In addition, Zorboska constructed a counterexample which shows that the range of CφC_{\varphi} may not be closed even if φ(𝔻)=𝔻.\varphi({\mathbb{D}})={\mathbb{D}}. It seems a little strange since CφC_{\varphi} is invertible on H2(𝔻)H^{2}({\mathbb{D}}) if φAut(𝔻).\varphi\in Aut({\mathbb{D}}).

For the case of the (weighted) Bergman space, one also obtained the necessary and sufficient conditions for the closed range composition operators (see [1, 8]). However, in the case of the Dirichlet space, it seems rather difficult.

Recall that the pseudo-hyperbolic metric on 𝔻{\mathbb{D}} is defined by

ρ(z,w)=|zw1z¯w|,z,w𝔻,\rho(z,w)=|\frac{z-w}{1-\bar{z}w}|,\hskip 14.22636ptz,w\in{\mathbb{D}},

and the Bergman metric is defined by

β(z,w)=12log1+ρ(z,w)1ρ(z,w),z,w𝔻.\beta(z,w)=\frac{1}{2}log\frac{1+\rho(z,w)}{1-\rho(z,w)},\hskip 14.22636ptz,w\in{\mathbb{D}}.

For 0<η<1,0<\eta<1, z𝔻z\in{\mathbb{D}} and r>0,r>0, write

Dη(z)={w𝔻|ρ(z,w)<η}D_{\eta}(z)=\{w\in{\mathbb{D}}|\rho(z,w)<\eta\}

and

D(z,r)={w𝔻|β(z,w)<r}.D(z,r)=\{w\in{\mathbb{D}}|\beta(z,w)<r\}.

For G,G\subset\mathbb{C}, A(G)A(G) denotes the Lebesgue measure of G.G. Then for any fixed positive r,r, we have

A(D(z,r))(1|z|2)2.A(D(z,r))\sim(1-|z|^{2})^{2}.

In fact, D(z,r)D(z,r) is the Euclidean disk with Euclidean center (1s2)z/(1s2|z|2)(1-s^{2})z/(1-s^{2}|z|^{2}) and Euclidean radius (1|z|2)s/(1s2|z|2),(1-|z|^{2})s/(1-s^{2}|z|^{2}), where s=tanh(r)(0,1).s=tanh(r)\in(0,1). One may consult the book [15] by Kehe Zhu for details.

Luecking [10] proved that a necessary condition for a composition operator CφC_{\varphi} on the Dirichlet space 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) to have closed range is that nφdAn_{\varphi}dA must be a reverse Carleson measure, that is, there is a δ>0\delta>0 and η(0,1)\eta\in(0,1) such that

φ(𝔻)Dη(z)nφ(w)𝑑A(w)>δA(Dη(z))\int_{\varphi({\mathbb{D}})\cap D_{\eta}(z)}n_{\varphi}(w)dA(w)>\delta A(D_{\eta}(z))

for all z𝔻,z\in\mathbb{D}, or equivalently, there is a δ>0\delta>0 such that

φ(𝔻)S(ζ,r)nφ(w)𝑑A(w)>δA(S(ζ,r))\int_{\varphi({\mathbb{D}})\cap S(\zeta,r)}n_{\varphi}(w)dA(w)>\delta A(S(\zeta,r))

for all ζ𝕋.\zeta\in\mathbb{T}. Note that

D(z,r)={w𝔻:β(z,w)<r}=Dη(z)={w𝔻:ρ(z,w)<η}D(z,r)=\{w\in{\mathbb{D}}:\beta(z,w)<r\}=D_{\eta}(z)=\{w\in{\mathbb{D}}:\rho(z,w)<\eta\}

for η=e2r1e2r+1,\eta=\frac{e^{2r}-1}{e^{2r}+1}, and then that the following statements are equivalent:

(1) There is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφ(w)𝑑A(w)>δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}(w)dA(w)>\delta A(D(z,r))

for all z𝔻.z\in\mathbb{D}.

(2) There is a δ>0\delta>0 and η(0,1)\eta\in(0,1) such that

φ(𝔻)Dη(z)nφ(w)𝑑A(w)>δA(Dη(z))\int_{\varphi({\mathbb{D}})\cap D_{\eta}(z)}n_{\varphi}(w)dA(w)>\delta A(D_{\eta}(z))

for all z𝔻.z\in\mathbb{D}.

In 1999 Luecking [11] constructed a self-mapping φ\varphi on 𝔻{\mathbb{D}} such that nφdAn_{\varphi}dA is a reverse Carleson measure, but CφC_{\varphi} has not closed range. Unfortunately, there is no necessary and sufficient condition for a composition operator to have closed range. In contrast to Hardy space, the composition operator with surjective symbol must have closed range on Dirichlet space. In fact, if φ\varphi is an analytic self-mapping on 𝔻{\mathbb{D}}, and φ(𝔻)=𝔻,\varphi({\mathbb{D}})={\mathbb{D}}, then nφ(w)1n_{\varphi}(w)\geq 1 for any w𝔻,w\in{\mathbb{D}}, and

Cφf𝒟2\displaystyle\|C_{\varphi}f\|^{2}_{\mathcal{D}} =\displaystyle= 𝔻|(fφ)(z)|2𝑑A(z)\displaystyle\int_{{\mathbb{D}}}|(f\circ\varphi)^{\prime}(z)|^{2}dA(z)
=\displaystyle= φ(𝔻)|f(w)|2nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
=\displaystyle= 𝔻|f(w)|2nφ(w)𝑑A(w)\displaystyle\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
\displaystyle\geq 𝔻|f(w)|2𝑑A(w)=f𝒟2.\displaystyle\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)=\|f\|^{2}_{\mathcal{D}}.

This implies that CφC_{\varphi} has closed range.

The discussions above means that even if the measure nφ(w)dA(w)n_{\varphi}(w)dA(w) induced by counting function nφ(w)n_{\varphi}(w) is a reverse Carleson measure, it also cannot guarantee that the composition operator CφC_{\varphi} has closed range. However, if φ\varphi is surjective, then the range of CφC_{\varphi} must be closed. This phenomenon is not surprising, since the counting function nφ(w)n_{\varphi}(w) may be unbounded when ww approaches the boundary of the domain, although the image of the symbol map cannot fill the neighborhood of 𝕋,\mathbb{T}, the counting function may introduce a reverse Carleson measure. It can show up from the counterexample of Luecking in [17]. This shows that the reverse Carleson measure is not a proper condition for composition operator with closed range on Dirichlet space 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) in some extreme cases.

