This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Complex Higgs Oscillators

Haoren Xiong [email protected] Department of Mathematics, University of California, Berkeley, CA 94720, USA
Abstract.

In this note we discuss the complex version of the Higgs oscillator on the hyperbolic space. The eigenvalues and resonances of the complex Higgs oscillator are computed in different examples in the hyperbolic setting. We also propose open problems like whether the complex absorbing potential (CAP) method works for asymptotically hyperbolic manifolds and finding hyperbolic analogues of the complex harmonic oscillator.

1. Introduction

The Higgs oscillator [Hi] (see also Pallares-Rivera–Kirchbach [PaKi]) is considered as an analogue of the quantum harmonic oscillator on the hyperbolic plane. In this paper we discussed its complex version, in analogy to the complex harmonic oscillator in the Euclidean space studied by, among others, Davies [Da].

Our motivation comes from the complex absorbing potential (CAP) method which has been used as a computational tool for finding scattering resonances – see Riss–Meyer [RiMe] and Seideman–Miller [SeMi] for an early treatment and Jagau et al [JZBRK] for some recent developments. Zworski [Zw] showed that scattering resonances of Δ+V-\Delta+V, VLcomp(n)V\in L^{\infty}_{\operatorname{comp}}({\mathbb{R}}^{n}), are limits of eigenvalues of Δ+Viεx2-\Delta+V-i\varepsilon x^{2} as ε0+\varepsilon\to 0+ . That was extended to potentials which are exponentially decaying in [Xi1]. In addition, in [Xi2] the author extended it to black box non-compactly supported dilation analytic perturbations.

It is natural to ask if the same method works for the hyperbolic space and more generally, asymptotically hyperbolic manifolds. We can formulate the problem as follows: let (M,g)(M,g) be a complete Riemannian manifold of dimension n+1n+1 with boundary M\partial M given by {ρ=0}\{\rho=0\} where ρ:M¯[0,)\rho:\overline{M}\to[0,\infty) is a 𝒞{{\mathcal{C}}^{\infty}} function such that dρ0d\rho\neq 0 on M\partial M, and ρ>0\rho>0 on MM. We assume that the metric ρ2g\rho^{2}g extends to a smooth Riemannian metric on M¯\overline{M} and that |dρ|ρ2g=1|d\rho|_{\rho^{2}g}=1 on M\partial M. Let Δg0\Delta_{g}\geq 0 be the Laplace–Beltrami operator for the metric gg. Since the spectrum is contained in [0,)[0,\infty) the operator Δgn2/4λ2\Delta_{g}-n^{2}/4-\lambda^{2} is invertible on L2(M,dvolg)L^{2}(M,d\operatorname{vol}_{g}) for Imλ>n/2\operatorname{Im}\lambda>n/2. Hence we can define

R(λ):=(Δgn2/4λ2)1:L2(M,dvolg)H2(M,dvolg),Imλ>n/2.R(\lambda):=(\Delta_{g}-n^{2}/4-\lambda^{2})^{-1}:L^{2}(M,d\operatorname{vol}_{g})\to H^{2}(M,d\operatorname{vol}_{g}),\quad\operatorname{Im}\lambda>n/2.

Let 𝒞˙(M){\dot{\mathcal{C}}^{\infty}}(M) denote functions which are extendable to smooth functions supported in M¯\overline{M}. We note that elliptic regularity shows that R(λ):𝒞˙(M)𝒞(M)R(\lambda):{\dot{\mathcal{C}}^{\infty}}(M)\to{{\mathcal{C}}^{\infty}}(M), Imλ>n/2\operatorname{Im}\lambda>n/2. The resolvent R(λ):𝒞˙(M)𝒞(M)R(\lambda):{\dot{\mathcal{C}}^{\infty}}(M)\to{{\mathcal{C}}^{\infty}}(M) continues meromorphically from Imλ>n/2\operatorname{Im}\lambda>n/2 to {\mathbb{C}} with poles of finite rank, see Mazzeo–Melrose [MazMe], Guillarmou [Gu], Guillopé–Zworski [GuZw1] and Vasy [Va1],[Va2]. We denote the poles by Res(Δg)={λj}j=1\operatorname{Res}(\Delta_{g})=\{\lambda_{j}\}_{j=1}^{\infty}. Does there exist a function ff such that the operator Δgn2/4iεf\Delta_{g}-n^{2}/4-i\varepsilon f, ε>0\varepsilon>0, has discrete L2(M,dvolg)L^{2}(M,d\operatorname{vol}_{g}) spectrum {λj(ε)2}\{\lambda_{j}(\varepsilon)^{2}\} and that

