This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Complexified tetrahedrons, fundamental groups, and volume conjecture for double twist knots

Jun Murakami [email protected] Department of Mathematics, Faculty of Fundamental Science and Engineering, Waseda University, 1-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-9555, JAPAN
Abstract.

In this paper, the volume conjecture for double twist knots are proved. The main tool is the complexified tetrahedron and the associated SL(2,)\mathrm{SL}(2,\mathbb{C}) representation of the fundamental group. A complexified tetrahedron is a version of a truncated or a doubly truncated tetrahedron whose edge lengths and the dihedral angles are complexified. The colored Jones polynomial is expressed in terms of the quantum 6j6j symbol, which corresponds to the complexified tetrahedron.

Key words and phrases:
Double twist knot, hyperbolic structure, volume conjecture, knot group
2020 Mathematics Subject Classification:
57K20,57K32,57M05
This work wassupported by JSPS KAKENHI Grant Numbers JP20H01803, JP20K20881.

Introduction

Let KK be a framed knot or link in S3S^{3}. In the following, knots include links unless otherwise described. Let VN(K)V_{N}(K) be the colored Jones polynomial of KK which corresponds to the N+1N+1 dimensional irreducible representation of 𝒰q(sl2)\mathcal{U}_{q}(sl_{2}). Here VN(K)V_{N}(K) is normalized to satisfy VN(ϕ)=1V_{N}(\phi)=1 and VN()=(qN+1qN1)/(qq1)V_{N}(\bigcirc)=-(q^{N+1}-q^{-N-1})/(q-q^{-1}) for the trivial knot. The parameter qq corresponds to A2A^{2} where AA is the parameter used for defining the Kauffman bracket polynomial. Let JN1(K)=VN1(K)/VN1()J_{N-1}(K)=V_{N-1}(K)/V_{N-1}(\bigcirc) where q=exp(πi/N)q=\exp(\pi i/N) for i=1i=\sqrt{-1}. The volume conjecture predicts that certain limit of the colored Jones polynomial gives Gromov’s simplicial volume S3K||S^{3}\setminus K|| of the complement of KK as follows.

Conjecture 1 (Volume conjecture [9]).

For a knot or link KK,

2πlimN|JN1(K)|N=v3S3K2\,\pi\lim_{N\to\infty}\frac{\left|J_{N-1}(K)\right|}{N}=v_{3}\,||S^{3}\setminus K||

where v3v_{3} is the hyperbolic volume of the regular ideal tetrahedron.

If S3KS^{3}\setminus K admits the hyperbolic structure, in other words, KK is a hyperbolic knot or link, then v3S3K=Vol(K)v_{3}\,||S^{3}\setminus K||=\mathrm{Vol}(K) where Vol(K)\mathrm{Vol}(K) is the hyperbolic volume of S3KS^{3}\setminus K. For hyperbolic knots and links, the following is also conjectured.

Conjecture 2 (Complexified volume conjecture [10]).

For a hyperbolic knot or link KK,

2πlimNJN1(K)N=Vol(K)+CS(K)1(modπ21)2\,\pi\,\lim_{N\to\infty}\frac{J_{N-1}(K)}{N}=\mathrm{Vol}(K)+\mathrm{CS}(K)\,\sqrt{-1}\quad(\mathrm{mod}\ \pi^{2}\sqrt{-1}\,\mathbb{Z})

where CS(K)\mathrm{CS}(K) is 2π22\pi^{2} times the Chern-Simons invariant cs(S3K)cs(S^{3}\setminus K), which is a real number between 0 and 1/21/2.

For prime hyperbolic knots, this conjecture is proved for knots with less than or equal to seven crossings. Here, we prove Conjecture 1 for all hyperbolic double twist knots.

Refer to captionRefer to captionRefer to captionBorromean rings BAnother expression of BB1: first variation of BRefer to captionRefer to captionRefer to captionB1,1: second variation of BWhitehead link Wtwisted Whitehead link Wp\begin{matrix}\begin{matrix}\includegraphics[scale={0.8}]{borromeanrings}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{borromeanrings0}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{borromeanrings1}\end{matrix}\\[5.0pt] \text{Borromean rings $B$}&&\text{Another expression of $B$}&&\text{$B_{1}$: first variation of $B$}\\ \begin{matrix}\includegraphics[scale={0.8}]{borromeanrings2}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{whiteheadlink}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{whiteheadtwist}\end{matrix}\\[5.0pt] \text{$B_{1,1}$: second variation of $B$}&&\text{Whitehead link $W$}&&\text{twisted Whitehead link $W_{p}$}\end{matrix}
Refer to captionRefer to captiontwist knot Tpdouble twist knot Dp,r\begin{matrix}\begin{matrix}\includegraphics[scale={0.8}]{twistknot}\end{matrix}&\qquad&\begin{matrix}\includegraphics[scale={0.8}]{doubletwistknot}\end{matrix}\\ \text{twist knot $T_{p}$}&&\text{double twist knot $D_{p,r}$}\end{matrix}
Figure 1. Knots and links handled in this paper.
Theorem 1.

Let KK be a hyperbolic double twist knot. Then the following holds.

2πlimNJN1(K)N=Vol(K)+CS(K)1(modπ21).2\,\pi\,\lim_{N\to\infty}\frac{J_{N-1}(K)}{N}=\mathrm{Vol}(K)+\mathrm{CS}(K)\,\sqrt{-1}\quad(\mathrm{mod}\ \pi^{2}\sqrt{-1}\,\mathbb{Z}).
Remark 1.

The volume conjecture for hyperbolic knot with crossing number less than or equal to 7 are proved in [15], [17] and [16]. That for the twist knot TpT_{p} for p6p\geq 6 is proved in [2].

The main tool is the complexified tetrahedron. Volume formulas of hyperbolic tetrahedrons are given in [3], [13] in terms of dihedral angles at edges and in [12] in terms of edge lengths. The formulas in [13] and [12] are based on the volume conjecture for the quantum 6j6j symbol, and they are analytic functions on the parameters. These formulas are also work for truncated tetrahedra as shown in [18] and for doubly truncated tetrahedra as in [8].

Refer to captionRefer to captionRefer to captionusual tetrahedrontruncated tetrahedrondoubly truncated tetrahedron\begin{matrix}\begin{matrix}\includegraphics[scale={0.8}]{tetrahedron1}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{tetrahedron2}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{tetrahedron3}\end{matrix}\\ \text{usual tetrahedron}&&\text{truncated tetrahedron}&&\text{doubly truncated tetrahedron}\end{matrix}
Figure 2. A usual tetrahedron, a truncated tetrahedron and a doubly truncated tetrahedron. Any face which truncate a vertex is perpendicular to the original three faces of the tetrahedron which are adjacent to the vertex.

Here the length considered to be a real number and the angle considered to be a pure imaginary number. Now let us complexify these numbers of a truncated tetrahedron and a doubly truncated tetrahedron as in Figure 3.

truncated edge: Refer to captionRefer to caption\displaystyle\quad\begin{matrix}\includegraphics[scale={0.9}]{edge1}\end{matrix}\longrightarrow\ \ \begin{matrix}\includegraphics[scale={0.9}]{edge2}\end{matrix}
doubly truncated edge: Refer to captionRefer to caption\displaystyle\quad\begin{matrix}\includegraphics[scale={0.9}]{edge3}\end{matrix}\longrightarrow\ \ \begin{matrix}\includegraphics[scale={0.9}]{edge4}\end{matrix}
Figure 3. Complexify the angle and the length at an edge. The parameter iθi\theta is modified to θ+iθ\ell_{\theta}+i\theta and the parameter \ell is modified to +iθ\ell+i\theta_{\ell}. The shaded faces correspond to the truncated faces.

The adjacent edges at an endpoint of the edge are rotated by θ\theta_{\ell} and then faces (no more planner) glued at the edge are shifted by θ\ell_{\theta}. Then the angle parameter iθi\theta is generalized to θ+iθ\ell_{\theta}+i\theta and the length parameter \ell is generalized to +iθ\ell+i\theta_{\ell}. After such deformation, the faces of the tetrahedron is no more planner. But, by assigning elements of PSL(2,)\mathrm{PSL}(2,\mathbb{C}) to the edges of the tetrahedron, we can define the volume of such generalized tetrahedron by considering the fundamental domain of the action by such group elements. For the complexified tetrahedron, the Schläfli differential formula is generalized to the differential equation satisfied by the Neumann-Zagier function.

The difficulty for proving the volume conjecture is to check the condition to apply the saddle point method. The colored Jones polynomial is given by a sum of terms which consists of a product of quantum factorials and some power of qq. For the large NN case, this sum is converted to an integral, and the range of the sum is changed to the range of the integral. To apply the saddle point method, this range must be wide enough to surround the saddle point. This range corresponds to the range of the sum in the colored Jones polynomial, and to check that the range is wide enouph is very hard for knots with many crossings. Here we reformulate the colored Jones polynomial by using the quantum 6j6j symbol, and is expressed by parameters which also called colors assigned to the edges of one tetrahedron. Then the range for sum is rather simple and it is easy to see that we can apply the saddle point method. The edge parameters correspond to the saddle point are complex numbers, and the corresponding geometric object is the complexified tetrahedron, while the expression of the colored Jones polynomial from the quantum RR matrix corresponds to an ideal tetrahedral decomposition of the knot complement.

The new idea of this article is to introduce the complexified tetrahedron which is constructed from the geometric SL(2,)\mathrm{SL}(2,\mathbb{C}) representation of the fundamental group of the complement. For the techniques to apply the saddle point method and the Poisson sum formula, we just follow the arguments developed in papers [15, 16, 17] to prove the volume conjecture for hyperbolic knots with small crossing numbers.

The paper organized as follows. In Section 1, we explain the volume conjecture for Borromean rings. In this case, volume conjecture is already solved, but we reconsider it by using the expression of the colored Jones invariant in terms of the quantum 6j6j symbol. In Section 2, we tread twisted Whitehead links. The volume conjecture is also solved for this case, but here reprove it by using the complexified tetrahedron and the quantum 6j6j symbol. For the Whitehead link case, we first use a complexified tetrahedron which appears as a deformation of the regular ideal octahedron. In Section 3, the double twist knots are investigated. The method to prove the volume conjecture is same as for the twisted Whitehead links explained in Section 2.

Some notions and detailed computations are given in appendices. Especially, in Appendix B, colored Jones invariants are reformulated by using the ADO invariants. This part is the most complicated part of this paper, but the reformulation of the colored Jones polynomial explained here simplifies the rest of the proof of the volume conjecture.

Acknowledgment. The author was strongly encouraged to pursuit this research when I attended “Winter School on Low-dimensional Topology and Related Topics” at IBS-CGP in Pohang, Korea in December 2023, and he would like to thank all the participants of the school, especially Jessica Purcell, Seonhwa Kim, Thiago de Paiva Souza, and the organizer Anderson Vera. He also would like to thank Anh Tran for giving me a lot of information about SL(2,)SL(2,\mathbb{C}) representations of the double twist knots and two-bridge knots.

1. Borromean rings

The volume conjecture for the Borromean rings is easily proved elementary, but here we recall the proof to see its corresponds to the PSL(2,)\mathrm{PSL}(2,\mathbb{C}) representation of the fundamental group of the complement. Throughout this paper, NN is assumed to be an odd positive integer greater than or equal to 33.

1.1. Representation matrix

Let BB be the Borromean rings in Figure 1. We first construct the parabolic SL(2,)\mathrm{SL}(2,\mathbb{C}) representation ρ\rho of π1(S3B)\pi_{1}(S^{3}\setminus B) which corresponds to the hyperbolic structure of S3BS^{3}\setminus B. In other words, let Γ\Gamma be the image of ρ\rho, then S3BS^{3}\setminus B is isomorphic to 3/Γ\mathbb{H}^{3}/\Gamma, where 3\mathbb{H}^{3} is the hyperbolic three space. Here we use the upper half model, so 3\mathbb{H}^{3} is identified with ×>0\mathbb{C}\times\mathbb{R}_{>0} and 3\partial\mathbb{H}^{3} is identified with \mathbb{C}. To assign elements of π1(S3B)\pi_{1}(S^{3}\setminus B), we draw BB as in Figure 4 and assign the elements g1g_{1}, \cdots, g4g_{4}, h1h_{1}, h2h_{2} as in the figure.

Refer to caption
Figure 4. Elements of π1(S3B)\pi_{1}(S^{3}\setminus B). The base point is located above the plane.

Then the relations of π1(S3B)\pi_{1}(S^{3}\setminus B) are given as follows.

π1(S3B)=g1,g2,g3,g4,h1,h2g2=h1g11h11,g3=h1g41h11,g31=h2g2h21.\pi_{1}(S^{3}\setminus B)=\left<g_{1},g_{2},g_{3},g_{4},h_{1},h_{2}\mid g_{2}=h_{1}\,g_{1}^{-1}\,h_{1}^{-1},\ g_{3}=h_{1}\,g_{4}^{-1}\,h_{1}^{-1},\ g_{3}^{-1}=h_{2}\,g_{2}\,h_{2}^{-1}\right>. (1)

Now let us consider parabolic representation ρ\rho. Here we assume that the eigenvalues of ρ(gi)\rho(g_{i}) are all 1-1. Recall that any parabolic matrix of SL(2,)\mathrm{SL}(2,\mathbb{C}) with eigenvalue 1-1 is represented as (1+αββ2α21αβ)\begin{pmatrix}-1+\alpha\beta&\beta^{2}\\ -\alpha^{2}&-1-\alpha\beta\end{pmatrix} for some complex numbers α\alpha and β\beta. So, up to the conjugation, we can assign

ρ(g1)=(1x01),ρ(g2)=(1+yyy1y),ρ(g3)=(10z1).\rho(g_{1})=\begin{pmatrix}-1&x\\ 0&-1\end{pmatrix},\quad\rho(g_{2})=\begin{pmatrix}-1+y&y\\ -y&-1-y\end{pmatrix},\quad\rho(g_{3})=\begin{pmatrix}-1&0\\ -z&-1\end{pmatrix}.

Let g12=g1g2g_{12}=g_{1}\,g_{2} and g23=g2g3g_{23}=g_{2}\,g_{3}. Since h1h_{1} and g23g_{23} are commutative and ρ(h1)\rho(h_{1}) is parabolic, ρ(g23)\rho(g_{23}) must be parabolic with eigenvalue 11 or 1-1. Hence traceρ(g23)\operatorname{trace}\rho(g_{23}) must be 22 or 2-2. On the other hand, traceρ(g23)=2yz\operatorname{trace}\rho(g_{23})=2-yz, so if traceρ(g23)=2\operatorname{trace}\rho(g_{23})=2, then yy or zz is zero, which contradict the assumption that the representation ρ\rho is non-abelian. Therefore, traceρ(g23)=2\operatorname{trace}\rho(g_{23})=-2 and yz=4yz=4. Similar argument for g12g_{12} and h2h_{2} implies that xy=4xy=4. We also have g4=(g1g2g3)1g_{4}=(g_{1}\,g_{2}\,g_{3})^{-1} and trace(g4)=2\operatorname{trace}(g_{4})=-2. This means that xy+xz+yz+xyz=0xy+xz+yz+xyz=0 and we get the following two solutions.

x\displaystyle x =2+2i,y=1i,z=2+2i,\displaystyle=-2+2i,\quad y=-1-i,\quad z=-2+2i, (2)
x\displaystyle x =22i,y=1+i,z=22i.\displaystyle=-2-2i,\quad y=-1+i,\quad z=-2-2i. (3)

Choose the solution (3) for ρ\rho and let pip_{i}, pijp_{ij} be the fixed points of ρ(gi)\rho(g_{i}), ρ(gij)\rho(g_{ij}) in \mathbb{C}. Then

p1=,p2=1,p3=0,p4=1,p12=i,p23=i,p_{1}=\infty,\ \ p_{2}=-1,\ \ p_{3}=0,\ \ p_{4}=1,\ \ p_{12}=i,\ \ p_{23}=-i,

and these points are the vertices of a regular ideal octahedron O1O_{1} in 3\mathbb{H}^{3}. The action of ρ(g1)\rho(g_{1}) to \mathbb{C} is the translation by 2+2i2+2i. Let O2O_{2} be another regular ideal octahedron with vertices

q1=,q2=i,q3=1+i,q4=2+i,q12=1+2i,q23=1,q_{1}=\infty,\ \ q_{2}=i,\ \ q_{3}=1+i,\ \ q_{4}=2+i,\ \ q_{12}=1+2i,\ \ q_{23}=1,

then O1O2O_{1}\cup O_{2} is the fundamental domain of the action of Imρ\mathrm{Im}\,\rho.

Refer to caption
Figure 5. Regular ideal octahedra O1O_{1}, O2O_{2} in the upper half space whose union is the fundamental domain of ρ(π1(S3B))\rho(\pi_{1}(S^{3}\setminus B)).

1.2. Volume conjecture

The colored Jones polynomial JN1(B)J_{N-1}(B) is computed in Appendix A, and given by (45), that is the following.

JN1(B)=N20k,lN1max(k,l)smin(k+l,N1){s}!2{sk}!2{sl}!2{k+ls}!2.J_{N-1}(B)=N^{2}\sum_{0\leq k,l\leq N-1}\sum_{\max(k,l)\leq s\leq\min(k+l,N-1)}\!\!\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}. (4)

Now we prove the volume conjecture for BB by using (4). The idea of proof is the same as that in [6]. The terms in the sum are all positive and the limit 2πlimNlog|JN1(B)|N2\pi\lim_{N\to\infty}\frac{\log\left|J_{N-1}(B)\right|}{N} is given by the largest term in the sum. The maximal is attained at k=l=N12k=l=\lfloor\frac{N-1}{2}\rfloor and s=3(N1)4s=\lfloor\frac{3(N-1)}{4}\rfloor and the maximal value is 2(Λ(3π4)+7Λ(π4))=16Λ(π4)=7.32772\left(-\Lambda(\frac{3\pi}{4})+7\Lambda(\frac{\pi}{4})\right)=16\Lambda(\frac{\pi}{4})=7.3277..., which is equal to the twice of the volume of the regular ideal octahedron and is equal to the volume of S3BS^{3}\setminus B. Here Λ(x)\Lambda(x) is the Lobachevsky function given by Λ(x)=0xlog|2sint|dt\Lambda(x)=-\int_{0}^{x}\log|2\sin t|\,dt.

1.3. Regular ideal octahedron

The regular ideal octahedron

Refer to captionRefer to captiontruncated tetrahedronregular ideal octahedron\begin{matrix}\begin{matrix}\includegraphics[scale={0.8}]{tetrahedron2}\end{matrix}&&\begin{matrix}\includegraphics[scale={0.8}]{octahedron}\end{matrix}\\ \text{truncated tetrahedron}&&\text{regular ideal octahedron}\end{matrix}
Figure 6. Recular ideal octahedron is an extremal truncated tetrahedron. The faces have checkerboard coloring, and the white faces corresponds to the faces of the original tetrahedron, and the vertices corresponds to the edges of the original tetrahedron.

can be thought as an extremal case of the truncated tetrahedron whose dihedral angles at edges are all zero. In this case, the length of edges are also zero.

1.4. Variations of the Borromean rings

Here we investigate variation B1B_{1} and B1,1B_{1,1} of the Borromean rings BB. Let g1g_{1}, \cdots, g4g_{4}, h1h_{1}, h2h_{2} be the elements of π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}) given in Figure 7.

B1:Refer to caption,B1,1:Refer to captionB_{1}:\ \begin{matrix}\includegraphics[scale={0.8}]{borromeangenerator1}\end{matrix}\ ,\qquad B_{1,1}:\ \begin{matrix}\includegraphics[scale={0.8}]{borromeangenerator2}\end{matrix}
Figure 7. The elements g1g_{1}, g2g_{2}, g3g_{3}, g4g_{4}, h1h_{1}, h2h_{2} in π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}) and π1(S3B1,1)\pi_{1}(S^{3}\setminus B_{1,1}).

The fundamental groups π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}) and π1(S3B1,1)\pi_{1}(S^{3}\setminus B_{1,1}) are presented by

π1(S3B1)=\displaystyle\pi_{1}(S^{3}\setminus B_{1})=
g1,g2,g3,g4,h1,h2g2=h1g41h11,g3=h1g4g1g41h11,g31=h2g2h21,\displaystyle\qquad\left<g_{1},g_{2},g_{3},g_{4},h_{1},h_{2}\mid g_{2}=h_{1}g_{4}^{-1}h_{1}^{-1},\ g_{3}=h_{1}g_{4}g_{1}g_{4}^{-1}h_{1}^{-1},\ g_{3}^{-1}=h_{2}g_{2}h_{2}^{-1}\right>, (5)
π1(S3B1,1)=\displaystyle\pi_{1}(S^{3}\setminus B_{1,1})=
g1,g2,g3,g4,h1,h2g2=h1g41h11,g3=h1g4g1g41h11,g31=h2g21g1g2h21.\displaystyle\quad\left<g_{1},g_{2},g_{3},g_{4},h_{1},h_{2}\mid g_{2}=h_{1}g_{4}^{-1}h_{1}^{-1},\ g_{3}=h_{1}g_{4}g_{1}g_{4}^{-1}h_{1}^{-1},\ g_{3}^{-1}=h_{2}g_{2}^{-1}g_{1}g_{2}h_{2}^{-1}\right>. (6)

Let ρ\rho^{\prime}, ρ1\rho^{\prime}_{1}, ρ1,1\rho^{\prime}_{1,1} be the geometric SL(2,)\mathrm{SL}(2,\mathbb{C}) representations of π1(S3B)\pi_{1}(S^{3}\setminus B), π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}), π1(S3B1,1)\pi_{1}(S^{3}\setminus B_{1,1}) respectively so that

ρ(g23)\displaystyle\rho^{\prime}(g_{23}) =ρ1(g23)=ρ1,1(g23)=(1x01),\displaystyle=\rho^{\prime}_{1}(g_{23})=\rho^{\prime}_{1,1}(g_{23})=\begin{pmatrix}-1&x\\ 0&-1\end{pmatrix},
ρ(g1)\displaystyle\rho^{\prime}(g_{1}) =ρ1(g1)=ρ1,1(g1)=(1+yyy1y),\displaystyle=\rho^{\prime}_{1}(g_{1})=\rho^{\prime}_{1,1}(g_{1})=\begin{pmatrix}-1+y&y\\ -y&-1-y\end{pmatrix},
ρ(g2)\displaystyle\rho^{\prime}(g_{2}) =ρ1(g2)=ρ1,1(g2)=(10z1).\displaystyle=\rho^{\prime}_{1}(g_{2})=\rho^{\prime}_{1,1}(g_{2})=\begin{pmatrix}-1&0\\ -z&-1\end{pmatrix}.

Let τ\tau be one of ρ\rho^{\prime}, ρ1\rho^{\prime}_{1}, ρ1,1\rho^{\prime}_{1,1}, then τ\tau must satisufy traceτ(g2)=traceτ(g3)=traceτ(g4)=2\operatorname{trace}\tau(g_{2})=\operatorname{trace}\tau(g_{3})=\operatorname{trace}\tau(g_{4})=-2, and we get

x=2i,y=2iz=2i,orx=2i,y=2i,z=2ix=2i,\ \ y=-2i\ \ z=2i,\quad\text{or}\quad x=-2i,\ \ y=2i,\ \ z=-2i

for all ρ\rho^{\prime}, ρ1\rho^{\prime}_{1}, ρ1,1\rho^{\prime}_{1,1}. By choosing the first solution for xx, yy, zz, the representation matrices for h1h_{1} are given as follows from the relations (1), (5), (6).

ρ(h1)=(1101),ρ1(h1)=ρ1,1(h1)=(11+i01).\displaystyle\rho^{\prime}(h_{1})=\begin{pmatrix}-1&-1\\ 0&-1\end{pmatrix},\quad\rho^{\prime}_{1}(h_{1})=\rho^{\prime}_{1,1}(h_{1})=\begin{pmatrix}-1&-1+i\\ 0&-1\end{pmatrix}.

The fixed points r1r_{1}, r2r_{2}, r3r_{3}, r4r_{4}, r23r_{23}, r12r_{12} of g1g_{1}, g2g_{2}, g3g_{3}, g4g_{4}, g23g_{23}, g12g_{12} are given as follows.

r1=1,r2=0,r3=i,r4=1+i,r23=,r12=1+i2.r_{1}=-1,\ r_{2}=0,\ r_{3}=i,\ r_{4}=-1+i,\ r_{23}=\infty,\ r_{12}=\frac{-1+i}{2}.

Let O1O_{1} be the regular ideal octahedron with vertices r1r_{1}, \cdots, r4r_{4}, r23r_{23}, r12r_{12}, and let O2O_{2} be that with vertices s1=1+is_{1}=-1+i, s2=is_{2}=i, s3=2is_{3}=2i, s4=1+2is_{4}=-1+2i, s23=s_{23}=\infty, then O1O2O_{1}\cup O_{2} is the fundamental domain for the actions of π1(S3B)\pi_{1}(S^{3}\setminus B), π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}), π1(S3B1,1)\pi_{1}(S^{3}\setminus B_{1,1}). By doing such computation for h2h_{2} instead of h1h_{1}, we get the similar result. Here we get the same fundamental domain for the actons of the fundamental groups π1(S3B)\pi_{1}(S^{3}\setminus B), π1(S3B1)\pi_{1}(S^{3}\setminus B_{1}), π1(S3B1,1)\pi_{1}(S^{3}\setminus B_{1,1}). However, the actions of h1h_{1} and h2h_{2} are different as in Figure 8 while the actions of g1g_{1}, \cdots, g4g_{4} coincide respectively for BB, B1B_{1} and B1,1B_{1,1}.

The action of h1:BRefer to caption,B1Refer to caption,B1,1Refer to caption,The action of h2:BRefer to caption,B1Refer to caption,B1,1Refer to caption,\begin{matrix}\text{The action of $h_{1}$}:\quad\text{$B$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph1B}\end{matrix},\quad\text{$B_{1}$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph1B1}\end{matrix},\quad\text{$B_{1,1}$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph1B1}\end{matrix},\\ \text{The action of $h_{2}$}:\quad\text{$B$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph2B}\end{matrix},\quad\text{$B_{1}$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph2B}\end{matrix},\quad\text{$B_{1,1}$}\ \ \begin{matrix}\includegraphics[scale={0.8}]{cusph2B11}\end{matrix},\end{matrix}
Figure 8. The actions of h1h_{1} and h2h_{2} on the cusp diagrams of the components corresponding to h1h_{1} and h2h_{2} respectively.

The colored Jones polynomials of B1B_{1} and B1,1B_{1,1} are given by (46), (47) as follows.

JN1(B1)=N2q(N1)24k,l=0N1m=max(k,l)min(k+l,N1)q(kN12)2{m}!2{mk}!2{ml}!2{k+lm}!2,J_{N-1}(B_{1})=N^{2}\,q^{\frac{(N-1)^{2}}{4}}\sum_{k,l=0}^{N-1}\sum_{m=\max(k,l)}^{\min(k+l,N-1)}\dfrac{q^{\left(k-\frac{N-1}{2}\right)^{2}}\{m\}!^{2}}{\{m-k\}!^{2}\,\{m-l\}!^{2}\,\{k+l-m\}!^{2}},
JN1(B1,1)=N2q(N1)22k,l=0N1m=max(k,l)min(k+l,N1)q(kN12)2q(lN12)2{m}!2{mk}!2{ml}!2{k+lm}!2.J_{N-1}(B_{1,1})=N^{2}\,q^{\frac{(N-1)^{2}}{2}}\sum_{k,l=0}^{N-1}\sum_{m=\max(k,l)}^{\min(k+l,N-1)}\dfrac{q^{\left(k-\frac{N-1}{2}\right)^{2}}q^{\left(l-\frac{N-1}{2}\right)^{2}}\{m\}!^{2}}{\{m-k\}!^{2}\,\{m-l\}!^{2}\,\{k+l-m\}!^{2}}.

