This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Complex non-Kähler manifolds that are cohomologically close to, or far from, being Kähler

Hisashi Kasuya, Jonas Stelzig
Abstract.

We give four constructions of non-¯\partial\bar{\partial} (hence non-Kähler) manifolds: (1) A simply connected page-11-¯\partial\bar{\partial}-manifold (2) A simply connected ddc+3dd^{c}+3-manifold (3) For any r2r\geq 2, a simply connected compact manifold with nonzero differential on the rr-th page of the Frölicher spectral sequence. (4) For any r2r\geq 2, a pluriclosed nilmanifold with nonzero differential on the rr-th page of the Frölicher spectral sequence. The latter disproves a conjecture by Popovici. A main ingredient in the first three constructions is a simple resolution construction of certain quotient singularities with control on the cohomology.

1. Introduction

For any complex manifold XX, we have the Frölicher (or Hodge-de Rham) spectral sequence, starting from Dolbeault cohomology and converging to de Rham cohomology equipped with the Hodge filtration

E1p,q=H¯p,q(X)(HdRk(X;),F).E_{1}^{p,q}=H^{p,q}_{\bar{\partial}}(X)\longrightarrow(H_{dR}^{k}(X;\mathbb{C}),F).

When XX is compact and admits a Kähler metric or more generally admits a compact Kähler modification (Fujiki’s class 𝒞\mathcal{C}), this spectral sequence degenerates on the first page. Moreover, in this case, the Hodge filtration FF and its conjugate F¯\bar{F} induce a pure Hodge structure on de Rham cohomology, which is succinctly characterized as:

bkp,q(M):=dimgrFpgrF¯qHdRk(X;)=0 whenever kp+q,b_{k}^{p,q}(M):=\dim\operatorname{gr}^{p}_{F}\operatorname{gr}^{q}_{\bar{F}}H_{dR}^{k}(X;\mathbb{C})=0\text{ whenever }k\neq p+q,

where grFp\operatorname{gr}^{p}_{F} denotes the quotient of two successive filtration steps. If, like on Kähler manifolds, both of these properties (E1E_{1}-degeneration and purity) hold, one says XX is a ¯\partial\bar{\partial}-manifold.

It is well-known that for general compact complex manifolds, both of these properties may fail, even drastically so, [CFG87, Pit89, CFG91, AT11, BR14, Ste22]. The examples witnessing this failure tend to be non-simply connected or of high dimension. We construct here simply connected examples for which the ¯\partial\bar{\partial}-property fails in minimal and maximal ways:

Construction I.

There exists a family of 33-dimensional simply connected compact complex manifolds MbM_{b}, b>0b\in\mathbb{R}_{>0} such that, for all bb, the Hodge filtrations induce a pure Hodge structure on HdRk(Mb)H_{dR}^{k}(M_{b}) for all kk and one has E2(Mb)=E(Mb)E_{2}(M_{b})=E_{\infty}(M_{b}), but E1(Mb)E2(Mb)E_{1}(M_{b})\neq E_{2}(M_{b}) if and only if bπb\in\pi\mathbb{Z}.

The combination of pure Hodge structure and E2=EE_{2}=E_{\infty} has been studied under the name page-11-¯\partial\bar{\partial}-property or page-22-Hodge decomposition in [PSU21, PSU22, KS23]. Most notably, any compact complex holomorphically parallelizable manifold with solvable Lie algebra of holomorphic vector fields (i.e. holomorphically parallelizable solvmanifolds) satisfies this property. All these examples are not simply connected. Since any compact complex curve and any simply connected compact complex surface satisfies the usual ¯\partial\bar{\partial}-property, the dimension in this construction is optimal. For bπb\not\in\pi\mathbb{Z}, the examples MbM_{b} are three dimensional compact complex ¯\partial\bar{\partial}-manifolds not in Fujiki’s class 𝒞\mathcal{C} which are very different from examples given in [Fri19].

Construction II.

There exists a simply connected compact complex 44-fold MM which satisfies E1(M)=E(M)E_{1}(M)=E_{\infty}(M), with

bkp,q(M)=0 whenever |p+qk|>1b_{k}^{p,q}(M)=0\text{ whenever }|p+q-k|>1

but is not a ¯\partial\bar{\partial}-manifold.

The combination of E1(M)=E(M)E_{1}(M)=E_{\infty}(M) and bkp,q(M)=0b_{k}^{p,q}(M)=0 for |p+qk|>1|p+q-k|>1 has been studied in [SW22], under the name ddc+3dd^{c}+3-condition. All complex surfaces and all Vaisman manifolds are ddc+3dd^{c}+3, but for those cases the simply connected examples are already Kähler. We do not know if there are 33-dimensional simply connected ddc+3dd^{c}+3-manifolds but have not tried too hard to find one. Note that one may construct simply connected manifolds with the same cohomological properties as in Constructions I and II in arbitrarily high dimensions by taking products with simply connected ¯\partial\bar{\partial}-manifolds, e.g. n\mathbb{CP}^{n}.

While the first two constructions give simply connected examples with ‘minimal’ failure of the degeneration and purity properties, one may also ask for ‘maximal’ failure. By taking products of the manifold in Construction II with itself sufficiently many times, one finds, for any rr\in\mathbb{Z} manifolds MrM_{r} with E1(Mr)=E(Mr)E_{1}(M_{r})=E_{\infty}(M_{r}) and some bkp,q(Mr)0b_{k}^{p,q}(M_{r})\neq 0 for |p+qk|>r|p+q-k|>r for any rr, using the Künneth formula for the bkp,qb_{k}^{p,q} [Ste22, Prop. 5.8]. Since the degeneration step on the Frölicher spectral sequence does not increase under taking products, the same argument is not possible there. Nevertheless, we show:

Construction III.

For any rr, there exists a simply connected compact complex manifold with Er(Mr)E(M)E_{r}(M_{r})\neq E_{\infty}(M).

This was first shown by Bigalke and Rollenske [BR14] without the π1(M)=0\pi_{1}(M)=0 hypothesis and our construction builds on theirs.

The main idea in all of these constructions is as follows (c.f. [FM08, Gua95]): Start with a non-simply connected example which admits a non-free action of a finite cyclic group GG such that the quotient is simply connected. Then resolve the singularities. The main technical difficulty is to keep a control over the cohomologies during this process. Since both the Frölicher spectral sequence and the numbers bkp,qb_{k}^{p,q} of a complex manifold XX are governed by the double complex of smooth forms (AX,,¯)(A_{X},\partial,\bar{\partial}), this amounts to keeping track of the bigraded quasi-isomorphism type of this double complex. For the first step this is standard: Differential forms on the quotient X/GX/G can be explained via (locally) invariant forms AX/G:=AXGA_{X/G}:=A_{X}^{G}. The second step is more intricate. One knows how to control the double complex along blow-ups, so the most naive approach would be to blow-up submanifolds with nontrivial stabilizers of the GG-action and hope that the quotient of the blow-up by the induced action (or a finite iteration of such steps) yields a resolution of X/GX/G. Such an approach has been carried out in specific cases, see e.g. [ASTT20] and [ST22], but will in general already fail for |G|=5|G|=5, see e.g. [Sta16, Oda88]. Nevertheless, it can be extended to show the following general result:

Theorem A.

Let XX be a compact complex manifold of dimension nn with an action of a finite abelian group GG of order 2r3s2^{r}\cdot 3^{s}, for some r,s0r,s\geq 0. Then, the quotient X/GX/G admits a resolution of singularities X~X/G\tilde{X}\to X/G and a bigraded quasi-isomorphism

AX~AXGR[1,1],A_{\tilde{X}}\simeq A_{X}^{G}\oplus R[1,1], (1)

where RR looks like a bicomplex of a compact complex manifold n2n-2. There is an isomorphism of fundamental groups π1(X)π1(X~)\pi_{1}(X)\cong\pi_{1}(\tilde{X}).

Here, for two double complexes A,BA,B, the notation ABA\simeq B means there is a (chain of) bigraded quasi-isomorphism(s) connecting the two and (R[1,1])p,q:=Rp1,q1(R[1,1])^{p,q}:=R^{p-1,q-1}. We say that a bicomplex RR looks like that of a compact complex manifold of dimension kk if Rp,q=0R^{p,q}=0 unless 0p,qk0\leq p,q\leq k, and for any decomposition into indecomposable summands (see Section 2.1 below),

  1. (i)

    (real structure and duality) the collection of zigzags (with multiplicity) is symmetric under mirroring along diagonal p=qp=q and antidiagonal p+q=kp+q=k,

  2. (ii)

    (only dots in the corners) the only zigzags with components in degrees (0,0)(0,0), (k,0)(k,0), (0,k)(0,k) and (k,k)(k,k) are dots,

  3. (iii)

    (FSS degenerates in dimension 22) if k=2k=2, there are no even length zigzags.

The structure of RR in Theorem A can, in principle, be explicitly described in every concrete example.

In a somewhat different direction, one may ask whether the existence of special metrics (i.e. other than Kähler) implies something about the Frölicher spectral sequence or the numbers bkp,qb_{k}^{p,q}. For example, there are some results in this direction for Vaisman metrics (mentioned above), Astheno-Kähler metrics [JY93, CR22] and Hermitian symplectic metrics [Cav20] (the latter may or may not be all Kähler [ST10]). It was shown in [Pop19] that any compact complex manifold with an SKT (or pluriclosed) metric (i.e. ¯ω=0\partial\bar{\partial}\omega=0) which in addition satisfies a certian bound on the torsion satisfies E2=EE_{2}=E_{\infty} and he further conjectured that this may be true for arbitrary SKT metrics. However, we show in Appendix A:

Construction IV.

For any r2r\geq 2, there exist compact complex nilmanifolds MrM_{r} (possibly of high dimension) with an SKT metric and Er(M)E(M)E_{r}(M)\neq E_{\infty}(M).

This construction also adapts the examples of [BR14], this time by passing to appropriately chosen torus bundles over them, which admit SKT metrics but keep the nondegeneracy properties of the Frölicher spectral sequence. While the present paper was in preparation, [LUV22] gave a different type of counterexample to the conjecture by pointing out that the example of [Pit89], which has E2E3=EE_{2}\neq E_{3}=E_{\infty}, carries an SKT metric by a result in [AI03].

Acknowledgements. Parts of this paper were written during a stay of J.S. at the University of Osaka, and he is grateful for the invitation, financial support (provided by JSPS KAKENHI Grant Number JP19H01787) and hospitality. J.S. would also like to thank MFO (Mathematisches Forschungsinstitut Oberwolfach) and the organizers and participants of a very inspiring workshop in 2020, where the examples from Construction IV were found. Furthermore, J.S. thanks Daniel Greb and Jean Ruppenthal for some helpful discussions. We warmly thank Sönke Rollenske for explaining to us a specific resolution construction that evolved into what is now Theorem A. Finally, we thank J. Kollár and D. Abramovich for remarks on the preprint version. In particular, D. Abramovich pointed out a gap in the proof of a previous, more general version of Theorem A.

2. Preliminaries

2.1. Cohomology of compact complex manifolds

A double complex (of \mathbb{C}-vector spaces) is a bigraded \mathbb{C}-vector space A=p,qAp,qA=\bigoplus_{p,q\in\mathbb{Z}}A^{p,q} together with two endomorphisms \partial and ¯\bar{\partial} of degree (1,0)(1,0) and (0,1)(0,1) which satisfy d2=0d^{2}=0 for d:=+¯d:=\partial+\bar{\partial} or equivalently 2=¯2=¯+¯=0\partial^{2}=\bar{\partial}^{2}=\partial\bar{\partial}+\bar{\partial}\partial=0. We will always assume double complexes to be bounded, i.e. Ap,q=0A^{p,q}=0 outside a finite region of 2\mathbb{Z}^{2}. Often, they will also come equipped with a real structure, i.e. an antilinear involution σ:AA\sigma:A\to A such that σAp,q=Aq,p\sigma A^{p,q}=A^{q,p} and σσ=¯\sigma\partial\sigma=\bar{\partial}. The principal example is AX:=𝒜X(X)A_{X}:=\mathcal{A}_{X}(X), the space of smooth \mathbb{C}-valued differential forms on a complex manifold. It carries a real structure induced by conjugation on the coefficients of forms. By [KQ20, Ste21], any double complex can written as a direct sum of indecomposable subcomplexes and every indecomposable double complex is either a ‘square’ or a ‘zigzag’ (see diagrams below, where each arrow drawn is an isomorphism and all spaces and maps not drawn are trivial).

For any double complex AA one has the column and row filtrations

FpA:=r,s2rpAr,sF¯qA:=r,s2sqAr,sF^{p}A:=\bigoplus_{\begin{subarray}{c}r,s\in\mathbb{Z}^{2}\\ r\geq p\end{subarray}}A^{r,s}\quad\bar{F}^{q}A:=\bigoplus_{\begin{subarray}{c}r,s\in\mathbb{Z}^{2}\\ s\geq q\end{subarray}}A^{r,s}

and these induce filtrations on total cohomology Hdk(A)H_{d}^{k}(A), denoted by the same letters. The filtrations are said to induce a pure Hodge structure if Hk=p+q=kFpHdk(A)F¯qHdk(A)H^{k}=\bigoplus_{p+q=k}F^{p}H^{k}_{d}(A)\cap\bar{F}^{q}H^{k}_{d}(A). The filtrations also induce spectral sequences that converge from column, resp. row cohomology to the total cohomology, e.g.