λj(ε)λj,as ε0+.\lambda_{j}(\varepsilon)\to\lambda_{j},\quad\textrm{as }\varepsilon\to 0+.

We remark that for finite volume surface with cusp ends this holds with f(x)=d(x,x0)2f(x)=d(x,x_{0})^{2} where dd is the hyperbolic distance – see [Xi2, Example 3].

In this note we want to propose this as an open problem. We first compare the situation to the Euclidean case and then discuss hyperbolic analogues of the complex harmonic oscillator. In fact, the first obstacle is the lack of an analogue of the complex harmonic oscillator in the hyperbolic setting. In [Zw] and [Xi1], the operator Δiεx2\Delta-i\varepsilon x^{2}, ε>0\varepsilon>0 plays an important role as it is an unbounded operator on L2(n)L^{2}({\mathbb{R}}^{n}) with a discrete spectrum given by {eiπ/4ε(2|α|+n):α0n}\{e^{-i\pi/4}\sqrt{\varepsilon}(2|\alpha|+n):\alpha\in\mathbb{N}_{0}^{n}\}, |α|:=α1++αn|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}, see [Da]. On a hyperbolic manifold (M,g)(M,g), we aim to find a complex-valued function f𝒞(M)f\in{{\mathcal{C}}^{\infty}}(M) such that Δg+f\Delta_{g}+f is an operator on L2(M,dvolg)L^{2}(M,d\operatorname{vol}_{g}) with discrete spectrum. Ideally, we should also require ff to be unbounded near infinity like the function iεx2-i\varepsilon x^{2} in the Euclidean case, which would provide the compactness of the resolvent (Δgn2/4+fz)1:L2(M,dvolg)L2(M,dvolg)(\Delta_{g}-n^{2}/4+f-z)^{-1}:L^{2}(M,d\operatorname{vol}_{g})\to L^{2}(M,d\operatorname{vol}_{g}). However, it is hard to find a function ff satisfying all the requirements above. We will explore a candidate f=ω2tanh2rf=\omega^{2}\tanh^{2}r where ω\omega\in{\mathbb{C}}, rr is the hyperbolic radius. The operator Δg+ω2tanh2r\Delta_{g}+\omega^{2}\tanh^{2}r is called the Higgs oscillator in the hyperbolic space, whose spectrum and resonances can be explicitly computed, see [PaKi] for more details. The drawback of this candidate is the boundedness of ff thus we lose the compacteness of the resolvent (Δgn2/4+fz)1(\Delta_{g}-n^{2}/4+f-z)^{-1}. We remark that it is still an open problem to find an ideal analogue of the complex harmonic oscillator in the hyperbolic setting. We hope that the following introduction could popularize this natural problem.

2. Preliminaries: Pöschl–Teller potentials

We recall the following definition from Pöschl–Teller [PöTe]: the Pöschl–Teller potential is defined on {\mathbb{R}} by

Vμ,ν(r):=μ(μ+1)sinh2rν(ν+1)cosh2r,r,V_{\mu,\nu}(r):=\frac{\mu(\mu+1)}{\sinh^{2}r}-\frac{\nu(\nu+1)}{\cosh^{2}r},\quad r\in{\mathbb{R}},

Vμ,νV_{\mu,\nu} is a real potential if μ,ν\mu,\nu are taken in 1/2+i(0,)[1/2,)-1/2+i(0,\infty)\cup[-1/2,\infty). In this section we will focus on the case in which Vμ,νV_{\mu,\nu} is complex-valued and review some properties of the Hamiltonian Dr2+Vμ,ν(r)D_{r}^{2}+V_{\mu,\nu}(r) on the half line (0,)r(0,\infty)_{r}. The following result is based on the analysis of Dr2+Vμ,ν(r)D_{r}^{2}+V_{\mu,\nu}(r) in Guillopé–Zworski [GuZw2, Appendix]:

Proposition 2.1.