These formulas have phase factors q(kN12)2q^{\left(k-\frac{N-1}{2}\right)^{2}} and q(kN12)2q(lN12)2q^{\left(k-\frac{N-1}{2}\right)^{2}}q^{\left(l-\frac{N-1}{2}\right)^{2}} added to JN1(B)J_{N-1}(B), and no more real numbers. For JN1(B1)J_{N-1}(B_{1}), the term with k=(N1)/2k=(N-1)/2, l=(N1)/2l=(N-1)/2, s=3(N1)/4s=\lfloor 3(N-1)/4\rfloor have the maximal modulus among the terms in the sums and the oscillation at k=(N1)/2k=(N-1)/2 is stopped, so we have

limN2πNlog|JN1(B1)|=limN2πN(log|JN1(B)|+1π4).\lim_{N\to\infty}\frac{2\pi}{N}\log|J_{N-1}(B_{1})|=\lim_{N\to\infty}\frac{2\pi}{N}\left(\log|J_{N-1}(B)|+\frac{\sqrt{-1}\pi}{4}\right).

Similarly, for JN1(B1,1)J_{N-1}(B_{1,1}), the term with k=(N1)/2k=(N-1)/2, l=(N1)/2l=(N-1)/2, s=3(N1)/4s=\lfloor 3(N-1)/4\rfloor have the maximal modulus among the terms in the sums and the oscillation around k=(N1)/2k=(N-1)/2 and l=(N1)/2l=(N-1)/2 is very small, so we have

limN2πNlog|JN1(B1,1)|=limN2πNlog|JN1(B)|.\lim_{N\to\infty}\frac{2\pi}{N}\log|J_{N-1}(B_{1,1})|=\lim_{N\to\infty}\frac{2\pi}{N}\log|J_{N-1}(B)|.

The above rough argument can be replaced by a rigorous argument by using the Poisson sum formula and the saddle point method as in [15]. The hyperbolic volumes of the complements of B1B_{1} and B1,1B_{1,1} are equal to that of the complement of BB since these complements are both split into two regular ideal tetrahedrons. We also see the Chern-Simons invariant by SnapPy and CS(B)=CS(B1,1)=0\operatorname{CS}(B)=\operatorname{CS}(B_{1,1})=0, CS(B1)=π/4\operatorname{CS}(B_{1})=\pi/4. Therefore, we have

Theorem 2.

Conjecture 2 holds for B1B_{1} and B1,1B_{1,1}.

2. Twisted Whitehead links

In this section, we introduce the complexified tetrahedron by using SL(2,)\mathrm{SL}(2,\mathbb{C}) representation of π1(S3Wp)\pi_{1}(S^{3}\setminus W_{p}) for the twisted Whitehead link WpW_{p} with |p|2|p|\geq 2. Then we prove Conjecture 1 for WpW_{p} with the help of the complexified tetrahedron, which is a deformation of the regular ideal octahedron used in the previous section. Conjecture 1 is already proved by [21], and here we explain how the hyperbolic volume relates to the complexified tetrahedron, especially to its complexified length and angle, which corresponds to the eigenvalues of representation matrices of certain elements of π1(S3Wp)\pi_{1}(S^{3}\setminus W_{p}). Note that the Whitehead link WW is equal to W2W_{2}, and W2W_{-2} is the mirror image of W2W_{2}, We exclude W0W_{0} and W±1W_{\pm 1} since they are not hyperbolic.

2.1. Representation matrices

Assign the generators of π1(S3Wp)\pi_{1}(S^{3}\setminus W_{p}) as in Figure 9. These generators satisfy the following relations.

g4=hg1h1,g31=hg2h1,g1g2g3g4=1,\displaystyle g_{4}=hg_{1}h^{-1},\ \ g_{3}^{-1}=hg_{2}h^{-1},\ \ g_{1}g_{2}g_{3}g_{4}=1, (7)
g41=(g2g3)p2g3(g2g3)p2,g11=(g2g3)p2g2(g2g3)p2,(p : even)\displaystyle g_{4}^{-1}=(g_{2}g_{3})^{\frac{p}{2}}g_{3}(g_{2}g_{3})^{-\frac{p}{2}},\ \ g_{1}^{-1}=(g_{2}g_{3})^{\frac{p}{2}}g_{2}(g_{2}g_{3})^{-\frac{p}{2}},\quad\text{($p$ : even)}
g4=hg1h1,g31=hg2h1,g1g2g3g4=1,\displaystyle g_{4}=hg_{1}h^{-1},\ \ g_{3}^{-1}=hg_{2}h^{-1},\ \ g_{1}g_{2}g_{3}g_{4}=1,
g41=(g2g3)p12g2(g2g3)p12,g11=(g2g3)p+12g3(g2g3)p+12.(p : odd)\displaystyle g_{4}^{-1}=(g_{2}g_{3})^{\frac{p-1}{2}}g_{2}(g_{2}g_{3})^{-\frac{p-1}{2}},\ \ g_{1}^{-1}=(g_{2}g_{3})^{\frac{p+1}{2}}g_{3}(g_{2}g_{3})^{-\frac{p+1}{2}}.\quad\text{($p$ : odd)}
Refer to captionRefer to caption\begin{matrix}\includegraphics[scale={0.9}]{whiteheadgenerator}\end{matrix}\qquad\qquad\begin{matrix}\includegraphics[scale={0.9}]{whiteheadtetrahedron}\end{matrix}

Figure 9. Generators of π1(S3Wp)\pi_{1}(S^{3}\setminus W_{p}) and related tetrahedral graph. The base point is located above the plane.

Now we construct the geometric representation ρ:π1(S3W)SL(2,)\rho:\pi_{1}(S^{3}\setminus W)\to\mathrm{SL}(2,\mathbb{C}). The matrices corresponding to the meridians are all parabolic. Note that any parabolic matrix is of the form (±1+αββ2α2±1αβ)\begin{pmatrix}\pm 1+\alpha\beta&\beta^{2}\\ -\alpha^{2}&\pm 1-\alpha\beta\end{pmatrix} for some α\alpha, β\beta\in\mathbb{C}. Let g12=g1g2g_{12}=g_{1}g_{2}, g23=g2g3g_{23}=g_{2}g_{3}. For geometric representation, it is known that the matrix ρ(g23)\rho(g_{23}) is diagonalizable. By applying conjugation, we may assume that ρ(g23)\rho(g_{23}) is a diagonal matrix and an off-diagonal element of ρ(g1)\rho(g_{1}) is the minus of the other off-diagonal element of ρ(g1)\rho(g_{1}). Now we put

ρ(g1)\displaystyle\rho(g_{1}) =(1+xxx1x),ρ(g2)=(1+a2b2b22a221a2b2),\displaystyle=\begin{pmatrix}-1+x&-x\\ x&-1-x\end{pmatrix},\qquad\rho(g_{2})=\begin{pmatrix}-1+a_{2}b_{2}&b_{2}^{2}\\ -a_{2}^{2}&-1-a_{2}b_{2}\end{pmatrix},
ρ(g3)\displaystyle\rho(g_{3}) =(1+a3b3b32a321a3b3),ρ(g23)=(u100u).\displaystyle=\begin{pmatrix}-1+a_{3}b_{3}&b_{3}^{2}\\ -a_{3}^{2}&-1-a_{3}b_{3}\end{pmatrix},\quad\rho(g_{23})=\begin{pmatrix}u^{-1}&0\\ 0&u\end{pmatrix}.

Since g12g_{12} commutes with the parabolic matrix ρ(h)\rho(h) and ρ\rho is a non-abelian representation, we get traceρ(g12)=2\operatorname{trace}\rho(g_{12})=-2. From the relations

traceρ(g23)=u+u1,ρ(g23) is a diagonal matrix,\displaystyle\operatorname{trace}\rho(g_{23})=u+u^{-1},\quad\text{$\rho(g_{23})$ is a diagonal matrix,}
traceρ(g1g2g3)=traceρ(g12)=2,\displaystyle\operatorname{trace}\rho(g_{1}g_{2}g_{3})=\operatorname{trace}\rho(g_{12})=-2,

we get the following matrices.

ρ(g1)\displaystyle\rho(g_{1}) =(2uu+1u1u+1u1u+12u+1),ρ(g2)=(2u+1(u+1)3(u1)(u+1)(u1)3(u+1)(u+1)2uu+1),\displaystyle=\left(\begin{array}[]{cc}-\frac{2u}{u+1}&\frac{u-1}{u+1}\\ -\frac{u-1}{u+1}&-\frac{2}{u+1}\\ \end{array}\right),\ \ \rho(g_{2})=\left(\begin{array}[]{cc}-\frac{2}{u+1}&\frac{\left(\sqrt{u}+1\right)^{3}}{\left(\sqrt{u}-1\right)(u+1)}\\ -\frac{\left(\sqrt{u}-1\right)^{3}}{\left(\sqrt{u}+1\right)(u+1)}&-\frac{2u}{u+1}\\ \end{array}\right), (8)
ρ(g3)\displaystyle\rho(g_{3}) =(2u+1(u+1)3u(u1)(u+1)(u1)3(u+1)u(u+1)2uu+1),ρ(g4)=(2uu+1(u1)uu+1u1u(u+1)2u+1).\displaystyle=\left(\begin{array}[]{cc}-\frac{2}{u+1}&-\frac{\left(\sqrt{u}+1\right)^{3}u}{\left(\sqrt{u}-1\right)(u+1)}\\ \frac{\left(\sqrt{u}-1\right)^{3}}{\left(\sqrt{u}+1\right)u(u+1)}&-\frac{2u}{u+1}\\ \end{array}\right),\ \ \rho(g_{4})=\left(\begin{array}[]{cc}-\frac{2u}{u+1}&-\frac{(u-1)u}{u+1}\\ \frac{u-1}{u(u+1)}&-\frac{2}{u+1}\\ \end{array}\right).

Let pip_{i} be the fixed point of ρ(gi)\rho(g_{i}) for i=1i=1, 22, 33, 44 and p12p_{12} be the fixed point of g23g_{23}, and let p230p_{23}^{0} and p231p_{23}^{1} be the ratios of the elements of the eigenvectors of ρ(g23)\rho(g_{23}). Since pip_{i} is the ratio of the elements of the eigenvector of ρ(gi)\rho(g_{i}), p230p_{23}^{0} and p231p_{23}^{1} are fixed points of ρ(g23)\rho(g_{23}), and ρ(g23)\rho(g_{23}) maps the geodesic line connecting p230p_{23}^{0} and p231p_{23}^{1} to itself, so we get

p1\displaystyle p_{1} =1,p2=(u+1)2(u1)2,p3=(u+1)2u(u1)2,p4=u,\displaystyle=1,\quad p_{2}=-\frac{\left(\sqrt{u}+1\right)^{2}}{\left(\sqrt{u}-1\right)^{2}},\quad p_{3}=\frac{\left(\sqrt{u}+1\right)^{2}u}{\left(\sqrt{u}-1\right)^{2}},\quad p_{4}=-u,\quad
p12\displaystyle p_{12} =(u+1)uu1,p230=0,p231=.\displaystyle=\frac{\left(\sqrt{u}+1\right)\sqrt{u}}{\sqrt{u}-1},\qquad p_{23}^{0}=0,\qquad p_{23}^{1}=\infty.

By the relation (7), we have

g23p2p3=p4,g23p2p2=p1,(p : even){g_{23}}^{\frac{p}{2}}\cdot p_{3}=p_{4},\qquad{g_{23}}^{\frac{p}{2}}\cdot p_{2}=p_{1},\qquad\text{($p$ : even)}
g23p12p2=p4,g23p+12p3=p1.(p : odd){g_{23}}^{\frac{p-1}{2}}\cdot p_{2}=p_{4},\qquad{g_{23}}^{\frac{p+1}{2}}\cdot p_{3}=p_{1}.\qquad\text{($p$ : odd)}

Since ρ(g23)=(u100u)\rho(g_{23})=\begin{pmatrix}u^{-1}&0\\ 0&u\end{pmatrix}, p4=up1p_{4}=-up_{1}, p3=up2p_{3}=-up_{2}, we have

(u)pp3=p4,(u)pp2=p1.(-u)^{-p}p_{3}=p_{4},\qquad(-u)^{-p}p_{2}=p_{1}.

These two equations are equal to the following equation.

(u)p(u+1)2(u1)2=1.-(-u)^{-p}\frac{\left(\sqrt{u}+1\right)^{2}}{\left(\sqrt{u}-1\right)^{2}}=1. (9)

For the Whitehead link W=W2W=W_{2}, the above equation is

(u+1)(u22u3/2+2u+1)=0.(u+1)\left(u^{2}-2u^{3/2}+2\sqrt{u}+1\right)=0.

The solutions are u=1.78615±2.27202iu=1.78615\pm 2.27202i and u=1u=-1, and the first two solutions give the geometric representations. For generic pp, there are many solutions for uu satisfying (9), and to find the geometric solution, we consider the complexified tetrahedron and the developing map associated with this tetrahedron as in the following subsection.

2.2. Complexified terahedron

Here we construct the complexified tetrahedron for a twisted Whitehead link with respect to ρ(g1)\rho(g_{1}), \cdots, ρ(g23)\rho(g_{23}). At first, we assign points on the complex plane associated with ρ(g1)\rho(g_{1}), \cdots, ρ(g23)\rho(g_{23}). Let pip_{i} be the fixed point of ρ(gi)\rho(g_{i}) for i=1i=1, 22, 33, 44 and p12p_{12} be the fixed point of g23g_{23}. Let p230p_{23}^{0} and p231p_{23}^{1} be the ratios of the elements of the eigenvectors of ρ(g23)\rho(g_{23}). Note that pip_{i} is the ratio of the elements of the eigenvector of ρ(gi)\rho(g_{i}), p230p_{23}^{0} and p231p_{23}^{1} are fixed points of ρ(g23)\rho(g_{23}), and ρ(g23)\rho(g_{23}) maps the geodesic line connecting p230p_{23}^{0} and p231p_{23}^{1} to itself.

For the Whitehead link case with u=1.786152.27202iu=1.78615-2.27202i,

p1\displaystyle p_{1} =1,p2=1.971748.11634i,p3=21.9623+10.0172i,\displaystyle=1,\quad p_{2}=-1.97174-8.11634i,\quad p_{3}=21.9623+10.0172i,\quad
p4\displaystyle p_{4} =1.78615+2.27202i,p12=4.80111+1.04322i,p230=0,p231=.\displaystyle=-1.78615+2.27202i,\quad p_{12}=4.80111+1.04322i,\quad p_{23}^{0}=0,\quad p_{23}^{1}=\infty.

Here we see that p3=up2p_{3}=-u\,p_{2}, p4=up1p_{4}=-u\,p_{1}, p2=u2p1p_{2}=u^{2}\,p_{1} and p3=u2p4p_{3}=u^{2}\,p_{4} as in Figure 10.

Refer to captionRefer to caption\begin{matrix}\includegraphics[scale={1}]{quad1}\end{matrix}\qquad\qquad\begin{matrix}\includegraphics[scale={0.7}]{quad2}\end{matrix}

Figure 10. The action of u-u and u2u^{2} to the quadrilateral p1p2p3p4p_{1}p_{2}p_{3}p_{4}.

Let pip_{i}^{\prime} be the point on the line p230p231p_{23}^{0}p_{23}^{1} such that the geodesic line pipip_{i}p_{i}^{\prime} is perpendicular to p230p231p_{23}^{0}p_{23}^{1}. Then construct four geodesic triangles FjF_{j} whose vertices are p12p_{12}, pjp_{j}, pj+1p_{j+1} for j=1j=1, 22, 33, 44. Here j+1j+1 means j+1mod4j+1\mod 4. Now we choose two surfaces F5F_{5}, F8F_{8} where the boundary of F1F_{1} is p1p1p1p2p2p2p1p1p_{1}p_{1}^{\prime}\cup p_{1}^{\prime}p_{2}^{\prime}\cup p_{2}^{\prime}p_{2}\cup p_{1}p_{1} and the boundary of F2F_{2} is p4p4p4p1p1p1p1p4p_{4}p_{4}^{\prime}\cup p_{4}^{\prime}p_{1}^{\prime}\cup p_{1}^{\prime}p_{1}\cup p_{1}p_{4}. Let ρ(g23)1/2=(iu1/200iu1/2)\rho(g_{23})^{1/2}=\begin{pmatrix}iu^{-1/2}&0\\ 0&-iu^{1/2}\end{pmatrix}. Let F6=ρ(g23)F8F_{6}=\rho(g_{23})\,F_{8} and F7=ρ(g23)1/2F5F_{7}=\rho(g_{23})^{1/2}\,F_{5}. Now we introduce the complexified tetrahedra TT, which is the hyperbolic solid surrounded by F1F_{1}, \cdots, F8F_{8}. The surfaces F2F_{2}, F4F_{4}, F5F_{5}, F7F_{7} correspond to the faces and the surfaces F1F_{1}, F3F_{3}, F6F_{6}, F8F_{8} shaded in Figure 11 correspond to the vertices of the tetrahedral graph in Figure 9. The solid TT is considered to be a deformation of the regular ideal octahedron. There are many ways to take F5F_{5} and F8F_{8}, and here we choose them so that Tρ(g23)1/2TT\cup\rho(g_{23})^{1/2}T is a fundamental domain of the action of ρ(π1(S3W))\rho(\pi_{1}(S^{3}\setminus W)).

3Refer to captionRefer to captionThe view from the edge corresponding to g12.\mathbb{H}^{3}\begin{matrix}\includegraphics[scale={0.8}]{complexifiedtetrahedron}\end{matrix}\begin{matrix}\includegraphics[scale={0.8}]{complexifiedtetrahedron1}\\ \text{The view from the edge corresponding to $g_{12}$.}\end{matrix}
Figure 11. Complexified tetrahedron TT.

For general pp, the solution of (9) corresponding to the geometric representation is the one satisfying

parg(u)+arg(p21)=±2πi.p\arg(-u)+\arg(p_{2}^{-1})=\pm 2\pi i.

For this solution, π1(S3Wp)(Tρ(g23)1/2T)\pi_{1}(S^{3}\setminus W_{p})(T\cup\rho(g_{23})^{1/2}T) covers the hyperbolic space 3\mathbb{H}^{3} evenly.

2.3. Poisson sum formula

From now on, we prove the volume conjecture for WpW_{p}. The colored Jones polynomial JN(Wp)J_{N}(W_{p}) is given in (53) as follows.

JN1(Wp)=Nqp(N1)244πik=0N1ddx(qp(xN12)2{2x+1}l=0N1sxk2=max(k,l)min(k+l,N1)ξN(x,l,s))|x=k.J_{N-1}(W_{p})=N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{k=0}^{N-1}\frac{d}{dx}\!\!\left(q^{p(x-\frac{N-1}{2})^{2}}\{2x+1\}\hfill\left.\sum_{l=0}^{N-1}\sum_{s-\frac{x-k}{2}=\max(k,l)}^{\min(k+l,N-1)}\xi_{N}(x,l,s)\!\right)\right|_{x=k}.

The function ξN(x,l,s)\xi_{N}(x,l,s) is real valued and it takes the maximal at s0s_{0} given in (55) and l=N12l=\frac{N-1}{2}. Hence

JN1(Wp)=Nqp(N1)244πik=0N1ddx(qp(xN12)2{2x+1}DNξN(x,N12,s0))|x=kJ_{N-1}(W_{p})=N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{k=0}^{N-1}\left.\frac{d}{dx}\Big{(}q^{p(x-\frac{N-1}{2})^{2}}\{2x+1\}D_{N}\xi_{N}(x,\tfrac{N-1}{2},s_{0})\Big{)}\right|_{x=k}

where DND_{N} is a constant with polynomial growth and

s0=N2πilogw0,w0=(u+1)(v+1)(u+1)2(v+1)216uv4=u,s_{0}=\frac{N}{2\pi i}\log w_{0},\quad w_{0}=\frac{(u+1)(v+1)-\sqrt{(u+1)^{2}(v+1)^{2}-16uv}}{4}=-\sqrt{u},
u=q2x+1,v=q2l+1=1u=q^{2x+1},\qquad v=q^{2l+1}=-1

as shown in Appendix C. Let Nα=x+12N\alpha=x+\frac{1}{2}, Nγ0=s0+12N\gamma_{0}=s_{0}+\frac{1}{2} and

ΨW(α)=4π2(γ022(α+12)γ0+α2+12α+14)2Li2(e2πiγ0)+2Li2(e2πi(γ0α))+2Li2(e2πiγ0)+2Li2(e2πi(αγ0))2π23.\Psi_{W}(\alpha)=-4\pi^{2}\big{(}\gamma_{0}^{2}-2(\alpha+\tfrac{1}{2})\gamma_{0}+\alpha^{2}+\tfrac{1}{2}\alpha+\tfrac{1}{4}\big{)}\\ -2\mathrm{Li}_{2}(e^{2\pi i\gamma_{0}})+2\mathrm{Li}_{2}(e^{2\pi i(\gamma_{0}-\alpha)})+2\mathrm{Li}_{2}(-e^{2\pi i\gamma_{0}})+2\mathrm{Li}_{2}(-e^{2\pi i(\alpha-\gamma_{0})})-\frac{2\pi^{2}}{3}.

Then

JN1(Wp)=ENqp(N1)24k=0N1ddα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))|α=2k+12N=α,J_{N-1}(W_{p})=E_{N}q^{p\frac{(N-1)^{2}}{4}}\sum_{k=0}^{N-1}\left.\!\!\frac{d}{d\alpha}\{2N\alpha\}\exp\Big{(}\!\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha)\big{)}\!\Big{)}\right|_{\alpha=\frac{2k+1}{2N}=\alpha},

where ENE_{N} is a constant which grows at most polynomially with respect to NN.

To see the asymptotics of JN1(Wp)J_{N-1}(W_{p}), we use the Poisson sum formula. Let ff be a rapidly decreasing function, then

kf(k)=kf^(k)\sum_{k\in\mathbb{Z}}f(k)=\sum_{k\in\mathbb{Z}}\hat{f}(k)

where f^\hat{f} is the Fourier transform of ff given by

f^(x)=e2πiktf(t)𝑑t.\hat{f}(x)=\int_{\mathbb{R}}e^{-2\pi ikt}f(t)\,dt.

To apply this to the parameter ll, we extend the function ΨW\Psi_{W} by 0 for α0\alpha\leq 0 and α1\alpha\geq 1. Then

JN1(Wp)=ENqp(N1)24×k0Ne2πiktddα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))|α=2t+12Ndt=NENqp(N1)24k01e2πikNα+πikddα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))𝑑α.J_{N-1}(W_{p})=E_{N}\,q^{p\frac{(N-1)^{2}}{4}}\,\times\\ \left.\sum_{k\in\mathbb{Z}}\int_{0}^{N}e^{-2\pi ikt}\frac{d}{d\alpha}\{2N\alpha\}\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha))\Big{)}\right|_{\alpha=\frac{2t+1}{2N}}\!\!dt\\ =NE_{N}\,q^{p\frac{(N-1)^{2}}{4}}\sum_{k\in\mathbb{Z}}\int_{0}^{1}e^{-2\pi ikN\alpha+\pi ik}\frac{d}{d\alpha}\{2N\alpha\}\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha))\Big{)}d\alpha.

Now we apply integral by part and we get

JN1(Wp)=NENqp(N1)24×k(1)ke2πiNkα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))|ENqp(N1)242πik0(1)k+1k01e2πiNkα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))𝑑α=2πiENqp(N1)24k(1)kk01e2πiNkα{2Nα}exp(N2πi(2π2p(α12)2+ΨW(α)))𝑑α.J_{N-1}(W_{p})=NE_{N}\,q^{p\frac{(N-1)^{2}}{4}}\,\times\\ \left.\sum_{k\in\mathbb{Z}}(-1)^{k}e^{-2\pi iNk\alpha}\{2N\alpha\}\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha))\Big{)}\right|_{-\infty}^{\infty}-\\ E_{N}q^{p\frac{(N-1)^{2}}{4}}2\pi i\sum_{k\neq 0}(-1)^{k+1}k\!\int_{0}^{1}\!e^{-2\pi iNk\alpha}\{2N\alpha\}\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha))\!\Big{)}d\alpha\\ =2\pi iE_{N}\,q^{p\frac{(N-1)^{2}}{4}}\sum_{k\in\mathbb{Z}}(-1)^{k}k\int_{0}^{1}e^{-2\pi iNk\alpha}\{2N\alpha\}\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Psi_{W}(\alpha))\Big{)}d\alpha.

Let

ΦWp(α)=2π2p(α12)2+ΦW(α).\Phi_{W_{p}}(\alpha)=-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+\Phi_{W}(\alpha).

Then

JN1(Wp)=ENqp(N1)24k0(1)kk01e2πiNkα{2Nα}eN2πiΦWp(α)𝑑α,J_{N-1}(W_{p})=E_{N}q^{p\frac{(N-1)^{2}}{4}}\sum_{k\neq 0}(-1)^{k}k\int_{0}^{1}e^{-2\pi iNk\alpha}\{2N\alpha\}e^{\frac{N}{2\pi i}\Phi_{W_{p}}(\alpha)}d\alpha,

In the rest, we follow the method in [15]. Let

ΦWp+(α)=ΦWp(α)4π2Nα,ΦWp(α)=ΦWp(α)+4π2Nα.\Phi_{W_{p}}^{+}(\alpha)=\Phi_{W_{p}}(\alpha)-\frac{4\pi^{2}}{N}\alpha,\qquad\Phi_{W_{p}}^{-}(\alpha)=\Phi_{W_{p}}(\alpha)+\frac{4\pi^{2}}{N}\alpha.

2.4. Saddle point method

Here we investigate

limN2πNlog01e2πiNkαENeNΦWp±(α)𝑑α\lim_{N\to\infty}\frac{2\pi}{N}\log\int_{0}^{1}e^{-2\pi iNk\alpha}E^{\prime}_{N}e^{N\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha

with the help of the saddle point method. We first compute for k=1k=1. Choose a small positive δ\delta so that |ImΦWp±(α)|<vW|\mathrm{Im}\Phi_{W_{p}}^{\pm}(\alpha)|<{v_{W}} for α[0.δ]\alpha\in[0.\delta] and [1δ,1][1-\delta,1] and we devide the integral in the above formula into three parts.

01e2πiNαENeN2πiΦWp±(α)𝑑α=0δe2πiNαENeN2πiΦWp±(α)𝑑α+δ1δe2πiNαENeN2πiΦWp±(α)𝑑α+1δ1e2πiNαENeN2πiΦWp±(α)𝑑α.\int_{0}^{1}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha=\int_{0}^{\delta}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha+\\ \int_{\delta}^{1-\delta}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha+\int_{1-\delta}^{1}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha.

Then,

|0δe2πiNαENeN2πiΦWp±(α)𝑑α|<EN′′eNvW2π\left|\int_{0}^{\delta}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha\right|<E^{\prime\prime}_{N}e^{N\frac{v_{W}}{2\pi}}

and

|1δ1e2πiNαENeN2πiΦWp±(α)𝑑α|<EN′′eNvW2π\left|\int_{1-\delta}^{1}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{\frac{N}{2\pi i}\Phi_{W_{p}}^{\pm}(\alpha)}\,d\alpha\right|<E^{\prime\prime}_{N}e^{N\frac{v_{W}}{2\pi}}

for some factors EN′′E_{N}^{\prime\prime} with polynomial growth. The remaining integral is estimated by the value at the saddle point, where the saddle point α0\alpha_{0} is the point that the differential of ΦWp±(α)\Phi_{W_{p}}^{\pm}(\alpha) vanishes.

Now let us consider the Whitehead link case, i.e. p=2p=2. Let α0\alpha_{0} be the solution of

12πiddα(4π2α+ΦW2(α))=0.\frac{1}{2\pi i}\frac{d}{d\alpha}\left(4\pi^{2}\alpha+\Phi_{W_{2}}(\alpha)\right)=0.

By taking the exponential of this equation, we get

(1+e2πiα+12)2(1e2πiα+12)2e4πiα+12=(1eπiα)2(1+eπiα)2e4πiα=1.-\frac{(1+e^{2\pi i\frac{\alpha+1}{2}})^{2}}{(1-e^{2\pi i\frac{\alpha+1}{2}})^{2}}e^{4\pi i\frac{\alpha+1}{2}}=-\frac{(1-e^{\pi i\alpha})^{2}}{(1+e^{\pi i\alpha})^{2}}e^{4\pi i\alpha}=1. (10)

Note that this equation is equal to (9) by putting u=e2πiαu=e^{2\pi i\alpha}, and is an algebraic equation. So it has several solutions and they satisfy

12πiddα(ΦW2(α))=2πik.(k)\frac{1}{2\pi i}\frac{d}{d\alpha}\left(\Phi_{W_{2}}(\alpha)\right)=2\pi ik.\qquad(k\in\mathbb{Z})

Then α0\alpha_{0} is one of the solutions of (10) satisfying

12πiddα(ΦW2(α0))=2πi.\frac{1}{2\pi i}\frac{d}{d\alpha}\left(\Phi_{W_{2}}(\alpha_{0})\right)=2\pi i.