E1p,q=H¯p,q(A)(Hdp+q(A),F).E_{1}^{p,q}=H^{p,q}_{\bar{\partial}}(A)\Longrightarrow(H_{d}^{p+q}(A),F).

If A=AXA=A_{X}, this (column) spectral sequence is known as the Frölicher spectral sequence and the second (row) spectral sequence is determined via the real structure, so it is usually not considered. The following is a well-known tool to construct differentials on high pages of the spectral sequence, see e.g. [BT82, KQ20, Ste21].

Lemma 2.1.

Assume there is a direct sum decomposition of double complexes A=BCA=B\oplus C, with BB a zigzag of length 2r2r, i.e. BB is isomorphic to the following complex of dimension 2r2r

a1{\langle a_{1}\rangle}a1=¯a2{\langle\partial a_{1}=\bar{\partial}a_{2}\rangle}a2{\langle a_{2}\rangle}{\ddots}{\ddots}ar{\langle a_{r}\rangle}ar.{\langle\partial a_{r}\rangle.}\scriptstyle{\partial}¯\scriptstyle{\bar{\partial}}\scriptstyle{\partial}¯\scriptstyle{\bar{\partial}}\scriptstyle{\partial}

Then, there is a nonzero differential on the rr-th page of the Frölicher spectral sequence of AA: In fact, dr([a1])=±[br]d_{r}([a_{1}])=\pm[\partial b_{r}].

Proof.

We prove this up to constant: The column cohomology of BB has a basis given by the two nonzero classes [a1][a_{1}] and [ar][\partial a_{r}]. On the other hand, the total cohomology of BB vanishes. Thus, there has to be a nonzero differential on BB as claimed. The statement for AA follows from the fact that spectral sequences are additive under direct sums of filtered modules. ∎

Note that because one can always take a decomposition into indecomposables, the converse is also true [KQ20, Ste21].

Definition 2.2 ([DGMS75]).

A complex manifold XX (resp. a double complex AA) is said to have the ¯\partial\bar{\partial}-property, if the following equivalent conditions hold:

  1. (i)

    The only direct summands appearing in AXA_{X} (resp. AA) are squares and zigzags of length 11 (‘dots’):

    or.\leavevmode\hbox to57.7pt{\vbox to46.41pt{\pgfpicture\makeatletter\hbox{\hskip 29.86664pt\lower-23.2526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{11.50003pt}\pgfsys@lineto{11.40002pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.91664pt}{-12.45973pt}\pgfsys@lineto{-19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.71387pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-20.65276pt}\pgfsys@lineto{11.40002pt}{-20.65276pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-20.65276pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-18.29999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.91664pt}{-12.45973pt}\pgfsys@lineto{19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.11942pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\quad\text{or}\quad\mathbb{C}.
  2. (ii)

    The Frölicher spectral sequence(s) for XX (resp. AA) degenerates on the first page and the Hodge filtrations induce a pure Hodge structure on the total cohomology.

Sometimes, the name ddcdd^{c}-property is used instead.

Definition 2.3 ([PSU22]).

A complex manifold XX (resp. a double complex AA) is said to have the page-11-¯\partial\bar{\partial} (or page-22-Hodge decomposition) property, if the following equivalent conditions hold:

  1. (i)

    The only direct summands appearing in AXA_{X} (resp. AA) are squares, and zigzags of length 11 and 22 (‘dots and lines’):

    ,,,.\leavevmode\hbox to57.7pt{\vbox to46.41pt{\pgfpicture\makeatletter\hbox{\hskip 29.86664pt\lower-23.2526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{11.50003pt}\pgfsys@lineto{11.40002pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.91664pt}{-12.45973pt}\pgfsys@lineto{-19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.71387pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-20.65276pt}\pgfsys@lineto{11.40002pt}{-20.65276pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-20.65276pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-18.29999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.91664pt}{-12.45973pt}\pgfsys@lineto{19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.11942pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\mathbb{C},\quad\leavevmode\hbox to17.87pt{\vbox to46.31pt{\pgfpicture\makeatletter\hbox{\hskip 9.95pt\lower-23.15276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.91666pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{0.0pt}{-12.45973pt}\pgfsys@lineto{0.0pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{0.0pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.79723pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to55.67pt{\vbox to14.25pt{\pgfpicture\makeatletter\hbox{\hskip 27.8333pt\lower-7.17621pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-7.07637pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-4.57637pt}\pgfsys@lineto{11.40002pt}{-4.57637pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-4.57637pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-2.2236pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.
  2. (ii)

    The Frölicher spectral sequences for XX (resp. AA) degenerate on the second page and the Hodge filtrations induce a pure Hodge structure on the total cohomology.

Definition 2.4 ([SW22]).

A complex manifold XX (resp. a double complex AA) is said to have the ddc+3dd^{c}+3-property, if the following equivalent conditions hold:

  1. (i)

    The only direct summands appearing in AXA_{X} (resp. AA) are squares and zigzags of length 11 and 33 (‘dots, LL’s and reverse LL’s’):

    ,,,.\leavevmode\hbox to57.7pt{\vbox to46.41pt{\pgfpicture\makeatletter\hbox{\hskip 29.86664pt\lower-23.2526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{11.50003pt}\pgfsys@lineto{11.40002pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.91664pt}{-12.45973pt}\pgfsys@lineto{-19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.71387pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-20.65276pt}\pgfsys@lineto{11.40002pt}{-20.65276pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-20.65276pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-18.29999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.91664pt}{-12.45973pt}\pgfsys@lineto{19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.11942pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\mathbb{C},\quad\leavevmode\hbox to57.7pt{\vbox to46.41pt{\pgfpicture\makeatletter\hbox{\hskip 29.86664pt\lower-23.2526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.91664pt}{-12.45973pt}\pgfsys@lineto{-19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{-19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.71387pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-20.65276pt}\pgfsys@lineto{11.40002pt}{-20.65276pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-20.65276pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-18.29999pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\quad\leavevmode\hbox to55.67pt{\vbox to46.31pt{\pgfpicture\makeatletter\hbox{\hskip 27.8333pt\lower-23.15276pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.8333pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 7.91666pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 7.91666pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 31.91663pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{C}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 7.91666pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{11.50003pt}\pgfsys@lineto{11.40002pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{13.8528pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{19.91664pt}{-12.45973pt}\pgfsys@lineto{19.91664pt}{4.74036pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{1.0}{-1.0}{0.0}{19.91664pt}{4.94034pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.11942pt}{-4.94377pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\sim}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.
  2. (ii)

    The Frölicher spectral sequence(s) for XX (resp. AA) degenerates on the first page and the Hodge filtrations on total cohomology satisfy:

    p+q=rFpHdkF¯qHdk={0r>k+1Hdkr<k1.\sum_{p+q=r}F^{p}H^{k}_{d}\cap\bar{F}^{q}H^{k}_{d}=\begin{cases}0&r>k+1\\ H_{d}^{k}&r<k-1.\end{cases}

In terms of the numbers bkp,qb_{k}^{p,q} of the introduction, the condition on the filtrations can be written as bkp,q=0b_{k}^{p,q}=0 as soon as |p+qk|>1|p+q-k|>1. We will use:

Lemma 2.5.

Suppose AA is a double complex satisfying the page-rr-¯\partial\bar{\partial}-property (resp. the ddc+3dd^{c}+3-property), with a finite group GG acting on AA by automorphisms of double complexes, then the double complex of invariants AGA^{G} also satisfies the page-11-¯\partial\bar{\partial}-property (resp. the ddc+3dd^{c}+3-property).

Proof.

By Maschke’s theorem, there is an isomorphism of double complexes AχA[χ]A\cong\bigoplus_{\chi}A[\chi], where χ\chi runs over the characters of HH and A[χ]={ωAh.ω=χ(h)ωhH}A[\chi]=\{\omega\in A\mid h.\omega=\chi(h)\omega\leavevmode\nobreak\ \forall h\in H\} denotes the χ\chi-typical component. But a direct sum of double complexes satisfies the page-rr-¯\partial\bar{\partial}-property (resp. the ddc+3dd^{c}+3-property) if and only if all summands do. ∎

We say a map between double complexes f:ABf:A\to B is a bigraded quasi-isomorphism if for any decomposition A=AsqAzigA=A^{sq}\oplus A^{zig} and B=BsqBzigB=B^{sq}\oplus B^{zig} into squares and zigzags the induced map f:AzigBzigf:A^{zig}\to B^{zig} is an isomorphism. For bounded double complexes, this is equivalent to requiring that H(f)H_{\partial}(f) and H¯(f)H_{\bar{\partial}}(f) are isomorphisms, i.e. to ff being an E1E_{1}-isomorphism, see [Ste21, Ste23].

2.2. Quotients of complex manifolds by finite groups

For a complex manifold XX with an action of a finite group GG, the quotient space X/GX/G has a canonical structure as a normal complex analytic space. Denoting by p:XX/Gp:X\to X/G the projection, the structure sheaf on X/GX/G is described as 𝒪X/G(U):=𝒪X(p1(U))G\mathcal{O}_{X/G}(U):=\mathcal{O}_{X}(p^{-1}(U))^{G}. The singularities of X/GX/G are contained in the collection of all points with nontrivial stabilizer. On the other hand, the singularities in normal analytic spaces have codimension at least two and this inclusion is in general not an equality as the following example illustrates:

Example 2.6.

Let X=X=\mathbb{C}, G=±1G={\pm 1} acting by multiplication. Then the complex space X/GX/G is smooth: The map zz2z\mapsto z^{2}, identifies it with \mathbb{C}.

This example contains in some sense all the difference between the singular set and the set with nontrivial stabilizers: Recall that a matrix MGLn()M\in GL_{n}(\mathbb{C}) of finite order is called a quasi-reflection if dimker(Mid)n1\dim\ker(M-\operatorname{id})\geq n-1, i.e, there is at most one eigenvalue not equal to 1 (including multiplicities), which then is a root of unity. A group GGLn()G\subseteq GL_{n}(\mathbb{C}) is called small if it does not contain any quasi-reflections. Note that quasi-reflections have fixed point set of codimension 11. On the other hand, as a normal complex analytic space XX has singularities only in codimension 2\geq 2. The following is a standard result, essentially the Chevalley-Shephard-Todd Theorem, see e.g. [Ben93, §7.2], [BG08].

Proposition 2.7.

Let XX be a complex manifold with an action of a finite group GG. The quotient X/GX/G is a manifold if and only if around every point there are invariant charts in which GG acts by quasi-reflections.

2.3. Smooth differential forms

Given a quotient p:XX/Gp:X\to X/G of a complex manifold by a finite group, just as one defines holomorphic functions, one may also define sheaves of invariant holomorphic forms and smooth \mathbb{C}-valued functions and forms on the complex space X/GX/G by ΩX/Ginv(U):=ΩX/G(p1(U))G\Omega_{X/G}^{inv}(U):=\Omega_{X/G}(p^{-1}(U))^{G} and 𝒜X/Ginv(U):=𝒜X(p1(U))G\mathcal{A}_{X/G}^{inv}(U):=\mathcal{A}_{X}(p^{-1}(U))^{G}. As on usual differential forms, these carry a real structure, a bigrading by type, differentials ,¯\partial,\bar{\partial} and a wedge product such that on every open set UX/GU\subseteq X/G, the global sections (𝒜X/Ginv(U),,¯,)(\mathcal{A}_{X/G}^{inv}(U),\partial,\bar{\partial},\wedge) form a bigraded, bidifferential algebra with real structure. Now, if the complex space X/GX/G is again a complex manifold, that gives us a priori a second notion of holomorphic, resp. smooth forms, namely those which are intrinsically defined from the manifold structure. Denote these by ΩX/G\Omega_{X/G}, resp. 𝒜X/G\mathcal{A}_{X/G}. The (local) pullbacks induce an injective map of sheaves ΩX/GΩX/Ginv\Omega_{X/G}\to\Omega_{X/G}^{inv} and 𝒜X/G𝒜X/Ginv\mathcal{A}_{X/G}\to\mathcal{A}_{X/G}^{inv}, compatible with real structure, bigrading, differentials and products. In general these maps are not isomorphisms:

Example 2.8.

Consider X=X=\mathbb{C} and G={±1}G=\{\pm 1\} as in Example 2.6. The function (z|z|2)(z\mapsto|z|^{2}) is a global section of (𝒜X/Ginv)0,0(\mathcal{A}_{X/G}^{inv})^{0,0}, but it is not a global section of 𝒜X/G0,0\mathcal{A}_{X/G}^{0,0} since it is not the pullback of any smooth function on \mathbb{C} via (zz2)(z\mapsto z^{2}).

However, we have:

Proposition 2.9.