Notice that

φ(𝔻)D(z,r)nφ(w)A(w)φ(𝔻)D(z,r)A(w)=A(φ(𝔻)D(z,r)),\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}(w)A(w)\geq\int_{\varphi({\mathbb{D}})\cap D(z,r)}A(w)=A(\varphi({\mathbb{D}})\cap D(z,r)),

then the inequality

A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

for all z𝔻z\in\mathbb{D} and some r>0r>0 implies that nφ(w)A(w)n_{\varphi}(w)A(w) is a reverse Carleson measure, but the contrary may not be true. In other words, the inequality

A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

is stronger than that nφ(w)dA(w)n_{\varphi}(w)dA(w) is a reverse Carleson measure. Further, they are equivalent under the assumption that nφ(w)n_{\varphi}(w) is bounded. In fact, if nφ(w)n_{\varphi}(w) is bounded on 𝔻,{\mathbb{D}}, then for any z𝔻z\in\mathbb{D} and r>0,r>0, there is a constant M>0M>0 such that

MA(φ(𝔻)D(z,r))\displaystyle MA(\varphi({\mathbb{D}})\cap D(z,r)) \displaystyle\geq φ(𝔻)D(z,r)nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}(w)dA(w)
\displaystyle\geq φ(𝔻)D(z,r)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap D(z,r)}dA(w)
=\displaystyle= A(φ(𝔻)D(z,r)).\displaystyle A(\varphi({\mathbb{D}})\cap D(z,r)).

In this case, the inequality

A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

is equivalent to that nφ(w)dA(w)n_{\varphi}(w)dA(w) is a reverse Carleson measure. It seems that a proper condition for composition operator with closed range is:

There exists a constant δ>0\delta>0 and r>0r>0 such that

A(φ(𝔻)D(z,r))δA(D(z,r))()A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))\hskip 28.45274pt(**)

for all z𝔻.z\in\mathbb{D}.

Under some natural assumptions, ()(**) is indeed the necessary and sufficient condition for composition operators to have closed range. Our main result is as follow

Main Theorem.

Let φ\varphi be an analytic self-mapping function of 𝔻.{\mathbb{D}}. If

limksupf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k}|f(w)|2nφ(w)𝑑A(w)=0,lim_{k\rightarrow\infty}sup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)=0,

where (𝒟(𝔻))1(\mathcal{D}({\mathbb{D}}))_{1} denotes the unit sphere of 𝒟(𝔻),\mathcal{D}({\mathbb{D}}), then the following statements are equivalent:

  1. (a)

    R(Cφ)R(C_{\varphi}) is closed on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}).

  2. (b)

    There is a δ>0\delta>0 and r>0r>0 such that

    A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

    for all z𝔻z\in{\mathbb{D}}.

  3. (c)

    nφ(w)dA(w)n_{\varphi}(w)dA(w) is a reverse Carleson measure.

2. Composition operator with closed range

Proposition 2.1.

Let φ\varphi be an analytic self-mapping function of 𝔻.{\mathbb{D}}. Assume CφC_{\varphi} is a bounded composition operator on 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) defined as

Cφf(z)=(fφ)(z),f𝒟(𝔻).C_{\varphi}f(z)=(f\circ\varphi)(z),\hskip 14.22636pt\forall\hskip 5.69054ptf\in\mathcal{D}({\mathbb{D}}).

If R(Cφ)={(fφ|f𝒟(𝔻)}R(C_{\varphi})=\{(f\circ\varphi|f\in\mathcal{D}({\mathbb{D}})\}, the range of Cφ,C_{\varphi}, is closed, then for any ζ𝕋\zeta\in\mathbb{T} and any r>0,r>0,

S(ζ,r)φ(𝔻)ϕ.S(\zeta,r)\cap\varphi({\mathbb{D}})\neq\phi.

Equivalently, 𝕋φ(𝔻)¯.\mathbb{T}\subset\overline{\varphi({\mathbb{D}})}.

Proof.

Assume R(Cφ)R(C_{\varphi}) is closed, since kerCφ={0},kerC_{\varphi}=\{0\}, we know that there is a constant c>0c>0 such that

Cφfcf,f𝒟(𝔻).()\|C_{\varphi}f\|\geq c\|f\|,\hskip 14.22636pt\forall f\in\mathcal{D}({\mathbb{D}}).\hskip 56.9055pt(***)

Thus

Cφf2\displaystyle\|C_{\varphi}f\|^{2} =\displaystyle= 𝔻|(fφ)(z)|2𝑑A(z)+|fφ(0)|2\displaystyle\int_{{\mathbb{D}}}|(f\circ\varphi)^{\prime}(z)|^{2}dA(z)+|f\circ\varphi(0)|^{2}
=\displaystyle= φ(𝔻)|f(w)|2nφ(w)𝑑A(w)+|fφ(0)|2\displaystyle\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)+|f\circ\varphi(0)|^{2}
\displaystyle\geq c2[𝔻|f(z)|2𝑑A(z)+|f(0)|2].\displaystyle c^{2}[\int_{{\mathbb{D}}}|f^{\prime}(z)|^{2}dA(z)+|f(0)|^{2}].

If there is a ζ𝕋\zeta\in\mathbb{T} and r>0r>0 such that

S(ζ,r)φ(𝔻)=ϕ,S(\zeta,r)\cap\varphi({\mathbb{D}})=\phi,

let

fζ(z)=1+ζ¯z2,fk(z)=fζk(z),f_{\zeta}(z)=\frac{1+\bar{\zeta}\cdot z}{2},\hskip 14.22636ptf_{k}(z)=f_{\zeta}^{k}(z),

then fζ(z)f_{\zeta}(z) is the peak function at ζ\zeta on 𝔻.{\mathbb{D}}. For arbitrary open neighborhood UU of ζ,\zeta, it is easy to see that

limk𝔻U|fk(z)|2𝑑A(z)𝔻|fk(z)|2𝑑A(z)k\displaystyle lim_{k\rightarrow\infty}\sqrt[k]{\frac{\int_{{\mathbb{D}}-U}|f^{\prime}_{k}(z)|^{2}dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}}
=\displaystyle= max|fζ|𝔻U|max|fζ|𝔻|=max|fζ|𝔻U|<1.\displaystyle\frac{max|f_{\zeta}|_{{\mathbb{D}}-U}|}{max|f_{\zeta}|_{{\mathbb{D}}}|}=max|f_{\zeta}|_{{\mathbb{D}}-U}|<1.

Hence

𝔻U|fk(z)|2𝑑A(z)𝔻|fk(z)|2𝑑A(z)0as k.\frac{\int_{{\mathbb{D}}-U}|f^{\prime}_{k}(z)|^{2}dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}\rightarrow 0\hskip 14.22636pt\mbox{as}\hskip 14.22636ptk\rightarrow\infty.

Direct calculation gives that

Cφfk2fk2\displaystyle\frac{\|C_{\varphi}f_{k}\|^{2}}{\|f_{k}\|^{2}} =\displaystyle= 𝔻|(fkφ)(z)|2𝑑A(z)+|fkφ(0)|2𝔻|fk(z)|2𝑑A(z)+|fk(0)|2\displaystyle\frac{\int_{{\mathbb{D}}}|(f_{k}\circ\varphi)^{\prime}(z)|^{2}dA(z)+|f_{k}\circ\varphi(0)|^{2}}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)+|f_{k}(0)|^{2}}
=\displaystyle= φ(𝔻)|fk(w)|2nφ(w)𝑑A(w)+|fkφ(0)|2𝔻|fk(z)|2𝑑A(z)+|fk(0)|2.\displaystyle\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(w)|^{2}n_{\varphi}(w)dA(w)+|f_{k}\circ\varphi(0)|^{2}}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)+|f_{k}(0)|^{2}}.

