This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Comparison of integral structures on the space of modular forms of full level NN

Anthony Kling
Abstract

Let N3N\geq 3 and r1r\geq 1 be integers and p2p\geq 2 be a prime such that pNp\nmid N. One can consider two different integral structures on the space of modular forms over \mathbb{Q}, one coming from arithmetic via qq-expansions, the other coming from geometry via integral models of modular curves. Both structures are stable under the Hecke operators; furthermore, their quotient is finite torsion. Our goal is to investigate the exponent of the annihilator of the quotient. We will apply methods due to Brian Conrad to the situation of modular forms of even weight and level Γ(Npr)\Gamma(Np^{r}) over p(ζNpr)\mathbb{Q}_{p}(\zeta_{Np^{r}}) to obtain an upper bound for the exponent. We also use Klein forms to construct explicit modular forms of level prp^{r} whenever pr>3p^{r}>3, allowing us to compute a lower bound which agrees with the upper bound. Hence we are able to compute the exponent precisely.

1 Introduction

Let k1k\geq 1 be an integer and let Γ\Gamma be a congruence subgroup of SL2()\rm{SL}_{2}(\mathbb{Z}) of level NN i.e. a subgroup of SL2(){\rm SL}_{2}(\mathbb{Z}) containing the kernel, Γ(N)\Gamma(N), of the usual reduction mod NN map

SL2()SL2(/N).{\rm SL}_{2}(\mathbb{Z})\rightarrow{\rm{SL}_{2}(\mathbb{Z}/N\mathbb{Z})}.

Consider the \mathbb{Q}-vector space Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) consisting of modular forms of weight kk and level Γ\Gamma over \mathbb{Q}. We associate to each modular form ff in Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) and each cusp cc of Γ\Gamma, the qq-expansion of ff at cc, denoted fcf_{c}, which is a power series in [[q]]\mathbb{Q}[[q]].

We concern ourselves with \mathbb{Z}-structures on the vector space Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) i.e. \mathbb{Z}-submodules MM^{\prime} of Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) such that the natural map MMk(Γ,)M^{\prime}\otimes_{\mathbb{Z}}\mathbb{Q}\rightarrow M_{k}(\Gamma,\mathbb{Q}) is an isomorphism. The space Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) naturally has two different \mathbb{Z}-structures. Define the first \mathbb{Z}-structure to be

Mk(Γ,)={fMk(Γ,):f[[q]]}M_{k}(\Gamma,\mathbb{Z})=\left\{f\in M_{k}(\Gamma,\mathbb{Q}):f_{\infty}\in\mathbb{Z}[[q]]\right\}

which consists of modular forms in Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) whose qq-expansion at the cusp \infty has integral coefficients. One can show the Hecke operators of Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) preserve integrality at the cusp \infty by explicitly computing the qq-expansion at \infty under the Hecke operators (see [Kat04, §4.9.2]).

The second \mathbb{Z}-structure we consider is Mk,M_{k,\mathbb{Z}}, which consists of modular forms in Mk(Γ,)M_{k}(\Gamma,\mathbb{Q}) whose qq-expansions at all cusps have integral coefficients. This structure is also stable under the Hecke operators (cf. [Con07, Theorem 1.2.2]). There is an obvious containment Mk(Γ,)Mk,M_{k}(\Gamma,\mathbb{Z})\subseteq M_{k,\mathbb{Z}} with quotient that is a torsion \mathbb{Z}-module. Our aim is to study and determine the annihilator.

To better understand and work with Mk,M_{k,\mathbb{Z}}, we realize Mk,M_{k,\mathbb{Z}} as the global sections of some line bundle ω¯𝔛k\underline{\omega}_{\mathfrak{X}}^{\otimes k} on 𝔛\mathfrak{X}, the moduli space parameterizing Γ\Gamma-level structures over \mathbb{Z}. More precisely, for an integer N1N\geq 1,[KM85, §3] considers four different moduli problem parameterizing Γ(N)\Gamma(N)-, Γ1(N)\Gamma_{1}(N)-, balanced Γ1(N)\Gamma_{1}(N)-, and Γ0(N)\Gamma_{0}(N)-structures on elliptic curves. The definition of Γ(N)\Gamma(N)-structures is given in Appendix A since this will be our focus. When N3N\geq 3, the moduli problems parameterizing Γ(N)\Gamma(N)-, Γ1(N)\Gamma_{1}(N)-, and balanced Γ1(N)\Gamma_{1}(N)-structures are represented by a regular, flat two-dimensional scheme 𝔜(Γ)\mathfrak{Y}(\Gamma) over \mathbb{Z}, by [KM85, 5.5.1]. For the rest of the introduction, we let Γ\Gamma denote one of these level structures. The scheme 𝔜(Γ)\mathfrak{Y}(\Gamma) extends to an arithmetic surface 𝔛(Γ)\mathfrak{X}(\Gamma) over \mathbb{Z}, known as the modular curve, so that Mk,M_{k,\mathbb{Z}} is identified with H0(𝔛(Γ),ω¯𝔛(Γ)k)H^{0}(\mathfrak{X}(\Gamma),\underline{\omega}_{\mathfrak{X}(\Gamma)}^{\otimes k}). From this, we can show that H0(𝔛(Γ),ω¯𝔛(Γ)k)H^{0}(\mathfrak{X}(\Gamma),\underline{\omega}_{\mathfrak{X}(\Gamma)}^{\otimes k}) and Mk(Γ,)M_{k}(\Gamma,\mathbb{Z}) are both finitely-generated \mathbb{Z}-modules of the same rank. Thus the quotient Mk(Γ,)/H0(𝔛(Γ),ω¯𝔛(Γ)k)M_{k}(\Gamma,\mathbb{Z})/H^{0}(\mathfrak{X}(\Gamma),\underline{\omega}_{\mathfrak{X}(\Gamma)}^{\otimes k}) is torsion.

Let pp be a prime. If pp does not divide the level NN, then the pp-adic valuation of the annihilator is zero (see Remark 2.8). Thus we focus on primes pp which divide the level and instead can work over p\mathbb{Z}_{p}. Let cc be a cusp of 𝔛(Γ)\mathfrak{X}(\Gamma). Define νp(fc)\nu_{p}(f_{c}) to be the minimal pp-adic valuation among all the coefficients of fcf_{c}. Then our general goal can be restated as follows: we seek to compute the smallest integer e0e\geq 0 such that νp(pefc)0\nu_{p}(p^{e}f_{c})\geq 0 for all cusps cc of 𝔛(Γ)\mathfrak{X}(\Gamma) not equal to \infty and all fMk(Γ,p)f\in M_{k}(\Gamma,\mathbb{Z}_{p}).

The problem of computing and bounding ee has a long history, which we briefly recall. Computing a bound for ee for arbitrary weight kk and level Γ0(p)\Gamma_{0}(p) was done in [DR73, §3.19, §3.20], where they obtained an upper bound of

ekpp1.e\leq\frac{kp}{p-1}.

Their methods involved using intersection theory on 𝔛0(p)\mathfrak{X}_{0}(p) and the fact that 𝔛0(p)/𝔽p\mathfrak{X}_{0}(p)_{/\mathbb{F}_{p}} is reduced with two irreducible components.

In [Edi06], Edixhoven investigates the situation of weight k=2k=2 and level Γ0(N)\Gamma_{0}(N) cusp forms where ordp(N)=1{\rm ord}_{p}(N)=1. In particular, he establishes the existence of a non-zero global section of Ω|C0(eS)\Omega|_{C_{0}^{\prime}}(-e\cdot S) where Ω\Omega is the relative dualizing sheaf of 𝔛0(N)\mathfrak{X}_{0}(N), C0C_{0}^{\prime} is essentially111More precisely, since 𝔛0(N)\mathfrak{X}_{0}(N) is not necessarily regular, [Edi06] works instead with some finite cover X𝔛0(N)X^{\prime}\rightarrow\mathfrak{X}_{0}(N) by appending extra level structure to Γ0(N)\Gamma_{0}(N). Let C0C_{0} denote the irreducible component of 𝔛0(N)/𝔽p\mathfrak{X}_{0}(N)_{/\mathbb{F}_{p}} containing the cusp 0. Then C0C_{0}^{\prime} is the inverse image of C0C_{0} under X𝔛0(N)X^{\prime}\rightarrow\mathfrak{X}_{0}(N). the irreducible component containing the cusp 0, and SS is the divisor given by the sum of the supersingular points. By computing deg(Ω|C0(eS))\deg(\Omega|_{C_{0}^{\prime}}(-e\cdot S)) in terms of ee and using the inequality

0<deg(Ω|C0(eS)),0<\deg(\Omega|_{C_{0}^{\prime}}(-e\cdot S)),

Edixhoven is able to conclude e<1+2p1e<1+\frac{2}{p-1} which forces e=1e=1 whenever p3p\geq 3. This agrees with the bound provided by [DR73]. In the case p=2p=2, Edixhoven separately concludes e=2e=2.

In [BDP17, Appendix B], Conrad investigates ee in the general situation ordp(N)=r1{\rm ord}_{p}(N)=r\geq 1 and arbitrary weight kk. He begins by developing intersection theory on the regular proper Artin stack 𝔛0(N)\mathfrak{X}_{0}(N) over \mathbb{Z}. It is worth noting the stack 𝔛0(N)\mathfrak{X}_{0}(N) in [Con07] which Conrad considers does not agree with the one in [DR73]. In particular, 𝔛0(N)\mathfrak{X}_{0}(N) as defined in [DR73] is a Deligne-Mumford stack instead of merely Artin (see [Čes17] for more on this issue). We will not need to concern ourselves with this issue since we only work with the arithmetic surface 𝔛(N)\mathfrak{X}(N) which parameterizes Γ(N)\Gamma(N)-structures. Furthermore, Conrad’s expression for the exponent readily holds for 𝔛(N)\mathfrak{X}(N) as we show in Section 2. Let TT denote the r×rr\times r matrix obtained by removing the column and row corresponding to the irreducible component containing the cusp \infty from the intersection matrix of 𝔛0(N)\mathfrak{X}_{0}(N). Conrad provides an expression for the upper bound in terms of k,p,r,k,p,r, and the entries of T1T^{-1}. As pointed out in [ČNS23, footnote 5], this bound is incorrect for r>1r>1 due to a typo in the values of the multiplicities of the components of 𝔛0(N)𝔽p\mathfrak{X}_{0}(N)_{\mathbb{F}_{p}} used in the calculation of T1T^{-1}. In our situation, since 𝔛(N)\mathfrak{X}(N) is reduced, these multiplicities are all equal to 11. For general rr, it is not clear how to obtain a uniform description of the entries of T1T^{-1}, and this prevents Conrad from establishing explicit bounds for general rr.

Lastly, [ČNS23] uses an automorphic approach to bound the exponent in the situation 𝔛0(N)\mathfrak{X}_{0}(N). This approach appears quite powerful; in particular [ČNS23, Theorem 4.6] provides bounds depending on the cusp at which the q-expansion is being taken. These bounds are also shown to be sharp in a few cases via explicit computations (see [ČNS23, Example 4.8]). We will still follow the approach in [BDP17, Appendix B] as this yields an upper bound which we show is sharp in all cases except two: when the level is exactly 22 or 33. Consequently, this provides an exact computation for the exponent.

Let N3N\geq 3 and r1r\geq 1 be an integers and p2p\geq 2 be a prime such that pNp\nmid N. Fix a primitive root of unity ζNpr\zeta_{Np^{r}} and let π\pi be a uniformizer of p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}]. We consider the situation of the modular curve 𝔛(Npr)\mathfrak{X}(Np^{r}) over p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}], which parameterizes Γ(Npr)can\Gamma(Np^{r})^{{\rm can}}-structures (see the paragraph preceding Theorem A.4, or [KM85, §9]). In this situation, the special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}) consists of pr+pr1p^{r}+p^{r-1} many irreducible components. We also restrict ourselves to modular forms of even weight. Applying Conrad’s method in this situation, we obtain a formula in terms of the entries of T1T^{-1} and deg(ω¯2|Λ)\deg(\underline{\omega}^{\otimes 2}|_{\Lambda}), where Λ\Lambda is any irreducible component of the special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}). We make the following two significant computations:

  • We explicitly compute the entries of T1T^{-1} for all rr and pp.

  • We explicitly compute deg(ω¯2|Λ)\deg(\underline{\omega}^{\otimes 2}|_{\Lambda}). Note that Conrad in [BDP17, Appendix B] bounds deg(ω¯2|Λ)\deg(\underline{\omega}^{\otimes 2}|_{\Lambda}) by deg(ω¯2)\deg(\underline{\omega}^{\otimes 2}). In our situation,

    deg(ω¯𝔛(Npr)2)\displaystyle\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}) =224SL2(/N)SL2(/pr)\displaystyle=\frac{2}{24}{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z}){\rm SL}_{2}(\mathbb{Z}/p^{r}\mathbb{Z})
    =SL2(/N)12(p3rp3r2)\displaystyle=\frac{{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{12}(p^{3r}-p^{3r-2})

    by [KM85, 10.13.12]. In Theorem 4.25, we show

    deg(ω¯𝔛(Npr)2|Λ)=SL2(/N)12(p1)p2r1\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}|_{\Lambda})=\frac{{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{12}(p-1)p^{2r-1}

    independent of Λ\Lambda, which is smaller than deg(ω¯𝔛(Npr)2)\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}) by a factor of pr1(p+1)p^{r-1}(p+1). This savings leads to a marked improvement in our upper bound.

In Theorem 3.20, we calculate the entries of T1T^{-1} for all rr. First we describe the entries of TT by explicitly computing the intersection number between each irreducible component of the special fiber, using [KM85, 13.8.5], then we compute the self-intersection numbers.

We compute

T=degS(N)(M(pr)1^,1^𝟏pr1×pr1𝟏pr1×pr1p2M(pr1))T=\deg{\rm S}(N)\left(\begin{array}[]{cc}M(p^{r})_{\hat{1},\hat{1}}&\mathbf{1}_{p^{r}-1\times p^{r-1}}\\ \mathbf{1}_{p^{r-1}\times p^{r}-1}&p^{2}M(p^{r-1})\end{array}\right)

where M(pr)M(p^{r}) is a pr×prp^{r}\times p^{r} circulant matrix, dependent on pp and rr, M(pr)1^,1^M(p^{r})_{\hat{1},\hat{1}} is the matrix M(pr)M(p^{r}) with the first row and column removed, 𝟏n×m\mathbf{1}_{n\times m} is the n×mn\times m matrix consisting of all 1’s, and degS(N)\deg{\rm S}(N) is the degree of supersingular locus in 𝔛(Npr)\mathfrak{X}(Np^{r}). Applying the Woodbury Matrix Identity (see Appendix C) we obtain a formula for the entries of T1T^{-1} involving the entries of (M(pr)1^,1^)1(M(p^{r})_{\hat{1},\hat{1}})^{-1} and p2M(pr1)1p^{-2}M(p^{r-1})^{-1}, as well as their row sums and the total sum of all entries.

Since M(pr)M(p^{r}) is circulant, we have a description of its eigenvalues and corresponding eigenvectors, allowing us to diagonalize M(pr)M(p^{r}). In turn, this allows us to explicitly compute the entries of M(pr)1M(p^{r})^{-1}. Consequently, using Proposition 3.13, we also obtain the entries of the inverse of M(pr)1^,1^M(p^{r})_{\hat{1},\hat{1}}. After more careful calculations, we obtain an exact expression for each entry of T1T^{-1}.

In Theorem 4.25, we compute deg(ω¯𝔛(Npr)2|Λ)\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}|_{\Lambda}). Using the Kodaira-Spencer isomorphism (Theorem A.12) and the adjunction formula (Theorem 4.3), we are able to identify ω¯𝔛(Npr)2\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2} with the relative dualizing sheaf

Ω𝔛(Npr)/p[ζNpr]((Npr))\Omega_{\mathfrak{X}(Np^{r})/\mathbb{Z}_{p}[\zeta_{Np^{r}}]}(-\mathfrak{C}(Np^{r}))

twisted by minus the cuspidal divisor (Npr)\mathfrak{C}(Np^{r}), tensored with relative dualizing sheaf Ω𝔛(Npr)/𝔛(N)\Omega_{\mathfrak{X}(Np^{r})/\mathfrak{X}(N)} of the map pr:𝔛(Npr)𝔛(N){\rm pr}:\mathfrak{X}(Np^{r})\rightarrow\mathfrak{X}(N) induced by forgetting the Γ(pr)\Gamma(p^{r})-level structure.

Investigating Ω𝔛(Npr)/𝔛(N)\Omega_{\mathfrak{X}(Np^{r})/\mathfrak{X}(N)} amounts to understanding the different of the morphism pr{\rm pr}, which amounts to understanding the different of

prx:𝒪𝔛(N),pr(x)𝒪𝔛(Npr),x{\rm pr}_{x}:{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}\rightarrow{\cal O}_{\mathfrak{X}(Np^{r}),x}

where x𝔛(Npr)x\in\mathfrak{X}(Np^{r}) is a codimension 1 point. Let dxd_{x} denote the valuation of the different of prx{\rm pr}_{x} in 𝒪𝔛(Npr),x{\cal O}_{\mathfrak{X}(Np^{r}),x}. We split our analysis of prx{\rm pr}_{x} into two cases. If xx is a closed point of the generic fiber, then we can compute dxd_{x} over \mathbb{C}. This amounts to understanding the ramification of the analogous map of Riemann surfaces X(Npr)X(N)X(Np^{r})\rightarrow X(N), which is done in [Shi94, Prop. 1.37]. If xx is a generic point of the special fiber, then we show all dxd_{x} contributions are the same which taken together contribute nothing to the different of pr{\rm pr}. We ultimately conclude

Ω𝔛(Npr)/𝔛(N)𝒪𝔛(Npr)((pr1)(Npr))\Omega_{\mathfrak{X}(Np^{r})/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}(Np^{r})}((p^{r}-1)\mathfrak{C}(Np^{r}))

and consequently

ω¯𝔛(Npr)2Ω𝔛(Npr)/R((Npr)).\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}\simeq\Omega_{\mathfrak{X}(Np^{r})/R}(\mathfrak{C}(Np^{r})).

This identification allows us to directly compute deg(ω¯𝔛(Npr)2|Λ)\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}|_{\Lambda}) by computing the quantities

deg((Npr)|Λ) and deg(Ω𝔛(Npr)/R|Λ).\deg(\mathfrak{C}(Np^{r})|_{\Lambda})\mbox{ and }\deg(\Omega_{\mathfrak{X}(Np^{r})/R}|_{\Lambda}).

The relative dualizing sheaf Ω𝔛(Npr)/R\Omega_{\mathfrak{X}(Np^{r})/R} enjoys strong functoriality properties, enabling us to identify

Ω𝔛(Npr)/R|ΛΩΛ/𝔽pφ(N)𝒪𝔛(Npr)(Λ)|Λ.\Omega_{\mathfrak{X}(Np^{r})/R}|_{\Lambda}\simeq\Omega_{\Lambda/\mathbb{F}_{p^{\varphi(N)}}}\otimes{\cal O}_{\mathfrak{X}(Np^{r})}(-\Lambda)|_{\Lambda}.

This allows us to compute deg(Ω𝔛(Npr)/R|Λ)\deg(\Omega_{\mathfrak{X}(Np^{r})/R}|_{\Lambda}) in terms of the genus of an Igusa curve, and the self-intersection number of Λ\Lambda. Combined with our calculation of the entries of T1T^{-1}, we arrive at the following upper bound.

Theorem 1.1.

Let k1k\geq 1, N3N\geq 3, and r1r\geq 1 be integers and p2p\geq 2 be a prime such that pNp\nmid N. The exponent ee of π\pi in the annihilator of

M2k(Γ(Npr),p[ζNpr])/H0(𝔛(Npr),ω¯𝔛(Npr)2k)M_{2k}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}])/H^{0}(\mathfrak{X}(Np^{r}),\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2k})

is bounded above by

e2kpr1(prr+1).e\leq 2kp^{r-1}(pr-r+1).

For (r1,r2)22(r_{1},r_{2})\in\mathbb{Q}^{2}-\mathbb{Z}^{2}, let κ(r1,r2)(τ)\kappa_{(r_{1},r_{2})}(\tau) denote the Klein form associated to (r1,r2)(r_{1},r_{2}) (see Definition 5.1). A lower bound for ee is obtained by explicitly constructing a modular form of level prp^{r} out of a product of Klein forms. Let {m(t)}t=1N1\left\{m(t)\right\}_{t=1}^{N-1} be a family of integers. [EKS11, Thm. 2.6], which builds upon results in [KL81, §2.1, §2.4], provides a criterion on {m(t)}t=1N1\left\{m(t)\right\}_{t=1}^{N-1} for when a product of Klein forms

κ(τ)=t=1N1κ(t/N,0)(Nτ)m(t)\kappa(\tau)=\prod_{t=1}^{N-1}\kappa_{(t/N,0)}(N\tau)^{m(t)}

is a nearly holomorphic modular form of level Γ1(N)\Gamma_{1}(N) and weight t=1N1m(t)-\sum_{t=1}^{N-1}m(t). We are able to choose a family {m(t)}t=1pr1\left\{m(t)\right\}_{t=1}^{p^{r}-1} such that κ(τ)\kappa(\tau) is a modular form of level Γ1(pr)\Gamma_{1}(p^{r}) and weight 22 with integral qq-expansion at \infty. The inclusion Γ(Npr)Γ1(pr)\Gamma(Np^{r})\leq\Gamma_{1}(p^{r}) induces a map X(Npr)X1(pr)X(Np^{r})\rightarrow X_{1}(p^{r}) between the corresponding modular curves over \mathbb{C}. Pulling back κ(τ)\kappa(\tau) under this map and taking the kkth power κ(τ)k\kappa(\tau)^{k}, we can view κ(τ)k\kappa(\tau)^{k} as a modular form of level Γ(Npr)\Gamma(Np^{r}) and weight 2k2k. By explicitly computing the qq-expansion of κ(τ)\kappa(\tau) at the cusp 0, we obtain the following lower bound.

Theorem 1.2.

For k1k\geq 1, and pr>3p^{r}>3, ee is bounded below by 2kpr1(prr+1)2kp^{r-1}(pr-r+1). Consequently, ee is equal to 2kpr1(prr+1)2kp^{r-1}(pr-r+1).

We are also able to obtain an upper bound in the situation of cusp forms. Although Edixhoven only considers 𝔛0(Np)\mathfrak{X}_{0}(Np) with pNp\nmid N, his method can be adapted to yield an upper bound in our situation as well. However, this upper bound is worse than the one we obtain by a factor of pr/(prr+1)p^{r}/(pr-r+1), yet coincides for r=1r=1 (see Remark 4.30).

We now briefly summarize the contents of this paper. In Section 2, we formulate our problem of computing ee geometrically, and the resulting formula for it in terms of the intersection theory of 𝔛(Npr)\mathfrak{X}(Np^{r}), and the degree of ω¯𝔛(Npr)2|Λ\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}|_{\Lambda}. We follow [BDP17, Appendix B] to provide an expression that calculates the exponent in the situation of 𝔛(Npr)\mathfrak{X}(Np^{r}). We also provide material on intersection theory for arithmetic surfaces, most of which comes from [Liu02, §8, §9].

Section 3 is devoted to describing the intersection matrix of 𝔛(Npr)\mathfrak{X}(Np^{r}), and then computing the entries of T1T^{-1}. In Section 4, we compute deg(ω¯𝔛(Npr)2|Λ)\deg(\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}|_{\Lambda}). Combined with the work in Section 3, this culminates in Theorem 4.28 where we provide an upper bound for the exponent. Lastly, we construct explicit modular forms of level prp^{r} in Section 5 which provides a lower bound for the exponent that agrees with the upper bound.

1.1 Notation

If f:STf:S\rightarrow T is a morphism of schemes, for any TT-scheme XX we let X/SX_{/S} denote the base change of XX along ff. When S=Spec(A)S={\rm Spec}(A) and T=Spec(B)T={\rm Spec}(B), we will often abuse notation and write X/AX_{/A} for X/SX_{/S}. If XX is a scheme over a DVR, we denote the special fiber of XX by X¯\bar{X}.

Let N3N\geq 3 be an integer. We denote the “compactified” regular integral model of the modular curve of full level NN by 𝔛(N)\mathfrak{X}(N) over the cyclotomic integers [ζN]\mathbb{Z}[\zeta_{N}], as presented in [KM85]. Refer to Appendix A for more on the modular curve. We denote the cuspidal locus of 𝔛(N)\mathfrak{X}(N) by (𝔛(N))\mathfrak{C}(\mathfrak{X}(N)) or sometimes (N)\mathfrak{C}(N). We let ω¯\underline{\omega} denote the modular sheaf of 𝔛(N)\mathfrak{X}(N) (see the paragraph proceeding Theorem A.8). For an integer k1k\geq 1, the global sections of ω¯2k\underline{\omega}^{\otimes 2k} define the space of modular forms of weight 2k2k and level Γ(N)\Gamma(N).

Starting in §2.2 and onward, we will usually consider modular forms of level Γ(Npr)\Gamma(Np^{r}) where p2p\geq 2 is a prime number such that pNp\nmid N and r1r\geq 1. We will also be working over the DVR p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}] which has uniformizer π=1ζpr\pi=1-\zeta_{p^{r}}.

2 The exponent

2.1 Formulation of the exponent

Let 𝔛(N)\mathfrak{X}(N) denote the “compactified” regular integral model of the modular curve of full level N3N\geq 3 and let ω¯\underline{\omega} denote the modular sheaf over 𝔛(N)\mathfrak{X}(N) following the notation in §1.1. We will consider two different sub [ζN]\mathbb{Z}[\zeta_{N}]-modules of the space of modular forms H0(𝔛(N)/(ζN),ω¯k)H^{0}(\mathfrak{X}(N)_{/\mathbb{Q}(\zeta_{N})},\underline{\omega}^{\otimes k}) over (ζN)\mathbb{Q}(\zeta_{N}). The first structure is H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}), the space of modular forms over [ζN]\mathbb{Z}[\zeta_{N}] (see Definition A.10), which has the following description in terms of qq-expansions.

Lemma 2.1.

We have

H0(𝔛(N),ω¯k)={fH0(𝔛(N)/(ζN),ω¯k):fc[ζN][[q1/N]] for all c(N)}.H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})=\left\{f\in H^{0}(\mathfrak{X}(N)_{/\mathbb{Q}(\zeta_{N})},\underline{\omega}^{\otimes k}):f_{c}\in\mathbb{Z}[\zeta_{N}][[q^{1/N}]]\mbox{ for all }c\in\mathfrak{C}(N)\right\}.
Proof.

This comes from the qq-expansion principle, as stated in Proposition A.17. ∎

Let RR be a [ζN]\mathbb{Z}[\zeta_{N}]-algebra contained in (ζN)\mathbb{Q}(\zeta_{N}). The second structure is defined as

Mk(N,R):={fH0(𝔛(N)/(ζN),ω¯k):fR[[q1/N]]}M_{k}(N,R):=\left\{f\in H^{0}(\mathfrak{X}(N)_{/\mathbb{Q}(\zeta_{N})},\underline{\omega}^{\otimes k}):f_{\infty}\in R[[q^{1/N}]]\right\}

which are modular forms over (ζN)\mathbb{Q}(\zeta_{N}) whose qq-expansion at the cusp \infty has coefficients in RR.

Lemma 2.2.

The usual map

Mk(N,[ζN])[ζN][ζN,1/N]Mk(N,[ζN,1/N])M_{k}(N,\mathbb{Z}[\zeta_{N}])\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}[\zeta_{N},1/N]\rightarrow M_{k}(N,\mathbb{Z}[\zeta_{N},1/N])

is an isomorphism.

Proof.

By Proposition A.11, we have

H0(𝔛(N)/[ζN],ω¯𝔛(N)/[ζN]k)[ζN](ζN)=H0(𝔛(N)/(ζN),ω¯𝔛(N)/(ζN)k).H^{0}(\mathfrak{X}(N)_{/\mathbb{Z}[\zeta_{N}]},\underline{\omega}_{\mathfrak{X}(N)_{/\mathbb{Z}[\zeta_{N}]}}^{\otimes k})\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Q}(\zeta_{N})=H^{0}(\mathfrak{X}(N)_{/\mathbb{Q}(\zeta_{N})},\underline{\omega}_{\mathfrak{X}(N)_{/\mathbb{Q}(\zeta_{N})}}^{\otimes k}).

In particular, the coefficients of any qq-expansion of a modular form over (ζN)\mathbb{Q}(\zeta_{N}) have bounded denominators. Therefore we can write the qq-expansion of any fMk(N,[ζN,1/N])f\in M_{k}(N,\mathbb{Z}[\zeta_{N},1/N]) at \infty as f=1Nmff_{\infty}=\frac{1}{N^{m}}f^{\prime} for some f[ζN][[q1/N]]f^{\prime}\in\mathbb{Z}[\zeta_{N}][[q^{1/N}]] and integer m0m\geq 0, i.e. fMk(N,[ζN])f^{\prime}\in M_{k}(N,\mathbb{Z}[\zeta_{N}]). Then ff is the image of f1Nmf^{\prime}\otimes\frac{1}{N^{m}}. ∎

Definition 2.3.

Let MM be a module over a ring RR. Then annihilator of MM is the ideal

AnnR(M):={rR:rm=0 for all mM}.{\rm Ann}_{R}(M):=\left\{r\in R:rm=0\mbox{ for all }m\in M\right\}.

The annihilator of an element mMm\in M is the ideal

AnnR(m):={rR:rm=0}.{\rm Ann}_{R}(m):=\left\{r\in R:rm=0\right\}.

The next proposition showcases some properties of our two [ζN]\mathbb{Z}[\zeta_{N}]-modules necessary to discuss the annihilator of the quotient Mk(N,[ζN])/H0(𝔛(N),ω¯k)M_{k}(N,\mathbb{Z}[\zeta_{N}])/H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}).

Proposition 2.4.
  1. a.

    Both H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) and Mk(N,[ζN])M_{k}(N,\mathbb{Z}[\zeta_{N}]) are finitely generated [ζN]\mathbb{Z}[\zeta_{N}]-modules of the same rank.

  2. b.

    We have

    H0(𝔛(N),ω¯k)[ζN][ζN,1/N]=Mk(N,[ζN])[ζN][ζN,1/N].H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}[\zeta_{N},1/N]=M_{k}(N,\mathbb{Z}[\zeta_{N}])\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}[\zeta_{N},1/N].
Proof.

Since 𝔛(N)\mathfrak{X}(N) is projective over [ζN]\mathbb{Z}[\zeta_{N}], H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) is a finitely generated [ζN]\mathbb{Z}[\zeta_{N}]-module by [Liu02, Theorem 5.3.2]. Since Mk(N,[ζN])M_{k}(N,\mathbb{Z}[\zeta_{N}]) is a submodule of a finitely generated module over a noetherian ring, namely of H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}), it is also finitely generated.

Now we show the second claim. By Proposition A.11, we have

H0(𝔛(N),ω¯k)[ζN][ζN,1/N]=H0(𝔛(N)/[ζN,1/N],ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}[\zeta_{N},1/N]=H^{0}(\mathfrak{X}(N)_{/\mathbb{Z}[\zeta_{N},1/N]},\underline{\omega}^{\otimes k})

while, by Lemma 2.2, we have

Mk(N,[ζN])[ζN][ζN,1/N]=Mk(N,[ζN,1/N]).M_{k}(N,\mathbb{Z}[\zeta_{N}])\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}[\zeta_{N},1/N]=M_{k}(N,\mathbb{Z}[\zeta_{N},1/N]).

Since modular forms over [ζN,1/N]\mathbb{Z}[\zeta_{N},1/N] are determined by their qq-expansion at \infty (see [Kat73, 1.6.2]), we get an equality

H0(𝔛(N)/[ζN,1/N],ω¯k)=Mk(N,[ζN,1/N])H^{0}(\mathfrak{X}(N)_{/\mathbb{Z}[\zeta_{N},1/N]},\underline{\omega}^{\otimes k})=M_{k}(N,\mathbb{Z}[\zeta_{N},1/N])

as desired. In particular, we have an equality of finite dimensional vector spaces

H0(𝔛(N),ω¯k)[ζN](ζN)=Mk(N,[ζN])[ζN](ζN)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Q}(\zeta_{N})=M_{k}(N,\mathbb{Z}[\zeta_{N}])\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Q}(\zeta_{N})

which shows both our [ζN]\mathbb{Z}[\zeta_{N}]-modules have the same rank. ∎

Our description of H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) in Lemma 2.1 shows that it is contained in Mk(N,[ζN])M_{k}(N,\mathbb{Z}[\zeta_{N}]). Having established that H0(𝔛(N),ω¯k)H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) and Mk(N,[ζN])M_{k}(N,\mathbb{Z}[\zeta_{N}]) have the same rank, the quotient

Mk(N,[ζN])/H0(𝔛(N),ω¯k)M_{k}(N,\mathbb{Z}[\zeta_{N}])/H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})

is a torsion [ζN]\mathbb{Z}[\zeta_{N}]-module. Our goal will be to investigate the annihilator of this quotient.

By localizing, we can focus our attention on investigating a single prime in the annihilator. The following lemma, which is [Sta21, Tag080S], shows how the annihilator behaves under flat base change.

Lemma 2.5.

Let RSR\rightarrow S be a flat ring map. Let MM be an RR-module and mMm\in M. Then

AnnS(m1)=AnnR(m)S{\rm Ann}_{S}(m\otimes 1)={\rm Ann}_{R}(m)S

for any m1MRSm\otimes 1\in M\otimes_{R}S. If MM is finite over RR, then

AnnS(MRS)=AnnR(M)S.{\rm Ann}_{S}(M\otimes_{R}S)={\rm Ann}_{R}(M)S.
Corollary 2.6.

Let MM be a finitely generated torsion module over a Dedekind domain RR and let 𝔭\mathfrak{p} be a prime in RR. The exponent of 𝔭\mathfrak{p} appearing in AnnR(M){\rm Ann}_{R}(M) is equal to the exponent of 𝔭\mathfrak{p} appearing in AnnR𝔭(MRR𝔭){\rm Ann}_{R_{\mathfrak{p}}}(M\otimes_{R}R_{\mathfrak{p}}).

Proof.

We factor the annihilator as a product of distinct primes AnnR(M)=𝔭e𝔮1e1𝔮mem{\rm Ann}_{R}(M)=\mathfrak{p}^{e}\mathfrak{q}_{1}^{e_{1}}\dots\mathfrak{q}_{m}^{e_{m}}. By Lemma 2.5, we have

AnnR𝔭(MRR𝔭)=AnnR(M)R𝔭=𝔭e𝔮1e1𝔮memR𝔭=𝔭eR𝔭.{\rm Ann}_{R_{\mathfrak{p}}}(M\otimes_{R}R_{\mathfrak{p}})={\rm Ann}_{R}(M)R_{\mathfrak{p}}=\mathfrak{p}^{e}\mathfrak{q}_{1}^{e_{1}}\dots\mathfrak{q}_{m}^{e_{m}}R_{\mathfrak{p}}=\mathfrak{p}^{e}R_{\mathfrak{p}}.

Hence the exponent of 𝔭\mathfrak{p} appearing in AnnR𝔭(MRR𝔭){\rm Ann}_{R_{\mathfrak{p}}}(M\otimes_{R}R_{\mathfrak{p}}) is precisely ee. ∎

Proposition 2.7.

Let 𝔭[ζN]\mathfrak{p}\in\mathbb{Z}[\zeta_{N}] be a prime lying over the prime pp\in\mathbb{Z}. The exponent of 𝔭\mathfrak{p} appearing in the annihilator of Mk(N,[ζN])/H0(𝔛(N),ω¯k))M_{k}(N,\mathbb{Z}[\zeta_{N}])/H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})) and Mk(N,p[ζN])/H0(𝔛(N)/p[ζN],ω¯k)M_{k}(N,\mathbb{Z}_{p}[\zeta_{N}])/H^{0}(\mathfrak{X}(N)_{/\mathbb{Z}_{p}[\zeta_{N}]},\underline{\omega}^{\otimes k}) are the same.

Proof.

For convenience, we let

M=Mk(N,[ζN]),N=H0(𝔛(N),ω¯k)M=M_{k}(N,\mathbb{Z}[\zeta_{N}]),\;N=H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})

and

Mp=Mk(N,p[ζN]),Np=H0(𝔛(N)/p[ζN],ω¯k).M_{p}=M_{k}(N,\mathbb{Z}_{p}[\zeta_{N}]),\;N_{p}=H^{0}(\mathfrak{X}(N)_{/\mathbb{Z}_{p}[\zeta_{N}]},\underline{\omega}^{\otimes k}).

Consider the exact sequence 0NMM/N0.0\rightarrow N\rightarrow M\rightarrow M/N\rightarrow 0. Since p[ζN]\mathbb{Z}_{p}[\zeta_{N}] is flat over [ζN]\mathbb{Z}[\zeta_{N}], the above sequence remains exact after tensoring with p[ζN]\mathbb{Z}_{p}[\zeta_{N}]. Thus we have a commutative diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Np[ζN]\textstyle{N\otimes\mathbb{Z}_{p}[\zeta_{N}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Mp[ζN]\textstyle{M\otimes\mathbb{Z}_{p}[\zeta_{N}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}(M/N)p[ζN]\textstyle{(M/N)\otimes\mathbb{Z}_{p}[\zeta_{N}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Np\textstyle{N_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Mp\textstyle{M_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Mp/Np\textstyle{M_{p}/N_{p}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

By Proposition A.11, ff and gg are isomorphisms; consequently hh is an isomorphism. By Corollary 2.6, the exponent of 𝔭\mathfrak{p} appearing in Mp/Np(M/N)p[ζN]M_{p}/N_{p}\simeq(M/N)\otimes\mathbb{Z}_{p}[\zeta_{N}] agrees with that of M/NM/N. ∎

Remark 2.8.

If pNp\nmid N, then NN is invertible in p[ζN]\mathbb{Z}_{p}[\zeta_{N}] so by Proposition 2.4 we have

H0(𝔛(N),ω¯k)[ζN]p[ζN]=Mk(N,[ζN])[ζN]p[ζN].H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k})\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}_{p}[\zeta_{N}]=M_{k}(N,\mathbb{Z}[\zeta_{N}])\otimes_{\mathbb{Z}[\zeta_{N}]}\mathbb{Z}_{p}[\zeta_{N}].

Hence the pp-adic valuation of the annihilator of Mk(N,[ζN])/H0(𝔛(N),ω¯k)M_{k}(N,\mathbb{Z}[\zeta_{N}])/H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) is trivial in this case. Therefore we restrict our attention to primes pp dividing the level.

Let N3N\geq 3 and r0r\geq 0 be integers and let p2p\geq 2 be a prime such that pNp\nmid N. Let π\pi be a uniformizer of p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}]. We seek to compute the smallest integer e0e\geq 0 such that

πeH0(𝔛(Npr)/p[ζNpr],ω¯k)Mk(Npr,p[ζNpr]).\pi^{e}H^{0}(\mathfrak{X}(Np^{r})_{/\mathbb{Z}_{p}[\zeta_{Np^{r}}]},\underline{\omega}^{\otimes k})\subseteq M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]).

2.2 Geometric interpretation of the exponent

For convenience, we let 𝔛=𝔛(Npr)/p[ζNpr]\mathfrak{X}=\mathfrak{X}(Np^{r})_{/\mathbb{Z}_{p}[\zeta_{Np^{r}}]}. We will formulate an explicit, geometric description of the exponent ee by first providing an algebraic description coming from qq-expansions.

Let cc be a cusp of 𝔛\mathfrak{X}, and let fH0(𝔛,ω¯k)f\in H^{0}(\mathfrak{X},\underline{\omega}^{\otimes k}) be a non-zero modular form. Let fcp[ζNpr][[q1/N]]f_{c}\in\mathbb{Z}_{p}[\zeta_{Np^{r}}][[q^{1/N}]] denote the qq-expansion of ff at the cusp cc. Define νπ(fc)\nu_{\pi}(f_{c}) to be the minimal π\pi-adic valuation among all the coefficients of fcf_{c} i.e.

νπ(n=0anqn/(Npr))=minn0{νπ(an)}.\nu_{\pi}\left(\sum_{n=0}^{\infty}a_{n}q^{n/(Np^{r})}\right)=\min_{n\geq 0}\left\{\nu_{\pi}(a_{n})\right\}.

Note that this minimum exists since the denominators of the coefficients ana_{n} are bounded (see proof of Lemma 2.2). Thus, by Lemma 2.1, we may describe

H0(𝔛,ω¯k)={fH0(𝔛/p(ζNpr),ω¯k):νπ(fc)0 for all cusps c of 𝔛}.H^{0}(\mathfrak{X},\underline{\omega}^{\otimes k})=\left\{f\in H^{0}(\mathfrak{X}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}})},\underline{\omega}^{\otimes k}):\nu_{\pi}(f_{c})\geq 0\mbox{ for all cusps }c\mbox{ of }\mathfrak{X}\right\}.

Consequently, we seek to compute the smallest integer e0e\geq 0 such that νπ(πefc)0\nu_{\pi}(\pi^{e}f_{c})\geq 0 for all cusps cc of 𝔛\mathfrak{X} not equal to \infty and all fMk(Npr,p[ζNpr])f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]).

Next we will provide a geometric interpretation of νπ(fc)\nu_{\pi}(f_{c}) which does not rely on qq-expansions. Let ηΛ\eta_{\Lambda} denote the generic point of an irreducible component Λ\Lambda of the special fiber 𝔛¯\bar{\mathfrak{X}}. The stalk 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta} is a DVR so it has a valuation which we denote by νη\nu_{\eta}. Viewing ff inside the stalk ω¯ηk\underline{\omega}_{\eta}^{\otimes k}, we can write f=fηωcan,ηf=f_{\eta}\cdot\omega_{{\rm can},\eta} where ωcan,η\omega_{{\rm can},\eta} is the canonical generator of ω¯ηk\underline{\omega}_{\eta}^{\otimes k} (see Definition A.16). We define

νΛ(f):=νη(fη).\nu_{\Lambda}(f):=\nu_{\eta}(f_{\eta}).

Indeed, νΛ\nu_{\Lambda} is a valuation, independent of the choice of local generator. The following result is stated in [DR73, Théoréme 3.10(ii)].

Proposition 2.9.