Let X/GX/G be non-singular. Then ΩX/GinvΩX/G\Omega^{inv}_{X/G}\cong\Omega_{X/G} and both ((𝒜X/Ginv)p,,¯)((\mathcal{A}_{X/G}^{inv})^{p,\cdot},\bar{\partial}) and (𝒜X/Gp,,¯)(\mathcal{A}_{X/G}^{p,\cdot},\bar{\partial}) are fine resolutions of ΩX/Gp\Omega^{p}_{X/G}.

Proof.

For holomorphic forms, this is a consequence of Proposition 2.7 and for (𝒜X/Gp,,¯)(\mathcal{A}_{X/G}^{p,\cdot},\bar{\partial}) this is the standard Poincaré Lemma. So, we only have to consider (ΩX/Ginv)p((𝒜X/Ginv)p,,¯)(\Omega^{inv}_{X/G})^{p}\hookrightarrow((\mathcal{A}_{X/G}^{inv})^{p,\cdot},\bar{\partial}). To show that the sheaves (𝒜X/Ginv)p,q(\mathcal{A}_{X/G}^{inv})^{p,q} are fine, we need to find partitions of unity for 1(𝒜Xl.i.)0,01\in(\mathcal{A}_{X}^{l.i.})^{0,0} subordinate to any open cover of X/G=ViX/G=\bigcup V_{i}. This corresponds to finding GG-equivariant partitions of unity subordinate to the cover for X=p1(Vi)X=\bigcup p^{-1}(V_{i}), where p:U~Xp:\tilde{U}\to X is the projection map. These exist by an averaging argument. Next, we have to prove the exactness of

0(ΩU~/Ginv)p(𝒜Xinv)p,0(𝒜Xinv)p,10\to(\Omega_{\tilde{U}/G}^{inv})^{p}\to(\mathcal{A}_{X}^{inv})^{p,0}\to(\mathcal{A}_{X}^{inv})^{p,1}\to\cdots

This follows from the usual Poincaré Lemma on XX because taking GG-invariants is exact (on stalks, this is a sequence of \mathbb{C}-vector spaces and one can average a given primitive to be GG-invariant.) ∎

Let us denote by AXG=(𝒜X/Ginv(X/G),,¯)A_{X}^{G}=(\mathcal{A}_{X/G}^{inv}(X/G),\partial,\bar{\partial}) and AX/G=(𝒜X/G(X/G),,¯)A_{X/G}=(\mathcal{A}_{X/G}(X/G),\partial,\bar{\partial}) the double complexes of global sections. Then we obtain:

Corollary 2.10.

Let X/GX/G be non-singular. The inclusion of double complexes AX/GAXGA_{X/G}\hookrightarrow A_{X}^{G} is a bigraded quasi-isomorphism.

We note that all the discussion here was local, and so one may immediately generalize the above statements to orbifolds 𝒴\mathcal{Y} (spaces which are locally of the form X/GX/G), and the analogously defined sheaves and spaces of ’locally invariant forms’ 𝒜𝒴l.i.\mathcal{A}^{l.i.}_{\mathcal{Y}}:

Proposition 2.11.

Let 𝒴\mathcal{Y} be an orbifold with non-singular underlying complex space YY. Both ((𝒜𝒴,l.i.)p,,¯)((\mathcal{A}_{\mathcal{Y}},{l.i.})^{p,\cdot},\bar{\partial}) and (𝒜Yp,,¯)(\mathcal{A}_{Y}^{p,\cdot},\bar{\partial}) are fine resolutions of ΩYp\Omega^{p}_{Y}.

Corollary 2.12.

On an orbifold 𝒴\mathcal{Y} with smooth underlying complex space YY, the inclusion of double complexes AXA𝒴l.i.A_{X}\hookrightarrow A_{\mathcal{Y}}^{l.i.} is a bigraded quasi-isomorphism.

In this article, all orbifolds we encounter will be of ‘global quotient type’, i.e. of the form X/GX/G as before, so we omit a more detailed discussion.

3. Proof of Theorem A

Lemma 3.1.

Let XX be a compact complex manifold and σ\sigma an automorphism of finite order with fixed point set XσXX^{\sigma}\subseteq X. Then,

  1. (i)

    XσXX^{\sigma}\subseteq X is a complex submanifold,

  2. (ii)

    given an automorphism τ\tau commuting with σ\sigma and a τ\tau-stable submanifold ZXσZ\subseteq X^{\sigma}, τ\tau lifts to an automorphism of BlZXBl_{Z}X.

Proof.

Around a point xXσx\in X^{\sigma}, one may find an equivariant chart (U,φ)(U,\varphi) such that on φ(U)\varphi(U), σ\sigma acts by a diagonal matrix of which the first kk eigenvalues are not equal to 11 and the next nkn-k are equal to 11. Thus, in this chart, the fixed point set is given by z1==zk=0z_{1}=\dots=z_{k}=0. This proves (i). Statement (ii) follows from the universal property of the blow-up.∎

Lemma 3.2.

In the situation of the previous Lemma, if the order of σ\sigma is 22 or 33, there is a bimeromorphic σ\sigma-equivariant map X^X\hat{X}\to X which is finite sequence of blow-ups in smooth, σ\sigma-invariant centers such that X^/σ\hat{X}/\sigma is smooth.

Proof.

Let us work locally around a fixed point of σ\sigma and assume we are in a chart s.t. σ\sigma acts diagonally with k2k\geq 2 nontrivial eigenvalues. We show that by blowing up we can reduce the kk until all local actions are by quasi-reflections, so that the quotient is smooth.

Assume first the order of σ\sigma is 22 and the action is by a diagonal matrix (1,,1,1,,1)(-1,\dots,-1,1,\dots,1) on (an open set in) n\mathbb{C}^{n}, with coordinates z1,,znz_{1},\dots,z_{n}. We may assume k2k\geq 2, otherwise σ\sigma acts as a quasi-reflection. Then the blow up of the fixed point set is given by

{((z1,,zl),[x1,,xk])n×k1zrxs=zsxr},\{((z_{1},\dots,z_{l}),[x_{1},\dots,x_{k}])\in\mathbb{C}^{n}\times\mathbb{CP}^{k-1}\mid z_{r}x_{s}=z_{s}x_{r}\},

which is covered by the kk invariant open sets Vi:={xi0}V_{i}:=\{x_{i}\neq 0\} with coordinates vji=xj/xiv^{i}_{j}=x_{j}/x_{i} for iji\neq j and vii=ziv^{i}_{i}=z_{i}. Thus, the induced action of σ\sigma on ViV_{i} is still diagonal, and in fact a reflection with only nontrivial eigenvalue in the ii-th position. As such, the quotient is smooth.

For the case that the order of σ\sigma is 33, we argue similarly. Write ζ=exp(2πi/3)\zeta=\exp(2\pi i/3). Lets assume we are in a linear diagonal chart around a fixed point and σ\sigma has k1k_{1} eigenvalues ζ\zeta and k2k_{2} eigenvalues ζ2\zeta^{2}, so after possibly reordering the coordinates we may assume σ\sigma is a diagonal matrix with entries (ζ,,ζ,ζ2,,ζ2,1,,1)(\zeta,\dots,\zeta,\zeta^{2},\dots,\zeta^{2},1,\dots,1). Again, denoting ViV_{i} as above, we see that for i=1,,k1i=1,\dots,k_{1}, the induced action is given by a diagonal matrix (1,,ζ,1,ζ,,ζ,1,,1)(1,\dots,\zeta,\dots 1,\zeta,\dots,\zeta,1,\dots,1) with k2+1k_{2}+1 eigenvalues ζ\zeta and for i=k1+1,,ki=k_{1}+1,\dots,k, the action is given by a diagonal matrix (ζ2,,ζ2,1,..,1,ζ2,1,,1)(\zeta^{2},\dots,\zeta^{2},1,..,1,\zeta^{2},1,\dots,1) with k1+1k_{1}+1 eigenvalues ζ\zeta. So we see that if k1k_{1} or k2k_{2} is zero the induced action is by quasi-reflections. If not, we can blow up the new fixed points again and repeat the argument. ∎

Remark 3.3.

Lemma 3.2 is a folklore result and it is well-known that it fails in general for cyclic groups of order 4\geq 4, see e.g. [Oda88, p.31f].

Proof of Theorem A.

Without loss of generality, we may assume GG acts effectively. Pick an element in σG\sigma\in G of order 22 or 33. Then by the previous Lemmata, there exists a finite sequence of blow-ups in smooth invariant centers X^X\hat{X}\to X such that X^/σ\hat{X}/\sigma is smooth and a lift of the action of GG to X^\hat{X} making this an equivariant map. Now, by the blow-up formula, [Ste21b], [ASTT20], we have a GG-equivariant bigraded quasi-isomorphism AX^AXRA_{\hat{X}}\simeq A_{X}\oplus R with AA as in the theorem. Hence, taking σ\sigma-invariants, and using Cor. 2.10 there is a G/σG/\sigma-equivariant quasi-isomorphism AX^/σAXσ=idRA_{\hat{X}/\sigma}\simeq A_{X}^{\sigma=\operatorname{id}}\oplus R^{\prime} with RR^{\prime} as in the Theorem. Furthermore, X^/σ\hat{X}/\sigma has an action of G/σG/\sigma, which has lower order, so the the theorem follows by induction. ∎

We will carry out the procedure in this proof explicitly in the first construction below.

Remark 3.4.

In the proof, the resolusion map X~X/G\tilde{X}\to X/G is the composition of a sequence of maps fi:Xi+1Xif_{i}:X_{i+1}\to X_{i} such that each XiX_{i} is a global quotient of a nonsingular space by G/HiG/H_{i} for a subgroup HiGH_{i}\subset G and each map fi:Xi+1Xif_{i}:X_{i+1}\to X_{i} comes from a blow up at G/HiG/H_{i}-invariant center. We should notice that fi:Xi+1Xif_{i}:X_{i+1}\to X_{i} may not be extended to a GG-equivariant blow-up. We may observe this matter in Construction I.

Remark 3.5.

The addendum in Theorem A concerning the fundamental group follows from a standard van-Kampen argument on blow-ups. We note such a statement is true in greater generality, [Kol93, Thm. 7.5.], [Tak03].

Remark 3.6.

The structure of RR in (1) in Theorem A (resp. by (2) and (3)) one sees that X/GX/G (resp. any space YY with rational singularities) is further holomorphically simply connected in the sense of [Ste23] (i.e. connected and h1,0=h0,1=0h^{1,0}=h^{0,1}=0) if and only if the (resp. any) resolution is holomorphically simply connected. The manifolds in constructions I, II, III below are also holomorphically simply connected. Note that there are simply connected spaces which are not holomorphically simply connected (e.g. the Calabi-Eckmann structures on products of spheres of odd dimension 3\geq 3).

Remark 3.7.

Quotient singularities are rational, and so for any resolution π:X~X/G\pi:\tilde{X}\to X/G, one has

Hp(X/G,𝒪X/G)Hp(X~,𝒪X~).H^{p}(X/G,\mathcal{O}_{X/G})\cong H^{p}(\tilde{X},\mathcal{O}_{\tilde{X}}). (2)

Further, if j:(X/G)regX/Gj:(X/G)^{reg}\to X/G is the inclusion, one may also define the differential forms on X/GX/G as ΩX/G:=jΩ(X/G)reg\Omega_{X/G}:=j_{*}\Omega_{(X/G)^{reg}}. Then, again for any resolution, one has

H0(X/G,ΩX/Gp)H0(X~,ΩXp).H^{0}(X/G,\Omega_{X/G}^{p})\cong H^{0}(\tilde{X},\Omega_{X}^{p}). (3)

In both cases, the analogous isomorphisms in H0,pH^{0,p} and Hp,0H^{p,0} continue to hold if one replaces X/GX/G by any complex space YY with rational singularities [KS21], [GKK10].

For the specific resolutions from Theorem A, the isomorphism (1) recovers (2) and (3) but, because RR satisfies further conditions than just Rp,0=R0,p=0R^{p,0}=R^{0,p}=0, (1) contains finer information, also ‘away from the boundary’: For example, the numbers b32,2b_{3}^{2,2} are preserved under the resolution, and so is the (non-)existence of nontrivial Frölicher differentials landing in degrees (n1,1)(n-1,1). This kind of finer information is crucially used in the following constructions. In view of (3) and (2) holding for all rational singularities and resolutions, it seems to be an interesting question in what generality the conclusion (1) of Theorem A remain valid.

4. Applications of Theorem A

4.1. Construction I

We will construct the manifolds MbM_{b} as the resolution of Theorem A of a singular quotient of a certain solvmanifold XbX_{b}.

Let G:=ϕ2G:=\mathbb{C}\ltimes_{\phi}\mathbb{C}^{2} such that

ϕ(x+1y)=(ex00ex).\phi(x+\sqrt{-1}y)=\left(\begin{array}[]{cc}e^{x}&0\\ 0&e^{-x}\end{array}\right).