By the boundedness of Cφ,C_{\varphi}, there exists a positive constant MM such that

𝔻|f(w)|2nφ(w)𝑑A(w)M𝔻|f(w)|2𝑑A(w),f𝒟(𝔻).\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)\leq M\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w),\hskip 14.22636pt\forall f\in\mathcal{D}({\mathbb{D}}).

In particular,

𝔻nφ(w)𝑑A(w)M𝔻𝑑A(w)=MA(𝔻).\int_{{\mathbb{D}}}n_{\varphi}(w)dA(w)\leq M\int_{{\mathbb{D}}}dA(w)=MA({\mathbb{D}}).

Thus

limkφ(𝔻)|fk(z)|2nφ(z)𝑑A(z)k=max|fζ|φ(𝔻)|.lim_{k\rightarrow\infty}\sqrt[k]{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(z)|^{2}n_{\varphi}(z)dA(z)}=max|f_{\zeta}|_{\varphi({\mathbb{D}})}|.

Since there is a neighborhood UU of ζ\zeta such that Uφ(𝔻)¯=ϕ,U\cap\overline{\varphi({\mathbb{D}})}=\phi, we have φ(𝔻)¯𝔻¯U.\overline{\varphi({\mathbb{D}})}\subset\overline{{\mathbb{D}}}-U. Further,

limkφ(𝔻)|fk(z)|2nφ(z)𝑑A(z)𝔻|fk(z)|2𝑑A(z)k\displaystyle lim_{k\rightarrow\infty}\sqrt[k]{\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(z)|^{2}n_{\varphi}(z)dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}}
=\displaystyle= max|fζ|φ(𝔻)|max|fζ|𝔻|=max|fζ|φ(𝔻)|<1.\displaystyle\frac{max|f_{\zeta}|_{\varphi({\mathbb{D}})}|}{max|f_{\zeta}|_{{\mathbb{D}}}|}=max|f_{\zeta}|_{\varphi({\mathbb{D}})}|<1.

With the fact that fk(0)0f_{k}(0)\rightarrow 0 and fkφ(0)0,f_{k}\circ\varphi(0)\rightarrow 0, we get

Cφfk2fk2=φ(𝔻)|fk(w)|2nφ(z)𝑑A(w)+|fkφ(0)|2𝔻|fk(z)|2𝑑A(z)+|fk(0)|20,as k.\frac{\|C_{\varphi}f_{k}\|^{2}}{\|f_{k}\|^{2}}=\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(w)|^{2}n_{\varphi}(z)dA(w)+|f_{k}\circ\varphi(0)|^{2}}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)+|f_{k}(0)|^{2}}\rightarrow 0,\hskip 8.53581pt\mbox{as}\hskip 8.53581ptk\rightarrow\infty.

This contradicts to ().(***). It shows that

S(ζ,r)φ(𝔻)ϕ,S(\zeta,r)\cap\varphi({\mathbb{D}})\neq\phi,

which implies 𝕋φ(𝔻)¯.\mathbb{T}\subset\overline{\varphi({\mathbb{D}})}.

Let α>1\alpha>-1 and 1p<.1\leq p<\infty. We say that GG, a Borel subset of 𝔻,{\mathbb{D}}, satisfies the reverse Carleson condition on Aαp,A_{\alpha}^{p}, the weighted Bergman space, if there exists positive constant η\eta such that

ηG|f(z)|p(1|z|2)α𝑑A(z)𝔻|f(z)|p(1|z|2)α𝑑A(z),fAαp.\eta\int_{G}|f(z)|^{p}(1-|z|^{2})^{\alpha}dA(z)\geq\int_{{\mathbb{D}}}|f(z)|^{p}(1-|z|^{2})^{\alpha}dA(z),\hskip 11.38109pt\forall f\in A_{\alpha}^{p}.
Theorem KRL.

([7, 9]) Let G𝔻G\subset{\mathbb{D}} be a Borel subset of 𝔻.{\mathbb{D}}. Then GG satisfies the reverse Carleson condition if and only if the following condition holds:
There is a δ>0\delta>0 and r>0r>0 such that

A(GD(z,r))>δA(D(z,r))for each z𝔻,A(G\cap D(z,r))>\delta A(D(z,r))\hskip 14.22636pt\mbox{for each}\hskip 14.22636ptz\in{\mathbb{D}},

or equivalently, there is a δ>0\delta>0 and η(0,1)\eta\in(0,1) such that

A(GDη(z))>δA(Dη(z))for each z𝔻.A(G\cap D_{\eta}(z))>\delta A(D_{\eta}(z))\hskip 14.22636pt\mbox{for each}\hskip 14.22636ptz\in{\mathbb{D}}.
Proposition 2.2.

Let φ\varphi be an analytic self-mapping of 𝔻{\mathbb{D}} and CφC_{\varphi} be bounded on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}). Then the following statements are equivalent:

  1. (a)

    There is a δ>0\delta>0 and r>0r>0 such that

    A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

    for all z𝔻z\in{\mathbb{D}}.

  2. (b)

    For arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

    φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

    for all z𝔻.z\in{\mathbb{D}}.

  3. (c)

    For arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 such that

    φ(𝔻)|f(w)|2nφα(w)𝑑A(w)δ𝔻|f(w)|2𝑑A(w)\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)

    for all f𝒟(𝔻).f\in\mathcal{D}({\mathbb{D}}).

Proof.

Note nφα(w)1n_{\varphi}^{\alpha}(w)\geq 1 for any wφ(𝔻)w\in\varphi({\mathbb{D}}) and α(0,1),\alpha\in(0,1), we have

φ(𝔻)|f(w)|2nφα(w)𝑑A(w)φ(𝔻)|f(w)|2𝑑A(w)\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)\geq\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w)

for all f𝒟(𝔻).f\in\mathcal{D}({\mathbb{D}}). Hence (a)(c)(a)\Longrightarrow(c) is obvious by Theorem KRL.