The Schrödinger operator Dr2+Vμ,νD_{r}^{2}+V_{\mu,\nu} (respectively Dr2+V0,νD_{r}^{2}+V_{0,\nu}) has +{\mathbb{R}}^{+} as continuous spectrum. The determinant of the scattering matrix for Dr2+Vμ,νD_{r}^{2}+V_{\mu,\nu} is given by the reflection coefficient

sμ,νPT(k)=Γ(ik)Γ((μ+νik)/2+1)Γ((μνik+1)/2)2ikΓ(ik)Γ((μ+ν+ik)/2+1)Γ((μν+ik+1)/2)2ik,s_{\mu,\nu}^{PT}(k)=-\frac{\Gamma(ik)\Gamma((\mu+\nu-ik)/2+1)\Gamma((\mu-\nu-ik+1)/2)2^{-ik}}{\Gamma(-ik)\Gamma((\mu+\nu+ik)/2+1)\Gamma((\mu-\nu+ik+1)/2)2^{ik}}, (2.1)

and for Dr2+V0,νD_{r}^{2}+V_{0,\nu} given by

sνPT(k)=Γ(ik)2Γ(νik+1)Γ(νik)Γ(ik)2Γ(ν+ik+1)Γ(ν+ik).s_{\nu}^{PT}(k)=-\frac{\Gamma(ik)^{2}\Gamma(\nu-ik+1)\Gamma(-\nu-ik)}{\Gamma(-ik)^{2}\Gamma(\nu+ik+1)\Gamma(-\nu+ik)}. (2.2)

The Schrödinger operator Dr2+Vμ,νD_{r}^{2}+V_{\mu,\nu} (resp. Dr2+V0,νD_{r}^{2}+V_{0,\nu}) has non-empty discrete spectrum if and only if Re(νμ)>1\operatorname{Re}(\nu-\mu)>1 (resp. Reν>0\operatorname{Re}\nu>0). The discrete spectrum is given by

σd(Dr2+Vμ,ν)={(νμ12n)2:n, 2n<Re(νμ1)},σd(Dr2+V0,ν)={(νn)2:n,n<Reν}.\begin{split}\sigma_{d}(D_{r}^{2}+V_{\mu,\nu})&=\{-(\nu-\mu-1-2n)^{2}:n\in{\mathbb{N}},\,2n<\operatorname{Re}(\nu-\mu-1)\},\\ \sigma_{d}(D_{r}^{2}+V_{0,\nu})&=\{-(\nu-n)^{2}:n\in{\mathbb{N}},\,n<\operatorname{Re}\nu\}.\end{split}
Proof.

Through a conjugation by sinhμ+1rcoshν+1r\sinh^{\mu+1}r\cosh^{\nu+1}r and the change of variable u=sinh2ru=-\sinh^{2}r, the Schrödinger equation

Dr2ψ+Vμ,νψk2ψ=0D_{r}^{2}\psi+V_{\mu,\nu}\psi-k^{2}\psi=0 (2.3)

is reduced to the hypergeometric equation

u(1u)F′′(u)+[(μ+3/2)(μ+ν+3)u]F(u)[((μ+ν+2)/2)2+(k/2)2]F=0.\begin{split}u(1-u)F^{\prime\prime}(u)&+[(\mu+3/2)-(\mu+\nu+3)u]F^{\prime}(u)\\ &-[((\mu+\nu+2)/2)^{2}+(k/2)^{2}]F=0.\end{split}

The Schrödinger equation (2.3) has the following independent solutions (if μ12\mu\neq-\frac{1}{2}):