We actually have such solution α0=0.8560350.168907i=12πilog(1i+12i)\alpha_{0}=0.856035...-0.168907...i=\frac{1}{2\pi i}\log(1-i+\sqrt{-1-2i}). We can see this solution as the saddle point in the contour graph of ReΦW2(α)\operatorname{Re}\Phi_{W_{2}}(\alpha) given in Figure 12.

ImαRefer to captionReαThick line : the original integral pathDashed line : the deformed integral path : The saddle point\raisebox{56.9055pt}{$\begin{matrix}\operatorname{Im}\alpha\\ \uparrow\end{matrix}$}\,\begin{matrix}\includegraphics[scale={0.4}]{contourW2}\\ \qquad\qquad\qquad\to\operatorname{Re}\alpha\end{matrix}\qquad\begin{tabular}[]{ll}Thick line : the original integral path\\[5.0pt] Dashed line : the deformed integral path\\[5.0pt] $\circ$ : The saddle point\end{tabular}

Figure 12. Contour graph of Re12πi(4π2α+ΦW2(α))\mathrm{Re}\frac{1}{2\pi i}(4\pi^{2}\alpha+\Phi_{W_{2}}(\alpha)).

In this case, the end points α=0\alpha=0 and α=1\alpha=1 of the integral path are located on the different regions of Re12πiΦW2(α)0.57\operatorname{Re}\frac{1}{2\pi i}\Phi_{W_{2}}(\alpha)\leq 0.57 and we can apply the saddle point method by deforming the integral path to the dashed line in Figure 12. Therefore,

δ1δe2πiNαENeNΦW2(α)𝑑αN12πieN2πi(4π2α0+ΦW2(α0)).\int_{\delta}^{1-\delta}e^{-2\pi iN\alpha}E^{\prime}_{N}e^{N\Phi_{W_{2}}(\alpha)}\,d\alpha\underset{N\to\infty}{\sim}\frac{1}{2\pi i}e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0})\right)}.

Let α0±\alpha_{0}^{\pm} be the solution of

ddα(4π2α+ΦW2±(α))=0.\frac{d}{d\alpha}\left(4\pi^{2}\alpha+\Phi_{W_{2}}^{\pm}(\alpha)\right)=0.

Then, since α0>0\mathrm{\alpha_{0}}>0, there is positive constants cc such that α0±=α0±cN+O(1N2)\alpha_{0}^{\pm}=\alpha_{0}\pm\frac{c}{N}+O(\frac{1}{N^{2}}), and

δ1δe2πiNαDNeN2πiΦW2±(α)𝑑αNDNeN2πi(4π2α0±+ΦW2±(α0±))=DNeN2πi(4π2(α0±cN)+ΦW2±(α0±cN+O(1N2)))=DNeN2πi(4π2α0+ΦW2(α0)±dN+O(1N2))\int_{\delta}^{1-\delta}e^{-2\pi iN\alpha}D_{N}e^{\frac{N}{2\pi i}\Phi_{W_{2}}^{\pm}(\alpha)}\,d\alpha\underset{N\to\infty}{\sim}D_{N}e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}^{\pm}+\Phi_{W_{2}}^{\pm}(\alpha_{0}^{\pm})\right)}\\ =D_{N}e^{\frac{N}{2\pi i}\left(4\pi^{2}(\alpha_{0}\pm\frac{c}{N})+\Phi_{W_{2}}^{\pm}(\alpha_{0}\pm\frac{c}{N}+O(\frac{1}{N^{2}}))\right)}=D_{N}e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0})\pm\frac{d}{N}+O(\frac{1}{N^{2}})\right)}

for some constant dd. Therefore,

limN2πNlog|JN1(W2)|=limN2πNlog|DN(eN2πi(4π2α0+ΦW2(α0)+dN+O(1N2))eN2πi(4π2α0+ΦW2(α0)dN+O(1N2)))|=limN2πNlog|DN((eded)eN2πi(4π2α0+ΦW2(α0)+O(1N2)))|=2πReΦW2(α0).\lim_{N\to\infty}\frac{2\pi}{N}\log|J_{N-1}(W_{2})|=\\ \lim_{N\to\infty}\frac{2\pi}{N}\log\left|D_{N}\left(e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0})+\frac{d}{N}+O(\frac{1}{N^{2}})\right)}-e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0})-\frac{d}{N}+O(\frac{1}{N^{2}})\right)}\right)\right|=\\ \lim_{N\to\infty}\frac{2\pi}{N}\log\left|D_{N}\left((e^{d}-e^{-d})e^{\frac{N}{2\pi i}\left(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0})+O(\frac{1}{N^{2}})\right)}\right)\right|=2\pi\operatorname{Re}\Phi_{W_{2}}(\alpha_{0}).

For p>2p>2, the contour graph is similar to the case p=2p=2 and we can apply the similar argument to get

limN2πNlog|JN1(Wp)|=2πImΦWp(α0(p)),\lim_{N\to\infty}\frac{2\pi}{N}\log|J_{N-1}(W_{p})|=2\pi\operatorname{Im}\Phi_{W_{p}}(\alpha_{0}^{(p)}),

where α0(p)\alpha_{0}^{(p)} is the solution of

ddα(4π2α+ΦWp(α))=0.\frac{d}{d\alpha}\left(4\pi^{2}\alpha+\Phi_{W_{p}}(\alpha)\right)=0. (11)

For positive pp, 1/2<Reα0(p)<11/2<\operatorname{Re}\alpha_{0}^{(p)}<1 and so

eγ0(α0(p),1/2)=e2πi(α0(p)+1)/2=eπiα0(p)=e2πiα0(p).e^{\gamma_{0}(\alpha_{0}^{(p)},1/2)}=e^{2\pi i(\alpha_{0}^{(p)}+1)/2}=-e^{\pi i\alpha_{0}^{(p)}}=\sqrt{e^{2\pi i\alpha_{0}^{(p)}}}.

By taking the exponential of this equation, we see that α0(p)\alpha_{0}^{(p)} is a solution of

(1eπiα)2(1+eπiα)2(e2πiα)p=1-\frac{(1-e^{\pi i\alpha})^{2}}{(1+e^{\pi i\alpha})^{2}}(-e^{2\pi i\alpha})^{p}=1 (12)

satisfying (11). For such α0(p)\alpha_{0}^{(p)}, the value ImΦWp(α0(p))\mathrm{Im}\Phi_{W_{p}}(\alpha_{0}^{(p)}) satisfies

Im(4π2α0+ΦW2(α0))<Im(4π2α0(p)+ΦWp(α0(p)))<vB,\mathrm{Im}(4\pi^{2}\alpha_{0}+\Phi_{W_{2}}(\alpha_{0}))<\mathrm{Im}(4\pi^{2}\alpha_{0}^{(p)}+\Phi_{W_{p}}(\alpha_{0}^{(p)}))<v_{B},

and the condition to apply the saddle point method is also fulfilled. Actually, the contour graph for p=5p=5, 2020 is given in Figure 13. If pp becomes large, then the term Re(2πip(α12)\operatorname{Re}(2\pi ip(\alpha-\frac{1}{2}) becomes dominant.

Refer to captionRefer to captionp=5p=20\begin{matrix}\begin{matrix}\includegraphics[scale={1}]{contourW5_1}\end{matrix}&\qquad&\begin{matrix}\includegraphics[scale={1}]{contourW20_1}\end{matrix}\\ p=5&&p=20\end{matrix}
Figure 13. The contour graph of Re12πi(4π2α+ΦWp(α))\operatorname{Re}\frac{1}{2\pi i}\big{(}4\pi^{2}\alpha+\Phi_{W_{p}}(\alpha)\big{)} for p=5p=5 and 2020. The thick contour indicates level 0 and other contours represent integer levels and the small circles represent the saddle points.

The saddle points α0(p)\alpha_{0}^{(p)} for 2|p|1002\leq|p|\leq 100 are given in Figure 14.

 Imα Refer to captionReα\raisebox{42.67912pt}{ $\begin{matrix}\operatorname{Im}\alpha\\ \uparrow\end{matrix}$ }\includegraphics[scale={1.25}]{saddleW1}\ \ \to\operatorname{Re}\alpha
Figure 14. Saddle points α0(p)\alpha_{0}^{(p)} for |p|2|p|\geq 2.

The contribution of the term k=1k=-1 is the same as k=1k=1 term.

We have to check the contribution of the term kk with |k|2|k|\geq 2 is negrigible. In such case, the saddle point moves and the imaginary part of the value at the saddle point is smaller than vWpv_{W_{p}}. If |k||k| is large, then there is no saddle points and the integral path can be moved to the path on which the imaginary part of the value is 0. See Figure 15.

Refer to captionp=5,k=1Refer to captionp=5,k=2Refer to captionp=5,k=3\begin{matrix}\includegraphics[scale={0.8}]{contourW5_1}\\ p=5,\ k=1\end{matrix}\qquad\begin{matrix}\includegraphics[scale={0.8}]{contourW5_2}\\ p=5,\ k=2\end{matrix}\qquad\begin{matrix}\includegraphics[scale={0.8}]{contourW5_3}\\ p=5,\ k=3\end{matrix}

Figure 15. The contour graph of Re12πi(4kπ2α+ΦWp(α))\operatorname{Re}\frac{1}{2\pi i}\big{(}4k\pi^{2}\alpha+\Phi_{W_{p}}(\alpha)\big{)} for p=5p=5 and k=1k=1, 22, 33.

2.5. Volume of the complement

Here we show the following.

Theorem 3.

The value 1i(4π2α0(p)+ΦWp(α0(p)))\frac{1}{i}\big{(}4\pi^{2}\alpha_{0}^{(p)}+\Phi_{W_{p}}(\alpha_{0}^{(p)})\big{)} is equal to the complex volume of the complement of WpW_{p},

Proof.

The key is the coincidence of e2πiα0(p)e^{2\pi i\alpha_{0}^{(p)}} with the eigenvalue uu of ρ(g23)\rho(g_{23}) in §2.1. To prove the theorem, we compare ζ(α,12,α+12)\zeta(\alpha,\frac{1}{2},\frac{\alpha+1}{2}) with the Neumann-Zagier potential function, which relates to the hyperbolic volume of the deformation of the complement of the Borromean rings BB and its variation B1B_{1}. For even pp, WpW_{p} is obtained from the Borromean rings BB by the 2/p2/p surgery along the component CC which corresponds to h1h_{1} in Figure 4, and for odd pp, WpW_{p} is obtained from B1B_{1} by 2/(p1)2/(p-1) surgery. We deform the complement of BB by changing the cusp shape of CC.

First we prove for positive even pp case. Let ρμ,λ:π1(BB)SL(2,)\rho_{\mu,\lambda}:\pi_{1}(B\setminus B)\to\mathrm{SL}(2,\mathbb{C}) be the non-parabolic representation of π1(BB)\pi_{1}(B\setminus B) where μ\mu and λ\lambda are eigenvalues of h1h_{1} and g23g_{23} respectively. Let mm and ll be the the dilatations with respect to the meridian and the longitude of the cusp along CC respectively, then it is known that em=μ2e^{m}=\mu^{2} and el=λ2e^{l}=\lambda^{2}, and ρμ,λ\rho_{\mu,\lambda} gives a deformed hyperbolic structure to the complement of BB such that the cusp shape along CC matches μ\mu and λ\lambda. For such deformation, the volume of the complement with respect to this deformed hyperbolic structure is studied by Neumann and Zagier [14]. Let f(m)f(m) be the Neumann-Zagier function for the complement of BB given in [14]. The function f(m)f(m) is determined by the following differential equation.

ddmf(m)=12l,f(0)=0.\frac{d}{dm}f(m)=-\frac{1}{2}l,\qquad f(0)=0.

Such deformation is actually realized as a deformation of a union of two ideal regular octahedrons which form the complement of BB. Let pip_{i} be the fixed point of ρ(gi)\rho(g_{i}) given by (8) for i=1i=1, 22, 33, 44. Since h1h_{1} commute with g23g_{23} and ρ(g23)\rho(g_{23}) is a diagonal matrix, ρ(h1)\rho(h_{1}) is also a diagonal matrix, and the action of ρ(h1)\rho(h_{1}) sends p1p_{1} to p2p_{2} and p4p_{4} to p3p_{3}. These points satisfy

p2=(u+1)2(u1)2p1,p4=(u+1)2(u1)2p3,p_{2}=-\frac{\left(\sqrt{u}+1\right)^{2}}{\left(\sqrt{u}-1\right)^{2}}\,p_{1},\qquad p_{4}=-\frac{\left(\sqrt{u}+1\right)^{2}}{\left(\sqrt{u}-1\right)^{2}}\,p_{3},

so e±m=μ±2=(u+1)2(u1)2e^{\pm m}=\mu^{\pm 2}=-\frac{\left(\sqrt{u}+1\right)^{2}}{\left(\sqrt{u}-1\right)^{2}}, and we choose

m=log((u1)2(u+1)2),μ=em2.(u=e2πiα)m=\log\left(-\frac{\left(\sqrt{u}-1\right)^{2}}{\left(\sqrt{u}+1\right)^{2}}\right),\qquad\mu=-e^{\frac{m}{2}}.\qquad(u=e^{2\pi i\alpha})

On the other hand, the eigenvalues of ρ(g23)\rho(g_{23}) are λ=u±1=e±2πiα\lambda=u^{\pm 1}=e^{\pm 2\pi i\alpha}, el=λ2=u±2=e±4πiαe^{l}=\lambda^{2}=u^{\pm 2}=e^{\pm 4\pi i\alpha} and we put

l=4πiα2πi.l=4\pi i\alpha-2\pi i.

For positive pp, Reα0(p)>1/2\operatorname{Re}\alpha_{0}^{(p)}>1/2, so we adjust ll so that 0argl<2π0\leq\arg l<2\pi by subracting 2πi2\pi i. Note that l=2ξ=4πiαl=2\xi=4\pi i\alpha and m=2ηm=2\eta for ξ\xi, η\eta in [19]. The function ΦW(α)\Phi_{W}(\alpha) satisfies

ddlΦW(α)=14πiddαΦW(α)=12log((u1)2(u+1)2)=12m.\frac{d}{dl}\Phi_{W}(\alpha)=\frac{1}{4\pi i}\frac{d}{d\alpha}\Phi_{W}(\alpha)=\frac{1}{2}\log\big{(}-\frac{\left(\sqrt{u}-1\right)^{2}}{\left(\sqrt{u}+1\right)^{2}}\big{)}=\frac{1}{2}m. (13)

Let H(m)=ΦW(α)12mlH(m)=\Phi_{W}(\alpha)-\frac{1}{2}ml where λ\lambda and μ\mu satisfies (13), then we have

mH(m)=αΦW(α)αm12l12mαm=12l.\frac{\partial}{\partial m}H(m)=\frac{\partial}{\partial\alpha}\Phi_{W}(\alpha)\frac{\partial\alpha}{\partial m}-\frac{1}{2}l-\frac{1}{2}m\frac{\partial\alpha}{\partial m}=-\frac{1}{2}l. (14)

The differential equation (14) for H(m)H(m) is the same differential equation for the Neumann-Zagier function Φ(m)\Phi(m) in [11], which is explained in Appendix D. Note that uu, vv in [11] are equal to m/2m/2, l/2l/2. Let

h(m)=H(m)+14ml.h(m)=H(m)+\frac{1}{4}ml.

If m=0m=0, then μ=1\mu=1, u=1u=-1, α=π\alpha=\pi and h(0)h(0) coincides with Vol(S3B)\mathrm{Vol}(S^{3}\setminus B). Therefore, h(μ)Vol(S3B)h(\mu)-\mathrm{Vol}(S^{3}\setminus B) equals to the function f(m)f(m) in [14]. Moreover, the length and the torsion of the core geodesic of the surgery component is given by the real part and the imaginary part of ll. Hence we have

Vol(S3Wp)+iCS(S3Wp)=1i(h(m)πi2logl).\mathrm{Vol}(S^{3}\setminus W_{p})+i\,\mathrm{CS}(S^{3}\setminus W_{p})=\frac{1}{i}\big{(}h(m)-\frac{\pi i}{2}\log l\big{)}.

Since m+p2l=2πim+\frac{p}{2}l=2\pi i, we have

i(Vol(S3Wp)+iCS(S3Wp))=h(m)πi2l=ΦW(α0(p))14mlπi2l=ΦW(α0(p))14(2πip2l)lπi2l=ΦW(α0(p))4π2p2(α0(p)12)2+4π2(α0(p)12).i\left(\mathrm{Vol}(S^{3}\setminus W_{p})+i\,\mathrm{CS}(S^{3}\setminus W_{p})\right)=h(m)-\frac{\pi i}{2}l\\ =\Phi_{W}(\alpha_{0}^{(p)})-\frac{1}{4}ml-\frac{\pi i}{2}l\\ =\Phi_{W}(\alpha_{0}^{(p)})-\frac{1}{4}\big{(}2\pi i-\frac{p}{2}l\big{)}l-\frac{\pi i}{2}l\\ =\Phi_{W}(\alpha_{0}^{(p)})-4\pi^{2}\frac{p}{2}\big{(}\alpha_{0}^{(p)}-\frac{1}{2}\big{)}^{2}+4\pi^{2}\big{(}\alpha_{0}^{(p)}-\frac{1}{2}\big{)}.

The last formula coincides with ΦWp(α0(p))2πi(2πi(α0(p)12))\Phi_{W_{p}}(\alpha_{0}^{(p)})-2\pi i\left(2\pi i(\alpha_{0}^{(p)}-\frac{1}{2})\right) at the saddle point α0(p)\alpha_{0}^{(p)} and so we get

1i(ΦWp(α0(p))2πi(2πi(α0(p)12)))=Vol(S3Wp)+iCS(S3Wp).\frac{1}{i}\left(\Phi_{W_{p}}(\alpha_{0}^{(p)})-2\pi i\left(2\pi i(\alpha_{0}^{(p)}-\frac{1}{2})\right)\right)=\mathrm{Vol}(S^{3}\setminus W_{p})+i\,\mathrm{CS}(S^{3}\setminus W_{p}).

For positive odd pp, WpW_{p} is obtained by applying 2/(p1)2/(p-1) surgery to the middle complent of B1B_{1} in Figure 1. We assign mm and ll along the component getting the surgery, then we get similar function h(m)h(m) which corresponds to the Neumann-Zagier function. The only difference is that h(0)=Vol(S3B1)+iCS(S3B1)h(0)=\mathrm{Vol}(S^{3}\setminus B_{1})+i\,\mathrm{CS}(S^{3}\setminus B_{1}), which implies that 1iΦWp(α0(p))=Vol(S3Wp)+iCS(S3Wp)\frac{1}{i}\Phi_{W_{p}}(\alpha_{0}^{(p)})=\mathrm{Vol}(S^{3}\setminus W_{p})+i\,\mathrm{CS}(S^{3}\setminus W_{p}).

The proof for negative pp case is similar. ∎

3. Double twist knots

We explain the complexified tetrahedron coming from SL(2,)\mathrm{SL}(2,\mathbb{C}) representation of π1(S3Dp,r)\pi_{1}(S^{3}\setminus D_{p,r}) for the hyperbolic double twist knot Dp,rD_{p,r}., and we prove Conjecture 1 for Dp,rD_{p,r} with the help of the complexified tetrahedron as in the previous section for the twisted Whitehead link. Note that the twist knot TpT_{p} is equal to Dp,2D_{p,2}, and Dp,rD_{-p,-r} is the mirror image of Dp,rD_{p,r},

3.1. Representation matrices

We first construct SL(2,)\mathrm{SL}(2,\mathbb{C}) representation. Let g1g_{1}, g2g_{2}, g3g_{3}, g4g_{4}, g12g_{12}, g23g_{23} be elements of π1(S3Dp,r)\pi_{1}(S^{3}\setminus D_{p,r}) as in Figure 16.

Refer to caption\begin{matrix}\includegraphics[scale={0.9}]{doubletwistknotgen}\end{matrix}
Figure 16. Elements g1g_{1}, g2g_{2}, g3g_{3}, g4g_{4}, g12g_{12}, g23g_{23} in π1(S3Dp,r)\pi_{1}(S^{3}\setminus D_{p,r}).

Then g1g_{1}, \cdots, g4g_{4}, g12g_{12}, g23g_{23} satisfy the following relation.

g12=g1g2,g23=g2g3,g1g2g3g4=1,\displaystyle g_{12}=g_{1}g_{2},\ \ g_{23}=g_{2}g_{3},\ \ g_{1}g_{2}g_{3}g_{4}=1, (15)
{g11=g23p2g2g23p2g41=g23p2g3g23p2if p is even,{g11=g23p+12g3g23p+12g41=g23p12g2g23p12if p is odd,\displaystyle\begin{cases}g_{1}^{-1}={g_{23}}^{\frac{p}{2}}g_{2}{g_{23}}^{-\frac{p}{2}}\\ g_{4}^{-1}={g_{23}}^{\frac{p}{2}}g_{3}{g_{23}}^{-\frac{p}{2}}\end{cases}\text{if $p$ is even},\ \ \begin{cases}g_{1}^{-1}={g_{23}}^{\frac{p+1}{2}}g_{3}{g_{23}}^{-\frac{p+1}{2}}\\ g_{4}^{-1}={g_{23}}^{\frac{p-1}{2}}g_{2}{g_{23}}^{-\frac{p-1}{2}}\end{cases}\text{if $p$ is odd}, (16)
{g41=g12r2g1g12r2g31=g12r2g2g12r2if r is even,{g41=g12r+12g2g12r+12g31=g12r12g1g12r12if r is odd.\displaystyle\begin{cases}g_{4}^{-1}={g_{12}}^{\frac{r}{2}}g_{1}{g_{12}}^{-\frac{r}{2}}\\ g_{3}^{-1}={g_{12}}^{\frac{r}{2}}g_{2}{g_{12}}^{-\frac{r}{2}}\end{cases}\text{if $r$ is even},\ \ \begin{cases}g_{4}^{-1}={g_{12}}^{\frac{r+1}{2}}g_{2}{g_{12}}^{-\frac{r+1}{2}}\\ g_{3}^{-1}={g_{12}}^{\frac{r-1}{2}}g_{1}{g_{12}}^{-\frac{r-1}{2}}\end{cases}\text{if $r$ is odd}. (17)

Let ρ\rho be the geometric SL(2,)\mathrm{SL}(2,\mathbb{C}) of π1(S3Dp,r)\pi_{1}(S^{3}\setminus D_{p,r}), then ρ(g1)\rho(g_{1}), \cdots, ρ(g4)\rho(g_{4}) are parabolic matrices. Here we assume that the eigenvalue of ρ(gi)\rho(g_{i}) is 1-1. We also assume that ρ(g23)=(u100u)\rho(g_{23})=\begin{pmatrix}u^{-1}&0\\ 0&u\end{pmatrix} and the eigenvalues of ρ(g12)\rho(g_{12}) are vv and v1v^{-1}. Then, up to the conjugation, ρ\rho is given as follows.

ρ(g1)\displaystyle\rho(g_{1}) =(2uu+1u1u+1u1u+12u+1),\displaystyle=\left(\begin{matrix}-\frac{2u}{{u}+1}&\frac{{u}-1}{{u}+1}\\[3.0pt] -\frac{{u}-1}{{u}+1}&-\frac{2}{{u}+1}\end{matrix}\right),
ρ(g2)\displaystyle\rho(g_{2}) =(2u+1(u+1)2(v2+1)8uv+(u+1)(v1)D2v(u1)(u+1)(u+1)2(v2+1)8uv(u+1)(v1)D2v(u1)(u+1)2uu+1),\displaystyle=\begin{pmatrix}-\frac{2}{{u}+1}&-\frac{(u+1)^{2}(v^{2}+1)-8uv+(u+1)(v-1)\sqrt{D}}{2v({u}-1)({u}+1)}\\ \frac{(u+1)^{2}(v^{2}+1)-8uv-(u+1)(v-1)\sqrt{D}}{2v({u}-1)({u}+1)}&-\frac{2u}{{u}+1}\end{pmatrix},
ρ(g3)\displaystyle\rho(g_{3}) =(2u+1u(u+1)2(v2+1)8uv+(u+1)(v1)D2v(u1)(u+1)(u+1)2(v2+1)8uv(u+1)(v1)D2uv(u1)(u+1)2uu+1),\displaystyle=\left(\begin{matrix}-\frac{2}{{u}+1}&u\frac{(u+1)^{2}(v^{2}+1)-8uv+(u+1)(v-1)\sqrt{D}}{2v({u}-1)({u}+1)}\\ -\frac{(u+1)^{2}(v^{2}+1)-8uv-(u+1)(v-1)\sqrt{D}}{2uv({u}-1)({u}+1)}&-\frac{2u}{{u}+1}\end{matrix}\right),
ρ(g4)\displaystyle\rho(g_{4}) =(2uu+1u(u1)u+1u1u(u+1)2u+1),where D=(u+1)2(v+1)216uv.\displaystyle=\begin{pmatrix}-\frac{2u}{u+1}&-\frac{u(u-1)}{u+1}\\[3.0pt] \frac{u-1}{u(u+1)}&-\frac{2}{u+1}\end{pmatrix},\qquad\text{where $D=(u+1)^{2}(v+1)^{2}-16uv$.}

Let p1p_{1}, p2p_{2}, p3p_{3}, p4p_{4} be the fixed points of ρ(g1)\rho(g_{1}), ρ(g2)\rho(g_{2}), ρ(g3)\rho(g_{3}), ρ(g4)\rho(g_{4}) on 2\partial\mathbb{H}^{2}. Then they are given as follows.

p1\displaystyle p_{1} =1,p2=(u+1)2(v2+1)8uv+(u+1)(v1)D2v(u1)2,\displaystyle=1,\qquad p_{2}=\frac{(u+1)^{2}(v^{2}+1)-8uv+(u+1)(v-1)\sqrt{D}}{2v({u}-1)^{2}},
p3\displaystyle p_{3} =u(u+1)2(v2+1)8uv(u+1)(v1)D2v(u1)2,p4=u.\displaystyle=-u\frac{(u+1)^{2}(v^{2}+1)-8uv-(u+1)(v-1)\sqrt{D}}{2v({u}-1)^{2}},\qquad p_{4}=-u.

Let p230p_{23}^{0}, p231p_{23}^{1} be the fixed points of ρ(g23)\rho(g_{23}), then p230=0p_{23}^{0}=0 and p231=p_{23}^{1}=\infty, and let p120p_{12}^{0}, p121p_{12}^{1} be the fixed points of ρ(g23)\rho(g_{23}), then they are

p120\displaystyle p_{12}^{0} =(u+1)2(v+1)8u+(u+1)D4(u1),\displaystyle=-\frac{(u+1)^{2}(v+1)-8u+(u+1)\sqrt{D}}{4(u-1)},
p121\displaystyle p_{12}^{1} =(u+1)2(v+1)8uv(u+1)D4(u1)v.\displaystyle=-\frac{(u+1)^{2}(v+1)-8uv-(u+1)\sqrt{D}}{4(u-1)v}.

Let ρ\rho^{\prime} be the representation similar to ρ\rho where g12g_{12} is mapped to the diagonal matrix ρ(g12)=(v100v)\rho^{\prime}(g_{12})=\begin{pmatrix}v^{-1}&0\\ 0&v\end{pmatrix} instead of g23g_{23}. Such ρ\rho^{\prime} is obtained by the transformation matrix

Q=((u+1)2(v+1)8u+(u+1)D4(u1)(u+1)(v+1)(u+v)8uv+(uv1)D2(u1)(v1)1(u+1)(v+1)28v+(v+1)D4(v1)).Q=\begin{pmatrix}-\frac{(u+1)^{2}(v+1)-8u+(u+1)\sqrt{D}}{4(u-1)}&-\frac{(u+1)(v+1)(u+v)-8uv+(uv-1)\sqrt{D}}{2(u-1)(v-1)}\\[3.0pt] 1&\frac{(u+1)(v+1)^{2}-8v+(v+1)\sqrt{D}}{4(v-1)}\end{pmatrix}.