Conversely, for arbitrary α(0,1)\alpha\in(0,1) and ϵ>0,\epsilon>0, there is a NN\in\mathbb{N} such that

nαn=1n1α<ϵ\frac{n^{\alpha}}{n}=\frac{1}{n^{1-\alpha}}<\epsilon

for all nN.n\geq N. Thus

φ(𝔻){w:nφ(w)>N}|f(w)|2nφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap\{w:n_{\varphi}(w)>N\}}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)
=\displaystyle= φ(𝔻){w:nφ(w)>N}|f(w)|2nφα(w)nφ(w)nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap\{w:n_{\varphi}(w)>N\}}|f^{\prime}(w)|^{2}\frac{n_{\varphi}^{\alpha}(w)}{n_{\varphi}(w)}n_{\varphi}(w)dA(w)
\displaystyle\leq ϵφ(𝔻){w:nφ(w)>N}|f(w)|2nφ(w)𝑑A(w)\displaystyle\epsilon\int_{\varphi({\mathbb{D}})\cap\{w:n_{\varphi}(w)>N\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
\displaystyle\leq ϵφ(𝔻)|f(w)|2nφ(w)𝑑A(w)\displaystyle\epsilon\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
\displaystyle\leq ϵCφ2𝔻|f(w)|2𝑑A(w)\displaystyle\epsilon\|C_{\varphi}\|^{2}\cdot\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)

and

φ(𝔻){w:nφ(w)N}|f(w)|2nφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap\{w:n_{\varphi}(w)\leq N\}}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)
\displaystyle\leq Nαφ(𝔻){w:nφ(w)N}|f(w)|2𝑑A(w)\displaystyle N^{\alpha}\int_{\varphi({\mathbb{D}})\cap\{w:n_{\varphi}(w)\leq N\}}|f^{\prime}(w)|^{2}dA(w)
\displaystyle\leq Nαφ(𝔻)|f(w)|2𝑑A(w)\displaystyle N^{\alpha}\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w)

for all f𝒟(𝔻).f\in\mathcal{D}({\mathbb{D}}). Further,

φ(𝔻)|f(w)|2nφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)
\displaystyle\leq ϵCφ2𝔻|f(w)|2𝑑A(w)+Nαφ(𝔻)|f(w)|2𝑑A(w)\displaystyle\epsilon\|C_{\varphi}\|^{2}\cdot\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)+N^{\alpha}\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w)

for all f𝒟(𝔻).f\in\mathcal{D}({\mathbb{D}}). If there is a δ>0\delta>0 such that

δ𝔻|f(w)|2𝑑A(w)φ(𝔻)|f(w)|2nφα(w)𝑑A(w)\delta\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)\leq\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)

for all f𝒟(𝔻),f\in\mathcal{D}({\mathbb{D}}), then

δ𝔻|f(w)|2𝑑A(w)\displaystyle\delta\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w) \displaystyle\leq φ(𝔻)|f(w)|2nφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}^{\alpha}(w)dA(w)
\displaystyle\leq ϵCφ𝔻|f(w)|2𝑑A(w)\displaystyle\epsilon\|C_{\varphi}\|\cdot\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)
+\displaystyle+ Nαφ(𝔻)|f(w)|2𝑑A(w).\displaystyle N^{\alpha}\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w).

Choose ϵ0>0\epsilon_{0}>0 such that ϵ0Cφ2<12δ\epsilon_{0}\|C_{\varphi}\|^{2}<\frac{1}{2}\delta and N0N_{0}\in\mathbb{N} such that nαn<ϵ0\frac{n^{\alpha}}{n}<\epsilon_{0} for all nN0.n\geq N_{0}. Then

δ2N0α𝔻|f(w)|2𝑑A(w)φ(𝔻)|f(w)|2𝑑A(w).\frac{\delta}{2N_{0}^{\alpha}}\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)\leq\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w).

By Theorem KRL again, we have (c)(a)(c)\Longrightarrow(a) .

(a)(b)(a)\Longrightarrow(b) is obvious since nφ(w)1n_{\varphi}(w)\geq 1 for all wφ(𝔻).w\in\varphi({\mathbb{D}}). To prove (b)(a),(b)\Longrightarrow(a), assume for arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻.z\in{\mathbb{D}}. Write EN=φ(𝔻)D(z,r){w:nφ(w)>N}E_{N}=\varphi({\mathbb{D}})\cap D(z,r)\cap\{w:n_{\varphi}(w)>N\} for any N.N. Then for any α(0,1),\alpha\in(0,1),

ENnφα(w)𝑑A(w)\displaystyle\int_{E_{N}}n_{\varphi}^{\alpha}(w)dA(w) \displaystyle\leq 1N1αENnφ𝑑A(w)\displaystyle\frac{1}{N^{1-\alpha}}\int_{E_{N}}n_{\varphi}dA(w)
\displaystyle\leq 1N1αD(z,r)nφ𝑑A(w).\displaystyle\frac{1}{N^{1-\alpha}}\int_{D(z,r)}n_{\varphi}dA(w).

Since CφC_{\varphi} is bounded on 𝒟(𝔻),\mathcal{D}({\mathbb{D}}), there is a M>0M>0 such that

D(z,r)nφ𝑑A(w)MA(D(z,r))\int_{D(z,r)}n_{\varphi}dA(w)\leq MA(D(z,r))

(see [11]). Hence

ENnφα(w)𝑑A(w)MN1αA(D(z,r)).\int_{E_{N}}n_{\varphi}^{\alpha}(w)dA(w)\leq\frac{M}{N^{1-\alpha}}A(D(z,r)).

On the other hand,

φ(𝔻)D(z,r)ENnφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap D(z,r)-E_{N}}n_{\varphi}^{\alpha}(w)dA(w) \displaystyle\leq Nαφ(𝔻)D(z,r)EN𝑑A(w)\displaystyle N^{\alpha}\int_{\varphi({\mathbb{D}})\cap D(z,r)-E_{N}}dA(w)
\displaystyle\leq NαA(φ(𝔻)D(z,r)).\displaystyle N^{\alpha}A(\varphi({\mathbb{D}})\cap D(z,r)).

Thus,

φ(𝔻)D(z,r)nφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w) =\displaystyle= ENnφα(w)𝑑A(w)\displaystyle\int_{E_{N}}n_{\varphi}^{\alpha}(w)dA(w)
+\displaystyle+ φ(𝔻)D(z,r)ENnφα(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})\cap D(z,r)-E_{N}}n_{\varphi}^{\alpha}(w)dA(w)
\displaystyle\leq MN1αA(D(z,r))\displaystyle\frac{M}{N^{1-\alpha}}A(D(z,r))
+\displaystyle+ NαA(φ(𝔻)D(z,r)).\displaystyle N^{\alpha}A(\varphi({\mathbb{D}})\cap D(z,r)).

Choose N0>0N_{0}>0 such that MN01α<δ2,\frac{M}{N_{0}^{1-\alpha}}<\frac{\delta}{2}, then with the inequality (b)(b) we have that

A(φ(𝔻)D(z,r))δ2N0αA(D(z,r)).A(\varphi({\mathbb{D}})\cap D(z,r))\geq\frac{\delta}{2N_{0}^{\alpha}}A(D(z,r)).

Hence (b)(a).(b)\Longrightarrow(a). We complete the proof. ∎

Theorem 2.3.