Eμ,ν(k)(r)=sinh1+μrcosh1+νr×F12((μ+νik+2)/2,(μ+ν+ik+2)/2,μ+32;sinh2r),\begin{split}E_{\mu,\nu}(k)(r)=&\sinh^{1+\mu}r\cosh^{1+\nu}r\\ &\times{{}_{2}F_{1}}((\mu+\nu-ik+2)/2,(\mu+\nu+ik+2)/2,\mu+\frac{3}{2};-\sinh^{2}r),\end{split} (2.4)
Fμ,ν(k)(r)=sinhμrcosh1+νr×F12((μ+νik+1)/2,(μ+ν+ik+1)/2,12μ;sinh2r).\begin{split}F_{\mu,\nu}(k)(r)=&\sinh^{-\mu}r\cosh^{1+\nu}r\\ &\times{{}_{2}F_{1}}((-\mu+\nu-ik+1)/2,(-\mu+\nu+ik+1)/2,\frac{1}{2}-\mu;-\sinh^{2}r).\end{split} (2.5)

The asymptotic expansion of (2.4) at infinity is given, if ikik is not an integer, by

Eμ,ν(k)(r)Γ(μ+3/2)Γ(ik)Γ((μ+ν+ik+2)/2)Γ((μν+ik+1)/2)cothν+1rsinhikr×F12((μ+νik+1)/2,(μ+νik+1)/2,1ik;sinh2r)Γ(μ+3/2)Γ(ik)Γ((μ+νik+2)/2)Γ((μνik+1)/2)cothν+1rsinhikr×F12((μ+ν+ik+1)/2,(μ+ν+ik+1)/2,1+ik;sinh2r),\begin{split}E_{\mu,\nu}(k)(r)\approx\,&\frac{\Gamma(\mu+3/2)\Gamma(ik)}{\Gamma((\mu+\nu+ik+2)/2)\Gamma((\mu-\nu+ik+1)/2)}\coth^{\nu+1}r\sinh^{ik}r\\ &\times{{}_{2}F_{1}}((\mu+\nu-ik+1)/2,(-\mu+\nu-ik+1)/2,1-ik;-\sinh^{-2}r)\\ &\frac{\Gamma(\mu+3/2)\Gamma(-ik)}{\Gamma((\mu+\nu-ik+2)/2)\Gamma((\mu-\nu-ik+1)/2)}\coth^{\nu+1}r\sinh^{-ik}r\\ &\times{{}_{2}F_{1}}((\mu+\nu+ik+1)/2,(-\mu+\nu+ik+1)/2,1+ik;-\sinh^{-2}r),\end{split} (2.6)

recalling the definition of reflection coefficient for potential scattering (see for instance Dyatlov–Zworski [DyZw19, §2.4]), we obtain (2.1).

The potential V0,νV_{0,\nu} is smooth on {\mathbb{R}}, the operator Dr2+V0,νD_{r}^{2}+V_{0,\nu} can be decomposed as the sum of the Dirichlet (HνD)(H_{\nu}^{D}) and Neumann (HνN)(H_{\nu}^{N}) extensions of Dr2+V0,νD_{r}^{2}+V_{0,\nu}. The eigenfunctions of the spectral resolution of HνNH_{\nu}^{N} are the F0,ν(k)F_{0,\nu}(k) from (2.5) and a similar asymptotic expansion at infinity to (2.6) gives the reflection coefficient s(HνN)s(H_{\nu}^{N}). The scattering coefficient sνPT(k)s_{\nu}^{PT}(k) (2.2) is then the product s0,νPT(k)s(HνN)(k)s_{0,\nu}^{PT}(k)s(H_{\nu}^{N})(k).