Let c𝔛c\in\mathfrak{X} be a cusp and let Λ\Lambda be an irreducible component of 𝔛¯\bar{\mathfrak{X}} with generic point η\eta on which cc lies. For any non-zero fH0(𝔛(N),ω¯k)f\in H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}), we have νπ(fc)=νΛ(f)\nu_{\pi}(f_{c})=\nu_{\Lambda}(f). Furthermore, π\pi is a uniformizer of 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta}.

Proof.

Since c{η}¯c\in\overline{\left\{\eta\right\}}, the stalk 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta} is a localization of 𝒪𝔛,c{\cal O}_{\mathfrak{X},c}. Furthermore, the map 𝒪𝔛,c𝒪𝔛,η{\cal O}_{\mathfrak{X},c}\rightarrow{\cal O}_{\mathfrak{X},\eta} is injective since all stalks are regular local rings so are integral domains in particular. The induced map on completions 𝒪^𝔛,c𝒪^𝔛,η\hat{{\cal O}}_{\mathfrak{X},c}\rightarrow\hat{{\cal O}}_{\mathfrak{X},\eta} is also injective by [Sta21, Tag00MB, Tag07N9].

We will show π\pi is also a uniformizer of 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta}. Consider the exact sequence

0𝔪η𝒪𝔛,ηκ(η)00\rightarrow\mathfrak{m}_{\eta}\rightarrow{\cal O}_{\mathfrak{X},\eta}\rightarrow\kappa(\eta)\rightarrow 0

where 𝔪η\mathfrak{m}_{\eta} is the maximal ideal of 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta} and κ(η)\kappa(\eta) is the residue field of η\eta which is of characteristic pp. Since (πm)=(p)(\pi^{m})=(p) when m=pr1(p1)m=p^{r-1}(p-1), we have πm=0\pi^{m}=0 in κ(η)\kappa(\eta) so π=0\pi=0 in κ(η)\kappa(\eta). Therefore π𝔪η\pi\in\mathfrak{m}_{\eta}. It remains to show (π)(\pi) is a maximal ideal in 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta}. Consider the quotient 𝒪𝔛,η/π𝒪𝔛,η=𝒪𝔛¯,η{\cal O}_{\mathfrak{X},\eta}/\pi{\cal O}_{\mathfrak{X},\eta}={\cal O}_{\bar{\mathfrak{X}},\eta}. Since η\eta corresponds to a minimal prime and 𝔛¯\bar{\mathfrak{X}} is reduced, the stalk 𝒪𝔛¯,η{\cal O}_{\bar{\mathfrak{X}},\eta} is a field. Therefore (π)(\pi) is a maximal ideal in 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta} hence π\pi is a uniformizer in 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta}.

Let fH0(𝔛(N),ω¯k)f\in H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes k}) be non-zero. Using the local generator ωcan,c\omega_{{\rm can},c} of ω¯^k\underline{\hat{\omega}}^{\otimes k} (see Definition A.16), we write f=fcωcan,cf=f_{c}\omega_{{\rm can},c} where fc𝒪^𝔛,cf_{c}\in\hat{{\cal O}}_{\mathfrak{X},c} is the qq-expansion of ff at cc. Write fc=πνπ(fc)fcf_{c}=\pi^{\nu_{\pi}(f_{c})}f_{c}^{\prime} where fcπ𝒪^𝔛,cf_{c}^{\prime}\notin\pi\hat{{\cal O}}_{\mathfrak{X},c}. The map

𝒪𝔛,c/π𝒪𝔛,c𝒪𝔛,η/π𝒪𝔛,η{\cal O}_{\mathfrak{X},c}/\pi{\cal O}_{\mathfrak{X},c}\rightarrow{\cal O}_{\mathfrak{X},\eta}/\pi{\cal O}_{\mathfrak{X,\eta}}

is the same as the map 𝒪𝔛¯,c𝒪𝔛¯,η{\cal O}_{\bar{\mathfrak{X}},c}\rightarrow{\cal O}_{\bar{\mathfrak{X}},\eta}, which is also a localization map as c{η}¯c\in\overline{\left\{\eta\right\}}.

By [KM85, 10.9.1(2)], 𝔛\mathfrak{X} is smooth at the cusps so, in particular, 𝒪𝔛¯,c{\cal O}_{\bar{\mathfrak{X}},c} is a domain. Therefore 𝒪𝔛¯,c𝒪𝔛¯,η{\cal O}_{\bar{\mathfrak{X}},c}\rightarrow{\cal O}_{\bar{\mathfrak{X}},\eta} is injective so the map on completions

𝒪^𝔛,c/π𝒪^𝔛,c𝒪^𝔛,η/π𝒪^𝔛,η{\cal\hat{O}}_{\mathfrak{X},c}/\pi{\cal\hat{O}}_{\mathfrak{X},c}\rightarrow{\cal\hat{O}}_{\mathfrak{X},\eta}/\pi{\cal\hat{O}}_{\mathfrak{X,\eta}}

is injective. Since fcπ𝒪^𝔛,cf_{c}^{\prime}\notin\pi\hat{{\cal O}}_{\mathfrak{X},c}, we can conclude fcπ𝒪^𝔛,ηf_{c}^{\prime}\notin\pi\hat{{\cal O}}_{\mathfrak{X},\eta} i.e. fcf_{c}^{\prime} is a unit in 𝒪^𝔛,η\hat{{\cal O}}_{\mathfrak{X},\eta}. Thus νπ(fc)\nu_{\pi}(f_{c}) coincides with νΛ(f)\nu_{\Lambda}(f), the valuation in 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta}.

With this geometric description of the valuation, we can reformulate our integrality condition as follows. Let Λ0,,Λn\Lambda_{0},\dots,\Lambda_{n} be the irreducible components of the special fiber 𝔛¯\bar{\mathfrak{X}} where Λ0\Lambda_{0} contains the cusp \infty. Let μΛi\mu_{\Lambda_{i}} denote the multiplicity of Λi\Lambda_{i}. We desire to find the smallest integer e0e\geq 0 such that νΛi(πef)0\nu_{\Lambda_{i}}(\pi^{e}f)\geq 0 for all i=1,,ni=1,\dots,n and all fMk(Npr,p[ζNpr])f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]).

By Proposition 2.9, π\pi is a uniformizer of 𝒪𝔛,ηi{\cal O}_{\mathfrak{X},\eta_{i}}, where ηi\eta_{i} is the generic point of Λi\Lambda_{i}. Hence

νΛi(πef)\displaystyle\nu_{\Lambda_{i}}(\pi^{e}f) =eνΛi(π)+νΛi(f)\displaystyle=e\cdot\nu_{\Lambda_{i}}(\pi)+\nu_{\Lambda_{i}}(f)
=eμΛi+νΛi(f).\displaystyle=e\cdot\mu_{\Lambda_{i}}+\nu_{\Lambda_{i}}(f).

Since 𝔛¯\bar{\mathfrak{X}} is reduced, μΛi=1\mu_{\Lambda_{i}}=1. Hence the condition νΛi(πef)0\nu_{\Lambda_{i}}(\pi^{e}f)\geq 0 is equivalent to eνΛi(f)e\geq-\nu_{\Lambda_{i}}(f). Therefore we have the following expression for the exponent:

e=maxfMk(Npr,p[ζNpr]){νΛ1(f),νΛ2(f),,νΛn(f)}e=\max_{\begin{subarray}{c}f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}])\end{subarray}}\left\{-\nu_{\Lambda_{1}}(f),-\nu_{\Lambda_{2}}(f),\dots,-\nu_{\Lambda_{n}}(f)\right\} (1)

which illustrates we can investigate ee by trying to understand the quantities νΛi(f)\nu_{\Lambda_{i}}(f).

2.3 Intersection theory on arithmetic surfaces

In this section we briefly recall some important intersection theory facts from [Liu02, §9]. By Theorem A.8, the modular curve 𝔛(N)\mathfrak{X}(N) is an arithmetic surface (see Definition A.7). We begin with a more general situation with 𝔛\mathfrak{X} an arithmetic surface over a Dedekind domain RR and {\cal L} a line bundle on 𝔛\mathfrak{X}.

Since 𝔛S=Spec(R)\mathfrak{X}\rightarrow S={\rm Spec}(R) is regular, we have, by [Liu02, 7.2.16], an isomorphism between Cartier divisors and Weil divisors Div(𝔛)Z1(𝔛){\rm Div}(\mathfrak{X})\rightarrow Z^{1}(\mathfrak{X}) given by

D[D]:=x𝔛dim𝒪𝔛,x=1multx(D)[{x}¯]Z1(𝔛)D\mapsto\left[D\right]:=\sum_{\begin{subarray}{c}x\in\mathfrak{X}\\ {\rm dim}{\cal O}_{\mathfrak{X},x}=1\end{subarray}}{\rm mult}_{x}(D)[\overline{\left\{x\right\}}]\in Z^{1}(\mathfrak{X})

where multx(D):=mult𝒪𝔛,x(Dx){\rm mult}_{x}(D):={\rm mult}_{{\cal O}_{\mathfrak{X},x}}(D_{x}). Furthermore, this map respects principal divisors and effective divisors. Let ZZ be a closed subscheme of 𝔛\mathfrak{X} and let ξ1,,ξn\xi_{1},\dots,\xi_{n} be the generic points of ZZ. The Weil divisor associated to ZZ is given by

[Z]:=i=1nlength(𝒪𝔛,ξi)[{ξi}¯].\left[Z\right]:=\sum_{i=1}^{n}{\rm length}({\cal O}_{\mathfrak{X},\xi_{i}})[\overline{\left\{\xi_{i}\right\}}].

Let DD be an irreducible Weil divisor of 𝔛\mathfrak{X}. According to [Liu02, 8.3.4], DD is either an irreducible component of a closed fiber, or the closure of a closed point of the generic fiber XηX_{\eta}.

Definition 2.10.

If DD is an irreducible component of a closed fiber, or equivalently π(D)\pi(D) is a point, then DD is called vertical. If DD is instead the closure of a closed point of XηX_{\eta}, or equivalently π(D)=S\pi(D)=S, then DD is called horizontal.

Recall a Weil divisor is a formal \mathbb{Z}-linear sum of irreducible closed subsets of codimension 1. In general, a Weil divisor is horizontal (resp. vertical) if all its irreducible components are horizontal (resp. vertical).

Let DD and EE be two effective divisors of 𝔛\mathfrak{X} with no common irreducible component. As in [Liu02, §9.1.1], we define the (local) intersection number of DD and EE at a point x𝔛x\in\mathfrak{X} by

ix(D,E)=length𝒪𝔛,x𝒪𝔛,x/(𝒪𝔛(D)x+𝒪𝔛(E)x).i_{x}(D,E)={\rm length}_{{\cal O}_{\mathfrak{X},x}}{\cal O}_{\mathfrak{X},x}/({\cal O}_{\mathfrak{X}}(-D)_{x}+{\cal O}_{\mathfrak{X}}(-E)_{x}).

By definition, we immediately have that ix(D,E)i_{x}(D,E) is symmetric and bilinear. If xSupp(D)Supp(E)x\notin{\rm Supp}(D)\cap{\rm Supp}(E), then ix(D,E)=0i_{x}(D,E)=0.

We will now establish the intersection number between a general divisor of 𝔛\mathfrak{X} and a vertical divisor of a fixed closed fiber. For a fixed closed point sSs\in S, let Divs(𝔛){\rm Div}_{s}(\mathfrak{X}) denote the set of divisors of 𝔛\mathfrak{X} with support in 𝔛s\mathfrak{X}_{s}; such divisors are vertical divisors. A \mathbb{Z}-basis of Divs(𝔛){\rm Div}_{s}(\mathfrak{X}) consists of all irreducible components of 𝔛s\mathfrak{X}_{s}.

Theorem 2.11.

Let sSs\in S be a closed point. Then there exists a unique bilinear map of \mathbb{Z}-modules

is:Div(𝔛)×Divs(𝔛)i_{s}:{\rm Div}(\mathfrak{X})\times{\rm Div}_{s}(\mathfrak{X})\rightarrow\mathbb{Z}

such that:

  1. a.

    If DDiv(𝔛)D\in{\rm Div}(\mathfrak{X}) and EDivs(𝔛)E\in{\rm Div}_{s}(\mathfrak{X}) have no common component, then

    is(D,E)=x𝔛six(D,E)[k(x):k(s)]i_{s}(D,E)=\sum_{x\in\mathfrak{X}_{s}}i_{x}(D,E)[k(x):k(s)]

    where the sum is over all closed points.

  2. b.

    isi_{s} restricted to Divs(𝔛)×Divs(𝔛){\rm Div}_{s}(\mathfrak{X})\times{\rm Div}_{s}(\mathfrak{X}) is symmetric.

  3. c.

    is(D,E)=is(D,E)i_{s}(D,E)=i_{s}(D^{\prime},E) if DDD\sim D^{\prime} are linearly equivalent.

  4. d.

    If 0<E𝔛s0<E\leq\mathfrak{X}_{s}, then is(D,E)=degk(s)𝒪𝔛(D)|Ei_{s}(D,E)=\deg_{k(s)}{\cal O}_{\mathfrak{X}}(D)|_{E}. x𝔛sx\in\mathfrak{X}_{s}.

  5. e.

    If DD is principal, then is(D,E)=0i_{s}(D,E)=0.

Proof.

This is proved in [Liu02, Theorem 9.1.12] besides part (e), which we prove. By [Liu02, Corollary 9.1.10], there exists a principal divisor FF such that D+FD+F and EE have no common component. Thus we may assume DD and EE have no common component. By (a), it suffices to show if DD is principal, then the local intersection number ix(D,E)i_{x}(D,E) is zero. By definition,

ix(D,E)=length𝒪𝔛,x𝒪𝔛,x/(𝒪𝔛(D)x+𝒪𝔛(E)x).i_{x}(D,E)={\rm length}_{{\cal O}_{\mathfrak{X},x}}{\cal O}_{\mathfrak{X},x}/({\cal O}_{\mathfrak{X}}(-D)_{x}+{\cal O}_{\mathfrak{X}}(-E)_{x}).

Since DD is principal, 𝒪𝔛(D)𝒪𝔛{\cal O}_{\mathfrak{X}}(-D)\simeq{\cal O}_{\mathfrak{X}}. Thus

ix(D,E)\displaystyle i_{x}(D,E) =length𝒪𝔛,x𝒪𝔛,x/(𝒪𝔛,x+𝒪𝔛(E)x)\displaystyle={\rm length}_{{\cal O}_{\mathfrak{X},x}}{\cal O}_{\mathfrak{X},x}/({\cal O}_{\mathfrak{X},x}+{\cal O}_{\mathfrak{X}}(-E)_{x})
=length𝒪𝔛,x(0)=0.\displaystyle={\rm length}_{{\cal O}_{\mathfrak{X},x}}(0)=0.
Definition 2.12.

Let π:𝔛S\pi:\mathfrak{X}\rightarrow S be an arithmetic surface, and let sSs\in S be closed. For any (D,E)(D,E) in Div(𝔛)×Divs(𝔛){\rm Div}(\mathfrak{X})\times{\rm Div}_{s}(\mathfrak{X}), we call is(D,E)i_{s}(D,E) the intersection number as defined in Theorem 2.4. More generally, if EE is a vertical divisor, we define

D.E:=sSis(D,E)[s]D.E:=\sum_{s\in S}i_{s}(D,E)[s]

where the sum is over all closed points of SS, which is a 0-cycle on SS. We call E2=E.EE^{2}=E.E the self-intersection numberof EE. If D.ED.E is only concentrated at a single point ss, as in the case when SS is the spectrum of a DVR, we identify D.ED.E with the integer is(D,E)i_{s}(D,E).

Proposition 2.13.

Let π:𝔛S\pi:\mathfrak{X}\rightarrow S be an arithmetic surface and fix a closed point sSs\in S. Let Γ1,Γn\Gamma_{1},\dots\Gamma_{n} be the irreducible components of 𝔛s\mathfrak{X}_{s}. We have an equality of Weil divisors

[𝔛s]=i=1nmult𝔛s(Γi)Γi=[πs][\mathfrak{X}_{s}]=\sum_{i=1}^{n}{\rm mult}_{\mathfrak{X}_{s}}(\Gamma_{i})\Gamma_{i}=[\pi^{*}s]

where [πs][\pi^{*}s] is the Weil divisor associated to the Cartier divisor πs\pi^{*}s.

Proof.

The first equality follows from the definition of [𝔛s]\left[\mathfrak{X}_{s}\right]. Let t𝒪S,st\in{\cal O}_{S,s} and ti𝒪𝔛,ξit_{i}\in{\cal O}_{\mathfrak{X},\xi_{i}} be uniformizers where ξi\xi_{i} is the generic point of Γi\Gamma_{i}. Let νi\nu_{i} denote the normalized valuation of K(𝔛)K(\mathfrak{X}) associated to 𝒪𝔛,ξi{\cal O}_{\mathfrak{X},\xi_{i}} and let ξ\xi denote the generic point of 𝔛\mathfrak{X}.

In K(𝔛)=𝒪𝔛,ξK(\mathfrak{X})={\cal O}_{\mathfrak{X},\xi}, we can write t=tiνi(t)uit=t_{i}^{\nu_{i}(t)}u_{i} for some ui𝒪𝔛,ξi×u_{i}\in{\cal O}_{\mathfrak{X},\xi_{i}}^{\times}. Then

[πs]=i=1nνi(t)Γi.[\pi^{*}s]=\sum_{i=1}^{n}\nu_{i}(t)\Gamma_{i}.

Note that

mult𝔛s(Γi)\displaystyle{\rm mult}_{\mathfrak{X}_{s}}(\Gamma_{i}) =length(𝒪𝔛s,ξi)\displaystyle={\rm length}({\cal O}_{\mathfrak{X}_{s},\xi_{i}})
=length(𝒪𝔛,ξi/(t))\displaystyle={\rm length}({\cal O}_{\mathfrak{X},\xi_{i}}/(t))
=length(𝒪𝔛,ξi/(tiνi(t)))\displaystyle={\rm length}({\cal O}_{\mathfrak{X},\xi_{i}}/(t_{i}^{\nu_{i}(t)}))
=νi(t).\displaystyle=\nu_{i}(t).

Lastly we state some results on the intersection between a horizontal divisor and a closed fiber which won’t be used until §4.4. The following is [Liu02, Proposition 9.1.30].

Proposition 2.14.

Let π:𝔛S\pi:\mathfrak{X}\rightarrow S be an arithmetic surface. Let η\eta be the generic point of SS and sSs\in S a closed point. Then for any closed point P𝔛ηP\in\mathfrak{X}_{\eta}, we have

{P}¯.𝔛s=[K(P):K(S)]\overline{\left\{P\right\}}.\mathfrak{X}_{s}=\left[K(P):K(S)\right]

where {P}¯\overline{\left\{P\right\}} is the Zariski closure of {P}\left\{P\right\} in 𝔛\mathfrak{X}, endowed with the reduced closed subscheme structure.

Corollary 2.15.

Let π:𝔛S\pi:\mathfrak{X}\rightarrow S be an arithmetic surface and let P𝔛ηP\in\mathfrak{X}_{\eta} be a K(S)K(S)-rational point. Then {P}¯𝔛s\overline{\left\{P\right\}}\cap\mathfrak{X}_{s} is reduced to a single point z𝔛s(k(s))z\in\mathfrak{X}_{s}(k(s)) and {P}¯.𝔛s=1\overline{\left\{P\right\}}.\mathfrak{X}_{s}=1.

In particular, {P}¯\overline{\left\{P\right\}} intersects exactly one irreducible component Γ\Gamma of 𝔛s\mathfrak{X}_{s}. Moreover, Γ\Gamma has multiplicity 11 and {P}¯.Γ=1\overline{\left\{P\right\}}.\Gamma=1.

Proof.

Since PP is K(S)K(S)-rational, by Proposition 2.14 we have {P}¯.𝔛s=1\overline{\left\{P\right\}}.\mathfrak{X}_{s}=1. Let Γ1,,Γn\Gamma_{1},\dots,\Gamma_{n} denote the irreducible components of 𝔛s\mathfrak{X}_{s} with multiplicities μ1,,μn\mu_{1},\dots,\mu_{n} respectively. Then

1={P}¯.𝔛s=i=1nμi{P}¯.Γi.1=\overline{\left\{P\right\}}.\mathfrak{X}_{s}=\sum_{i=1}^{n}\mu_{i}\overline{\left\{P\right\}}.\Gamma_{i}.

Since {P}¯\overline{\left\{P\right\}} and Γi\Gamma_{i} are effective divisors with no common components, {P}¯.Γi0\overline{\left\{P\right\}}.\Gamma_{i}\geq 0 which forces μi{P}¯.Γi=1\mu_{i}\overline{\left\{P\right\}}.\Gamma_{i}=1 for some ii. Hence μi={P}¯.Γi=1\mu_{i}=\overline{\left\{P\right\}}.\Gamma_{i}=1. Moreover, μj1\mu_{j}\geq 1 so {P}¯.Γj=0\overline{\left\{P\right\}}.\Gamma_{j}=0 for jij\neq i i.e. {P}¯\overline{\left\{P\right\}} does not intersect Γj\Gamma_{j}. ∎

2.4 A more explicit description of the exponent

In this section, we will provide a more explicit description of the exponent by relating the quantities νΛ(f)\nu_{\Lambda}(f) to intersection numbers and the degree of a line bundle, due to Conrad in [BDP17, Appendix B]. Let 𝔛\mathfrak{X} be an arithmetic surface over a DVR RR. Let {\cal L} be a line bundle on 𝔛\mathfrak{X} and let 𝔛¯\bar{\mathfrak{X}} denote the special fiber of 𝔛\mathfrak{X}.

Definition 2.16.

Let fH0(𝔛,)f\in H^{0}(\mathfrak{X},{\cal L}) be a non-zero global section and let {Ui}\left\{U_{i}\right\} be a trivializing open cover of {\cal L} so that (Ui)=𝒪X(Ui)ei{\cal L}(U_{i})={\cal O}_{X}(U_{i})e_{i} for some generator ei(Ui)e_{i}\in{\cal L}(U_{i}). We can write f|Ui=fieif|_{U_{i}}=f_{i}e_{i} for some fi𝒪𝔛(Ui)f_{i}\in{\cal O}_{\mathfrak{X}}(U_{i}). Then the system {(Ui,fi)}\left\{(U_{i},f_{i})\right\} is an effective Cartier divisor of 𝔛\mathfrak{X}, which we denote by div(f){\rm div}_{{\cal L}}(f) or simply div(f){\rm div}(f) if the line bundle is clear from context.

We can equivalently define div(f){\rm div}_{{\cal L}}(f) as a Weil divisor. Let ZZ be a prime divisor of 𝔛\mathfrak{X} with generic point η\eta. Then 𝒪𝔛,η{\cal O}_{\mathfrak{X},\eta} is a DVR with valuation which we denote by νZ\nu_{Z}. We can write the image of ff in the stalk of xx as f=fηeηf=f_{\eta}e_{\eta} for some fη𝒪X,ηf_{\eta}\in{\cal O}_{X,\eta} and generator eηηe_{\eta}\in{\cal L}_{\eta}. Define νZ(f):=νZ(fη)\nu_{Z}(f):=\nu_{Z}(f_{\eta}) which agrees with our valuation defined in Section 2.2 for Z=ΛZ=\Lambda an irreducible component of 𝔛¯\bar{\mathfrak{X}} and is independent of choice of eηe_{\eta}. According to [Sta21, Tag02SE], the Weil divisor associated to ff is equal to

div(f)=ZνZ(f)[Z]{\rm div}_{{\cal L}}(f)=\sum_{Z}\nu_{Z}(f)[Z]

where the sum is over prime divisors ZZ of 𝔛\mathfrak{X}. Decomposing the divisor div(f){\rm div}_{{\cal L}}(f) into its horizontal and vertical components, we can write

div(f)=Hf+ΛνΛ(f)[Λ]{\rm div}_{{\cal L}}(f)=H_{f}+\sum_{\Lambda}\nu_{\Lambda}(f)\left[\Lambda\right] (2)

where HfH_{f} is some effective horizontal divisor and the sum is over the irreducible components of 𝔛¯\bar{\mathfrak{X}}.

Proposition 2.17.

Let fH0(𝔛,)f\in H^{0}(\mathfrak{X},{\cal L}) be a non-zero global section. Then 𝒪𝔛(div(f)){\cal L}\simeq{\cal O}_{\mathfrak{X}}({\rm div}_{{\cal L}}(f)).

Proof.

This is [Liu02, Exercise 7.1.13] (see also immediately before [BDP17, Proposition B.2.2.10]). ∎

Let Λ0,,Λn\Lambda_{0},\dots,\Lambda_{n} denote the irreducible components of 𝔛¯\bar{\mathfrak{X}}. By Proposition 2.17 and Theorem 2.11d, we have

degk(|Λj)\displaystyle\deg_{k}({\cal L}|_{\Lambda_{j}}) =deg(𝒪𝔛(div(f))|Λj)\displaystyle=\deg({\cal O}_{\mathfrak{X}}({\rm div}_{{\cal L}}(f))|_{\Lambda_{j}})
=div(f).Λj.\displaystyle={\rm div}_{{\cal L}}(f).\Lambda_{j}.

Decomposing div(f){\rm div}_{{\cal L}}(f) into its horizontal and vertical components, as in (2), we get

=(Hf+i=0nνΛi(f)[Λi]).Λj\displaystyle=\left(H_{f}+\sum_{i=0}^{n}\nu_{\Lambda_{i}}(f)\left[\Lambda_{i}\right]\right).\Lambda_{j}
=Hf.Λj+i=0nνΛi(f)Λi.Λj.\displaystyle=H_{f}.\Lambda_{j}+\sum_{i=0}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}.\Lambda_{j}.

Using the equation

deg(|Λj)=Hf.Λj+i=0nνΛi(f)Λi.Λj\deg({\cal L}|_{\Lambda_{j}})=H_{f}.\Lambda_{j}+\sum_{i=0}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}.\Lambda_{j} (3)

we will provide an explicit expression for the quantities νΛi(f)/μΛi\nu_{\Lambda_{i}}(f)/\mu_{\Lambda_{i}} for i=1,,ni=1,\dots,n where μΛi\mu_{\Lambda_{i}} is the multiplicity of Λi\Lambda_{i}.

Let M=(Λi.Λj)i,j=0,,nM=(\Lambda_{i}.\Lambda_{j})_{i,j=0,\dots,n} denote the intersection matrix of 𝔛\mathfrak{X}. Since 𝔛\mathfrak{X} is an arithmetic surface, [Liu02, 9.1.23] (see also [Lan88, III, 3.4]) says MM is negative semi-definite and moreover the kernel of MM is one-dimensional whenever 𝔛¯\bar{\mathfrak{X}} is connected. Multiplication by MM induces an exact sequence

0kerMn+1𝑀n+1.0\rightarrow\ker M\rightarrow\mathbb{Q}^{n+1}\overset{M}{\longrightarrow}\mathbb{Q}^{n+1}.

Let μ=(μΛ0,μΛ1,,μΛn)\vec{\mu}=(\mu_{\Lambda_{0}},\mu_{\Lambda_{1}},\dots,\mu_{\Lambda_{n}}) which is a non-zero vector in n+1\mathbb{Q}^{n+1}. Note that

(Mμ)j=i=0nμΛi(Λi.Λj)=(i=0nμΛiΛi).Λj=𝔛¯.Λj=0(M\vec{\mu})_{j}=\sum_{i=0}^{n}\mu_{\Lambda_{i}}(\Lambda_{i}.\Lambda_{j})=\left(\sum_{i=0}^{n}\mu_{\Lambda_{i}}\Lambda_{i}\right).\Lambda_{j}=\bar{\mathfrak{X}}.\Lambda_{j}=0

where the last equality is due to 𝔛¯\bar{\mathfrak{X}} being principal. Therefore we can write ker(M)=span{μ}\ker(M)={\rm span}_{\mathbb{Q}}\left\{\vec{\mu}\right\}. The following lemma describes the image of MM.

Lemma 2.18.

We have

im(M)={a=(a0,,an)n+1:j=0nμΛjaj=0}.{\rm im}(M)=\left\{\vec{a}=(a_{0},\dots,a_{n})\in\mathbb{Q}^{n+1}:\sum_{j=0}^{n}\mu_{\Lambda_{j}}a_{j}=0\right\}.
Proof.

This is shown in the paragraph preceding [BDP17, Remark B.2.3.1]. We will provide the proof here for convenience. Let VV denote the space of vectors v=(vi)n+1\vec{v}=(v_{i})\in\mathbb{Q}^{n+1} such that j=0nμΛjvj=0\sum_{j=0}^{n}\mu_{\Lambda_{j}}v_{j}=0. Let a=(aj)im(M)\vec{a}=(a_{j})\in{\rm im}(M) so a=Mb\vec{a}=M\vec{b} for some b=(bj)n+1\vec{b}=(b_{j})\in\mathbb{Q}^{n+1}. Then

aj=(Mb)j=i=0nbi(Λi.Λj)a_{j}=(M\vec{b})_{j}=\sum_{i=0}^{n}b_{i}(\Lambda_{i}.\Lambda_{j})

so

j=0nμΛjaj\displaystyle\sum_{j=0}^{n}\mu_{\Lambda_{j}}a_{j} =j=0nμΛji=0nbi(Λi.Λj)=j=0nμΛj(i=0nbiΛi).Λj\displaystyle=\sum_{j=0}^{n}\mu_{\Lambda_{j}}\sum_{i=0}^{n}b_{i}(\Lambda_{i}.\Lambda_{j})=\sum_{j=0}^{n}\mu_{\Lambda_{j}}\left(\sum_{i=0}^{n}b_{i}\Lambda_{i}\right).\Lambda_{j}
=(i=0nbiΛi).(j=0nμΛjΛj)=(i=0nbiΛi).X¯=0.\displaystyle=\left(\sum_{i=0}^{n}b_{i}\Lambda_{i}\right).\left(\sum_{j=0}^{n}\mu_{\Lambda_{j}}\Lambda_{j}\right)=\left(\sum_{i=0}^{n}b_{i}\Lambda_{i}\right).\bar{X}=0.

Therefore im(M)V{\rm im}(M)\subseteq V. Since im(M){\rm im}(M) and VV are both of dimension nn, we get im(M)=V{\rm im}(M)=V. ∎

In order to isolate the terms νΛi(f)\nu_{\Lambda_{i}}(f) appearing in (3), we would ideally invert the matrix MM. In light of MM being not invertible, we will instead invert an n×nn\times n submatrix of MM to obtain an expression for each νΛi(f)\nu_{\Lambda_{i}}(f), excluding νΛ0(f)\nu_{\Lambda_{0}}(f), which suffices for our purpose.

Let W={(x0,,xn)n+1:x0=0}W=\left\{(x_{0},\dots,x_{n})\in\mathbb{Q}^{n+1}:x_{0}=0\right\} and let pr:n+1W{\rm pr}:\mathbb{Q}^{n+1}\rightarrow W denote the projection map

(x0,x1,,xn)(0,x1,,xn).(x_{0},x_{1},\dots,x_{n})\mapsto(0,x_{1},\dots,x_{n}).

Consider the restriction pr|im(M):im(M)W{\rm pr}|_{{\rm im}(M)}:{\rm im}(M)\rightarrow W. Given any a1,,ana_{1},\dots,a_{n}\in\mathbb{Q}, we let

a0=1μΛ0i=1nμiaia_{0}=-\frac{1}{\mu_{\Lambda_{0}}}\sum_{i=1}^{n}\mu_{i}a_{i}

which forces a:=(a0,a1,,an)im(M)\vec{a}:=(a_{0},a_{1},\dots,a_{n})\in{\rm im}(M) by Lemma 2.18. Hence pr|im(M){\rm pr}|_{{\rm im}(M)} is surjective. Since im(M){\rm im}(M) and WW are both of dimension nn, the map pr|im(M){\rm pr}|_{{\rm im}(M)} is an isomorphism of vector spaces.

Next we consider the restriction M|W:Wim(M)M|_{W}:W\rightarrow{\rm im}(M). If Mw=0M\vec{w}=0 where w=(0,w1,,wn)\vec{w}=(0,w_{1},\dots,w_{n}), then w=αμ\vec{w}=\alpha\vec{\mu} for some α\alpha\in\mathbb{Q}. Coordinatewise, this means

(0,w1,,wn)=w=αμ=(αμΛ0,αμΛ1,,αμΛn).(0,w_{1},\dots,w_{n})=\vec{w}=\alpha\vec{\mu}=(\alpha\mu_{\Lambda_{0}},\alpha\mu_{\Lambda_{1}},\dots,\alpha\mu_{\Lambda_{n}}).

Comparing the first coordinates and noting μΛi0\mu_{\Lambda_{i}}\neq 0 for each ii, we must have α=0\alpha=0. Hence w=0\vec{w}=0 so M|WM|_{W} is injective and therefore an isomorphism. Define T:WWT:W\rightarrow W as the composition of our isomorphisms

T:WM|Wim(M)pr|im(M)W.T:W\overset{M|_{W}}{\longrightarrow}{\rm im}(M)\overset{{\rm pr}|_{{\rm im}(M)}}{\longrightarrow}W.

After identifying WnW\simeq\mathbb{Q}^{n} by forgetting the first coordinate, we can identify TT as the lower right n×nn\times n submatrix of MM. The following is [BDP17, Proposition B.2.3.2].

Proposition 2.19.

For any aim(M)\vec{a}\in{\rm im}(M) and b=(b0,b1,,bn)n+1\vec{b}=(b_{0},b_{1},\dots,b_{n})\in\mathbb{Q}^{n+1} such that Mb=aM\vec{b}=\vec{a}, we have

bb0μΛ0μ=T1(pr(a)).\vec{b}-\frac{b_{0}}{\mu_{\Lambda_{0}}}\vec{\mu}=T^{-1}({\rm pr}(\vec{a})). (4)

We now apply Proposition 2.19 to our specific situation involving the quantities νΛi(f)\nu_{\Lambda_{i}}(f).

Remark 2.20.

We make a quick remark about the term νΛ0(f)\nu_{\Lambda_{0}}(f) that appears in the following theorem. Recall the equation for the exponent ee in (1). We claim that

e=max1infMk(Npr,p[ζNpr]){νΛi(f)}=max1infMk(Npr,p[ζNpr])νΛ0(f)=0{νΛ0(f)νΛi(f)}.e=\max_{\begin{subarray}{c}1\leq i\leq n\\ f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}])\end{subarray}}\left\{-\nu_{\Lambda_{i}}(f)\right\}=\max_{\begin{subarray}{c}1\leq i\leq n\\ f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}])\\ \nu_{\Lambda_{0}}(f)=0\end{subarray}}\left\{\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f)\right\}.

Indeed, the maximum on the left hand side must occur at some fMk(Npr,p[ζNpr])f\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]) with νΛ0(f)=0\nu_{\Lambda_{0}}(f)=0. Otherwise if f=πagf=\pi^{a}g with gMk(Npr,p[ζNpr])g\in M_{k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]), νΛ0(g)=0\nu_{\Lambda_{0}}(g)=0, and a>0a>0, so

νΛi(g)=aνΛi(f).-\nu_{\Lambda_{i}}(g)=a-\nu_{\Lambda_{i}}(f).

Hence νΛi(g)νΛi(f)-\nu_{\Lambda_{i}}(g)\geq-\nu_{\Lambda_{i}}(f) so the maximum must occur over such gg.

Furthermore, the differences νΛ0(f)νΛi(f)\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f) are visibly invariant under arbitrary scaling of ff, so we have

e\displaystyle e =max1infH0(𝔛/p(ζNpr),ω¯k)νΛ0(f)=0{νΛ0(f)νΛi(f)}.\displaystyle=\max_{\begin{subarray}{c}1\leq i\leq n\\ f\in H^{0}(\mathfrak{X}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}})},\underline{\omega}^{\otimes k})\\ \nu_{\Lambda_{0}}(f)=0\end{subarray}}\left\{\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f)\right\}.
=max1infH0(𝔛,ω¯k){νΛ0(f)νΛi(f)}\displaystyle=\max_{\begin{subarray}{c}1\leq i\leq n\\ f\in H^{0}(\mathfrak{X},\underline{\omega}^{\otimes k})\end{subarray}}\left\{\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f)\right\}

In particular, this shows the exponent can be computed using Theorem 2.21 below, which provides a formula for the differences νΛ0(f)νΛi(f)\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f) in terms of geometric data.

Theorem 2.21.

Let 𝔛=𝔛(Npr)/p[ζNpr]\mathfrak{X}=\mathfrak{X}(Np^{r})_{/\mathbb{Z}_{p}[\zeta_{Np^{r}}]} and fH0(𝔛(N),ω¯2k)f\in H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes 2k}) be non-zero and let Λ0,,Λn\Lambda_{0},\dots,\Lambda_{n} denote the irreducible components of 𝔛¯\bar{\mathfrak{X}}. We have

νΛi(f)νΛ0(f)=j=1n(deg(ω¯2k|Λj)Hf.Λj)ci,j\nu_{\Lambda_{i}}(f)-\nu_{\Lambda_{0}}(f)=\sum_{j=1}^{n}(\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda_{j}})-H_{f}.\Lambda_{j})c^{i,j} (5)

where ci,jc^{i,j} is the (i,j)(i,j) entry of T1T^{-1} and TT is the matrix obtained by removing the first row and column of the intersection matrix of 𝔛\mathfrak{X}.

Proof.

We will write out equation (4) entry-wise in the generality of Proposition 2.19, with 𝔛\mathfrak{X} an arithmetic surface, and {\cal L} a line bundle on 𝔛\mathfrak{X}. Then we apply our results to the situation of the modular curve.

Let a=(a0,,an)\vec{a}=(a_{0},\dots,a_{n}) and b=(b0,,bn)\vec{b}=(b_{0},\dots,b_{n}) such that Mb=aM\vec{b}=\vec{a}. Then equation 4 gives

(0b1b0μΛ0μΛ1bnb0μΛ0μΛn)=T1(0a1an).\left(\begin{array}[]{c}0\\ b_{1}-\frac{b_{0}}{\mu_{\Lambda_{0}}}\mu_{\Lambda_{1}}\\ \vdots\\ b_{n}-\frac{b_{0}}{\mu_{\Lambda_{0}}}\mu_{\Lambda_{n}}\end{array}\right)=T^{-1}\left(\begin{array}[]{c}0\\ a_{1}\\ \vdots\\ a_{n}\end{array}\right).

Recall T=(Λi.Λj)i,j=1,,nT=(\Lambda_{i}.\Lambda_{j})_{i,j=1,\dots,n} is the n×nn\times n lower right submatrix of the intersection matrix of XX. Write T1=(ci,j)i,j=1,,nT^{-1}=(c^{i,j})_{i,j=1,\dots,n} where ci,jc^{i,j} is the (i,j)(i,j)-entry of the inverse of TT. Then we have

T1(0a1an)=(a1c1,1+a2c1,2++anc1,na1c2,1+a2c2,2++anc2,na1cn,1+a2cn,2++ancn,n).T^{-1}\left(\begin{array}[]{c}0\\ a_{1}\\ \vdots\\ a_{n}\end{array}\right)=\left(\begin{array}[]{c}a_{1}c^{1,1}+a_{2}c^{1,2}+\cdots+a_{n}c^{1,n}\\ a_{1}c^{2,1}+a_{2}c^{2,2}+\cdots+a_{n}c^{2,n}\\ \vdots\\ a_{1}c^{n,1}+a_{2}c^{n,2}+\cdots+a_{n}c^{n,n}\end{array}\right).

Therefore

bib0μΛ0μΛi=j=1najci,j.b_{i}-\frac{b_{0}}{\mu_{\Lambda_{0}}}\mu_{\Lambda_{i}}=\sum_{j=1}^{n}a_{j}c^{i,j}.

Let fH0(𝔛,)f\in H^{0}(\mathfrak{X},{\cal L}) be non-zero and let b=(νΛ0(f),,νΛn(f))\vec{b}=(\nu_{\Lambda_{0}}(f),\dots,\nu_{\Lambda_{n}}(f)). The jjth coordinate of a=Mb\vec{a}=M\vec{b} is precisely

aj=i=0nνΛi(f)Λi.Λj=deg(|Λj)Hf.Λja_{j}=\sum_{i=0}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}.\Lambda_{j}=\deg({\cal L}|_{\Lambda_{j}})-H_{f}.\Lambda_{j}

by equation (3). Thus we have

νΛi(f)νΛ0(f)μΛ0μΛi=j=1n(deg(|Λj)Hf.Λj)ci,j.\nu_{\Lambda_{i}}(f)-\frac{\nu_{\Lambda_{0}}(f)}{\mu_{\Lambda_{0}}}\mu_{\Lambda_{i}}=\sum_{j=1}^{n}\left(\deg({\cal L}|_{\Lambda_{j}})-H_{f}.\Lambda_{j}\right)c^{i,j}. (6)

Now we take 𝔛=𝔛(Npr)/p[ζNpr]\mathfrak{X}=\mathfrak{X}(Np^{r})_{/\mathbb{Z}_{p}[\zeta_{Np^{r}}]} to be our modular curve and =ω¯2k{\cal L}=\underline{\omega}^{\otimes 2k} to be the modular sheaf. Recall 𝔛¯\bar{\mathfrak{X}} is reduced so μΛi=1\mu_{\Lambda_{i}}=1 for each ii. Then equation (6) becomes

νΛi(f)νΛ0(f)=j=1n(deg(ω¯2k|Λj)Hf.Λj)ci,j\nu_{\Lambda_{i}}(f)-\nu_{\Lambda_{0}}(f)=\sum_{j=1}^{n}(\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda_{j}})-H_{f}.\Lambda_{j})c^{i,j}

as desired. ∎

Thus Theorem 2.21 expresses the quantities νΛi(f)\nu_{\Lambda_{i}}(f) in terms of deg(ω¯2k|Λj)\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda_{j}}), Hf.ΛjH_{f}.\Lambda_{j}, and the entries of the inverse of TT.

3 Intersection matrix

Throughout this chapter, we will use the following notation:

  • N3N\geq 3 and r1r\geq 1 will be integers and p2p\geq 2 will be a prime such that pNp\nmid N

  • 𝔽q\mathbb{F}_{q} will denote the residue field 𝔽p(ζN)\mathbb{F}_{p}(\zeta_{N}) of p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}] where q=pq=p^{\ell} where \ell is the order of pp in (/N)×(\mathbb{Z}/N\mathbb{Z})^{\times}.