For gπ1(S3K)g\in\pi_{1}(S^{3}\setminus K), let ρ(g)=Q1ρ(g)Q\rho^{\prime}(g)=Q^{-1}\rho(g)\,Q, then we have

ρ(g1)\displaystyle\rho^{\prime}(g_{1}) =(2v+1v1v+1v1v+12vv+1),ρ(g2)=(2v+1v1v(v+1)v(v1)v+12vv+1),\displaystyle=\left(\begin{matrix}-\frac{2}{v+1}&-\frac{v-1}{v+1}\\[3.0pt] \frac{v-1}{v+1}&-\frac{2v}{v+1}\\ \end{matrix}\right),\qquad\rho^{\prime}(g_{2})=\begin{pmatrix}-\frac{2}{v+1}&\frac{v-1}{v(v+1)}\\[3.0pt] -\frac{v(v-1)}{v+1}&-\frac{2v}{v+1}\end{pmatrix},
ρ(g3)\displaystyle\rho^{\prime}(g_{3}) =(2vv+1v((u2+1)(v+1)28uv+(u1)(v+1)D)2u(v1)(v+1)(u2+1)(v+1)28uv(u1)(v+1)D2u(v1)(v+1)2v+1),\displaystyle=\left(\begin{matrix}-\frac{2v}{{v}+1}&-v\frac{\left((u^{2}+1)(v+1)^{2}-8uv+(u-1)(v+1)\sqrt{D}\right)}{2u({v}-1)({v}+1)}\\ \frac{(u^{2}+1)(v+1)^{2}-8uv-(u-1)(v+1)\sqrt{D}}{2u({v}-1)({v}+1)}&-\frac{2}{{v}+1}\end{matrix}\right),
ρ(g4)\displaystyle\rho^{\prime}(g_{4}) =(2vv+1((u2+1)(v+1)28uv+(u1)(v+1)D)2u(v1)(v+1)(u2+1)(v+1)28uv(u1)(v+1)D2uv(v1)(v+1)2v+1).\displaystyle=\begin{pmatrix}-\frac{2v}{{v}+1}&\frac{\left((u^{2}+1)(v+1)^{2}-8uv+(u-1)(v+1)\sqrt{D}\right)}{2u({v}-1)({v}+1)}\\ -\frac{(u^{2}+1)(v+1)^{2}-8uv-(u-1)(v+1)\sqrt{D}}{2uv({v}-1)({v}+1)}&-\frac{2}{{v}+1}\end{pmatrix}.

The fixed points p1p^{\prime}_{1}, p2p^{\prime}_{2}, p3p^{\prime}_{3}, p4p^{\prime}_{4} of ρ(g1)\rho^{\prime}(g_{1}), ρ(g2)\rho^{\prime}(g_{2}), ρ(g3)\rho^{\prime}(g_{3}), ρ(g4)\rho^{\prime}(g_{4}) on 3\partial\mathbb{H}^{3} are

p1\displaystyle p^{\prime}_{1} =1,p2=v,p3=v(u2+1)(v+1)28uv+(u1)(v+1)D2u(v1)2,\displaystyle=1,\qquad p^{\prime}_{2}=-{v},\qquad p^{\prime}_{3}=-v\frac{(u^{2}+1)(v+1)^{2}-8uv+(u-1)(v+1)\sqrt{D}}{2u({v}-1)^{2}},
p4\displaystyle p^{\prime}_{4} =(u2+1)(v+1)28uv+(u1)(v+1)D2u(v1)2.\displaystyle=\frac{(u^{2}+1)(v+1)^{2}-8uv+(u-1)(v+1)\sqrt{D}}{2u({v}-1)^{2}}.

The fixed points p120{p_{12}^{0}}^{\prime} and p121{p_{12}^{1}}^{\prime} of ρ(g12)\rho^{\prime}(g_{12}) are p120=0{p_{12}^{0}}^{\prime}=0 and p121={p_{12}^{1}}^{\prime}=\infty, and the fixed points p230{p_{23}^{0}}^{\prime} and p231{p_{23}^{1}}^{\prime} of ρ(g23)\rho^{\prime}(g_{23}) are

p230\displaystyle{p_{23}^{0}}^{\prime} =(u+1)(v+1)28v+(v+1)D4(v1),\displaystyle=-\frac{(u+1)(v+1)^{2}-8v+(v+1)\sqrt{D}}{4(v-1)},
p231\displaystyle{p_{23}^{1}}^{\prime} =(u+1)(v+1)28uv(v+1)D4u(v1).\displaystyle=-\frac{(u+1)(v+1)^{2}-8uv-(v+1)\sqrt{D}}{4u(v-1)}.

The eigenvalues uu and vv are determined by the relations (16) and (17). They satisfy

(u)p=p2,(v)r=q4.(-u)^{p}=p_{2},\qquad(-v)^{-r}=q_{4}. (18)

Moreover, the geometric representation is given by a solution among the solutions of (18) satisfying

plog(u)+logp21=±2π1,rlog(v)+logq41=±2π1.p\log(-u)+\log p_{2}^{-1}=\pm 2\pi\sqrt{-1},\qquad-r\log(-v)+\log q_{4}^{-1}=\pm 2\pi\sqrt{-1}. (19)

3.2. Complexified tetrahedron

Here we explain the complexified tetrahedron TT determined by the fixed points p1p_{1}, \cdots, p121p_{12}^{1}, which is congruent to the complexified tetrahedron TT^{\prime} determined by p1p^{\prime}_{1}, \cdots, p121{p_{12}^{1}}^{\prime}.

For D6,2D_{6,2}, the solution of equations (18) and (19) where the sums are both +2πi+2\pi i is given by

u=0.6193070.884567i,v=1.72565+2.06055i,u=-0.619307-0.884567i,\qquad v=1.72565+2.06055i,

The fixed points are given as follows.

p1\displaystyle p_{1} =1,p2= 1.37310.7921i,p3= 1.5511+0.7240i,p4= 0.6193+0.8845i,\displaystyle=1,\ \ p_{2}=\ \ 1.3731-0.7921i,\ \ p_{3}=\ \ 1.5511+0.7240i,\ \ p_{4}=\ \ 0.6193+0.8845i,
p1\displaystyle p^{\prime}_{1} =1,p2=1.72562.0605i,p3=0.2388+0.2852i,p4=0.02420.1362i.\displaystyle=1,\ \ p^{\prime}_{2}=-1.7256-2.0605i,\ \ p^{\prime}_{3}=-0.2388+0.2852i,\ \ p^{\prime}_{4}=-0.0242-0.1362i.

Then, TT and TT^{\prime} in 3\mathbb{H}^{3} corresponding to D6,2D_{6,2} are given as in Figure 17.

Refer to captionQ1Refer to captionTT\begin{matrix}\begin{matrix}\includegraphics[scale={0.8}]{tet621}\end{matrix}&\underset{Q^{-1}}{\longrightarrow}&\begin{matrix}\includegraphics[scale={0.8}]{tet6221}\end{matrix}\\ T&&T^{\prime}\end{matrix}
Figure 17. The complexified tetrahedrons TT and TT^{\prime} corresponding to D6,2D_{6,2}.

The elements ρ(g23)\rho(g_{23}), ρ(g12)\rho(g_{12}) have axes l23l_{23}, l12l_{12}, so we assign complex parameters to these axes uu, vv, which is the eigenvalues of g23g_{23}, g12g_{12}. Let r1r_{1}, r2r_{2}, r3r_{3}, r4r_{4} be the foots of perpendicular on l23l_{23} from p1p_{1}, p2p_{2}, p3p_{3}, p4p_{4}. Similarly, Let q1q_{1}, q2q_{2}, q3q_{3}, q4q_{4} be the foots of perpendicular on l12l_{12} from p1p_{1}, p2p_{2}, p3p_{3}, p4p_{4}. Let us define eight faces p1p2r2r1p_{1}p_{2}r_{2}r_{1}, p2p3r3r2p_{2}p_{3}r_{3}r_{2}, p3p4r4r3p_{3}p_{4}r_{4}r_{3}, p4p1r1r4p_{4}p_{1}r_{1}r_{4}, p1p2q2q1p_{1}p_{2}q_{2}q_{1}, p2p3q3q2p_{2}p_{3}q_{3}q_{2}, p3p4q4q3p_{3}p_{4}q_{4}q_{3}, p4p1q1q4p_{4}p_{1}q_{1}q_{4}. These faces are not flat and are not defined uniquely, but the edges of the faces are straight lines and we define these faces topologically. Let TT be the subset of 3\mathbb{H}^{3} surrounded by these eight faces, and this is the complexified tetrahedron corresponding to the representation ρ\rho. Let T1T_{1} be similar complexified tetrahedron constructed from (u)p1(-u)p_{1}, (u)p2(-u)p_{2}, (u)p3(-u)p_{3}, (u)p4(-u)p_{4}, (u)l12(-u)l_{12} and (u)l23=l23(-u)l_{23}=l_{23}. Then TT and T1T_{1} are adjacent at the face p3p4r4r3p_{3}p_{4}r_{4}r_{3} and TT1T\cup T_{1} is a fundamental domain of the action of π1(S3D6,2)\pi_{1}(S^{3}\setminus D_{6,2}) to 3\mathbb{H}^{3} given by ρ\rho.

The action of ρ(g23)\rho(g_{23}) on 3\partial\mathbb{H}^{3} corresponds to the multiplication of u2u^{2}, so we get the picture in Figure 18. Similarly, the action of ρ(g12)\rho^{\prime}(g_{12}) corresponds to the multiplication of v2v^{-2} and is also explained in the figure.

Refer to captionRefer to captionRefer to captionquadrilateral p1p2p3p4p1p2p3p4(u)p1p2p3p4p1p2p3p4(u)7p1p2p3p4Refer to captionRefer to captionRefer to captionquadrilateral p1p2p3p4p1p2p3p4(v)p1p2p3p4p1p2p3p4(v)3p1p2p3p4\begin{matrix}\begin{matrix}\includegraphics[scale={0.35}]{quad50.pdf}\end{matrix}&\begin{matrix}\includegraphics[scale={0.45}]{quad51}\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{quad52}\end{matrix}\\ \text{quadrilateral $p_{1}p_{2}p_{3}p_{4}$}&p_{1}p_{2}p_{3}p_{4}\cup(-u)p_{1}p_{2}p_{3}p_{4}&p_{1}p_{2}p_{3}p_{4}\cup\cdots\cup(-u)^{7}p_{1}p_{2}p_{3}p_{4}\\[5.0pt] \begin{matrix}\includegraphics[scale={0.35}]{quad60}\end{matrix}&\begin{matrix}\includegraphics[scale={0.4}]{quad61}\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{quad62}\end{matrix}\\ \text{quadrilateral $p^{\prime}_{1}p^{\prime}_{2}p^{\prime}_{3}p^{\prime}_{4}$}&p^{\prime}_{1}p^{\prime}_{2}p^{\prime}_{3}p^{\prime}_{4}\cup(-v)p^{\prime}_{1}p^{\prime}_{2}p^{\prime}_{3}p^{\prime}_{4}&p^{\prime}_{1}p^{\prime}_{2}p^{\prime}_{3}p^{\prime}_{4}\cup\cdots\cup(-v)^{3}p^{\prime}_{1}p^{\prime}_{2}p^{\prime}_{3}p^{\prime}_{4}\end{matrix}

Figure 18. The actions of ρ(g23)\rho(g_{23}) and ρ(g12)\rho^{\prime}(g_{12}) on 3\partial\mathbb{H}^{3}. The upper row explains the action of ρ(g23)\rho(g_{23}) and the lower row explains the action of ρ(g12)\rho^{\prime}(g_{12}). They act 3\partial\mathbb{H}^{3} by rotations and shrinking/enlargement around the origin.

3.3. Poisson sum formula

We reformulate the colored Jones polynomial JN1(Dp,r)J_{N-1}(D_{p,r}) into integral form by using the Poisson sum formula. The colored Jones polynomial JN1(Dp,r)J_{N-1}(D_{p,r}) is given by (54) in Appendix C as follows.

JN1(Dp,r)=N2q(pr)(N1)4416π2×k,l=0N12xyqp(xN12)2r(yN12)2{2x+1}{2y+1}sξN(x,y,s)|x=ky=l.J_{N-1}(D_{p,r})=-\frac{N^{2}q^{(p-r)\frac{(N-1)^{4}}{4}}}{16\pi^{2}}\,\times\\ \sum_{k,l=0}^{N-1}\frac{\partial^{2}}{\partial x\partial y}q^{p(x-\frac{N-1}{2})^{2}-r(y-\frac{N-1}{2})^{2}}\{2x+1\}\{2y+1\}\left.\sum_{s}\xi_{N}(x,y,s)\right|_{\text{$\scriptstyle\begin{matrix}x=k\\[0.0pt] y=l\end{matrix}$}}.

Since ζN(x,y,k,l,s)\zeta_{N}(x,y,k,l,s) is a real positive number, it takes the maximal at s0s_{0} given in (55). Hence

JN1(Dp,r)=N2q(pr)(N1)4416π2×k,l=0N12xyqp(xN12)2r(yN12)2{2x+1}{2y+1}FNξN(x,y,s0)|x=ky=l.J_{N-1}(D_{p,r})=-\frac{N^{2}q^{(p-r)\frac{(N-1)^{4}}{4}}}{16\pi^{2}}\,\times\\ \sum_{k,l=0}^{N-1}\frac{\partial^{2}}{\partial x\partial y}q^{p(x-\frac{N-1}{2})^{2}-r(y-\frac{N-1}{2})^{2}}\{2x+1\}\{2y+1\}\left.F_{N}\xi_{N}(x,y,s_{0})\right|_{\text{$\scriptstyle\begin{matrix}x=k\\[-5.0pt] y=l\end{matrix}$}}.

where FNF_{N} is a constant with polynomial growth and

s0=N2πilogw0,w0=(u+1)(v+1)(u+1)2(v+1)216uv4,s_{0}=\frac{N}{2\pi i}\log w_{0},\quad w_{0}=\frac{(u+1)(v+1)-\sqrt{(u+1)^{2}(v+1)^{2}-16uv}}{4},
u=q2x+1,v=q2y+1u=q^{2x+1},\qquad v=q^{2y+1}

as shown in Appendix C. Let Nα=x+12N\alpha=x+\frac{1}{2}, Nβ=y+12N\beta=y+\frac{1}{2}, Nγ0=s0+12N\gamma_{0}=s_{0}+\frac{1}{2} and

ΨD(α,β)=4π2(γ022(α+β)γ0+α2+αβ+β2)2Li2(e2πiγ0)+2Li2(e2πi(γ0α))+2Li2(e2πi(γ0β))+2Li2(e2πi(α+βγ0))2π23.\Psi_{D}(\alpha,\beta)=-4\pi^{2}\big{(}\gamma_{0}^{2}-2(\alpha+\beta)\gamma_{0}+\alpha^{2}+\alpha\beta+\beta^{2}\big{)}\\ -2\mathrm{Li}_{2}(e^{2\pi i\gamma_{0}})+2\mathrm{Li}_{2}(e^{2\pi i(\gamma_{0}-\alpha)})+2\mathrm{Li}_{2}(e^{2\pi i(\gamma_{0}-\beta)})+2\mathrm{Li}_{2}(-e^{2\pi i(\alpha+\beta-\gamma_{0})})-\frac{2\pi^{2}}{3}.

Then

JN1(Dp,r)=GNN2q(pr)(N1)4416π2×k,l=0N12xyqp(kN12)2r(lN12)2{2Nα}{2Nβ}exp(N2πi(2π2p(α12)2+2π2r(η12)2+ΨD(α,η,α,β)))|α=2k+12N=αη=2l+12N=β,J_{N-1}(D_{p,r})=G_{N}\frac{N^{2}q^{(p-r)\frac{(N-1)^{4}}{4}}}{16\pi^{2}}\,\times\sum_{k,l=0}^{N-1}\frac{\partial^{2}}{\partial x\partial y}q^{p(k-\frac{N-1}{2})^{2}-r(l-\frac{N-1}{2})^{2}}\{2N\alpha\}\{2N\beta\}\\ \left.\exp\Big{(}\tfrac{N}{2\pi i}\big{(}-2\pi^{2}p(\alpha-\tfrac{1}{2})^{2}+2\pi^{2}r(\eta-\tfrac{1}{2})^{2}+\Psi_{D}(\alpha,\eta,\alpha,\beta)\big{)}\Big{)}\right|_{\text{$\scriptstyle\begin{matrix}\alpha=\frac{2k+1}{2N}=\alpha\\[0.0pt] \eta=\frac{2l+1}{2N}=\beta\end{matrix}$}},

where GNG_{N} is a constant with polynomial growth.

Now we apply the Poisson sum formula for kk and ll. Let

ΦDp,r(α,β)\displaystyle\Phi_{D_{p,r}}(\alpha,\beta) =12πi(2π2p(α12)2+4π2r(β12)2+ΨD(α,β)),\displaystyle=\frac{1}{2\pi i}\left(-2\pi^{2}p(\alpha-\frac{1}{2})^{2}+4\pi^{2}r(\beta-\frac{1}{2})^{2}+\Psi_{D}(\alpha,\beta)\right),
ΦDp,rε1,ε2(α,β)\displaystyle\Phi_{D_{p,r}}^{\varepsilon_{1},\varepsilon_{2}}(\alpha,\beta) =\displaystyle=
12πi\displaystyle\frac{1}{2\pi i} (2π2p((α12)2+ε1αN)+4π2(r(β12)2ε2βN)+ΨD(α,β)),\displaystyle\left(-2\pi^{2}p((\alpha-\frac{1}{2})^{2}+\varepsilon_{1}\frac{\alpha}{N})+4\pi^{2}(r(\beta-\frac{1}{2})^{2}-\varepsilon_{2}\frac{\beta}{N})+\Psi_{D}(\alpha,\beta)\right),

where ε1,ε2=±1\varepsilon_{1},\varepsilon_{2}=\pm 1. Then

JN1(Dp,r)=N2q(pr)(N1)4416π2ε1,ε2{,+}k,l=0N1αCNeN2πi(ΦDp,rε1,ε2(α,β)+O(1N))|α=2k+12Nβ=2l+12N.J_{N-1}(D_{p,r})=-\frac{N^{2}q^{(p-r)\frac{(N-1)^{4}}{4}}}{16\pi^{2}}\sum_{\varepsilon_{1},\varepsilon_{2}\in\{-,+\}}\\ \sum_{k,l=0}^{N-1}\frac{\partial}{\partial\alpha}\left.C_{N}e^{\frac{N}{2\pi i}\left(\Phi_{D_{p,r}}^{\varepsilon_{1},\varepsilon_{2}}(\alpha,\beta)+O(\frac{1}{N})\right)}\right|_{\text{$\scriptstyle\begin{matrix}\alpha=\frac{2k+1}{2N}\\[0.0pt] \beta=\frac{2l+1}{2N}\end{matrix}$}}.

As in the case of twisted Whitehead links, the Poisson sum formula yields

JN1(Dp,r)=q(pr)(N1)44×ε1,ε2{,+}m,n(1)m+nDCNe2πi(kα+lβ)αeN2πi(ΦDp,rε1,ε2(α,β)+O(1N))𝑑α𝑑β.J_{N-1}(D_{p,r})=q^{(p-r)\frac{(N-1)^{4}}{4}}\,\times\\ \sum_{\varepsilon_{1},\varepsilon_{2}\in\{-,+\}}\sum_{m,n\in\mathbb{Z}}(-1)^{m+n}\iint_{D}C^{\prime}_{N}e^{-2\pi i(k\alpha+l\beta)}\frac{\partial}{\partial\alpha}e^{\frac{N}{2\pi i}\left(\Phi_{D_{p,r}}^{\varepsilon_{1},\varepsilon_{2}}(\alpha,\beta)+O(\frac{1}{N})\right)}d\alpha d\beta.

Hence, by reformulate as before, we get

JN1(Dp,r)NDCN′′eN2πi(±4π2α±4π2β+ΦDp,r(α,β))𝑑α𝑑β.J_{N-1}(D_{p,r})\underset{N\to\infty}{\sim}\iint_{D}C_{N}^{\prime\prime}e^{\frac{N}{2\pi i}\big{(}\pm 4\pi^{2}\alpha\pm 4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta)\big{)}}d\alpha d\beta.

Every choice of the signature gives the same asymptotics.

3.4. Saddle point method

Here we investigate the integral

DeN2πi(4π2α4π2β+ΦDp,r(α,β))𝑑α𝑑β\iint_{D}e^{\frac{N}{2\pi i}\big{(}-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta)\big{)}}d\alpha d\beta

where D=[0,1]2D=[0,1]^{2}.

Proposition 3.1.

Let pp, rr be integers atisfying p,r2p,r\geq 2 and p+r8p+r\geq 8, or p,q3p,-q\geq 3 and pq9p-q\geq 9. The asymptotics of the following integral is given by its value at the saddle point as follows.

DeN2πi(4π2α4π2β+ΦDp,r(α,β))𝑑α𝑑βNeN2πi(4π2α04π2β0+ΦDp,r(α0,β0)),\iint_{D}e^{\frac{N}{2\pi i}\big{(}-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta)\big{)}}d\alpha d\beta\underset{N\to\infty}{\longrightarrow}e^{\frac{N}{2\pi i}\big{(}-4\pi^{2}\alpha_{0}-4\pi^{2}\beta_{0}+\Phi_{D_{p,r}}(\alpha_{0},\beta_{0})\big{)}},

where (α0(\alpha_{0}, β0)\beta_{0}) is the solution of

α(4π2α4π2β+ΦDp,r(α,β))\displaystyle\frac{\partial}{\partial\alpha}\Big{(}-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta)\Big{)} =0,\displaystyle=0, (20)
β(4π2α4π2β+ΦDp,r(α,β))\displaystyle\frac{\partial}{\partial\beta}\Big{(}-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta)\Big{)} =0.\displaystyle=0.

This system of equations is called the saddle point equation.

Proof.

We can push the integral region inside the contour of Im(4π2α04π2β0+ΦDp,r(α0,β0))=vDp,r\mathrm{Im}\big{(}-4\pi^{2}\alpha_{0}-4\pi^{2}\beta_{0}+\Phi_{D_{p,r}}(\alpha_{0},\beta_{0})\big{)}=v_{D_{p,r}} to the saddle point as in Figure 19. The contours os the boundary of the gray regions show the level indicating the hyperbolic volume of S3Dp,rS^{3}\setminus D_{p,r}. Therefore, we can apply the saddle point method. In the figures, we see the contours of the function at planes parallel to the real plane including the original integral region. In the function 4π2α4π2β+ΦDp,r(α,β)-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta), we can deform pp and rr continuously. Therefore, we can also deform the integral region continuously from small pp, |r||r| to large pp, |r||r|, where the saddle point converges to α=β=1/2\alpha=\beta=1/2 as in Figure 22. In this deformation, the saddle point is getting closer to (1/2,1/2)(1/2,1/2) and the value of 4π2α4π2β+ΦDp,r(α,β)-4\pi^{2}\alpha-4\pi^{2}\beta+\Phi_{D_{p,r}}(\alpha,\beta) at the saddle point increases. ∎

Refer to captionα=xi0β=yi0Refer to captionα=x0.08iβ=y0.006iRefer to captionα=x0.15iβ=y0.01iRefer to captionα=x0.012iβ=y0.157i\begin{matrix}\includegraphics[scale={0.7}]{contour0}\\ \alpha=x-i0\\ \beta=y-i0\end{matrix}\qquad\begin{matrix}\includegraphics[scale={0.7}]{contour621}\\ \alpha=x-0.08i\\ \beta=y-0.006i\end{matrix}\qquad\begin{matrix}\includegraphics[scale={0.7}]{contour622}\\ \alpha=x-0.15i\\ \beta=y-0.01i\end{matrix}\qquad\begin{matrix}\includegraphics[scale={0.7}]{contour623}\\ \alpha=x-0.012i\\ \beta=y-0.157i\end{matrix}

D6,22 2Refer to captionD_{6,2}\qquad\mathbb{C}^{2}\ \ \raisebox{0.0pt}{\ \ $\begin{matrix}\uparrow\\ \mathbb{R}^{2}&\\ \ \ \ \searrow\end{matrix}$}\begin{matrix}\includegraphics[scale={0.8}]{contours}\end{matrix}
       (i)2\longleftarrow(i\,\mathbb{R})^{2}

Figure 19. Push the integral region for D6,2D_{6,2} to the imaginary direction.
D5,3Refer to captionα=x0iβ=y0iRefer to captionα=x0.0125iβ=y0.04iRefer to captionα=x0.02iβ=y0.08iRefer to captionα=x0.025iβ=y0.088iD4,4Refer to captionα=x0iβ=y0iRefer to captionα=x0.02iβ=y0.02iRefer to captionα=x0.04iβ=y0.04iRefer to captionα=x0.0477iβ=y0.0477iD6,3Refer to captionα=x0iβ=y0iRefer to captionα=x0.01iβ=y0.05iRefer to captionα=x0.02iβ=y0.09iRefer to captionα=x0.0206iβ=y0.0935iD5,4Refer to captionα=x0iβ=y0iRefer to captionα=x0.02iβ=y0.03iRefer to captionα=x0.03iβ=y0.05iRefer to captionα=x0.033iβ=y0.055i\begin{matrix}D_{5,3}&\begin{matrix}\includegraphics[scale={0.6}]{contour0}\\ \alpha=x-0i\\ \beta=y-0i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour531}\\ \alpha=x-0.0125i\\ \beta=y-0.04i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour532}\\ \alpha=x-0.02i\\ \beta=y-0.08i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour533}\\ \alpha=x-0.025i\\ \beta=y-0.088i\end{matrix}\\ {}\\ D_{4,4}&\begin{matrix}\includegraphics[scale={0.6}]{contour0}\\ \alpha=x-0i\\ \beta=y-0i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour441}\\ \alpha=x-0.02i\\ \beta=y-0.02i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour442}\\ \alpha=x-0.04i\\ \beta=y-0.04i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour444}\\ \alpha=x-0.0477i\\ \beta=y-0.0477i\end{matrix}\\ {}\\ D_{6,-3}&\begin{matrix}\includegraphics[scale={0.6}]{contour0}\\ \alpha=x-0i\\ \beta=y-0i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour6m31}\\ \alpha=x-0.01i\\ \beta=y-0.05i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour6m32}\\ \alpha=x-0.02i\\ \beta=y-0.09i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour6m33}\\ \alpha=x-0.0206i\\ \beta=y-0.0935i\end{matrix}\\ {}\\ D_{5,-4}&\begin{matrix}\includegraphics[scale={0.6}]{contour0}\\ \alpha=x-0i\\ \beta=y-0i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour5m41}\\ \alpha=x-0.02i\\ \beta=y-0.03i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour5m42}\\ \alpha=x-0.03i\\ \beta=y-0.05i\end{matrix}&\begin{matrix}\includegraphics[scale={0.6}]{contour5m43}\\ \alpha=x-0.033i\\ \beta=y-0.055i\end{matrix}\end{matrix}
Figure 20. Push the integral region for Dp,rD_{p,r} to the imaginary direction.
Remark 2.

The above method also work for Dp,rD_{p,r} with small pp, |r||r|. For example, the integral region for the figure-eight knot D2,2D_{2,2} can be deformed as in Figure 21. In this case, the cutting planes are no more parallel to the real plane.