Let φ\varphi be an analytic self-mapping of 𝔻.{\mathbb{D}}. Assume that CφC_{\varphi} is a bounded composition operator on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}). If for arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻.z\in{\mathbb{D}}. Or equivalently, nφα(w)dA(w)n_{\varphi}^{\alpha}(w)dA(w) is a reverse Carleson measure, then R(Cφ)R(C_{\varphi}) is closed.

Proof.

Since for arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻,z\in{\mathbb{D}}, we know that there is a δ~>0\tilde{\delta}>0 such that

φ(𝔻)|f(w)|2𝑑A(w)δ~𝔻|f(w)|2𝑑A(w)\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w)\geq\tilde{\delta}\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w)

for all f𝒟(𝔻)f\in\mathcal{D}({\mathbb{D}}) by Proposition 2.2 and Theorem KRL. Thus,

Cφf2\displaystyle\|C_{\varphi}f\|^{2} =\displaystyle= |f(φ(0))|2+𝔻|(fφ)(z)|2𝑑A(z)\displaystyle|f(\varphi(0))|^{2}+\int_{{\mathbb{D}}}|(f\circ\varphi)^{\prime}(z)|^{2}dA(z)
=\displaystyle= |f(φ(0))|2+𝔻|f(φ(z))|2|φ(z)|2𝑑A(z)\displaystyle|f(\varphi(0))|^{2}+\int_{{\mathbb{D}}}|f^{\prime}(\varphi(z))|^{2}|\varphi^{\prime}(z)|^{2}dA(z)
=\displaystyle= |f(φ(0))|2+φ(𝔻)|f(w)|2nφ(w)𝑑A(w)\displaystyle|f(\varphi(0))|^{2}+\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
\displaystyle\geq |f(φ(0))|2+φ(𝔻)|f(w)|2𝑑A(w)\displaystyle|f(\varphi(0))|^{2}+\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}dA(w)
\displaystyle\geq |f(φ(0))|2+δ~𝔻|f(w)|2𝑑A(w).\displaystyle|f(\varphi(0))|^{2}+\tilde{\delta}\int_{{\mathbb{D}}}|f^{\prime}(w)|^{2}dA(w).

It is easy to see that R(Cφ)R(C_{\varphi}) has closed range. In fact, if R(Cφ)R(C_{\varphi}) is not closed, then there is a sequence {gm}𝒟(𝔻)\{g_{m}\}\subset\mathcal{D}({\mathbb{D}}) with gm=1\|g_{m}\|=1 such that

Cφgm0as m.\|C_{\varphi}g_{m}\|\rightarrow 0\hskip 11.38109pt\mbox{as}\hskip 11.38109ptm\rightarrow\infty.

Without loss of generality, assume gm𝑤g.g_{m}\xrightarrow{w}g. Then

Cφgm𝑤Cφg.C_{\varphi}g_{m}\xrightarrow{w}C_{\varphi}g.

By Cφgm0,\|C_{\varphi}g_{m}\|\rightarrow 0, we see that Cφg=0.C_{\varphi}g=0. Thus g=0.g=0. That is, gm𝑤0.g_{m}\xrightarrow{w}0. In particular, gm(0)0g_{m}(0)\rightarrow 0 and gm(φ(0))0.g_{m}(\varphi(0))\rightarrow 0. Further,

Cφgm2\displaystyle\|C_{\varphi}g_{m}\|^{2} \displaystyle\geq |gm(φ(0))|2+δ~𝔻|gm(w)|2𝑑A(w)\displaystyle|g_{m}(\varphi(0))|^{2}+\tilde{\delta}\int_{{\mathbb{D}}}|g_{m}^{\prime}(w)|^{2}dA(w)
\displaystyle\geq δ~𝔻|gm(w)|2𝑑A(w).\displaystyle\tilde{\delta}\int_{{\mathbb{D}}}|g_{m}^{\prime}(w)|^{2}dA(w).

Note gm=1\|g_{m}\|=1 and gm(0)0,g_{m}(0)\rightarrow 0, we see that

𝔻|gm(w)|2𝑑A(w)1as m.\int_{{\mathbb{D}}}|g_{m}^{\prime}(w)|^{2}dA(w)\rightarrow 1\hskip 14.22636pt\mbox{as}\hskip 14.22636ptm\rightarrow\infty.

This contradicts to Cφgm0\|C_{\varphi}g_{m}\|\rightarrow 0 as m.m\rightarrow\infty. Hence, R(Cφ)R(C_{\varphi}) is closed. This completes the proof. ∎

Remark 1.

The operator TT on the Hilbert or Banach space HH is called semi-Fredholm operator if R(T),R(T), the range of T,T, is closed and at least one of KerTKerT and KerTKerT^{*} is a finite dimensional space of H.H. Since KerCφKerC_{\varphi} is always trivial, we see that CφC_{\varphi} is semi-Fredholm operator if and only if CφC_{\varphi} has closed range.

Corollary 2.4.

Let φ\varphi be the analytic function on 𝔻{\mathbb{D}} which maps 𝔻{\mathbb{D}} into 𝔻.{\mathbb{D}}. CφC_{\varphi} is the bounded composition operator on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}). If for arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻.z\in{\mathbb{D}}. Or equivalently, nφα(w)dA(w)n_{\varphi}^{\alpha}(w)dA(w) is a reverse Carleson measure, then CφC_{\varphi} is a semi-Fredholm operator.

Remark 2.

Proposition 2.2 seems to mean that the condition in Theorem 2.3 is also necessary. We have the following conjecture

Conjecture 1.

Let φ\varphi be an analytic self-mapping of 𝔻.{\mathbb{D}}. Assume that CφC_{\varphi} is a bounded composition operator on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}). Then R(Cφ)R(C_{\varphi}) is closed if and only if for arbitrary α(0,1)\alpha\in(0,1), there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφα(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}^{\alpha}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻.z\in{\mathbb{D}}. Or equivalently, nφα(w)dA(w)n_{\varphi}^{\alpha}(w)dA(w) is a reverse Carleson measure.

If the counting function nφn_{\varphi} of the mapping φ\varphi is unbounded, as long as the integrals, relative to the Carleson measure of functions in the unit sphere of the Dirichlet space, are equally absolute continuous, then the reverse Carleson condition can ensure that the composition operator has closed range. That is, we have MainTheorem.

Proof of Main Theorem.