  • 𝔛\mathfrak{X} will denote the modular curve 𝔛(Npr)/p[ζNpr]\mathfrak{X}(Np^{r})_{/\mathbb{Z}_{p}[\zeta_{Np^{r}}]}.

3.1 Intersection matrix for the modular curve

In this section, we will obtain an explicit description of the intersection matrix of 𝔛\mathfrak{X}. First we recall the description of the irreducible components of the special fiber 𝔛¯\bar{\mathfrak{X}} as in Theorem A.25.

Theorem 3.1.

The special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}) is the disjoint union, with crossings at the supersingular points of 𝔛(N)/𝔽q\mathfrak{X}(N)_{/\mathbb{F}_{q}}, of the exotic Igusa curves ExIg(pr,r,N){\rm ExIg}(p^{r},r,N) over 𝔛(N)/𝔽q\mathfrak{X}(N)_{/\mathbb{F}_{q}}, indexed by

(/pr)×/HomSurj((/pr)2,/pr).(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}/{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z}).

Furthermore, 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) is reduced.

In the paragraph proceeding Corollary A.27, a complete list of representatives in

(/pr)×/HomSurj((/pr)2,/pr)(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}/{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z})

was given by

{Λ(1,a)a/prΛ(pb,1)b/pr1.\begin{cases}\Lambda_{(1,-a)}&a\in\mathbb{Z}/p^{r}\mathbb{Z}\\ \Lambda_{(-pb,1)}&b\in\mathbb{Z}/p^{r-1}\mathbb{Z}\end{cases}.

We will identify an irreducible component of 𝔛¯\bar{\mathfrak{X}} by it’s index Λ\Lambda. By [KM85, 13.8.5], the local intersection number at a supersingular point ss between two distinct irreducible components Λ1\Lambda_{1} and Λ2\Lambda_{2} is precisely

is(Λ1,Λ2)=[#((/pr)2/(kerΛ1+kerΛ2))]2.i_{s}(\Lambda_{1},\Lambda_{2})=\left[\#\left((\mathbb{Z}/p^{r}\mathbb{Z})^{2}/(\ker\Lambda_{1}+\ker\Lambda_{2})\right)\right]^{2}. (7)
Remark 3.2.

In [KM85, 13.8.5], we require ss to be a 𝔽q\mathbb{F}_{q}-rational supersingular point. However, when q=pq=p, the supersingular points may not be 𝔽q\mathbb{F}_{q}-rational. Indeed, [KM85, p. 96], shows that the supersingular points are 𝔽p2\mathbb{F}_{p^{2}}-rational. However, we can instead compute the intersection numbers by étale base change. Consider the ring R=p[ζpr,ζp21]R^{\prime}=\mathbb{Z}_{p}[\zeta_{p^{r}},\zeta_{p^{2}-1}]. By [Ser79, IV, §4, Prop 16 & 17], RR^{\prime} is the ring of integers of the local field p(ζpr,ζp21)\mathbb{Q}_{p}(\zeta_{p^{r}},\zeta_{p^{2}-1}) so RR^{\prime} is a DVR. Since pp has order 22 in (/(p21))×(\mathbb{Z}/(p^{2}-1)\mathbb{Z})^{\times}, the residue field of RR^{\prime} is 𝔽p2\mathbb{F}_{p^{2}}. The map p[ζpr]R\mathbb{Z}_{p}[\zeta_{p^{r}}]\rightarrow R^{\prime} is unramified by [Ser79, IV, §4, Prop. 16], noting that p(p21)p\nmid(p^{2}-1), and flat because RR^{\prime} is torsion-free over the DVR p[ζpr]\mathbb{Z}_{p}[\zeta_{p^{r}}] (see [Sta21, Tag0539]). Therefore Spec(R)Spec(p[ζpr]){\rm Spec}(R^{\prime})\rightarrow{\rm Spec}(\mathbb{Z}_{p}[\zeta_{p^{r}}]) is étale.

Let Λ\Lambda and Λ\Lambda^{\prime} be two irreducible components of 𝔛¯\bar{\mathfrak{X}}. Let 𝔛=𝔛/R\mathfrak{X}^{\prime}=\mathfrak{X}_{/R^{\prime}} and let ss^{\prime} be a supersingular point of 𝔛/𝔽p2\mathfrak{X}^{\prime}_{/\mathbb{F}_{p^{2}}} which maps to ss. By [Liu02, 9.1.5, 9.1.6], we have

is(fΛ,fΛ)=is(Λ,Λ).i_{s^{\prime}}(f^{*}\Lambda,f^{*}\Lambda^{\prime})=i_{s}(\Lambda,\Lambda^{\prime}).

Note that [Liu02, 9.2.15] uses a desingularization of 𝔛\mathfrak{X}^{\prime} i.e. a proper birational morphism 𝔛′′𝔛\mathfrak{X}^{\prime\prime}\rightarrow\mathfrak{X}^{\prime} where 𝔛′′\mathfrak{X}^{\prime\prime} is regular. Since RR and RR^{\prime} are both DVRs, they are both regular, excellent, and noetherian. Therefore 𝔛\mathfrak{X}^{\prime} is an arithmetic surface (by Proposition A.14), so we can take 𝔛′′=𝔛\mathfrak{X}^{\prime\prime}=\mathfrak{X}^{\prime}.

From equation (7), the local intersection number doesn’t depend on the supersingular point. Let S(N){\rm S}(N) (resp. S(Npr)S(Np^{r})) denote the supersingular locus of 𝔛(N)/𝔽q\mathfrak{X}(N)_{/\mathbb{F}_{q}} (resp. 𝔛¯\bar{\mathfrak{X}}). By [KM85, 12.7.2], the map Ig(pr,N)𝔛(N)/𝔽q{\rm Ig}(p^{r},N)\rightarrow\mathfrak{X}(N)_{/\mathbb{F}_{q}} is totally ramified at the supersingular points so degS(Npr)=degS(N)\deg{\rm S}(Np^{r})=\deg{\rm S}(N). Therefore to obtain the global intersection number Λ1.Λ2\Lambda_{1}.\Lambda_{2} we multiply is(Λ1,Λ2)i_{s}(\Lambda_{1},\Lambda_{2}) by degS(N)\deg{\rm S}(N). We will now compute the local intersection number between each pair of irreducible components of 𝔛¯\bar{\mathfrak{X}}, beginning with the case of distinct pairs.

Proposition 3.3.

Let νp\nu_{p} denote the pp-adic valuation normalized so νp(p)=1\nu_{p}(p)=1 and let ss be a supersingular point. We have

is(Λ(1,a),Λ(pb,1))\displaystyle i_{s}(\Lambda_{(1,-a)},\Lambda_{(-pb,1)}) =1\displaystyle=1
is(Λ(1,a),Λ(1,a))\displaystyle i_{s}(\Lambda_{(1,-a)},\Lambda_{(1,-a^{\prime})}) =p2νp(aa)\displaystyle=p^{2\nu_{p}(a^{\prime}-a)}
is(Λ(pb,1),Λ(pb,1))\displaystyle i_{s}(\Lambda_{(-pb,1)},\Lambda_{(-pb^{\prime},1)}) =p2νp(bb)+2\displaystyle=p^{2\nu_{p}(b^{\prime}-b)+2}

for a,a/pra,a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z} distinct and b,b/pr1b,b^{\prime}\in\mathbb{Z}/p^{r-1}\mathbb{Z} distinct.

Proof.

Since each group homomorphism Λ:(/pr)2/pr\Lambda:(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\rightarrow\mathbb{Z}/p^{r}\mathbb{Z} corresponding to an irreducible component is a surjective, we know #kerΛ=pr\#\ker\Lambda=p^{r}. By definition,

Λ(1,a)(a,1)=aΛ(1,a)(1,0)+Λ(1,a)(0,1)=aa=0.\Lambda_{(1,-a)}(a,1)=a\Lambda_{(1,-a)}(1,0)+\Lambda_{(1,-a)}(0,1)=a-a=0.

Therefore

kerΛ(1,a)=span/pr{(a1)}.\ker\Lambda_{(1,-a)}={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right)\right\}.

Similarly, since

Λ(pb,1)(1,pb)=Λ(pb,1)(1,0)+pbΛ(pb,1)(0,1)=pb+pb=0\Lambda_{(-pb,1)}(1,pb)=\Lambda_{(-pb,1)}(1,0)+pb\Lambda_{(-pb,1)}(0,1)=-pb+pb=0

we have

kerΛ(pb,1)=span/pr{(1pb)}.\ker\Lambda_{(-pb,1)}={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}1\\ pb\end{array}\right)\right\}.

By equation (7), we have

is(Λ1,Λ2)=(p2r/#(kerΛ1+kerΛ2))2.i_{s}(\Lambda_{1},\Lambda_{2})=(p^{2r}/\#(\ker\Lambda_{1}+\ker\Lambda_{2}))^{2}.

We will now compute #(kerΛ1+kerΛ2)\#(\ker\Lambda_{1}+\ker\Lambda_{2}) by considering the following three cases.

Case 1: We have

kerΛ(1,a)+kerΛ(pb,1)=span/pr{(a1),(1pb)}.\ker\Lambda_{(1,-a)}+\ker\Lambda_{(-pb,1)}={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right),\left(\begin{array}[]{c}1\\ pb\end{array}\right)\right\}.

Note that

det(a11pb)=pab1\det\left(\begin{array}[]{cc}a&1\\ 1&pb\end{array}\right)=pab-1

is invertible in /pr\mathbb{Z}/p^{r}\mathbb{Z}. Therefore {(a,1),(1,pb)}\left\{(a,1),(1,pb)\right\} is a basis for (/pr)2(\mathbb{Z}/p^{r}\mathbb{Z})^{2} hence

kerΛ(1,a)+kerΛ(pb,1)=(/pr)2.\ker\Lambda_{(1,-a)}+\ker\Lambda_{(-pb,1)}=(\mathbb{Z}/p^{r}\mathbb{Z})^{2}.

We conclude is(Λ(1,a).Λ(pb,1))=1i_{s}(\Lambda_{(1,-a)}.\Lambda_{(-pb,1)})=1.

Case 2: We have

kerΛ(1,a)+kerΛ(1,a)\displaystyle\ker\Lambda_{(1,-a)}+\ker\Lambda_{(1,-a^{\prime})} =span/pr{(a1),(a1)}\displaystyle={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right),\left(\begin{array}[]{c}a^{\prime}\\ 1\end{array}\right)\right\}
=span/pr{(a1),(aa0)}\displaystyle={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right),\left(\begin{array}[]{c}a^{\prime}-a\\ 0\end{array}\right)\right\}

For any 0ir0\leq i\leq r, consider the injective group homomorphism

mi:/pri/prm_{i}:\mathbb{Z}/p^{r-i}\mathbb{Z}\rightarrow\mathbb{Z}/p^{r}\mathbb{Z}

given by multiplication by pip^{i}. This gives us a filtration

/pr=im(m0)im(m1)im(mr1)im(mr)=(0)\mathbb{Z}/p^{r}\mathbb{Z}={\rm im}(m_{0})\supset{\rm im}(m_{1})\supset\cdots\supset{\rm im}(m_{r-1})\supset{\rm im}(m_{r})=(0)

which is exhaustive and separated. Thus for any non-zero c/prc\in\mathbb{Z}/p^{r}\mathbb{Z}, there exists a unique smallest ii such that cim(mi)c\in{\rm im}(m_{i}). We let νp(c)\nu_{p}(c) denote the quantity ii. We claim c=pνp(c)ucc=p^{\nu_{p}(c)}u_{c} for some uc(/pr)×u_{c}\in(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}. Indeed, if ucu_{c} is not a unit of (/pr)×(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}, then uc(p)u_{c}\in(p) so uc=pucu_{c}=pu_{c}^{\prime} for some uc/pru_{c}^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}. Hence c=pνp(c)+1ucim(mνp(c)+1)c=p^{\nu_{p}(c)+1}u_{c}^{\prime}\in{\rm im}(m_{\nu_{p}(c)+1}), contradicting the minimality of νp(c)\nu_{p}(c).

We will show the sequence of abelian groups

0/pνp(c)mrνp(c)/prcspan/pr(c)0\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{Z}/p^{\nu_{p}(c)}\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 84.10104pt\raise 5.9125pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.1014pt\hbox{$\scriptstyle{m_{r-\nu_{p}(c)}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 125.13095pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 95.13095pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 125.13095pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathbb{Z}/p^{r}\mathbb{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 184.55122pt\raise 4.55556pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.55556pt\hbox{$\scriptstyle{\cdot c}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 212.28864pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 182.28864pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 212.28864pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}(c)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 288.44415pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 288.44415pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} (8)

is exact. Exactness at the second and fourth term are clear. Let x/pνp(c)x\in\mathbb{Z}/p^{\nu_{p}(c)}\mathbb{Z}. Then

cmrνp(c)(x)=cprνp(c)x=ucpνp(c)prνp(c)x=ucprx=0c\cdot m_{r-\nu_{p}(c)}(x)=c\cdot p^{r-\nu_{p}(c)}x=u_{c}p^{\nu_{p}(c)}p^{r-\nu_{p}(c)}x=u_{c}p^{r}x=0

so im(mrνp(c))ker(c){\rm im}(m_{r-\nu_{p}(c)})\subseteq\ker(\cdot c). On the other hand, let dker(c)d\in\ker(\cdot c) so dc=0d\cdot c=0. Then

ucudpνp(c)pνp(d)=0.u_{c}u_{d}p^{\nu_{p}(c)}p^{\nu_{p}(d)}=0.

Since uc,ud(/pr)×u_{c},u_{d}\in(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}, we have pνp(c)+νp(d)=0p^{\nu_{p}(c)+\nu_{p}(d)}=0. Hence νp(d)rνp(c)\nu_{p}(d)\geq r-\nu_{p}(c) or equivalently im(md)im(mrνp(c)){\rm im}(m_{d})\subseteq{\rm im}(m_{r-\nu_{p}(c)}). Therefore ker(c)im(mrνp(c))\ker(\cdot c)\subseteq{\rm im}(m_{r-\nu_{p}(c)}) allowing us to conclude exactness at the third term.

Let i=νp(aa)i=\nu_{p}(a^{\prime}-a). Consider the sequence of abelian groups

0/piϕ/pr×/pr𝜓span/pr{(a1),(aa0)}00\rightarrow\mathbb{Z}/p^{i}\mathbb{Z}\overset{\phi}{\longrightarrow}\mathbb{Z}/p^{r}\mathbb{Z}\times\mathbb{Z}/p^{r}\mathbb{Z}\overset{\psi}{\longrightarrow}{\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right),\left(\begin{array}[]{c}a^{\prime}-a\\ 0\end{array}\right)\right\}\rightarrow 0 (9)

where ϕ(x)=(0,mri(x))\phi(x)=(0,m_{r-i}(x)) and

ψ(c,d)=c(a1)+d(aa0)=(ca+d(aa)c).\psi(c,d)=c\left(\begin{array}[]{c}a\\ 1\end{array}\right)+d\left(\begin{array}[]{c}a^{\prime}-a\\ 0\end{array}\right)=\left(\begin{array}[]{c}ca+d(a^{\prime}-a)\\ c\end{array}\right).

One can show exactness similar to the above sequence (8). Indeed, showing im(ϕ)ker(ψ){\rm im}(\phi)\subseteq\ker(\psi) is clear. Conversely, if ψ(c,d)=(0,0)\psi(c,d)=(0,0), then c=0c=0 and consequently d(aa)=0d(a^{\prime}-a)=0. Writing pνp(d)piuduaa=0p^{\nu_{p}(d)}p^{i}u_{d}u_{a^{\prime}-a}=0, we similarly conclude νp(d)ri\nu_{p}(d)\geq r-i so ker(ψ)im(ϕ)\ker(\psi)\subset{\rm im}(\phi). Using exactness of (9), we get

#span/pr{(a1),(aa0)}\displaystyle\#{\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}a\\ 1\end{array}\right),\left(\begin{array}[]{c}a^{\prime}-a\\ 0\end{array}\right)\right\} =#(/pr×/pr)#/pi\displaystyle=\frac{\#(\mathbb{Z}/p^{r}\mathbb{Z}\times\mathbb{Z}/p^{r}\mathbb{Z})}{\#\mathbb{Z}/p^{i}\mathbb{Z}}
=p2ri.\displaystyle=p^{2r-i}.

We conclude is(Λ(1,a).Λ(1,a))=p2νp(aa)i_{s}(\Lambda_{(1,-a)}.\Lambda_{(1,-a^{\prime})})=p^{2\nu_{p}(a^{\prime}-a)}.

Case 3: Lastly, we have

kerΛ(pb,1)+kerΛ(pb,1)\displaystyle\ker\Lambda_{(-pb,1)}+\ker\Lambda_{(-pb^{\prime},1)} =span/pr{(1pb),(1pb)}\displaystyle={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}1\\ pb\end{array}\right),\left(\begin{array}[]{c}1\\ pb^{\prime}\end{array}\right)\right\}
=span/pr{(1pb),(0p(bb))}\displaystyle={\rm span}_{\mathbb{Z}/p^{r}\mathbb{Z}}\left\{\left(\begin{array}[]{c}1\\ pb\end{array}\right),\left(\begin{array}[]{c}0\\ p(b^{\prime}-b)\end{array}\right)\right\}

Arguing as above by creating a sequence similar to (9) and replacing aa (resp. aa^{\prime}) with pbpb (resp. pbpb^{\prime}), we get

#(kerΛ(pb,1)+kerΛ(pb,1))=prpr(νp(bb)1).\#\left(\ker\Lambda_{(-pb,1)}+\ker\Lambda_{(-pb^{\prime},1)}\right)=p^{r}\cdot p^{r-(\nu_{p}(b^{\prime}-b)-1)}.

We conclude

is(Λ(pb,1).Λ(pb,1))=(p2r/p2rνp(bb)+1)2=p2νp(bb)+2.i_{s}(\Lambda_{(-pb,1)}.\Lambda_{(-pb^{\prime},1)})=(p^{2r}/p^{2r-\nu_{p}(b^{\prime}-b)+1})^{2}=p^{2\nu_{p}(b^{\prime}-b)+2}.\qed

.

To finish our calculation of intersection numbers, we will now compute each self-intersection. First we introduce the following lemma.

Lemma 3.4.

Let r1r\geq 1. We have

a/pra0p2νp(a)=p2r1pr1.\sum_{\begin{subarray}{c}a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}\\ a^{\prime}\neq 0\end{subarray}}p^{2\nu_{p}(a^{\prime})}=p^{2r-1}-p^{r-1}.
Proof.

We will group the index a/pra^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z} based on its pp-adic valuation m=νp(a)m=\nu_{p}(a^{\prime}) and then sum over mm. Observe that there are precisely φ(prm)\varphi(p^{r-m})-many elements in /pr\mathbb{Z}/p^{r}\mathbb{Z} with pp-adic valuation equal to mm. Thus

a/pra0p2νp(a)\displaystyle\sum_{\begin{subarray}{c}a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}\\ a^{\prime}\neq 0\end{subarray}}p^{2\nu_{p}(a^{\prime})} =m=0r1φ(prm)p2m\displaystyle=\sum_{m=0}^{r-1}\varphi(p^{r-m})p^{2m}
=m=0r1prm1(p1)p2m\displaystyle=\sum_{m=0}^{r-1}p^{r-m-1}(p-1)p^{2m}
=m=0r1pr+m1(p1)\displaystyle=\sum_{m=0}^{r-1}p^{r+m-1}(p-1)
=(p1)pr1m=0r1pm\displaystyle=(p-1)p^{r-1}\sum_{m=0}^{r-1}p^{m}
=(p1)pr11pr1p\displaystyle=(p-1)p^{r-1}\frac{1-p^{r}}{1-p}
=p2r1pr1\displaystyle=p^{2r-1}-p^{r-1}

as desired. ∎

Proposition 3.5.

For any Λ(/pr)×\HomSurj((/pr)2,/pr)\Lambda\in(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}\backslash{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z}), the self-intersection number is

Λ.Λ=degS(N)p2r1.\Lambda.\Lambda=-\deg{\rm S}(N)\cdot p^{2r-1}.
Proof.

By [Liu02, Proposition 9.1.21], we have

Λ.Λ=1μΛΛΛμΛ(Λ.Λ)\Lambda.\Lambda=-\frac{1}{\mu_{\Lambda}}\sum_{\Lambda^{\prime}\neq\Lambda}\mu_{\Lambda^{\prime}}(\Lambda^{\prime}.\Lambda)

where μΛ\mu_{\Lambda^{\prime}} is the multiplicity of Λ\Lambda^{\prime} for any irreducible component Λ\Lambda^{\prime}. Since 𝔛¯\bar{\mathfrak{X}} is reduced, μΛ=1\mu_{\Lambda}=1.

We compute the self-intersection for the two possible cases of Λ\Lambda. First we have

Λ(1,a).Λ(1,a)\displaystyle\Lambda_{(1,-a)}.\Lambda_{(1,-a)} =a/praaΛ(1,a).Λ(1,a)b/pr1Λ(pb,1).Λ(1,a)\displaystyle=-\sum_{\begin{subarray}{c}a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}\\ a^{\prime}\neq a\end{subarray}}\Lambda_{(1,-a^{\prime})}.\Lambda_{(1,-a)}-\sum_{b\in\mathbb{Z}/p^{r-1}\mathbb{Z}}\Lambda_{(-pb,1)}.\Lambda_{(1,-a)}
=degS(N)a/praap2νp(aa)degS(N)b/pr11\displaystyle=-\deg{\rm S}(N)\sum_{\begin{subarray}{c}a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}\\ a^{\prime}\neq a\end{subarray}}p^{2\nu_{p}(a^{\prime}-a)}-\deg{\rm S}(N)\sum_{b\in\mathbb{Z}/p^{r-1}\mathbb{Z}}1
=degS(N)a/pra0p2νp(a)degS(N)pr1\displaystyle=-\deg{\rm S}(N)\sum_{\begin{subarray}{c}a^{\prime}\in\mathbb{Z}/p^{r}\mathbb{Z}\\ a^{\prime}\neq 0\end{subarray}}p^{2\nu_{p}(a^{\prime})}-\deg{\rm S}(N)\cdot p^{r-1}

where we have used Proposition 3.3 to calculate the intersection numbers. Using Lemma 3.4, we have

Λ(1,a).Λ(1,a)\displaystyle\Lambda_{(1,-a)}.\Lambda_{(1,-a)} =degS(N)(p2r1pr1)degS(N)pr1\displaystyle=-\deg{\rm S}(N)(p^{2r-1}-p^{r-1})-\deg{\rm S}(N)\cdot p^{r-1}
=degS(N)p2r1.\displaystyle=-\deg{\rm S}(N)\cdot p^{2r-1}.

Next we consider the case Λ=Λ(pb,1)\Lambda=\Lambda_{(-pb,1)}. We have

Λ(pb,1).Λ(pb,1)\displaystyle\Lambda_{(-pb,1)}.\Lambda_{(-pb,1)} =b/pr1bbΛ(pb,1).Λ(pb,1)a/prΛ(1,a).Λ(1,pb)\displaystyle=-\sum_{\begin{subarray}{c}b^{\prime}\in\mathbb{Z}/p^{r-1}\mathbb{Z}\\ b^{\prime}\neq b\end{subarray}}\Lambda_{(-pb^{\prime},1)}.\Lambda_{(-pb,1)}-\sum_{a\in\mathbb{Z}/p^{r}\mathbb{Z}}\Lambda_{(1,-a)}.\Lambda_{(1,-pb)}
=degS(N)b/pr1bbp2νp(bb)+2degS(N)a/pr1\displaystyle=-\deg{\rm S}(N)\sum_{\begin{subarray}{c}b^{\prime}\in\mathbb{Z}/p^{r-1}\mathbb{Z}\\ b^{\prime}\neq b\end{subarray}}p^{2\nu_{p}(b^{\prime}-b)+2}-\deg{\rm S}(N)\sum_{a\in\mathbb{Z}/p^{r}\mathbb{Z}}1
=degS(N)b/pr1b0p2νp(b)+2degS(N)pr\displaystyle=-\deg{\rm S}(N)\sum_{\begin{subarray}{c}b^{\prime}\in\mathbb{Z}/p^{r-1}\mathbb{Z}\\ b^{\prime}\neq 0\end{subarray}}p^{2\nu_{p}(b^{\prime})+2}-\deg{\rm S}(N)\cdot p^{r}
=degS(N)p2b/pr1b0p2νp(b)degS(N)pr\displaystyle=-\deg{\rm S}(N)\cdot p^{2}\sum_{\begin{subarray}{c}b^{\prime}\in\mathbb{Z}/p^{r-1}\mathbb{Z}\\ b^{\prime}\neq 0\end{subarray}}p^{2\nu_{p}(b^{\prime})}-\deg{\rm S}(N)\cdot p^{r}
=degS(N)p2(p2(r1)1pr2)degS(N)pr\displaystyle=-\deg{\rm S}(N)\cdot p^{2}\left(p^{2(r-1)-1}-p^{r-2}\right)-\deg{\rm S}(N)\cdot p^{r}
=degS(N)p2r1.\displaystyle=-\deg{\rm S}(N)\cdot p^{2r-1}.

We will now describe the intersection matrix MM by specifying four blocks which make up MM. We label the columns (and by symmetry the rows) of MM in the following order:

Λ(1,0),Λ(1,1),,Λ(1,a),,Λ(1,(pr1)),Λ(0,1),Λ(p,1),,Λ(pb,1),,Λ(p(pr11),1)\Lambda_{(1,0)},\Lambda_{(1,-1)},\dots,\Lambda_{(1,-a)},\dots,\Lambda_{(1,-(p^{r}-1))},\Lambda_{(0,1)},\Lambda_{(-p,1)},\dots,\Lambda_{(-pb,1)},\dots,\Lambda_{(-p(p^{r-1}-1),1)}

so that the (i,j)(i,j) entry of MM is equal to the intersection number between the iith row label and jjth column label. Since degS(N)\deg{\rm S}(N) is a common factor among each entry of MM, we will describe the matrix 1degS(N)M\frac{1}{\deg{\rm S}(N)}M to simplify exposition.

Let M11M_{11} (resp. M22M_{22}) denote the submatrix of 1degS(N)M\frac{1}{\deg{\rm S}(N)}M corresponding to the column and row labels of the form Λ(1,a)\Lambda_{(1,-a)} (resp. Λ(pb,1)\Lambda_{(-pb,1)}). We let M12M_{12} and M21M_{21} denote the remaining two submatrices of 1degS(N)M\frac{1}{\deg{\rm S}(N)}M so that

M=degS(N)(M11M12M21M22).M=\deg{\rm S}(N)\left(\begin{array}[]{cc}M_{11}&M_{12}\\ M_{21}&M_{22}\end{array}\right).

We also let M(pr)M(p^{r}) denote the matrix M11M_{11} to highlight the dependence on prp^{r}. By convention, we define M(p0)M(p^{0}) to be the 1×11\times 1 matrix consisting of the entry 1p-\frac{1}{p}. The matrices M11M_{11} and M22M_{22} take on a special form.

Definition 3.6.

An n×nn\times n circulant matrix CC is of the form

C=(c0cn1c2c1c1c0c3c2cn2cn3c0cn1cn1cn2c1c0)C=\left(\begin{array}[]{ccccc}c_{0}&c_{n-1}&\cdots&c_{2}&c_{1}\\ c_{1}&c_{0}&\cdots&c_{3}&c_{2}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ c_{n-2}&c_{n-3}&\cdots&c_{0}&c_{n-1}\\ c_{n-1}&c_{n-2}&\cdots&c_{1}&c_{0}\end{array}\right)

where each column is equal to the previous column shifted downward by 1, looping around as appropriate.

Refer to Appendix B for a discussion on circulant matrices, including an explicit description of the eigenvalues, eigenvectors, and inverse in terms of the entries of the matrix and roots of unity.

Proposition 3.7.
  1. a.

    The entries of M12M_{12} and M21M_{21} are all equal to 1.

  2. b.

    The matrix M11=M(pr)M_{11}=M(p^{r}) is a pr×prp^{r}\times p^{r} circulant matrix whose first entry of the first column is p2r1-p^{2r-1}. For 2apr2\leq a\leq p^{r}, the atha^{{\rm th}} entry in the first column is equal to p2νp(a1)p^{2\nu_{p}(a-1)}.

  3. c.

    The matrix M22M_{22} is a pr1×pr1p^{r-1}\times p^{r-1} circulant matrix equal to p2M(pr1)p^{2}M(p^{r-1}).

Proof.

Proposition 3.3 immediately tells us the entries of M12M_{12} and M21M_{21} are all 1. Next we describe the first column of M11M_{11}. The first entry is equal to the local self-intersection number of Λ(1,0)\Lambda_{(1,0)}, which is p2r1-p^{2r-1} by Proposition 3.5. Using Proposition 3.3, for 2apr2\leq a\leq p^{r}, the atha^{{\rm th}} entry of the first column is equal to the local intersection number

1degS(N)Λ(1,(a1)).Λ(1,0)=p2νp(a1).\frac{1}{\deg{\rm S}(N)}\Lambda_{(1,-(a-1))}.\Lambda_{(1,0)}=p^{2\nu_{p}(a-1)}.

Now we show M11M_{11} is circulant. Recall the jjth column of M11M_{11} corresponds to the label Λ(1,(j1))\Lambda_{(1,-(j-1))} for 1jpr1\leq j\leq p^{r}. The kkth entry in the jjth column is equal to

1degS(N)Λ(1,(k1)).Λ(1,(j1))={p2νp((k1)(j1))if jkp2r1if j=k.\frac{1}{\deg{\rm S}(N)}\Lambda_{(1,-(k-1))}.\Lambda_{(1,-(j-1))}=\begin{cases}p^{2\nu_{p}((k-1)-(j-1))}&\mbox{if }j\neq k\\ -p^{2r-1}&\mbox{if }j=k\end{cases}.

Note for any nonzero x,yx,y\in\mathbb{Z}, if xyx\equiv y (mod prp^{r}), then νp(x)=νp(y)\nu_{p}(x)=\nu_{p}(y). Therefore the quantity

νp((k1)(j1))\nu_{p}((k-1)-(j-1))

for kjk\neq j remains unchanged if we take (k1)(j1)(k-1)-(j-1) modulo prp^{r}. We conclude

Λ(1,(k1)).Λ(1,(j1))=Λ(1,0).Λ(1,(k1)+(j1))\Lambda_{(1,-(k-1))}.\Lambda_{(1,-(j-1))}=\Lambda_{(1,0)}.\Lambda_{(1,-(k-1)+(j-1))}

which says the jjth column is equal to the first column with every entry shifted downward by j1j-1, looping around as appropriate. Hence M11M_{11} is a circulant matrix.

Lastly, we show M22=p2M(pr1)M_{22}=p^{2}M(p^{r-1}). Suppose r>1r>1. By Proposition 3.3, the (i,j)(i,j) entry of M22M_{22} for iji\neq j is equal to

p2νp((j1)(i1))+2=p2p2νp((j1)(i1))p^{2\nu_{p}((j-1)-(i-1))+2}=p^{2}p^{2\nu_{p}((j-1)-(i-1))}

which is equal to the (i,j)(i,j) entry of M(pr1)M(p^{r-1}) multiplied by p2p^{2}. When i=ji=j, the (i,j)(i,j) entry of M22M_{22} is p2r1-p^{2r-1} while the (i,j)(i,j) entry of p2M(pr1)p^{2}M(p^{r-1}) is

p2p2(r1)1=p2p2r3=p2r1.-p^{2}p^{2(r-1)-1}=-p^{2}p^{2r-3}=-p^{2r-1}.

Thus M22=p2M(pr1)M_{22}=p^{2}M(p^{r-1}).

When r=1r=1, M22M_{22} is a 1×11\times 1 matrix consisting of the entry (p)(-p). By convention M(p0)=(1p)M(p^{0})=(-\frac{1}{p}) so M22=p2M(pr1)M_{22}=p^{2}M(p^{r-1}) in the case r=1r=1. ∎

Example.

The intersection matrix for 𝔛(N5)\mathfrak{X}(N\cdot 5) is the 6×66\times 6 matrix

degS(N)(-5111111-5111111-5111111-5111111-5111111-5)\deg{\rm S}(N)\left(\begin{array}[]{cccccc}\textbf{-5}&\textbf{1}&\textbf{1}&\textbf{1}&\textbf{1}&1\\ \textbf{1}&\textbf{-5}&\textbf{1}&\textbf{1}&\textbf{1}&1\\ \textbf{1}&\textbf{1}&\textbf{-5}&\textbf{1}&\textbf{1}&1\\ \textbf{1}&\textbf{1}&\textbf{1}&\textbf{-5}&\textbf{1}&1\\ \textbf{1}&\textbf{1}&\textbf{1}&\textbf{1}&\textbf{-5}&1\\ 1&1&1&1&1&\textit{-5}\end{array}\right)

where the entries in bold comprise M11=M(pr)M_{11}=M(p^{r}) and the entries in italic comprise M22M_{22}. The intersection matrix for 𝔛(N32)\mathfrak{X}(N3^{2}) is the 12×1212\times 12 matrix

degS(N)(𝟑𝟑11𝟑𝟐11𝟑𝟐111111𝟑𝟑11𝟑𝟐11𝟑𝟐1111113311𝟑𝟐11𝟑𝟐111𝟑𝟐11𝟑𝟑11𝟑𝟐111111𝟑𝟐11𝟑𝟑11𝟑𝟐111111𝟑𝟐11𝟑𝟑11𝟑𝟐111𝟑𝟐11𝟑𝟐11𝟑𝟑111111𝟑𝟐11𝟑𝟐11𝟑𝟑111111𝟑𝟐11𝟑𝟐11𝟑𝟑111111111111333232111111111323332111111111323233)\deg{\rm S}(N)\left(\begin{array}[]{cccccccccccc}\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&1&1&1\\ \textbf{1}&\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&1&1&1\\ \textbf{1}&\textbf{1}&\textbf{$-3^{3}$}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&1&1&1\\ \mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&1&1&1\\ \textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&1&1&1\\ \textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&1&1&1\\ \mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&\textbf{1}&\textbf{1}&1&1&1\\ \textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&\textbf{1}&1&1&1\\ \textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{3^{2}}&\textbf{1}&\textbf{1}&\mathbf{-3^{3}}&1&1&1\\ 1&1&1&1&1&1&1&1&1&\mathit{-3^{3}}&\mathit{3^{2}}&\mathit{3^{2}}\\ 1&1&1&1&1&1&1&1&1&\mathit{3^{2}}&\mathit{-3^{3}}&\mathit{3^{2}}\\ 1&1&1&1&1&1&1&1&1&\mathit{3^{2}}&\mathit{3^{2}}&\mathit{-3^{3}}\end{array}\right)

3.2 Inverting M(pr)M(p^{r})

Recall our goal is to invert the matrix TT obtained by removing the first row and column of MM. For a general matrix AA, let A1,^1^A_{\hat{1,}\hat{1}} denote the matrix obtained by removing the first row and column of AA and let 𝟏n×m\mathbf{1}_{n\times m} denote the n×mn\times m matrix whose entries are all 1. Using Proposition 3.7, we have the following description of TT:

T=degS(N)(M(pr)1^,1^𝟏pr1×pr1𝟏pr1×pr1p2M(pr1)).T=\deg{\rm S}(N)\left(\begin{array}[]{cc}M(p^{r})_{\hat{1},\hat{1}}&\mathbf{1}_{p^{r}-1\times p^{r-1}}\\ \mathbf{1}_{p^{r-1}\times p^{r}-1}&p^{2}M(p^{r-1})\end{array}\right).

We will use the following identity to invert TT.

Proposition 3.8 (Woodbury Matrix Identity).

Let AA be an n×nn\times n invertible matrix, CC an invertible k×kk\times k matrix where knk\leq n, UU an n×kn\times k matrix, and VV a k×nk\times n matrix. Then

(A+UCV)1=A1A1U(C1+VA1U)1VA1.(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.

Refer to Appendix C for a discussion on using the Woodbury Matrix Identity to compute the inverse of A+UCVA+UCV in the situation that AA is a block diagonal matrix with two blocks, CC is the 2×22\times 2 identity, and both UU and VV consists of 0’s and 1’s which we specify later. Note that the inverse of a block diagonal matrix is obtained by inverting each block. Thus computing A1A^{-1} amounts to computing M(pr)1M(p^{r})^{-1} and M(pr)1^,1^1M(p^{r})_{\hat{1},\hat{1}}^{-1} which we will do in this subsection.

Before we compute the eigenvalues of M(pr)M(p^{r}), we will need the following technical lemma.

Lemma 3.9.

Let N1N\geq 1 and J1J\geq 1 be integers. We have

u=1pupN1ζpNuJ={0if pN1JpN1if pN1J and pNJpNpN1if pNJ.\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{N}-1}\zeta_{p^{N}}^{-uJ}=\begin{cases}0&\mbox{if }p^{N-1}\nmid J\\ -p^{N-1}&\mbox{if }p^{N-1}\mid J\mbox{ and }p^{N}\nmid J\\ p^{N}-p^{N-1}&\mbox{if }p^{N}\mid J\end{cases}.
Proof.

By the geometric partial sum formula, we have

u=1pN1ζpNuJ\displaystyle\sum_{u=1}^{p^{N}-1}\zeta_{p^{N}}^{-uJ} ={1+1ζpNJpN1ζpNJif pNJpN1if pNJ\displaystyle=\begin{cases}-1+\frac{1-\zeta_{p^{N}}^{-Jp^{N}}}{1-\zeta_{p^{N}}^{-J}}&\mbox{if }p^{N}\nmid J\\ p^{N}-1&\mbox{if }p^{N}\mid J\end{cases}
={1if pNJpN1if pNJ.\displaystyle=\begin{cases}-1&\mbox{if }p^{N}\nmid J\\ p^{N}-1&\mbox{if }p^{N}\mid J\end{cases}.

Next we consider the sum

u=1pupN1ζpNuJ=u=1pN11ζpN1uJ={1if pN1JpN11if pN1J.\sum_{\begin{subarray}{c}u=1\\ p\mid u\end{subarray}}^{p^{N}-1}\zeta_{p^{N}}^{-uJ}=\sum_{u=1}^{p^{N-1}-1}\zeta_{p^{N-1}}^{-uJ}=\begin{cases}-1&\mbox{if }p^{N-1}\nmid J\\ p^{N-1}-1&\mbox{if }p^{N-1}\mid J\end{cases}.

Therefore

u=1pupN1ζpNuJ=u=1pN1ζpNuJu=1pupN1ζpNuJ={0if pN1JpN1if pN1J and pNJpNpN1if pNJ.\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{N}-1}\zeta_{p^{N}}^{-uJ}=\sum_{u=1}^{p^{N}-1}\zeta_{p^{N}}^{-uJ}-\sum_{\begin{subarray}{c}u=1\\ p\mid u\end{subarray}}^{p^{N}-1}\zeta_{p^{N}}^{-uJ}=\begin{cases}0&\mbox{if }p^{N-1}\nmid J\\ -p^{N-1}&\mbox{if }p^{N-1}\mid J\mbox{ and }p^{N}\nmid J\\ p^{N}-p^{N-1}&\mbox{if }p^{N}\mid J\end{cases}.\qed
Lemma 3.10.

The eigenvalues λj\lambda_{j} of M(pr)M(p^{r}) are λ1=pr1\lambda_{1}=-p^{r-1} and

λj=p2r2νp(j1)(p+1)\lambda_{j}=-p^{2r-2-\nu_{p}(j-1)}(p+1)

for 2jpr2\leq j\leq p^{r}.

Proof.

By Lemma B.2, the eigenvalues of an n×nn\times n circulant matrix whose first column has entries c0,c1,,cn1c_{0},c_{1},\dots,c_{n-1} are given by

λj=k=0n1ckζnj(nk).\lambda_{j}=\sum_{k=0}^{n-1}c_{k}\zeta_{n}^{j(n-k)}.

For M(pr)M(p^{r}), the eigenvalues are therefore given by

λj=p2r1+k=1pr1p2νp(k)ζpr(j1)(prk)=p2r1+k=1pr1p2νp(k)ζprk(j1)\lambda_{j}=-p^{2r-1}+\sum_{k=1}^{p^{r}-1}p^{2\nu_{p}(k)}\zeta_{p^{r}}^{(j-1)(p^{r}-k)}=-p^{2r-1}+\sum_{k=1}^{p^{r}-1}p^{2\nu_{p}(k)}\zeta_{p^{r}}^{-k(j-1)}

for j=1,,prj=1,\dots,p^{r}.

When j=1j=1, we have

λ1=p2r1+k=1pr1p2νp(k)=p2r1+(p2r1pr1)=pr1\lambda_{1}=-p^{2r-1}+\sum_{k=1}^{p^{r}-1}p^{2\nu_{p}(k)}=-p^{2r-1}+(p^{2r-1}-p^{r-1})=-p^{r-1}

where we have used Lemma 3.4 to calculate the sum.

Assume j>1j>1. When r=1r=1, we have

λj=p+k=1p1p2νp(k)ζpk(j1).\lambda_{j}=-p+\sum_{k=1}^{p-1}p^{2\nu_{p}(k)}\zeta_{p}^{-k(j-1)}.

Since νp(k)=0\nu_{p}(k)=0 for 1kp11\leq k\leq p-1, we have

λj=p+k=1p1(ζp(j1))k\lambda_{j}=-p+\sum_{k=1}^{p-1}\left(\zeta_{p}^{-(j-1)}\right)^{k}

As 2jp2\leq j\leq p, we have p(j1)p\nmid(j-1) so ζp(j1)1\zeta_{p}^{-(j-1)}\neq 1. Using the geometric series partial sum formula, we get

λj=p1+1ζp(j1)p1ζp(j1)=p1.\lambda_{j}=-p-1+\frac{1-\zeta_{p}^{-(j-1)p}}{1-\zeta_{p}^{-(j-1)}}=-p-1.