Refer to captionα=x+0iy=0y+0iRefer to captionα=x(0.2+0.1(α0.861))iβ=y(0.20.1(β5.421))iRefer to captionα=x(0.4+0.3(α0.861))iβ=y(0.40.3(β5.421))iRefer to captionα=x(0.5435+0.3(α0.861))iβ=y(0.54350.3(β5.421))i\begin{matrix}\includegraphics[scale={0.35}]{contour22}\\ \alpha=x+0i\\ y=0y+0i\end{matrix}\begin{matrix}\includegraphics[scale={0.35}]{contour220}\\ \alpha=x-(0.2+0.1(\alpha-0.861))i\\ \beta=y-(0.2-0.1(\beta-5.421))i\end{matrix}\quad\begin{matrix}\includegraphics[scale={0.35}]{contour221}\\ \alpha=x-(0.4+0.3(\alpha-0.861))i\\ \beta=y-(0.4-0.3(\beta-5.421))i\end{matrix}\quad\begin{matrix}\includegraphics[scale={0.35}]{contour222}\\ \alpha=x-(0.5435+0.3(\alpha-0.861))i\\ \beta=y-(0.5435-0.3(\beta-5.421))i\end{matrix}

D2,22 2Refer to caption\qquad D_{2,2}\qquad\mathbb{C}^{2}\ \ \raisebox{0.0pt}{\ \ $\begin{matrix}\uparrow\\ \mathbb{R}^{2}&\\ \ \ \ \searrow\end{matrix}$}\!\!\!\!\!\!\!\begin{matrix}\includegraphics[scale={0.8}]{contours22}\end{matrix}
    (i)2\longleftarrow(i\,\mathbb{R})^{2}

Figure 21. Push the integral region for D2,2D_{2,2} to the imaginary direction.
iRefer to captioni\,\mathbb{R}\uparrow\ \begin{matrix}\includegraphics[scale={1.5}]{saddlepoints}\end{matrix}\ \ \raisebox{56.9055pt}{$\mathbb{R}$}
Figure 22. Saddle points α\alpha for Dp,rD_{p,r} and WpW_{p} with positive pp. Blue points are for Dp,rD_{p,r} with positive rr, range points are for negative rr and black points are for WpW_{p} up to p=20p=20.

3.5. Volume of the complement

By comparing with the Neumann-Zagier function as in the case of the twisted Whitehead link, we get the following.

1i(ΦDp,r(α0,β0)2πi(2πi(α012)+2πi(β012)))=Vol(S3Dp,r)+iCS(S3Dp,r).\frac{1}{i}\left(\Phi_{D_{p,r}}(\alpha_{0},\beta_{0})-2\pi i\Big{(}2\pi i(\alpha_{0}-\frac{1}{2})+2\pi i(\beta_{0}-\frac{1}{2})\Big{)}\right)=\mathrm{Vol}(S^{3}\setminus D_{p,r})+i\,\mathrm{CS}(S^{3}\setminus D_{p,r}).

Therefore, the volume conjecture holds for Dp,rD_{p,r}. The volume conjecture for the double twist knots Dp,rD_{p,r} with the integers pp, rr excluded in the above proposition is already proved in [15], [17], [16].

Appendices

Appendix A. ADO invariants for colored knotted graphs

Here we recall two quantum invariants defined for colored knotted graphs, which is also known as the quantum spin network. The first one is the Kirillov-Reshetikhin invariant introduced in [7], which is a generalization of the colored Jones polynomial, and the second one is the ADO invariant, which is also related to quantum sl2sl_{2} as the colored Jones polynomial, but this invariant is defined for the case that the quantum parameter qq is a root of unity. The ADO invariant was introduced in [1] for knots and links, and generalized to colored knotted graphs in [4]. The colored Jones invariant JN1(K)J_{N-1}(K) is equal to (1)N1ADON(K)(-1)^{N-1}\operatorname{ADO}_{N}(K), and is equal to ADON(K)\operatorname{ADO}_{N}(K) for odd NN, where all the components of KK are colored by (N1)/2(N-1)/2. Here we compute ADON(K)\operatorname{ADO}_{N}(K) instead of JN1(K)J_{N-1}(K) to get the desired form of the invariant which fits to the investigation of the asymptitics of the invariant.

A.1. ADO invariant for colored knots and links

We use the following notations.

qa\displaystyle q^{a} =exp(πiaN)(a),{a}=qaqa,{a,k}=j=0k1{aj},\displaystyle=\exp\big{(}\frac{\pi ia}{N}\big{)}\ \ (a\in\mathbb{C}),\qquad\{a\}=q^{a}-q^{-a},\ \ \{a,k\}=\prod_{j=0}^{k-1}\{a-j\},
[ab]\displaystyle\left[\,\begin{matrix}a\\ b\end{matrix}\,\right] =j=0ab1{aj}{abj}(ab{0,1,,N1}),\displaystyle=\prod_{j=0}^{a-b-1}\frac{\{a-j\}}{\{a-b-j\}}\ \ (a-b\in\{0,1,\ldots,N-1\}),
ta\displaystyle t_{a} =a(a+1N)=(aN12)2(N1)24.\displaystyle=a(a+1-N)=(a-\frac{N-1}{2})^{2}-\frac{(N-1)^{2}}{4}.

Let 𝒰q(sl2)\mathcal{U}_{q}(sl_{2}) is the quantum sl2sl_{2} at the 2N2N-th root of unity qq and let VaV_{a} be the highest weight irreducible module with the highest weight qaq^{a}. For a(/2)(N1)/2a\in(\mathbb{C}\setminus\mathbb{Z}/2)\cup(N\mathbb{Z}-1)/2, dimVa=N\dim V_{a}=N.

Let K=K1K2KK=K_{1}\cup K_{2}\cup\cdots\cup K_{\ell} be a \ell component oriented link diagram whose components are labeled by c1c_{1}, \cdots, cc_{\ell} where ci(/2)(N1)/2c_{i}\in(\mathbb{C}\setminus\mathbb{Z}/2)\cup(N\mathbb{Z}-1)/2. The label cic_{i} is called the color of the ii-th component KiK_{i}. Let TKT_{K} be a (1,1)(1,1) tangle obtained by cutting the jj-th component of KK. Then, by assigning the quantum RR matrix to the crossings, evaluation map to the maximal points and coevaluation map to the minimal points given in [4], we get a scalar matrix of size NN. This scalar depends on the color cjc_{j} for the jj-th component, and by multiplying [2cj+N2cj+1]1\left[\begin{matrix}2c_{j}+N\\ 2c_{j}+1\end{matrix}\right]^{-1}, we get the ADO invariant ADON(Kc1,,c)\operatorname{ADO}_{N}(K^{c_{1},\cdots,c_{\ell}}) corresponding to the blackboard framing of KK. Especially, the framings of a link diagram KK are all zero, them ADON(Kc1,,c)\operatorname{ADO}_{N}(K^{c_{1},\cdots,c_{\ell}}) is a link invariant of KK.

A.2. ADO invariant for colored knotted graphs

By introducing operators corresponding to trivalent vertices, the ADO invariant is generalized to colored knotted graphs as in [4]. The ADO invariant is defined for a root of unity q=e2πi/Nq=e^{2\pi i/N} and the colors assigned to edges must contained in (/2)N/2\left(\mathbb{C}\setminus\mathbb{Z}/2\right)\cup N\mathbb{Z}/2. In the following, we sometimes consider colors in /2\mathbb{Z}/2, and in such case, the corresponding invariant is considered to be a limit of the invariants with non-half-integer colors.

Definition A.1.

A coloring of a knotted graph is admissible if the three colors aa, bb, cc of three edges around a vertex must satisfy the following condition.

[Uncaptioned image]\displaystyle\begin{matrix}\includegraphics[scale={0.8}]{admissible0}\end{matrix} a+b+c=2N+2,2N+3,,N+1,\displaystyle\qquad a+b+c=-2N+2,-2N+3,\cdots,-N+1,
[Uncaptioned image]\displaystyle\begin{matrix}\includegraphics[scale={0.8}]{admissible1}\end{matrix} a+bc=N+1,N+2,,0,\displaystyle\qquad a+b-c=-N+1,-N+2,\cdots,0,
[Uncaptioned image]\displaystyle\begin{matrix}\includegraphics[scale={0.8}]{admissible21}\end{matrix} a+bc=0,1,,N1,\displaystyle\qquad a+b-c=0,1,\cdots,N-1,
[Uncaptioned image]\displaystyle\begin{matrix}\includegraphics[scale={0.8}]{admissible3}\end{matrix} a+b+c=N1,N,,2N2.\displaystyle\qquad a+b+c=N-1,N,\cdots,2N-2.

In the rest, we only consider admissible colorings.

The ADO invariant for knotted graphs satisfies the following relations.

ADON(a)=[2a+N2a+1]1,\displaystyle\mathrm{ADO}_{N}(\bigcirc^{a})=\left[\begin{matrix}2a+N\\ 2a+1\end{matrix}\right]^{-1}, (21)
ADON([Uncaptioned image])=δad[2a+N2a+1]ADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble}\end{matrix}\right)=\delta_{ad}\left[\begin{matrix}2a+N\\ 2a+1\end{matrix}\right]\ \mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right), (22)
ADON([Uncaptioned image])=a+bc=0,1,,N1[2c+N2c+1]1ADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{parallel2}\end{matrix}\right)=\sum_{a+b-c=0,1,\cdots,N-1}\left[\begin{matrix}2c+N\\ 2c+1\end{matrix}\right]^{-1}\,\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{parallel3}\end{matrix}\right), (23)
ADON([Uncaptioned image])=q2taADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{fp}\end{matrix}\right)=q^{2t_{a}}\,\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right), (24)
ADON([Uncaptioned image])=q2taADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{fm}\end{matrix}\right)=q^{-2t_{a}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right), (25)
ADON([Uncaptioned image])=qtatbtcADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{twistp}\end{matrix}\right)=q^{t_{a}-t_{b}-t_{c}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{twist0}\end{matrix}\right), (26)
ADON([Uncaptioned image])=q(tatbtc)ADON([Uncaptioned image]),\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{twistm}\end{matrix}\right)=q^{-(t_{a}-t_{b}-t_{c})}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{twist0}\end{matrix}\right), (27)
ADON([Uncaptioned image])=ADON([Uncaptioned image])(dual representation).\displaystyle\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right)=\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble1}\end{matrix}\right)\quad\text{(dual representation)}. (28)

By using the above relations, we get the following relation.

Lemma A.1.

We can remove a circle around an edge as follows.

ADON([Uncaptioned image])=iN1q(2a+1N)(2b+1N){2a+N,N1}ADON([Uncaptioned image]).\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{hopfab}\end{matrix}\right)=i^{N-1}q^{(2a+1-N)(2b+1-N)}\{2a+N,N-1\}\,\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right). (29)
Proof.

The lefthand side of the formula is computed as follows.

ADON\displaystyle\mathrm{ADO}_{N} ([Uncaptioned image])=(23)a+bc=0,1,,N1[2c+N2c+1]1ADON([Uncaptioned image])\displaystyle\left(\begin{matrix}\includegraphics[scale={0.8}]{hopfab}\end{matrix}\right)\underset{\eqref{eq:ADOparallel}}{=}\sum_{a+b-c=0,1,\cdots,N-1}\left[\begin{matrix}2c+N\\ 2c+1\end{matrix}\right]^{-1}\,\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{hopfab1}\end{matrix}\right)
=(26)\displaystyle\underset{\eqref{eq:ADOtwist3p}}{=} k=0N1q2(ta+bktatb)[2(a+bk)+N2(a+bk)+1]1ADON([Uncaptioned image])\displaystyle\sum_{k=0}^{N-1}q^{2(t_{a+b-k}-t_{a}-t_{b})}\left[\begin{matrix}2(a+b-k)+N\\ 2(a+b-k)+1\end{matrix}\right]^{-1}\,\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{hopfab2}\end{matrix}\right)\hfill
=\displaystyle= {N1}!qtatb{2(a+b)+N}{2(a+b)+1}×\displaystyle\frac{\{N-1\}!\,q^{-t_{a}-t_{b}}}{\{2(a+b)+N\}\cdots\{2(a+b)+1\}}\times\hfill
k=0N1{2(a+bk)+1}qta+bkADON([Uncaptioned image])\displaystyle\qquad\qquad\qquad\qquad\sum_{k=0}^{N-1}\{2(a+b-k)+1\}\,q^{t_{a+b-k}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{hopfab2}\end{matrix}\right)
=(22)\displaystyle\underset{\eqref{eq:ADOtheta}}{=} {N1}!qtatb{2(a+b)+N}{2(a+b)+1}[2a+N2a+1]×\displaystyle\frac{\{N-1\}!\,q^{-t_{a}-t_{b}}}{\{2(a+b)+N\}\cdots\{2(a+b)+1\}}\left[\begin{matrix}2a+N\\ 2a+1\end{matrix}\right]\times\hfill
k=0N1{2(a+bk)+1}qta+bkADON([Uncaptioned image])\displaystyle\qquad\qquad\qquad\qquad\sum_{k=0}^{N-1}\{2(a+b-k)+1\}\,q^{t_{a+b-k}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right)
=\displaystyle{=} qtatb{2a+N,N1}{2(a+b)+N,N}k=0N1{2(a+bk)+1}qta+bkADON([Uncaptioned image]).\displaystyle\frac{q^{-t_{a}-t_{b}}\,\{2a+N,N-1\}}{\{2(a+b)+N,N\}}\sum_{k=0}^{N-1}\{2(a+b-k)+1\}\,q^{t_{a+b-k}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right).

Now we compute

k=0N1{2(a+bk)+1}qta+bk=k=0N1(q2(a+bk)+1q2(a+bk)1)q2((a+bkN12)2(N1)24)\displaystyle\sum_{k=0}^{N-1}\{2(a+b-k)+1\}\,q^{t_{a+b-k}}=\sum_{k=0}^{N-1}(q^{2(a+b-k)+1}-q^{-2(a+b-k)-1})\,q^{2\left((a+b-k-\frac{N-1}{2})^{2}-\frac{(N-1)^{2}}{4}\right)}
=q(N1)22k=0N1(q2(a+bk)+1Nq2(a+bk)1+N)q12(2(a+bk)+1N)2\displaystyle=-q^{-\frac{(N-1)^{2}}{2}}\sum_{k=0}^{N-1}(q^{2(a+b-k)+1-N}-q^{-2(a+b-k)-1+N})\,q^{\frac{1}{2}(2(a+b-k)+1-N)^{2}}\hfill
=q(N1)22k=0N1(q12(2(a+bk)+2N)212q12(2(a+bk)N)212)\displaystyle=-q^{-\frac{(N-1)^{2}}{2}}\sum_{k=0}^{N-1}\left(q^{\frac{1}{2}(2(a+b-k)+2-N)^{2}-\frac{1}{2}}-q^{\frac{1}{2}(2(a+b-k)-N)^{2}-\frac{1}{2}}\right)\hfill
=q(N1)2+12(q2(a+b+1N+N2)2q2(a+b+1NN2)2)\displaystyle=-q^{-\frac{(N-1)^{2}+1}{2}}\left(q^{2(a+b+1-N+\frac{N}{2})^{2}}-q^{2(a+b+1-N-\frac{N}{2})^{2}}\right)\hfill
=q(N1)2+12(q2((a+b+1N)2+N(a+b+1N)+N24)q2((a+b+1N)2N(a+b+1N)+N24))\displaystyle=-q^{-\frac{(N-1)^{2}+1}{2}}\left(q^{2\left((a+b+1-N)^{2}+N(a+b+1-N)+\frac{N^{2}}{4}\right)}-q^{2\left((a+b+1-N)^{2}-N(a+b+1-N)+\frac{N^{2}}{4}\right)}\right)
=q2a2+2b2+4ab+4a+4b+14Na4Nb{2N(a+b)}.\displaystyle=q^{2a^{2}+2b^{2}+4ab+4a+4b+1-4Na-4Nb}\{2N(a+b)\}.

Since

2a2+2b2+4ab+4a+4b+14Na4Nb2ta2tb=(2a+1N)(2b+1N)N22a^{2}+2b^{2}+4ab+4a+4b+1-4Na-4Nb-2t_{a}-2t_{b}=\\ (2a+1-N)(2b+1-N)-N^{2}

and

{2(a+b)+N,N}=iN1{2N(a+b)},\{2(a+b)+N,N\}=-i^{N-1}\{2N(a+b)\},

we have

qtatb{2a+N,N1}{2(a+b)+N,N}k=0N1{2(a+bk)+1}qta+bkADON([Uncaptioned image])=q(2a+1N)(2b+1N)N2{2a+N,N1}{2N(a+b)}iN1{2N(a+b)}=(1)N1iN1q(2a+1N)(2b+1N){2a+N,N1}=iN1q(2a+1N)(2b+1N){2a+N,N1},\frac{q^{-t_{a}-t_{b}}\,\{2a+N,N-1\}}{\{2(a+b)+N,N\}}\sum_{k=0}^{N-1}\{2(a+b-k)+1\}\,q^{t_{a+b-k}}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{bubble0}\end{matrix}\right)\\ =q^{(2a+1-N)(2b+1-N)-N^{2}}\{2a+N,N-1\}\frac{\{2N(a+b)\}}{-i^{N-1}\{2N(a+b)\}}\\ =\frac{(-1)^{N-1}}{i^{N-1}}q^{(2a+1-N)(2b+1-N)}\{2a+N,N-1\}\\ =i^{N-1}q^{(2a+1-N)(2b+1-N)}\{2a+N,N-1\},

and we get (29). ∎

A.3. Quantum 6j6j symbol

The quantum 6j6j symbol of the ADO invariant is the ADO invariant for the tetrahedral graph labeled as in Figure 23.

Refer to caption
Figure 23. The oriented tetrahedral graph labeled by aa, bb, cc, dd, ee, ff.

The quantum 6j6j symbol {abedcf}q\left\{\begin{matrix}a&b&e\\ d&c&f\end{matrix}\right\}_{q} is given in [4] as follows. Let

Axyz=x+y+z,Bxyz=x+yz.A_{xyz}=x+y+z,\qquad B_{xyz}=x+y-z.

Then

{abedcf}q=(1)N1{Bdec}!{Babe}!{Bbdf}!{Bafc}![2eAabe+1N][2eBced]1×s=max(0,Bbdf+Bdec)min(Bdec,Bafc)[Aacf+1N2c+s+1N][Bacf+sBacf][Bbfd+BdecsBbfd][Bcde+sBdfb].\left\{\begin{matrix}a&b&e\\ d&c&f\end{matrix}\right\}_{q}=(-1)^{N-1}\frac{\{B_{dec}\}!\{B_{abe}\}!}{\{B_{bdf}\}!\{B_{afc}\}!}\left[\,\begin{matrix}2e\\ A_{abe}+1-N\end{matrix}\right]\left[\,\begin{matrix}2e\\ B_{ced}\end{matrix}\,\right]^{-1}\,\times\\ \sum_{s=\max(0,-B_{bdf}+B_{dec})}^{\min(B_{dec},B_{afc})}\left[\,\begin{matrix}A_{acf}+1-N\\ 2c+s+1-N\end{matrix}\right]\left[\,\begin{matrix}B_{acf}+s\\ B_{acf}\end{matrix}\,\right]\left[\,\begin{matrix}B_{bfd}+B_{dec}-s\\ B_{bfd}\end{matrix}\,\right]\left[\,\begin{matrix}B_{cde}+s\\ B_{dfb}\end{matrix}\,\right]. (30)
Lemma A.2.

By using the quantum 6j6j symbol, we can remove a triangle in the colored knotted graph as follows.

ADON([Uncaptioned image])={abedcf}qADON([Uncaptioned image]).\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{triangle0}\end{matrix}\right)=\left\{\begin{matrix}a&b&e\\ d&c&f\end{matrix}\right\}_{q}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{vertex0}\end{matrix}\right). (31)
ADON([Uncaptioned image])={abedcf}qADON([Uncaptioned image]).\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{triangle}\end{matrix}\right)=\left\{\begin{matrix}a&b&e\\ d&c&f\end{matrix}\right\}_{q}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{vertex}\end{matrix}\right). (32)
Proof.

The above two relations comes from the following formulas.

ADON([Uncaptioned image])={abedcf}q,ADON([Uncaptioned image])=ADON([Uncaptioned image])=1.\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{alexandertet}\end{matrix}\right)=\left\{\begin{matrix}a&b&e\\ d&c&f\end{matrix}\right\}_{q},\quad\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{theta1}\end{matrix}\right)=\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{theta}\end{matrix}\right)=1.

The second formula comes from (21) and (22). ∎

Lemma A.3.

The ADO invariant of the colored tetrahedral graph given in Figure 23 with colors

a=N12,b=N12,c=N12+ε,d=N12+ε,e=l+ε,f=k+εa=\frac{N-1}{2},\ b=\frac{N-1}{2},\ c=\frac{N-1}{2}+\varepsilon,\ d=\frac{N-1}{2}+\varepsilon,\ e=l+\varepsilon,\ f=k+\varepsilon

is the following.

{N12N12lN12+εN12+εk+ε}q={N1+2ε,N1}{N1}!×s=max(k,l)min(k+l,N1){s}!2{sk}!{sl}!2{k+ls}!{sk2ε,sk}{k+ls+2ε,k+ls}.\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}+\varepsilon&\frac{N-1}{2}+\varepsilon&k+\varepsilon\end{matrix}\right\}_{q}=\frac{\{N-1+2\varepsilon,N-1\}}{\{N-1\}!}\,\times\\ \hfill\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!^{2}}{\{s-k\}!\{s-l\}!^{2}\{k+l-s\}!\{s-k-2\varepsilon,s-k\}\{k+l-s+2\varepsilon,k+l-s\}}. (33)

Especially, if ε=0\varepsilon=0, then we have

{N12N12lN12N12k}q=s=max(0,l+kN+1)min(k,l){s}!2{sk}!2{sl}!2{k+ls}!2.\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}=\sum_{s=\max(0,l+k-N+1)}^{\min(k,l)}\frac{\{s\}!^{2}}{\{s-k\}!^{2}\{s-l\}!^{2}\{k+l-s\}!^{2}}. (34)

Moreover, we have the following.

{N12+δN12+εl+ε+δN12δN12+εk+εδ}q={N12δ,N1}{N1}!s=max(k,l)min(k+l,N1){s}!{sk}!{sl}!{k+ls}!×{s+2ε,s}{sk+2δ,sk}{sl2δ,sl}{k+ls+2ε,k+ls},\left\{\begin{matrix}\frac{N-1}{2}+\delta&\frac{N-1}{2}+\varepsilon&l+\varepsilon+\delta\\ \frac{N-1}{2}-\delta&\frac{N-1}{2}+\varepsilon&k+\varepsilon-\delta\end{matrix}\right\}_{q}=\\ \hfill\frac{\{N-1-2\delta,N-1\}}{\{N-1\}!}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!}{\{s-k\}!\{s-l\}!\{k+l-s\}!}\,\times\hfill\\ \frac{\{s+2\varepsilon,s\}}{\{s-k+2\delta,s-k\}\{s-l-2\delta,s-l\}\{k+l-s+2\varepsilon,k+l-s\}}, (35)
{lN12N12εN12+εN12+ε}q\displaystyle\left\{\begin{matrix}l&\frac{N-1}{2}&\frac{N-1}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\varepsilon&\frac{N-1}{2}+\varepsilon\end{matrix}\right\}_{q} ={l+2ε,l}{l}!,\displaystyle=\frac{\{l+2\varepsilon,l\}}{\{l\}!}, (36)
{lN12ε2N12ε2εN12+ε2N12+ε2}q\displaystyle\left\{\begin{matrix}l&\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}-\frac{\varepsilon}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}\end{matrix}\right\}_{q} ={N1ε,N1}{N1}!,\displaystyle=\frac{\{N-1-\varepsilon,N-1\}}{\{N-1\}!}, (37)
{εN12N12εN1l+εN12N12+ε}q\displaystyle\left\{\begin{matrix}-\varepsilon&\frac{N-1}{2}&\frac{N-1}{2}-\varepsilon\\[4.0pt] N-1-l+\varepsilon&\frac{N-1}{2}&\frac{N-1}{2}+\varepsilon\end{matrix}\right\}_{q} ={l2ε,l}{l}!,\displaystyle=\frac{\{l-2\varepsilon,l\}}{\{l\}!},\qquad\quad (38)
{N12ε+δ2N12+εδ2δN12+ε+δ2N12+εδ2k+ε}q\displaystyle\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&-\delta\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&k+\varepsilon\end{matrix}\right\}_{q} ={k+εδ,k}{N1+ε+δ}{k+ε+δ,k}!{N1}!,\displaystyle=\frac{\{k+\varepsilon-\delta,k\}\{N-1+\varepsilon+\delta\}}{\{k+\varepsilon+\delta,k\}!\{N-1\}!},\qquad\quad (39)
{l+δN12ε+δ2N12εδ2εN12+ε+δ2N12+εδ2}q\displaystyle\left\{\begin{matrix}l+\delta&\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}-\frac{\varepsilon-\delta}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}\end{matrix}\right\}_{q} ={l+ε+δ,l}{lε+δ,l}.\displaystyle=\frac{\{l+\varepsilon+\delta,l\}}{\{l-\varepsilon+\delta,l\}}.\qquad\quad (40)
Proof.

First we prove (33). We have Bdec=lB_{dec}=l, Babe=N1lB_{abe}=N-1-l, Bbdf=N1kB_{bdf}=N-1-k, Bafc=kB_{afc}=k and

{N12N12lN12+εN12+εk+ε}q=(1)N1{l}!{N1l}!{N1k}!{k}![2ll][2ll]1×s=max(0,l+kN+1)min(k,l)[k+2εs+2ε][N1k+sN1k][k+lsk][N1l+s+2εk+2ε]=s=max(0,l+kN+1)min(k,l)[k+2εs+2ε][N1k+sN1k][k+lsk][N1l+s+2εk+2ε].\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}+\varepsilon&\frac{N-1}{2}+\varepsilon&k+\varepsilon\end{matrix}\right\}_{q}=\\ (-1)^{N-1}\frac{\{{l}\}!\{{N-1-l}\}!}{\{{N-1-k}\}!\{{k}\}!}\left[\,\begin{matrix}2l\\ l\end{matrix}\right]\left[\,\begin{matrix}2l\\ l\end{matrix}\,\right]^{-1}\,\times\\ \sum_{s=\max(0,l+k-N+1)}^{\min(k,l)}\left[\,\begin{matrix}k+2\varepsilon\\ s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-k+s\\ N-1-k\end{matrix}\,\right]\left[\,\begin{matrix}k+l-s\\ k\end{matrix}\,\right]\left[\,\begin{matrix}N-1-l+s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right]\\ =\sum_{s=\max(0,l+k-N+1)}^{\min(k,l)}\left[\,\begin{matrix}k+2\varepsilon\\ s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-k+s\\ N-1-k\end{matrix}\,\right]\left[\,\begin{matrix}k+l-s\\ k\end{matrix}\,\right]\left[\,\begin{matrix}N-1-l+s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right].

By replacing ss to k+lsk+l-s, we get

{N12N12lN12+εN12+εk+ε}q=s=max(k,l)min(k+l,N1)[k+2εk+ls+2ε][N1+lsN1k][sk][N1+ks+2εk+2ε]={k+2ε,k}{N1k}!{k}!{k+2ε,k}×s=max(k,l)min(k+l,N1){N1+ls}!{s}!{N1+ks+2ε,N1+ks}{sl}!{k+ls+2ε,k+ls}{k+ls}!{sk}!{N1s}!={N1+2ε,N1}{N1}!s=max(k,l)min(k+l,N1){s}!2{sk}!{sl}!2{k+ls}!×1{sk2ε,sk}{k+ls+2ε,k+ls}.\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}+\varepsilon&\frac{N-1}{2}+\varepsilon&k+\varepsilon\end{matrix}\right\}_{q}=\\ \sum_{s=\max(k,l)}^{\min(k+l,N-1)}\left[\,\begin{matrix}k+2\varepsilon\\ k+l-s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1+l-s\\ N-1-k\end{matrix}\,\right]\left[\,\begin{matrix}s\\ k\end{matrix}\,\right]\left[\,\begin{matrix}N-1+k-s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right]\\[6.0pt] =\frac{\{k+2\varepsilon,k\}}{\{N-1-k\}!\{k\}!\{k+2\varepsilon,k\}}\,\times\hfill\\ \sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{N-1+l-s\}!\{s\}!\{N-1+k-s+2\varepsilon,N-1+k-s\}}{\{s-l\}!\{k+l-s+2\varepsilon,k+l-s\}\{k+l-s\}!\{s-k\}!\{N-1-s\}!}\\[6.0pt] =\frac{\{N-1+2\varepsilon,N-1\}}{\{N-1\}!}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!^{2}}{\{s-k\}!\{s-l\}!^{2}\{k+l-s\}!}\,\times\hfill\\ \frac{1}{\{s-k-2\varepsilon,s-k\}\{k+l-s+2\varepsilon,k+l-s\}}.