Quotients of GG by lattices Γ=(a+bi)ϕΔ\Gamma=(a\mathbb{Z}+bi\mathbb{Z})\ltimes_{\phi}\Delta are known as completely solvable Nakamura-manifolds and their cohomologies can be computed in terms of a finite dimensional sub double complex CbAΓ\GC_{b}\subseteq A_{\Gamma\backslash G}, see [AK17]. In general, the result will depend on the lattice Γ\Gamma, more precisely, on the value of b{0}b\in\mathbb{R}-\{0\}. We will now construct a particular family of lattices Γb\Gamma_{b}, such that the corresponding manifolds Xb:=Γb\GX_{b}:=\Gamma_{b}\backslash G admit an automorphism of order 44.

Let

A:=(2111).A:=\left(\begin{array}[]{cc}2&1\\ 1&1\end{array}\right).

We diagonalize

P1AP=(3+5200352)withP:=(11+521+521).P^{-1}AP=\left(\begin{array}[]{cc}\frac{3+\sqrt{5}}{2}&0\\ 0&\frac{3-\sqrt{5}}{2}\end{array}\right)\quad\text{with}\quad P:=\left(\begin{array}[]{cc}1&\frac{-1+\sqrt{5}}{2}\\ \frac{-1+\sqrt{5}}{2}&-1\end{array}\right).

Take aa\in\mathbb{R} so that ea=3+52e^{a}=\frac{3+\sqrt{5}}{2}. Consider the discrete subgroup

Δ:={P1(mn):m,n[i]}.\Delta:=\left\{P^{-1}\left(\begin{array}[]{cc}m\\ n\end{array}\right):m,n\in\mathbb{Z}[i]\right\}.

Then for any kk\in\mathbb{Z} and yy\in\mathbb{R}, ϕ(ka+1y)P1=P1Ak\phi(ka+\sqrt{-1}y)P^{-1}=P^{-1}A^{k} and hence ϕ(k+1y)(Δ)Δ\phi(k+\sqrt{-1}y)(\Delta)\subset\Delta. For Λ=a+b1\Lambda=a\mathbb{Z}+b\sqrt{-1}\mathbb{Z}, with b0\mathbb{R}\ni b\not=0, Γ=ΛϕΔG\Gamma=\Lambda\ltimes_{\phi}\Delta\subset G is a lattice in GG. We denote by Xb=Γ\GX_{b}=\Gamma\backslash G the resulting solvmanifold. We consider

σ:=(100001010)\sigma:=\left(\begin{array}[]{ccc}-1&0&0\\ 0&0&1\\ 0&-1&0\end{array}\right)

as a biholomorphic automorphism of GG. Since

(0110)P=P(0110),\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right)P=-P\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right),

we have σ(Γ)=Γ\sigma(\Gamma)=\Gamma. The cyclic group σ/4\langle\sigma\rangle\cong\mathbb{Z}/4\mathbb{Z} acts on the solvmanifold XbX_{b} biholomorphically and we obtain a (singular) complex quotient space Xb/σX_{b}/\langle\sigma\rangle depending on b{0}b\in\mathbb{R}-\{0\}. For σ2/2\langle\sigma^{2}\rangle\cong\mathbb{Z}/2\mathbb{Z}, we also obtain a complex quotient space Xb/σ2X_{b}/\langle\sigma^{2}\rangle depending on b{0}b\in\mathbb{R}-\{0\}.

There is a finite dimensional double complex CbAXbC_{b}\subseteq A_{X_{b}} such that the inclusion is a bigraded quasi-isomorphism. It was explicitly given in [AK17]. For us, only the σ\sigma-invariant part will be relevant, which we list below. Following [AK17], we distinguish three cases, depending on the value of bb:

  1. (i)

    b=2mπb=2m\pi for some integer mm\in\mathbb{Z};

  2. (ii)

    b=(2m+1)πb=(2m+1)\pi for some integer mm\in\mathbb{Z};

  3. (iii)

    bmπb\not=m\pi for any integer mm\in\mathbb{Z}.

Proposition 4.1.

For any b{0}b\in\mathbb{R}-\{0\}, the complex Cbσ=idC_{b}^{\sigma=\operatorname{id}} satisfies the page-11-¯\partial\bar{\partial}-property. It satisfies the usual ¯\partial\bar{\partial}-property only in case (iii). In cases (i) and (ii), there are nonzero differentials E11,1E12,1E_{1}^{1,1}\to E_{1}^{2,1} and E11,2E12,2E_{1}^{1,2}\to E_{1}^{2,2}.

Proof.

We list the forms belonging to Cbσ=idC_{b}^{\sigma=\operatorname{id}} in Table 1 in the appendix. In case (iii), the differential on Cbσ=idC_{b}^{\sigma=\operatorname{id}} is zero, hence it trivially satisfies the ¯\partial\bar{\partial}-property. In cases (i) and (ii) on the other hand, we have e.g. d1[e2z1dz22¯+e2z1dz33¯]0E12,1d_{1}[\operatorname{e}^{-2z_{1}}\operatorname{d}z_{2\bar{2}}+\operatorname{e}^{2z_{1}}\operatorname{d}z_{3\bar{3}}]\neq 0\in E_{1}^{2,1}. In Figure 1 we give a schematic picture of the indecomposable summands of Cbσ=idC_{b}^{\sigma=\operatorname{id}}. ∎

Refer to caption
Refer to caption
Figure 1. The indecomposable summands in Cbσ=idC_{b}^{\sigma=\operatorname{id}} for bπb\in\pi\mathbb{Z}, resp. bπb\not\in\pi\mathbb{Z}.
Proposition 4.2.

The complex space Xb/σX_{b}/\langle\sigma\rangle is simply connected.

Proof.

We consider the fiber bundle Δ\2XbΛ\\Delta\backslash\mathbb{C}^{2}\to X_{b}\to\Lambda\backslash\mathbb{C}. By the splitting G=ϕ2G=\mathbb{C}\ltimes_{\phi}\mathbb{C}^{2}, we have the section Λ\Xb\Lambda\backslash\mathbb{C}\to X_{b}. The σ2\sigma^{2}-action is compatible with this bundle structure. The action on the fiber is the standard involution 1-1 on Δ\2\Delta\backslash\mathbb{C}^{2} and the one on the base is trivial. Thus Xb/σ2X_{b}/\langle\sigma^{2}\rangle is a fiber bundle over a torus Λ\\Lambda\backslash\mathbb{C} with the simply connected fiber Δ\2/(1)\Delta\backslash\mathbb{C}^{2}/(-1). We have π1(Xb/σ2)π1(Λ\)=Λ\pi_{1}(X_{b}/\langle\sigma^{2}\rangle)\cong\pi_{1}(\Lambda\backslash\mathbb{C})=\Lambda. Consider Xb/σ=(Xb/σ2)/[σ]X_{b}/\langle\sigma\rangle=(X_{b}/\langle\sigma^{2}\rangle)/\langle[\sigma]\rangle. The action of [σ]\langle[\sigma]\rangle is compatible with the bundle structure on Xb/σ2X_{b}/\langle\sigma^{2}\rangle. The action on the base is the standard involution 1-1 on Λ\\Lambda\backslash\mathbb{C}. Since Λ\/(1)\Lambda\backslash\mathbb{C}/(-1) is simply connected, the quotient Xb/σ2Xb/σX_{b}/\langle\sigma^{2}\rangle\to X_{b}/\langle\sigma\rangle sends π1(Xb/σ2)π1(Λ\)\pi_{1}(X_{b}/\langle\sigma^{2}\rangle)\cong\pi_{1}(\Lambda\backslash\mathbb{C}) to the trivial group. Thus, by [Bre72, Corollary 6.3], π1(Xb/σ)\pi_{1}(X_{b}/\langle\sigma\rangle) is trivial. ∎

We now take MbM_{b} to be resolutions as in Theorem A of the spaces Xb/σX_{b}/\langle\sigma\rangle. Since this modifies the bigraded quasi-isomorphism type of AXb/σCbσ=idA_{X_{b}/\sigma}\simeq C^{\sigma=\operatorname{id}}_{b} only by bicomplexes of points and curves, all of which satisfy the ¯\partial\bar{\partial}-Lemma, we conclude. For completeness, we give a more explicit description of the geometry of XbX_{b} and the resolution procedure below:

4.1.1. Geometry of XbX_{b}

Lemma 4.3.

(XbX_{b} as a double mapping torus) The map id×(P_)\operatorname{id}\times(P\cdot\_) induces an identification

Xb×2([i]2\2),X_{b}\cong\mathbb{C}\times_{\mathbb{Z}^{2}}(\mathbb{Z}[i]^{2}\backslash\mathbb{C}^{2}),

where the basis element e1=(1,0)e_{1}=(1,0) of 2\mathbb{Z}^{2} acts by +a+a on \mathbb{C} and by A_A\cdot\_ on the right and the basis element e2=(0,1)e_{2}=(0,1) acts by +ib+ib on \mathbb{C} and by the identity on the right. This identification is compatible with the fibre bundle projections to Λ\\Lambda\backslash\mathbb{C} on both sides. The action of σ\sigma on the left is identified with the action of the matrix σ3=σ1\sigma^{3}=\sigma^{-1} on the right.

Proof.

Follows from the definitions. ∎

Lemma 4.4 (description of the fixed point set).
  1. (i)

    The action of σ2\sigma^{2} on XbX_{b} fixes exactly six curves C0,,C5XbC_{0},...,C_{5}\subseteq X_{b}. Under the projection p:XbΛ\p:X_{b}\to\Lambda\backslash\mathbb{C}, the curve C0C_{0} maps isomorphically to the base torus and C1C_{1},…,C5C_{5} are 33–sheeted connected coverings. In particular, the fixed point set intersects the fibre of pp over each point in sixteen points. In appropriate local coordinates, the action around each fixed point looks like that of the diagonal matrix Δ(1,1,1)\Delta(1,-1,-1) on 3\mathbb{C}^{3}.

  2. (ii)

    The action of σ\sigma interchanges C1C_{1} and C2C_{2} and C4C_{4} and C5C_{5}. It restricts to an action on C0C_{0} and C1C_{1}. The fixed point set consists of sixteen points, given by the intersection of C0C3C_{0}\cup C_{3} with the fibres over P0:=[0]P_{0}:=[0], P1:=[a/2]P_{1}:=[a/2], P2:=[ib/2]P_{2}:=[ib/2] and P3:=[a/2+ib/2]P_{3}:=[a/2+ib/2]. In appropriate local coordinates, the action around each fixed point looks like that of the diagonal matrix Δ(1,i,i)\Delta(-1,i,-i) on 3\mathbb{C}^{3}.

Proof.

We will identify XbΛ\ΛX_{b}\to\Lambda\backslash\Lambda with a double mapping torus as in Lemma 4.3. The action of σ2=Δ(1,1,1)\sigma^{2}=\Delta(1,-1,-1) on the base is trivial, so to compute the fixed points, we first consider its action in each fibre. There it is the multiplication by (1)(-1) on a standard torus ([i])2\2(\mathbb{Z}[i])^{2}\backslash\mathbb{C}^{2} and the 1616 fixed points are given by the set

F:={P=(x,y)x,y{0,12,i2,1+i2}}.F:=\left\{P=(x,y)\mid x,y\in\left\{0,\frac{1}{2},\frac{i}{2},\frac{1+i}{2}\right\}\right\}.

If the monodromy AA were trivial, we would thus have 1616 fixed curves of σ2\sigma^{2}, each mapping isomorphically to the base. However, it is not trivial and so we have to compute its action on FF. Doing so, we find for example that it acts trivially on (0,0)(0,0) but has order three on other points, e.g.

(12,0)(1,12)(0,12)(12,12)(32,1)(12,0)\left(\frac{1}{2},0\right)\mapsto\left(1,\frac{1}{2}\right)\sim\left(0,\frac{1}{2}\right)\mapsto\left(\frac{1}{2},\frac{1}{2}\right)\mapsto\left(\frac{3}{2},1\right)\sim\left(\frac{1}{2},0\right)

etc. In summary, we obtain, slightly abusing notation:

C0\displaystyle C_{0} :=Λ\×{(0,0)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\{(0,0)\}
C1\displaystyle C_{1} :=Λ\×{(12,0),(0,12),(12,12)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\left\{\left(\frac{1}{2},0\right),\left(0,\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right\}
C2\displaystyle C_{2} :=Λ\×{(i2,0),(0,i2),(i2,i2)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\left\{\left(\frac{i}{2},0\right),\left(0,\frac{i}{2}\right),\left(\frac{i}{2},\frac{i}{2}\right)\right\}
C3\displaystyle C_{3} :=Λ\×{(1+i2,0),(0,1+i2),(1+i2,1+i2)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\left\{\left(\frac{1+i}{2},0\right),\left(0,\frac{1+i}{2}\right),\left(\frac{1+i}{2},\frac{1+i}{2}\right)\right\}
C4\displaystyle C_{4} :=Λ\×{(12,i2),(i2,i+12),(i+12,12)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\left\{\left(\frac{1}{2},\frac{i}{2}\right),\left(\frac{i}{2},\frac{i+1}{2}\right),\left(\frac{i+1}{2},\frac{1}{2}\right)\right\}
C5\displaystyle C_{5} :=Λ\×{(i2,12),(12,i+12),(i+22,i2)}\displaystyle:=\Lambda\backslash\mathbb{C}\times\left\{\left(\frac{i}{2},\frac{1}{2}\right),\left(\frac{1}{2},\frac{i+1}{2}\right),\left(\frac{i+2}{2},\frac{i}{2}\right)\right\}

We note that the projection to Λ\B\Lambda\backslash B is equivariant with respect to σ\sigma and multiplication by (1)(-1). The latter has fixed points P0,,P3P_{0},...,P_{3}. All fixed points of σ\sigma on XbX_{b} therefore have to lie in the fibres over the PiP_{i}. The remaining assertions are straightforward to check. ∎

4.1.2. Explicit description of the resolution

We will do this in two steps, first resolving Xb/σ2X_{b}/\langle\sigma^{2}\rangle. For this, we consider the blow-up in all CiC_{i} as in Lemma 4.4:

Xb:=BlC0C5XbXbX^{\prime}_{b}:=Bl_{C_{0}\cup...\cup C_{5}}X_{b}\longrightarrow X_{b}

This has an induced action of σ2\sigma^{2} and because it is in every fibre the Kummer-construction of a K3K3-surface, we obtain that Xb/σ2Λ\X^{\prime}_{b}/\langle\sigma^{2}\rangle\to\Lambda\backslash\mathbb{C} is a locally trivial holomorphic K3K^{3}-bundle (in particular, it is a manifold).