Lastly we handle the r>1r>1 case. We compute the sum appearing in the expression for λj\lambda_{j} by breaking it up according to the value of νp(k)\nu_{p}(k). We have

k=1pr1p2νp(k)ζprk(j1)=m=0r1(p2mk=1νp(k)=mpr1ζprk(j1))\sum_{k=1}^{p^{r}-1}p^{2\nu_{p}(k)}\zeta_{p^{r}}^{-k(j-1)}=\sum_{m=0}^{r-1}\left(p^{2m}\sum_{\begin{subarray}{c}k=1\\ \nu_{p}(k)=m\end{subarray}}^{p^{r}-1}\zeta_{p^{r}}^{-k(j-1)}\right)

We can rewrite the index in each sum as k=upνp(k)k=up^{\nu_{p}(k)} where pup\nmid u and 1uprνp(k)11\leq u\leq p^{r-\nu_{p}(k)}-1. Re-indexing, with u1u\geq 1, we get

=m=0r1(p2mu=1puprm1ζprupm(j1))=\sum_{m=0}^{r-1}\left(p^{2m}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{r-m}-1}\zeta_{p^{r}}^{-up^{m}(j-1)}\right)

Since ζprpm=ζprm\zeta_{p^{r}}^{p^{m}}=\zeta_{p^{r-m}} for 0m<r0\leq m<r, we have

=m=0r1(p2mu=1puprm1ζprmu(j1))=\sum_{m=0}^{r-1}\left(p^{2m}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{r-m}-1}\zeta_{p^{r-m}}^{-u(j-1)}\right) (10)

Let =νp(j1)\ell=\nu_{p}(j-1). We will simplify (10) using Lemma 3.9 with J=j1J=j-1, and N=1,,rN=1,\dots,r. For ease of exposition, we split into two different cases depending on \ell and will consequently obtain our desired expression for λj\lambda_{j}.

Case 1: Suppose =0\ell=0. By Lemma 3.9, each sum in (10) is zero except for the last sum corresponding to m=r1m=r-1. We get

λj=p2r1+p2(r1)u=1pup1ζpu(j1)=p2r1+p2(r1)(1)=p2r1p2(r1).\lambda_{j}=-p^{2r-1}+p^{2(r-1)}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p-1}\zeta_{p}^{-u(j-1)}=-p^{2r-1}+p^{2(r-1)}(-1)=-p^{2r-1}-p^{2(r-1)}.

Case 2: Suppose 1r11\leq\ell\leq r-1. Since p+1(j1)p^{\ell+1}\nmid(j-1), we have

u=1pupN1ζpNu(j1)=0\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{N}-1}\zeta_{p^{N}}^{-u(j-1)}=0

for all N+2N\geq\ell+2. Expression (10) becomes

=m=1+1(p2(rm)u=1pupm1ζpmu(j1))\displaystyle=\sum_{m=1}^{\ell+1}\left(p^{2(r-m)}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{m}-1}\zeta_{p^{m}}^{-u(j-1)}\right)
=p2(r(+1))(p)+m=1p2(rm)(pmpm1)\displaystyle=p^{2(r-(\ell+1))}(-p^{\ell})+\sum_{m=1}^{\ell}p^{2(r-m)}(p^{m}-p^{m-1})
=p2(r1)+(p1)p2rm=2+1pm\displaystyle=-p^{2(r-1)-\ell}+(p-1)p^{2r}\sum_{m=2}^{\ell+1}p^{-m}
=p2(r1)+(p1)p2rp(+1)(p1)p1\displaystyle=-p^{2(r-1)-\ell}+(p-1)p^{2r}\cdot\frac{p^{-(\ell+1)}(p^{\ell}-1)}{p-1}
=p2(r1)+p2r(+1)(p1).\displaystyle=-p^{2(r-1)-\ell}+p^{2r-(\ell+1)}(p^{\ell}-1).

We conclude

λj\displaystyle\lambda_{j} =(p2r1)p2(r1)+p2r(+1)(p1)\displaystyle=(-p^{2r-1})-p^{2(r-1)-\ell}+p^{2r-(\ell+1)}(p^{\ell}-1)
=p2r1p2r2+p2r+1p2r1\displaystyle=-p^{2r-1}-p^{2r-\ell-2}+p^{2r+1}-p^{2r-\ell-1}
=p2r2(p+1)\displaystyle=-p^{2r-2-\ell}(p+1)
=p2r2νp(j1)(p+1)\displaystyle=-p^{2r-2-\nu_{p}(j-1)}(p+1)

as desired. ∎

Corollary 3.11.

M(pr)M(p^{r}) is invertible.

Proof.

By Lemma 3.10, all the eigenvalues of M(pr)M(p^{r}) are nonzero hence M(pr)M(p^{r}) is invertible. ∎

Now that we know the eigenvalues of M(pr)M(p^{r}), we can use Proposition B.4 to compute the inverse of M(pr)M(p^{r}).

Proposition 3.12.

Let bi,jb_{i,j} denote the (i,j)(i,j)-entry of M(pr)1M(p^{r})^{-1}. We have

bi,j={p12rp1p+1rp12rif i=jp12rp3r+2p+1(pr1+νp(ij)pr1(p1))otherwise.b_{i,j}=\begin{cases}-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}&\mbox{if }i=j\\ \\ -p^{1-2r}-\frac{p^{-3r+2}}{p+1}\cdot(-p^{r-1}+\nu_{p}(i-j)p^{r-1}(p-1))&\mbox{otherwise}\end{cases}.
Proof.

By Lemma B.4, the (i,j)(i,j)-entry of M(pr)1M(p^{r})^{-1} is equal to

1prk=1prλk1ζpr(k1)(ij)\frac{1}{p^{r}}\sum_{k=1}^{p^{r}}\lambda_{k}^{-1}\zeta_{p^{r}}^{(k-1)(i-j)}

where λk\lambda_{k} are the eigenvalues of M(pr)M(p^{r}) as in Lemma 3.10. Continuing,

=1pr(p1r+k=2pr1p+1p2r+2+νp(k1)ζpr(k1)(ij))\displaystyle=\frac{1}{p^{r}}\left(-p^{1-r}+\sum_{k=2}^{p^{r}}\frac{-1}{p+1}p^{-2r+2+\nu_{p}(k-1)}\zeta_{p^{r}}^{(k-1)(i-j)}\right)
=p12rp3r+2p+1k=2prpνp(k1)ζpr(k1)(ij)\displaystyle=-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\sum_{k=2}^{p^{r}}p^{\nu_{p}(k-1)}\zeta_{p^{r}}^{(k-1)(i-j)}
=p12rp3r+2p+1k=1pr1pνp(k)ζprk(ij).\displaystyle=-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\sum_{k=1}^{p^{r}-1}p^{\nu_{p}(k)}\zeta_{p^{r}}^{k(i-j)}.

We split into two cases, breaking down the sum in a similar manner as in the proof of Lemma 3.10. We have

k=1pr1pνp(k)ζprk(ij)=m=0r1(pmu=1puprm1ζprmu(ij))\sum_{k=1}^{p^{r}-1}p^{\nu_{p}(k)}\zeta_{p^{r}}^{k(i-j)}=\sum_{m=0}^{r-1}\left(p^{m}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{r-m}-1}\zeta_{p^{r-m}}^{u(i-j)}\right)

Case 1: Suppose i=ji=j. Then

k=1pr1pνp(k)ζprk(ij)\displaystyle\sum_{k=1}^{p^{r}-1}p^{\nu_{p}(k)}\zeta_{p^{r}}^{k(i-j)} =m=0r1pmu=1puprm11\displaystyle=\sum^{r-1}_{m=0}p^{m}\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{r-m}-1}1
=m=0r1pr1(p1)\displaystyle=\sum_{m=0}^{r-1}p^{r-1}(p-1)
=rpr1(p1)\displaystyle=rp^{r-1}(p-1)

Thus the (i,i)(i,i)-entry of M(pr)1M(p^{r})^{-1} is

p12rp3r+2p+1rpr1(p1)=p12rp1p+1rp12r.-p^{1-2r}-\frac{p^{-3r+2}}{p+1}rp^{r-1}(p-1)=-p^{1-2r}-\frac{p-1}{p+1}\cdot r\cdot p^{1-2r}.

Case 2: Suppose iji\neq j and let =νp(ij)\ell=\nu_{p}(i-j). Then this situation resembles that of Equation (10) which we have already computed.

k=1pr1pνp(k)ζprk(ij)\displaystyle\sum_{k=1}^{p^{r}-1}p^{\nu_{p}(k)}\zeta_{p^{r}}^{k(i-j)} =m=1+1prm(u=1pupm1ζpmu(ij))\displaystyle=\sum_{m=1}^{\ell+1}p^{r-m}\left(\sum_{\begin{subarray}{c}u=1\\ p\nmid u\end{subarray}}^{p^{m}-1}\zeta_{p^{m}}^{u(i-j)}\right)
=m=1+1prmpm1(p1)\displaystyle=\sum_{m=1}^{\ell+1}p^{r-m}p^{m-1}(p-1)
=pr1+pr1(p1)\displaystyle=-p^{r-1}+\ell p^{r-1}(p-1)

Thus the (i,j)(i,j)-entry of M(pr)1M(p^{r})^{-1} is

p12rp3r+2p+1(pr1+pr1(p1))-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\left(-p^{r-1}+\ell p^{r-1}(p-1)\right)
=p12rp3r+2p+1(pr1+νp(ij)pr1(p1))=-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\left(-p^{r-1}+\nu_{p}(i-j)p^{r-1}(p-1)\right)

as desired. ∎

3.3 Inverting M(pr)1^,1^M(p^{r})_{\hat{1},\hat{1}}

Having calculated the entries of M(pr)1M(p^{r})^{-1}, we can calculate the entries of M(pr)1^,1^1M(p^{r})_{\hat{1},\hat{1}}^{-1} using the following result. We will provide a sketch of the proof. A full proof can be found in [JCP16, Theorem 2.2].

Proposition 3.13.

Let AA be an invertible n×nn\times n matrix and let A1=(mij)A^{-1}=(m_{ij}). Let s,t{1,,n}s,t\in\left\{1,\dots,n\right\} and let As^,t^A_{\hat{s},\hat{t}} denote the matrix obtain from AA by removing the sths^{{\rm th}} row and ttht^{{\rm th}} column. Then the (i,j)(i,j)-entry of As^,t^1=(aij)A_{\hat{s},\hat{t}}^{-1}=(a_{ij}) is given by

aij=mijmismtjmtsa_{ij}=m_{ij}-\frac{m_{is}m_{tj}}{m_{ts}}

for i,j=1,,ni,j=1,\dots,n with iti\neq t and jsj\neq s.

Proof.

Write A=(wij)A=(w_{ij}). Let uu denote the sths^{{\rm th}} column of A1A^{-1} after removing the ttht^{{\rm th}} component and let vv denote the sths^{{\rm th}} row of AA after removing the ttht^{{\rm th}} component. Then one can verify

(As^,t^)1=(In1uvT)1(A1)t^,s^(A_{\hat{s},\hat{t}})^{-1}=\left(I_{n-1}-uv^{T}\right)^{-1}(A^{-1})_{\hat{t},\hat{s}}

where In1I_{n-1} is the (n1)×(n1)(n-1)\times(n-1) identity matrix. Using the Sherman-Morrison formula, which is a special case of Proposition 3.8, to calculate (In1uvT)1(I_{n-1}-uv^{T})^{-1}, we get

(As^,t^)1\displaystyle(A_{\hat{s},\hat{t}})^{-1} =(In1+uvT1vTu)(A1)t^,s^\displaystyle=\left(I_{n-1}+\frac{uv^{T}}{1-v^{T}u}\right)(A^{-1})_{\hat{t},\hat{s}}
=(In1+uvTwstmts)(A1)t^,s^.\displaystyle=\left(I_{n-1}+\frac{uv^{T}}{w_{st}m_{ts}}\right)(A^{-1})_{\hat{t},\hat{s}.}

Therefore the (i,j)(i,j) entry of (As^,t^)1(A_{\hat{s},\hat{t}})^{-1} is

aij\displaystyle a_{ij} =mij+miswstmtskqwskmkj\displaystyle=m_{ij}+\frac{m_{is}}{w_{st}m_{ts}}\sum_{k\neq q}w_{sk}m_{kj}
=mijmismtjmts\displaystyle=m_{ij}-\frac{m_{is}m_{tj}}{m_{ts}}
Proposition 3.14.

Let (ai,j)=M(pr)1^,1^1(a_{i,j})=M(p^{r})_{\hat{1},\hat{1}}^{-1} and let i=νp(i)\ell_{i}=\nu_{p}(i). We have

ai,j={p12rp1p+1rp12r+p12r(ipi+p)2(p+1)(pr+pr+1)if i=jp12r(ijp+pij)p+1+p12r(ip+pi)(jp+pj)(p+1)(pr+pr+1)otherwisea_{i,j}=\begin{cases}{\displaystyle-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\ell_{i}p-\ell_{i}+p)^{2}}{(p+1)(pr+p-r+1)}}&\mbox{if }i=j\\ \\ {\displaystyle-\frac{p^{1-2r}(\ell_{i-j}p+p-\ell_{i-j})}{p+1}+\frac{p^{1-2r}(\ell_{i}p+p-\ell_{i})(\ell_{j}p+p-\ell_{j})}{(p+1)(pr+p-r+1)}}&\mbox{otherwise}\end{cases}
Proof.

We will apply Proposition 3.12 and Proposition 3.13 to compute ai,ja_{i,j}. When i=ji=j, we have

ai,i\displaystyle a_{i,i} =mi,imi,1m1,im1,1\displaystyle=m_{i,i}-\frac{m_{i,1}m_{1,i}}{m_{1,1}}
=p12rp1p+1rp12r(p12rp3r+2p+1(pr1+i+1pr1(p1)))2p12rp1p+1rp12r\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{\left(-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\cdot(-p^{r-1}+\ell_{i+1}p^{r-1}(p-1))\right)^{2}}{-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}}
=p12rp1p+1rp12r+p12r(i+1pi+1+p)2(p+1)(pr+pr+1).\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\ell_{i+1}p-\ell_{i+1}+p)^{2}}{(p+1)(pr+p-r+1)}.

When iji\neq j, we have

ai,j\displaystyle a_{i,j} =mi,jmi,1m1,jm1,1\displaystyle=m_{i,j}-\frac{m_{i,1}m_{1,j}}{m_{1,1}}
=p12rp3r+2p+1(pr1+ijpr1(p1))\displaystyle=-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\cdot(-p^{r-1}+\ell_{i-j}p^{r-1}(p-1))
(p12rp3r+2p+1(pr1+i+1pr1(p1)))(p12rp3r+2p+1(pr1+j+1pr1(p1)))(p12rp1p+1rp12r)\displaystyle-\frac{\left(-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\cdot(-p^{r-1}+\ell_{i+1}p^{r-1}(p-1))\right)\left(-p^{1-2r}-\frac{p^{-3r+2}}{p+1}\cdot(-p^{r-1}+\ell_{j+1}p^{r-1}(p-1))\right)}{\left(-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}\right)}
=p12r(ijpij+p)p+1+p12r(i+1pi+1+p)p+1p12r(j+1pj+1+p)p+1p12r(pr+pr+1)p+1\displaystyle=-\frac{p^{1-2r}(\ell_{i-j}p-\ell_{i-j}+p)}{p+1}+\frac{\frac{p^{1-2r}(\ell_{i+1}p-\ell_{i+1}+p)}{p+1}\cdot\frac{p^{1-2r}(\ell_{j+1}p-\ell_{j+1}+p)}{p+1}}{\frac{p^{1-2r}(pr+p-r+1)}{p+1}}
=p12r(ijp+pij)p+1+p12r(i+1p+pi+1)(j+1p+pj+1)(p+1)(pr+pr+1).\displaystyle=-\frac{p^{1-2r}(\ell_{i-j}p+p-\ell_{i-j})}{p+1}+\frac{p^{1-2r}(\ell_{i+1}p+p-\ell_{i+1})(\ell_{j+1}p+p-\ell_{j+1})}{(p+1)(pr+p-r+1)}.

Note that the indices i,ji,j in Proposition 3.13 range 2i,jpr2\leq i,j\leq p^{r} in the situation s=t=1s=t=1; we will shift our index down by 1 so that 1i,jpr11\leq i,j\leq p^{r}-1, giving our desired expression for ai,ja_{i,j} in the statement of the proposition. ∎

3.4 Inverting TT

Recall in Section 3.2 we wrote T=A+NT=A+N where

A=(M(pr)1^,1^00p2M(pr1)) and N=(0𝟏pr1×pr1𝟏pr1×pr10).A=\left(\begin{array}[]{cc}M(p^{r})_{\hat{1},\hat{1}}&0\\ 0&p^{2}M(p^{r-1})\end{array}\right)\mbox{ and }N=\left(\begin{array}[]{cc}0&\mathbf{1}_{p^{r}-1\times p^{r-1}}\\ \mathbf{1}_{p^{r-1}\times p^{r}-1}&0\end{array}\right).

The matrix NN is rank 2 and can be written as N=UI2VN=UI_{2}V where I2I_{2} is the 2×22\times 2 identity matrix, UU is the (pr1+pr1)×2(p^{r}-1+p^{r-1})\times 2 matrix whose first and last column are the same as those of NN, and VV is the 2×(pr1+pr1)2\times(p^{r}-1+p^{r-1}) matrix

V=(111000000111)V=\left(\begin{array}[]{cccccccc}1&1&\cdots&1&0&0&\cdots&0\\ 0&0&\cdots&0&1&1&\cdots&1\end{array}\right)

where the first pr1p^{r}-1 entries of the first row of VV are all 1 with the remaining pr1p^{r-1} entries are all 0 and the first pr1p^{r}-1 entries of the second row are 0 while the remaining pr1p^{r-1} entries are all 1. Note that V=UTV=U^{T}.

In the more general situation where AA is an invertible block diagonal matrix with

A1=(a11a1nan1ann𝟎𝟎b11b1mbm1bmm)A^{-1}=\left(\begin{array}[]{cc}\begin{array}[]{ccc}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn}\end{array}&\mathbf{0}\\ \mathbf{0}&\begin{array}[]{ccc}b_{11}&\cdots&b_{1m}\\ \vdots&\ddots&\vdots\\ b_{m1}&\cdots&b_{mm}\end{array}\end{array}\right)

an explicit formula for the entries of (A+UV)1(A+UV)^{-1} is provided in Proposition C.1. We state it here for convenience:

Proposition 3.15.

Let T=A+UVT=A+UV where A,U,A,U, and VV are the given matrices above. Let ci,jc^{i,j} denote the (i,j)(i,j)-entry of T1T^{-1}. We have

ci,j={ai,j+β1αβ(k=1nai,k)(k=1nak,j)if 1i,jn11αβ(k=1nai,k)(k=1mbk,j)if 1in and n<jn+m11αβ(k=1mbi,k)(k=1nak,j)if 1jn and n<in+mbi,j+α1αβ(k=1mbi,k)(k=1mbk,j)if n<i,jn+mc^{i,j}=\begin{cases}{\displaystyle a_{i,j}+\frac{\beta}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right)}&\mbox{if }1\leq i,j\leq n\\ {\displaystyle\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right)}&\mbox{if }1\leq i\leq n\mbox{ and }n<j\leq n+m\\ {\displaystyle\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right)}&\mbox{if }1\leq j\leq n\mbox{ and }n<i\leq n+m\\ {\displaystyle b_{i,j}+\frac{\alpha}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right)}&\mbox{if }n<i,j\leq n+m\end{cases}

where α=ai,j\alpha=\sum a_{i,j} is the sum of all entries in the first block in A1A^{-1} and β=bi,j\beta=\sum b_{i,j} is the sum of all entries in the second block in A1A^{-1}.

To obtain a closed formula for the entries ci,jc^{i,j}, we will therefore need to calculate the row and column sums of M(pr)1^,1^1M(p^{r})_{\hat{1},\hat{1}}^{-1} and p2M(pr1)1p^{-2}M(p^{r-1})^{-1}. Note that both these matrices are symmetric so it suffices to compute, say, the row sums. The following lemma will be used when computing these sums.

Lemma 3.16.

We have

m=1pr1νp(m)=prpr+r1p1.\sum_{m=1}^{p^{r}-1}\nu_{p}(m)=\frac{p^{r}-pr+r-1}{p-1}.
Proof.

The number of positive integers <pr<p^{r} with valuation νp(m)=\nu_{p}(m)=\ell is precisely φ(pr)=pr1(p1)\varphi(p^{r-\ell})=p^{r-\ell-1}(p-1). Hence

m=1pr1νp(m)==0r1pr1(p1)=pr1(p1)=0r1p.\sum_{m=1}^{p^{r}-1}\nu_{p}(m)=\sum_{\ell=0}^{r-1}\ell p^{r-\ell-1}(p-1)=p^{r-1}(p-1)\sum_{\ell=0}^{r-1}\ell p^{-\ell}.

Using the identity

=0nX=X(nXn+1(n+1)Xn+1)(X1)2\sum_{\ell=0}^{n}\ell X^{\ell}=\frac{X(nX^{n+1}-(n+1)X^{n}+1)}{(X-1)^{2}}

with X=p1X=p^{-1} and n=r1n=r-1, we obtain

pr1(p1)=0r1p\displaystyle p^{r-1}(p-1)\sum_{\ell=0}^{r-1}\ell p^{-\ell} =pr1(p1)p1((r1)prrp(r1)+1)(p11)2\displaystyle=p^{r-1}(p-1)\cdot\frac{p^{-1}((r-1)p^{-r}-rp^{-(r-1)}+1)}{(p^{-1}-1)^{2}}
=prpr+r1p1.\displaystyle=\frac{p^{r}-pr+r-1}{p-1}.
Corollary 3.17.

Let 1ipr11\leq i\leq p^{r}-1. We have

j=1jipr1νp(ji)=νp(i)+prpr+r1p1.\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\nu_{p}(j-i)=-\nu_{p}(i)+\frac{p^{r}-pr+r-1}{p-1}.
Proof.

We have

j=1jipr1νp(ji)=j=1ij0pr1iνp(j)=j=1i1νp(j)+j=1pr11iνp(j).\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\nu_{p}(j-i)=\sum_{\begin{subarray}{c}j=1-i\\ j\neq 0\end{subarray}}^{p^{r}-1-i}\nu_{p}(j)=\sum_{j=1-i}^{-1}\nu_{p}(j)+\sum_{j=1}^{p^{r-1}-1-i}\nu_{p}(j).

Since νp(j)<r\nu_{p}(j)<r, we have νp(j)=νp(j+pr)\nu_{p}(j)=\nu_{p}(j+p^{r}). Continuing,

=j=1i1νp(j+pr)+j=1pr1i1νp(j)\displaystyle=\sum_{j=1-i}^{-1}\nu_{p}(j+p^{r})+\sum_{j=1}^{p^{r-1}-i-1}\nu_{p}(j)
=j=pri+1pr1νp(j)+j=1pri1νp(j)\displaystyle=\sum_{j=p^{r}-i+1}^{p^{r}-1}\nu_{p}(j)+\sum_{j=1}^{p^{r}-i-1}\nu_{p}(j)
=νp(pri)+j=1pr1νp(j)\displaystyle=-\nu_{p}(p^{r}-i)+\sum_{j=1}^{p^{r}-1}\nu_{p}(j)
=νp(i)+j=1pr1νp(j).\displaystyle=-\nu_{p}(i)+\sum_{j=1}^{p^{r}-1}\nu_{p}(j).

By Lemma 3.16, we finally get

=νp(i)+prpr+r1p1.=-\nu_{p}(i)+\frac{p^{r}-pr+r-1}{p-1}.\qed

Write M(pr)1^,1^1=(aij)M(p^{r})_{\hat{1},\hat{1}}^{-1}=(a_{ij}) and p2M(pr1)1=(bij)p^{-2}M(p^{r-1})^{-1}=(b_{ij}). We first compute the row and column sums of p2M(pr1)1p^{-2}M(p^{r-1})^{-1} and the quantity β\beta, the sum of all the entries of (bij)(b_{ij}).

Lemma 3.18.

Consider the matrix p2M(pr1)1=(bij)p^{-2}M(p^{r-1})^{-1}=(b_{ij}). We have

m=1pr1bi,m=pr and β=p1\sum_{m=1}^{p^{r-1}}b_{i,m}=-p^{-r}\mbox{ and }\beta=-p^{-1}

for all 1ipr11\leq i\leq p^{r-1}.

Proof.

Since M(pr1)M(p^{r-1}) is circulant, the inverse M(pr1)1M(p^{r-1})^{-1} is circulant by Corollary B.5. Therefore all the row sums are the same. Furthermore, by Lemma 3.10, λ1=pr2\lambda_{1}=-p^{r-2} is an eigenvalue of M(pr1)M(p^{r-1}) with corresponding eigenvector v1=(1,1,,1)v_{1}=(1,1,\dots,1) (see Lemma B.2).

Note that the entries of M(pr1)v1=pr2v1M(p^{r-1})v_{1}=-p^{r-2}v_{1} are precisely the row sums of M(pr1)M(p^{r-1}). Hence the row sums of M(pr1)M(p^{r-1}) are all pr2-p^{r-2}. Observe that

M(pr1)1v1=p2rv1M(p^{r-1})^{-1}v_{1}=-p^{2-r}v_{1}

so the row sums of M(pr1)1M(p^{r-1})^{-1} are all p2r-p^{2-r}. Consequently the row sums of p2M(pr1)1p^{-2}M(p^{r-1})^{-1} are all pr-p^{-r}. The matrix p2M(pr1)1p^{-2}M(p^{r-1})^{-1} has pr1p^{r-1} rows so

β=(pr1)(pr)=p1\beta=(p^{r-1})(-p^{-r})=-p^{-1}

as desired. ∎

Next we compute the row sums for M(pr)1^,1^1M(p^{r})_{\hat{1},\hat{1}}^{-1} which is substantially more tedious than Lemma 3.18, noting that M(pr)1^,1^M(p^{r})_{\hat{1},\hat{1}} fails to be circulant in general.

Lemma 3.19.

Consider the matrix M(pr)1^,1^1=(aij)M(p^{r})_{\hat{1},\hat{1}}^{-1}=(a_{ij}) and let i=νp(i)\ell_{i}=\nu_{p}(i). Fix a row i1i\geq 1. We have

j=1pr1aij=p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)i\sum_{j=1}^{p^{r}-1}a_{ij}=\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\ell_{i}

and

α=(p1)pr(p1)r+p+1.\alpha=-\frac{(p-1)pr}{(p-1)r+p+1}.
Proof.

Using Proposition 3.14, we compute

j=1pr1aij\displaystyle\sum_{j=1}^{p^{r}-1}a_{ij} =aii+j=1jipr1aij\displaystyle=a_{ii}+\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}a_{ij}
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)}
+j=1jipr1(p12r(νp(ij)p+pνp(ij))p+1+p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1))\displaystyle+\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\left(-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}+\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}\right)
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)} (11)
+j=1jipr1(p12r(νp(ij)p+pνp(ij))p+1)\displaystyle+\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\left(-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}\right) (12)
+j=1jipr1(p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)).\displaystyle+\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\left(\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}\right). (13)

We will now compute the sums above, starting with (12).

j=1jipr1(p12r(νp(ij)p+pνp(ij))p+1)\displaystyle\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\left(-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}\right) =p12rp+1j=1jipr1(νp(ij)p+pνp(ij))\displaystyle=-\frac{p^{1-2r}}{p+1}\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))
=p12rp+1[j=1jipr1p+(p1)j=1jipr1νp(ji)]\displaystyle=-\frac{p^{1-2r}}{p+1}\left[\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}p+(p-1)\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\nu_{p}(j-i)\right]
=p12rp+1[p(pr2)+(p1)j=1jipr1νp(ji)].\displaystyle=-\frac{p^{1-2r}}{p+1}\left[p(p^{r}-2)+(p-1)\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{p^{r}-1}\nu_{p}(j-i)\right].

Using Corollary 3.17, we have

=p12rp+1[p(pr2)+(p1)(νp(i)+prpr+r1p1)]\displaystyle=-\frac{p^{1-2r}}{p+1}\left[p(p^{r}-2)+(p-1)\left(-\nu_{p}(i)+\frac{p^{r}-pr+r-1}{p-1}\right)\right]
=p12rp+1[p(pr2)(p1)νp(i)+prpr+r1].\displaystyle=-\frac{p^{1-2r}}{p+1}\left[p(p^{r}-2)-(p-1)\nu_{p}(i)+p^{r}-pr+r-1\right].

Now we compute (13). Note that the third expression in (11) is what would be the j=ij=i term in the sum. We can combine them and compute instead

j=1pr1p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)\displaystyle\sum_{j=1}^{p^{r}-1}\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}
=p12r(νp(i)p+pνp(i))(p+1)(pr+pr+1)j=1pr1(νp(j)p+pνp(j))\displaystyle=\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}\sum_{j=1}^{p^{r}-1}(\nu_{p}(j)p+p-\nu_{p}(j))
=p12r(νp(i)p+pνp(i))(p+1)(pr+pr+1)j=1pr1(p+νp(j)(p1))\displaystyle=\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}\sum_{j=1}^{p^{r}-1}(p+\nu_{p}(j)(p-1))
=p22r(νp(i)p+pνp(i))(p+1)(pr+pr+1)(pr1)+p12r(p1)(νp(i)p+pνp(i))(p+1)(pr+pr+1)j=1pr1νp(j)\displaystyle=\frac{p^{2-2r}(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}(p^{r}-1)+\frac{p^{1-2r}(p-1)(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}\sum_{j=1}^{p^{r}-1}\nu_{p}(j)
=p22r(νp(i)p+pνp(i))(p+1)(pr+pr+1)(pr1)+p12r(p1)(νp(i)p+pνp(i))(p+1)(pr+pr+1)(prpr+r1p1)\displaystyle=\frac{p^{2-2r}(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}(p^{r}-1)+\frac{p^{1-2r}(p-1)(\nu_{p}(i)p+p-\nu_{p}(i))}{(p+1)(pr+p-r+1)}\left(\frac{p^{r}-pr+r-1}{p-1}\right)
=(νp(i)p+pνp(i))(p22r(pr1)(p+1)(pr+pr+1)+p12r(prpr+r1)(p+1)(pr+pr+1))\displaystyle=(\nu_{p}(i)p+p-\nu_{p}(i))\left(\frac{p^{2-2r}(p^{r}-1)}{(p+1)(pr+p-r+1)}+\frac{p^{1-2r}(p^{r}-pr+r-1)}{(p+1)(pr+p-r+1)}\right)
=(νp(i)p+pνp(i))p12r(pr(p1)r+p+11p+1).\displaystyle=(\nu_{p}(i)p+p-\nu_{p}(i))p^{1-2r}\left(\frac{p^{r}}{(p-1)r+p+1}-\frac{1}{p+1}\right).

Combining everything together, the iith row sum is

j=1pr1aij\displaystyle\sum_{j=1}^{p^{r}-1}a_{ij} =p12rp1p+1rp12rp12rp+1[p(pr2)(p1)νp(i)+prpr+r1]\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{p^{1-2r}}{p+1}\left[p(p^{r}-2)-(p-1)\nu_{p}(i)+p^{r}-pr+r-1\right]
+(νp(i)p+pνp(i))p12r(pr(p1)r+p+11p+1)\displaystyle+(\nu_{p}(i)p+p-\nu_{p}(i))p^{1-2r}\left(\frac{p^{r}}{(p-1)r+p+1}-\frac{1}{p+1}\right)
=p12rp1p+1rp12rp12rp+1p(pr2)+p12rp+1(p1)νp(i)p12rp+1(prpr+r1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{p^{1-2r}}{p+1}p(p^{r}-2)+\frac{p^{1-2r}}{p+1}(p-1)\nu_{p}(i)-\frac{p^{1-2r}}{p+1}(p^{r}-pr+r-1)
+((p1)νp(i)+p)(prp12r(p1)r+p+1p12rp+1)\displaystyle+((p-1)\nu_{p}(i)+p)\left(\frac{p^{r}p^{1-2r}}{(p-1)r+p+1}-\frac{p^{1-2r}}{p+1}\right)
=p12rp1p+1rp12rp12rp+1p(pr2)+p12rp+1(p1)νp(i)p12rp+1(prpr+r1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{p^{1-2r}}{p+1}p(p^{r}-2)+\frac{p^{1-2r}}{p+1}(p-1)\nu_{p}(i)-\frac{p^{1-2r}}{p+1}(p^{r}-pr+r-1)
+(p1)(p1r(p1)r+p+1p12rp+1)νp(i)+(p1r(p1)r+p+1p12rp+1)p\displaystyle+(p-1)\left(\frac{p^{1-r}}{(p-1)r+p+1}-\frac{p^{1-2r}}{p+1}\right)\nu_{p}(i)+\left(\frac{p^{1-r}}{(p-1)r+p+1}-\frac{p^{1-2r}}{p+1}\right)p
=p12rp1p+1rp12rp12rp+1p(pr2)+p12rp+1(p1)νp(i)p12rp+1(prpr+r1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{p^{1-2r}}{p+1}p(p^{r}-2)+\frac{p^{1-2r}}{p+1}(p-1)\nu_{p}(i)-\frac{p^{1-2r}}{p+1}(p^{r}-pr+r-1)
+(p1r(p1)(p1)r+p+1p12r(p1)p+1)νp(i)+(p2r(p1)r+p+1p22rp+1)\displaystyle+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}-\frac{p^{1-2r}(p-1)}{p+1}\right)\nu_{p}(i)+\left(\frac{p^{2-r}}{(p-1)r+p+1}-\frac{p^{2-2r}}{p+1}\right)
=p12rp1p+1rp12rp12rp+1p(pr2)p12rp+1(prpr+r1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}-\frac{p^{1-2r}}{p+1}p(p^{r}-2)-\frac{p^{1-2r}}{p+1}(p^{r}-pr+r-1)
+(p2r(p1)r+p+1p22rp+1)\displaystyle+\left(\frac{p^{2-r}}{(p-1)r+p+1}-\frac{p^{2-2r}}{p+1}\right)
=p12r(p(p+1)pr)p+1+(p2r(p1)r+p+1p22rp+1)+((p1)p1r(p1)r+p+1)νp(i)\displaystyle=\frac{p^{1-2r}(p-(p+1)p^{r})}{p+1}+\left(\frac{p^{2-r}}{(p-1)r+p+1}-\frac{p^{2-2r}}{p+1}\right)+\left(\frac{(p-1)p^{1-r}}{(p-1)r+p+1}\right)\nu_{p}(i)
=p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i).\displaystyle=\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i).

Lastly, we compute α\alpha:

α\displaystyle\alpha =i=1pr1(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i))\displaystyle=\sum_{i=1}^{p^{r}-1}\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)
=i=1pr1p1r(pr+r1)(p1)r+p+1+p1r(p1)(p1)r+p+1i=1pr1νp(i)\displaystyle=\sum_{i=1}^{p^{r}-1}\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\sum_{i=1}^{p^{r}-1}\nu_{p}(i)
=p1r(pr+r1)(p1)r+p+1(pr1)+p1r(p1)(p1)r+p+1(prpr+r1p1)\displaystyle=\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}(p^{r}-1)+\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\left(\frac{p^{r}-pr+r-1}{p-1}\right)
=(p1)pr(p1)r+p+1.\displaystyle=-\frac{(p-1)pr}{(p-1)r+p+1}.

We will now provide an explicit description of the entries of T1T^{-1}.

Theorem 3.20.

Let ci,jc^{i,j} denote the (i,j)(i,j)-entry of T1T^{-1}. We have

degS(N)cij={2p12r(prr+1)p+1+2p12r(p1)p+1νp(i)if 1i,jpr1 and i=jp12r(prr+1)p+1p12r(p1)p+1νp(1j1i)if 1i,jpr1 and ijp12r(prr+1)p+1+p12r(p1)p+1νp(i)if 1ipr1 and prjpr1+pr1p12r(prr+1)p+1+p12r(p1)p+1νp(j)if 1jpr1 and pripr1+pr12p12r(prr+1)p+1if pri,jpr1+pr1 and i=jp12r(pr+pr)p+1p12r(p1)p+1νp(ij)if pri,jpr1+pr1 and ij.\deg{\rm S}(N)c^{ij}=\begin{cases}{\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}+\frac{2p^{1-2r}(p-1)}{p+1}\nu_{p}(i)}&\mbox{if }1\leq i,j\leq p^{r}-1\mbox{ and }i=j\\ \\ {\displaystyle-p^{1-2r}\frac{(pr-r+1)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}\left(\frac{1}{j}-\frac{1}{i}\right)}&\mbox{if }1\leq i,j\leq p^{r}-1\mbox{ and }i\neq j\\ \\ {\displaystyle-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(i)}&\mbox{if }1\leq i\leq p^{r}-1\mbox{ and }p^{r}\leq j\leq p^{r}-1+p^{r-1}\\ \\ {\displaystyle-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(j)}&\mbox{if }1\leq j\leq p^{r}-1\mbox{ and }p^{r}\leq i\leq p^{r}-1+p^{r-1}\\ \\ {\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}}&\mbox{if }p^{r}\leq i,j\leq p^{r}-1+p^{r-1}\mbox{ and }i=j\\ \\ {\displaystyle-\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(i-j)}&\mbox{if }p^{r}\leq i,j\leq p^{r}-1+p^{r-1}\mbox{ and }i\neq j\end{cases}.
Proof.

We will break into four cases, using Proposition 3.15 to calculate the ci,jc^{i,j} along with our results in Lemma 3.18 and Lemma 3.19.

Case 1. Suppose 1i,jpr11\leq i,j\leq p^{r}-1. Then

cij=ai,j+β1αβ(k=1pr1ai,k)(k=1pr1ak,j).c^{ij}=a_{i,j}+\frac{\beta}{1-\alpha\beta}\left(\sum_{k=1}^{p^{r}-1}a_{i,k}\right)\left(\sum_{k=1}^{p^{r}-1}a_{k,j}\right).

If i=ji=j, then ciic^{ii} is equal to

=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)+β1αβ(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i))2\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)}+\frac{\beta}{1-\alpha\beta}\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)^{2}
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)pr+pr+1p(p+1)(p22r((p1)νp(i)+(1p)r1)2(pr+pr+1)2)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)}-\frac{pr+p-r+1}{p(p+1)}\left(\frac{p^{2-2r}((p-1)\nu_{p}(i)+(1-p)r-1)^{2}}{(pr+p-r+1)^{2}}\right)
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)p12r(pr+pr+1)(p+1)(((p1)νp(i)+(1p)r1)2(pr+pr+1)2)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)}-\frac{p^{1-2r}(pr+p-r+1)}{(p+1)}\left(\frac{((p-1)\nu_{p}(i)+(1-p)r-1)^{2}}{(pr+p-r+1)^{2}}\right)
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2(p+1)(pr+pr+1)p12r((p1)νp(i)+(1p)r1)2(p+1)(pr+pr+1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}}{(p+1)(pr+p-r+1)}-\frac{p^{1-2r}((p-1)\nu_{p}(i)+(1-p)r-1)^{2}}{(p+1)(pr+p-r+1)}
=p12rp1p+1rp12r+p12r(νp(i)pνp(i)+p)2p12r((p1)νp(i)+(1p)r1)2(p+1)(pr+pr+1)\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{p^{1-2r}(\nu_{p}(i)p-\nu_{p}(i)+p)^{2}-p^{1-2r}((p-1)\nu_{p}(i)+(1-p)r-1)^{2}}{(p+1)(pr+p-r+1)}
=p12rp1p+1rp12r+(p1)(2νp(i)r+1)p12rp+1\displaystyle=-p^{1-2r}-\frac{p-1}{p+1}rp^{1-2r}+\frac{(p-1)(2\nu_{p}(i)-r+1)p^{1-2r}}{p+1}
=2p12r((p1)νp(i)pr+r1)p+1\displaystyle=\frac{2p^{1-2r}((p-1)\nu_{p}(i)-pr+r-1)}{p+1}
=2p12r(prr+1)p+1+2p12r(p1)p+1νp(i).\displaystyle=-\frac{2p^{1-2r}(pr-r+1)}{p+1}+\frac{2p^{1-2r}(p-1)}{p+1}\nu_{p}(i).

If iji\neq j, then cijc^{ij} is equal to

=p12r(νp(ij)p+pνp(ij))p+1+p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)+\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}+\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}+
+β1αβ(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i))(p1r(pr+r1)(p1)r+p+1+p1r(p1)(p1)r+p+1νp(j))\displaystyle+\frac{\beta}{1-\alpha\beta}\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\nu_{p}(j)\right)
=p12r(νp(ij)p+pνp(ij))p+1+p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}+\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}
pr+pr+1p(p+1)(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i))(p1r(pr+r1)(p1)r+p+1+p1r(p1)(p1)r+p+1νp(j))\displaystyle-\frac{pr+p-r+1}{p(p+1)}\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\nu_{p}(j)\right)
=p12r(νp(ij)p+pνp(ij))p+1+p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}+\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}
pr+pr+1p(p+1)(p22r(prpνp(i)r+νp(i)+1)(prpνp(j)r+νp(j)+1)(pr+pr+1)2)\displaystyle-\frac{pr+p-r+1}{p(p+1)}\left(\frac{p^{2-2r}(pr-p\nu_{p}(i)-r+\nu_{p}(i)+1)(pr-p\nu_{p}(j)-r+\nu_{p}(j)+1)}{(pr+p-r+1)^{2}}\right)
=p12r(νp(ij)p+pνp(ij))p+1+p12r(νp(i)p+pνp(i))(νp(j)p+pνp(j))(p+1)(pr+pr+1)\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}+\frac{p^{1-2r}(\nu_{p}(i)p+p-\nu_{p}(i))(\nu_{p}(j)p+p-\nu_{p}(j))}{(p+1)(pr+p-r+1)}
p12r(prpνp(i)r+νp(i)+1)(prpνp(j)r+νp(j)+1)(p+1)(pr+pr+1)\displaystyle-\frac{p^{1-2r}(pr-p\nu_{p}(i)-r+\nu_{p}(i)+1)(pr-p\nu_{p}(j)-r+\nu_{p}(j)+1)}{(p+1)(pr+p-r+1)}
=p12r(νp(ij)p+pνp(ij))p+1(p1)p12r(pr+pr+1)(rνp(i)νp(j)1)(p+1)(pr+pr+1)\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}-\frac{(p-1)p^{1-2r}(pr+p-r+1)(r-\nu_{p}(i)-\nu_{p}(j)-1)}{(p+1)(pr+p-r+1)}
=p12r(νp(ij)p+pνp(ij))p+1(p1)p12r(rνp(i)νp(j)1)p+1\displaystyle=-\frac{p^{1-2r}(\nu_{p}(i-j)p+p-\nu_{p}(i-j))}{p+1}-\frac{(p-1)p^{1-2r}(r-\nu_{p}(i)-\nu_{p}(j)-1)}{p+1}
=p12rνp(ij)p+pνp(ij)+(p1)(rνp(i)νp(j)1)p+1\displaystyle=-p^{1-2r}\frac{\nu_{p}(i-j)p+p-\nu_{p}(i-j)+(p-1)(r-\nu_{p}(i)-\nu_{p}(j)-1)}{p+1}
=p12r(prr+1)p+1p12r(p1)p+1(νp(ij)νp(i)νp(j))\displaystyle=-p^{1-2r}\frac{(pr-r+1)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\left(\nu_{p}(i-j)-\nu_{p}(i)-\nu_{p}(j)\right)
=p12r(prr+1)p+1p12r(p1)p+1νp(1j1i).\displaystyle=-p^{1-2r}\frac{(pr-r+1)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}\left(\frac{1}{j}-\frac{1}{i}\right).