The asymptotic properties of the eigenfunctions (2.4)\eqref{eqn:Emunu} and (2.5) determine the discrete spectra. ∎

3. Higgs Oscillator on the Hyperbolic Plane

We consider the hyperbolic plane :={(x,y)2:y>0}{\mathbb{H}}:=\{(x,y)\in{\mathbb{R}}^{2}:y>0\} with the metric y2(dx2+dy2)y^{-2}(dx^{2}+dy^{2}). Instead of coordinates (x,y)(x,y), we will use the geodesic normal coordinates for hyperbolic metrics. These are coordinates (r,φ)(r,\varphi) for which the rr-coordinate curves are unit speed geodesics and the φ\varphi-coordinate curves are geodesic circles. The Laplacian Δ2=y2(Dx2+Dy2)=Dr2icothrDr+sinh2rDφ2\Delta_{{\mathbb{H}}^{2}}=y^{2}(D_{x}^{2}+D_{y}^{2})=D_{r}^{2}-i\coth rD_{r}+\sinh^{-2}rD_{\varphi}^{2}, where Dx=i1xD_{x}=i^{-1}\partial_{x}, is through conjugation by sinh1/2r\sinh^{1/2}r, equivalent to the operator

Dr2+sinh2r(Dφ21/4)+1/4.D_{r}^{2}+\sinh^{-2}r(D_{\varphi}^{2}-1/4)+1/4.

We define the complex version of Higgs Oscillator by Δ2+ω2tanh2r\Delta_{{\mathbb{H}}^{2}}+\omega^{2}\tanh^{2}r, where ω\omega is a complex number, which is through the same conjugation as above, equivalent to the operator

Dr2+Dφ21/4sinh2rω2cosh2r+ω2+14D_{r}^{2}+\frac{D_{\varphi}^{2}-1/4}{\sinh^{2}r}-\frac{\omega^{2}}{\cosh^{2}r}+\omega^{2}+\frac{1}{4}

on L2((0,)r×Sφ1,drdφ)L^{2}((0,\infty)_{r}\times S_{\varphi}^{1},drd\varphi). We can expand this in terms of the eigenfunctions on Sφ1S_{\varphi}^{1} to obtain

mDr2+m21/4sinh2rω2cosh2r+ω2+14.\bigoplus_{m\in{\mathbb{Z}}}D_{r}^{2}+\frac{m^{2}-1/4}{\sinh^{2}r}-\frac{\omega^{2}}{\cosh^{2}r}+\omega^{2}+\frac{1}{4}.

This leads to the one-dimensional Schrödinger operator with Pöschl–Teller potential Dr2+Vμ,νD_{r}^{2}+V_{\mu,\nu}, where μ=|m|1/2\mu=|m|-1/2 and ν=ω2+1/41/2\nu=\sqrt{\omega^{2}+1/4}-1/2. It follows from Proposition 2.1 that the eigenvalues of Dr2+Vμ,νD_{r}^{2}+V_{\mu,\nu} are {(νμ12n)2:n, 2n<Re(νμ1)}\{(\nu-\mu-1-2n)^{2}:n\in{\mathbb{N}},\,2n<\operatorname{Re}(\nu-\mu-1)\}. Hence we obtain the discrete spectrum of Δ2+ω2tanh2r\Delta_{{\mathbb{H}}^{2}}+\omega^{2}\tanh^{2}r:

{ω2+14(ω2+14m12n)2:m,n, 2n<Reω2+14m1}.\left\{\omega^{2}+\frac{1}{4}-\big{(}\sqrt{\omega^{2}+\frac{1}{4}}-m-1-2n\big{)}^{2}:m,n\in{\mathbb{N}},\,2n<\operatorname{Re}\sqrt{\omega^{2}+\frac{1}{4}}-m-1\right\}.

The scattering matrix (2.1) gives the resonances of Δ2+ω2tanh2r\Delta_{{\mathbb{H}}^{2}}+\omega^{2}\tanh^{2}r:

{ω2+14(ω2+14m12n)2:m,n}.\left\{\omega^{2}+\frac{1}{4}-\big{(}\sqrt{\omega^{2}+\frac{1}{4}}-m-1-2n\big{)}^{2}:m,n\in{\mathbb{N}}\right\}.
Refer to caption
Figure 1. The spectrum of the Higgs osicllator on the hyperbolic plane. The red dots are the eigenvalues of Δ2+ω2tanh2r\Delta_{{\mathbb{H}}^{2}}+\omega^{2}\tanh^{2}r with ω2=100i\omega^{2}=-100i while the black dots are its resonances. We also plot the resonances of Δ2\Delta_{{\mathbb{H}}^{2}}, which are the blue dots on the real axis. This shows the deformation of resonances.