By the condition in the main Theorem, we see easily that CφC_{\varphi} is bounded on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}). (a)(c)(a)\Longrightarrow(c) and (b)(c)(b)\Longrightarrow(c) are obvious. Also, Theorem KRL implies that (b)(a)(b)\Longrightarrow(a). It remains to show (c)(b).(c)\Longrightarrow(b). Assume (c)(c) holds, that is, there is a δ>0\delta>0 and r>0r>0 such that

φ(𝔻)D(z,r)nφ(w)𝑑A(w)δA(D(z,r))\int_{\varphi({\mathbb{D}})\cap D(z,r)}n_{\varphi}(w)dA(w)\geq\delta A(D(z,r))

for all z𝔻.z\in{\mathbb{D}}. We are to prove that there is a δ>0\delta>0 and r>0r>0 such that

A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

for all z𝔻z\in{\mathbb{D}}. For any z𝔻z\in{\mathbb{D}} and fixed r>0,r>0, write

kz(w)=1|z|2(1z¯w)2,k_{z}(w)=\frac{1-|z|^{2}}{(1-\bar{z}w)^{2}},

then by the equivalence of 1|z|21-|z|^{2} and |1z¯w||1-\bar{z}w| on D(z,r),D(z,r), together with assumption (c),(c), we get that there exist positive constants M1M_{1} , M2M_{2} such that

δ1A(D(z,r))D(z,r)nφ(w)𝑑A(w)\displaystyle\delta\leq\frac{1}{A(D(z,r))}\int_{D(z,r)}n_{\varphi}(w)dA(w)
\displaystyle\leq M1D(z,r)|kz(w)|2nφ(w)𝑑A(w)\displaystyle M_{1}\int_{D(z,r)}|k_{z}(w)|^{2}n_{\varphi}(w)dA(w)
=\displaystyle= M1[D(z,r){w𝔻:nφ(w)>k}|kz(w)|2nφ(w)dA(w)\displaystyle M_{1}[\int_{D(z,r)\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|k_{z}(w)|^{2}n_{\varphi}(w)dA(w)
+\displaystyle+ D(z,r){w𝔻:nφ(w)k}|kz(w)|2nφ(w)dA(w)]\displaystyle\int_{D(z,r)\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)\leq k\}}|k_{z}(w)|^{2}n_{\varphi}(w)dA(w)]
\displaystyle\leq M1[supf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k}|f(w)|2nφ(w)dA(w)\displaystyle M_{1}[sup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
+\displaystyle+ D(z,r){w𝔻:nφ(w)k}|kz(w)|2nφ(w)dA(w)]\displaystyle\int_{D(z,r)\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)\leq k\}}|k_{z}(w)|^{2}n_{\varphi}(w)dA(w)]
\displaystyle\leq M1supf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k}|f(w)|2nφ(w)𝑑A(w)\displaystyle M_{1}sup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
+\displaystyle+ M2A(D(z,r))D(z,r){w𝔻:nφ(w)k}nφ(w)𝑑A(w).\displaystyle\frac{M_{2}}{A(D(z,r))}\int_{D(z,r)\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)\leq k\}}n_{\varphi}(w)dA(w).

Note that

limksupf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k}|f(w)|2nφ(w)𝑑A(w)=0,lim_{k\rightarrow\infty}sup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)=0,

then for ϵ=δ2(M1+1),\epsilon=\frac{\delta}{2(M_{1}+1)}, there is a k0>0k_{0}>0 such that

supf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k}|f(w)|2nφ(w)𝑑A(w)<ϵsup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)<\epsilon

for all kk0.k\geq k_{0}. This makes that

M1supf(𝒟(𝔻))1φ(𝔻){w𝔻:nφ(w)>k0}|f(w)|2nφ(w)𝑑A(w)\displaystyle M_{1}sup_{f\in(\mathcal{D}({\mathbb{D}}))_{1}}\int_{\varphi({\mathbb{D}})\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)>k_{0}\}}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
+\displaystyle+ M2A(D(z,r))D(z,r){w𝔻:nφ(w)k0}nφ(w)𝑑A(w)\displaystyle\frac{M_{2}}{A(D(z,r))}\int_{D(z,r)\cap\{w\in{\mathbb{D}}:n_{\varphi}(w)\leq k_{0}\}}n_{\varphi}(w)dA(w)
\displaystyle\leq M1ϵ+k0M2A(D(z,r))φ(𝔻)D(z,r)𝑑A(w)\displaystyle M_{1}\epsilon+\frac{k_{0}M_{2}}{A(D(z,r))}\int_{\varphi({\mathbb{D}})\cap D(z,r)}dA(w)
\displaystyle\leq δ2+k0M2A(D(z,r))A(φ(𝔻)D(z,r)).\displaystyle\frac{\delta}{2}+\frac{k_{0}M_{2}}{A(D(z,r))}A(\varphi({\mathbb{D}})\cap D(z,r)).

Hence,

A(φ(𝔻)D(z,r))=φ(𝔻)D(z,r)𝑑A(w)δ2k0M2A(D(z,r)).A(\varphi({\mathbb{D}})\cap D(z,r))=\int_{\varphi({\mathbb{D}})\cap D(z,r)}dA(w)\geq\frac{\delta}{2k_{0}M_{2}}A(D(z,r)).

That is, (c)(b).(c)\Longrightarrow(b). The proof is thus complete. ∎

Corollary 2.5.

Let φ\varphi be an analytic self-mapping of 𝔻{\mathbb{D}} and nφ(w)n_{\varphi}(w) be bounded on 𝔻.{\mathbb{D}}. Then the following statements are equivalent:

  1. (a)

    R(Cφ)R(C_{\varphi}) is closed on 𝒟(𝔻).\mathcal{D}({\mathbb{D}}).

  2. (b)

    There is a δ>0\delta>0 and r>0r>0 such that

    A(φ(𝔻)D(z,r))δA(D(z,r))A(\varphi({\mathbb{D}})\cap D(z,r))\geq\delta A(D(z,r))

    for all z𝔻z\in{\mathbb{D}}.

  3. (c)

    nφ(w)dA(w)n_{\varphi}(w)dA(w) is a reverse Carleson measure.

Proof.

If nφn_{\varphi} is bounded on 𝔻,{\mathbb{D}}, then CφC_{\varphi} is obviously bounded on 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) and nφn_{\varphi} satisfies the condition in Theorem B. Hence (a)(b)(c)(a)\Longleftrightarrow(b)\Longleftrightarrow(c). ∎

3. Composition operators with some special symbols

If φ\varphi is analytic on the closed unit disc, then we have the following

Proposition 3.1.

Let H(𝔻¯)H(\bar{{\mathbb{D}}}) be the space of analytic functions on 𝔻¯,\bar{{\mathbb{D}}}, φH(𝔻¯)\varphi\in H(\bar{{\mathbb{D}}}) maps 𝔻{\mathbb{D}} into 𝔻.{\mathbb{D}}. Then R(Cφ)={fφ|f𝒟(𝔻)}R(C_{\varphi})=\{f\circ\varphi|f\in\mathcal{D}({\mathbb{D}})\}, the range of Cφ,C_{\varphi}, is closed if and only if

𝕋φ(𝔻¯).\mathbb{T}\subset\varphi(\bar{{\mathbb{D}}}).
Proof.

Assume R(Cφ)R(C_{\varphi}) is closed, since kerCφ={0},kerC_{\varphi}=\{0\}, we know that there is a constant c>0c>0 such that for any f𝒟(𝔻),f\in\mathcal{D}({\mathbb{D}}),

Cφfcf.\|C_{\varphi}f\|\geq c\|f\|.