Case 2. Suppose 1ipr11\leq i\leq p^{r}-1 and prjpr1+pr1p^{r}\leq j\leq p^{r}-1+p^{r-1}. Then

cij\displaystyle c^{ij} =11αβ(k=1nai,k)(k=1mbk,j)\displaystyle=\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right)
=11αβ(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(i))(pr)\displaystyle=\frac{-1}{1-\alpha\beta}\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)\left(-p^{-r}\right)
=(pr+pr+1p+1)(p12r(pr+r1)(p1)r+p+1(p12r(p1)(p1)r+p+1)νp(i))\displaystyle=-\left(\frac{pr+p-r+1}{p+1}\right)\left(-\frac{p^{1-2r}(-pr+r-1)}{(p-1)r+p+1}-\left(\frac{p^{1-2r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(i)\right)
=p12r(prr+1)p+1+p12r(p1)p+1νp(i).\displaystyle=-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(i).

Case 3. Suppose pripr1+pr1p^{r}\leq i\leq p^{r}-1+p^{r-1} and 1jpr11\leq j\leq p^{r}-1. Then

cij\displaystyle c^{ij} =11αβ(k=1mbi,k)(k=1nak,j)\displaystyle=\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right)
=(pr+pr+1p+1)(pr)(p1r(pr+r1)(p1)r+p+1+(p1r(p1)(p1)r+p+1)νp(j))\displaystyle=-\left(\frac{pr+p-r+1}{p+1}\right)(-p^{-r})\left(\frac{p^{1-r}(-pr+r-1)}{(p-1)r+p+1}+\left(\frac{p^{1-r}(p-1)}{(p-1)r+p+1}\right)\nu_{p}(j)\right)
=p12r(prr+1)p+1+p12r(p1)p+1νp(j).\displaystyle=-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(j).

Case 4. Suppose pri,jpr1+pr1p^{r}\leq i,j\leq p^{r}-1+p^{r-1}. If i=ji=j, then

cii\displaystyle c^{ii} =bi,i+α1αβ(k=1mbi,k)(k=1mbk,i)\displaystyle=b_{i,i}+\frac{\alpha}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,i}\right)
=1p2(p32rp1p+1(r1)p32r)+α1αβ(pr)2\displaystyle=\frac{1}{p^{2}}\left(-p^{3-2r}-\frac{p-1}{p+1}(r-1)p^{3-2r}\right)+\frac{\alpha}{1-\alpha\beta}(-p^{-r})^{2}
=2p12r(pr+r1)p+1=2p12r(prr+1)p+1\displaystyle=\frac{2p^{1-2r}(-pr+r-1)}{p+1}=-\frac{2p^{1-2r}(pr-r+1)}{p+1}

If iji\neq j, then

cij\displaystyle c^{ij} =1p2(p32rp53rp+1(pr2+νp(ij)pr2(p1)))+α1αβ(pr)2\displaystyle=\frac{1}{p^{2}}\left(-p^{3-2r}-\frac{p^{5-3r}}{p+1}(-p^{r-2}+\nu_{p}(i-j)p^{r-2}(p-1))\right)+\frac{\alpha}{1-\alpha\beta}(-p^{-r})^{2}
=((p1)νp(ij)+p)p12rp+1(p1)prp+1(pr)2\displaystyle=-\frac{((p-1)\nu_{p}(i-j)+p)p^{1-2r}}{p+1}-\frac{(p-1)pr}{p+1}(-p^{-r})^{2}
=((p1)νp(ij)+p)p12r+(p1)p12rrp+1\displaystyle=-\frac{((p-1)\nu_{p}(i-j)+p)p^{1-2r}+(p-1)p^{1-2r}r}{p+1}
=p12r(pr+pr)p+1p12r(p1)p+1νp(ij).\displaystyle=-\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(i-j).

The following corollary will be useful when we find an upper bound for the exponent in Theorem 4.28.

Corollary 3.21.

Let ci,jc^{i,j} denote the (i,j)(i,j)-entry of T1T^{-1}. Then each ci,jc^{i,j} is negative.

Proof.

Based on our result in Theorem 3.20, we will show the third case is negative i.e. we will show

p12r(prr+1)p+1+p12r(p1)p+1νp(i)-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(i) (14)

is negative for 1ipr11\leq i\leq p^{r}-1. The other cases are either clearly negative or are essentially the same as this case.

Since the largest value νp(i)\nu_{p}(i) attains is r1r-1, the largest value expression (14) attains is

p12r(prr+1)p+1+p12r(p1)p+1(r1)=p22rp+1-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}(r-1)=-\frac{p^{2-2r}}{p+1}

which is always negative. ∎

4 Computing the degree of the modular sheaf

Throughout this chapter, we will keep the notation of §3. Unless otherwise stated, we let R=p[ζNpr]R=\mathbb{Z}_{p}[\zeta_{Np^{r}}]. We will compute the degree of ω¯2\underline{\omega}^{\otimes 2} restricted to an irreducible component Λ\Lambda of 𝔛¯\bar{\mathfrak{X}} and ultimately compute an upper bound for the exponent ee.

4.1 Decomposing the Modular Sheaf

We will make use of the Kodaira-Spencer isomorphism, as stated in Theorem A.12, which we restate here for convenience.

Theorem 4.1.

Let RR be a noetherian, regular, excellent [ζN]\mathbb{Z}[\zeta_{N}]-algebra containing 1/N1/N. The Kodaira-Spencer isomorphism ω¯𝔜(N)2Ω𝔜(N)/R1\underline{\omega}_{\mathfrak{Y}(N)}^{\otimes 2}\simeq\Omega_{\mathfrak{Y}(N)/R}^{1} on 𝔜(N)\mathfrak{Y}(N) extends to an isomorphism on 𝔛(N)\mathfrak{X}(N)

ω¯𝔛(N)2Ω𝔛(N)/R1((N)).\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}\simeq\Omega_{\mathfrak{X}(N)/R}^{1}(\mathfrak{C}(N)).

We will need the following definition, which we take from [Liu02, 6.4.18].

Definition 4.2.

Let f:XYf:X\rightarrow Y be a proper morphism of relative dimension r\leq r. A relative (rr-)dualizing sheaf for f:XYf:X\rightarrow Y is a quasi-coherent sheaf Ωf\Omega_{f} on XX, endowed with a homomorphism of 𝒪X{\cal O}_{X}-modules

trf:RrfΩf𝒪Y{\rm tr}_{f}:R^{r}f_{*}\Omega_{f}\rightarrow{\cal O}_{Y}

such that for any quasi-coherent sheaf {\cal F} on XX, the natural bilinear map

fom𝒪X(,Ωf)×RrfRrfΩftrf𝒪Yf_{*}{\cal H}om_{{\cal O}_{X}}({\cal F},\Omega_{f})\times R^{r}f_{*}{\cal F}\rightarrow R^{r}f_{*}\Omega_{f}\overset{{\rm tr}_{f}}{\longrightarrow}{\cal O}_{Y}

induces an isomorphism

fom𝒪X(,Ωf)om𝒪Y(Rrf,𝒪Y).f_{*}{\cal H}om_{{\cal O}_{X}}({\cal F},\Omega_{f})\simeq{\cal H}om_{{\cal O}_{Y}}(R^{r}f_{*}{\cal F},{\cal O}_{Y}).

By [Liu02, 6.4.19], uniqueness of Ωf\Omega_{f} is automatic once we have existence. If YY is locally noetherian and f:XYf:X\rightarrow Y is a projective morphism with fibers of dimension r\leq r, then as remarked in [Liu02, 6.4.30], the relative rr-dualizing sheaf exists. Furthermore, by [Liu02, Theorem 6.4.32], the relative dualizing sheaf is isomorphic to the canonical sheaf ΩX/Y\Omega_{X/Y} (see [Liu02, 6.4.7]) whenever ff is a flat projective l.c.i. and YY is locally noetherian. When ff is smooth, the canonical sheaf coincides with the sheaf of Kahler differentials ΩX/Y1\Omega_{X/Y}^{1}. We will use the following result, which is in [Liu02, Theorem 6.4.9] known as the adjunction formula, to eventually relate ω¯𝔛(Npr)2\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2} with the relative dualizing sheaf of 𝔛(Npr)\mathfrak{X}(Np^{r}) and of 𝔛(N)\mathfrak{X}(N).

Theorem 4.3.

Let f:XYf:X\rightarrow Y and g:YZg:Y\rightarrow Z be quasi-projective l.c.i.s. We have a canonical isomorphism of canonical sheaves

ΩX/ZΩX/Y𝒪XfΩY/Z.\Omega_{X/Z}\simeq\Omega_{X/Y}\otimes_{{\cal O}_{X}}f^{*}\Omega_{Y/Z}.

We cannot directly apply the Kodaira-Spencer isomorphism to our modular curve 𝔛\mathfrak{X} since pp and consequently the level NprNp^{r}, is not invertible in RR. Instead, we will apply it to the modular curve 𝔛(N)\mathfrak{X}(N) over RR since the level NN is invertible in pR\mathbb{Z}_{p}\subset R. Consider

𝔛pr𝔛(N)/R𝑔Spec(R)\mathfrak{X}\overset{{\rm pr}}{\longrightarrow}\mathfrak{X}(N)_{/R}\overset{g}{\longrightarrow}{\rm Spec}(R) (15)

where pr{\rm pr} is the projection map and gg is the structural morphism. For convenience, we let 𝔛(N)\mathfrak{X}(N) denote the base change 𝔛(N)/R\mathfrak{X}(N)_{/R}.

According to [Liu02, 6.3.18], if XYX\rightarrow Y is a morphism of finite type of regular locally noetherian schemes, then XYX\rightarrow Y is an l.c.i. Therefore the maps pr{\rm pr} and gg are l.c.i.s. By Theorem A.8, gg and gprg\circ{\rm pr} are projective. Hence by [KM85, 3.3.32(e)], pr{\rm pr} is projective. Applying the adjunction formula to (15), we have

Ω𝔛/RΩ𝔛/𝔛(N)𝒪𝔛prΩ𝔛(N)/R.\Omega_{\mathfrak{X}/R}\simeq\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\otimes_{{\cal O}_{\mathfrak{X}}}{\rm pr}^{*}\Omega_{\mathfrak{X}(N)/R}.

Combining this with the Kodaira-Spencer isomorphism applied to 𝔛(N)\mathfrak{X}(N), we get

Ω𝔛/RΩ𝔛/𝔛(N)𝒪𝔛(Npr)prω¯𝔛(N)2((N)).\Omega_{\mathfrak{X}/R}\simeq\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\otimes_{{\cal O}_{\mathfrak{X}(Np^{r})}}{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N)). (16)

We will later show in Lemma 4.18

prω¯𝔛(N)2((N))ω¯𝔛2(pr(Npr)){\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N))\simeq\underline{\omega}_{\mathfrak{X}}^{\otimes 2}(-p^{r}\mathfrak{C}(Np^{r}))

which is where the sheaf ω¯𝔛2\underline{\omega}_{\mathfrak{X}}^{\otimes 2} appears in (16). This will then allow us to identify ω¯𝔛2\underline{\omega}_{\mathfrak{X}}^{\otimes 2} with Ω𝔛/R((Npr))\Omega_{\mathfrak{X}/R}(\mathfrak{C}(Np^{r})), the relative dualizing sheaf twisted by the cuspidal divisor. Thus, computing deg(ω¯𝔛2|Λ)\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}) amounts to computing deg(Ω𝔛((Npr))|Λ)\deg(\Omega_{\mathfrak{X}}(\mathfrak{C}(Np^{r}))|_{\Lambda}). Our first step will be to investigate Ω𝔛/𝔛(N)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}.

4.2 The relative dualizing sheaf Ω𝔛/𝔛(N)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}

In this section, our goal will be to better understand the relative dualizing sheaf Ω𝔛/𝔛(N)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}. Since Ω𝔛/𝔛(N)\Omega_{\mathfrak{X}/\mathfrak{X}(N)} is invertible, we have Ω𝔛/𝔛(N)𝒪𝔛()\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}({\cal R}) for some divisor {\cal R} of 𝔛\mathfrak{X}. As we will see, {\cal R} will be the divisor associated to the different of the morphism pr:𝔛𝔛(N)/R.{\rm pr}:\mathfrak{X}\rightarrow\mathfrak{X}(N)_{/R}.

We begin by discussing the trace map which generalizes the usual notion over a finite extension of fields. Let ABA\rightarrow B be a finite, flat map of noetherian rings. According to [Sta21, Tag0BSY], BB is a finite locally free AA-module and so we can consider the trace TrB/A(b){\rm Tr}_{B/A}(b) of the AA-linear map BBB\rightarrow B given by multiplication by bb. This gives us an AA-linear map TrB/A:BA{\rm Tr}_{B/A}:B\rightarrow A. The following definition is from [Sta21, Tag0BW0].

Definition 4.4.

Let ABA\rightarrow B be a ring map and let K=Frac(A)K={\rm Frac}(A), the total ring of fractions of AA (see [Sta21, 02C5], note when AA is a domain, Frac(A){\rm Frac}(A) coincides with the field of fractions), and L=BAKL=B\otimes_{A}K. We say the Dedekind different is defined if AA is noetherian, ABA\rightarrow B is finite and maps any non-zerodivisor of AA to a non-zerodivisor of BB, and KLK\rightarrow L is étale. In this situation, KLK\rightarrow L is finite flat. Let

B/A={xL:TrL/K(bx)A for all bB}.{\cal L}_{B/A}=\left\{x\in L:{\rm Tr}_{L/K}(bx)\in A\mbox{ for all }b\in B\right\}.

We define the Dedekind different of ABA\rightarrow B to be the inverse of B/A{\cal L}_{B/A}:

𝔇B/A=B/A1={xL:xB/AB}\mathfrak{D}_{B/A}={\cal L}_{B/A}^{-1}=\left\{x\in L:x{\cal L}_{B/A}\subset B\right\}

viewed as a sub BB-module of LL.

Remark 4.5.

Let AA be a Dedekind domain, K=Frac(A)K={\rm Frac}(A), LL a finite separable extension of KK, and BB the integral closure of AA in LL. In this situation, [Ser79, §4.3] defines the different 𝔇B/A\mathfrak{D}_{B/A} in the same manner as we have done. Since AA is normal and noetherian, by [Sta21, Tag032L], ABA\rightarrow B is finite. Furthermore, L=Frac(B)L={\rm Frac}(B) and L=BAKL=B\otimes_{A}K so indeed, the Dedekind different is defined for ABA\rightarrow B. We record a few useful facts for calculating the different in this situation.

Proposition 4.6.

Let AA be a Dedekind domain, K=Frac(A)K={\rm Frac}(A), LL a finite separable extension of KK, and BB the integral closure of AA in LL.

  1. a.

    Let 𝔓\mathfrak{P} be a non-zero prime of BB such that the corresponding residue extension is separable and let e𝔓e_{\mathfrak{P}} denote the ramification index of 𝔓\mathfrak{P}. Then the exponent of 𝔓\mathfrak{P} in the different 𝔇B/A\mathfrak{D}_{B/A} is greater than or equal to e𝔓1e_{\mathfrak{P}}-1 with equality precisely when 𝔓\mathfrak{P} is tamely ramified.

  2. b.

    Suppose for each prime 𝔓\mathfrak{P} of BB, the corresponding residue extension is separable. The annihilator of the BB-module ΩB/A1\Omega_{B/A}^{1} of Kahler differentials is equal to 𝔇B/A\mathfrak{D}_{B/A}.

Proof.

(a) is [Ser79, III, §6, Prop 13] while (b) is [Ser79, III, §7, Prop. 14]. ∎

Lemma 4.7.

Suppose the Dedekind different is defined for ABA\rightarrow B. Let SAS\subset A be a multiplicatively closed subset such that the Dedekind different is defined for S1AS1BS^{-1}A\rightarrow S^{-1}B. Then S1𝔇B/A=𝔇S1B/S1AS^{-1}\mathfrak{D}_{B/A}=\mathfrak{D}_{S^{-1}B/S^{-1}A} as S1BS^{-1}B-modules.

Proof.

First we show S1B/A=S1B/S1AS^{-1}{\cal L}_{B/A}={\cal L}_{S^{-1}B/S^{-1}A}. By definition,

S1B/S1A={xsS1L:TrS1L/K(bsxs)S1A for all bsS1B}.{\cal L}_{S^{-1}B/S^{-1}A}=\left\{\frac{x}{s}\in S^{-1}L:{\rm Tr}_{S^{-1}L/K}\left(\frac{b}{s^{\prime}}\frac{x}{s}\right)\in S^{-1}A\mbox{ for all }\frac{b}{s^{\prime}}\in S^{-1}B\right\}.

Now

TrS1L/K(bxss)S1A for all bsS1B{\rm Tr}_{S^{-1}L/K}\left(\frac{bx}{ss^{\prime}}\right)\in S^{-1}A\mbox{ for all }\frac{b}{s^{\prime}}\in S^{-1}B
1ssTrS1L/K(bx)S1A for all bsS1B\iff\frac{1}{ss^{\prime}}{\rm Tr}_{S^{-1}L/K}(bx)\in S^{-1}A\mbox{ for all }\frac{b}{s^{\prime}}\in S^{-1}B
TrL/K(bx)A for all bB.\iff{\rm Tr}_{L/K}(bx)\in A\mbox{ for all }b\in B.

Thus S1B/S1A{\cal L}_{S^{-1}B/S^{-1}A} can be identified with

={xsS1L:TrL/K(bx)A for all bB}=S1B/A.=\left\{\frac{x}{s}\in S^{-1}L:{\rm Tr}_{L/K}\left(bx\right)\in A\mbox{ for all }b\in B\right\}=S^{-1}{\cal L}_{B/A}.

Lastly, we show S1(B/A1)=(S1B/A)1S^{-1}({\cal L}_{B/A}^{-1})=(S^{-1}{\cal L}_{B/A})^{-1}. Let xsS1(B/A1)\frac{x}{s}\in S^{-1}({\cal L}_{B/A}^{-1}) so xB/ABx{\cal L}_{B/A}\subseteq B. Then xsS1B/AS1B\frac{x}{s}S^{-1}{\cal L}_{B/A}\subseteq S^{-1}B hence S1(B/A1)(S1B/A)1S^{-1}({\cal L}_{B/A}^{-1})\subseteq(S^{-1}{\cal L}_{B/A})^{-1}.

For the other inclusion, we first note that B/A{\cal L}_{B/A} is finitely generated since BB is noetherian. Let x1,,xnB/Ax_{1},\dots,x_{n}\in{\cal L}_{B/A} denote the generators of B/A{\cal L}_{B/A} over BB. Let x(S1B/A)1x\in(S^{-1}{\cal L}_{B/A})^{-1} so xS1B/AS1BxS^{-1}{\cal L}_{B/A}\subseteq S^{-1}B. Then for each i=1,,ni=1,\dots,n there exists siSs_{i}\in S such that sixxiBs_{i}xx_{i}\in B. Let s=i=1nsis=\prod_{i=1}^{n}s_{i}. Then sxxiBsxx_{i}\in B so sxB/ABsx{\cal L}_{B/A}\subseteq B. Therefore xB/AS1Bx{\cal L}_{B/A}\subset S^{-1}B so xS1(B/A1)x\in S^{-1}({\cal L}_{B/A}^{-1}).

In conclusion,

S1𝔇B/A=S1(B/A1)=(S1B/A)1=(S1B/S1A)1=𝔇S1B/S1A.S^{-1}\mathfrak{D}_{B/A}=S^{-1}({\cal L}_{B/A}^{-1})=(S^{-1}{\cal L}_{B/A})^{-1}=({\cal L}_{S^{-1}B/S^{-1}A})^{-1}=\mathfrak{D}_{S^{-1}B/S^{-1}A}.\qed

Let f:YXf:Y\rightarrow X be a proper222More generally, one can define the different of a locally quasi-finite morphism of locally noetherian schemes, as in [Sta21, Tag0BTC]. morphism of locally noetherian schemes. According to [Sta21, Tag0BVG], the relative dualizing sheaf Ωf\Omega_{f} is the unique coherent 𝒪Y{\cal O}_{Y}-module such that for every pair of affine opens Spec(B)Y{\rm Spec}(B)\subset Y and Spec(A)X{\rm Spec}(A)\subset X with f(Spec(B))Spec(A)f({\rm Spec}(B))\subset{\rm Spec}(A), we have a canonical isomorphism

H0(Spec(B),Ωf)HomA(B,A).H^{0}({\rm Spec}(B),\Omega_{f})\simeq{\rm Hom}_{A}(B,A).

If we further assume ff is flat, then by [Sta21, Tag0BVJ], there exists a global section τY/XH0(Y,Ωf)\tau_{Y/X}\in H^{0}(Y,\Omega_{f}) such that whenever ABA\rightarrow B is finite, τY/X|Spec(B)\tau_{Y/X}|_{{\rm Spec}(B)} is identified with TrB/A{\rm Tr}_{B/A} under the isomorphism.

Definition 4.8.

Let f:YXf:Y\rightarrow X be a flat, proper morphism of noetherian schemes. The different 𝔇f\mathfrak{D}_{f} is the annihilator of the cokernel

Coker(𝒪YτY/XΩf){\rm Coker}({\cal O}_{Y}\overset{\tau_{Y/X}}{\longrightarrow}\Omega_{f})

which is a coherent ideal sheaf 𝔇f𝒪Y\mathfrak{D}_{f}\subset{\cal O}_{Y}.

By [Sta21, Tag0BW5], we have 𝔇f|Spec(B)=(𝔇B/A)\mathfrak{D}_{f}|_{{\rm Spec}(B)}=(\mathfrak{D}_{B/A})^{\sim} where (𝔇B/A)(\mathfrak{D}_{B/A})^{\sim} is the quasi-coherent sheaf induced by the BB-module 𝔇B/A\mathfrak{D}_{B/A}.

Lemma 4.9.

Let f:YXf:Y\rightarrow X be a proper morphism of noetherian schemes. Let Spec(B)Y{\rm Spec}(B)\subset Y and Spec(A)X{\rm Spec}(A)\subset X be affine open subschemes such that f(Spec(B))Spec(A)f({\rm Spec}(B))\subset{\rm Spec}(A). Let xSpec(B)x\in{\rm Spec}(B) and suppose the Dedekind different is defined for 𝒪X,f(x)𝒪Y,x{\cal O}_{X,f(x)}\rightarrow{\cal O}_{Y,x}. Then 𝔇f,x𝔇𝒪Y,x/𝒪X,f(x)\mathfrak{D}_{f,x}\simeq\mathfrak{D}_{{\cal O}_{Y,x}/{\cal O}_{X,f(x)}}.

Proof.

Let 𝔭\mathfrak{p} be the prime of BB corresponding to xx and 𝔮\mathfrak{q} be the prime of AA corresponding to f(x)f(x). We have

𝔇f,x(𝔇B/A)𝔭𝔇B𝔭/A𝔮=𝔇𝒪Y,x/𝒪X,f(x).\mathfrak{D}_{f,x}\simeq(\mathfrak{D}_{B/A})_{\mathfrak{p}}\simeq\mathfrak{D}_{B_{\mathfrak{p}}/A_{\mathfrak{q}}}=\mathfrak{D}_{{\cal O}_{Y,x}/{\cal O}_{X,f(x)}}.\qed

Let X{\cal R}\subseteq X denote the closed subscheme associated to 𝔇f\mathfrak{D}_{f} and let []\left[{\cal R}\right] denote the Weil divisor associated to {\cal R}. The following is [Sta21, Tag0BWA].

Proposition 4.10.

Let f:YXf:Y\rightarrow X be a proper morphism of noetherian schemes. If Ωf\Omega_{f} is invertible and ff is étale at the associated points of YY, then {\cal R} is an effective Cartier divisor and Ωf𝒪Y()\Omega_{f}\simeq{\cal O}_{Y}({\cal R}).

Explicitly, the Weil divisor associated to {\cal R} is

[]=xYdim𝒪Y,x=1multx(){x}¯.\left[{\cal R}\right]=\sum_{\begin{subarray}{c}x\in Y\\ \dim{\cal O}_{Y,x}=1\end{subarray}}{\rm mult}_{x}({\cal R})\cdot\overline{\left\{x\right\}}.

By definition, multx()=length𝒪Y,x(𝒪Y,x/x𝒪Y,x){\rm mult}_{x}({\cal R})={\rm length}_{{\cal O}_{Y,x}}({\cal O}_{Y,x}/{\cal R}_{x}{\cal O}_{Y,x}) and x=𝔇f,x{\cal R}_{x}=\mathfrak{D}_{f,x}. We will now show that the usual projection morphism pr:𝔛𝔛(N)/R{\rm pr}:\mathfrak{X}\rightarrow\mathfrak{X}(N)_{/R} satisfies the necessary properties to use the above results on the different. By [KM85, 5.5.1(1)], the map pr{\rm pr} is finite and flat so the different 𝔇pr\mathfrak{D}_{{\rm pr}} is defined.

Suppose x𝔛x\in\mathfrak{X} is a codimension 1 point. Let

prx:𝒪𝔛(N),pr(x)𝒪𝔛,x{\rm pr}_{x}:{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}\rightarrow{\cal O}_{\mathfrak{X},x}

denote the induced map on stalks. Since xx is of codimension 1 and pr{\rm pr} is flat, we have pr(x){\rm pr}(x) is also of codimension 1. Consequently, both 𝒪𝔛,x{\cal O}_{\mathfrak{X},x} and 𝒪𝔛(N),pr(x){\cal O}_{\mathfrak{X}(N),{\rm pr}(x)} are DVRs.

Proposition 4.11.

Let x𝔛x\in\mathfrak{X} be a codimension 1 point. The induced map on stalks prx{\rm pr}_{x} is a finite ring map. Furthermore, the induced map on fraction fields

K=Frac(𝒪𝔛(N),pr(x))L=Frac(𝒪𝔛(Npr),x)K={\rm Frac}({\cal O}_{\mathfrak{X}(N),{\rm pr}(x)})\rightarrow L={\rm Frac}({\cal O}_{\mathfrak{X}(Np^{r}),x})

is finite separable and 𝒪𝔛,x{\cal O}_{\mathfrak{X},x} is the integral closure of 𝒪𝔛(N),pr(x){\cal O}_{\mathfrak{X}(N),{\rm pr}(x)} in LL.

Proof.

Let Spec(B)𝔛(N){\rm Spec}(B)\subset\mathfrak{X}(N) be an affine open containing pr(x){\rm pr}(x) and Spec(A)𝔛{\rm Spec}(A)\subset\mathfrak{X} be an affine open containing xx such that pr(Spec(A))Spec(B){\rm pr}({\rm Spec}(A))\subset{\rm Spec}(B). Since pr{\rm pr} is finite, it is also integral so the induced map ABA\rightarrow B is integral. By [Sta21, Tag034K], the induced map on localizations remains integral so prx{\rm pr}_{x} is integral. Since 𝔛(N)\mathfrak{X}(N) is an integral scheme, we have inclusions

A𝒪𝔛(N),pr(x)Frac(A).A\hookrightarrow{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}\hookrightarrow{\rm Frac}(A).

Therefore K=Frac(A)K={\rm Frac}(A). Similarly, we conclude L=Frac(B).L={\rm Frac}(B). Both 𝔛(N)\mathfrak{X}(N) and 𝔛\mathfrak{X} are normal schemes so 𝒪𝔛(N),pr(x){\cal O}_{\mathfrak{X}(N),{\rm pr}(x)} (resp. 𝒪𝔛,x{\cal O}_{\mathfrak{X},x}) is integrally closed in KK (resp. LL). Having established

prx:𝒪𝔛(N),pr(x)𝒪𝔛,x{\rm pr}_{x}:{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}\rightarrow{\cal O}_{\mathfrak{X},x}

is integral, the integral closure of 𝒪𝔛(N),pr(x){\cal O}_{\mathfrak{X}(N),{\rm pr}(x)} in LL is precisely 𝒪𝔛,x{\cal O}_{\mathfrak{X},x}.

Since pr{\rm pr} is a finite map between two integral schemes, the extension of function fields

K(𝔛(N))K(𝔛)K(\mathfrak{X}(N))\rightarrow K(\mathfrak{X})

is a finite extension of characteristic zero fields, and hence separable. Note that K(𝔛(N))=KK(\mathfrak{X}(N))=K and K(𝔛)=LK(\mathfrak{X})=L so L/KL/K is a finite separable extension. By [Ser79, I, §IV, Prop. 8], we can conclude prx{\rm pr}_{x} is finite. ∎

Since 𝔛\mathfrak{X} is integral, it’s only associated point is its unique generic point. In Proposition 4.11, we deduced the map on function fields K(𝔛)K(𝔛(N))K(\mathfrak{X})\rightarrow K(\mathfrak{X}(N)) is finite separable so pr{\rm pr} is étale at the generic point of 𝔛\mathfrak{X}. By Proposition 4.10, we have

Ω𝔛/𝔛(N)𝒪𝔛([])=𝒪𝔛(x𝔛dim𝒪𝔛,x=1multx(){x}¯)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}([{\cal R}])={\cal O}_{\mathfrak{X}}\left(\sum_{\begin{subarray}{c}x\in\mathfrak{X}\\ \dim{\cal O}_{\mathfrak{X},x}=1\end{subarray}}{\rm mult}_{x}({\cal R})\cdot\overline{\left\{x\right\}}\right) (17)

Since 𝒪𝔛,x{\cal O}_{\mathfrak{X},x} is a DVR in this case, multx(){\rm mult}_{x}({\cal R}) is equal to the valuation of x=𝔇pr,x{\cal R}_{x}=\mathfrak{D}_{{\rm pr},x} in 𝒪𝔛,x{\cal O}_{\mathfrak{X},x}. By Corollary 4.9 and Proposition 4.11, 𝔇pr,x=𝔇𝒪𝔛,x/𝒪𝔛(N),pr(x)\mathfrak{D}_{{\rm pr},x}=\mathfrak{D}_{{\cal O}_{\mathfrak{X},x}/{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}}. Also, by Proposition 4.6(b), we can identify 𝔇pr,x\mathfrak{D}_{{\rm pr},x} with

Ann𝒪𝔛,x(Ω𝒪𝔛,x/𝒪𝔛(N),pr(x)1).{\rm Ann}_{{\cal O}_{\mathfrak{X},x}}(\Omega_{{\cal O}_{\mathfrak{X},x}/{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}}^{1}).

Let dxd_{x} denote the valuation of the different 𝔇pr,x\mathfrak{D}_{{\rm pr},x} in the DVR 𝒪𝔛,x{\cal O}_{\mathfrak{X},x}. Recall by [Liu02, 8.3.4] the codimension 1 points of 𝔛\mathfrak{X} are precisely the closed points of the generic fiber, and the generic points of the special fiber. We will compute dxd_{x} when xx is a closed point of the generic fiber. If xx is a generic point of the special fiber, then we show all dxd_{x} contributions are the same which taken together contribute nothing to the different of pr{\rm pr}. However, one can compute the dxd_{x} explicitly using strict Henselizations.

4.3 Computing dxd_{x} for the closed points of the generic fiber

The generic fiber of 𝔛\mathfrak{X} is open so it suffices to compute dxd_{x} over p(ζNpr)\mathbb{Q}_{p}(\zeta_{Np^{r}}) i.e. for the map

prx:𝒪𝔛(N)/p(ζNpr),pr(x)𝒪𝔛,x.{\rm pr}_{x}:{\cal O}_{\mathfrak{X}(N)_{/\mathbb{Q}_{p}(\zeta_{Np^{r}})},{\rm pr}(x)}\rightarrow{\cal O}_{\mathfrak{X},x}.

First we show the value of dxd_{x} does not change after base changing p(ζNpr)\mathbb{Q}_{p}(\zeta_{Np^{r}}). In particular, we can compute the value of dxd_{x} over \mathbb{C} and use the classical theory of modular curves as compact Riemann surfaces.

Lemma 4.12.

Let π:XY\pi:X\rightarrow Y be a finite type morphism of normal curves over a field KK and let LL be a field extension of KK. Let p:XLXp:X_{L}\rightarrow X denote the usual projection morphism from base change and let xXLx\in X_{L}. Then we have dx=dp(x)d_{x}=d_{p(x)}.

Proof.

We can equate dxd_{x} with the valuation of the annihilator ideal of ΩXL/YL,x1\Omega_{X_{L}/Y_{L},x}^{1} in 𝒪XL,x{\cal O}_{X_{L},x}. Since Kahler differentials are compatible with base change, we have

ΩXL/YL,x1(pΩX/Y1)xΩX/Y,p(x)1𝒪X,p(x)𝒪XL,x.\Omega_{X_{L}/Y_{L},x}^{1}\simeq(p^{*}\Omega_{X/Y}^{1})_{x}\simeq\Omega_{X/Y,p(x)}^{1}\otimes_{{\cal O}_{X,p(x)}}{\cal O}_{X_{L},x}.

Since KLK\rightarrow L is flat, the map 𝒪X,p(x)𝒪XL,x{\cal O}_{X,p(x)}\rightarrow{\cal O}_{X_{L},x} is flat. Furthermore, ΩX/Y,p(x)1\Omega_{X/Y,p(x)}^{1} is finite over 𝒪X,p(x){\cal O}_{X,p(x)} since π\pi is finite type. Thus, by Lemma 2.5, we have

Ann𝒪XL,x(ΩXL/YL,x1)\displaystyle{\rm Ann}_{{\cal O}_{X_{L}},x}(\Omega_{X_{L}/Y_{L},x}^{1}) =Ann𝒪XL,x(ΩX/Y,p(x)1𝒪X,p(x)𝒪XL,x)\displaystyle={\rm Ann}_{{\cal O}_{X_{L}},x}(\Omega_{X/Y,p(x)}^{1}\otimes_{{\cal O}_{X,p(x)}}{\cal O}_{X_{L},x})
=Ann𝒪X,p(x)(ΩX/Y,x1)𝒪XL,x.\displaystyle={\rm Ann}_{{\cal O}_{X},p(x)}(\Omega_{X/Y,x}^{1}){\cal O}_{X_{L},x}.

Hence dx=dp(x)d_{x}=d_{p(x)}. ∎

Thus we can compute dxd_{x} in the situation that our modular curves are over \mathbb{C}. Let X(M)X(M) denote the modular curve over \mathbb{C} of level Γ(M)\Gamma(M). In this situation, 𝒪X(Npr),x{\cal O}_{X(Np^{r}),x} is tamely ramified over 𝒪X(N),pr(x){\cal O}_{X(N),{\rm pr}(x)} so by Proposition 4.6(a), we have dx=ex1d_{x}=e_{x}-1 where exe_{x} is the ramification index of xx. We will investigate the ramification index of all points in X(Npr)X(Np^{r}) under the usual projection map pr:X(Npr)X(N){\rm pr}:X(Np^{r})\rightarrow X(N).

Let ΓSL2()\Gamma\leq{\rm SL}_{2}(\mathbb{Z}) be a congruence subgroup. We also let {\cal H} denote the (complex) upper half plane and =1(){\cal H}^{*}={\cal H}\cup\mathbb{P}^{1}(\mathbb{Q}). As we will see shortly, investigating the ramification of a point zz\in{\cal H}^{*} amounts to understanding the stabilizer group

Γz={γΓ:γz=z}.\Gamma_{z}=\left\{\gamma\in\Gamma:\gamma\cdot z=z\right\}.

The points of zz\in{\cal H}^{*} can be classified depending on which elements of Γ\Gamma fix zz. Note that

(abcd)z=zcz2+(da)zb=0\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\cdot z=z\iff cz^{2}+(d-a)z-b=0

for matrices not equal to ±I\pm I. Hence the fixed points of a given γΓ\gamma\in\Gamma are either conjugate complex numbers, a single real number, or two distinct real numbers. Based on this fact, the following definition from [Miy89, §1.3, p.27].

Definition 4.13.

We say zz\in{\cal H}^{*} is a/an

  • elliptic point of Γ\Gamma if there exists γΓz\gamma\in\Gamma_{z} such that |tr(γ)|<2\left|{\rm tr}(\gamma)\right|<2, or equivalently γ\gamma has two distinct fixed points zz and z¯\bar{z}.

  • cusp of Γ\Gamma if there exists γΓz\gamma\in\Gamma_{z} such that |tr(γ)|=2\left|{\rm tr}(\gamma)\right|=2, or equivalently γ\gamma has a unique real fixed point zz.

  • hyperbolic point of Γ\Gamma if there exists γΓz\gamma\in\Gamma_{z} such that |tr(γ)|>2\left|{\rm tr}(\gamma)\right|>2, or equivalently γ\gamma has two distinct real fixed points.

  • ordinary point of Γ\Gamma if Γ\Gamma does not fix zz, excluding ±I\pm I.

Since the matrices we consider are in SL2(){\rm SL}_{2}(\mathbb{Z}), we will not have any hyperbolic points appearing. We denote Γ¯=Γ/Γ{±I}\bar{\Gamma}=\Gamma/\Gamma\cap\left\{\pm I\right\}. The following is [Miy89, Theorem 1.5.4] which describes the stabilizer groups Γz\Gamma_{z}.

Theorem 4.14.
  1. a.

    If zz\in{\cal H} is an elliptic point of Γ\Gamma, then Γz\Gamma_{z} is a finite cyclic group.

  2. b.

    If z{}z\in\mathbb{Q}\cup\{\infty\} is a cusp of Γ\Gamma, then Γ¯z\bar{\Gamma}_{z}\simeq\mathbb{Z}.

The following proposition, which is [Shi94, Prop. 1.37], relates the ramification index with the index of stabilizer groups.

Proposition 4.15.

Let ΓΓ\Gamma^{\prime}\leq\Gamma be a finite index subgroup and consider the projection π:Γ\Γ\\pi:\Gamma^{\prime}\backslash{\cal H}^{*}\rightarrow\Gamma\backslash{\cal H}^{*}. The ramification index eze_{z} of a point zΓ\z\in\Gamma^{\prime}\backslash{\cal H}^{*} under π\pi is equal to

ez=[Γ¯z:Γ¯z].e_{z}=\left[\bar{\Gamma}_{z}:\bar{\Gamma^{\prime}}_{z}\right].

We are now ready to compute the ramification index under our map pr{\rm pr}.

Proposition 4.16.

Let pr:X(Npr)X(N){\rm pr}:X(Np^{r})\rightarrow X(N) denote the usual projection map and let zX(Npr)z\in X(Np^{r}). We have

ez={prif z is a cusp1otherwise.e_{z}=\begin{cases}p^{r}&\mbox{if }z\mbox{ is a cusp}\\ 1&\mbox{otherwise}\end{cases}.
Proof.

By [Shi94, Prop. 1.39], the congruence subgroup Γ(M)\Gamma(M) has no elliptic elements for any M>1M>1. Consequently, the ordinary points are precisely the points of Γ(M)\\Gamma(M)\backslash{\cal H}. We will now apply Proposition 4.15 in the case Γ=Γ(Npr)\Gamma^{\prime}=\Gamma(Np^{r}) and Γ=Γ(N)\Gamma=\Gamma(N).

Note that the image of a cusp under pr{\rm pr} is again a cusp and similarly for ordinary points. If zX(Npr)z\in X(Np^{r}) is ordinary, then its stabilizer group is trivial so ez=1e_{z}=1. If zz is a cusp, then there exists γSL2()\gamma\in{\rm SL}_{2}(\mathbb{Z}) such that γz=\gamma\cdot z=\infty. Therefore

Γ(N)¯z/Γ(Npr)¯zγΓ(N)¯zγ1/γΓ(Npr)¯zγ1=Γ(N)¯/Γ(Npr)¯\overline{\Gamma(N)}_{z}/\overline{\Gamma(Np^{r})}_{z}\simeq\gamma\overline{\Gamma(N)}_{z}\gamma^{-1}/\gamma\overline{\Gamma(Np^{r})}_{z}\gamma^{-1}=\overline{\Gamma(N)}_{\infty}/\overline{\Gamma(Np^{r})}_{\infty}

so it suffices to compute ee_{\infty}.

Let A(d)=(1d01).A(d)=\left(\begin{array}[]{cc}1&d\\ 0&1\end{array}\right). According to [Shi94, bottom p. 22], we have for M>1M>1 that Γ(M)¯=A(d).\overline{\Gamma(M)}_{\infty}=\left\langle A(d)\right\rangle. Furthermore, IΓ(M)-I\in\Gamma(M) if and only if 11-1\equiv 1 modulo MM, or equivalently M=2M=2. Since M3M\geq 3 in our situation, we always have Γ(M)¯=Γ(M)\overline{\Gamma(M)}_{\infty}=\Gamma(M)_{\infty}. Note that for any m0m\geq 0, we have A(d)m=A(md)A(d)^{m}=A(md). Therefore the order of A(d)A(d) in Γ(N)¯/Γ(Npr)¯\overline{\Gamma(N)}_{\infty}/\overline{\Gamma(Np^{r})}_{\infty} is equal to prp^{r} so

e=[Γ(N)¯:Γ(Npr)¯]=pr.e_{\infty}=[\overline{\Gamma(N)}_{\infty}:\overline{\Gamma(Np^{r})}_{\infty}]=p^{r}.\qed

4.4 Relating the modular sheaf with Ω𝔛/R\Omega_{\mathfrak{X}/R}

Let x𝔛x\in\mathfrak{X} be a generic point of the special fiber. Recall the value of dxd_{x} is equal to the valuation of the different ideal corresponding to the induced map on stalks

prx:𝒪𝔛(N),pr(x)𝒪𝔛,x.{\rm pr}_{x}:{\cal O}_{\mathfrak{X}(N),{\rm pr}(x)}\rightarrow{\cal O}_{\mathfrak{X},x}.