Let us look more closely at the local structure of Xb/σX^{\prime}_{b}/\langle\sigma\rangle: around any point PCiP\in C_{i} we can find a σ2\sigma^{2}-invariant open neighborhood around PP and a chart φ\varphi to some neighborhood UU of 0 in C3C^{3} with coordinates z1,z2,z3z_{1},z_{2},z_{3} such that φ(p)=0\varphi(p)=0, Ci{z2=z3=0}UC_{i}\cong\{z_{2}=z_{3}=0\}\cap U and the action of σ2\sigma^{2} corresponds to the diagonal action Δ(1,1,1)\Delta(1,-1,-1). Hence, a local model for XbX^{\prime}_{b} is given by:

{((z1,z2,z3),[w2:w3])U×2z2w3=z3w2}\{((z_{1},z_{2},z_{3}),[w_{2}:w_{3}])\in U\times\mathbb{P}^{2}\mid z_{2}w_{3}=z_{3}w_{2}\}

with σ\sigma-action

((z1,z2,z3),[w2:w3])((z1,z2,z3),[w2:w3]).((z_{1},z_{2},z_{3}),[w_{2}:w_{3}])\longmapsto((z_{1},-z_{2},-z_{3}),[-w_{2}:-w_{3}]).

Thus, in the standard chart U2:={w20}U_{2}:=\{w_{2}\neq 0\}, with coordinates (t1,t2,t3)(t_{1},t_{2},t_{3}) for t1=z1,t2=w3w2,t3=z3t_{1}=z_{1},t_{2}=\frac{w_{3}}{w_{2}},t_{3}=z_{3}, σ2\sigma^{2} acts as

(t1,t2,t3)(t1,t2,t2)(t_{1},t_{2},t_{3})\mapsto(t_{1},t_{2},-t_{2})

So, we see explicitly that the quotient by σ2\sigma^{2} is smooth with local coordinates on U2/σ2U_{2}/\sigma^{2} given by (t1,t2,t32)(t_{1},t_{2},t_{3}^{2}). A similar discussion applies to the other chart U3={w30}U_{3}=\{w_{3}\neq 0\}.

With this at hand, we now turn to the induced action of σ\sigma on Xb/σ2X^{\prime}_{b}/\sigma^{2}. Denote by EiE_{i} the exceptional divisors corresponding to CiC_{i}. Since σ\sigma interchanges C1C_{1} and C2C_{2} (resp. C4C_{4} and C5C_{5}) the same holds for E1E_{1} and E2E_{2} (resp. E4E_{4} and E5E_{5}). Thus, the fixed points can only lie on E1E_{1} and E4E_{4}. Let us thus assume that in the construction of the previous paragraph PC1C3P\in C_{1}\cup C_{3} and φ\varphi is defined on a σ\sigma invariant open and identified the action of σ\sigma with the diagonal action Δ(1,i,i)\Delta(-1,i,-i). Then, a local model for the σ\sigma-action on XbX^{\prime}_{b} is:

((z1,z2,z3),[w2:w3])((z1,iz2,iz3,[iw2:iw3])((z_{1},z_{2},z_{3}),[w_{2}:w_{3}])\longmapsto((-z_{1},iz_{2},-iz_{3},[iw_{2}:-iw_{3}])

Thus the induced action on Xb/σ2X^{\prime}_{b}/\sigma^{2} in the coordinates z1,t2,t32z_{1},t_{2},t_{3}^{2} looks as follows:

(z1,t2,t32)(z1,t2,t32)(z_{1},t_{2},t_{3}^{2})\longmapsto(-z_{1},-t_{2},-t_{3}^{2})

(and similarly in the coordinates corresponding to U3U_{3}). Over every point P1,,P4Λ\P_{1},...,P_{4}\in\Lambda\backslash\mathbb{C}, there thus lie four fixed points of σ\sigma, two on each of E1E_{1} and E3E_{3}, with local action given by multiplication by (1)(-1).

If one blows up such a point with local action (1)(-1), a local model for the blow-up is given by

{((x1,x2,x3),[y1:y2:y3]x1y2=x2y1,x1y3=x3y1,x2y3=x3y2}\{((x_{1},x_{2},x_{3}),[y_{1}:y_{2}:y_{3}]\mid x_{1}y_{2}=x_{2}y_{1},x_{1}y_{3}=x_{3}y_{1},x_{2}y_{3}=x_{3}y_{2}\}

and the induced action in the coordinates on U1={y10}U_{1}=\{y_{1}\neq 0\} given by s1=x1,s2=y2y1,s3=y3y1s_{1}=x_{1},s_{2}=\frac{y_{2}}{y_{1}},s_{3}=\frac{y_{3}}{y_{1}} is given by

(s1,s2,s3)(s1,s2,s3).(s_{1},s_{2},s_{3})\longmapsto(-s_{1},s_{2},s_{3}).

Hence, again the quotient is smooth (with coordinates (s12,s2,s3)(s_{1}^{2},s_{2},s_{3})). More globally, if we denote by Q1,,Q16Q_{1},...,Q_{16} the fixed points of σ\sigma on Xb/σ2X^{\prime}_{b}/\sigma^{2} and set X^b:=BlQ1Q16Xb/σ2Xb/σ2\hat{X}_{b}:=Bl_{Q_{1}\cup...\cup Q_{16}}X^{\prime}_{b}/\sigma^{2}\to X^{\prime}_{b}/\sigma^{2}, then the induced map

X^b/σXb/σ\hat{X}_{b}/\sigma\longrightarrow X^{\prime}_{b}/\sigma

is a resolution of singularities. Let us summarize the situation in a diagram:

Xb{X^{\prime}_{b}}Xb{X_{b}}X^b{\hat{X}_{b}}Xb/σ2{X^{\prime}_{b}/\sigma^{2}}Xb/σ2{X_{b}/\sigma^{2}}X^b/σ{\hat{X}_{b}/\sigma}Xb/σ{X^{\prime}_{b}/\sigma}Xb/σ.{X_{b}/\sigma\leavevmode\nobreak\ .}

Each leftmost horizontal map (resp. each composition of horizontal maps) is a resolution of singularities. Let us now use this to compute the bigraded quasi-isomorphism type of the double complex of forms on the manifold X^b/σ\hat{X}_{b}/\sigma:

AX^b/σ\displaystyle A_{\hat{X}_{b}/\sigma} AX^bσ=id\displaystyle\simeq A_{\hat{X}_{b}}^{\sigma=\operatorname{id}}
(AXb/σ2i=116(AQi[1,1]AQi[2,2]))σ=id\displaystyle\simeq\left(A_{X^{\prime}_{b}/\sigma^{2}}\oplus\bigoplus_{i=1}^{16}(A_{Q_{i}}[1,1]\oplus A_{Q_{i}}[2,2])\right)^{\sigma=\operatorname{id}}
(AXbσ2=idi=116(AQi[1,1]AQi[2,2]))σ=id\displaystyle\simeq\left(A_{X^{\prime}_{b}}^{\sigma^{2}=\operatorname{id}}\oplus\bigoplus_{i=1}^{16}(A_{Q_{i}}[1,1]\oplus A_{Q_{i}}[2,2])\right)^{\sigma=\operatorname{id}}
((AXbi=05ACi[1,1])σ2=idi=116(AQi[1,1]AQi[2,2]))σ=id\displaystyle\simeq\left(\left(A_{X_{b}}\oplus\bigoplus_{i=0}^{5}A_{C_{i}}[1,1]\right)^{\sigma^{2}=\operatorname{id}}\oplus\bigoplus_{i=1}^{16}(A_{Q_{i}}[1,1]\oplus A_{Q_{i}}[2,2])\right)^{\sigma=\operatorname{id}}
Cbσ=id(i=05ACi[1,1])σ=idi=116(AQi[1,1]AQi[2,2])\displaystyle\simeq C_{b}^{\sigma=\operatorname{id}}\oplus\left(\bigoplus_{i=0}^{5}A_{C_{i}}[1,1]\right)^{\sigma=\operatorname{id}}\oplus\bigoplus_{i=1}^{16}\left(A_{Q_{i}}[1,1]\oplus A_{Q_{i}}[2,2]\right)

Since points and curves satisfy the ¯\partial\bar{\partial}-property, we see that the manifolds Mb:=X^b/σM_{b}:=\hat{X}_{b}/\sigma satisfy the statement in Construction I.

Remark 4.5.

Recall that a reduced compact complex space is in Fujiki’s class 𝒞\mathcal{C} if it admits a compact Kähler modification. By Hironaka’s Flatting theorem, this condition is equivalent to being a meromorphic image of a compact Kähler space (see [Var89, Theorem 5]). The latter condition is the original definition of Fujiki in [Fuj78].

We notice that for any bb, Mb:=X^b/σM_{b}:=\hat{X}_{b}/\sigma is not in Fujiki’s class 𝒞\mathcal{C}. If Mb:=X^b/σM_{b}:=\hat{X}_{b}/\sigma is in Fujiki’s class 𝒞\mathcal{C}, then Xb/σX_{b}/\langle\sigma\rangle is a compact complex space in Fujiki’s class 𝒞\mathcal{C} by the resolution MbXb/σM_{b}\to X_{b}/\langle\sigma\rangle and hence XbX_{b} is a complex space in Fujiki’s class 𝒞\mathcal{C} by [Fuj78, Lemma 4.6] since the quotient map XbXb/σX_{b}\to X_{b}/\langle\sigma\rangle is a Kähler morphism. This contradicts [AK14, Theorem 3.3] and [Has06, Main Theorem].

In [Fri19], Friedman constructs compact complex three dimensional ¯\partial\bar{\partial}-manifolds with second Betti numbers=0=0 and trivial canonical bundles by using generalized Clemens construction. On our example MbM_{b}, for any bb, we have HdR2(Mb)0H^{2}_{dR}(M_{b})\not=0 and H0(Mb,Ω3)=0H^{0}(M_{b},\Omega^{3})=0 (see Appendix B) in particular the canonical bundle of MbM_{b} is non-trivial.

4.2. Construction II

We proceed in a similar fashion to the previous section, constructing a simply connected, singular quotient of a complex 44-fold by a finite group with invariant forms having the ddc+3dd^{c}+3 property, then taking a resolution as in Theorem A. Since all points, curves and surfaces satisfy the ddc+3dd^{c}+3-condition (c.f. [SW22]), this is sufficient.

Consider the nilpotent Lie group

H={MGl4()M=(1x1y1x3010x2001y20001)}H=\left\{M\in Gl_{4}(\mathbb{R})\mid M=\begin{pmatrix}1&x_{1}&y_{1}&x_{3}\\ 0&1&0&x_{2}\\ 0&0&1&y_{2}\\ 0&0&0&1\end{pmatrix}\right\}

and set G:=H×3G:=H\times\mathbb{R}^{3}, where 3\mathbb{R}^{3} has coordinates (y3,x4,y4)(y_{3},x_{4},y_{4}). Let H:=HGL4()H_{\mathbb{Z}}:=H\cap GL_{4}(\mathbb{Z}) and Γ=H×3G\Gamma=H_{\mathbb{Z}}\times\mathbb{Z}^{3}\subseteq G a (automatically cocompact) lattice in GG. Define X:=Γ\GX:=\Gamma\backslash G. One obtains a basis of left-invariant differential forms X1,,X4,Y1,,Y4X^{1},...,X^{4},Y^{1},...,Y^{4} on GG by

Yi:=dyi,Xi:={dxii32dx3+2x1dx2+2y1dy2i=3,Y^{i}:=dy_{i},\qquad X^{i}:=\begin{cases}dx_{i}&i\neq 3\\ -2dx_{3}+2x_{1}dx_{2}+2y_{1}dy_{2}&i=3\end{cases},

so that dX3=2(X1X2+Y1Y2)dX^{3}=2(X^{1}X^{2}+Y^{1}Y^{2}) and dXi=dYi=0dX^{i}=dY^{i}=0 otherwise. We may define a left-invariant complex structure JJ on GG by J(Xi)=YiJ(X^{i})=Y^{i}. Putting ωi:=Xi+iYi\omega^{i}:=X^{i}+iY^{i}, we thus obtain a complex of \mathbb{C}-valued left-invariant forms given by

A:=Λ(ω1,,ω4,ω¯1,,ω¯4)s.t.dω3=dω¯3=ω12¯+ω1¯2,dωk=dω¯k=0 else.A:=\Lambda(\omega^{1},...,\omega^{4},\bar{\omega}^{1},...,\bar{\omega}^{4})\quad\text{s.t.}\quad d\omega^{3}=d\bar{\omega}^{3}=\omega^{1\bar{2}}+\omega^{\bar{1}2},\leavevmode\nobreak\ d\omega^{k}=d\bar{\omega}^{k}=0\text{ else.}

The complex structure thus defined is nilpotent, and therefore the inclusion AAXA\subseteq A_{X} is a bigraded quasi-isomorphism [CFGU00].