4. Higgs Oscillator with an Eckart barrier

We consider the one-dimensional Eckart barrier V=αcosh2rV=\alpha\cosh^{-2}r. The Higgs oscillator with an Eckart barrier is given by

Dr2+V+ω2tanh2r=Dr2+(αω2)cosh2r+ω2.D_{r}^{2}+V+\omega^{2}\tanh^{2}r=D_{r}^{2}+(\alpha-\omega^{2})\cosh^{-2}r+\omega^{2}.

This can be viewed as a Schrödinger operator with Pöschl–Teller potential Dr2+V0,νD_{r}^{2}+V_{0,\nu} shifted by a constant ω2\omega^{2}, where ν=ω2α+1412\nu=\sqrt{\omega^{2}-\alpha+\frac{1}{4}}-\frac{1}{2}. It follows from Proposition 2.1 that the discrete spectrum of the Higgs oscillator with a Eckart barrier is given by

{ω2(ω2α+1412n)2:n,n<Reω2+1412}.\left\{\omega^{2}-\big{(}\sqrt{\omega^{2}-\alpha+\frac{1}{4}}-\frac{1}{2}-n\big{)}^{2}:n\in{\mathbb{N}},\,n<\operatorname{Re}\sqrt{\omega^{2}+\frac{1}{4}}-\frac{1}{2}\right\}.

The scattering matrix (2.2) gives the resonances:

{ω2(ω2α+1412n)2:n}.\left\{\omega^{2}-\big{(}\sqrt{\omega^{2}-\alpha+\frac{1}{4}}-\frac{1}{2}-n\big{)}^{2}:n\in{\mathbb{N}}\right\}.

5. Higgs Oscillator on hyperbolic half-cylinder

We consider the hyperbolic half-cylinder Y0l(0,)r×(/l)θY_{0l}\simeq(0,\infty)_{r}\times({\mathbb{R}}/l{\mathbb{Z}})_{\theta} with metric dr2+cosh2rdθ2dr^{2}+\cosh^{2}rd\theta^{2}. The Laplacian (Dirichlet boundary condition) ΔY0l=Dr2itanhrDr+cosh2Δ/l\Delta_{Y_{0l}}=D_{r}^{2}-i\tanh rD_{r}+\cosh^{-2}\Delta_{{\mathbb{R}}/l{\mathbb{Z}}} is, through a conjugation by cosh1/2r\cosh^{1/2}r, equivalent to the operator

Dr2+Δ/l+1/4cosh2r+14.D_{r}^{2}+\frac{\Delta_{{\mathbb{R}}/l{\mathbb{Z}}}+1/4}{\cosh^{2}r}+\frac{1}{4}.

The Higgs oscillator ΔY0l+ω2tanh2r\Delta_{Y_{0l}}+\omega^{2}\tanh^{2}r, is then equivalent to the operator

Dr2ω2Δ/l1/4cosh2r+ω2+14,D_{r}^{2}-\frac{\omega^{2}-\Delta_{{\mathbb{R}}/l{\mathbb{Z}}}-1/4}{\cosh^{2}r}+\omega^{2}+\frac{1}{4},

which admits the following expansion:

mDr2ω2(2πm/l)21/4cosh2r+ω2+14.\bigoplus_{m\in{\mathbb{Z}}}D_{r}^{2}-\frac{\omega^{2}-(2\pi m/l)^{2}-1/4}{\cosh^{2}r}+\omega^{2}+\frac{1}{4}.