Thus

Cφf2\displaystyle\|C_{\varphi}f\|^{2} =\displaystyle= 𝔻|(fφ)(z)|2𝑑A(z)\displaystyle\int_{{\mathbb{D}}}|(f\circ\varphi)^{\prime}(z)|^{2}dA(z)
=\displaystyle= φ(𝔻)|f(w)|2nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})}|f^{\prime}(w)|^{2}n_{\varphi}(w)dA(w)
\displaystyle\geq c2𝔻|f(z)|2𝑑A(z).\displaystyle c^{2}\int_{{\mathbb{D}}}|f^{\prime}(z)|^{2}dA(z).

Note φH(𝔻¯),\varphi\in H(\overline{{\mathbb{D}}}), we see that CφC_{\varphi} is bounded on 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) since nφ(w)n_{\varphi}(w) is bounded on 𝔻.{\mathbb{D}}. If 𝕋φ(𝔻¯)ϕ,\mathbb{T}-\varphi(\bar{{\mathbb{D}}})\neq\phi, choose ζ𝕋φ(𝔻¯).\zeta\in\mathbb{T}-\varphi(\bar{{\mathbb{D}}}). Let

fζ(z)=1+ζ¯z2,fk(z)=fζk(z),f_{\zeta}(z)=\frac{1+\bar{\zeta}\cdot z}{2},\hskip 14.22636ptf_{k}(z)=f_{\zeta}^{k}(z),

then fζ(z)f_{\zeta}(z) is the peak function at ζ\zeta on 𝔻.{\mathbb{D}}. For any open neighborhood UU of ζ,\zeta, it is easy to see that

limk𝔻U|fk(z)|2𝑑A(z)𝔻|fk(z)|2𝑑A(z)k\displaystyle lim_{k\rightarrow\infty}\sqrt[k]{\frac{\int_{{\mathbb{D}}-U}|f^{\prime}_{k}(z)|^{2}dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}}
=\displaystyle= max|fζ|𝔻U|max|fζ|𝔻|=max|fζ|𝔻U|<1.\displaystyle\frac{max|f_{\zeta}|_{{\mathbb{D}}-U}|}{max|f_{\zeta}|_{{\mathbb{D}}}|}=max|f_{\zeta}|_{{\mathbb{D}}-U}|<1.

Hence

𝔻U|fk(z)|2𝑑A(z)𝔻|fk(z)|2𝑑A(z)0.\frac{\int_{{\mathbb{D}}-U}|f^{\prime}_{k}(z)|^{2}dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}\rightarrow 0.

Note

Cφfk2fk2\displaystyle\frac{\|C_{\varphi}f_{k}\|^{2}}{\|f_{k}\|^{2}} =\displaystyle= 𝔻|(fkφ)(z)|2𝑑A(z)𝔻|fk(z)|2𝑑A(z)\displaystyle\frac{\int_{{\mathbb{D}}}|(f_{k}\circ\varphi)^{\prime}(z)|^{2}dA(z)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}
=\displaystyle= φ(𝔻)|fk(w)|2nφ(w)𝑑A(w)𝔻|fk(z)|2𝑑A(z)\displaystyle\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(w)|^{2}n_{\varphi}(w)dA(w)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}
\displaystyle\leq Mφ(𝔻)|fk(w)|2𝑑A(w)𝔻|fk(z)|2𝑑A(z),\displaystyle M\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(w)|^{2}dA(w)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)},

and there is a neighborhood UU of ζ\zeta such that Uφ(𝔻¯)=ϕ,U\cap\varphi(\bar{{\mathbb{D}}})=\phi, thus φ(𝔻¯)𝔻¯U.\varphi(\bar{{\mathbb{D}}})\subset\bar{{\mathbb{D}}}-U. Further,

Cφfk2fk2Mφ(𝔻)|fk(w)|2𝑑A(w)𝔻|fk(z)|2𝑑A(z)0.\frac{\|C_{\varphi}f_{k}\|^{2}}{\|f_{k}\|^{2}}\leq M\frac{\int_{\varphi({\mathbb{D}})}|f^{\prime}_{k}(w)|^{2}dA(w)}{\int_{{\mathbb{D}}}|f^{\prime}_{k}(z)|^{2}dA(z)}\rightarrow 0.

This contradicts to Cφfcf.\|C_{\varphi}f\|\geq c\|f\|. It shows that 𝕋φ(𝔻¯).\mathbb{T}\subset\varphi(\bar{{\mathbb{D}}}).

Conversely, assume 𝕋φ(𝔻¯),\mathbb{T}\subset\varphi(\bar{{\mathbb{D}}}), we are to prove that R(Cφ)R(C_{\varphi}) is closed. Assume the contrary, R(Cφ)R(C_{\varphi}) is not closed, then there is a sequence {gk}𝒟(𝔻)\{g_{k}\}\subset\mathcal{D}({\mathbb{D}}) with gk=1\|g_{k}\|=1 such that Cφgk0.\|C_{\varphi}g_{k}\|\rightarrow 0. Without loss of generality, assume gk𝑤g.g_{k}\xrightarrow{w}g. Then

Cφgk𝑤Cφg.C_{\varphi}g_{k}\xrightarrow{w}C_{\varphi}g.

By Cφgk0,\|C_{\varphi}g_{k}\|\rightarrow 0, we see that Cφg=0.C_{\varphi}g=0. Thus g=0.g=0. That is, gk𝑤0.g_{k}\xrightarrow{w}0. Further, gk0g_{k}\rightarrow 0 uniformly on any compact subset of 𝔻.{\mathbb{D}}.

Since φH(𝔻¯),\varphi\in H(\bar{{\mathbb{D}}}), for any ζ𝕋,\zeta\in\mathbb{T}, there is an open neighborhood U(ζ)U(\zeta) such that nφ(w)1n_{\varphi}(w)\geq 1 on U(ζ).U(\zeta). By finite covering thoreom, there are finte ζi,i=1,,m\zeta_{i},i=1,\cdots,m such that

𝕋i=1mU(ζi),\mathbb{T}\subset\cup_{i=1}^{m}U(\zeta_{i}),

and nφ(w)1n_{\varphi}(w)\geq 1 on U(ζi).U(\zeta_{i}). Note i=1mU(ζi)\cup_{i=1}^{m}U(\zeta_{i}) is open, we may choose r(0,1)r\in(0,1) such that

𝔻𝔻r¯i=1mU(ζi).\overline{{\mathbb{D}}-{\mathbb{D}}_{r}}\subset\cup_{i=1}^{m}U(\zeta_{i}).

Clearly, gk0g_{k}\rightarrow 0 uniformly on 𝔻r¯,\overline{{\mathbb{D}}_{r}}, for any ϵ>0,\epsilon>0, there is a k0k_{0} such that

𝔻r|gk|2(z)𝑑A(z)<ϵfor k>k0.\int_{{\mathbb{D}}_{r}}|g^{\prime}_{k}|^{2}(z)dA(z)<\epsilon\hskip 14.22636pt\mbox{for}\hskip 11.38109ptk>k_{0}.