Next, we prove (35). We have Bdec=lB_{dec}=l, Babe=N1lB_{abe}=N-1-l, Bbdf=N1kB_{bdf}=N-1-k, Bafc=kB_{afc}=k and

{N12+δN12+εl+ε+δN12δN12+εk+εδ}q=(1)N1{l}!{N1l}!{N1k}!{k}![2l+2ε+2δl+2ε+2δ][2l+2ε+2δl+2ε+2δ]1×s=max(0,l+kN+1)min(k,l)[k+2εs+2ε][N1k+s+2δN1k+2δ][k+ls+2εk+2ε][N1l+s2δk2δ]=s=max(0,l+kN+1)min(k,l)[k+2εs+2ε][N1k+s+2δN1k+2δ][k+ls+2εk+2ε][N1l+s2δk2δ].\left\{\begin{matrix}\frac{N-1}{2}+\delta&\frac{N-1}{2}+\varepsilon&l+\varepsilon+\delta\\ \frac{N-1}{2}-\delta&\frac{N-1}{2}+\varepsilon&k+\varepsilon-\delta\end{matrix}\right\}_{q}=\\ (-1)^{N-1}\frac{\{{l}\}!\{{N-1-l}\}!}{\{{N-1-k}\}!\{{k}\}!}\left[\,\begin{matrix}2l+2\varepsilon+2\delta\\ l+2\varepsilon+2\delta\end{matrix}\right]\left[\,\begin{matrix}2l+2\varepsilon+2\delta\\ l+2\varepsilon+2\delta\end{matrix}\,\right]^{-1}\,\times\\ \sum_{s=\max(0,l+k-N+1)}^{\min(k,l)}\left[\,\begin{matrix}k+2\varepsilon\\ s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-k+s+2\delta\\ N-1-k+2\delta\end{matrix}\,\right]\left[\,\begin{matrix}k+l-s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-l+s-2\delta\\ k-2\delta\end{matrix}\,\right]\\ =\sum_{s=\max(0,l+k-N+1)}^{\min(k,l)}\text{\small$\displaystyle\left[\,\begin{matrix}k+2\varepsilon\\ s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-k+s+2\delta\\ N-1-k+2\delta\end{matrix}\,\right]\left[\,\begin{matrix}k+l-s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1-l+s-2\delta\\ k-2\delta\end{matrix}\,\right]$}.

By replacing ss to k+lsk+l-s, we get

{N12+δN12+εl+ε+δN12δN12+εk+εδ}q=s=max(k,l)min(k+l,N1)[k+2εk+ls+2ε][N1+ls+2δN1k+2δ][s+2εk+2ε][N1+ks2δk2δ]={k+2ε,k}{N1k+2δ,N1k}{k+2ε,k}{k2δ,k}×s=max(k,l)min(k+l,N1){N1+ls+2δ,N1+ls}{s+2ε,s}{N1+ks2δ,N1+ks}{sl}!{k+ls+2ε,k+ls}{k+ls}!{sk}!{N1s}! ={N12δ,N1}{N1}!s=max(k,l)min(k+l,N1){s}!{N1}!{sk}!{sl}!{k+ls}!×{s+2ε,s}{sk+2δ,sk}{sl2δ,sl}{k+ls+2ε,k+ls}.\left\{\begin{matrix}\frac{N-1}{2}+\delta&\frac{N-1}{2}+\varepsilon&l+\varepsilon+\delta\\ \frac{N-1}{2}-\delta&\frac{N-1}{2}+\varepsilon&k+\varepsilon-\delta\end{matrix}\right\}_{q}=\\ \sum_{s=\max(k,l)}^{\min(k+l,N-1)}\left[\,\begin{matrix}k+2\varepsilon\\ k+l-s+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1+l-s+2\delta\\ N-1-k+2\delta\end{matrix}\,\right]\left[\,\begin{matrix}s+2\varepsilon\\ k+2\varepsilon\end{matrix}\,\right]\left[\,\begin{matrix}N-1+k-s-2\delta\\ k-2\delta\end{matrix}\,\right]\\[6.0pt] =\frac{\{k+2\varepsilon,k\}}{\{N-1-k+2\delta,N-1-k\}\{k+2\varepsilon,k\}\{k-2\delta,k\}}\,\times\hfill\\ \sum_{s=\max(k,l)}^{\min(k+l,N-1)}{\text{\footnotesize$\frac{\{N-1+l-s+2\delta,N-1+l-s\}\{s+2\varepsilon,s\}\{N-1+k-s-2\delta,N-1+k-s\}}{\{s-l\}!\{k+l-s+2\varepsilon,k+l-s\}\{k+l-s\}!\{s-k\}!\{N-1-s\}!}$ }}\\[6.0pt] =\frac{\{N-1-2\delta,N-1\}}{\{N-1\}!}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!}{\{N-1\}!\{s-k\}!\{s-l\}!\{k+l-s\}!}\,\times\hfill\\ \frac{\{s+2\varepsilon,s\}}{\{s-k+2\delta,s-k\}\{s-l-2\delta,s-l\}\{k+l-s+2\varepsilon,k+l-s\}}.

The relations (36), (37), (38), (39) and (40) are proved as follows.

{lN12N12εN12+εN12+ε}q={0}!{l}!{0}!{l}![N1l][N1N1]1[l+2ε2ε][N1N1][2ε2ε]={l+2ε,l}{l}!,\left\{\begin{matrix}l&\frac{N-1}{2}&\frac{N-1}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\varepsilon&\frac{N-1}{2}+\varepsilon\end{matrix}\right\}_{q}=\frac{\{0\}!\{l\}!}{\{0\}!\{l\}!}\left[\begin{matrix}N-1\\ l\end{matrix}\right]\left[\begin{matrix}N-1\\ N-1\end{matrix}\right]^{-1}\left[\begin{matrix}l+2\varepsilon\\ 2\varepsilon\end{matrix}\right]\left[\begin{matrix}N-1\\ N-1\end{matrix}\right]\left[\begin{matrix}2\varepsilon\\ 2\varepsilon\end{matrix}\right]\\ =\frac{\{l+2\varepsilon,l\}}{\{l\}!},
{lN12ε2N12ε2εN12+ε2N12+ε2}q={0}!{l}!{0}!{l}![N1εlε][N1εN1ε]1[l+εε][N1εN1ε][2ε2ε]={N1ε,N1}{N1}!,\left\{\begin{matrix}l&\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}-\frac{\varepsilon}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}\end{matrix}\right\}_{q}\\ =\frac{\{0\}!\{l\}!}{\{0\}!\{l\}!}\left[\begin{matrix}N-1-\varepsilon\\ l-\varepsilon\end{matrix}\right]\left[\begin{matrix}N-1-\varepsilon\\ N-1-\varepsilon\end{matrix}\right]^{-1}\left[\begin{matrix}l+\varepsilon\\ \varepsilon\end{matrix}\right]\left[\begin{matrix}N-1-\varepsilon\\ N-1-\varepsilon\end{matrix}\right]\left[\begin{matrix}2\varepsilon\\ 2\varepsilon\end{matrix}\right]\\ =\frac{\{N-1-\varepsilon,N-1\}}{\{N-1\}!},
{εN12N12εN1l+εN12N12+ε}q={N1l}!{0}!{N1l}!{0}![N12ε2ε][N12εl2ε]1[00][N1l][N1l+2εN1l+2ε]={l2ε,l}{l}!.\left\{\begin{matrix}-\varepsilon&\frac{N-1}{2}&\frac{N-1}{2}-\varepsilon\\[4.0pt] N-1-l+\varepsilon&\frac{N-1}{2}&\frac{N-1}{2}+\varepsilon\end{matrix}\right\}_{q}=\\ \frac{\{N-1-l\}!\{0\}!}{\{N-1-l\}!\{0\}!}\left[\begin{matrix}N-1-2\varepsilon\\ -2\varepsilon\end{matrix}\right]\left[\begin{matrix}N-1-2\varepsilon\\ l-2\varepsilon\end{matrix}\right]^{-1}\left[\begin{matrix}0\\ 0\end{matrix}\right]\left[\begin{matrix}N-1\\ l\end{matrix}\right]\left[\begin{matrix}N-1-l+2\varepsilon\\ N-1-l+2\varepsilon\end{matrix}\right]\\ =\frac{\{l-2\varepsilon,l\}}{\{l\}!}.
{N12ε+δ2N12+εδ2δN12+ε+δ2N12+εδ2k+ε}q={0}!{N1}!{N1k}!{k}![2δ2δ][2δ2δ]1[k+εδεδ][N1+ε+δk+ε+δ]={k+εδ,k}{N1+ε+δ,N1}{k+ε+δ,k}{N1}!.\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&-\delta\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&k+\varepsilon\end{matrix}\right\}_{q}=\\ \frac{\{0\}!\{N-1\}!}{\{N-1-k\}!\{k\}!}\left[\begin{matrix}-2\delta\\ -2\delta\end{matrix}\right]\left[\begin{matrix}-2\delta\\ -2\delta\end{matrix}\right]^{-1}\left[\begin{matrix}k+\varepsilon-\delta\\ \varepsilon-\delta\end{matrix}\right]\left[\begin{matrix}N-1+\varepsilon+\delta\\ k+\varepsilon+\delta\end{matrix}\right]\\ =\frac{\{k+\varepsilon-\delta,k\}\{N-1+\varepsilon+\delta,N-1\}}{\{k+\varepsilon+\delta,k\}\{N-1\}!}.
{l+δN12ε+δ2N12εδ2εN12+ε+δ2N12+εδ2}q={0}!{l}!{0}!{l}![N1ε+δlε+δ][N1ε+δε+δ]1[l+ε+δε+δ][2ε2ε]={l+ε+δ,l}{lε+δ,l}.\left\{\begin{matrix}l+\delta&\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}-\frac{\varepsilon-\delta}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}\end{matrix}\right\}_{q}=\\ \frac{\{0\}!\{l\}!}{\{0\}!\{l\}!}\left[\begin{matrix}N-1-\varepsilon+\delta\\ l-\varepsilon+\delta\end{matrix}\right]\left[\begin{matrix}N-1-\varepsilon+\delta\\ -\varepsilon+\delta\end{matrix}\right]^{-1}\left[\begin{matrix}l+\varepsilon+\delta\\ \varepsilon+\delta\end{matrix}\right]\left[\begin{matrix}2\varepsilon\\ 2\varepsilon\end{matrix}\right]=\frac{\{l+\varepsilon+\delta,l\}}{\{l-\varepsilon+\delta,l\}}.

A.4. Symmetry

Here we introduce the notion of symmetry for a function defined on the set {0,1,2,,N1}\{0,1,2,\cdots,N-1\}.

Definition A.2.

A function ff defined on {0,1,2,,N1}\{0,1,2,\cdots,N-1\} is called symmetric if f(k)=f(N1k)f(k)=f(N-1-k), and is called anti-symmetric if f(k)=f(N1k)f(k)=-f(N-1-k).

Lemma A.4.

Let

ξN(k,l,s)={s}!2{sk}!2{sl}!2{k+ls}!2.\xi_{N}(k,l,s)=\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}. (41)

Then it satisfies

ξN(k,l,s)=ξN(N1k,l,N1s+l)=ξN(k,N1l,N1s+k)=ξN(N1k,N1l,N1kl+s).\xi_{N}(k,l,s)=\xi_{N}(N-1-k,l,N-1-s+l)=\xi_{N}(k,N-1-l,N-1-s+k)\\ =\xi_{N}(N-1-k,N-1-l,N-1-k-l+s). (42)
Proof.

We have

ξN(Nk,l,N1s+l)={N1s+l}!2{k+ls}!2{N1s}!2{sk}!2={s}!2{sl}!2{k+ls}!2{sk}!2=ξN(k,l,s).\xi_{N}(N-k,l,N-1-s+l)=\dfrac{\{N-1-s+l\}!^{2}}{\{k+l-s\}!^{2}\{N-1-s\}!^{2}\{s-k\}!^{2}}\\ =\dfrac{\{s\}!^{2}}{\{s-l\}!^{2}\,\{k+l-s\}!^{2}\,\{s-k\}!^{2}}=\xi_{N}(k,l,s).

Similarly, we have

ξN(k,Nl,N1s+k)={N1s+k}!2{N1s}!2{k+ls}!2{sl}!2={s}!2{sk}!2{k+ls}!2{sl}!2=ξN(k,l,s).\xi_{N}(k,N-l,N-1-s+k)=\dfrac{\{N-1-s+k\}!^{2}}{\{N-1-s\}!^{2}\{k+l-s\}!^{2}\{s-l\}!^{2}}\\ =\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{k+l-s\}!^{2}\,\{s-l\}!^{2}}=\xi_{N}(k,l,s).

Combining these two, we get the last equality. ∎

These relations imply the following symmetry of the quantum 6j6j symbols.

Proposition A.1.

The quantum 6j6j symbol defined by the ADO invariant satisfies the following symmetry.

{N12N12lN12N12k}q={N12N12lN12N12N1k}q={N12N12N1lN12N12k}q={N12N12N1lN12N12N1k}q.\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}=\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&N-1-k\end{matrix}\right\}_{q}=\\ \left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&N-1-l\\ \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}=\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&N-1-l\\ \frac{N-1}{2}&\frac{N-1}{2}&N-1-k\end{matrix}\right\}_{q}. (43)

In other words, {N12N12lN12N12k}q\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q} is symmetric with respect to kk and ll.

Proof.

We prove the first equality.

{N12N12lN12N12k}q=s=max(k,l)min(N1,k+l)ξN(k,l,s)=(42)s=max(k,l)min(N1,k+l)ξN(N1k,l,N1+ls)=s=max(N1k,l)min(N1,N1k+l)ξN(N1k,l,s)={N12N12lN12N12N1k}q.\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}=\sum_{s=\max(k,l)}^{\min(N-1,k+l)}\xi_{N}(k,l,s)\underset{\eqref{eq:klsymmetry}}{=}\\ \sum_{s=\max(k,l)}^{\min(N-1,k+l)}\xi_{N}(N-1-k,l,N-1+l-s)=\sum_{s=\max(N-1-k,l)}^{\min(N-1,N-1-k+l)}\xi_{N}(N-1-k,l,s)\\ =\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\ \frac{N-1}{2}&\frac{N-1}{2}&N-1-k\end{matrix}\right\}_{q}.

The other equalities are proved similarly. ∎

Appendix B. Colored Jones invariants of some links

Here we compute the colored Jones invariant JN1(K)J_{N-1}(K) for K=BK=B, B1B_{1}, B1,1B_{1,1}, WW, WPW_{P}, TpT_{p} and Dp,rD_{p,r} given in Figure 1.

B.1. Colored Jones invariants and ADO invariants

We compute JN1(K)J_{N-1}(K) by using the ADO invariant.

Proposition B.1.

For a framed link KK, the following holds.

JN1(K)=(1)N1ADON(KN12,,N12).J_{N-1}(K)=(-1)^{N-1}\operatorname{ADO}_{N}(K^{\frac{N-1}{2},\cdots,\frac{N-1}{2}}).
Proof.

The invariants JN1(K)J_{N-1}(K) and ADON(KN12,,N12)\operatorname{ADO}_{N}(K^{\frac{N-1}{2},\cdots,\frac{N-1}{2}}) are constructed from the same RR matrix since JN1(K)J_{N-1}(K) is the colored Jones invariant corresponding to the NN dimensional representation V(N)V^{(N)} of 𝒰q(sl2)\mathcal{U}_{q}(sl_{2}) at q=eπi/Nq=e^{\pi i/N}. Let TT be a (1,1)(1,1) tangle whose closure is isotopic to KK, then TT determines a scalar operator αid:V(N)V(N)\alpha\,\mathrm{id}:V^{(N)}\to V^{(N)} by assigning the RR matrix to each crossing of TT and the factor for the minimal and maximal points. Then JN1(K)=αJ_{N-1}(K)=\alpha. On the other hand,

ADO(N)(K)=[2N1N]1α={2N1}{2N2}{N+1}{N1}{N2}{1}=(1)N1α.\operatorname{ADO}_{(N)}(K)=\left[\begin{matrix}2N-1\\ N\end{matrix}\right]^{-1}\alpha=\frac{\{2N-1\}\{2N-2\}\cdots\{N+1\}}{\{N-1\}\{N-2\}\cdots\{1\}}=(-1)^{N-1}\alpha.

Hence we have JN1(K)=(1)N1ADON(K)J_{N-1}(K)=(-1)^{N-1}\operatorname{ADO}_{N}(K) . ∎

In this paper, NN is assumed to be odd and we have

JN1(K)=ADON(K).J_{N-1}(K)=ADO_{N}(K). (44)
Remark 3.

The knots treated in this paper is all colored by N1N-1 and their colored Jones polynomial JN1J_{N-1} and their ADO invariant ADON\operatorname{ADO}_{N} are not depend on the framings of them.

B.2. Borromean rings and their variants

Here we compute the ADO invariants of the Borromean rings BB and its variants B1B_{1}, B1,1B_{1,1}.

Proposition B.2.

The ADO invariants of the Borromean rings BB and its variants B1B_{1}, B1,1B_{1,1} are given as follows.

JN1(B)=N2k,l=0N1s=max(k,l)min(k+l,N1){s}!2{sk}!2{sl}!2{k+ls}!2,J_{N-1}(B)=N^{2}\sum_{k,l=0}^{N-1}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}, (45)
JN1(B1)=N2q(N1)22k,l=0N1s=max(k,l)min(k+l,N1)q(kN12)2{s}!2{sk}!2{sl}!2{k+ls}!2,J_{N-1}(B_{1})=N^{2}q^{-\frac{(N-1)^{2}}{2}}\sum_{k,l=0}^{N-1}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\dfrac{q^{\left(k-\frac{N-1}{2}\right)^{2}}\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}, (46)
JN1(B1,1)=N2q(N1)22k,l=0N1s=max(k,l)min(k+l,N1)q(kN12)2q(lN12)2{s}!2{sk}!2{sl}!2{k+ls}!2.J_{N-1}(B_{1,1})=N^{2}q^{-\frac{(N-1)^{2}}{2}}\sum_{k,l=0}^{N-1}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\dfrac{q^{\left(k-\frac{N-1}{2}\right)^{2}}q^{\left(l-\frac{N-1}{2}\right)^{2}}\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}. (47)
Proof.

We compute the ADO invariants instead of the colored Jones invariant. For BB, ADO(N)(B)\operatorname{ADO}^{(N)}(B) is computed as follows.

ADO(N)(B)=ADON([Uncaptioned image])\displaystyle\operatorname{ADO}^{(N)}(B)=\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{borromeanADO}\end{matrix}\right)
=k,l=0N1[2k+N2k+1]1[2l+N2l+1]1ADON([Uncaptioned image])\displaystyle=\sum_{k,l=0}^{N-1}\left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{borromeanADO1}\end{matrix}\right)
=k,l=0N1[2k+N2k+1]1[2l+N2l+1]1[Uncaptioned image][Uncaptioned image][Uncaptioned image]\displaystyle=\ \sum_{k,l=0}^{N-1}\left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\left<\begin{matrix}\includegraphics[scale={0.8}]{hopfk}\end{matrix}\right>\left<\begin{matrix}\includegraphics[scale={0.8}]{hopfl}\end{matrix}\right>\left<\begin{matrix}\includegraphics[scale={0.8}]{borromeanADO2}\end{matrix}\right>
=k=0N1[2k+N2k+1]1iN1{2k+N,N1}×\displaystyle=\sum_{k=0}^{N-1}\left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}i^{N-1}\{2k+N,N-1\}\,\times
l=0N1[2l+N2l+1]1iN1{2l+N,N1}{N12N12lN12N12k}q\displaystyle\qquad\qquad\qquad\qquad\sum_{l=0}^{N-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}i^{N-1}\{2l+N,N-1\}\,\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\[4.0pt] \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}
=k,l=0N1{N1}!2s=mM{s}!2{sk}!2{sl}!2{k+ls}!2\displaystyle=\sum_{k,l=0}^{N-1}\{N-1\}!^{2}\sum_{s=m}^{M}\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}
(m=max(k,l),M=min(k+l,N1))\displaystyle\qquad\qquad\qquad\qquad\qquad\big{(}m=\max(k,l),\ \ M=\min(k+l,N-1)\big{)}
=(1)N1N2k,l=0N1s=mM{s}!2{sk}!2{sl}!2{k+ls}!2.\displaystyle=(-1)^{N-1}N^{2}\sum_{k,l=0}^{N-1}\sum_{s=m}^{M}\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}.

For B1B_{1}, ADO(B1)\operatorname{ADO}(B_{1}) is computed as follows.

ADO(N)(B1)=k,l=0N1q(kN12)2(N1)24×[2k+N2k+1]1[2l+N2l+1]1ADON([Uncaptioned image])=(1)N1N2q(N1)24k,l=0N1s=max(k,l)min(k+l,N1)q(kN12)2{s}!2{sk}!2{sl}!2{k+ls}!2.\operatorname{ADO}^{(N)}(B_{1})=\sum_{k,l=0}^{N-1}q^{(k-\frac{N-1}{2})^{2}-\frac{(N-1)^{2}}{4}}\,\times\\[-12.0pt] \left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{borromeanADO11}\end{matrix}\right)\\ =(-1)^{N-1}N^{2}q^{-\frac{(N-1)^{2}}{4}}\sum_{k,l=0}^{N-1}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\dfrac{q^{\left(k-\frac{N-1}{2}\right)^{2}}\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}.

For B1,1B_{1,1}, similar computation leads to (47). ∎

B.3. Twisted Whitehead link

For the twisted Whitehead link WpW_{p}, the ADO invariant ADO(N)(Wp)\mathrm{ADO}^{(N)}(W_{p}) is computed as follows.

ADO(N)(Wp)=ADON([Uncaptioned image])=k,l=0N1qp(kN12)2p(N1)24[2k+N2k+1]1[2l+N2l+1]1ADON([Uncaptioned image])=qp(N1)24k,l=0N1qp(kN12)2[2k+N2k+1]1[2l+N2l+1]1iN1{2l+N,N1}{N12N12lN12N12k}q=qp(N1)24k,l=0N1qp(kN12)2{N1}!2{2k+1}{2k+N,N}iN1s=mM{s}!2{sk}!2{sl}!2{k+ls}!2(m=max(k,l),M=min(k+l,N1))=qp(N1)24k,l=0N1qp(kN12)2N2{2k+1}{2Nk}s=mM{s}!2{sk}!2{sl}!2{k+ls}!2.\mathrm{ADO}^{(N)}(W_{p})=\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADO}\end{matrix}\right)\\ =\sum_{k,l=0}^{N-1}q^{p(k-\frac{N-1}{2})^{2}-p\frac{(N-1)^{2}}{4}}\left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADO1}\end{matrix}\right)\\ =q^{-p\frac{(N-1)^{2}}{4}}\sum_{k,l=0}^{N-1}q^{p(k-\frac{N-1}{2})^{2}}\left[\begin{matrix}2k+N\\ 2k+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}i^{N-1}\{2l+N,N-1\}\,\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\[4.0pt] \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}\\ =q^{-p\frac{(N-1)^{2}}{4}}\sum_{k,l=0}^{N-1}q^{p(k-\frac{N-1}{2})^{2}}\frac{\{N-1\}!^{2}\{2k+1\}}{\{2k+N,N\}}i^{N-1}\sum_{s=m}^{M}\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}\hfill\\ \hfill\big{(}m=\max(k,l),\ \ M=\min(k+l,N-1)\big{)}\\ =-q^{-p\frac{(N-1)^{2}}{4}}\sum_{k,l=0}^{N-1}q^{p(k-\frac{N-1}{2})^{2}}\,N^{2}\,\frac{\{2k+1\}}{\{2Nk\}}\sum_{s=m}^{M}\dfrac{\{s\}!^{2}}{\{s-k\}!^{2}\,\{s-l\}!^{2}\,\{k+l-s\}!^{2}}.\hfill (48)

The denominator {2Nk}\{2Nk\} of this formula is zero for integer kk, but the numerator is also equal to zero and it must be well-defined since JN1(Wp)J_{N-1}(W_{p}) is well-defined. Here we reformulate (48) as a limit of certain colored knotted graph. We prepare a lemma to treat such perturbation of colors of a knotted graph.

Lemma B.1.

For a(/2)(N1)/2a\in(\mathbb{C}\setminus\mathbb{Z}/2)\cup(N\mathbb{Z}-1)/2 and ε\varepsilon\in\mathbb{C} near 0, the following holds.

limε0ADON([Uncaptioned image])=ADON([Uncaptioned image]).\lim_{\varepsilon\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{small}\end{matrix}\right)=\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.8}]{small1}\end{matrix}\right). (49)
Proof.

Recall that the ADO invariant is defined by using the quantum RR matrix associated with the non-integral highest weight representation of 𝒰q(sl2)\mathcal{U}_{q}(sl_{2}) where qq is a root of unity. Let VaV_{a} is the highest weight representation with the highest weight aa. Then dimVa=N\dim V_{a}=N if the weight λ\lambda is in (/2)(N1)/2(\mathbb{C}\setminus\mathbb{Z}/2)\cup(N\mathbb{Z}-1)/2. The trivalent vertex in the lefthand side of (49) represents the projection operator VεVaVa+εV_{\varepsilon}\otimes V_{a}\to V_{a+\varepsilon}. The limit

limε0Vε=V0=V(0)V\lim_{\varepsilon\to 0}V_{\varepsilon}=V_{0}=V^{(0)}\oplus V^{\prime}

where V(0)V^{(0)} is the trivial 11-dimensional representation and VV^{\prime} is the N1N-1 dimensional representation with highest weight 1-1. Then

limε0VεVa=(V(0)V)Va=Va(VVa).\lim_{\varepsilon\to 0}V_{\varepsilon}\otimes V_{a}=(V^{(0)}\oplus V^{\prime})\otimes V_{a}=V_{a}\oplus(V^{\prime}\otimes V_{a}).

The projection operator corresponding to the vertex picks up VaV_{a} part and discards VVaV^{\prime}\otimes V_{a} part. So, to see the limiting case, we can replace the representation VεV_{\varepsilon} on the thin line by the trivial representation V(0)V^{(0)}, which does not contribute to the invariant. Hence we can remove the thin line at the limit. ∎

Now we compute JN1(wp)J_{N-1}(w_{p}).

Proposition B.3.

For the twisted whitehead link WpW_{p}, JN1(Wp)J_{N-1}(W_{p}) is given as follows.

JN1(Wp)=Nqp(N1)244πil=0N1ddx(k=0N1qp(xN12)2{2x+1}×sxk2=max(k,l)min(k+l,N1){s,sxk2}2{sx,sx+k2}2{sl,slxk2}2{x+ls,x+k2+ls1}2)|x=k.J_{N-1}(W_{p})=N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{l=0}^{N-1}\frac{d}{dx}\left(\sum_{k=0}^{N-1}q^{p(x-\frac{N-1}{2})^{2}}\{2x+1\}\right.\,\times\hfill\\ \hfill\left.\left.\sum_{s-\frac{x-k}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s,s-\frac{x-k}{2}\}^{2}}{\{s-x,s-\frac{x+k}{2}\}^{2}\{s-l,s-l-\frac{x-k}{2}\}^{2}\{x+l-s,\frac{x+k}{2}+l-s_{1}\}^{2}}\right)\right|_{x=k}. (50)
Proof.

We first compute ADON(Wp)\operatorname{ADO}_{N}(W_{p}) for even pp, which is the limit of the knotted graph in Figure 24 at ε0\varepsilon\to 0.