We will use the discussion in Section A.1 to provide an explicit description of prx{\rm pr}_{x}. Recall in Theorem A.21 we have a commutative diagram

Ig(pr,N)\textstyle{{\rm Ig}(p^{r},N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}ρ\scriptstyle{\rho}ExIg(pr,i,N)\textstyle{{\rm ExIg}(p^{r},i,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho^{\prime}}𝔛(N)𝔽q(σi)\textstyle{\mathfrak{X}(N)_{\mathbb{F}_{q}}^{(\sigma^{-i})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fi\scriptstyle{F^{i}}𝔛(N)𝔽q\textstyle{\mathfrak{X}(N)_{\mathbb{F}_{q}}}

where ρ\rho and ρ\rho^{\prime} are the usual projection maps. By Theorem A.25, the restriction of pr{\rm pr} to any irreducible component of 𝔛¯\bar{\mathfrak{X}} is the map ρ\rho^{\prime}. We get a commutative diagram:

𝒪𝔛(N)/𝔽q,pr(x)Frprx𝒪𝔛(N)/𝔽q(pr),pr(x)ρx𝒪ExIg(pr,r,N),x𝒪Ig(pr,N),x\displaystyle\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 24.71025pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-23.39151pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\cal O}_{\mathfrak{X}(N)_{/\mathbb{F}_{q}},{\rm pr}(x)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.3562pt\raise 5.82222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.82222pt\hbox{$\scriptstyle{F^{r}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 48.71025pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.52887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{{\rm pr}_{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-31.22444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.71025pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\cal O}_{\mathfrak{X}(N)_{/\mathbb{F}_{q}}^{(p^{-r})},{\rm pr}(x)}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 72.10176pt\raise-20.52887pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{{\rm\rho}_{x}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 72.10176pt\raise-31.22444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-24.71025pt\raise-41.05775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\cal O}_{{\rm ExIg}(p^{r},r,N),x}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.32864pt\raise-36.43463pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 52.7381pt\raise-41.05775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 52.7381pt\raise-41.05775pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{{\cal O}_{{\rm Ig}(p^{r},N),x}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered} (23)

In particular, the map prx{\rm pr}_{x} is the same for each generic point xx of the special fiber. Hence, the value of dxd_{x} is independent of xx in this situation.

Lemma 4.17.

We have

Ω𝔛/𝔛(N)𝒪𝔛((pr1)(Npr)).\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}((p^{r}-1)\mathfrak{C}(Np^{r})).
Proof.

Recall from equation (17) and the paragraphs proceeding it, we have

Ω𝔛/𝔛(N)𝒪𝔛(x𝔛/p(ζNpr)dx{x}¯+x𝔛/𝔽qdx{x}¯)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}\left(\sum_{x\in\mathfrak{X}{}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}})}}d_{x}\cdot\overline{\left\{x\right\}}+\sum_{x\in\mathfrak{X}_{/\mathbb{F}_{q}}}d_{x}\cdot\overline{\left\{x\right\}}\right)

where the first sum is over closed points of the generic fiber and the second sum is over the generic points of the irreducible components of the special fiber. By Proposition 4.16, we have

Ω𝔛/𝔛(N)𝒪𝔛(x(Npr)(pr1){x}¯+x𝔛/𝔽qdx{x}¯)\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}\left(\sum_{x\in\mathfrak{C}(Np^{r})}(p^{r}-1)\cdot\overline{\left\{x\right\}}+\sum_{x\in\mathfrak{X}_{/\mathbb{F}_{q}}}d_{x}\cdot\overline{\left\{x\right\}}\right)

where the first sum is over all the cusps in the generic fiber. As discussed above, the dxd_{x} values appearing in the second sum are independent of xx. Using the fact that the special fiber is reduced, we have

Ω𝔛/𝔛(N)𝒪𝔛((pr1)(Npr)+dx𝔛/𝔽q).\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}((p^{r}-1)\mathfrak{C}(Np^{r})+d_{x}\mathfrak{X}_{/\mathbb{F}_{q}}).

Note that 𝔛/𝔽q\mathfrak{X}_{/\mathbb{F}_{q}}, when viewed as a divisor, is principal (see Proposition 2.13). Thus

Ω𝔛/𝔛(N)𝒪𝔛((pr1)(Npr))\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\simeq{\cal O}_{\mathfrak{X}}((p^{r}-1)\mathfrak{C}(Np^{r}))

as desired. ∎

Recall the map from (15):

𝔛pr𝔛(N)/R𝑔Spec(R)\mathfrak{X}\overset{{\rm pr}}{\longrightarrow}\mathfrak{X}(N)_{/R}\overset{g}{\longrightarrow}{\rm Spec}(R)

Again, for convenience, we let 𝔛(N)\mathfrak{X}(N) denote the base change 𝔛(N)/R\mathfrak{X}(N)_{/R}. To compute deg(ω¯𝔛2|Λ)\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}), our strategy is to first prove that ω¯𝔛2Ω𝔛/R((Npr))\underline{\omega}_{\mathfrak{X}}^{\otimes 2}\simeq\Omega_{\mathfrak{X}/R}(\mathfrak{C}(Np^{r})) using the isomorphism in (16):

Ω𝔛/RΩ𝔛/𝔛(N)𝒪𝔛prω¯𝔛(N)2((N)).\Omega_{\mathfrak{X}/R}\simeq\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\otimes_{{\cal O}_{\mathfrak{X}}}{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N)).

Our next step is to provide a better description of prω¯𝔛(N)2((N)){\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N)).

Lemma 4.18.

We have an isomorphism of sheaves on 𝔛(Npr)\mathfrak{X}(Np^{r})

prω¯𝔛(N)2((N))ω¯𝔛2𝒪𝔛𝒪𝔛(pr(Npr)).{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N))\simeq\underline{\omega}_{\mathfrak{X}}^{\otimes 2}\otimes_{{\cal O}_{\mathfrak{X}}}{\cal O}_{\mathfrak{X}}(-p^{r}\mathfrak{C}(Np^{r})).
Proof.

We have

prω¯𝔛(N)2((N))prω¯𝔛(N)2𝒪𝔛(Npr)pr𝒪𝔛(N)((N)).{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N))\simeq{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}\otimes_{{\cal O}_{\mathfrak{X}(Np^{r})}}{\rm pr}^{*}{\cal O}_{\mathfrak{X}(N)}(-\mathfrak{C}(N)).

By Proposition A.11 and Proposition A.13, we have

prω¯𝔛(N)2=ω¯𝔛(Npr)2.{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}=\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2}.

Since pr{\rm pr} maps (Npr)\mathfrak{C}(Np^{r}) onto (N)\mathfrak{C}(N) and is ramified at the cusps of degree prp^{r} by Proposition 4.16, we have

pr𝒪𝔛(N)((N))𝒪𝔛(Npr)(pr(Npr)).{\rm pr}^{*}{\cal O}_{\mathfrak{X}(N)}(-\mathfrak{C}(N))\simeq{\cal O}_{\mathfrak{X}(Np^{r})}(-p^{r}\mathfrak{C}(Np^{r})).

Thus

prω¯𝔛(N)2((N))ω¯𝔛2𝒪𝔛𝒪𝔛(pr(Npr)){\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N))\simeq\underline{\omega}_{\mathfrak{X}}^{\otimes 2}\otimes_{{\cal O}_{\mathfrak{X}}}{\cal O}_{\mathfrak{X}}(-p^{r}\mathfrak{C}(Np^{r}))

as desired. ∎

Theorem 4.19.

We have ω¯𝔛2Ω𝔛/R((Npr)).\underline{\omega}_{\mathfrak{X}}^{\otimes 2}\simeq\Omega_{\mathfrak{X}/R}(\mathfrak{C}(Np^{r})).

Proof.

Recall the isomorphism in (16) states

Ω𝔛/RΩ𝔛/𝔛(N)𝒪𝔛prω¯𝔛(N)2((N)).\Omega_{\mathfrak{X}/R}\simeq\Omega_{\mathfrak{X}/\mathfrak{X}(N)}\otimes_{{\cal O}_{\mathfrak{X}}}{\rm pr}^{*}\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}(-\mathfrak{C}(N)).

By Lemma 4.17 and Lemma 4.18, we have

Ω𝔛/R𝒪𝔛((pr1)(Npr))ω¯𝔛2𝒪𝔛(pr(Npr))ω¯𝔛2((Npr)).\Omega_{\mathfrak{X}/R}\simeq{\cal O}_{\mathfrak{X}}((p^{r}-1)\mathfrak{C}(Np^{r}))\otimes\underline{\omega}_{\mathfrak{X}}^{\otimes 2}\otimes{\cal O}_{\mathfrak{X}}(-p^{r}\mathfrak{C}(Np^{r}))\simeq\underline{\omega}_{\mathfrak{X}}^{\otimes 2}(-\mathfrak{C}(Np^{r})).\qed
Corollary 4.20.

Let Λ\Lambda be an irreducible component of the special fiber of 𝔛\mathfrak{X}. We have

deg(ω¯𝔛2|Λ)=deg(Ω𝔛/R|Λ)+deg((Npr)|Λ).\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda})=\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda})+\deg(\mathfrak{C}(Np^{r})|_{\Lambda}).

The following will allow us to calculate deg((Npr)|Λ)\deg(\mathfrak{C}(Np^{r})|_{\Lambda}).

Lemma 4.21.

deg((Npr)|Λ)\deg(\mathfrak{C}(Np^{r})|_{\Lambda}) is equal to the number of cusps {x}¯\overline{\left\{x\right\}} which intersect Λ\Lambda.

Proof.

Viewed as a divisor, (Npr)\mathfrak{C}(Np^{r}) is equal to the closure of all the cusps of the generic fiber of 𝔛\mathfrak{X} by Proposition A.15. By Theorem 2.11(d),

deg((Npr)|Λ)=(Npr).Λ=x{x}¯.Λ\deg(\mathfrak{C}(Np^{r})|_{\Lambda})=\mathfrak{C}(Np^{r}).\Lambda=\sum_{x}\overline{\left\{x\right\}}.\Lambda

where the sum is indexed over x(𝔛)/p(ζNpr)x\in\mathfrak{C}(\mathfrak{X}{}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}})}) i.e. over the cusps of the generic fiber.

All the cusps are rational, so by Corollary 2.15, {x}¯\overline{\left\{x\right\}} intersects at a single irreducible component of the special fiber. Therefore

{x}¯.Λ={1if {x}¯Λ0otherwise\overline{\left\{x\right\}}.\Lambda=\begin{cases}1&\mbox{if }\overline{\left\{x\right\}}\cap\Lambda\neq\emptyset\\ 0&\mbox{otherwise}\end{cases}

so deg((Npr)|Λ)\deg(\mathfrak{C}(Np^{r})|_{\Lambda}) is equal to the number of cusps which intersect Λ\Lambda as desired. ∎

For convenience, we let C(Npr)=(𝔛)/p(ζNprC(Np^{r})=\mathfrak{C}(\mathfrak{X}{}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}}}), the set of all cusps of the generic fiber. Using Lemma 4.21 and Proposition A.31, we obtain the following:

Proposition 4.22.

We have

deg((Npr)|Λ)=φ(pr)#C(N).\deg(\mathfrak{C}(Np^{r})|_{\Lambda})=\varphi(p^{r})\#C(N).

To compute deg(Ω𝔛(Npr)/R|Λ)\deg(\Omega_{\mathfrak{X}(Np^{r})/R}|_{\Lambda}), we will use the following result in [Liu02, Theorem 9.1.37].

Theorem 4.23.

Let XSX\rightarrow S be a regular fibered surface, sSs\in S a closed point, and EDivs(X)E\in{\rm Div}_{s}(X) such that 0<EXs0<E\leq X_{s}. Then we have

ΩE/k(s)(𝒪X(E)ΩX/S)|E.\Omega_{E/k(s)}\simeq({\cal O}_{X}(E)\otimes\Omega_{X/S})|_{E}.
Corollary 4.24.

We have

deg(Ω𝔛/R|Λ)=prφ(pr)#SL2(/N)24φ(pr)#C(N)+degS(N)p2r1\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda})=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}-\varphi(p^{r})\#C(N)+\deg{\rm S}(N)\cdot p^{2r-1}
Proof.

Applying Theorem 4.23 to 𝔛Spec(R)\mathfrak{X}\rightarrow{\rm Spec}(R) and E=ΛE=\Lambda, we get

ΩΛ/𝔽q(𝒪𝔛(Λ)Ω𝔛/R)|Λ.\Omega_{\Lambda/\mathbb{F}_{q}}\simeq({\cal O}_{\mathfrak{X}}(\Lambda)\otimes\Omega_{\mathfrak{X}/R})|_{\Lambda}.

Therefore

deg(ΩΛ/𝔽q)\displaystyle\deg(\Omega_{\Lambda/\mathbb{F}_{q}}) =deg((𝒪𝔛(Λ)Ω𝔛/R)|Λ)\displaystyle=\deg(({\cal O}_{\mathfrak{X}}(\Lambda)\otimes\Omega_{\mathfrak{X}/R})|_{\Lambda})
=deg(𝒪𝔛(Λ)|Λ)+deg(Ω𝔛/R|Λ)\displaystyle=\deg({\cal O}_{\mathfrak{X}}(\Lambda)|_{\Lambda})+\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda})
=Λ.Λ+deg(Ω𝔛/R|Λ).\displaystyle=\Lambda.\Lambda+\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda}).

Thus

deg(Ω𝔛/R|Λ)=deg(ΩΛ/𝔽q)Λ.Λ.\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda})=\deg(\Omega_{\Lambda/\mathbb{F}_{q}})-\Lambda.\Lambda.

By [Liu02, Corollary 7.3.31(a)],

deg(ΩΛ/𝔽q)=2ρa(Λ)2\deg(\Omega_{\Lambda/\mathbb{F}_{q}})=2\rho_{a}(\Lambda)-2

where ρa(Λ)\rho_{a}(\Lambda) is the arithmetic genus of Λ\Lambda. By [KM85, 12.9.4] along with [KM85, Corollary 10.13.12], we have

2ρa(Λ)\displaystyle 2\rho_{a}(\Lambda) =2ρa(Ig(pr,N))\displaystyle=2\rho_{a}({\rm Ig}(p^{r},N))
=prφ(pr)#SL2(/N)24+2φ(pr)#C(N)\displaystyle=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}+2-\varphi(p^{r})\#C(N)

We have already shown Λ.Λ=degS(N)p2r1\Lambda.\Lambda=-\deg{\rm S}(N)\cdot p^{2r-1} in Proposition 3.5. Thus

deg(Ω𝔛/R|Λ)\displaystyle\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda}) =(2ρa(Λ)2)Λ.Λ\displaystyle=(2\rho_{a}(\Lambda)-2)-\Lambda.\Lambda
=prφ(pr)#SL2(/N)24φ(pr)#C(N)+degS(N)p2r1.\displaystyle=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}-\varphi(p^{r})\#C(N)+\deg{\rm S}(N)\cdot p^{2r-1}.

as desired. ∎

Recall that the space of cusp forms, by definition, are the global sections of ω¯𝔛2((Npr))\underline{\omega}_{\mathfrak{X}}^{\otimes 2}(-\mathfrak{C}(Np^{r})).

Theorem 4.25.

Let k1k\geq 1 be an integer. We have

deg(ω¯𝔛2k|Λ)=k#SL2(/N)[112(p1)p2r1]\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2k}|_{\Lambda})=k\cdot\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})\left[\frac{1}{12}(p-1)p^{2r-1}\right]

and

deg(ω¯𝔛2k((Npr))|Λ)=k#SL2(/N)(p1)[p2r112pr12N].\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2k}(-\mathfrak{C}(Np^{r}))|_{\Lambda})=k\cdot\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})(p-1)\left[\frac{p^{2r-1}}{12}-\frac{p^{r-1}}{2N}\right].
Proof.

We first focus on the case k=1k=1. By Corollary 4.20, Proposition 4.22, and Corollary 4.24, we have

deg(ω¯𝔛2|Λ)\displaystyle\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}) =prφ(pr)#SL2(/N)24φ(pr)#C(N)+degS(N)p2r1+φ(pr)#C(N)\displaystyle=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}-\varphi(p^{r})\#C(N)+\deg{\rm S}(N)\cdot p^{2r-1}+\varphi(p^{r})\#C(N)
=prφ(pr)#SL2(/N)24+degS(N)p2r1\displaystyle=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}+\deg{\rm S}(N)\cdot p^{2r-1}

By [KM85, 12.4.5], degS(N)=(p1)#SL2(/N)24\deg{\rm S}(N)=\frac{(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}. Continuing, we have

deg(ω¯𝔛2|Λ)\displaystyle\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}) =prφ(pr)#SL2(/N)24+(p1)#SL2(/N)24p2r1\displaystyle=p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}+\frac{(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}\cdot p^{2r-1}
=#SL2(/N)[prφ(pr)24+p2r1(p1)24]\displaystyle=\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})\left[\frac{p^{r}\varphi(p^{r})}{24}+\frac{p^{2r-1}(p-1)}{24}\right]
=#SL2(/N)[112(p1)p2r1].\displaystyle=\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})\left[\frac{1}{12}(p-1)p^{2r-1}\right].

By Proposition 4.22 along with Lemma A.29, we have

deg(ω¯𝔛2((Npr))|Λ)\displaystyle\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}(-\mathfrak{C}(Np^{r}))|_{\Lambda}) =deg(ω¯𝔛2)deg((Npr)|Λ)\displaystyle=\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2})-\deg(\mathfrak{C}(Np^{r})|_{\Lambda})
=deg(ω¯𝔛2)φ(pr)#C(N)\displaystyle=\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2})-\varphi(p^{r})\#C(N)
=#SL2(/N)[112(p1)p2r1][φ(pr)#SL2(/N)2N]\displaystyle=\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})\left[\frac{1}{12}(p-1)p^{2r-1}\right]-\left[\varphi(p^{r})\frac{{\rm\#SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{2N}\right]
=#SL2(/N)(p1)[p2r112pr12N].\displaystyle=\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})(p-1)\left[\frac{p^{2r-1}}{12}-\frac{p^{r-1}}{2N}\right].

In general, taking tensor powers commutes with pullback of sheaves (see [Sta21, Tag01CD]). Hence ω¯𝔛2k|Λ(ω¯𝔛2|Λ)k\underline{\omega}_{\mathfrak{X}}^{\otimes 2k}|_{\Lambda}\simeq\left(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}\right)^{\otimes k} and consequently

deg(ω¯𝔛2k|Λ)=deg((ω¯𝔛2|Λ)k)=kdeg(ω¯𝔛2|Λ)\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2k}|_{\Lambda})=\deg\left(\left(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda}\right)^{\otimes k}\right)=k\cdot\deg(\underline{\omega}_{\mathfrak{X}}^{\otimes 2}|_{\Lambda})

which gives our desired result. ∎

4.5 An Upper Bound

Recall at the end of Remark 2.20 we arrived at the following expression for the exponent

e=max1infH0(𝔛,ω¯2){νΛ0(f)νΛi(f)}.e=\max_{\begin{subarray}{c}1\leq i\leq n\\ f\in H^{0}(\mathfrak{X},\underline{\omega}^{\otimes 2})\end{subarray}}\left\{\nu_{\Lambda_{0}}(f)-\nu_{\Lambda_{i}}(f)\right\}.

At the end of Section 2.4 we established

νΛ(f)νΛ(1,0)(f)=ΛΛ(1,0)(deg(ω¯k|Λ)Hf.Λ)cΛ,Λ\nu_{\Lambda}(f)-\nu_{\Lambda_{(1,0)}}(f)=\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}\left(\deg(\underline{\omega}^{\otimes k}|_{\Lambda^{\prime}})-H_{f}.\Lambda^{\prime}\right)c^{\Lambda,\Lambda^{\prime}}

where the sum is over all irreducible components of the special fiber excluding Λ(1,0)\Lambda_{(1,0)}. We will now provide an upper bound for ee. First we need to compute the sums cΛ,Λ\sum c^{\Lambda,\Lambda^{\prime}}, where cΛ,Λc^{\Lambda,\Lambda^{\prime}} is the entry of T1T^{-1} corresponding to row label Λ\Lambda and column label Λ\Lambda^{\prime} (see Section 3.2).

Lemma 4.26.

For 1apr11\leq a^{\prime}\leq p^{r}-1, we have

a=1aapr1νp(1a1a)=(pr2)νp(a).\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(\frac{1}{a}-\frac{1}{a^{\prime}}\right)=-(p^{r}-2)\nu_{p}(a^{\prime}).
Proof.

We have

a=1aapr1νp(1a1a)=a=1aapr1νp(aaaa)=a=1aapr1νp(aa)a=1aapr1νp(a)a=1aapr1νp(a)\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(\frac{1}{a}-\frac{1}{a^{\prime}}\right)=\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(\frac{a^{\prime}-a}{aa^{\prime}}\right)=\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}(a^{\prime}-a)-\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(a\right)-\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(a^{\prime}\right)
=a=1aapr1νp(aa)(a=1pr1νp(a)νp(a))(pr2)νp(a)=\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}(a-a^{\prime})-\left(\sum_{a=1}^{p^{r}-1}\nu_{p}(a)-\nu_{p}(a^{\prime})\right)-(p^{r}-2)\nu_{p}(a^{\prime}) (24)

Note that

a=1aapr1νp(aa)\displaystyle\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}(a-a^{\prime}) =a=1a1νp(aa)+a=a+1pr1νp(aa)\displaystyle=\sum_{a=1}^{a^{\prime}-1}\nu_{p}(a-a^{\prime})+\sum_{a=a^{\prime}+1}^{p^{r}-1}\nu_{p}(a-a^{\prime})
=a=1a1νp(a)+a=1pr1aνp(a)\displaystyle=\sum_{a=1}^{a^{\prime}-1}\nu_{p}(a)+\sum_{a=1}^{p^{r}-1-a^{\prime}}\nu_{p}(a)
=a=a+11νp(a)+a=1pr1aνp(a)\displaystyle=\sum_{a=-a^{\prime}+1}^{-1}\nu_{p}(a)+\sum_{a=1}^{p^{r}-1-a^{\prime}}\nu_{p}(a)
=a=pra+1pr1νp(a)+a=1pra1νp(a)\displaystyle=\sum_{a=p^{r}-a^{\prime}+1}^{p^{r}-1}\nu_{p}(a)+\sum_{a=1}^{p^{r}-a^{\prime}-1}\nu_{p}(a)
=νp(a)+a=1pr1νp(a).\displaystyle=-\nu_{p}(a^{\prime})+\sum_{a=1}^{p^{r}-1}\nu_{p}(a).

Continuing equation (24), we have

=νp(a)+a=1pr1νp(a)(a=1pr1νp(a)νp(a))(pr2)νp(a)\displaystyle=-\nu_{p}(a^{\prime})+\sum_{a=1}^{p^{r}-1}\nu_{p}(a)-\left(\sum_{a=1}^{p^{r}-1}\nu_{p}(a)-\nu_{p}(a^{\prime})\right)-(p^{r}-2)\nu_{p}(a^{\prime})
=(pr2)νp(a).\displaystyle=-(p^{r}-2)\nu_{p}(a^{\prime}).
Proposition 4.27.

We have

degS(N)ΛΛ(1,0)cΛ,Λ={pr(prr+1)+pr(p1)νp(a) if Λ=Λ(1,a)pr(prr+1) if Λ=Λ(pb,1)\deg{\rm S}(N)\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}c^{\Lambda,\Lambda^{\prime}}=\begin{cases}{\displaystyle-p^{-r}(pr-r+1)+p^{-r}(p-1)\nu_{p}(a)}&\mbox{ if }\Lambda=\Lambda_{(1,-a)}\\ \\ {\displaystyle-p^{-r}(pr-r+1)}&\mbox{ if }\Lambda=\Lambda_{(-pb,1)}\end{cases}
Proof.

We split into two cases, depending on Λ\Lambda.

Case 1: Suppose Λ=Λ(1,a)\Lambda=\Lambda_{(1,-a^{\prime})}. Using Theorem 3.20, we compute

ΛΛ(1,0)cΛ(1,a),Λ\displaystyle\sum_{\Lambda\neq\Lambda_{(1,0)}}c^{\Lambda_{(1,a^{\prime})},\Lambda} =a=1pr1cΛ(1,a),Λ(1,a),+b=0pr11cΛ(1,a),Λ(pb,1)\displaystyle=\sum_{a=1}^{p^{r}-1}c^{\Lambda_{(1,-a^{\prime})},\Lambda_{(1,-a)},}+\sum_{b=0}^{p^{r-1}-1}c^{\Lambda_{(1,-a^{\prime})},\Lambda_{(-pb,1)}}
=cΛ(1,a),Λ(1,a)+a=1aapr1(p12r(prr+1)p+1p12r(p1)p+1νp(1a1a))\displaystyle=c^{\Lambda_{(1,a^{\prime})},\Lambda_{(1,a^{\prime})}}+\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}\left(\frac{1}{a}-\frac{1}{a^{\prime}}\right)\right)
+b=0pr11(p12r(prr+1)p+1+p12r(p1)p+1νp(a))\displaystyle+\sum_{b=0}^{p^{r-1}-1}\left(-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})\right)
=cΛ(1,a),Λ(1,a)+(pr2)(p12r(prr+1)p+1)p12r(p1)p+1a=1aapr1νp(1a1a)\displaystyle=c^{\Lambda_{(1,a^{\prime})},\Lambda_{(1,a^{\prime})}}+(p^{r}-2)\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}\right)-\frac{p^{1-2r}(p-1)}{p+1}\sum_{\begin{subarray}{c}a=1\\ a\neq a^{\prime}\end{subarray}}^{p^{r}-1}\nu_{p}\left(\frac{1}{a}-\frac{1}{a^{\prime}}\right)
(pr1)p12r(prr+1)p+1+pr1p12r(p1)p+1νp(a)\displaystyle-(p^{r-1})\frac{p^{1-2r}(pr-r+1)}{p+1}+p^{r-1}\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})

Using Lemma 4.26 on the sum vp(1/a1/a)\sum v_{p}(\nicefrac{{1}}{{a}}-\nicefrac{{1}}{{a^{\prime}}}), we have

=cΛ(1,a),Λ(1,a)+(pr2)(p12r(prr+1)p+1)p12r(p1)p+1((pr2)νp(a))\displaystyle=c^{\Lambda_{(1,a^{\prime})},\Lambda_{(1,a^{\prime})}}+(p^{r}-2)\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}\right)-\frac{p^{1-2r}(p-1)}{p+1}\left(-(p^{r}-2)\nu_{p}(a^{\prime})\right)
(pr1)p12r(prr+1)p+1+pr1p12r(p1)p+1νp(a)\displaystyle-(p^{r-1})\frac{p^{1-2r}(pr-r+1)}{p+1}+p^{r-1}\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})
=cΛ(1,a),Λ(1,a)+(pr2+pr1)(p12r(prr+1)p+1)p12r(p1)p+1((pr2)νp(a))+pr1p12r(p1)p+1νp(a)\displaystyle=c^{\Lambda_{(1,a^{\prime})},\Lambda_{(1,a^{\prime})}}+(p^{r}-2+p^{r-1})\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}\right)-\frac{p^{1-2r}(p-1)}{p+1}\left(-(p^{r}-2)\nu_{p}(a^{\prime})\right)+p^{r-1}\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})
=cΛ(1,a),Λ(1,a)+(pr2+pr1)(p12r(prr+1)p+1)+(pr+pr12)p12r(p1)p+1νp(a)\displaystyle=c^{\Lambda_{(1,a^{\prime})},\Lambda_{(1,a^{\prime})}}+(p^{r}-2+p^{r-1})\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}\right)+(p^{r}+p^{r-1}-2)\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})
=2p12r(prr+1)p+1+2p12r(p1)p+1νp(a)+(pr2+pr1)(p12r(prr+1)p+1)\displaystyle={\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}+\frac{2p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})}+(p^{r}-2+p^{r-1})\left(-p^{1-2r}\frac{(pr-r+1)}{p+1}\right)
+(pr+pr12)p12r(p1)p+1νp(a)\displaystyle+(p^{r}+p^{r-1}-2)\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a^{\prime})
=pr(prr+1)+pr(p1)νp(a).\displaystyle=-p^{-r}(pr-r+1)+p^{-r}(p-1)\nu_{p}(a^{\prime}).

Case 2: Suppose Λ=Λ(pb,1)\Lambda^{\prime}=\Lambda_{(-pb^{\prime},1)}. Then

ΛΛ(1,0)cΛ(pb,1),Λ\displaystyle\sum_{\Lambda\neq\Lambda_{(1,0)}}c^{\Lambda_{(-pb^{\prime},1)},\Lambda} =a=1pr1cΛ(pb,1),Λ(1,a),+b=0pr11cΛ(pb,1),Λ(pb,1)\displaystyle=\sum_{a=1}^{p^{r}-1}c^{\Lambda_{(-pb^{\prime},1)},\Lambda_{(1,-a)},}+\sum_{b=0}^{p^{r-1}-1}c^{\Lambda_{(-pb^{\prime},1)},\Lambda_{(-pb,1)}}
=a=1pr1(p12r(prr+1)p+1+p12r(p1)p+1νp(a))\displaystyle=\sum_{a=1}^{p^{r}-1}\left(-\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(a)\right)
2p12r(prr+1)p+1+b=0bbpr11(p12r(pr+pr)p+1p12r(p1)p+1νp(bb))\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}+\sum_{\begin{subarray}{c}b=0\\ b\neq b^{\prime}\end{subarray}}^{p^{r-1}-1}\left(-\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\nu_{p}(b^{\prime}-b)\right)
=(pr1)p12r(prr+1)p+1+p12r(p1)p+1a=1pr1νp(a)\displaystyle=-(p^{r}-1)\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\sum_{a=1}^{p^{r}-1}\nu_{p}(a)
2p12r(prr+1)p+1(pr11)p12r(pr+pr)p+1p12r(p1)p+1b=0bbpr11νp(bb)\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}-(p^{r-1}-1)\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\sum_{\begin{subarray}{c}b=0\\ b\neq b^{\prime}\end{subarray}}^{p^{r-1}-1}\nu_{p}(b^{\prime}-b)

Using Lemma 3.16, we get

=(pr1)p12r(prr+1)p+1+p12r(p1)p+1(prpr+r1p1)\displaystyle=-(p^{r}-1)\frac{p^{1-2r}(pr-r+1)}{p+1}+\frac{p^{1-2r}(p-1)}{p+1}\left(\frac{p^{r}-pr+r-1}{p-1}\right)
2p12r(prr+1)p+1(pr11)p12r(pr+pr)p+1p12r(p1)p+1(νp(b)+pr1p(r1)+r2p1+νp(b))\displaystyle-\frac{2p^{1-2r}(pr-r+1)}{p+1}-(p^{r-1}-1)\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\left(-\nu_{p}(b^{\prime})+\frac{p^{r-1}-p(r-1)+r-2}{p-1}+\nu_{p}(b^{\prime})\right)
=(p1)rp1rp+12p12r(prr+1)p+1(pr11)p12r(pr+pr)p+1p12r(p1)p+1(pr1p(r1)+r2p1)\displaystyle=-\frac{(p-1)rp^{1-r}}{p+1}-\frac{2p^{1-2r}(pr-r+1)}{p+1}-(p^{r-1}-1)\frac{p^{1-2r}(pr+p-r)}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\left(\frac{p^{r-1}-p(r-1)+r-2}{p-1}\right)
=p2r(pr+1rpr+2+rprp2(r1)+p(r2))p+1p12r(p1)p+1(pr1p(r1)+r2p1)\displaystyle=\frac{p^{-2r}(-p^{r+1}-rp^{r+2}+rp^{r}-p^{2}(r-1)+p(r-2))}{p+1}-\frac{p^{1-2r}(p-1)}{p+1}\left(\frac{p^{r-1}-p(r-1)+r-2}{p-1}\right)
=pr(prr+1).\displaystyle=-p^{-r}(pr-r+1).
Theorem 4.28.

Let k1k\geq 1, N3N\geq 3, and r1r\geq 1 be integers and p2p\geq 2 be a prime such that pNp\nmid N. Let ee be the exponent of π\pi in the annihilator of M2k(Γ(Npr),p[ζNpr])/H0(𝔛,ω¯2k)M_{2k}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}])/H^{0}(\mathfrak{X},\underline{\omega}^{\otimes 2k}). Then

e2kpr1(prr+1).e\leq 2kp^{r-1}(pr-r+1).
Proof.

For any fM2k(Npr,p[ζNpr])f\in M_{2k}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]), we always have νΛ(1,0)(f)0\nu_{\Lambda_{(1,0)}}(f)\geq 0. Thus

νΛ(f)\displaystyle-\nu_{\Lambda}(f) νΛ(1,0)(f)νΛ(f)\displaystyle\leq\nu_{\Lambda_{(1,0)}}(f)-\nu_{\Lambda}(f)
=ΛΛ(1,0)(Hf.Λdeg(ω¯2k|Λ))cΛ,Λ\displaystyle=\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}\left(H_{f}.\Lambda^{\prime}-\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda^{\prime}})\right)c^{\Lambda,\Lambda^{\prime}}
=ΛΛ(1,0)(Hf.Λ)cΛ,ΛΛΛ(1,0)deg(ω¯2k|Λ)cΛ,Λ.\displaystyle=\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}(H_{f}.\Lambda^{\prime})c^{\Lambda,\Lambda^{\prime}}-\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda^{\prime}})c^{\Lambda,\Lambda^{\prime}}.

By Corollary 3.21, cΛ,Λ<0c^{\Lambda,\Lambda^{\prime}}<0. Also note that HfH_{f} is an effective horizontal divisor since ff has no poles while Λ\Lambda^{\prime} is an effective vertical divisor. Since HfH_{f} and Λ\Lambda^{\prime} do not have any common components, the intersection number Hf.ΛH_{f}.\Lambda^{\prime} is positive. Thus ΛΛ(1,0)(Hf.Λ)cΛ,Λ\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}(H_{f}.\Lambda^{\prime})c^{\Lambda,\Lambda^{\prime}} will always be negative. Continuing, we have

ΛΛ(1,0)deg(ω¯2k|Λ)cΛ,Λ\leq-\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}\deg(\underline{\omega}^{\otimes 2k}|_{\Lambda^{\prime}})c^{\Lambda,\Lambda^{\prime}}

Using Theorem 4.25, the above expression becomes

k(p1)p2r1#SL2(/N)1224(p1)#SL2(/N)degS(N)ΛΛ(1,0)cΛ,Λ-\frac{k(p-1)p^{2r-1}\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{12}\frac{24}{(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}\deg{\rm S}(N)\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}c^{\Lambda,\Lambda^{\prime}}
=kp2r1degS(N)ΛΛ(1,0)cΛ,Λ.=-kp^{2r-1}\deg{\rm S}(N)\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}c^{\Lambda,\Lambda^{\prime}}.

Using Proposition 4.27, we have

={2kpr1(prr+1)2kpr1(p1)νp(a) if Λ=Λ(1,a)2kpr1(prr+1) if Λ=Λ(pb,1)=\begin{cases}{\displaystyle 2kp^{r-1}(pr-r+1)-2kp^{r-1}(p-1)\nu_{p}(a)}&\mbox{ if }\Lambda=\Lambda_{(1,-a)}\\ \\ {\displaystyle 2kp^{r-1}(pr-r+1)}&\mbox{ if }\Lambda=\Lambda_{(-pb,1)}\end{cases}

which is maximized whenever aa is coprime to pp and attains a value of 2kpr1(prr+1)2kp^{r-1}(pr-r+1). ∎

By replacing ω¯2\underline{\omega}^{\otimes 2} with ω¯2((Npr)\underline{\omega}^{\otimes 2}(-\mathfrak{C}(Np^{r}) in the proof of Theorem 4.28, we obtain an upper bound for the exponent in the situation of cusp forms.

Corollary 4.29.

Let k1,N3k\geq 1,N\geq 3, and r1r\geq 1 be integers and p2p\geq 2 a prime such that pNp\nmid N. The exponent ee of π\pi in the annihilator of S2k(Γ(Npr),p[ζNpr])/H0(𝔛,ω¯2k((Npr))S_{2k}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}])/H^{0}(\mathfrak{X},\underline{\omega}^{\otimes 2k}(-\mathfrak{C}(Np^{r})) is bounded above by

2kpr1(prr+1)12kNp(prr+1).2kp^{r-1}(pr-r+1)-\frac{12k}{Np}(pr-r+1).
Proof.

Using Theorem 4.25 to compute deg(ω¯2k((Npr))|Λ)\deg(\underline{\omega}^{\otimes 2k}(-\mathfrak{C}(Np^{r}))|_{\Lambda}), we get an upper bound of

k#SL2(/N)(p1)[p2r112pr12N]24(p1)#SL2(/N)degS(N)ΛΛ(1,0)cΛ,Λ-k\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})(p-1)\left[\frac{p^{2r-1}}{12}-\frac{p^{r-1}}{2N}\right]\frac{24}{(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}\deg{\rm S}(N)\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}c^{\Lambda,\Lambda^{\prime}}
=k[12pr1N2p2r1]degS(N)ΛΛ(1,0)cΛ,Λ\displaystyle=k\left[\frac{12p^{r-1}}{N}-2p^{2r-1}\right]\deg{\rm S}(N)\sum_{\Lambda^{\prime}\neq\Lambda_{(1,0)}}c^{\Lambda,\Lambda^{\prime}}
k[12pr1N2p2r1]pr(prr+1)\displaystyle\leq-k\left[\frac{12p^{r-1}}{N}-2p^{2r-1}\right]p^{-r}(pr-r+1)
=2kpr1(prr+1)12kNp(prr+1).\displaystyle=2kp^{r-1}(pr-r+1)-\frac{12k}{Np}(pr-r+1).
Remark 4.30.

We compare our result in Corollary 4.29 with Edixhoven’s method in [Edi06]. He considers the situation of weight 22 and level Γ0(N)\Gamma_{0}(N) cusp forms where ordp(N)=1{\rm ord}_{p}(N)=1, and bounds ee via the inequality

e<deg(Ω𝔛0(N)|Λ)degS(N).e<\frac{\deg(\Omega_{\mathfrak{X}_{0}(N)}|_{\Lambda})}{\deg{\rm S}(N)}.

We will show a similar inequality holds our situation. Let Λ0,Λ1,,Λn\Lambda_{0},\Lambda_{1},\dots,\Lambda_{n} denote the irreducible components of 𝔛¯\bar{\mathfrak{X}} where Λ0\Lambda_{0} contains the cusp \infty. Let fM2(Npr,p[ζNpr])f\in M_{2}(Np^{r},\mathbb{Z}_{p}[\zeta_{Np^{r}}]) be a non-zero cusp form such that νΛ0(f)=0\nu_{\Lambda_{0}}(f)=0 and, without loss of generality, let m:=νΛ1(f)<0-m:=\nu_{\Lambda_{1}}(f)<0 be the minimum among the values in {νΛi(f)}i=1n\left\{\nu_{\Lambda_{i}}(f)\right\}_{i=1}^{n}. By scaling, we can assume νΛ0(f)=m\nu_{\Lambda_{0}}(f)=m, νΛ1(f)=0\nu_{\Lambda_{1}}(f)=0, and νΛi(f)0\nu_{\Lambda_{i}}(f)\geq 0 for i=2,,ni=2,\dots,n so that ff has non-negative valuation along every irreducible component i.e. fH0(𝔛,ω¯2)f\in H^{0}(\mathfrak{X},\underline{\omega}^{\otimes 2}). We can write the divisor associated to ff as

div(f)=Hf+mΛ0+i=2nνΛi(f)Λi{\rm div}(f)=H_{f}+m\Lambda_{0}+\sum_{i=2}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}

where HfH_{f} is the horizontal part of the divisor div(f){\rm div}(f). By Theorem 4.19, the sheaf of cusp forms ω¯2((Npr))\underline{\omega}^{\otimes 2}(-\mathfrak{C}(Np^{r})) is isomorphic to the relative dualizing sheaf Ω𝔛/R\Omega_{\mathfrak{X}/R}. Since 𝔛\mathfrak{X} is an arithmetic surface, we can use intersection theory (see Theorem 2.11), along with Proposition 2.17, to compute:

degΩ𝔛/R|Λ1(mS(N))\displaystyle\deg\Omega_{\mathfrak{X}/R}|_{\Lambda_{1}}(-m{\rm S}(N)) =deg(Ω𝔛/R|Λ1)mdegS(N)\displaystyle=\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda_{1}})-m\deg{\rm S}(N)
=deg(div(f)|Λ1)mdegS(N)\displaystyle=\deg({\rm div}(f)|_{\Lambda_{1}})-m\deg{\rm S}(N)
=div(f).Λ1mdegS(N)\displaystyle={\rm div}(f).\Lambda_{1}-m\deg{\rm S}(N)
=Hf.Λ1+mΛ0.Λ1+i=2nνΛi(f)Λi.Λ1mdegS(N)\displaystyle=H_{f}.\Lambda_{1}+m\Lambda_{0}.\Lambda_{1}+\sum_{i=2}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}.\Lambda_{1}-m\deg{\rm S}(N)
=Hf.Λ1+m(Λ0.Λ1degS(N))+i=2nνΛi(f)Λi.Λ1.\displaystyle=H_{f}.\Lambda_{1}+m(\Lambda_{0}.\Lambda_{1}-\deg{\rm S}(N))+\sum_{i=2}^{n}\nu_{\Lambda_{i}}(f)\Lambda_{i}.\Lambda_{1}.