Define an automorphism of GG by

σ(x1,y1,x2,y2,x3,y3,x4,y4)=(y1,x1,y2,x2,x3,y3,x4,y4).\sigma(x_{1},y_{1},x_{2},y_{2},x_{3},y_{3},x_{4},y_{4})=(-y_{1},x_{1},y_{2},-x_{2},-x_{3},-y_{3},-x_{4},-y_{4}).

On AA, this induces the action

σ(ω1)=iω1,σ(ω2)=iω2,σ(ω3)=ω3,σ(ω4)=ω4.\sigma(\omega^{1})=i\omega_{1},\leavevmode\nobreak\ \sigma(\omega^{2})=-i\omega^{2},\leavevmode\nobreak\ \sigma(\omega^{3})=-\omega^{3},\leavevmode\nobreak\ \sigma(\omega^{4})=-\omega^{4}.
Proposition 4.6.

The cdga Aσ=idA^{\sigma=\operatorname{id}} satisfies the ddc+3dd^{c}+3 condition, but not the ddcdd^{c}-condition.

Proof.

Since everything is explicitly defined, it is a routine calculation to compute the decomposition of AA into indecomposables. We give an explicit vector space basis for Aσ=idA^{\sigma=\operatorname{id}} in Table 2 in the Appendix and the full decomposition in Figure 2. One can also be slightly more efficient as follows: First check that A:=Λ(ω1,ω2,ω3,ω1¯,ω2¯,ω3¯)A^{\prime}:=\Lambda(\omega^{1},\omega^{2},\omega^{3},\omega^{\bar{1}},\omega^{\bar{2}},\omega^{\bar{3}}) satisfies the ddc+3dd^{c}+3-condition. Then necessarily AΛ(ω4,ω4¯)A^{\prime}\otimes\Lambda(\omega^{4},\omega^{\bar{4}}) satisfies the ddc+3dd^{c}+3-condition since it is a tensor product with a ddcdd^{c}-algebra. By Lemma 2.5, Aσ=idA^{\sigma=\operatorname{id}} satisfies the ddc+3dd^{c}+3-condition. It does not satisfy the usual ddcdd^{c}-condition since e.g. the closed form ω34+ω3¯4\omega^{34}+\omega^{\bar{3}4} is not cohomologous to a sum closed forms of pure-degree. ∎

Refer to caption
Figure 2. The indecomposable summands of Aσ=idA^{\sigma=\operatorname{id}}.
Proposition 4.7.

The complex space X/σX/\langle\sigma\rangle is simply connected.

Proof.

Take (0,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,0) as the base point. We can regard π1X=Γ\pi_{1}X=\Gamma. We have the generators γ1=(1,0,0,0,0,0,0,0),,γ8=(0,0,0,0,0,0,0,1)\gamma_{1}=(1,0,0,0,0,0,0,0),\dots,\gamma_{8}=(0,0,0,0,0,0,0,1). By [Bre72, Corollary 6.3], for the quotient q:XX/σq:X\to X/\langle\sigma\rangle, it is sufficient to show q(γi)q_{*}(\gamma_{i}) is the unit element in π1(X/σ)\pi_{1}(X/\langle\sigma\rangle). Since γ5,,γ8\gamma_{5},\dots,\gamma_{8} form a lattice in 4={(0,0,0,0,x3,y3,x4,y4)}\mathbb{R}^{4}=\{(0,0,0,0,x_{3},y_{3},x_{4},y_{4})\}, by the standard argument q(γi)q_{*}(\gamma_{i}) is trivial for i=5,6,7,8i=5,6,7,8.

We consider the quotient map q:XX/σ2q^{{}^{\prime}}:X\to X/\langle\sigma^{2}\rangle. It is sufficient to prove q(γi)q^{{}^{\prime}}_{*}(\gamma_{i}) is the unit element in π1(X/σ2)\pi_{1}(X/\langle\sigma^{2}\rangle) for i=1,2,3,4i=1,2,3,4. Consider the lattice Γ\Gamma^{{}^{\prime}} generated by γ1,γ2\gamma_{1},\gamma_{2} in 2={(x1,y1,0,0,0,0,0,0)}\mathbb{R}^{2}=\{(x_{1},y_{1},0,0,0,0,0,0)\}. Then the fiber bundle G/Γ𝕋=2/ΓG/\Gamma\to\mathbb{T}^{{}^{\prime}}=\mathbb{R}^{2}/\Gamma^{{}^{\prime}} has the section 𝕋G/Γ\mathbb{T}^{{}^{\prime}}\to G/\Gamma. σ2\sigma^{2} commutes with the bundle structure. By the standard argument, π1(𝕋/σ2)\pi_{1}(\mathbb{T}^{{}^{\prime}}/\langle\sigma^{2}\rangle) is trivial and we can say that q(γi)q^{{}^{\prime}}_{*}(\gamma_{i}) is the unit element for i=1,2i=1,2. Taking care of γ3,γ4\gamma_{3},\gamma_{4} with a similar argument, the proposition follows. ∎

One may now conclude again by applying Theorem A to X/σX/\langle\sigma\rangle.

4.3. Construction III

4.3.1. Review of Bigalke-Rollenske’s examples

In [BR14], L. Bigalke and S. Rollenske produce, for any nn, a complex nilmanifold Xn=Gn/ΓnX_{n}=G_{n}/\Gamma_{n} such that there is a nonzero differential on page EnE_{n} of the Frölicher spectral sequence. A basis for the left-invariant (1,0)(1,0)-forms in these examples is given by:

dx1,,dxn1,dy1,,dyn,dz1,,dzn1,ω1,,ωndx_{1},...,dx_{n-1},dy_{1},...,dy_{n},dz_{1},...,dz_{n-1},\omega_{1},...,\omega_{n}

and the differential is zero except on the ωi\omega_{i}’s, where it is given by (for brevity, we omit all wedge-products)

dω1\displaystyle d\omega_{1} =dy¯1dz1\displaystyle=-d\bar{y}_{1}dz_{1}
dωi\displaystyle d\omega_{i} =dxi1dyi+dyi1dz¯i1.\displaystyle=dx_{i-1}dy_{i}+dy_{i-1}d\bar{z}_{i-1}\leavevmode\nobreak\ .

Let

β1\displaystyle\beta_{1} :=ω¯1dz¯2dz¯n1\displaystyle:=\bar{\omega}_{1}d\bar{z}_{2}...d\bar{z}_{n-1}
β2\displaystyle\beta_{2} :=ω2dz¯2dz¯n1\displaystyle:=\omega_{2}d\bar{z}_{2}...d\bar{z}_{n-1}
βk\displaystyle\beta_{k} :=dx1dxk2ωkdz¯kdz¯n1\displaystyle:=dx_{1}...dx_{k-2}\omega_{k}d\bar{z}_{k}...d\bar{z}_{n-1}
βn\displaystyle\beta_{n} :=dx1dxn2ωn.\displaystyle:=dx_{1}...dx_{n-2}\omega_{n}\leavevmode\nobreak\ .

The differential on page EnE_{n} then corresponds to the subcomplex BB given as follows:

0{0}β1{\langle\beta_{1}\rangle}β1{\langle\partial\beta_{1}\rangle}β2{\langle\beta_{2}\rangle}β2{\langle\partial\beta_{2}\rangle}..{..}βn{\langle{\beta_{n}}\rangle}βn.{\langle\partial\beta_{n}\rangle.}

This is indeed a subcomplex as

¯β1\displaystyle\bar{\partial}\beta_{1} =0\displaystyle=0
β1=¯β2\displaystyle\partial\beta_{1}=-\bar{\partial}{\beta}_{2} =dydz¯1dz¯n1\displaystyle=-dyd\bar{z}_{1}...d\bar{z}_{n-1}
βk=¯βk+1\displaystyle\partial\beta_{k}=-\bar{\partial}\beta_{k+1} =(1)k2dx1dxk1dykdz¯dz¯n1\displaystyle=(-1)^{k-2}dx_{1}...dx_{k-1}dy_{k}d\bar{z}...d\bar{z}_{n-1}
βn\displaystyle\partial\beta_{n} =(1)n2dx1dxn1dyn.\displaystyle=(-1)^{n-2}dx_{1}...dx_{n-1}dy_{n}\leavevmode\nobreak\ .

The proof in [BR14] shows that this subcomplex is even a direct summand in the double complex of all forms. Therefore the Frölicher spectral sequence of XnX_{n} contains the Frölicher spectral sequence of BB as a direct summand and in BB one has dn([β1])=[βn]0d_{n}([\beta_{1}])=[\beta_{n}]\neq 0, hence also in En(X)E_{n}(X).

4.3.2. Definition of a group action

Define an automorphism of the algebra of left-invariant forms on GnG_{n} via σ(dxk)=idxk,σ(dyk)=idyk,σ(dzk)=idzk\sigma(dx_{k})=idx_{k},\sigma(dy_{k})=idy_{k},\sigma(dz_{k})=idz_{k} and σ(ωk)=ωk\sigma(\omega_{k})=-\omega_{k}. This corresponds to an automorphism of the Lie algebra of GnG_{n} (since it is compatible with dd) and hence induces one of GnG_{n}. Because it respects the rational structure GnG_{n} given by the real and imaginary parts of the dxk,dyk,dzk,ωkdx_{k},dy_{k},dz_{k},\omega_{k}, it respects a lattice of GnG_{n}. We have σ(βk)=in2βk\sigma(\beta_{k})=-i^{n-2}\beta_{k}, so the subcomplex BB is contained in the complex of invariant forms whenever n0(4)n\equiv 0(4).

Proposition 4.8.

The complex space σ\Gn/Γn\sigma\backslash G_{n}/\Gamma_{n} is simply connected.

Proof.

Consider the coordinate

x1,,xn1,y1,,yn,z1,,zn1,w1,,wnx_{1},...,x_{n-1},y_{1},...,y_{n},z_{1},...,z_{n-1},w_{1},...,w_{n}

as [BR14]. Take (0,0)(0\dots,0) as the base point. We can regard π1(Gn/Γn)=Γn\pi_{1}(G_{n}/\Gamma_{n})=\Gamma_{n}. By [Bre72, Corollary 6.3], for the quotient q:XX/σq:X\to X/\langle\sigma\rangle, it is sufficient to show q(γ)q_{*}(\gamma) is the unit element in π1(X/σ)\pi_{1}(X/\langle\sigma\rangle) for any γΓn\gamma\in\Gamma_{n}. We have the fiber bundle Gn/Γn3n2/ΓG_{n}/\Gamma_{n}\to\mathbb{C}^{3n-2}/\Gamma^{\prime} with a fiber n/Γ′′\mathbb{C}^{n}/\Gamma^{\prime\prime}. Arguing on the fiber at 03n2/Γ0\in\mathbb{C}^{3n-2}/\Gamma^{\prime}, we can easily check that q(γ)q_{*}(\gamma) is the unit element for any γΓ′′\gamma\in\Gamma^{\prime\prime}. Consider the subgroup ΓxiΓn\Gamma_{x_{i}}\subset\Gamma_{n} corresponding to xix_{i}\in\mathbb{Z} or xiix_{i}\in i\mathbb{Z}, other parameters=0=0. Then we have the fiber bundle Gn/Γn1/ΓxiG_{n}/\Gamma_{n}\to\mathbb{R}^{1}/\Gamma_{x_{i}} with the 0-section 1/ΓxiGn/Γn\mathbb{R}^{1}/\Gamma_{x_{i}}\to G_{n}/\Gamma_{n}. Since σ2\sigma^{2} preserve this section and acts on 1/Γxi\mathbb{R}^{1}/\Gamma_{x_{i}} as antipodes. Thus, we can say that q(γ)q_{*}(\gamma) is the unit element for any γΓxi\gamma\in\Gamma_{x_{i}}. By the same arguments on yiy_{i}, ziz_{i}, we can say that q(γ)q_{*}(\gamma) is the unit element for any γΓ\gamma\in\Gamma.∎

One may now apply again Theorem A to the quotient σ\Gn/Γn\sigma\backslash G_{n}/\Gamma_{n} (for n0(4)n\equiv 0(4) and large enough) to conclude.