The corresponding one-dimensional one-dimensional Schrödinger operator is Dr2+V0,νD_{r}^{2}+V_{0,\nu} on (0,)(0,\infty) with Dirichlet boundary condition, where we put ν=ω2(2πm/l)21/2\nu=\sqrt{\omega^{2}-(2\pi m/l)^{2}}-1/2. Hence by Proposition 2.1 the discrete specrtum of ΔY0l+ω2tanh2r\Delta_{Y_{0l}}+\omega^{2}\tanh^{2}r is

{ω2+1/4(ω2(2πm/l)22n3/2)2:m,n, 2n<Reω2(2πm/l)23/2},\begin{gathered}\{\omega^{2}+1/4-\big{(}\sqrt{\omega^{2}-(2\pi m/l)^{2}}-2n-3/2\big{)}^{2}:m\in{\mathbb{Z}},\\ n\in{\mathbb{N}},\,2n<\operatorname{Re}\sqrt{\omega^{2}-(2\pi m/l)^{2}}-3/2\},\end{gathered}

while the analysis of (2.1) gives the resonances:

{ω2+1/4(ω2(2πm/l)22n3/2)2:m,n}.\{\omega^{2}+1/4-\big{(}\sqrt{\omega^{2}-(2\pi m/l)^{2}}-2n-3/2\big{)}^{2}:m\in{\mathbb{Z}},n\in{\mathbb{N}}\}.
Refer to caption
Figure 2. The spectrum of the Higgs osicllator on hyperbolic half-cylinder with parameter l=2πl=2\pi and ω2=100i\omega^{2}=-100i. We only plot the spectrum with respect to the Fourier modes m=0,10,20m=0,10,20, here the red dots are eigenvalues and the black dots are resonances. We also plot resonances for ω=0\omega=0 with respect to the same Fourier modes to show the deformation of resonances.

6. Discussion

The explicit formulae show that the resonances in all cases are deformed and some do become eigenvalues. However, in this setting we cannot obtain resonances as limits of these eigenvalues, as one would want for CAP method. In fact, for ω\omega with small modulus there are no eigenvalues for the complex Higgs oscillators at all.

References

  • [Da] E. B. Davies, Pseudospectra, the harmonic oscillator and complex resonances, Proc. R. Soc. Lond. A 455(1999), 585–599.
  • [DyZw19] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics 200, AMS 2019.
  • [Gu] C. Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129(2005), 1–37.
  • [GuZw1] L. Guillopé and M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature near infinity, Asymptotic Anal. 11(1995), 1–22.
  • [GuZw2] L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, Journal of Functional Analysis 129(1995), 364–389.
  • [Hi] P. W. Higgs, Dynamical symmetries in a spherical geometry. I, Journal of Physics A: Mathematical and General 12(1979), 309–323.
  • [JZBRK] T. C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky and A. I. Krylov, A Fresh Look at Resonances and Complex Absorbing Potentials: Density Matrix-Based Approach, J. Phys. Chem. Lett. 5(2014), 310–315.
  • [MazMe] R. Mazzeo and R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75(1987), 260–310.
  • [PaKi] A. Pallares-Rivera and M. Kirchbach, The Higgs Oscillator on the Hyperbolic Plane and Light-Front Holography, Advanced Studies in Theoretical Physics 9(2015), 13–36.
  • [PöTe] G. Pöschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators, Zeitschrift für Physik 83(1933), 143–151.
  • [RiMe] U. V. Riss and H. D. Meyer, Reflection-Free Complex Absorbing Potentials, J. Phys. B 28(1995), 1475–1493.
  • [SeMi] T. Seideman and W. H. Miller, Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions, J. Chem. Phys. 96(1992), 4412–4422.
  • [Va1] A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces, with an appendix by Semyon Dyatlov, Invent. Math. 194(2013), 381–513.
  • [Va2] A. Vasy, Microlocal analysis of asymptotically hyperbolic spaces and high energy resolvent estimates, in Inverse problems and applications. Inside Out II, edited by Gunther Uhlmann, Cambridge University Press, MSRI Publications, 60(2012).
  • [Xi1] H. Xiong, Resonances as viscosity limits for exponentially decaying potentials, J. Math. Phys., 62(2021), 022101.
  • [Xi2] H. Xiong, Resonances as viscosity limits for black box perturbations, arXiv:2102.10232, (2021).
  • [Zw] M. Zworski, Scattering resonances as viscosity limits, in Algebraic and Analytic Microlocal Analysis, M. Hitrik, D. Tamarkin, B. Tsygan, and S. Zelditch, eds. Springer, 2018.