Refer to caption\begin{matrix}\includegraphics{whiteheadADOe}\end{matrix}
Figure 24. The colored knotted graph whose limit at ε0\varepsilon\to 0 is WpW_{p} colored by N12\frac{N-1}{2}.
JN1(Wp)=ADO(N)(Wp)=(49)limε0ADON([Uncaptioned image])=(23),(28)limε0k,l=0N1qp(k+εN12)2pε2+p(N1)24[2k+2ε+N2k+2ε+1]1[2l+N2l+1]1×ADON([Uncaptioned image])=(32)limε0k,l=0N1qp(k+εN12)2pε2+p(N1)24[2k+2ε+N2k+2ε+1]1[2l+N2l+1]1×{lN12ε2N12ε2εN12+ε2N12+ε2}qADON([Uncaptioned image])=(29),(37)qp(N1)24limε0k,l=0N1qp(k+εN12)2pε2{N1}!2{2k+2ε+1}{2k+2ε+N,N}iN1×{N1ε,N1}{N1}!{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q=(35)Nqp(N1)24limε0l=0N1{N1ε,N1}{N1}!×k=0N1qp(k+εN12)2pε2{2k+2ε+1}{2N(k+ε)}{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q=Nqp(N1)24limε01{2Nε}l=0N1{N1ε,N1}{N1}!×k=0N1qp(k+εN12)2pε2{2k+2ε+1}{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q=Nqp(N1)244πiddε(qpε2{N1ε,N1}{N1}!×k,l=0N1qp(k+εN12)2{2k+2ε+1}{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q)|ε=0=Nqp(N1)244πi(ddεqpε2{N1ε,N1}{N1}!)k,l=0N1qp(kN12)2{2k+1}{N12N12lN12N12k}q+Nqp(N1)244πiddε(k,l=0N1qp(k+εN12)2{2k+2ε+1}{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q)|ε=0=(43)Nqp(N1)244πil=0N1ddε(k=0N1qp(k+εN12)2{2k+2ε+1}{N12ε2N12+ε2lN12+ε2N12+ε2k+ε}q)|ε=0=(35)Nqp(N1)244πil=0N1ddε(k=0N1{2k+2ε+1}s=max(k,l)min(k+l,N1)qp(k+εN12)2{s}!{sk}!{sl}!{k+ls}!×{s+ε,s}{skε,sk}{sl+ε,sl}{k+ε+ls,k+ls})|ε=0.J_{N-1}(W_{p})=\operatorname{ADO}^{(N)}(W_{p})\underset{\eqref{eq:small}}{=}\lim_{\varepsilon\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADOe}\end{matrix}\right)\\ \underset{\eqref{eq:ADOparallel},\eqref{eq:ADOinverse}}{=}\lim_{\varepsilon\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}+p\frac{(N-1)^{2}}{4}}\left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\,\times\hfill\\ \hfill\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADOo0}\end{matrix}\right)\\ \underset{\eqref{eq:removetriangle2}}{=}\lim_{\varepsilon\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}+p\frac{(N-1)^{2}}{4}}\left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}\,\times\hfill\\ \hfill\left\{\begin{matrix}l&\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}-\frac{\varepsilon}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}\end{matrix}\right\}_{q}\mathrm{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADOo1}\end{matrix}\right)\\ \underset{\eqref{eq:hopf},\eqref{eq:ADO6j6}}{=}q^{p\frac{(N-1)^{2}}{4}}\lim_{\varepsilon\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}}\frac{\{N-1\}!^{2}\{2k+2\varepsilon+1\}}{\{2k+2\varepsilon+N,N\}}i^{N-1}\,\times\hfill\\ \hfill\frac{\{N-1-\varepsilon,N-1\}}{\{N-1\}!}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\\ \underset{\eqref{eq:ADO6j3}}{=}N\,q^{p\frac{(N-1)^{2}}{4}}\lim_{\varepsilon\to 0}\sum_{l=0}^{N-1}\frac{\{N-1-\varepsilon,N-1\}}{\{N-1\}!}\,\times\hfill\\ \hfill\sum_{k=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}}\frac{\{2k+2\varepsilon+1\}}{\{2N(k+\varepsilon)\}}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\\ =N\,q^{p\frac{(N-1)^{2}}{4}}\lim_{\varepsilon\to 0}\frac{1}{\{2N\varepsilon\}}\sum_{l=0}^{N-1}\frac{\{N-1-\varepsilon,N-1\}}{\{N-1\}!}\,\times\hfill\\ \hfill\sum_{k=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}}\{2k+2\varepsilon+1\}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\\ =N\,\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\frac{d}{d\varepsilon}\left(\frac{q^{-p\varepsilon^{2}}\{N-1-\varepsilon,N-1\}}{\{N-1\}!}\right.\,\times\hfill\\ \hfill\left.\left.\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\right)\right|_{\varepsilon=0}\\ =N\,\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\left(\frac{d}{d\varepsilon}\frac{q^{-p\varepsilon^{2}}\{N-1-\varepsilon,N-1\}}{\{N-1\}!}\right)\sum_{k,l=0}^{N-1}q^{p(k-\frac{N-1}{2})^{2}}\{2k+1\}\left\{\begin{matrix}\frac{N-1}{2}&\frac{N-1}{2}&l\\[4.0pt] \frac{N-1}{2}&\frac{N-1}{2}&k\end{matrix}\right\}_{q}\hfill\\ +N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\left.\frac{d}{d\varepsilon}\left(\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\right)\right|_{\varepsilon=0}\\ \underset{\eqref{eq:6jsymmetry}}{=}N\ \frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{l=0}^{N-1}\left.\!\!\frac{d}{d\varepsilon}\!\!\left(\!\sum_{k=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&l\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon}{2}&\frac{N-1}{2}+\frac{\varepsilon}{2}&k+\varepsilon\end{matrix}\right\}_{q}\right)\right|_{\varepsilon=0}\\ \underset{\eqref{eq:ADO6j3}}{=}N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{l=0}^{N-1}\frac{d}{d\varepsilon}\left(\sum_{k=0}^{N-1}\{2k+2\varepsilon+1\}\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{s\}!}{\{s-k\}!\{s-l\}!\{k+l-s\}!}\right.\,\times\hfill\\ \hfill\left.\left.\frac{\{s+\varepsilon,s\}}{\{s-k-\varepsilon,s-k\}\{s-l+\varepsilon,s-l\}\{k+\varepsilon+l-s,k+l-s\}}\right)\right|_{\varepsilon=0}.

Now we replace ss by s1+k+l2s_{1}+\frac{k+l}{2} and then use ddεf(x)f(x+2ε)=ddεf(x+ε)2\frac{d}{d\varepsilon}f(x)f(x+2\varepsilon)=\frac{d}{d\varepsilon}f(x+\varepsilon)^{2}, we get

Nqp(N1)244πil=0N1ddε(k=0N1{2k+2ε+1}s1+k+l2=max(k,l)min(k+l,N1)qp(k+εN12)2{s1+k+l2}!{s1+k+l2}!{s1+kl2}!{k+l2s1}!×{s1+k+2ε+l2,s1+k+l2}{s1+k2ε+l2,s1+k+l2}{s1+k+2εl2,s1+kl2}{k+2ε+l2s1,k+l2s1})|ε=0=Nqp(N1)244πil=0N1ddε(k=0N1qp(k+εN12)2{2k+2ε+1}×s1+k+l2=max(k,l)min(k+l,N1){s1+k+ε+l2,s1+k+l2}2{s1+kε+l2,s1+k+l2}2{s1+k+εl2,s1+kl2}2{k+ε+l2s1,k+l2s1}2)|ε=0.N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\!\sum_{l=0}^{N-1}\!\frac{d}{d\varepsilon}\!\!\left(\sum_{k=0}^{N-1}\{2k+2\varepsilon+1\}\!\!\!\!\sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\frac{q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{s_{1}+\frac{k+l}{2}\}!}{\{s_{1}+\frac{-k+l}{2}\}!\{s_{1}+\frac{k-l}{2}\}!\{\frac{k+l}{2}-s_{1}\}!}\right.\times\\ \hfill\left.\left.\frac{\{s_{1}+\frac{k+2\varepsilon+l}{2},s_{1}+\frac{k+l}{2}\}}{\{s_{1}+\frac{-k-2\varepsilon+l}{2},s_{1}+\frac{-k+l}{2}\}\{s_{1}+\frac{k+2\varepsilon-l}{2},s_{1}+\frac{k-l}{2}\}\{\frac{k+2\varepsilon+l}{2}-s_{1},\frac{k+l}{2}-s_{1}\}}\right)\right|_{\varepsilon=0}\\ =N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{l=0}^{N-1}\frac{d}{d\varepsilon}\left(\sum_{k=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\right.\,\times\hfill\\ \left.\left.\sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\!\!\frac{\{s_{1}+\frac{k+\varepsilon+l}{2},s_{1}+\frac{k+l}{2}\}^{2}}{\{s_{1}+\frac{-k-\varepsilon+l}{2},s_{1}+\frac{-k+l}{2}\}^{2}\{s_{1}+\frac{k+\varepsilon-l}{2},s_{1}+\frac{k-l}{2}\}^{2}\{\frac{k+\varepsilon+l}{2}-s_{1},\!\frac{k+l}{2}-s_{1}\}^{2}}\!\!\right)\!\!\right|_{\varepsilon=0}\!\!\!.

Then, by replacing k+εk+\varepsilon by xx and s1s_{1} by sx+l2s-\frac{x+l}{2}, we get

JN1(Wp)=Nqp(N1)244πil=0N1ddx(k=0N1qp(k+εN12)2{2x+1}×sxk2=max(k,l)min(k+l,N1){s,sxk2}2{sx,sx+k2}2{sl,slxk2}2{x+ls,x+k2+ls1}2)|x=k.J_{N-1}(W_{p})=N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{l=0}^{N-1}\frac{d}{dx}\left(\sum_{k=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}}\{2x+1\}\right.\,\times\hfill\\ \hfill\left.\left.\sum_{s-\frac{x-k}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s,s-\frac{x-k}{2}\}^{2}}{\{s-x,s-\frac{x+k}{2}\}^{2}\{s-l,s-l-\frac{x-k}{2}\}^{2}\{x+l-s,\frac{x+k}{2}+l-s_{1}\}^{2}}\right)\right|_{x=k}.

Hence we obtained (50).

Next, we prove for odd case. For odd pp, WpW_{p} is considered as the limiting case of the knotted graph in Figure 25 at ε=0\varepsilon=0 by (49), and JN1(Wp)J_{N-1}(W_{p}) is computed as follows.

Refer to caption
Figure 25. The colored knotted graph to compute ANON(Wp)ANO_{N}(W_{p}) for odd pp.
JN1(Wp)=ADON(Wp)=(49)limε0ADON([Uncaptioned image])=(23)limε0k,l=0N1qp(k+εN12)2pε2+p(N1)24[2k+2ε+N2k+2ε+1]1[2l+N2l+1]1ADON([Uncaptioned image]).J_{N-1}(W_{p})=\operatorname{ADO}_{N}(W_{p})\underset{\eqref{eq:small}}{=}\lim_{\varepsilon\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{whiteheadADOo}\end{matrix}\right)\underset{\eqref{eq:ADOparallel}}{=}\\ \text{\small$\lim_{\varepsilon\to 0}\sum_{k,l=0}^{N-1}\!q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p\varepsilon^{2}+p\frac{(N-1)^{2}}{4}}\!\!\left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+N\\ 2l+1\end{matrix}\right]^{-1}$}\!\!\!\mathrm{ADO}_{N}\!\left(\begin{matrix}\includegraphics[scale={0.5}]{whiteheadADOo0}\end{matrix}\right).

Then the rest of the computation is the same as the even pp case and we get (50). ∎

B.4. Twist knots and double twist knots

Here we compute the colored Jones polynomial JN(Dp,r)J_{N}(D_{p,r}) for the double twist knot Dp,rD_{p,r}. Note that, if pp and rr are both odd, then Dp,rD_{p,r} is a two-component link. The following formula also holds for double twist links.

Proposition B.4.

For the double twist knot Dp,rD_{p,r}, JN1(Dp,r)J_{N-1}(D_{p,r}) is given as follows.

JN1(Dp,r)=ADON(Dp,r)=N2q(pr)(N1)2416π22xyk,l=0N1qp(xN12)2r(yN12)2{2x+1}{2y+1}×sxk+yl2=max(k,l)min(k+l,N1){s,sxk+yl2}2{sx,sx+k+yl2}2{sy,sxk+y+l2}2{x+ys,x+k+y+l2s}2|x=ky=l.J_{N-1}(D_{p,r})=\operatorname{ADO}_{N}(D_{p,r})=\\ -\frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{16\pi^{2}}\frac{\partial^{2}}{\partial x\partial y}\sum_{k,l=0}^{N-1}q^{p(x-\frac{N-1}{2})^{2}-r(y-\frac{N-1}{2})^{2}}\{2x+1\}\{2y+1\}\,\times\\ \left.\sum_{s-\frac{x-k+y-l}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\!\frac{\{s,s-\frac{x-k+y-l}{2}\}^{2}}{\{s-x,s-\frac{x+k+y-l}{2}\}^{2}\{s-y,s-\frac{x-k+y+l}{2}\}^{2}\{x\!+\!y-\!s,\!\frac{x+k+y+l}{2}-\!s\}^{2}}\right|_{\text{$\begin{matrix}x\!=\!k\\[-4.0pt] y\!=\!l\end{matrix}$}}\!\!\!\!. (51)
Proof.

First we prove for the case that pp and rr are both even. For this case, we compute the ADO invariant of Dp,rD_{p,r} as a limit ε,δ0\varepsilon,\delta\to 0 of the knotted graph in Figure 26.

Refer to caption
Figure 26. The knotted graph to compute ADON(Dp,r)\operatorname{ADO}_{N}(D_{p,r}) for even pp, rr.
ADON(Dp,r)=limε,δ0ADON([Uncaptioned image])=q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2p(ε+δ2)2p(εδ2)2qr(l+δN12)2+r(ε+δ2)2+r(εδ2)2×[2k+2ε+N2k+2ε+1]1[2l+2δ+N2l+2δ+1]1{N12ε+δ2N12+εδ2δN12+ε+δ2N12+εδ2k+ε}q×{l+δN12ε+δ2N12εδ2εN12+ε+δ2N12+εδ2}qADON([Uncaptioned image])=(39),(40)q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2r(l+δN12)2(pr)(ε2+δ22)×{N1}!2{2k+2ε+1}{2l+2δ+1}{2k+2ε+N,N}{2l+2δ+N,N}{k+εδ,k}{N1+ε+δ}{k+ε+δ,k}{N1}!×{l+ε+δ,l}{lε+δ,l}ADON([Uncaptioned image])=N2q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2r(l+δN12)2(pr)(ε2+δ22)×{2k+2ε+1}{2l+2δ+1}{2N(k+ε)}{2N(l+δ)}{k+εδ,k}{N1+ε+δ}{k+ε+δ,k}{N1}!×{l+ε+δ,l}{lε+δ,l}ADON([Uncaptioned image])=(35)N2q(pr)(N1)242εδq(pr)(ε2+δ22){2Nε}{2Nδ}{N12δ,N1}{N1}!{N1+ε+δ}{N1}!×k,l=0N1qp(k+εN12)2r(l+δN12)2{2k+2ε+1}{2l+2δ+1}{2N(k+ε)}{2N(l+δ)}{k+εδ,k}{k+ε+δ,k}{l+ε+δ,l}{lε+δ,l}×s=max(k,l)min(k+l,N1){s}!{sk}!{sl}!{k+ls}!×{s+ε+δ,s}{skε+δ,sk}{sl+εδ,sl}{k+ls+ε+δ,k+ls}|ε=δ=0=N2q(pr)(N1)2416π22εδq(pr)(ε2+δ22){N1+ε+δ}{N1}!{N12δ,N1}{N1}!×k,l=0N1qp(k+εN12)2r(l+δN12)2{2k+2ε+1}{2l+2δ+1}{k+εδ,k}{l+ε+δ,l}{k+ε+δ,k}{lε+δ,l}×s=max(k,l)min(k+l,N1){s}!{sk}!{sl}!{k+ls}!×{s+ε+δ,s}{skε+δ,sk}{sl+εδ,sl}{k+ls+ε+δ,k+ls}|ε=δ=0.\operatorname{ADO}_{N}(D_{p,r})=\lim_{\varepsilon,\delta\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee}\end{matrix}\right)\\ =q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p(\frac{\varepsilon+\delta}{2})^{2}-p(\frac{\varepsilon-\delta}{2})^{2}}q^{-r(l+\delta-\frac{N-1}{2})^{2}+r(\frac{\varepsilon+\delta}{2})^{2}+r(\frac{\varepsilon-\delta}{2})^{2}}\,\times\\ \left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+2\delta+N\\ 2l+2\delta+1\end{matrix}\right]^{-1}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&-\delta\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&k+\varepsilon\end{matrix}\right\}_{q}\,\times\\ \hfill\left\{\begin{matrix}l+\delta&\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}-\frac{\varepsilon-\delta}{2}\\[4.0pt] \varepsilon&\frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}\end{matrix}\right\}_{q}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right)\\ \underset{\eqref{eq:ADO6j7},\eqref{eq:ADO6j8}}{=}q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\,\times\hfill\\ \frac{\{N-1\}!^{2}\{2k+2\varepsilon+1\}\{2l+2\delta+1\}}{\{2k+2\varepsilon+N,N\}\{2l+2\delta+N,N\}}\frac{\{k+\varepsilon-\delta,k\}\{N-1+\varepsilon+\delta\}}{\{k+\varepsilon+\delta,k\}\{N-1\}!}\,\times\\ \hfill\frac{\{l+\varepsilon+\delta,l\}}{\{l-\varepsilon+\delta,l\}}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right)\\ =N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\,\times\hfill\\ \frac{\{2k+2\varepsilon+1\}\{2l+2\delta+1\}}{\{2N(k+\varepsilon)\}\{2N(l+\delta)\}}\frac{\{k+\varepsilon-\delta,k\}\{N-1+\varepsilon+\delta\}}{\{k+\varepsilon+\delta,k\}\{N-1\}!}\,\times\\ \hfill\frac{\{l+\varepsilon+\delta,l\}}{\{l-\varepsilon+\delta,l\}}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right)\\ \underset{\eqref{eq:ADO6j3}}{=}N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\frac{q^{-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}}{\{2N\varepsilon\}\{2N\delta\}}\frac{\{N-1-2\delta,N-1\}}{\{N-1\}!}\frac{\{N-1+\varepsilon+\delta\}}{\{N-1\}!}\,\times\hfill\\ \hfill\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}}\frac{\{2k+2\varepsilon+1\}\{2l+2\delta+1\}}{\{2N(k+\varepsilon)\}\{2N(l+\delta)\}}\frac{\{k+\varepsilon-\delta,k\}}{\{k+\varepsilon+\delta,k\}}\frac{\{l+\varepsilon+\delta,l\}}{\{l-\varepsilon+\delta,l\}}\,\times\\ \qquad\sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!}{\{s-k\}!\{s-l\}!\{k+l-s\}!}\,\times\hfill\\ \hfill\left.\frac{\{s+\varepsilon+\delta,s\}}{\{s-k-\varepsilon+\delta,s-k\}\{s-l+\varepsilon-\delta,s-l\}\{k+l-s+\varepsilon+\delta,k+l-s\}}\right|_{\varepsilon=\delta=0}\\ =\frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{-16\pi^{2}}\frac{\partial^{2}}{\partial\varepsilon\partial\delta}q^{-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\frac{\{N-1+\varepsilon+\delta\}}{\{N-1\}!}\frac{\{N-1-2\delta,N-1\}}{\{N-1\}!}\,\times\hfill\\ \sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}}\frac{\{2k+2\varepsilon+1\}\{2l+2\delta+1\}\{k+\varepsilon-\delta,k\}\{l+\varepsilon+\delta,l\}}{\{k+\varepsilon+\delta,k\}\{l-\varepsilon+\delta,l\}}\,\times\\ \sum_{s=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s\}!}{\{s-k\}!\{s-l\}!\{k+l-s\}!}\,\times\hfill\\ \hfill\left.\frac{\{s+\varepsilon+\delta,s\}}{\{s-k-\varepsilon+\delta,s-k\}\{s-l+\varepsilon-\delta,s-l\}\{k+l-s+\varepsilon+\delta,k+l-s\}}\right|_{\varepsilon=\delta=0}.

By substituting s1+k+l2s_{1}+\frac{k+l}{2} intto ss, we have

ADON(Dp,r)=N2q(pr)(N1)2416π22εδq(rp)(ε2+δ22){N1+ε+δ}{N1}!{N12δ,N1}{N1}!×k,l=0N1qp(k+εN12)2r(l+δN12)2{2k+2ε+1}{2l+2δ+1}{k+εδ,k}{l+ε+δ,l}{k+ε+δ,k}{lε+δ,l}×s1+k+l2=max(k,l)min(k+l,N1){s1+k+l2}!{s1+k+l2}!{s1+kl2}!{k+l2s1}!×{s1+k+2ε+l+2δ2,s1+k+l2}{s1+k2ε+l+2δ2,s1+k+l2}{s1+k+2εl2δ2,s1+kl2}{k+2ε+l+2δ2s1,k+l2s1}|ε=δ=0.\operatorname{ADO}_{N}(D_{p,r})=\\ \frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{-16\pi^{2}}\frac{\partial^{2}}{\partial\varepsilon\partial\delta}q^{(r-p)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\frac{\{N-1+\varepsilon+\delta\}}{\{N-1\}!}\frac{\{N-1-2\delta,N-1\}}{\{N-1\}!}\,\times\\ \sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}}\frac{\{2k+2\varepsilon+1\}\{2l+2\delta+1\}\{k+\varepsilon-\delta,k\}\{l+\varepsilon+\delta,l\}}{\{k+\varepsilon+\delta,k\}\{l-\varepsilon+\delta,l\}}\,\times\hfill\\ \sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s_{1}+\frac{k+l}{2}\}!}{\{s_{1}+\frac{-k+l}{2}\}!\{s_{1}+\frac{k-l}{2}\}!\{\frac{k+l}{2}-s_{1}\}!}\,\times\hfill\\ \hfill\left.\frac{\{s_{1}+\frac{k+2\varepsilon+l+2\delta}{2},s_{1}+\frac{k+l}{2}\}}{\{s_{1}+\frac{-k-2\varepsilon+l+2\delta}{2},s_{1}+\frac{-k+l}{2}\}\{s_{1}+\frac{k+2\varepsilon-l-2\delta}{2},s_{1}+\frac{k-l}{2}\}\{\frac{k+2\varepsilon+l+2\delta}{2}-s_{1},\frac{k+l}{2}-s_{1}\}}\right|_{\varepsilon=\delta=0}.

Let

f(k,l,ε,δ)=qp(k+εN12)2r(l+δN12)2{2k+2ε+1}{2l+2δ+1}×s1+k+l2=max(k,l)min(k+l,N1){s1+k+l2}!{s1+k+l2}!{s1+kl2}!{k+l2s1}!×{s1+k+2ε+l+2δ2,s1+k+l2}{s1+k2ε+l+2δ2,s1+k+l2}{s1+k+2εl2δ2,s1+kl2}{k+2ε+l+2δ2s1,k+l2s1}.f(k,l,\varepsilon,\delta)=q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\{2l+2\delta+1\}\,\times\\ \sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s_{1}+\frac{k+l}{2}\}!}{\{s_{1}+\frac{-k+l}{2}\}!\{s_{1}+\frac{k-l}{2}\}!\{\frac{k+l}{2}-s_{1}\}!}\,\times\hfill\\ \hfill\frac{\{s_{1}+\frac{k+2\varepsilon+l+2\delta}{2},s_{1}+\frac{k+l}{2}\}}{\{s_{1}+\frac{-k-2\varepsilon+l+2\delta}{2},s_{1}+\frac{-k+l}{2}\}\{s_{1}+\frac{k+2\varepsilon-l-2\delta}{2},s_{1}+\frac{k-l}{2}\}\{\frac{k+2\varepsilon+l+2\delta}{2}-s_{1},\frac{k+l}{2}-s_{1}\}}.

Note that f(k,l,0,0)f(k,l,0,0) is anti-symmetric with respect to kk and ll. Moreover, f(k,l,0,δ)f(k,l,0,\delta) and f(k,l,ε,0)f(k,l,\varepsilon,0) are anti-symmetric with respect to kk and ll respectively. Therefore, we have

ADON(Dp,r)=N2q(pr)(N1)2416π22εδk,l=0N1f(k,l,ε,δ)|ε=δ=0.\operatorname{ADO}_{N}(D_{p,r})=\frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{-16\pi^{2}}\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\left.\sum_{k,l=0}^{N-1}f(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}.

By using the definition of the derivation, we have

2εδk,l=0N1f(k,l,ε,δ)|ε=δ=0=limε,δ01εδk,l=0N1f(k,l,ε,δ)f(k,l,0,δ)f(k,l,ε,0)+f(k,l,0,0)=limε,δ01εδk,l=0N1f(kε,lδ,ε,δ)f(kε,lδ,0,δ)f(kε,lδ,ε,0)+f(kε,lδ,0,0)=limε,δ01εδk,l=0N1f(kε,lδ,0,0).\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\left.\sum_{k,l=0}^{N-1}f(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}=\\ \lim_{\varepsilon,\delta\to 0}\frac{1}{\varepsilon\delta}\sum_{k,l=0}^{N-1}f(k,l,\varepsilon,\delta)-f(k,l,0,\delta)-f(k,l,\varepsilon,0)+f(k,l,0,0)=\\ \lim_{\varepsilon,\delta\to 0}\frac{1}{\varepsilon\delta}\sum_{k,l=0}^{N-1}f(k-\varepsilon,l-\delta,\varepsilon,\delta)-f(k-\varepsilon,l-\delta,0,\delta)-f(k-\varepsilon,l-\delta,\varepsilon,0)+f(k-\varepsilon,l-\delta,0,0)\\[-5.0pt] =\lim_{\varepsilon,\delta\to 0}\frac{1}{\varepsilon\delta}\sum_{k,l=0}^{N-1}f(k-\varepsilon,l-\delta,0,0).

Here we use that 2εδf(k,l,ε,δ)\frac{\partial^{2}}{\partial\varepsilon\partial\delta}f(k,l,\varepsilon,\delta) is continuous with respect to ε\varepsilon and δ\delta for the second equality, and use that f(kε,lδ,ε,δ)f(k-\varepsilon,l-\delta,\varepsilon,\delta), f(kε,lδ,0,δ)f(k-\varepsilon,l-\delta,0,\delta) and f(kε,lδ,ε,0)f(k-\varepsilon,l-\delta,\varepsilon,0) are anti-symmetric with respect to kk or ll for the last equality.

On the other hand, let

g(k,l,ε,δ)=qp(k+εN12)2r(l+δN12)2{2k+2ε+1}{2l+2δ+1}×s1+k+l2=max(k,l)min(k+l,N1){s1+k+ε+l+δ2,s1+k+l2}2{s1+kε+l+δ2,s1+k+l2}2{s1+k+εlδ2,s1+kl2}2{k+ε+l+δ2s1,k+l2s1}2.g(k,l,\varepsilon,\delta)=q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}}\{2k+2\varepsilon+1\}\{2l+2\delta+1\}\,\times\\ \sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s_{1}\!+\!\frac{k+\varepsilon+l+\delta}{2},s_{1}\!+\!\frac{k+l}{2}\}^{2}}{\{s_{1}\!+\!\frac{-k-\varepsilon+l+\delta}{2},s_{1}\!+\!\frac{-k+l}{2}\}^{2}\{s_{1}\!+\!\frac{k+\varepsilon-l-\delta}{2},s_{1}\!+\!\frac{k-l}{2}\}^{2}\{\frac{k+\varepsilon+l+\delta}{2}\!-\!s_{1},\frac{k+l}{2}\!-\!s_{1}\}^{2}}.

Then g(k,l,0,0)g(k,l,0,0), g(k,l,ε,0)g(k,l,\varepsilon,0) and g(k,l,0,δ)g(k,l,0,\delta) are anti-symmetric with respect to kk or ll, we have

2εδk,l=0N1g(k,l,ε,δ)|ε=δ=0=limε,δ01εδk,l=0N1g(k,l,0,0)g(k,l,ε,0)g(k,l,0,δ)+g(k,l,ε,δ)=limε,δ01εδk,l=0N1g(k,l,ε,δ).\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\left.\sum_{k,l=0}^{N-1}g(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}\\ =\lim_{\varepsilon,\delta\to 0}\frac{1}{\varepsilon\delta}\sum_{k,l=0}^{N-1}g(k,l,0,0)-g(k,l,-\varepsilon,0)-g(k,l,0,-\delta)+g(k,l,-\varepsilon,-\delta)\\[-5.0pt] =\lim_{\varepsilon,\delta\to 0}\frac{1}{\varepsilon\delta}\sum_{k,l=0}^{N-1}g(k,l,-\varepsilon,-\delta).