Appendix A Counterexamples to Popovici’s SKT conjecture

We keep the notations from section 4.3. We were not able to write down SKT-metrics on Rollenske’s examples directly, but let us modify them as follows: Keep all the forms as above and add θ1,,θn1\theta_{1},...,\theta_{n-1} and η1,,ηn1\eta_{1},...,\eta_{n-1} such that

dθi=¯θi\displaystyle d\theta_{i}=\bar{\partial}\theta_{i} :=dyidy¯i+dzidz¯i\displaystyle:=dy_{i}d\bar{y}_{i}+dz_{i}d\bar{z}_{i}
dηi=¯ηi\displaystyle d\eta_{i}=\bar{\partial}\eta_{i} :=dyi+1dy¯i+1+dxidx¯i\displaystyle:=dy_{i+1}d\bar{y}_{i+1}+dx_{i}d\bar{x}_{i}

Since dd is zero on all factors on the right hand side, adding these, we still have d2=0d^{2}=0. In fact, the corresponding Lie-algebra with left-invariant complex structure is still two-step nilpotent with rational structure constants. In particular the corresponding Lie group G~n\tilde{G}_{n} admits some lattice Γ~n\tilde{\Gamma}_{n} by Malcev’s theorem and the Dolbeault cohomology of X~n:=G~n/Γ~n\tilde{X}_{n}:=\tilde{G}_{n}/\tilde{\Gamma}_{n} can be computed by left-invariant forms.

The claim is now that the subcomplex BB spanned by the βi\beta_{i} and their differentials is still a direct summand (so that one still has a nonzero differential on EnE_{n}) and that there exists a left-invariant SKT-metric on X~n\tilde{X}_{n}

Define a left-invariant hermitian metric hh by its associated form as:

h:=θ1θ¯1+i=1nωiω¯i+dyidy¯i+i=1n112(ηiη¯i+θi+1θ¯i+1)+dxidx¯i+dzidz¯ih:=\theta_{1}\bar{\theta}_{1}+\sum_{i=1}^{n}\omega_{i}\bar{\omega}_{i}+dy_{i}d\bar{y}_{i}+\sum_{i=1}^{n-1}\frac{1}{2}(\eta_{i}\bar{\eta}_{i}+\theta_{i+1}\bar{\theta}_{i+1})+dx_{i}d\bar{x}_{i}+dz_{i}d\bar{z}_{i}

Using

¯(ω1ω¯1)\displaystyle\partial\bar{\partial}(\omega_{1}\bar{\omega}_{1}) =dy1dy¯1dz1dz¯1\displaystyle=dy_{1}d\bar{y}_{1}dz_{1}d\bar{z}_{1}
¯(ωiω¯i)\displaystyle\partial\bar{\partial}(\omega_{i}\bar{\omega}_{i}) =dyi1dy¯i1dzi1dz¯i1+dxi1dx¯i1dyidy¯i\displaystyle=dy_{i-1}d\bar{y}_{i-1}dz_{i-1}d\bar{z}_{i-1}+dx_{i-1}d\bar{x}_{i-1}dy_{i}d\bar{y}_{i} (i2)\displaystyle(i\geq 2)
¯(θiθ¯i)\displaystyle\partial\bar{\partial}(\theta_{i}\bar{\theta}_{i}) =2dyidy¯idzidz¯i\displaystyle=-2dy_{i}d\bar{y}_{i}dz_{i}d\bar{z}_{i}
¯(ηiη¯i)\displaystyle\partial\bar{\partial}(\eta_{i}\bar{\eta}_{i}) =2dxidx¯idyi+1dy¯i+1\displaystyle=-2dx_{i}d\bar{x}_{i}dy_{i+1}d\bar{y}_{i+1}

one sees that this metric is SKT.

We still have to see that dn([β0])0d_{n}([\beta_{0}])\neq 0 in the Frölicher spectral sequence for X~n\tilde{X}_{n} or equivalently that BB is a direct summand in the larger complex AA of all left-invariant forms on G~n\tilde{G}_{n}. Define a subcomplex C~A\tilde{C}\subseteq A as follows: In every (p,q)(p,q) with

(p,q)S:={(0,n),(1,n),(1,n1),,(n,0),(n+1,0)}(p,q)\notin S:=\{(0,n),(1,n),(1,n-1),...,(n,0),(n+1,0)\}

(the positions of the βi\beta_{i} and βi\partial\beta_{i}), Cp,q:=Ap,qC^{p,q}:=A^{p,q}. In every bidegree (p,q)S(p,q)\in S, we set Cp,qAp,qC^{p,q}\subseteq A^{p,q} to be the subspace of all left-invariant forms generated by all elementary wedges of the basis elements dxi,dyi,dzi,ωi,ηi,θidx_{i},dy_{i},dz_{i},\omega_{i},\eta_{i},\theta_{i} and their conjugates, except for the βi\beta_{i} or βi\partial\beta_{i} which lives in this bidegree. By construction A=BCA=B\oplus C as bigraded vector spaces, and it remains to show that this CC is really a subcomplex, i.e. that it is stable under the differential. From [BR14] we already know that differentials of forms containing no summands with ηi,θi,η¯i,θ¯i\eta_{i},\theta_{i},\bar{\eta}_{i},\bar{\theta}_{i}-factors land again in CC. On the other hand, whenever σ\sigma is an elementary wedge of forms containing such a factor τ{ηi,θi,η¯i,θ¯i}\tau\in\{\eta_{i},\theta_{i},\bar{\eta}_{i},\bar{\theta}_{i}\}, writing its differential dσd\sigma as a sum of elementary wedges we see that each of them is either a multiple of τ\tau again, or a multiple of dxidx¯idx_{i}d\bar{x}_{i} or of dyi+1dy¯i+1dy_{i+1}d\bar{y}_{i+1} or of dzidz¯i+1dz_{i}d\bar{z}_{i+1} and therefore does not lie in BB but in CC. Thus, the CC is a subcomplex and the sum A=BCA=B\oplus C is one of double-complexes. As before, this implies that the Frölicher spectral sequence of BB is a direct summand in that of AA, hence dn([β1])=[βn]0d_{n}([\beta_{1}])=[\beta_{n}]\neq 0 on X~n\tilde{X}_{n}.

Remark A.1.

The method we used to produce an SKT metric works in greater generality. We have not tried to find the most general statement, but the following ad-hoc construction already yields many more examples: Consider any nilpotent Lie group GG with left-invariant almost complex structure s.t. we have a decomposition of the space of left-invariant (1,0)(1,0)-forms A1=VWA^{1}=V\oplus W, such that d(W)(V+V¯)(V+V¯)d(W)\subseteq(V+\bar{V})\wedge(V+\bar{V}) and dV=0dV=0 (GG is thus 22-step nilpotent). Assume we are given a left-invariant metric hh such that ¯ωh=(i,j)Avii¯jj¯\partial\bar{\partial}\omega_{h}=\sum_{(i,j)\in A}v_{i\bar{i}j\bar{j}} for some basis (vi)iI(v_{i})_{i\in I} of VV and a subset AI2A\subseteq I^{2}. Now construct a new Lie group GG^{\prime}, also carrying a left-invariant almost complex structure, by prescribing its space of left-invariant (1,0)(1,0)-forms as AG1,0:=VWWA^{1,0}_{G^{\prime}}:=V\oplus W\oplus W^{\prime} where W:=ωij(i,j)AW^{\prime}:=\langle\omega^{ij}\rangle_{(i,j)\in A} has a basis element for each element in AA and dωij:=vii¯+vjj¯d\omega^{ij}:=v_{i\bar{i}}+v_{j\bar{j}}. Then hh^{\prime} defined by ωh:=ωh+(i,j)Aωijωij¯\omega_{h^{\prime}}:=\omega_{h}+\sum_{(i,j)\in A}\omega^{ij}\overline{\omega^{ij}} is a pluriclosed metric on GG^{\prime}. Note that by construction GG^{\prime} is an extension of GG by an abelian subgroup. If we started with a nilmanifold X=G/ΓX=G/\Gamma, we may in this way obtain a torus bundle over XX which carries a pluriclosed metric.