Since ff has no poles, HfH_{f} is effective so Hf.Λ10H_{f}.\Lambda_{1}\geq 0. By assumption, νΛi(f)0\nu_{\Lambda_{i}}(f)\geq 0 for i=2,,ni=2,\dots,n; we also have Λi.Λ10\Lambda_{i}.\Lambda_{1}\geq 0 since Λi\Lambda_{i} and Λ1\Lambda_{1} have no common components. Lastly, Λ0\Lambda_{0} and Λ1\Lambda_{1} intersect precisely at the supersingular points, so Λ0.Λ1degS(N)\Lambda_{0}.\Lambda_{1}\geq\deg{\rm S}(N). Therefore we conclude

0degΩ𝔛/R|Λ1(mS(N))=deg(Ω𝔛/R|Λ1)mdegS(N).0\leq\deg\Omega_{\mathfrak{X}/R}|_{\Lambda_{1}}(-m{\rm S}(N))=\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda_{1}})-m\deg{\rm S}(N).

Using Corollary 4.24, we have:

m\displaystyle m <deg(Ω𝔛/R|Λ1)degS(N)\displaystyle<\frac{\deg(\Omega_{\mathfrak{X}/R}|_{\Lambda_{1}})}{\deg{\rm S}(N)}
=prφ(pr)#SL2(/N)24φ(pr)#C(N)+degS(N)p2r1degS(N)\displaystyle=\frac{p^{r}\varphi(p^{r})\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24}-\varphi(p^{r})\#C(N)+\deg{\rm S}(N)\cdot p^{2r-1}}{\deg{\rm S}(N)}
=24prφ(pr)#SL2(/N)24(p1)#SL2(/N)24φ(pr)#SL2(/N)2N(p1)#SL2(/N)+p2r1\displaystyle=\frac{24p^{r}\varphi(p^{r})\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{24(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}-\frac{24\varphi(p^{r})\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{2N(p-1)\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}+p^{2r-1}
=prpr1(p1)p112pr1(p1)N(p1)+p2r1\displaystyle=\frac{p^{r}p^{r-1}(p-1)}{p-1}-\frac{12p^{r-1}(p-1)}{N(p-1)}+p^{2r-1}
=2p2r112pr1N\displaystyle=2p^{2r-1}-\frac{12p^{r-1}}{N}

which provides an upper bound for ee. When r=1r=1, this bound agrees with the bound in Corollary 4.29, but in general is larger by a factor of pr/(prr+1)p^{r}/(pr-r+1).

5 A Lower Bound

In this section, we will use Klein forms to build an explicit modular form in M2(Γ1(pr),p[ζp])M_{2}(\Gamma_{1}(p^{r}),\mathbb{Z}_{p}[\zeta_{p}]). By viewing these modular forms at level Γ(Npr)\Gamma(Np^{r}) with coefficients in p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}], we will obtain a lower bound for the exponent.

Definition 5.1.

A nearly holomorphic modular form is a modular form which is allowed to be meromorphic at the cusps.

Fix (r1,r2)22(r_{1},r_{2})\in\mathbb{Q}^{2}-\mathbb{Z}^{2}. Let τ\tau\in{\cal H}, q=e2πiτq=e^{2\pi i\tau}, and qz=e2πizq_{z}=e^{2\pi iz} where z=r1τ+r2z=r_{1}\tau+r_{2}. Define the Klein form

κ(r1,r2)(τ)=eπir2(r11)q12r1(r11)(1qz)n=1(1qnqz)(1qnqz1)(1qn)2.\kappa_{(r_{1},r_{2})}(\tau)=e^{\pi ir_{2}(r_{1}-1)}q^{\frac{1}{2}r_{1}(r_{1}-1)}(1-q_{z})\prod_{n=1}^{\infty}(1-q^{n}q_{z})(1-q^{n}q_{z}^{-1})(1-q^{n})^{-2}. (25)

The following result, which is [EKS11, Theorem. 2.6], builds upon results in [KL81, §2.1, §3.4] which establish a criterion for when a product of Klein forms is a nearly holomorphic modular form. For rr\in\mathbb{R}, we let r\left\langle r\right\rangle denote the fractional part of rr. Note r=0\left\langle r\right\rangle=0 precisely when rr\in\mathbb{Z}.

Theorem 5.2.

For an integer N2N\geq 2, let {m(t)}t=1N1\left\{m(t)\right\}_{t=1}^{N-1} be a family of integers. Then the product

κ(τ)=t=1N1κ(t/N,0)(Nτ)m(t)\kappa(\tau)=\prod_{t=1}^{N-1}\kappa_{(t/N,0)}(N\tau)^{m(t)}

is a nearly holomorphic modular form for Γ1(N)\Gamma_{1}(N) of weight k=t=1N1m(t)k=-\sum_{t=1}^{N-1}m(t) if

t=1N1m(t)t20(modgcd(2,N)N).\sum_{t=1}^{N-1}m(t)t^{2}\equiv 0\;({\rm mod\,}\gcd(2,N)\cdot N).

Furthermore, for α=(abcd)SL2()\alpha=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\in{\rm SL}_{2}(\mathbb{Z}) we have

ordq(κ(τ)|[α]k)=gcd(c,N)22Nt=1N1m(t)atgcd(c,N)(atgcd(c,N)1).{\rm ord}_{q}\left(\kappa(\tau)|[\alpha]_{k}\right)=\frac{\gcd(c,N)^{2}}{2N}\sum_{t=1}^{N-1}m(t)\left\langle\frac{at}{\gcd(c,N)}\right\rangle\left(\left\langle\frac{at}{\gcd(c,N)}\right\rangle-1\right).

Using this result when N=pr>3N=p^{r}>3, we will choose a family of integers {m(t)}t=1N1\left\{m(t)\right\}_{t=1}^{N-1} such that k=2k=2 and ordq(κ(τ)|[α]2)0{\rm ord}_{q}\left(\kappa(\tau)|[\alpha]_{2}\right)\geq 0 for all αSL2()\alpha\in{\rm SL}_{2}(\mathbb{Z}). This guarantees that κ(τ)\kappa(\tau) is a weight 2 (holomorphic) modular form of level Γ1(pr)\Gamma_{1}(p^{r}). As Γ(Npr)Γ(pr)Γ1(pr)\Gamma(Np^{r})\leq\Gamma(p^{r})\leq\Gamma_{1}(p^{r}), this also gives us a modular form of level Γ(Npr)\Gamma(Np^{r}) as originally desired.

It may be natural to choose m(t)m(t) to be zero for most values of tt in order to simplify the quadratic condition in Theorem 5.2 and the expression for the order. Consider the situation when m(t1),m(t2),m(t_{1}),m(t_{2}), and m(t3)m(t_{3}) are the only non-zero values for some distinct t1,t2,t3{1,2,,pr1}t_{1},t_{2},t_{3}\in\left\{1,2,\dots,p^{r}-1\right\}. By Theorem 5.2, we seek m(t1),m(t2),m(t_{1}),m(t_{2}), and m(t3)m(t_{3}) such that

m(t1)+m(t2)+m(t3)=2m(t_{1})+m(t_{2})+m(t_{3})=-2 (26)
m(t1)t12+m(t2)t22+m(t3)t320(mod 2pr)m(t_{1})t_{1}^{2}+m(t_{2})t_{2}^{2}+m(t_{3})t_{3}^{2}\equiv 0\,({\rm mod\,}2p^{r}) (27)

and

gcd(c,pr)22pr(i=13m(ti)atigcd(c,pr)(atigcd(c,pr)1))0\frac{\gcd(c,p^{r})^{2}}{2p^{r}}\left(\sum_{i=1}^{3}m(t_{i})\left\langle\frac{at_{i}}{\gcd(c,p^{r})}\right\rangle\left(\left\langle\frac{at_{i}}{\gcd(c,p^{r})}\right\rangle-1\right)\right)\geq 0 (28)

for all a,ca,c\in\mathbb{Z}.

We will choose the m(ti)m(t_{i}) satisfying these conditions in three separate cases depending on the level: p>5p>5, p=5p=5, and pr>3p^{r}>3 with r2r\geq 2. It is not clear how one constructs similar modular forms of the remaining levels p=2p=2 and p=3p=3. We first consider the case of level p>5p>5. To satisfy equation (26), we can take m(t1)=m(t2)=2m(t_{1})=m(t_{2})=-2 and m(t3)=2m(t_{3})=2. The next equation (27) becomes

t12t22+t320(modp) or equivalently t12+t22t32(modp)-t_{1}^{2}-t_{2}^{2}+t_{3}^{2}\equiv 0\,({\rm mod\,}p)\mbox{ or equivalently }t_{1}^{2}+t_{2}^{2}\equiv t_{3}^{2}\,({\rm mod\,}p)

which can be satisfied if we take (t1,t2,t3)(t_{1},t_{2},t_{3}) to be a Pythagorean triple. As we now show, taking t1=3,t2=4,t_{1}=3,t_{2}=4, and t3=5t_{3}=5 suffices if p>5p>5. For convenience, we let (x,y)(x,y) denote gcd(x,y)\gcd(x,y) for x,yx,y\in\mathbb{Z}.

Proposition 5.3.

The product of Klein forms

κ(τ)=κ(3/p,0)(pτ)2κ(4/p,0)(pτ)2κ(5/p,0)(pτ)2\kappa(\tau)=\kappa_{(3/p,0)}(p\tau)^{-2}\kappa_{(4/p,0)}(p\tau)^{-2}\kappa_{(5/p,0)}(p\tau)^{2}

is a weight 2 modular form of level Γ1(p)\Gamma_{1}(p) for p>5p>5.

Proof.

Define m:{1,,p1}m:\{1,\dots,p-1\}\rightarrow\mathbb{Z} by

m(t)={2if t=3,42if t=50otherwisem(t)=\begin{cases}-2&\mbox{if }t=3,4\\ 2&\mbox{if }t=5\\ 0&\mbox{otherwise}\end{cases}

By Theorem 5.2, the product κ(τ)\kappa(\tau) defined by m(t)m(t) is a weight 2 nearly holomorphic modular form of level Γ1(p)\Gamma_{1}(p). It remains to show κ(τ)\kappa(\tau) is holomorphic at the cusps. The order of κ(τ)\kappa(\tau) is given by

ordq(κ(τ)|[α]2){\rm ord}_{q}(\kappa(\tau)|[\alpha]_{2})
=(c,p)22p(23a(c,p)(3a(c,p)1)24a(c,p)(4a(c,p)1)+25a(c,p)(5a(c,p)1))=\frac{(c,p)^{2}}{2p}\left(-2\left\langle\frac{3a}{(c,p)}\right\rangle\left(\left\langle\frac{3a}{(c,p)}\right\rangle-1\right)-2\left\langle\frac{4a}{(c,p)}\right\rangle\left(\left\langle\frac{4a}{(c,p)}\right\rangle-1\right)+2\left\langle\frac{5a}{(c,p)}\right\rangle\left(\left\langle\frac{5a}{(c,p)}\right\rangle-1\right)\right)

where α=(abcd)SL2()\alpha=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\in{\rm SL}_{2}(\mathbb{Z}). We will show this expression is always non-negative.

Since (c,p)2/2p>0(c,p)^{2}/2p>0, we can ignore this factor. Dividing through by 2, our goal is to show

3a(c,p)(3a(c,p)1)4a(c,p)(4a(c,p)1)+5a(c,p)(5a(c,p)1)-\left\langle\frac{3a}{(c,p)}\right\rangle\left(\left\langle\frac{3a}{(c,p)}\right\rangle-1\right)-\left\langle\frac{4a}{(c,p)}\right\rangle\left(\left\langle\frac{4a}{(c,p)}\right\rangle-1\right)+\left\langle\frac{5a}{(c,p)}\right\rangle\left(\left\langle\frac{5a}{(c,p)}\right\rangle-1\right)

or equivalently

3a(c,p)(13a(c,p))+4a(c,p)(14a(c,p))5a(c,p)(15a(c,p))\left\langle\frac{3a}{(c,p)}\right\rangle\left(1-\left\langle\frac{3a}{(c,p)}\right\rangle\right)+\left\langle\frac{4a}{(c,p)}\right\rangle\left(1-\left\langle\frac{4a}{(c,p)}\right\rangle\right)-\left\langle\frac{5a}{(c,p)}\right\rangle\left(1-\left\langle\frac{5a}{(c,p)}\right\rangle\right)

is non-negative for all a,ca,c\in\mathbb{Z}.

Let

f(x)=3x(13x)+4x(14x)5x(15x),f(x)=\left\langle 3x\right\rangle\left(1-\left\langle 3x\right\rangle\right)+\left\langle 4x\right\rangle\left(1-\left\langle 4x\right\rangle\right)-\left\langle 5x\right\rangle\left(1-\left\langle 5x\right\rangle\right),

noting that f(a/(c,p))f(a/(c,p)) is the expression we are showing is non-negative. Since x\left\langle x\right\rangle is periodic with period 0x<10\leq x<1, it suffices to show f(x)0f(x)\geq 0 for all 0x<10\leq x<1. Since

x(1x)=(1x)(1(1x))=x(1x)\left\langle-x\right\rangle(1-\left\langle-x\right\rangle)=(1-\left\langle x\right\rangle)(1-(1-\left\langle x\right\rangle))=\left\langle x\right\rangle(1-\left\langle x\right\rangle)

we can conclude f(x)=f(x)f(-x)=f(x). Therefore it suffices to show f(x)0f(x)\geq 0 for all 0x1/20\leq x\leq\nicefrac{{1}}{{2}}.

We accomplish this by finding an explicit piecewise defined expression for f(x)f(x) and then computing its derivative. Note that

3x(13x)\displaystyle\left\langle 3x\right\rangle\left(1-\left\langle 3x\right\rangle\right) ={3x(13x)if 0x<1/33(x1/3)(13(x1/3))if 1/3x<2/33(x2/3)(13(x2/3))if 2/3x<1\displaystyle=\begin{cases}3x(1-3x)&\mbox{if }0\leq x<\nicefrac{{1}}{{3}}\\ 3(x-\nicefrac{{1}}{{3}})(1-3(x-\nicefrac{{1}}{{3}}))&\mbox{if }\nicefrac{{1}}{{3}}\leq x<\nicefrac{{2}}{{3}}\\ 3(x-\nicefrac{{2}}{{3}})(1-3(x-\nicefrac{{2}}{{3}}))&\mbox{if }\nicefrac{{2}}{{3}}\leq x<1\end{cases}
={3x(13x)if 0x<1/3(3x1)(23x)if 1/3x<2/33(3x2)(1x)if 2/3x<1\displaystyle=\begin{cases}3x(1-3x)&\mbox{if }0\leq x<\nicefrac{{1}}{{3}}\\ (3x-1)(2-3x)&\mbox{if }\nicefrac{{1}}{{3}}\leq x<\nicefrac{{2}}{{3}}\\ 3(3x-2)(1-x)&\mbox{if }\nicefrac{{2}}{{3}}\leq x<1\end{cases}

Similar expressions can be obtained for 4x(14x)\left\langle 4x\right\rangle\left(1-\left\langle 4x\right\rangle\right) and 5x(15x)\left\langle 5x\right\rangle\left(1-\left\langle 5x\right\rangle\right). Putting these together, we have

f(x)={3x(13x)+4x(14x)5x(15x)if 0x<1/53x(13x)+4x(14x)(5x1)(25x)if 1/5x<1/43x(13x)+2(4x1)(12x)(5x1)(25x)if 1/4x<1/3(3x1)(23x)+2(4x1)(12x)(5x1)(25x)if 1/3x<2/5(3x1)(23x)+2(4x1)(12x)(5x2)(35x)if 2/5x<2/4.f(x)=\begin{cases}3x(1-3x)+4x(1-4x)-5x(1-5x)&\mbox{if }0\leq x<\nicefrac{{1}}{{5}}\\ 3x(1-3x)+4x(1-4x)-(5x-1)(2-5x)&\mbox{if }\nicefrac{{1}}{{5}}\leq x<\nicefrac{{1}}{{4}}\\ 3x(1-3x)+2(4x-1)(1-2x)-(5x-1)(2-5x)&\mbox{if }\nicefrac{{1}}{{4}}\leq x<\nicefrac{{1}}{{3}}\\ (3x-1)(2-3x)+2(4x-1)(1-2x)-(5x-1)(2-5x)&\mbox{if }\nicefrac{{1}}{{3}}\leq x<\nicefrac{{2}}{{5}}\\ (3x-1)(2-3x)+2(4x-1)(1-2x)-(5x-2)(3-5x)&\mbox{if }\nicefrac{{2}}{{5}}\leq x<\nicefrac{{2}}{{4}}\end{cases}.

Thus we can compute the derivative directly:

f(x)={2xif 0x<1/528xif 1/5x<1/40if 1/4x<1/36x2if 1/3x<2/524xif 2/5x<2/4f^{\prime}(x)=\begin{cases}2x&\mbox{if }0\leq x<\nicefrac{{1}}{{5}}\\ 2-8x&\mbox{if }\nicefrac{{1}}{{5}}\leq x<\nicefrac{{1}}{{4}}\\ 0&\mbox{if }\nicefrac{{1}}{{4}}\leq x<\nicefrac{{1}}{{3}}\\ 6x-2&\mbox{if }\nicefrac{{1}}{{3}}\leq x<\nicefrac{{2}}{{5}}\\ 2-4x&\mbox{if }\nicefrac{{2}}{{5}}\leq x<\nicefrac{{2}}{{4}}\end{cases}

This shows that the pieces of f(x)f(x) are either strictly increasing, strictly decreasing, or constant in their appropriate interval. For each interval, the following table shows if f(x)f(x) is increasing, decreasing, or constant based on f(x)f^{\prime}(x). The value of ff at the rightmost endpoint is also calculated for each interval.

ax<ba\leq x<b 0x<1/50\leq x<\nicefrac{{1}}{{5}} 1/5x<1/4\nicefrac{{1}}{{5}}\leq x<\nicefrac{{1}}{{4}} 1/4x<1/3\nicefrac{{1}}{{4}}\leq x<\nicefrac{{1}}{{3}} 1/3x<2/5\nicefrac{{1}}{{3}}\leq x<\nicefrac{{2}}{{5}} 2/5x<1/2\nicefrac{{2}}{{5}}\leq x<\nicefrac{{1}}{{2}}
Inc, Dec, Con increasing decreasing constant increasing decreasing
f(b)f(b) 2/5\nicefrac{{2}}{{5}} 0 0 2/5\nicefrac{{2}}{{5}} 0

Thus we conclude f(x)0f(x)\geq 0 for all xx. Consequently, κ(τ)\kappa(\tau) is holomorphic at each cusp so is indeed a modular form. ∎

We compute the valuation of its qq-expansion at each cusp. The qq-expansion at \infty for κ(r1,r2)(τ)\kappa_{(r_{1},r_{2})}(\tau) was given earlier in equation (5.2). In particular, the qq-expansion of κ(a/p,0)(pτ)\kappa_{(\nicefrac{{a}}{{p}},0)}(p\tau) is

κ(a/p,0)(pτ)=qp12ap(ap1)(1qa)n=1(1qpnqa)(1qpnqa)(1qpn)2.\kappa_{(\nicefrac{{a}}{{p}},0)}(p\tau)=q^{p\frac{1}{2}\frac{a}{p}(\frac{a}{p}-1)}(1-q^{a})\prod_{n=1}^{\infty}(1-q^{pn}q^{a})(1-q^{pn}q^{-a})(1-q^{pn})^{-2}.

For convenience, let Ha(q):=n=1(1qpnqa)(1qpnqa)(1qpn)2H_{a}(q):=\prod_{n=1}^{\infty}(1-q^{pn}q^{a})(1-q^{pn}q^{-a})(1-q^{pn})^{-2} and note 1/Ha(q)1+[[q]]1/H_{a}(q)\in 1+\mathbb{Z}[[q]]. The qq-expansion of κ(τ)\kappa(\tau) is

κ(τ)\displaystyle\kappa(\tau) =κ(3/p,0)(pτ)2κ(4/p,0)(pτ)2κ(5/p,0)(pτ)2\displaystyle=\kappa_{(\nicefrac{{3}}{{p}},0)}(p\tau)^{-2}\kappa_{(\nicefrac{{4}}{{p}},0)}(p\tau)^{-2}\kappa_{(\nicefrac{{5}}{{p}},0)}(p\tau)^{2}
=qp125p(5p1)2(1q5)2qp123p(3p1)2(1q3)2qp124p(4p1)2(1q4)2(H5(q)H3(q)H4(q))\displaystyle=\frac{q^{p\frac{1}{2}\frac{5}{p}(\frac{5}{p}-1)2}(1-q^{5})^{2}}{q^{p\frac{1}{2}\frac{3}{p}(\frac{3}{p}-1)2}(1-q^{3})^{2}q^{p\frac{1}{2}\frac{4}{p}(\frac{4}{p}-1)2}(1-q^{4})^{2}}\left(\frac{H_{5}(q)}{H_{3}(q)H_{4}(q)}\right)
=q2(1q5)2(1q3)2(1q4)2(H5(q)H3(q)H4(q))\displaystyle=q^{2}\frac{(1-q^{5})^{2}}{(1-q^{3})^{2}(1-q^{4})^{2}}\left(\frac{H_{5}(q)}{H_{3}(q)H_{4}(q)}\right)

which has all integral coefficients.

To compute the qq-expansion of κ(τ)\kappa(\tau) at the other cusps, we use the following identity for Klein forms, which can be found in [EKS11, Prop. 2.1]. For any α=(abcd)SL2()\alpha=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\in{\rm SL}_{2}(\mathbb{Z}), we have

κ(r1,r2)(ατ)=κ(aτ+bcτ+d)=(cτ+d)1κα(r1,r2)(τ).\kappa_{(r_{1},r_{2})}(\alpha\tau)=\kappa\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^{-1}\kappa_{\alpha(r_{1},r_{2})}(\tau).

We let π=1ζpr\pi=1-\zeta_{p^{r}} which is a uniformizer of p[ζNpr]\mathbb{Z}_{p}[\zeta_{Np^{r}}].

Proposition 5.4.

The π\pi-adic valuation of κ(τ)\kappa(\tau) at its qq-expansions around the cusp 0 is 2p-2p i.e. ν0(κ(τ))=2p\nu_{0}(\kappa(\tau))=-2p.

Proof.

Let σ=(0110)SL2()\sigma=\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right)\in{\rm SL}_{2}(\mathbb{Z}); note σ=0\sigma\cdot\infty=0. The qq-expansion of κ(τ)\kappa(\tau) at the cusp 0 is given by

κ(τ)|[σ]2=(τ)2κ(στ)=κ(5/p,0)(pστ)2τ2κ(3/p,0)(pστ)2κ(4/p,0)(pστ)2.\kappa(\tau)|[\sigma]_{2}=(-\tau)^{-2}\kappa(\sigma\cdot\tau)=\frac{\kappa_{(\nicefrac{{5}}{{p}},0)}(p\cdot\sigma\tau)^{2}}{\tau^{2}\kappa_{(3/p,0)}(p\cdot\sigma\tau)^{2}\kappa_{(4/p,0)}(p\cdot\sigma\tau)^{2}}.

Observe that

κ(r1,r2)(pστ)=κ(r1,r2)(p/τ)=κ(r1,r2)(σ(τ/p))\kappa_{(r_{1},r_{2})}(p\cdot\sigma\tau)=\kappa_{(r_{1},r_{2})}(-p/\tau)=\kappa_{(r_{1},r_{2})}(\sigma\cdot(\tau/p))
=(τ/p)1κσ(r1,r2)(τ/p)=(τ/p)1κ(r2,r1)(τ/p).=(-\tau/p)^{-1}\kappa_{\sigma(r_{1},r_{2})}(\tau/p)=-(\tau/p)^{-1}\kappa_{(r_{2},-r_{1})}(\tau/p).

Thus

κ(τ)|[σ]2\displaystyle\kappa(\tau)|[\sigma]_{2} =(τ/p)2κ(0,5/p)(τ/p)2τ2(τ/p)2κ(0,3/p)(τ/p)2(τ/p)2κ(0,4/p)(τ/p)2\displaystyle=\frac{(\tau/p)^{-2}\kappa_{(0,-\nicefrac{{5}}{{p}})}(\tau/p)^{2}}{\tau^{2}(\tau/p)^{-2}\kappa_{(0,-\nicefrac{{3}}{{p}})}(\tau/p)^{2}(\tau/p)^{-2}\kappa_{(0,-\nicefrac{{4}}{{p}})}(\tau/p)^{2}}
=κ(0,5/p)(τ/p)2p2κ(0,3/p)(τ/p)2κ(0,4/p)(τ/p)2.\displaystyle=\frac{\kappa_{(0,-\nicefrac{{5}}{{p}})}(\tau/p)^{2}}{p^{2}\kappa_{(0,-\nicefrac{{3}}{{p}})}(\tau/p)^{2}\kappa_{(0,-\nicefrac{{4}}{{p}})}(\tau/p)^{2}}.

Using equation (25), the qq-expansion of κ(0,a/p)(τ/p)\kappa_{(0,-\nicefrac{{a}}{{p}})}(\tau/p) is

κ(0,a/p)(τ/p)=eπiap(1ζpa)n=1(1qn/pζpa)(1qn/pζpa)(1qn/p)2\kappa_{(0,-\nicefrac{{a}}{{p}})}(\tau/p)=e^{\pi i\frac{a}{p}}(1-\zeta_{p}^{-a})\prod_{n=1}^{\infty}(1-q^{n/p}\zeta_{p}^{-a})(1-q^{n/p}\zeta_{p}^{a})(1-q^{n/p})^{-2}

where ζp=e2πi/p\zeta_{p}=e^{2\pi i/p}. Therefore

κ(τ)|[σ]2\displaystyle\kappa(\tau)|[\sigma]_{2} =eπi5p(1ζp5)2p2eπi3p(1ζp3)2eπi4p(1ζp4)H(q1/n)\displaystyle=\frac{e^{\pi i\frac{5}{p}}(1-\zeta_{p}^{-5})^{2}}{p^{2}e^{\pi i\frac{3}{p}}(1-\zeta_{p}^{-3})^{2}e^{\pi i\frac{4}{p}}(1-\zeta_{p}^{-4})}H(q^{1/n})
=ζp1(1ζp5)2p2(1ζp3)2(1ζp4)2H(q1/n)\displaystyle=\frac{\zeta_{p}^{-1}(1-\zeta_{p}^{-5})^{2}}{p^{2}(1-\zeta_{p}^{-3})^{2}(1-\zeta_{p}^{-4})^{2}}H(q^{1/n})

for some H(q1/n)1+[[q1/n]]H(q^{1/n})\in 1+\mathbb{Z}[[q^{1/n}]]. Note that 1ζpa1-\zeta_{p}^{a} is a uniformizer for p[ζNp]\mathbb{Z}_{p}[\zeta_{Np}] for aa coprime to pp. Furthermore,

(1ζpa)(p1)p[ζNp]=pp[ζNp].(1-\zeta_{p}^{a})^{(p-1)}\mathbb{Z}_{p}[\zeta_{Np}]=p\mathbb{Z}_{p}[\zeta_{Np}].

Thus the minimal valuation among the coefficients of the qq-expansion of κ(τ)|[σ]2\kappa(\tau)|[\sigma]_{2} is

νπ(ζp1(1ζp5)2p2(1ζp3)2(1ζp4)2)=νπ(1p2(1ζp4)2)=2(νπ(p)+νπ(1ζp4))\nu_{\pi}\left(\frac{\zeta_{p}^{-1}(1-\zeta_{p}^{-5})^{2}}{p^{2}(1-\zeta_{p}^{-3})^{2}(1-\zeta_{p}^{-4})^{2}}\right)=\nu_{\pi}\left(\frac{1}{p^{2}(1-\zeta_{p}^{-4})^{2}}\right)=-2\left(\nu_{\pi}(p)+\nu_{\pi}(1-\zeta_{p}^{-4})\right)
=2((p1)+1)=2p.=-2\left((p-1)+1\right)=-2p.\qed

Next we will handle the case of p=5p=5.

Proposition 5.5.

The product of Klein forms

κ(τ)=κ(1/5,0)(5τ)4κ(2/5,0)(5τ)2κ(3/5,0)(5τ)4\kappa(\tau)=\kappa_{(\nicefrac{{1}}{{5}},0)}(5\tau)^{4}\kappa_{(\nicefrac{{2}}{{5}},0)}(5\tau)^{-2}\kappa_{(\nicefrac{{3}}{{5}},0)}(5\tau)^{-4}

is a weight 2 modular form of level Γ1(5)\Gamma_{1}(5). Furthermore, ν0(κ(τ))=25\nu_{0}(\kappa(\tau))=-2\cdot 5.

Proof.

Define m:{1,2,3,4}m:\{1,2,3,4\}\rightarrow\mathbb{Z} by

m(t)={4if t=12if t=24if t=30if t=4m(t)=\begin{cases}4&\mbox{if }t=1\\ -2&\mbox{if }t=2\\ -4&\mbox{if }t=3\\ 0&\mbox{if }t=4\end{cases}

Note that

m(1)+m(2)+m(3)=2m(1)+m(2)+m(3)=-2

and

m(1)12+m(2)22+m(3)32=412222432m(1)\cdot 1^{2}+m(2)\cdot 2^{2}+m(3)\cdot 3^{2}=4\cdot 1^{2}-2\cdot 2^{2}-4\cdot 3^{2}
=400(mod 10).=-40\equiv 0\;({\rm mod}\,10).

By Theorem 5.2, the product κ(τ)\kappa(\tau) defined by m(t)m(t) is a weight 2 nearly holomorphic modular form of level Γ1(5)\Gamma_{1}(5). It remains to show κ(τ)\kappa(\tau) is holomorphic at the cusps. Similar to the proof in Proposition 5.3, it suffices to show

4a(c,5)(a(c,5)1)22a(c,5)(2a(c,5)1)43a(c,5)(3a(c,5)1)04\left\langle\frac{a}{(c,5)}\right\rangle\left(\left\langle\frac{a}{(c,5)}\right\rangle-1\right)-2\left\langle\frac{2a}{(c,5)}\right\rangle\left(\left\langle\frac{2a}{(c,5)}\right\rangle-1\right)-4\left\langle\frac{3a}{(c,5)}\right\rangle\left(\left\langle\frac{3a}{(c,5)}\right\rangle-1\right)\geq 0

for all a,ca,c\in\mathbb{Z}. Let

f(x)=4x(x1)22x(2x1)43x(3x1).f(x)=4\left\langle x\right\rangle\left(\left\langle x\right\rangle-1\right)-2\left\langle 2x\right\rangle\left(\left\langle 2x\right\rangle-1\right)-4\left\langle 3x\right\rangle\left(\left\langle 3x\right\rangle-1\right).

As before, it suffices to show f(x)0f(x)\geq 0 for 0x1/20\leq x\leq\nicefrac{{1}}{{2}}. Since we consider xx of the form a/(c,5)a/(c,5), it suffices to show f(x)0f(x)\geq 0 when x=0,1/5,2/5x=0,\nicefrac{{1}}{{5}},\nicefrac{{2}}{{5}} or 1/2\nicefrac{{1}}{{2}}. We compute directly:

f(0)=f(1/2)=0f(0)=f(\nicefrac{{1}}{{2}})=0
f(1/5)=4(15)(45)+6(25)(35)=45f(\nicefrac{{1}}{{5}})=-4\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)+6\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)=\frac{4}{5}
f(2/5)=4(25)(35)+6(45)(15)=0.f(\nicefrac{{2}}{{5}})=-4\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)+6\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)=0.

Consequently, κ(τ)\kappa(\tau) is holomorphic at each cusp so is indeed a modular form.

The same proof holds from Proposition 5.4 to show the qq-expansion around the cusp 0 of our modular form κ(τ)\kappa(\tau) from Proposition 5.5 has π\pi-adic valuation equal to 25-2\cdot 5. ∎

Lastly we handle the case pr>3p^{r}>3 with r2r\geq 2.

Proposition 5.6.

Suppose pr>3p^{r}>3 and r2r\geq 2. The product of Klein forms

κ(τ)=κ(pr1/pr,0)(prτ)2κ(pr1/pr,0)(prτ)2κ(1/pr,0)(prτ)2\kappa(\tau)=\kappa_{(\nicefrac{{p^{r}-1}}{{p^{r}}},0)}(p^{r}\tau)^{-2}\kappa_{(\nicefrac{{p^{r-1}}}{{p^{r}}},0)}(p^{r}\tau)^{-2}\kappa_{(\nicefrac{{1}}{{p^{r}}},0)}(p^{r}\tau)^{2}

is a weight 2 modular form of level Γ1(pr)\Gamma_{1}(p^{r}). Furthermore, ν0(κ(τ))=2pr1(prr+1)\nu_{0}(\kappa(\tau))=-2p^{r-1}(pr-r+1).

Proof.

Define m(t):{1,,pr1}m(t):\{1,\dots,p^{r}-1\}\rightarrow\mathbb{Z} by

m(t)={2if t=pr1,pr12if t=10otherwisem(t)=\begin{cases}-2&\mbox{if }t=p^{r-1},p^{r}-1\\ 2&\mbox{if }t=1\\ 0&{\rm otherwise}\end{cases}

Since r2r\geq 2, the values pr1,pr1,p^{r-1},p^{r}-1, and 11 are all distinct. We have

t=1pr1m(t)t2\displaystyle\sum_{t=1}^{p^{r}-1}m(t)t^{2} =2(pr1)22(pr1)2+212\displaystyle=-2\cdot(p^{r-1})^{2}-2\cdot(p^{r}-1)^{2}+2\cdot 1^{2}
=2p2r22(pr1)2+2\displaystyle=-2p^{2r-2}-2(p^{r}-1)^{2}+2
2(pr1)2+2modpr\displaystyle\equiv-2(p^{r}-1)^{2}+2\mod p^{r}
2+2modpr\displaystyle\equiv-2+2\mod p^{r}
0mod2pr\displaystyle\equiv 0\mod 2p^{r}

noting that r2r\geq 2 so 2r2r2r-2\geq r. Furthermore, t=1pr1m(t)=2-\sum_{t=1}^{p^{r-1}}m(t)=2 so κ(τ)\kappa(\tau) is a weight 2 level Γ1(pr)\Gamma_{1}(p^{r}) nearly holomorphic modular form. It remains to show κ(τ)\kappa(\tau) has non-negative order at each cusp.

The order of κ(τ)\kappa(\tau) is given by

ordq(κ(τ)|[α]2){\rm ord}_{q}(\kappa(\tau)|[\alpha]_{2})
=(c,pr)22pr(2(pr1)a(c,pr)((pr1)a(c,pr)1)2pr1a(c,pr)(pr1a(c,p)1)+2a(c,pr)(a(c,pr)1))=\frac{(c,p^{r})^{2}}{2p^{r}}\left(-2\left\langle\frac{(p^{r}-1)a}{(c,p^{r})}\right\rangle\left(\left\langle\frac{(p^{r}-1)a}{(c,p^{r})}\right\rangle-1\right)-2\left\langle\frac{p^{r-1}a}{(c,p^{r})}\right\rangle\left(\left\langle\frac{p^{r-1}a}{(c,p)}\right\rangle-1\right)+2\left\langle\frac{a}{(c,p^{r})}\right\rangle\left(\left\langle\frac{a}{(c,p^{r})}\right\rangle-1\right)\right)

where α=(abcd)SL2()\alpha=\left(\begin{array}[]{cc}a&b\\ c&d\end{array}\right)\in{\rm SL}_{2}(\mathbb{Z}). We will show this expression is always non-negative. Similar to the proof of Proposition 5.3, we let

f(x)=(pr1)x(1(pr1)x)+pr1x(1pr1x)x(1x).f(x)=\left\langle(p^{r}-1)x\right\rangle\left(1-\left\langle(p^{r}-1)x\right\rangle\right)+\left\langle p^{r-1}x\right\rangle\left(1-\left\langle p^{r-1}x\right\rangle\right)-\left\langle x\right\rangle\left(1-\left\langle x\right\rangle\right).

Writing (c,pr)=pd(c,p^{r})=p^{d} for some 0dr0\leq d\leq r, it suffices to show f(a/pd)0f(a/p^{d})\geq 0 for all 0a/pd1/20\leq a/p^{d}\leq\nicefrac{{1}}{{2}}. Note that

(pr1)apd=prpdapd.\frac{(p^{r}-1)a}{p^{d}}=\frac{p^{r}}{p^{d}}-\frac{a}{p^{d}}.

Since pr/pdp^{r}/p^{d}\in\mathbb{Z} and a/pd1a/p^{d}\leq 1, we have

(pr1)a(c,pr)=1apd.\left\langle\frac{(p^{r}-1)a}{(c,p^{r})}\right\rangle=1-\frac{a}{p^{d}}.

Therefore

f(a/pd)\displaystyle f(a/p^{d}) =(1apd)(apd)+pr1apd(1pr1apd)(apd)(1apd)\displaystyle=\left(1-\frac{a}{p^{d}}\right)\left(\frac{a}{p^{d}}\right)+\left\langle\frac{p^{r-1}a}{p^{d}}\right\rangle\left(1-\left\langle\frac{p^{r-1}a}{p^{d}}\right\rangle\right)-\left(\frac{a}{p^{d}}\right)\left(1-\frac{a}{p^{d}}\right)
=pr1apd(1pr1apd)\displaystyle=\left\langle\frac{p^{r-1}a}{p^{d}}\right\rangle\left(1-\left\langle\frac{p^{r-1}a}{p^{d}}\right\rangle\right)

which is always non-negative. Thus κ(τ)\kappa(\tau) is holomorphic at each cusp.

We compute ν0(κ(τ))\nu_{0}(\kappa(\tau)) in the same way as in Proposition 5.4. Let σ=(0110)\sigma=\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right); the qq-expansion of κ(τ)\kappa(\tau) at the cusp 0 is given by

κ(τ)|2[σ]\displaystyle\kappa(\tau)|_{2}[\sigma] =(τ)2κ(στ)\displaystyle=(-\tau)^{-2}\kappa(\sigma\cdot\tau)
=κ(1/pr,0)(prστ)2κ(pr1/pr,0)(prστ)2κ(pr1/pr,0)(prστ)2.\displaystyle=\frac{\kappa_{(\nicefrac{{1}}{{p^{r}}},0)}(p^{r}\cdot\sigma\tau)^{2}}{\kappa_{(\nicefrac{{p^{r}-1}}{{p^{r}}},0)}(p^{r}\cdot\sigma\tau)^{2}\kappa_{(\nicefrac{{p^{r-1}}}{{p^{r}}},0)}(p^{r}\cdot\sigma\tau)^{2}}.

Observe that

κ(a/pr,0)(prστ)\displaystyle\kappa_{(a/p^{r},0)}(p^{r}\cdot\sigma\tau) =κ(a/pr,0)(pr/τ)\displaystyle=\kappa_{(a/p^{r},0)}(-p^{r}/\tau)
=κ(a/pr,0)(σ(τ/pr))\displaystyle=\kappa_{(a/p^{r},0)}(\sigma\cdot(\tau/p^{r}))
=(τ/pr)1κσ(a/pr,0)(τ/pr)\displaystyle=(\tau/p^{r})^{-1}\kappa_{\sigma(a/p^{r},0)}(\tau/p^{r})
=(τ/pr)1κ(0,a/pr)(τ/pr).\displaystyle=(\tau/p^{r})^{-1}\kappa_{(0,-a/p^{r})}(\tau/p^{r}).

Similar to our computation in the proof of Proposition 5.4, we have

κ(τ)|2[σ]\displaystyle\kappa(\tau)|_{2}[\sigma] =κ(0,1/pr)(τ/pr)2τ2(τ/pr)2κ(0,pr1/pr)(τ/pr)2κ(0,pr1/pr)(τ/pr)2\displaystyle=\frac{\kappa_{(0,-\nicefrac{{1}}{{p^{r}}})}(\tau/p^{r})^{2}}{\tau^{2}(\tau/p^{r})^{-2}\kappa_{(0,-\nicefrac{{p^{r}-1}}{{p^{r}}})}(\tau/p^{r})^{2}\kappa_{(0,-\nicefrac{{p^{r-1}}}{{p^{r}}})}(\tau/p^{r})^{2}}
=κ(0,1/pr)(τ/pr)2p2rκ(0,pr1/pr)(τ/pr)2κ(0,pr1/pr)(τ/pr)2\displaystyle=\frac{\kappa_{(0,-\nicefrac{{1}}{{p^{r}}})}(\tau/p^{r})^{2}}{p^{2r}\kappa_{(0,-\nicefrac{{p^{r}-1}}{{p^{r}}})}(\tau/p^{r})^{2}\kappa_{(0,-\nicefrac{{p^{r-1}}}{{p^{r}}})}(\tau/p^{r})^{2}}
=e2πi/pr(1ζpr1)2p2re2πi(pr1)/pre2πi(pr1)/pr(1ζpr(pr1))2(1ζprpr1)2F(q1/pr)\displaystyle=\frac{e^{-2\pi i/p^{r}}(1-\zeta_{p^{r}}^{-1})^{2}}{p^{2r}e^{-2\pi i(p^{r}-1)/p^{r}}e^{-2\pi i(p^{r-1})/p^{r}}(1-\zeta_{p^{r}}^{-(p^{r}-1)})^{2}(1-\zeta_{p^{r}}^{-p^{r-1}})^{2}}F(q^{1/p^{r}})
=ζpr1(1ζpr1)2p2rζpr1prζprpr1(1ζpr(pr1))2(1ζprpr1)2F(q1/pr).\displaystyle=\frac{\zeta_{p^{r}}^{-1}(1-\zeta_{p^{r}}^{-1})^{2}}{p^{2r}\zeta_{p^{r}}^{1-p^{r}}\zeta_{p^{r}}^{p^{r-1}}(1-\zeta_{p^{r}}^{-(p^{r}-1)})^{2}(1-\zeta_{p^{r}}^{-p^{r-1}})^{2}}F(q^{1/p^{r}}).

for some explicit F(q1/pr)1+[ζpr][[q1/pr]]F(q^{1/p^{r}})\in 1+\mathbb{Z}[\zeta_{p^{r}}][[q^{1/p^{r}}]]. Let νπr\nu_{\pi_{r}} denote the normalized valuation in p[ζpr]\mathbb{Z}_{p}[\zeta_{p^{r}}] so that νπr(1ζpr)=1\nu_{\pi_{r}}(1-\zeta_{p^{r}})=1. Then we have

ν0(κ(τ))\displaystyle\nu_{0}(\kappa(\tau)) =νπr(ζpr1(1ζpr1)2p2rζpr1prζprpr1(1ζpr(pr1))2(1ζprpr1)2)\displaystyle=\nu_{\pi_{r}}\left(\frac{\zeta_{p^{r}}^{-1}(1-\zeta_{p^{r}}^{-1})^{2}}{p^{2r}\zeta_{p^{r}}^{1-p^{r}}\zeta_{p^{r}}^{p^{r-1}}(1-\zeta_{p^{r}}^{-(p^{r}-1)})^{2}(1-\zeta_{p^{r}}^{-p^{r-1}})^{2}}\right)
=νπr(1p2r(1ζprpr1)2)\displaystyle=\nu_{\pi_{r}}\left(\frac{1}{p^{2r}(1-\zeta_{p^{r}}^{-p^{r-1}})^{2}}\right)
=2νπr(pr(1ζprpr1)).\displaystyle=-2\nu_{\pi_{r}}(p^{r}(1-\zeta_{p^{r}}^{-p^{r-1}})).