Now look at f(kε,lδ,0,0)f(k-\varepsilon,l-\delta,0,0) and g(k,l,ε,δ)g(k,l,-\varepsilon,-\delta). We have

f(kε,lδ,0,0)=g(k,l,ε,δ)=qp(kεN12)2r(lδN12)2(pr)(ε2+δ22){2k2ε+1}{2l2δ+1}×s1+k+l2=max(k,l)min(k+l,N1){s1+kε+lδ2,s1+k+l2}2{s1+k+ε+lδ2,s1+k+l2}2{s1+kεl+δ2,s1+kl2}2{kε+lδ2s1,k+l2s1}2.f(k-\varepsilon,l-\delta,0,0)=g(k,l,-\varepsilon,-\delta)=\\ q^{p(k-\varepsilon-\frac{N-1}{2})^{2}-r(l-\delta-\frac{N-1}{2})^{2}-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\{2k-2\varepsilon+1\}\{2l-2\delta+1\}\,\times\\ \sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\frac{\{s_{1}+\frac{k-\varepsilon+l-\delta}{2},s_{1}+\frac{k+l}{2}\}^{2}}{\{s_{1}\!+\!\frac{-k+\varepsilon+l-\delta}{2},s_{1}\!+\!\frac{-k+l}{2}\}^{2}\{s_{1}\!+\!\frac{k-\varepsilon-l+\delta}{2},s_{1}\!+\!\frac{k-l}{2}\}^{2}\{\frac{k-\varepsilon+l-\delta}{2}\!-\!s_{1},\!\frac{k+l}{2}\!-\!s_{1}\}^{2}}.

Therefore,

2εδk,l=0N1f(k,l,ε,δ)|ε=δ=0=2εδk,l=0N1g(k,l,ε,δ)|ε=δ=0\left.\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\sum_{k,l=0}^{N-1}f(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}=\left.\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\sum_{k,l=0}^{N-1}g(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}

and we have

ADON(Dp,r)=N2q(pr)(N1)2416π22εδk,l=0N1g(k,l,ε,δ)|ε=δ=0.\operatorname{ADO}_{N}(D_{p,r})=\left.\frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{-16\pi^{2}}\frac{\partial^{2}}{\partial\varepsilon\partial\delta}\sum_{k,l=0}^{N-1}g(k,l,\varepsilon,\delta)\right|_{\varepsilon=\delta=0}.

In g(k,l,ε,δ)g(k,l,\varepsilon,\delta), kk and ε\varepsilon appear as k+εk+\varepsilon, and ll and δ\delta appear as l+δl+\delta, by putting x=k+εx=k+\varepsilon, y=l+δy=l+\delta, we get

JN1(Dp,r)=N2q(pr)(N1)2416π22xyk,l=0N1qp(xN12)2r(yN12)2{2x+1}{2y+1}×s1+k+l2=max(k,l)min(k+l,N1){s1+x+y2,s1+k+l2}2{s1+x+y2,s1+k+l2}2{s1+xy2,s1+kl2}2{x+y2s1,k+l2s1}2|x=ky=l.J_{N-1}(D_{p,r})=-\frac{N^{2}\,q^{(p-r)\frac{(N-1)^{2}}{4}}}{16\pi^{2}}\frac{\partial^{2}}{\partial x\partial y}\sum_{k,l=0}^{N-1}q^{p(x-\frac{N-1}{2})^{2}-r(y-\frac{N-1}{2})^{2}}\{2x+1\}\{2y+1\}\,\times\\ \left.\sum_{s_{1}+\frac{k+l}{2}=\max(k,l)}^{\min(k+l,N-1)}\frac{\{s_{1}+\frac{x+y}{2},s_{1}+\frac{k+l}{2}\}^{2}}{\{s_{1}+\frac{-x+y}{2},s_{1}+\frac{-k+l}{2}\}^{2}\{s_{1}+\frac{x-y}{2},s_{1}+\frac{k-l}{2}\}^{2}\{\frac{x+y}{2}-s_{1},\frac{k+l}{2}-s_{1}\}^{2}}\right|_{\text{\scriptsize$\begin{matrix}x=k\\[-3.0pt] y=l\end{matrix}$}}.

By replacing s1s_{1} by sx+y2s-\frac{x+y}{2}, we get (51).

The case for even pp and odd rr is computed as the limit ε,δ0\varepsilon,\delta\to 0 of the colored knotted graph in Figure 27.

Refer to caption
Figure 27. The knotted graph to compute ADON(Dp,r)\operatorname{ADO}_{N}(D_{p,r}) for even pp and odd rr.
ADON(Dp,r)=limε,δ0ADON([Uncaptioned image])=q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2p(ε+δ2)2p(εδ2)2qr(l+δN12)2+r(ε+δ2)2+r(εδ2)2×[2k+2ε+N2k+2ε+1]1[2l+2δ+N2l+2δ+1]1{N12ε+δ2N12+εδ2δN12+ε+δ2N12+εδ2k+ε}q×ADON([Uncaptioned image])=(39),(40)q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2r(l+δN12)2(pr)(ε2+δ22)×{N1}!2{2k+2ε+1}{2l+2δ+1}{2k+2ε+N,N}{2l+2δ+N,N}{k+εδ,k}{N1+ε+δ}{k+ε+δ,k}{N1}!×ADON([Uncaptioned image]).\operatorname{ADO}_{N}(D_{p,r})=\lim_{\varepsilon,\delta\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOeo}\end{matrix}\right)\\ =q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p(\frac{\varepsilon+\delta}{2})^{2}-p(\frac{\varepsilon-\delta}{2})^{2}}q^{-r(l+\delta-\frac{N-1}{2})^{2}+r(\frac{\varepsilon+\delta}{2})^{2}+r(\frac{\varepsilon-\delta}{2})^{2}}\,\times\\ \left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+2\delta+N\\ 2l+2\delta+1\end{matrix}\right]^{-1}\left\{\begin{matrix}\frac{N-1}{2}-\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&-\delta\\[4.0pt] \frac{N-1}{2}+\frac{\varepsilon+\delta}{2}&\frac{N-1}{2}+\frac{\varepsilon-\delta}{2}&k+\varepsilon\end{matrix}\right\}_{q}\,\times\\ \hfill\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right)\\ \underset{\eqref{eq:ADO6j7},\eqref{eq:ADO6j8}}{=}q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\,\times\hfill\\ \frac{\{N-1\}!^{2}\{2k+2\varepsilon+1\}\{2l+2\delta+1\}}{\{2k+2\varepsilon+N,N\}\{2l+2\delta+N,N\}}\frac{\{k+\varepsilon-\delta,k\}\{N-1+\varepsilon+\delta\}}{\{k+\varepsilon+\delta,k\}\{N-1\}!}\,\times\\ \hfill\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right).

Then the rest of the computation to get (51) is almost the same as even pp, rr case.

The case for odd pp and rr is computed by the limit ε,δ0\varepsilon,\delta\to 0 of the ADO invariant of the colored knotted graph in Figure 28.

Refer to caption
Figure 28. The knotted graph to compute ADON(Dp,r)\operatorname{ADO}_{N}(D_{p,r}) for odd pp and rr.
ADON(Dp,r)=limε,δ0ADON([Uncaptioned image])=q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2p(ε+δ2)2p(εδ2)2qr(l+δN12)2+r(ε+δ2)2+r(εδ2)2×[2k+2ε+N2k+2ε+1]1[2l+2δ+N2l+2δ+1]1ADON([Uncaptioned image])=(39),(40)q(pr)(N1)24limε,δ0k,l=0N1qp(k+εN12)2r(l+δN12)2(pr)(ε2+δ22)×{N1}!2{2k+2ε+1}{2l+2δ+1}{2k+2ε+N,N}{2l+2δ+N,N}ADON([Uncaptioned image]).\operatorname{ADO}_{N}(D_{p,r})=\lim_{\varepsilon,\delta\to 0}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOoo}\end{matrix}\right)\\ =q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-p(\frac{\varepsilon+\delta}{2})^{2}-p(\frac{\varepsilon-\delta}{2})^{2}}q^{-r(l+\delta-\frac{N-1}{2})^{2}+r(\frac{\varepsilon+\delta}{2})^{2}+r(\frac{\varepsilon-\delta}{2})^{2}}\,\times\\ \left[\begin{matrix}2k+2\varepsilon+N\\ 2k+2\varepsilon+1\end{matrix}\right]^{-1}\left[\begin{matrix}2l+2\delta+N\\ 2l+2\delta+1\end{matrix}\right]^{-1}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right)\\ \underset{\eqref{eq:ADO6j7},\eqref{eq:ADO6j8}}{=}q^{(p-r)\frac{(N-1)^{2}}{4}}\lim_{\varepsilon,\delta\to 0}\sum_{k,l=0}^{N-1}q^{p(k+\varepsilon-\frac{N-1}{2})^{2}-r(l+\delta-\frac{N-1}{2})^{2}-(p-r)(\frac{\varepsilon^{2}+\delta^{2}}{2})}\,\times\hfill\\ \frac{\{N-1\}!^{2}\{2k+2\varepsilon+1\}\{2l+2\delta+1\}}{\{2k+2\varepsilon+N,N\}\{2l+2\delta+N,N\}}\operatorname{ADO}_{N}\left(\begin{matrix}\includegraphics[scale={0.6}]{doubletwistADOee1}\end{matrix}\right).

Then the rest of the computation to get (51) is almost same as even pp, rr case. ∎

The twist knot TpT_{p} is equal to Dp,2D_{p,2}, so (51) also gives a formula for JN1(Tp)J_{N-1}(T_{p}).

C. Asymptotics

Here we investigate the asymptotic behavior of the colored Jones invariant for large NN. We also reformulate the sum over the parameter ss inside the quantum 6j6j symbol.

C.1. Quantum dilogarithm function

As a continuous version of the quantum factorial {n}!\{n\}!, we use Fateev’s quantum dilogarithm function φN(x)\varphi_{N}(x), which is the analytic continuation of the following function defined for 0<x<10<x<1.

φN(x)=e(2x1)tdt4tsinhtsinh(t/N).\varphi_{N}(x)=\int_{-\infty}^{\infty}\frac{e^{(2x-1)t}\,dt}{4t\sinh t\sinh(t/N)}.

It is shown in [5] that

φN(α+12N)φN(α12N)=log(1e2πiα).\varphi_{N}({\alpha+\frac{1}{2N}})-\varphi_{N}({\alpha-\frac{1}{2N}})=-\log(1-e^{2\pi i\alpha}).

This implies that

{x,n}={x}{x1}{xn+1}=(1)nq(2xn+1)n2(1q2x)(1q2x2)(1q2x2n+2)=(1)nq(2xn+1)n2eφ(2x2n+12N)φ(2x+12N).\{x,n\}=\{x\}\{x-1\}\cdots\{x-n+1\}=(-1)^{n}q^{-\frac{(2x-n+1)n}{2}}(1-q^{2x})(1-q^{2x-2})\cdots(1-q^{2x-2n+2})\\ =(-1)^{n}q^{-\frac{(2x-n+1)n}{2}}e^{\varphi(\frac{2x-2n+1}{2N})-\varphi(\frac{2x+1}{2N})}. (52)

For fixed any sufficient small δ>\delta> and any M>0M>0,

φN(t)=N2πiLi2(e2πit)+O(1N)\varphi_{N}(t)=\frac{N}{2\pi i}\mathrm{Li}_{2}(e^{2\pi it})+O(\frac{1}{N})

in the domain

{tδ<Ret<1δ,|Imt|<M}\{t\in\mathbb{C}\mid\delta<\mathrm{Re}\,t<1-\delta,\ \left|\mathrm{Im}\,t\right|<M\}

by Proposition A.1 of [15]. It is also shown by Lemma A of [15] that

φN(12N)=N2πiπ26+O(logN),φN(112N)=N2πiπ26+O(logN).\varphi_{N}(\frac{1}{2N})=\frac{N}{2\pi i}\frac{\pi^{2}}{6}+O(\log N),\quad\varphi_{N}(1-\frac{1}{2N})=\frac{N}{2\pi i}\frac{\pi^{2}}{6}+O(\log N).

C.2. Reformulation of the colored Jones polynomials

Here we reformulate the colored Jones polynomials (50) and (51) by using the dilogarithm function. We first reformulate JN1(Wp)J_{N-1}(W_{p}). Let

ξN(x,k,l,s)={s,sxk2}2{sx,sx+k2}2{sl,slxk2}2{x+ls,x+k2+ls1}2.\xi_{N}(x,k,l,s)=\frac{\{s,s-\frac{x-k}{2}\}^{2}}{\{s-x,s-\frac{x+k}{2}\}^{2}\{s-l,s-l-\frac{x-k}{2}\}^{2}\{x+l-s,\frac{x+k}{2}+l-s_{1}\}^{2}}.

Then

ddxξN(x,k,l,s)|x=k=ddxq(4s28(l+x)s+3x2+2kxk2+4lx+4l2)/2×exp(2φN(2s+12N)+2φN(2s2x+12N)+2φN(2s2l+12N)+2φN(2x+2l2s+12N)2φN(xk+12N)2φN(kx+12N))|x=k=ddxq2(s22(l+x)s+x2+lx+l2)exp(2φN(2s+12N)+2φN(2s2x+12N)+2φN(2s2l+12N)+2φN(2x+2l2s+12N)4φN(12N))|x=k\left.\frac{d}{dx}\xi_{N}(x,k,l,s)\right|_{x=k}=\frac{d}{dx}q^{(4s^{2}-8(l+x)s+3x^{2}+2kx-k^{2}+4lx+4l^{2})/2}\,\times\hfill\\ \exp\Big{(}-2\varphi_{N}(\tfrac{2s+1}{2N})+2\varphi_{N}(\tfrac{2s-2x+1}{2N})+2\varphi_{N}(\tfrac{2s-2l+1}{2N})\hfill\\ \left.+2\varphi_{N}(\tfrac{2x+2l-2s+1}{2N})-2\varphi_{N}(\tfrac{x-k+1}{2N})-2\varphi_{N}(\tfrac{k-x+1}{2N})\Big{)}\right|_{x=k}\\ =\frac{d}{dx}q^{2(s^{2}-2(l+x)s+x^{2}+lx+l^{2})}\exp\Big{(}-2\varphi_{N}(\tfrac{2s+1}{2N})+2\varphi_{N}(\tfrac{2s-2x+1}{2N})+\hfill\\ \left.2\varphi_{N}(\tfrac{2s-2l+1}{2N})+2\varphi_{N}(\tfrac{2x+2l-2s+1}{2N})-4\varphi_{N}(\tfrac{1}{2N})\Big{)}\right|_{x=k}

since

ddx(φN(xk+12N)+φN(kx+12N))|x=k=0,\left.\frac{d}{dx}\Big{(}\varphi_{N}(\tfrac{x-k+1}{2N})+\varphi_{N}(\tfrac{k-x+1}{2N})\Big{)}\right|_{x=k}=0,
2kxk2|x=k=x2|x=k=x2,ddx(2kxk2)|x=k=ddxx2|x=k=2k.\left.2kx-k^{2}\right|_{x=k}=\left.x^{2}\right|_{x=k}=x^{2},\qquad\left.\frac{d}{dx}(2kx-k^{2})\right|_{x=k}=\left.\frac{d}{dx}x^{2}\right|_{x=k}=2k.

By using the relation between 2πiNφN(t)\frac{2\pi i}{N}\varphi_{N}(t) and Li2(e2πit)\mathrm{Li}_{2}(e^{2\pi it}), we have

ξN(x,l,s)=EN(x,l,s)q2(s22(l+x)s+x2+lx+l2)exp(N2πi(2Li2(q2s+1)+2Li2(q2s2x+1)+2Li2(q2s2l+1)+2Li2(q2x+2l2s+1)π23))\xi_{N}(x,l,s)=E_{N}(x,l,s)q^{2(s^{2}-2(l+x)s+x^{2}+lx+l^{2})}\exp\Big{(}\frac{N}{2\pi i}\big{(}-2\mathrm{Li}_{2}(q^{2s+1})\\ \hfill+2\mathrm{Li}_{2}(q^{2s-2x+1})+2\mathrm{Li}_{2}(q^{2s-2l+1})+2\mathrm{Li}_{2}(q^{2x+2l-2s+1})-\frac{\pi^{2}}{3}\big{)}\Big{)}

where EN(x,l,s)E_{N}(x,l,s) is a function which grows at most a polynomially with respect to NN. Therefore,

JN1(Wp)=Nqp(N1)244πik,l=0N1ddx(qp(xN12)2{2x+1}sxk2=max(k,l)min(k+l,N1)ξN(x,l,s))|x=k.J_{N-1}(W_{p})=N\frac{q^{p\frac{(N-1)^{2}}{4}}}{4\pi i}\sum_{k,l=0}^{N-1}\frac{d}{dx}\!\left(\!q^{p(x-\frac{N-1}{2})^{2}}\{2x+1\}\left.\sum_{s-\frac{x-k}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\!\!\xi_{N}(x,l,s)\!\right)\!\right|_{x=k}. (53)

Similarly, we have

JN1(Dp,r)=Nqp(N1)24r(N1)244πi×k,l=0N12xy(qp(xN12)2r(yN12)2{2x+1}{2y+1}sxk+yl2=max(k,l)min(k+l,N1)ξN(x,y,s))|x=ky=l.J_{N-1}(D_{p,r})=N\frac{q^{p\frac{(N-1)^{2}}{4}-r\frac{(N-1)^{2}}{4}}}{4\pi i}\,\times\\ \sum_{k,l=0}^{N-1}\frac{\partial^{2}}{\partial x\partial y}\left(q^{p(x-\frac{N-1}{2})^{2}-r(y-\frac{N-1}{2})^{2}}\{2x+1\}\{2y+1\}\!\!\!\!\!\left.\sum_{s-\frac{x-k+y-l}{2}=\max(k,l)}^{\min(k+l,N-1)}\!\!\!\!\!\!\xi_{N}(x,y,s)\right)\right|_{\text{\scriptsize$\begin{matrix}x=k\\[-3.0pt] y=l\end{matrix}$}}. (54)

C.3. Saddle points

We investigate the sum sξN(x,y,s)\sum_{s}\xi_{N}(x,y,s). Since ξN(x,y,s)\xi_{N}(x,y,s) is non-negative for each ss and there exists s0s_{0} such that ξN(x,y,s0)\xi_{N}(x,y,s_{0}) is the maximal among ξN(x,y,s)\xi_{N}(x,y,s). In this case, there is some number CNC_{N} satisfying 1CNN1\leq C_{N}\leq N satisfying

sξN(x,y,s)=CNξN(x,y,s0),\sum_{s}\xi_{N}(x,y,s)=C_{N}\,\xi_{N}(x,y,s_{0}), (55)

where s0s_{0} satisfies

sξN(x,y,s)=0.\frac{\partial}{\partial s}\xi_{N}(x,y,s)=0.

Now we compute the maximal point s0s_{0} of ξN(x,y,s)\xi_{N}(x,y,s). Let Nα=x+12N\alpha=x+\frac{1}{2}, Nη=y+12N\eta=y+\frac{1}{2}, Nγ=s+12N\gamma=s+\frac{1}{2} and u=e2πiαu=e^{2\pi i\alpha}, v=e2πiηv=e^{2\pi i\eta}, w=e2πiγw=e^{2\pi i\gamma}. Then the equation for obtaining the maximal point is

log(w1)2(wuv)2(wu)2(wv)2=0.\log\frac{(w-1)^{2}(w-uv)^{2}}{(w-u)^{2}(w-v)^{2}}=0.

To solve it, we first solve

(w1)2(wuv)2(wu)2(wv)2=((w1)(wuv)(wu)(wv))((w1)(wuv)+(wu)(wv))=(1uv)w(2w2(u+1)(v+1)z+2uv)=0.(w-1)^{2}(w-uv)^{2}-(w-u)^{2}(w-v)^{2}=\\ \big{(}(w-1)(w-uv)-(w-u)(w-v)\big{)}\big{(}(w-1)(w-uv)+(w-u)(w-v)\big{)}=\\ (-1-uv)w\big{(}2w^{2}-(u+1)(v+1)z+2uv\big{)}=0.

The solution is w=(u+1)(v+1)±(u+1)2(v+1)216uv4w=\frac{(u+1)(v+1)\pm\sqrt{(u+1)^{2}(v+1)^{2}-16uv}}{4}. The solution corresponding to q2s0+1q^{2s_{0}+1} is

w0=(u+1)(v+1)(u+1)2(v+1)216uv4,w_{0}=\frac{(u+1)(v+1)-\sqrt{(u+1)^{2}(v+1)^{2}-16uv}}{4}, (56)

and s0=N2πilogw012s_{0}=\frac{N}{2\pi i}\log w_{0}-\frac{1}{2}.

D. Neumann-Zagier function

Here we recall some properties of the Neumann-Zagier function developed in [14] and [20]. The relation between this function and the potential function coming from the quantum invariant is observed in [19].

D.1. Neumann-Zagier potential function

To prove the volume conjecture for double twist knots, we extend the argument in [19] to links. Let L=L1L2LkL=L_{1}\cup L_{2}\cup\cdots\cup L_{k} be a link with connected components. Let ρ\rho be an SL(2,)\mathrm{SL}(2,\mathbb{C}) representation of π1(S3L)\pi_{1}(S^{3}\setminus L), μi\mu_{i}, λiπ1(S3L)\lambda_{i}\in\pi_{1}(S^{3}\setminus L) are elements corresponding to the meridian and longitude of LiL_{i}, and ξi\xi_{i}, ηi\eta_{i} are the eigenvalues of ρ(μi)\rho(\mu_{i}) and ρ(λi)\rho(\lambda_{i}) respectively. Then there is an analytic function f(ξ1,,ξk)f(\xi_{1},\cdots,\xi_{k}) satisfying the following differential equation.

ξif(ξ1,,ξk)=2logηi.(i=1,2,,l)\frac{\partial}{\partial\xi_{i}}f(\xi_{1},\cdots,\xi_{k})=-2\log\eta_{i}.\quad(i=1,2,\cdots,l)

Now we assume that f(1,,1)=0f(1,\cdots,1)=0. For an integer ll satisfying 0lk0\leq l\leq k and rational numbers pi/qip_{i}/q_{i} for i=1,2,,li=1,2,\cdots,l, let MM be a three manifold obtained by rational pi/qip_{i}/q_{i} surgeries along the components L1L_{1}, L2L_{2}, \cdots, LlL_{l}, and ρ\rho be the representation of π1(S3L)\pi_{1}(S^{3}\setminus L) corresponding to this surgery. Then

2pilogξi+2qilogηi=2π1.(i=1,2,,l)2p_{i}\log\xi_{i}+2q_{i}\log\eta_{i}=2\pi\sqrt{-1}.\quad(i=1,2,\cdots,l)

This function corresponds to the deformation of the hyperbolic structure of the complement of LL.

D.2. Complex volume

Let MM be the manifold obtained by this surgery. Assume that MM is a hyperbolic manifold. Then the complex volume of MM is given by f(ξ1,,ξk)f(\xi_{1},\cdots,\xi_{k}) with a small modification. The complex volume of MM is

Vol(M)+1CS(M)\mathrm{Vol}(M)+\sqrt{-1}\,\mathrm{CS}(M)

where Vol(M)\mathrm{Vol}(M) be the hyperbolic volume and CS\mathrm{CS} is the Chern-Simons invariant of MM. Let γi\gamma_{i} be the core geodesic of LiL_{i} for this surgery, them

γi=2(rilogξi+silogηi)\gamma_{i}=2(r_{i}\log\xi_{i}+s_{i}\log\eta_{i})

where rir_{i}, sis_{i} are integers satisfying pisiriqi=1p_{i}\,s_{i}-r_{i}\,q_{i}=1.

Theorem 4.

([20, Theorem 2]) The complex volume of MM is given by

Vol(M)+1CS(M)=1i(f(ξ1,,ξk)+i=1klogξilogηiπi2i=1kγi).\mathrm{Vol}(M)+\sqrt{-1}\,\mathrm{CS}(M)=\frac{1}{i}\left(f(\xi_{1},\cdots,\xi_{k})+\sum_{i=1}^{k}\log\xi_{i}\,\log\eta_{i}-\frac{\pi i}{2}\sum_{i=1}^{k}\gamma_{i}\right). (57)

References

  • [1] Y. Akutsu, T. Deguchi, T. Ohtsuki, Invariants of colored links. J. Knot Theory Ramifications 1 (1992), no. 2, 161–184.
  • [2] Q. Chen, S. Zhu, On the asymptotic expansions of various quantum invariants II: the colored Jones polynomial of twist knots at the root of unity e2π1N+1Me^{\frac{2\pi\sqrt{-1}}{N+\frac{1}{M}}} and e2π1Ne^{\frac{2\pi\sqrt{-1}}{N}}. arXiv:2307.13670.
  • [3] Y. Cho, H. Kim, On the volume formula for hyperbolic tetrahedra. Discrete Comput. Geom. 22 (1999), 347–366.
  • [4] F. Costantino, J. Murakami, On the SL(2,)SL(2,\mathbb{C}) quantum 6j6j-symbols and their relation to the hyperbolic volume. Quantum Topol. 4 (2013), no. 3, 303–351.
  • [5] L. D. Faddeev, Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34 (1995), no. 3, 249–254. MR 1345554, Zbl 0836.47012.
  • [6] S. Garoufalidis, T. T. Q. Le, On the volume conjecture for small angles, arXiv:math/0502163.
  • [7] A.N. Kirillov, N.Yu. Reshetikhin, Representations of the algebra Uq(sl(2))U_{q}(sl(2)), qq-orthogonal polynomials and invariants of links. Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), 285–339, Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989.
  • [8] A. Kolpakov, J. Murakami, Combinatorial decompositions, Kirillov-Reshetikhin invariants, and the volume conjecture for hyperbolic polyhedra. Exp. Math. 27 (2018), 193–207.
  • [9] H. Murakami, J. Murakami, The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186 (2001), 85–104.
  • [10] H. Murakami, J. Murakami, M. Okamoto, T. Takata, Y. Yokota, Kashaev’s conjecture and the Chern-Simons invariants of knots and links. Experiment. Math. 11 (2002), 427–435.
  • [11] H. Murakami, Y. Yokota, The colored Jones polynomials of the figure-eight knot and its Dehn surgery spaces. J. reine angew. Math. 607 (2007), 47–68 DOI 10.1515/CRELLE.2007.045
  • [12] J. Murakmai, A. Ushijima, A volume formula for hyperbolic tetrahedra in terms of edge lengths. J. Geom. 83 (2005), 153–163.
  • [13] J. Murakami, M. Yano, On the volume of a hyperbolic and spherical tetrahedron. Comm. Anal. Geom. 13 (2005), 379–400.
  • [14] W. D. Neumann, D. Zagier, Volumes of hyperbolic 3-manifolds, Topology 24 (1985), 307–332.
  • [15] T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 525_{2} knot, Quantum Topol. 7 (2016), 669–735, MR 3593566, doi:10.4171/QT/83.
  • [16] T. Ohtsuki, On the asymptotic expansions of the Kashaev invariant of hyperbolic knots with seven crossings, Internat. J. Math. 28 (2017), no. 13, 1750096, 143 pp. doi:10.1142/S0129167X17500963
  • [17] T. Ohtsuki, Y. Yokota, On the asymptotic expansions of the Kashaev invariant of the knots with 6 crossings. Mathematical Proceedings of the Cambridge Philosophical Society 165 (2018), 287–339. doi:10.1017/S0305004117000494.
  • [18] A. Ushijima, A volume formula for generalised hyperbolic tetrahedra, Math. Appl. (N.Y.), 581 Springer, New York, 2006, 249–265.
  • [19] Y. Yokota, On the potential functions for the hyperbolic structures of a knot complement, Geom. Topol. Monogr. 4 (2002), 303–311.
  • [20] T. Yoshida, The η\eta-invariant of hyperbolic 3-manifolds, nvent. Math. 81 (1985), 473–514.
  • [21] H. Zheng, Proof of the volume conjecture for Whitehead doubles of a family of torus knots. Chinese Annals of Mathematics, Series B 28 (2007), 375–388, arXiv:math/0508138