Appendix B Tables

(𝐩,𝐪)\mathbf{{}(p,q)\mathbf{}} (Cbp,q)σ=id cases (i)(ii)(C^{p,q}_{b})^{\sigma=\operatorname{id}}\text{ cases \ref{item:nakamura-1}, \ref{item:nakamura-2}} (Cbp,q)σ=id case (iii)(C^{p,q}_{b})^{\sigma=\operatorname{id}}\text{ case \ref{item:nakamura-3}}
(𝟎,𝟎)\mathbf{{}(0,0)\mathbf{}} 1\mathbb{C}\left\langle 1\right\rangle 1\mathbb{C}\left\langle 1\right\rangle
(𝟏,𝟎)\mathbf{{}(1,0)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟎,𝟏)\mathbf{{}(0,1)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟐,𝟎)\mathbf{{}(2,0)\mathbf{}} dz23\mathbb{C}\left\langle\operatorname{d}z_{23}\right\rangle dz23\mathbb{C}\left\langle\operatorname{d}z_{23}\right\rangle
(𝟏,𝟏)\mathbf{{}(1,1)\mathbf{}} dz11¯,e2z1dz22¯+e2z1dz33¯,e2z¯1dz22¯+e2z¯1dz33¯\mathbb{C}\left\langle\operatorname{d}z_{1\bar{1}},\;\operatorname{e}^{-2z_{1}}\operatorname{d}z_{2\bar{2}}+\operatorname{e}^{2z_{1}}\operatorname{d}z_{3\bar{3}},\;\operatorname{e}^{-2\bar{z}_{1}}\operatorname{d}z_{2\bar{2}}+\operatorname{e}^{2\bar{z}_{1}}\operatorname{d}z_{3\bar{3}}\right\rangle dz11¯\mathbb{C}\left\langle\operatorname{d}z_{1\bar{1}}\right\rangle
(𝟎,𝟐)\mathbf{{}(0,2)\mathbf{}} dz2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{\bar{2}\bar{3}}\right\rangle dz2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{\bar{2}\bar{3}}\right\rangle
(𝟑,𝟎)\mathbf{{}(3,0)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟐,𝟏)\mathbf{{}(2,1)\mathbf{}} dz132¯+dz123¯,e2z1dz122¯+e2z1dz133¯,e2z¯1dz122¯+e2z¯1dz133¯\mathbb{C}\left\langle\operatorname{d}z_{13\bar{2}}+\operatorname{d}z_{12\bar{3}},\;\operatorname{e}^{-2z_{1}}\operatorname{d}z_{12\bar{2}}+\operatorname{e}^{2z_{1}}\operatorname{d}z_{13\bar{3}},\;\operatorname{e}^{-2\bar{z}_{1}}\operatorname{d}z_{12\bar{2}}+\operatorname{e}^{2\bar{z}_{1}}\operatorname{d}z_{13\bar{3}}\right\rangle dz123¯+dz132¯\mathbb{C}\left\langle\operatorname{d}z_{12\bar{3}}+\operatorname{d}z_{13\bar{2}}\right\rangle
(𝟏,𝟐)\mathbf{{}(1,2)\mathbf{}} dz31¯2¯+dz21¯3¯,e2z¯1dz21¯2¯+e2z¯1dz31¯3¯,e2z1dz21¯2¯+e2z1dz31¯3¯\mathbb{C}\left\langle\operatorname{d}z_{3\bar{1}\bar{2}}+\operatorname{d}z_{2\bar{1}\bar{3}},\;\operatorname{e}^{-2\bar{z}_{1}}\operatorname{d}z_{2\bar{1}\bar{2}}+\operatorname{e}^{2\bar{z}_{1}}\operatorname{d}z_{3\bar{1}\bar{3}},\;\operatorname{e}^{-2z_{1}}\operatorname{d}z_{2\bar{1}\bar{2}}+\operatorname{e}^{2z_{1}}\operatorname{d}z_{3\bar{1}\bar{3}}\right\rangle dz31¯2¯+dz21¯3¯\mathbb{C}\left\langle\operatorname{d}z_{3\bar{1}\bar{2}}+\operatorname{d}z_{2\bar{1}\bar{3}}\right\rangle
(𝟎,𝟑)\mathbf{{}(0,3)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟑,𝟏)\mathbf{{}(3,1)\mathbf{}} dz1231¯\mathbb{C}\left\langle\operatorname{d}z_{123\bar{1}}\right\rangle dz1231¯\mathbb{C}\left\langle\operatorname{d}z_{123\bar{1}}\right\rangle
(𝟐,𝟐)\mathbf{{}(2,2)\mathbf{}} dz232¯3¯,e2z1dz121¯2¯,+e2z1dz131¯3¯,e2z¯1dz121¯2¯+e2z¯1dz131¯3¯\mathbb{C}\left\langle\operatorname{d}z_{23\bar{2}\bar{3}},\;\operatorname{e}^{-2z_{1}}\operatorname{d}z_{12\bar{1}\bar{2}},+\operatorname{e}^{2z_{1}}\operatorname{d}z_{13\bar{1}\bar{3}},\;\operatorname{e}^{-2\bar{z}_{1}}\operatorname{d}z_{12\bar{1}\bar{2}}+\operatorname{e}^{2\bar{z}_{1}}\operatorname{d}z_{13\bar{1}\bar{3}}\right\rangle dz232¯3¯\mathbb{C}\left\langle\operatorname{d}z_{23\bar{2}\bar{3}}\right\rangle
(𝟏,𝟑)\mathbf{{}(1,3)\mathbf{}} dz11¯2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{1\bar{1}\bar{2}\bar{3}}\right\rangle dz11¯2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{1\bar{1}\bar{2}\bar{3}}\right\rangle
(𝟑,𝟐)\mathbf{{}(3,2)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟐,𝟑)\mathbf{{}(2,3)\mathbf{}} {0}\{0\} {0}\{0\}
(𝟑,𝟑)\mathbf{{}(3,3)\mathbf{}} dz1231¯2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{123\bar{1}\bar{2}\bar{3}}\right\rangle dz1231¯2¯3¯\mathbb{C}\left\langle\operatorname{d}z_{123\bar{1}\bar{2}\bar{3}}\right\rangle
Table 1. The double complex (Cb,)σ=id(C^{*,*}_{b})^{\sigma=\operatorname{id}} for the completely-solvable Nakamura manifold in cases (i), (ii) and (iii).
(𝐩,𝐪)\mathbf{{}(p,q)\mathbf{}} (Ap,q)σ=id(A^{p,q})^{\sigma=\operatorname{id}}
(𝟎,𝟎)\mathbf{{}(0,0)\mathbf{}} 1\mathbb{C}\left\langle 1\right\rangle
(𝟏,𝟎)\mathbf{{}(1,0)\mathbf{}} {0}\{0\}
(𝟎,𝟏)\mathbf{{}(0,1)\mathbf{}} {0}\{0\}
(𝟐,𝟎)\mathbf{{}(2,0)\mathbf{}} ω12,ω34\mathbb{C}\left\langle\omega^{12},\omega^{34}\right\rangle
(𝟏,𝟏)\mathbf{{}(1,1)\mathbf{}} ω11¯,ω22¯,ω33¯,ω34¯,ω43¯,ω44¯\mathbb{C}\left\langle\omega^{1\bar{1}},\omega^{2\bar{2}},\omega^{3\bar{3}},\omega^{3\bar{4}},\omega^{4\bar{3}},\omega^{4\bar{4}}\right\rangle
(𝟎,𝟐)\mathbf{{}(0,2)\mathbf{}} ω1¯2¯,ω3¯4¯\mathbb{C}\left\langle\omega^{\bar{1}\bar{2}},\omega^{\bar{3}\bar{4}}\right\rangle
(𝟑,𝟎)\mathbf{{}(3,0)\mathbf{}} {0}\{0\}
(𝟐,𝟏)\mathbf{{}(2,1)\mathbf{}} ω132¯,ω142¯,ω231¯,ω241¯\mathbb{C}\left\langle\omega^{13\bar{2}},\omega^{14\bar{2}},\omega^{23\bar{1}},\omega^{24\bar{1}}\right\rangle
(𝟏,𝟐)\mathbf{{}(1,2)\mathbf{}} ω21¯3¯,ω21¯4¯,ω12¯3¯,ω12¯4¯\mathbb{C}\left\langle\omega^{2\bar{1}\bar{3}},\omega^{2\bar{1}\bar{4}},\omega^{1\bar{2}\bar{3}},\omega^{1\bar{2}\bar{4}}\right\rangle
(𝟎,𝟑)\mathbf{{}(0,3)\mathbf{}} {0}\{0\}
(𝟒,𝟎)\mathbf{{}(4,0)\mathbf{}} ω1234\mathbb{C}\left\langle\omega^{1234}\right\rangle
(𝟑,𝟏)\mathbf{{}(3,1)\mathbf{}} ω1233¯,ω1234¯,ω1243¯,ω1244¯,ω1341¯,ω2342¯\mathbb{C}\left\langle\omega^{123\bar{3}},\omega^{123\bar{4}},\omega^{124\bar{3}},\omega^{124\bar{4}},\omega^{134\bar{1}},\omega^{234\bar{2}}\right\rangle
(𝟐,𝟐)\mathbf{{}(2,2)\mathbf{}} ω121¯2¯,ω123¯4¯,ω131¯3¯,ω131¯4¯,ω141¯3¯,ω141¯4¯,ω232¯3¯,ω232¯4¯,ω242¯3¯,ω242¯4¯,ω341¯2¯,ω343¯4¯\mathbb{C}\left\langle\omega^{12\bar{1}\bar{2}},\omega^{12\bar{3}\bar{4}},\omega^{13\bar{1}\bar{3}},\omega^{13\bar{1}\bar{4}},\omega^{14\bar{1}\bar{3}},\omega^{14\bar{1}\bar{4}},\omega^{23\bar{2}\bar{3}},\omega^{23\bar{2}\bar{4}},\omega^{24\bar{2}\bar{3}},\omega^{24\bar{2}\bar{4}},\omega^{34\bar{1}\bar{2}},\omega^{34\bar{3}\bar{4}}\right\rangle
(𝟏,𝟑)\mathbf{{}(1,3)\mathbf{}} ω31¯2¯3¯,ω41¯2¯3¯,ω31¯2¯4¯,ω41¯2¯4¯,ω11¯3¯4¯,ω22¯3¯4¯\mathbb{C}\left\langle\omega^{3\bar{1}\bar{2}\bar{3}},\omega^{4\bar{1}\bar{2}\bar{3}},\omega^{3\bar{1}\bar{2}\bar{4}},\omega^{4\bar{1}\bar{2}\bar{4}},\omega^{1\bar{1}\bar{3}\bar{4}},\omega^{2\bar{2}\bar{3}\bar{4}}\right\rangle
(𝟎,𝟒)\mathbf{{}(0,4)\mathbf{}} ω1¯2¯3¯4¯\mathbb{C}\left\langle\omega^{\bar{1}\bar{2}\bar{3}\bar{4}}\right\rangle
Table 2. The double complex Aσ=idA^{\sigma=\operatorname{id}} for Construction II, up to middle degree.

References

  • [AI03] B. Alexandrov, S. Ivanov, Vanishing theorems on Hermitian manifolds. Differ. Geom. Appl. 14(3) (2001), 251–265.
  • [AK14] D. Angella, H. Kasuya Hodge theory for twisted differentials. Complex Manifolds 1(2014), no.1, 64–85.
  • [AK17] D. Angella, H. Kasuya, Bott-Chern cohomology of solvmanifolds. Ann. Global Anal. Geom. 52 (2017), no. 4, 363–411.
  • [ASTT20] D. Angella, T. Suwa, N. Tardini, A Tomassini, Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms. Complex Manifolds 7 (2020), no. 1, 194–214.
  • [AT11] D. Angella, A. Tomassini, On cohomological decomposition of almost-complex manifolds and deformations. J. Symplectic. Geom. 9(3) (2011), 403–428.
  • [Ben93] D. J. Benson, Polynomial invariants of finite groups. LMS Lecture Note Series 190, Cambridge University Pres, (1993).
  • [BR14] L. Bigalke, S. Rollenske, Erratum to: The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 358 (2014), 1119–1123.
  • [BT82] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, Springer (1982).
  • [BG08] C. Boyer, K. Galicki, Sasakian Geometry. Oxford Mathematical Monographs, Oxford Science Publications, (2008).
  • [Bre72] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
  • [Cav20] G. Cavalcanti, Hodge theory of SKT manifolds. Adv. Math. 374 (2020), 107270.
  • [CFGU00] L. A. Cordero, M. Fernández, A. Gray, L. Ugarte, Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. Trans. Am. Math. Soc. 352(12) (2000), 5405–5433.
  • [CR22] I. Chiose, R. Rasdeaconu, Remarks on Astheno-Kähler metrics, Bott-Chern and Aeppli cohomology groups. preprint, arXiv: 2210.14126.
  • [Fri19] R. Friedman, The ¯\partial\bar{\partial}-lemma for general Clemens manifolds. Pure Appl. Math. Q. 15(2019), no.4, 1001–1028.
  • [CFG87] L. A. Cordero, M. Fernández, A. Gray, La suite spectrale de Frölicher et les nilvariétés compactes, C. R. Acad. Sci. Paris 305 (1987), 375–380.
  • [CFG91] L. A. Cordero, M. Fernández, A. Gray, The Frölicher spectral sequence for compact nilmanifolds, Illinois J. Math. 35 (1991), 375–380.
  • [DGMS75] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan. Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274.
  • [GKK10] D. Greb, S. Kebekus, Sándor J. Kovács. Extension theorems for differential forms, and Bogomolov-Sommese vanishing on log canonical varieties. Compositio Math., 146, (2010), 193–219.
  • [Gua95] D. Guan, Examples of compact holomorphic symplectic manifolds which are not Kählerian II, Invent. Math 121 (1995), 135–145.
  • [GNA02] F. Guillén and V. Navarro Aznar, Un critére d’extension des foncteurs définis sur les schémas lisses. Publ. Math. Inst. Hautes Études Sci. 95(1) (2002), 1–91.
  • [FM08] M. Fernández, V. Muñoz, An 8-dimensional nonformal, simply connected, symplectic manifold. Ann. Math. 167 (2008), 1045–1054.
  • [Fuj78] A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces. Publ. Res. Inst. Math. Sci. 14 (1978/79), no.1, 1–52.
  • [Has06] K. Hasegawa, A note on compact solvmanifolds with Kähler structures,Osaka J. Math. 43(2006), no. 1, 131–135.
  • [JY93] J. Jost, S. T. Yau, A non-linear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170 (1993), 221–254; Corrigendum Acta Math. 173 (1994), 307.
  • [Kas13] H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds. Math. Z. 273 (2013), no. 1-2, 437–447.
  • [KS23] H. Kasuya, J. Stelzig, Frölicher spectral sequence and Hodge structures on the cohomology of complex parallelisable manifolds, Transform. Groups (2023).
  • [KS21] S. Kebekus, C. Schnell, Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Amer. Math. Soc. 34 (2021), 315-368.
  • [Kol93] J. Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), 177–215.
  • [KQ20] M. Khovanov, Y. Qi, A Faithful Braid Group Action on the Stable Category of Tricomplexes. SIGMA 16 (2020).
  • [LUV22] A. Latorre, L. Ugarte, R. Villacampa, Frölicher spectral sequence of compact complex manifolds with special Hermitian metrics, preprint, arxiv: 2207.14669.
  • [Oda88] T. Oda, Convex bodies and algebraic geometry: An introduction to the theory of toric varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Folge, Band 15, Springer-Verlag, Berlin, Heidelberg, New York, (1988).
  • [Pit89] H. V. Pittie, The nondegeneration of the Hodge-de Rham spectral sequence, Bull. Amer. Math. Soc. 20 (1989), 19-22.
  • [Pop19] D. Popovici, Adiabatic Limit and the Frölicher Spectral Sequence, Pacific J. Math. 300 (2019), 121–158.
  • [PSU21] D. Popovici, J. Stelzig, L. Ugarte, Higher-page Bott-Chern and Aeppli cohomologies and applications. J. Reine Angew. Math. (Crelle) 2021(777), (2011), 157–194.
  • [PSU22] D. Popovici, J. Stelzig, L. Ugarte, Higher-Page Hodge Theory for Compact Complex Manifolds, Ann. Sc. norm. super. Pisa – Cl. sci., to appear (accepted 2022).
  • [ST22] T. Sferruzza, A. Tomassini, Dolbeault and Bott-Chern formalities: Deformation and the ¯\partial\bar{\partial}-lemma. J. Geom. Phys. 175 (2022), 104470.
  • [Sta16] J. Starr, MO-Post, https://mathoverflow.net/questions/257973, (2016).
  • [Ste21] J. Stelzig, On the structure of double complexes. J. London Math. Soc. 104 (2021), 956 – 988.
  • [Ste21b] J. Stelzig, The double complex of a blow-up. Int. Math. Res. Not. 14 (2021), 10731–-10744.
  • [Ste22] J. Stelzig, On linear combinations of cohomological invariants of compact complex manifolds. Adv. Math. 407 (2022), 108560.
  • [Ste23] J. Stelzig, Pluripotential homotopy theory, preprint, arxiv: 2302.08919.
  • [SW22] J. Stelzig, S. Wilson, A ddcdd^{c}-type condition beyond the Kähler realm, preprint, arxiv: 2208.01074.
  • [ST10] J. Streets, G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16 (2010), 3101–3133.
  • [Tak03] S. Takayama, Local simple connectedness of resolutions of log-terminal singularities. Internat. J. Math. 14(8) (2003), 825–836.
  • [Var89] J. Varouchas, Kähler spaces and proper open morphisms. Math. Ann. 283(1989), no.1, 13–52.