Thus for k>k0,k>k_{0},

Cφgk2\displaystyle\|C_{\varphi}g_{k}\|^{2} =\displaystyle= 𝔻|(gkφ)|2(z)𝑑A(z)\displaystyle\int_{{\mathbb{D}}}|(g_{k}\circ\varphi)^{\prime}|^{2}(z)dA(z)
=\displaystyle= φ(𝔻)|gk|2(w)nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})}|g^{\prime}_{k}|^{2}(w)n_{\varphi}(w)dA(w)
=\displaystyle= φ(𝔻)(𝔻𝔻r)|gk|2(w)nφ(w)𝑑A(w)+𝔻𝔻r|gk|2(w)nφ(w)𝑑A(w)\displaystyle\int_{\varphi({\mathbb{D}})-({\mathbb{D}}-{\mathbb{D}}_{r})}|g^{\prime}_{k}|^{2}(w)n_{\varphi}(w)dA(w)+\int_{{\mathbb{D}}-{\mathbb{D}}_{r}}|g^{\prime}_{k}|^{2}(w)n_{\varphi}(w)dA(w)
\displaystyle\geq 𝔻𝔻r|gk|2(w)nφ(w)𝑑A(w)\displaystyle\int_{{\mathbb{D}}-{\mathbb{D}}_{r}}|g^{\prime}_{k}|^{2}(w)n_{\varphi}(w)dA(w)
\displaystyle\geq 𝔻𝔻r|gk|2(w)𝑑A(w)\displaystyle\int_{{\mathbb{D}}-{\mathbb{D}}_{r}}|g^{\prime}_{k}|^{2}(w)dA(w)
=\displaystyle= 𝔻|gk|2(w)𝑑A(w)𝔻r|gk|2(w)𝑑A(w)\displaystyle\int_{{\mathbb{D}}}|g^{\prime}_{k}|^{2}(w)dA(w)-\int_{{\mathbb{D}}_{r}}|g^{\prime}_{k}|^{2}(w)dA(w)
\displaystyle\geq 𝔻|gk|2(w)𝑑A(w)ϵ\displaystyle\int_{{\mathbb{D}}}|g^{\prime}_{k}|^{2}(w)dA(w)-\epsilon
=\displaystyle= gk2ϵ\displaystyle\|g_{k}\|^{2}-\epsilon
=\displaystyle= 1ϵ.\displaystyle 1-\epsilon.

This contradicts to Cφgk0.\|C_{\varphi}g_{k}\|\rightarrow 0. It shows that R(Cφ)R(C_{\varphi}) must be closed. ∎

B. Hou and Ch.L. Jiang prove recently a similar result in the case of weighted Hardy space of polynomial growth (see [5]). In general, 𝕋φ(𝔻)¯\mathbb{T}\subset\overline{\varphi({\mathbb{D}})} is not enough to ensure that CφC_{\varphi} has a closed range on 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) even if nφn_{\varphi} is bounded on 𝔻.{\mathbb{D}}. The following example illustrates this conclusion.

Example 1.

As shown figure 1:

Refer to caption
Figure 1.

Let ζ𝕋\zeta\in\mathbb{T} and 𝔻ζ{\mathbb{D}}_{\zeta} is the disk inside the unit disk and is tangent to 𝕋\mathbb{T} at point ζ.\zeta. Write Ω=𝔻𝔻ζ¯,\Omega={\mathbb{D}}-\overline{{\mathbb{D}}_{\zeta}}, φ\varphi is the Riemann map from 𝔻{\mathbb{D}} to Ω𝔻.\Omega\subset{\mathbb{D}}. Then CφC_{\varphi} is a contraction operator on 𝒟(𝔻)\mathcal{D}({\mathbb{D}}) since nφ(w)1n_{\varphi}(w)\leq 1 for all w𝔻.w\in{\mathbb{D}}. By Corollary 2.6, we know that R(Cφ)R(C_{\varphi}) is not closed, although 𝕋φ(𝔻)¯.\mathbb{T}\subset\overline{\varphi({\mathbb{D}})}.


References

  • [1] J.R. Akeroyd and S.R. Fulmer, Closed-range composition operators on weighted Bergman spaces, Integr. Equ. Oper. Theory, 72 (2012), 103–114.
  • [2] J. A. Cima, J. Thompson, and W. R. Wogen, On some properties of composition operators, Indiana Univ. Math. J. , 24 (1974),215-220.
  • [3] P. Ghatage, J. Yan, and D. Zheng, Composition operators with closed range on the Bloch space, Proc. Amer. Math. Soc. ,129(7) (2000), 2039-2044.
  • [4] P. Ghatage, D. Zheng, and N. Zorboska, Sample sets and closed range composition operators on the Bloch space, Proc. Amer. Math. Soc. ,133(5) (2004), 13711377.
  • [5] B. Hou and CH.L. Jiang, Composition operators on weighted Hardy spaces of polynomial growth, Preprint.
  • [6] N. Kenessey and J. Wengenroth, Composition operators with closed range for smooth injective symbols RRdR\rightarrow R^{d}, J. Funct. Anal. ,260 (2011), 2997–3006.
  • [7] H. Keshavarzi and B. Khani-Robati, On the closed range composition and weighted composition operators, Commun. Korean Math. Soc. ,35 (1) (2020), 217-227.
  • [8] D. H. Luecking, Inequalities on Bergman spaces, Illinois J. Math. ,25 (1981), 1-11.
  • [9] D. H. Luecking, Closed ranged restriction operators on weighted Bergman spaces, Pacific J. Math. ,110(1) (1984), 145–160.
  • [10] D. H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math.,107 (1985), 85–111.
  • [11] D. H. Luecking, Bounded composition operators with closed range on the Dirichlet space, Proc. Amer. Math. Soc.,128(4) (1999), 1109–1116.
  • [12] T. Mengestie, Closed range weighted composition operators and dynamical sampling, J. Math. Anal. Appl., 515 (2022), 1-11.
  • [13] A. Przestacki, Characterization of composition operators with closed range for one-dimensional smooth symbols, J. Funct. Anal. , 266 (2014) 5847–5857.
  • [14] R. Yoneda, Composition operators on the weighted Bloch space and the weighted Dirichlet spaces, and BMOA with closed range, Com. Var. Ell. Eq., 63(5) (2017), 730-747.
  • [15] K.H.Zhu, Operator theory in function spaces, Math. Sur. Mono., 138 (2007).
  • [16] N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc., 126 (1998), 2013–2023.
  • [17] N. Zorboska, Composition operators with closed range, Trans. Amer. Math. Soc., 344 (1994), 791–801.
  • [18] N. Zorboska, On the closed range problem for composition operators on the Dirichlet space, Concr. Oper., 6 (2019), 76-81.