Note that (1ζprpr1)p[ζpr]=(1ζp1)p[ζpr](1-\zeta_{p^{r}}^{-p^{r-1}})\mathbb{Z}_{p}[\zeta_{p^{r}}]=(1-\zeta_{p}^{-1})\mathbb{Z}_{p}[\zeta_{p^{r}}] and (1ζp1)φ(p)p[ζpr]=pp[ζpr].(1-\zeta_{p}^{-1})^{\varphi(p)}\mathbb{Z}_{p}[\zeta_{p^{r}}]=p\mathbb{Z}_{p}[\zeta_{p^{r}}]. Hence

νπr(1ζprpr1)=φ(pr)/φ(p)=pr1.\nu_{\pi_{r}}(1-\zeta_{p^{r}}^{-p^{r-1}})=\varphi(p^{r})/\varphi(p)=p^{r-1}.

Continuing,

ν0(κ(τ))\displaystyle\nu_{0}(\kappa(\tau)) =2(rpr1(p1)+pr1)\displaystyle=-2(rp^{r-1}(p-1)+p^{r-1})
=2pr1(prr+1)\displaystyle=-2p^{r-1}(pr-r+1)

as desired. ∎

Theorem 5.7.

Let k1,N3k\geq 1,N\geq 3 and r1r\geq 1 be integers and p2p\geq 2 be a prime such that pNp\nmid N and pr>3p^{r}>3. The exponent ee of π\pi in the annihilator of M2k(Γ(Npr),p[ζNpr])/H0(𝔛(Npr),ω¯𝔛(Npr)2k)M_{2k}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}])/H^{0}(\mathfrak{X}(Np^{r}),\underline{\omega}_{\mathfrak{X}(Np^{r})}^{\otimes 2k}) is equal to 2kpr1(prr+1)2kp^{r-1}(pr-r+1).

Proof.

In Theorem 4.28 we showed 2kpr1(prr+1)2kp^{r-1}(pr-r+1) was an upper bound for ee. Let κ(τ)M2(Γ(Npr),p[ζNpr])\kappa(\tau)\in M_{2}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}]) be the modular form as in Propositions 5.3, 5.5, and 5.6. We have shown that ν0(κ)=2pr1(prr+1)\nu_{0}(\kappa)=-2p^{r-1}(pr-r+1). In general, we can consider the kkth power κ(τ)kM2k(Γ(Npr),p[ζNpr])\kappa(\tau)^{k}\in M_{2k}(\Gamma(Np^{r}),\mathbb{Z}_{p}[\zeta_{Np^{r}}]) so that ν0(κk)=2kpr1(prr+1)\nu_{0}(\kappa^{k})=-2kp^{r-1}(pr-r+1). Then π2kpr1(prr+1)κ(τ)k\pi^{2kp^{r-1}(pr-r+1)}\kappa(\tau)^{k} has integral qq-expansion at the cusp 0 so 2kpr1(prr+1)2kp^{r-1}(pr-r+1) is a lower bound for ee. Hence e=2kpr1(prr+1)e=2kp^{r-1}(pr-r+1). ∎

Appendix A Appendix – The modular curve and modular forms

We will summarize the formulation of the regular integral model of the modular curve of full level, as presented in [KM85]. Let RR be a ring and let EllR{\rm Ell}_{R} denote the category whose objects are elliptic curves ESE\rightarrow S where SS is an RR-scheme, and whose morphisms (ES)(ES)(E\rightarrow S)\rightarrow(E^{\prime}\rightarrow S^{\prime}) are Cartesian squares.

We will concern ourselves with the representability of moduli problems :EllRSets{\cal F}:{\rm Ell}_{R}\rightarrow{\rm Sets}. The functor {\cal F} induces a functor ~:SchRSets\tilde{{\cal F}}:{\rm Sch}_{R}\rightarrow{\rm Sets} defined by

S{[(ES,γ)]:γ(ES)}S\mapsto\left\{\left[(E\rightarrow S,\gamma)\right]:\gamma\in{\cal F}(E\rightarrow S)\right\}

where [(ES,γ)]\left[(E\rightarrow S,\gamma)\right] denotes the isomorphism class of the pair (ES,γ)(E\rightarrow S,\gamma). If {\cal F} is representable by 𝔐(){\cal E}\rightarrow\mathfrak{M}({\cal F}), then ~\tilde{{\cal F}} is representable by 𝔐()\mathfrak{M}({\cal F}). Indeed, from the bijection

Ψ:(ES)HomEllR(ES,𝔐())\Psi:{\cal F}(E\rightarrow S)\rightarrow{\rm Hom}_{{\rm Ell}_{R}}(E\rightarrow S,{\cal E}\rightarrow\mathfrak{M}({\cal F}))

we can associate to γ(ES)\gamma\in{\cal F}(E\rightarrow S) a morphism

E\textstyle{E\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}π\scriptstyle{\pi}\textstyle{{\cal E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{\prime}}S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}𝔐()\textstyle{\mathfrak{M}({\cal F})}

in EllR{\rm Ell}_{R}. We define the map Ψ~:~(S)HomSchR(S,𝔐())\tilde{\Psi}:\tilde{{\cal F}}(S)\rightarrow{\rm Hom}_{{\rm Sch}_{R}}(S,\mathfrak{M}({\cal F})) by sending [(E𝜋S,γ)][(E\overset{\pi}{\rightarrow}S,\gamma)] to the map f:S𝔐()f:S\rightarrow\mathfrak{M}({\cal F}). This correspondence is bijective and functorial in SS by the properties of Ψ\Psi.

Definition A.1.

Let ,:EllRSets{\cal F},{\cal F}^{\prime}:{\rm Ell}_{R}\rightarrow{\rm Sets} be two moduli problems for elliptic curves. A morphism between moduli problems (over EllR{\rm Ell}_{R}) is a natural transformation η:\eta:{\cal F}\Rightarrow{\cal F}^{\prime}.

Let η:\eta:{\cal F}\Rightarrow{\cal F}^{\prime} be a morphism between two representable moduli problems over EllR{\rm Ell}_{R}. We have an induced natural transformation η~:~~\tilde{\eta}:\tilde{{\cal F}}\Rightarrow\tilde{{\cal F}}. The map η\eta induces a map η:𝔐()𝔐()\eta:\mathfrak{M}({\cal F})\rightarrow\mathfrak{M}({\cal F}^{\prime}) which on TT-points coincides with the map η~T\tilde{\eta}_{T} in the following diagram:

𝔐()(T)\textstyle{\mathfrak{M}({\cal F})(T)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}𝔐()(T)\textstyle{\mathfrak{M}({\cal F}^{\prime})(T)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}HomSchR(T,𝔐())\textstyle{{\rm Hom}_{{\rm Sch}_{R}}(T,\mathfrak{M}({\cal F}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}HomSchR(T,𝔐())\textstyle{{\rm Hom}_{{\rm Sch}_{R}}(T,\mathfrak{M}({\cal F}^{\prime}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}~(T)\textstyle{\tilde{{\cal F}}(T)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ηT\scriptstyle{\eta_{T}}~(T)\textstyle{\tilde{{\cal F}}^{\prime}(T)}
Definition A.2.

Let {\cal F} and {\cal F}^{\prime} be two moduli problems for elliptic curves over RR. We define the product, or simultaneous, moduli problem ×{\cal F}\times{\cal F}^{\prime} by

(ES)(ES)×(ES).(E\rightarrow S)\mapsto{\cal F}(E\rightarrow S)\times{\cal F}^{\prime}(E\rightarrow S).

Suppose {\cal F} is representable by an elliptic curve 𝔐(){\cal E}\rightarrow\mathfrak{M}({\cal F}) and {\cal F}^{\prime} is relatively representable. According to [KM85, 4.3.4], ×{\cal F}\times{\cal F}^{\prime} is representable and 𝔐(×)=/𝔐()\mathfrak{M}({\cal F}\times{\cal F}^{\prime})={\cal F}^{\prime}_{{\cal E}/\mathfrak{M}({\cal F})} so we naturally have a map 𝔐(×)𝔐()\mathfrak{M}({\cal F}\times{\cal F}^{\prime})\rightarrow\mathfrak{M}({\cal F}). Following the notation in [KM85], we will usually denote 𝔐(×)\mathfrak{M}({\cal F}\times{\cal F}^{\prime}) by 𝔐(,)\mathfrak{M}({\cal F},{\cal F}^{\prime}).

Definition A.3.

Let EE be an elliptic curve over a scheme SS. A section sE(S)s\in E(S) corresponds to a morphism333In general, a section of a morphism XYX\rightarrow Y will be a locally closed embedding s:YXs:Y\rightarrow X. When XYX\rightarrow Y is separated, as in the case of an elliptic curve, the map s:YXs:Y\rightarrow X becomes a closed immersion. The associated divisor [s]\left[s\right] is in general defined to be the closure of the scheme-theoretic image of ss in EE. s:SEs:S\rightarrow E whose composition with the structural morphism ESE\rightarrow S is the identity on SS. Since ESE\rightarrow S is separated, ss is a closed immersion. We denote by [s]\left[s\right] the scheme-theoretic image of ss in EE which is an effective Cartier divisor on EE. Consider the multiplication-by-NN isogeny [N]:EE\left[N\right]:E\rightarrow E whose kernel we denote by E[N]E[N], an SS-group scheme.

A Γ(N)\Gamma(N)-structure on ESE\rightarrow S is a group homomorphism ϕ:(/N)2E[N](S)\phi:(\mathbb{Z}/N\mathbb{Z})^{2}\rightarrow E[N](S) such that we have an equality of effective Cartier divisors

v(/N)2[ϕ(v)]=E[N].\sum_{v\in(\mathbb{Z}/N\mathbb{Z})^{2}}[\phi(v)]=E[N].

In this case, we call P=ϕ(1,0)P=\phi(1,0) and Q=ϕ(0,1)Q=\phi(0,1) the corresponding Drinfeld basis of E[N]E[N].

We define [Γ(N)]:EllSets\left[\Gamma(N)\right]:{\rm Ell}_{\mathbb{Z}}\rightarrow{\rm Sets} to be the moduli problem which assigns to each elliptic curve ESE\rightarrow S the set of all Γ(N)\Gamma(N)-structures on ESE\rightarrow S. Let (α,f):(ES)(ES)(\alpha,f):(E\rightarrow S)\rightarrow(E^{\prime}\rightarrow S^{\prime}) be a morphism in the category EllR{\rm Ell}_{R}. Then

[Γ(N)](α,f):[Γ(N)](E/S)[Γ(N)](E/S)\left[\Gamma(N)\right](\alpha,f):\left[\Gamma(N)\right](E^{\prime}/S^{\prime})\rightarrow\left[\Gamma(N)\right](E/S)

is defined by sending a Drinfeld basis (P,Q)(P,Q) of E[N]E^{\prime}[N] to (αP,αQ)(\alpha^{*}P,\alpha^{*}Q). Indeed, (αP,αQ)(\alpha^{*}P,\alpha^{*}Q) is a Drinfeld basis of E[N]E[N] (see the paragraph proceeding [KM85, 1.4.1.2]).

We moreover consider the full level NN moduli problem over the cyclotomic integers [ζN]:=[X]/(ΦN(X))\mathbb{Z}[\zeta_{N}]:=\mathbb{Z}[X]/(\Phi_{N}(X)), where ΦN(X)[X]\Phi_{N}(X)\in\mathbb{Z}[X] is the NNth cyclotomic polynomial, by constructing a new moduli problem [Γ(N)]can\left[\Gamma(N)\right]^{{\rm can}} from [Γ(N)]\left[\Gamma(N)\right] as follows (see also [KM85, 9.4.3.1]). For a [ζN]\mathbb{Z}[\zeta_{N}]-algebra AA, let ζN\zeta_{N} denote the image of XX mod ΦN(X)\Phi_{N}(X) under the map [ζN]A\mathbb{Z}[\zeta_{N}]\rightarrow A, following the convention in [KM85, 9.1.5]. Section 2.8 of [KM85] associates to the isogeny [N]\left[N\right] a bilinear pairing eN:E[N]×E[N]μN.\mbox{$e_{N}:E[N]\times E[N]\rightarrow\mu_{N}$}. Define the moduli problem [Γ(N)]can:Ell[ζN]Sets\left[\Gamma(N)\right]^{{\rm can}}:{\rm Ell}_{\mathbb{Z}[\zeta_{N}]}\rightarrow{\rm Sets} which assigns to each elliptic curve ESE\rightarrow S the set of all Drinfeld bases (P,Q)(P,Q) such that eN(P,Q)=ζNe_{N}(P,Q)=\zeta_{N}.

Theorem A.4.

Suppose N3N\geq 3. The moduli problem [Γ(N)]can\left[\Gamma(N)\right]^{{\rm can}} is represented by a regular scheme 𝔜(N):=𝔐([Γ(N)]can)\mathfrak{Y}(N):=\mathfrak{M}([\Gamma(N)]^{{\rm can}}) which is flat over Spec([ζN]){\rm Spec}(\mathbb{Z}[\zeta_{N}]) of dimension 2. Moreover, 𝔜(N)\mathfrak{Y}(N) is smooth over [ζN,1/N]\mathbb{Z}[\zeta_{N},1/N].

Proof.

The moduli problem [Γ(N)]\left[\Gamma(N)\right] is relatively representable and finite, flat over Ell{\rm Ell}_{\mathbb{Z}} by [KM85, 5.1.1]. Furthermore, [Γ(N)]\left[\Gamma(N)\right] is rigid whenever N3N\geq 3 by [KM85, 2.7.2]. Therefore, by Proposition [KM85, 4.7.0] and [KM85, 5.1.1], [Γ(N)]\left[\Gamma(N)\right] is representable by a regular scheme flat over \mathbb{Z} of dimension 2. By [KM85, 9.1.8, 9.1.9], the same things hold true for the associated canonical moduli problem [Γ(N)]can\left[\Gamma(N)\right]^{{\rm can}}. Using [KM85, §5.1.1] again, [Γ(N)]\left[\Gamma(N)\right] is étale over Ell[1/N]{\rm Ell}_{\mathbb{Z}[1/N]}, which, along with [KM85, 4.7.1], implies smoothness. ∎

Remark A.5.

Theorem A.4 also holds for the moduli problem [Γ(N)]can\left[\Gamma(N)\right]^{{\rm can}} over EllR{\rm Ell}_{R}, for any ring extension [ζN]R\mathbb{Z}[\zeta_{N}]\rightarrow R. For any moduli problem :EllSets{\cal F}:{\rm Ell}_{\mathbb{Z}}\rightarrow{\rm Sets} and ring RR, let R:EllRSets{\cal F}_{R}:{\rm Ell}_{R}\rightarrow{\rm Sets} denote the moduli problem obtained by composing {\cal F} with the forgetful functor EllREll{\rm Ell}_{R}\rightarrow{\rm Ell}_{\mathbb{Z}}. According to [KM85, 4.13], if {\cal F} is relatively representable, then R{\cal F}_{R} is also relatively representable by the same morphism E/SS{\cal F}_{E/S}\rightarrow S for any RR-scheme SS. Furthermore, if {\cal F} is representable by 𝔐(){\cal E}\rightarrow\mathfrak{M}({\cal F}), then R{\cal F}_{R} is representable by the base change R𝔐()R{\cal E}_{R}\rightarrow\mathfrak{M}({\cal F})_{R}. In other words, we have 𝔐(R)=𝔐()R\mathfrak{M}({\cal F}_{R})=\mathfrak{M}({\cal F})_{R}.

By a process called "normalizing near infinity", as described in [KM85, §8.6], 𝔜(N)\mathfrak{Y}(N) extends to a scheme 𝔛(N)\mathfrak{X}(N) which is proper over [ζN]\mathbb{Z}[\zeta_{N}].

Definition A.6.

Let (𝔛(N))\mathfrak{C}(\mathfrak{X}(N)) denote the closed subscheme 𝔛(N)𝔜(N)\mathfrak{X}(N)-\mathfrak{Y}(N) of 𝔛(N)\mathfrak{X}(N) endowed with the reduced scheme structure, called the cuspidal locus of 𝔛(N)\mathfrak{X}(N). If the modular curve is clear from context, we denote (N)=(𝔛(N))\mathfrak{C}(N)=\mathfrak{C}(\mathfrak{X}(N)).

The following definition captures many of the desirable properties of 𝔛(N)\mathfrak{X}(N).

Definition A.7.

Let RR be a Dedekind domain. We call a regular, integral, projective, flat RR-scheme XX of dimension 2 an arithmetic surface.

Theorem A.8.

Let N3N\geq 3. The scheme 𝔛(N)\mathfrak{X}(N) is an arithmetic surface over [ζN]\mathbb{Z}[\zeta_{N}]. Moreover, 𝔛(N)\mathfrak{X}(N) is geometrically connected with reduced closed fibers and smooth over [ζN,1/N]\mathbb{Z}[\zeta_{N},1/N].

Proof.

We have already established that 𝔜(N)\mathfrak{Y}(N) is regular and flat over [ζN]\mathbb{Z}[\zeta_{N}] of dimension 2. By [KM85, 10.9.1(2)], there exists an open neighborhood of (N)\mathfrak{C}(N) which is smooth over [ζN]\mathbb{Z}[\zeta_{N}]. In particular, (N)\mathfrak{C}(N) is regular and flat over [ζN]\mathbb{Z}[\zeta_{N}] so 𝔛(N)\mathfrak{X}(N) is regular and flat over [ζN]\mathbb{Z}[\zeta_{N}]. Since 𝔛(N)\mathfrak{X}(N) is connected and regular, 𝔛(N)\mathfrak{X}(N) is integral.

By construction, 𝔛(N)\mathfrak{X}(N) is proper over [ζN]\mathbb{Z}[\zeta_{N}], so by [Liu02, Theorem 8.3.16], we can conclude 𝔛(N)\mathfrak{X}(N) is projective over [ζN]\mathbb{Z}[\zeta_{N}] hence is an arithmetic surface. By [KM85, 10.9.2(2)], 𝔛(N)\mathfrak{X}(N) is geometrically connected and by [KM85, 13.8.4], 𝔛(N)\mathfrak{X}(N) has reduced closed fibers. Smoothness follows from the smoothness of 𝔜(N)\mathfrak{Y}(N) over [ζN,1/N]\mathbb{Z}[\zeta_{N},1/N]. ∎

Let N3N\geq 3 and let RR be a noetherian, regular, excellent [ζN]\mathbb{Z}[\zeta_{N}]-algebra. We will construct an invertible sheaf on 𝔛(N)/R\mathfrak{X}(N)_{/R} whose global sections will be defined as the space of modular forms. Let f:𝔜(N)/Rf:{\cal E}\rightarrow\mathfrak{Y}(N)_{/R} denote the universal elliptic curve. We define ω¯:=fΩ/𝔜(N)/R1\underline{\omega}:=f_{*}\Omega_{{\cal E}/\mathfrak{Y}(N)_{/R}}^{1} to be the pushforward of the sheaf of Kahler differentials on {\cal E}. If e:𝔜(N)/Re:\mathfrak{Y}(N)_{/R}\rightarrow{\cal E} is the identity section of our elliptic curve, then we have ω¯eΩ/𝔜(N)/R1\underline{\omega}\simeq e^{*}\Omega_{{\cal E}/\mathfrak{Y}(N)_{/R}}^{1}. Hence ω¯\underline{\omega}, being the pullback of an invertible sheaf, is an invertible sheaf on 𝔜(N)/R\mathfrak{Y}(N)_{/R}. According to [KM85, 10.13.2], there is a canonical way to extend ω¯2\underline{\omega}^{\otimes 2} to an invertible sheaf on 𝔛(N)/R\mathfrak{X}(N)_{/R}, which we denote by ω¯𝔛(N)/R2\underline{\omega}_{\mathfrak{X}(N)_{/R}}^{\otimes 2} or simply ω¯2\underline{\omega}^{\otimes 2} if the modular curve is clear from context.

Proposition A.9.

The invertible sheaf ω¯2\underline{\omega}^{\otimes 2} canonically extends to an invertible sheaf ω¯𝔛(N)/R2\underline{\omega}_{\mathfrak{X}(N)_{/R}}^{\otimes 2} on 𝔛(N)/R\mathfrak{X}(N)_{/R}.

Definition A.10.

We call the invertible sheaf ω¯2k\underline{\omega}^{\otimes 2k} on 𝔛(N)/R\mathfrak{X}(N)_{/R} the modular sheaf (of weight 2k). The global sections H0(𝔛(N)/R,ω¯2k)H^{0}(\mathfrak{X}(N)_{/R},\underline{\omega}^{\otimes 2k}) are known as modular forms of weight 2k2k and level Γ(N)\Gamma(N). The global sections H0(𝔛(N)/R,ω¯2k((N))H^{0}(\mathfrak{X}(N)_{/R},\underline{\omega}^{\otimes 2k}(-\mathfrak{C}(N)) are known as cusp forms of weight 2k and level Γ(N)\Gamma(N).

The formation of the modular sheaf ω¯2\underline{\omega}^{\otimes 2} behaves well under base change. The following proposition is [KM85, 10.13.6].

Proposition A.11.

Let RRR\rightarrow R^{\prime} be an extension of noetherian, regular, excellent rings and let

j:𝔛(N)/R𝔛(N)/Rj:\mathfrak{X}(N)_{/R^{\prime}}\rightarrow\mathfrak{X}(N)_{/R}

denote the induced base change map. Then we have an isomorphism of invertible sheaves

jω¯𝔛(N)/R2ω¯𝔛(N)/R2.j^{*}\underline{\omega}_{\mathfrak{X}(N)_{/R}}^{\otimes 2}\simeq\underline{\omega}_{\mathfrak{X}(N)_{/R^{\prime}}}^{\otimes 2}.

Let f:ESf:E\rightarrow S be an elliptic curve over a smooth RR-scheme SS. According to [KM85, 10.13.10] (see also [Kat73, A1.4]), we have map (fΩ1E/S)2ΩS/R1(f_{*}\Omega^{1}{}_{E/S})^{\otimes 2}\rightarrow\Omega_{S/R}^{1} of 𝒪S{\cal O}_{S}-modules, known as the Kodaira-Spencer map, which becomes an isomorphism precisely when ESE\rightarrow S represents a moduli problem which is étale over EllR{\rm Ell}_{R}. In particular, if 𝔜(N)/R\mathfrak{Y}(N)_{/R} is smooth over RR (e.g. if NN is a unit in RR), we get an isomorphism ω¯𝔜(N)2Ω𝔜(N)/R1\underline{\omega}_{\mathfrak{Y}(N)}^{\otimes 2}\simeq\Omega_{\mathfrak{Y}(N)/R}^{1}.

Theorem A.12.

Let RR be a noetherian, regular, excellent [ζN]\mathbb{Z}[\zeta_{N}]-algebra containing 1/N1/N. The Kodaira-Spencer isomorphism ω¯𝔜(N)2Ω𝔜(N)/R1\underline{\omega}_{\mathfrak{Y}(N)}^{\otimes 2}\simeq\Omega_{\mathfrak{Y}(N)/R}^{1} on 𝔜(N)\mathfrak{Y}(N) extends to an isomorphism on 𝔛(N)\mathfrak{X}(N)

ω¯𝔛(N)2Ω𝔛(N)/R1((N)).\underline{\omega}_{\mathfrak{X}(N)}^{\otimes 2}\simeq\Omega_{\mathfrak{X}(N)/R}^{1}(\mathfrak{C}(N)).
Proof.

By [KM85, 5.1.1], the moduli problem [Γ(N)]can\left[\Gamma(N)\right]^{{\rm can}} is finite étale over EllR{\rm Ell}_{R}. The result then follows from [KM85, 10.13.11]. ∎

Suppose ,{\cal F},{\cal F}^{\prime} are two representable moduli problems that are finite over EllR{\rm Ell}_{R} and normal near infinity. Any morphism η:\eta:{\cal F}\Rightarrow{\cal F}^{\prime} of moduli problems is compatible with the usual morphism ,[Γ(1)]{\cal F},{\cal F}^{\prime}\Rightarrow\left[\Gamma(1)\right]. Thus the induced map η:𝔐()𝔐()\eta:\mathfrak{M}({\cal F})\rightarrow\mathfrak{M}({\cal F}^{\prime}) fits in the commutative diagram

𝔐()\textstyle{\mathfrak{M}({\cal F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}j\scriptstyle{j}𝔐()\textstyle{\mathfrak{M}({\cal F}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}𝔸R1\textstyle{\mathbb{A}_{R}^{1}}

Hence η\eta extends to a map η¯:𝔐¯()𝔐¯()\bar{\eta}:\overline{\mathfrak{M}}({\cal F})\rightarrow\overline{\mathfrak{M}}({\cal F}^{\prime}) on the normalizations near infinity.

Proposition A.13.

Let RR be an excellent, noetherian, regular ring and let {\cal F} and {\cal F}^{\prime} be two representable moduli problems, both finite over EllR{\rm Ell}_{R} and both normal near infinity. Let η:\eta:{\cal F}\Rightarrow{\cal F}^{\prime} be a morphism of moduli problems over EllR{\rm Ell}_{R}. Under the induced map η¯:𝔐¯()𝔐¯()\bar{\eta}:\overline{\mathfrak{M}}({\cal F})\rightarrow\overline{\mathfrak{M}}({\cal F}^{\prime}) we have

η¯(ω¯𝔐¯()2)=ω¯𝔐¯()2.\bar{\eta}^{*}(\underline{\omega}_{\overline{\mathfrak{M}}({\cal F}^{\prime})}^{\otimes 2})=\underline{\omega}_{\overline{\mathfrak{M}}({\cal F})}^{\otimes 2}.
Proof.

This is [KM85, 10.13.5(2)]. ∎

A.1 Cusps and the Special Fiber

In this section we will investigate the cusps and special fiber of 𝔛(N)\mathfrak{X}(N) and recall the theory of qq-expansions for modular forms. First we establish that the formation of the cuspidal locus (N)\mathfrak{C}(N) and the formation of 𝔛(N)\mathfrak{X}(N) behaves well under base change. The following is [KM85, 8.6.6, 8.6.7].

Proposition A.14.

Let RR and RR^{\prime} be excellent, noetherian, regular [ζN]\mathbb{Z}[\zeta_{N}]-algebras. For any extension of scalars RRR\rightarrow R^{\prime}, we have

𝔜(N)/R×Spec(R)Spec(R)𝔜(N)/R\mathfrak{Y}(N)_{/R}\times_{{\rm Spec}(R)}{\rm Spec}(R^{\prime})\simeq\mathfrak{Y}(N)_{/R^{\prime}}
(𝔛(N)/R)×Spec(R)Spec(R)(𝔛(N)/R)\mathfrak{C}(\mathfrak{X}(N)_{/R})\times_{{\rm Spec}(R)}{\rm Spec}(R^{\prime})\simeq\mathfrak{C}(\mathfrak{X}(N)_{/R^{\prime}})
𝔛(N)/R×Spec(R)Spec(R)𝔛(N)/R\mathfrak{X}(N)_{/R}\times_{{\rm Spec}(R)}{\rm Spec}(R^{\prime})\simeq\mathfrak{X}(N)_{/R^{\prime}}

For two groups G1G_{1} and G2G_{2}, let HomSurj(G1,G2){\rm HomSurj}(G_{1},G_{2}) denote the set of surjective group homomorphisms from G1G_{1} to G2G_{2}. Any subgroup ΓGL2(/N)\Gamma\leq{\rm GL}_{2}(\mathbb{Z}/N\mathbb{Z}) acts on the set

HomSurj((/N)2,/N){\rm HomSurj}((\mathbb{Z}/N\mathbb{Z})^{2},\mathbb{Z}/N\mathbb{Z})

via γΛ=Λγ\gamma\cdot\Lambda=\Lambda\circ\gamma for any γΓ\gamma\in\Gamma. Let

HS(N)=HomSurj((/N)2,/N)/{±I}{\rm HS}(N)={\rm HomSurj}((\mathbb{Z}/N\mathbb{Z})^{2},\mathbb{Z}/N\mathbb{Z})/\left\{\pm I\right\}

where II is the identity matrix in GL2(/N){\rm GL}_{2}(\mathbb{Z}/N\mathbb{Z}).

According to [KM85, 10.9.1], the cusps (N)\mathfrak{C}(N) of 𝔛(N)\mathfrak{X}(N) is a disjoint union of #HS(N)\#{\rm HS}(N) many sections of 𝔛(N)\mathfrak{X}(N). Furthermore, the formal completion of 𝔛(N)\mathfrak{X}(N) along (N)\mathfrak{C}(N) is the disjoint union of #HS(N)\#{\rm HS}(N) copies of the formal spectrum Spf([ζN]q1/hΛ){\rm Spf}(\mathbb{Z}[\zeta_{N}]\left\llbracket q^{1/h_{\Lambda}}\right\rrbracket) for some integer hΛ1h_{\Lambda}\geq 1 dividing NN, dependent on the index ΛHS(N)\Lambda\in{\rm HS}(N). Refer to [KM85, 10.2.5] which provides a canonical bijection between a cuspidal section and the corresponding label in HS(N){\rm HS}(N).

Proposition A.15.

Let RR be a Dedekind domain with fraction field KK. As Weil divisors, we have

(𝔛(N)/R)=x{x}¯\mathfrak{C}(\mathfrak{X}(N)_{/R})=\sum_{x}\overline{\left\{x\right\}}

where the sum is indexed over x(𝔛(N)/K)x\in\mathfrak{C}(\mathfrak{X}(N)_{/K}).

Proof.

As a divisor, (𝔛(N)/R)\mathfrak{C}(\mathfrak{X}(N)_{/R}) consists only of horizontal components since (𝔛(N)/R)\mathfrak{C}(\mathfrak{X}(N)_{/R}) is a finite disjoint union of sections of 𝔛(N)/R\mathfrak{X}(N)_{/R}. By [Liu02, 8.3.4], these horizontal components are necessarily the closure, in 𝔛(N)/R\mathfrak{X}(N)_{/R}, of points closed in the generic fiber 𝔛(N)/K\mathfrak{X}(N)_{/K}. By Proposition A.14, (𝔛(N)/R)/K(𝔛(N)/K)\mathfrak{C}(\mathfrak{X}(N)_{/R})_{/K}\simeq\mathfrak{C}(\mathfrak{X}(N)_{/K}), hence these points are precisely the cusps of 𝔛(N)/K\mathfrak{X}(N)_{/K}. ∎

Now we recall how the qq-expansion map

H0(𝔛(N)/R,ω¯2)R[[q1/N]]H^{0}(\mathfrak{X}(N)_{/R},\underline{\omega}^{\otimes 2})\rightarrow R[[q^{1/N}]]

is defined for a modular form over a [ζN]\mathbb{Z}[\zeta_{N}]-algebra RR at a specified cusp. Let cc be a cusp of 𝔛(N)\mathfrak{X}(N), which corresponds to the image of a section Spec([ζN])𝔛(N){\rm Spec}(\mathbb{Z}[\zeta_{N}])\rightarrow\mathfrak{X}(N) and is a connected component {c}¯\overline{\left\{c^{\prime}\right\}} of (N)\mathfrak{C}(N) where cc^{\prime} is a cusp of the generic fiber. According to [DR73, §VII, 2.3.2], the cusp cc corresponds to a Tate curve Tate(q1/N){\rm Tate}(q^{1/N}) over [ζN][[q1/N]\mathbb{Z}[\zeta_{N}][[q^{1/N}] (see [DR73, §VII, Définition 1.16]) and a closed immersion Spec([ζN][[q1/N]])𝔛(N){\rm Spec}(\mathbb{Z}[\zeta_{N}][[q^{1/N}]])\rightarrow\mathfrak{X}(N) fitting in the diagram

Tate(q1/N)\textstyle{{\rm Tate}(q^{1/N})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Spec([ζN][[q1/N]]\textstyle{{\rm Spec}(\mathbb{Z}[\zeta_{N}][[q^{1/N}]]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔛(N)\textstyle{\mathfrak{X}(N)}

By [DR73, §VII, Corollaire 2.4] (see also [KM85, 10.9.1]), this closed immersion induces an isomorphism of formal schemes

Spf([ζN][[q1/N]])𝔛^(N)c{\rm Spf}(\mathbb{Z}[\zeta_{N}][[q^{1/N}]])\overset{\sim}{\longrightarrow}\hat{\mathfrak{X}}(N)_{c}

where 𝔛^(N)c\hat{\mathfrak{X}}(N)_{c} denotes the formal completion of 𝔛(N)\mathfrak{X}(N) along the cusp cc. According to [KM85, 8.8(T.2)] (see also [DR73, §VII, 1.16.1]) we have an isomorphism

ϕ:Tate^(q1/N)𝔾^m\phi:\hat{\mathrm{Tate}}(q^{1/N})\overset{\sim}{\rightarrow}\hat{\mathbb{G}}_{m}

between formal Lie groups. Let ωcan,c:=ϕ(dX/X)\omega_{{\rm can},c}:=\phi^{*}(dX/X), where dX/XdX/X is the standard invariant differential on 𝔾m\mathbb{G}_{m}. Pulling back by Tate(q1/N)𝔛(N){\rm Tate}(q^{1/N})\rightarrow\mathfrak{X}(N) allows us to identify ω^c2\hat{\omega}_{c}^{\otimes 2} with [ζN][[q1/N]]ωcan,c\mathbb{Z}[\zeta_{N}][[q^{1/N}]]\cdot\omega_{{\rm can},c}.

Definition A.16.

Let fH0(𝔛(N),ω¯2)f\in H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes 2}) and let cc be a cusp of 𝔛(N)\mathfrak{X}(N). Viewing ff in the completed stalk ω^¯c2\underline{\hat{\omega}}{}_{c}^{\otimes 2}, we write f=fcωcan,cf=f_{c}\cdot\omega_{{\rm can},c} for some fc𝒪^𝔛(N),cf_{c}\in\hat{{\cal O}}_{\mathfrak{X}(N),c}. We call fcf_{c} the qq-expansion of ff at cc. This gives a map

H0(𝔛(N),ω¯2)[ζN][[q1/N].H^{0}(\mathfrak{X}(N),\underline{\omega}^{\otimes 2})\rightarrow\mathbb{Z}[\zeta_{N}][[q^{1/N}].

More generally, for a [ζN]\mathbb{Z}[\zeta_{N}]-algebra RR, we obtain the qq-expansion map

H0(𝔛(N)/R,ω¯2)[ζN][[q1/N][ζN]RR[[q1/N]]H^{0}(\mathfrak{X}(N)_{/R},\underline{\omega}^{\otimes 2})\rightarrow\mathbb{Z}[\zeta_{N}][[q^{1/N}]\otimes_{\mathbb{Z}[\zeta_{N}]}R\subset R[[q^{1/N}]]

by tensoring with RR. We will always use ωcan,c\omega_{{\rm can},c} as a local generator for ω2\omega^{\otimes 2} to obtain the qq-expansion at cc.

The following result, which is [DR73, §VII, Théoréme 3.9] and known as the qq-expansion principle, essentially says qq-expansions can detect the “ring of definition”.

Proposition A.17.

Let AA be a [ζN]\mathbb{Z}[\zeta_{N}]-algebra, let BB be a subalgebra of AA, and let fH0(𝔛(N)/A,ω¯k)f\in H^{0}(\mathfrak{X}(N)_{/A},\underline{\omega}^{\otimes k}). If the qq-expansion of ff at every cusp of 𝔛(N)/A\mathfrak{X}(N)_{/A} lies in B[[q1/N]]B[[q^{1/N}]], then ff is a modular form over BB i.e. fH0(𝔛(N)/B,ω¯k)f\in H^{0}(\mathfrak{X}(N)_{/B},\underline{\omega}^{\otimes k}).

Let N3N\geq 3 and r1r\geq 1 be integers and let p2p\geq 2 be a prime such that pNp\nmid N. We will describe the special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}). For simplicity, we consider the modular curve 𝔛(Npr)\mathfrak{X}(Np^{r}) over a [ζNpr]\mathbb{Z}[\zeta_{Np^{r}}]-algebra RR which is a DVR of mixed characteristic (0,p)(0,p) in which NN is invertible and with fraction field KK and perfect residue field kk. Let 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) denote the special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}).

We will recall the theory of Igusa curves, as developed in Section 12 of [KM85], to describe the irreducible components of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}). For ii\in\mathbb{Z}, let σi:Spec(k)Spec(k)\sigma^{i}:{\rm Spec}(k)\rightarrow{\rm Spec}(k) denote the map induced by the iith power of the Frobenius automorphism on kk. For any kk-scheme SS, we let S(σi)S^{(\sigma^{i})} denote the pullback under σi\sigma^{i} from which we also obtain a map Fabsi:SSF_{{\rm abs}}^{i}:S\rightarrow S called the absolute Frobenius. More generally, for any scheme XSX\rightarrow S, we let X(pi)X^{(p^{i})} denote the pullback under FabsiF_{{\rm abs}}^{i} from which we obtain a morphism FX/S:XX(pi)F_{X/S}:X\rightarrow X^{(p^{i})} of SS-schemes, called the iith-fold relative Frobenius.

Let {\cal F} be a moduli problem on Ellk{\rm Ell}_{k}. We define the moduli problem (σi){\cal F}^{(\sigma^{i})} on Ellk{\rm Ell}_{k} by extending scalars via σi\sigma^{i} so that

(ES)=(σi)(E(σi)S(σi)).{\cal F}(E\rightarrow S)={\cal F}^{(\sigma^{i})}(E^{(\sigma^{i})}\rightarrow S^{(\sigma^{i})}).

If {\cal F} is representable and finite over Ellk{\rm Ell}_{k} and normal near infinity, then the same holds for (σi){\cal F}^{(\sigma^{i})} and we have

𝔐¯((σi))=𝔐¯()(σi).\overline{\mathfrak{M}}({\cal F}^{(\sigma^{i})})=\overline{\mathfrak{M}}({\cal F})^{(\sigma^{i})}.
Definition A.18.

Let EE be an elliptic curve over an kk-scheme SS. An Igusa structure of level prp^{r} on ESE\rightarrow S is a point PE(pr)(S)P\in E^{(p^{r})}(S) which generates the kernel of Verschiebung Vr:E(pr)EV^{r}:E^{(p^{r})}\rightarrow E in the sense of [KM85, 1.4.1]. Let [Ig(pr)]:EllkSets[{\rm Ig}(p^{r})]:{\rm Ell}_{k}\rightarrow{\rm Sets} denote the moduli problem which assigns to each elliptic curve ESE\rightarrow S the set of all Igusa structures of level prp^{r} on ESE\rightarrow S.

According to [KM85, 12.7.1], if {\cal F} is a representable moduli problem finite over Ellk{\rm Ell}_{k} which is normal near infinity, the simultaneous moduli problem [Ig(pr)]×[{\rm Ig}(p^{r})]\times{\cal F} is representable over Ellk{\rm Ell}_{k} and normal near infinity. The following result is [KM85, 12.7.2] applied to the simultaneous moduli problem [Ig(pr)]×[Γ(N)]can,(σi)\left[{\rm Ig}(p^{r})\right]\times\left[\Gamma(N)\right]^{{\rm can},(\sigma^{-i})} over Ellk{\rm Ell}_{k} for any ii\in\mathbb{Z}. We denote

Ig(pr,N):=𝔐¯([Ig(pr)],[Γ(N)]can,(σi)).{\rm Ig}(p^{r},N):=\overline{\mathfrak{M}}([{\rm Ig}(p^{r})],\left[\Gamma(N)\right]^{{\rm can},(\sigma^{-i})}).
Proposition A.19.
  1. a.

    Ig(pr,N){\rm Ig}(p^{r},N) is a proper smooth curve over kk.

  2. b.

    The usual projection Ig(pr,N)𝔛(N)/k(σi){\rm Ig}(p^{r},N)\rightarrow\mathfrak{X}(N)_{/k}^{(\sigma^{-i})} is finite and étale outside the supersingular points of 𝔛(N)/k(σi)\mathfrak{X}(N)_{/k}^{(\sigma^{-i})} for all ii\in\mathbb{Z}.

Next we define another moduli problem closely related to Igusa structures, which will directly appear in the description of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}).

Definition A.20.

Let EE be an elliptic curve over an kk-scheme SS and fix 1ir1\leq i\leq r. An exotic Igusa structure of level (pr,i)(p^{r},i) on ESE\rightarrow S is a point PE(S)P\in E(S) such that (O,P)(O,P) is a Drinfeld pip^{i}-basis of ESE\rightarrow S along with a point QE(pri)(S)Q\in E^{(p^{r-i})}(S) such that Vri(Q)=PV^{r-i}(Q)=P. Let

[ExIg(pr,i)]:EllkSets[{\rm ExIg}(p^{r},i)]:{\rm Ell}_{k}\rightarrow{\rm Sets}

denote the moduli problem which assigns to each elliptic curve ESE\rightarrow S the set of all exotic Igusa structures of level (pr,i)(p^{r},i) on ESE\rightarrow S.

The following result, which is [KM85, 12.10.6] in the situation =[Γ(N)]can,(σi){\cal F}=[\Gamma(N)]^{{\rm can},(\sigma^{-i})}, relates Igusa structures with exotic Igusa structures and also establishes the representability of [ExIg(pr,i)][{\rm ExIg}(p^{r},i)]. We denote

ExIg(pr,i,N)=𝔐¯([ExIg(pr,i)],[Γ(N)]).{\rm ExIg}(p^{r},i,N)=\overline{\mathfrak{M}}([{\rm ExIg}(p^{r},i)],\left[\Gamma(N)\right]).
Theorem A.21.

For 1ir1\leq i\leq r, we have a canonical isomorphism Ig(pr,N)ExIg(pr,i,N){\rm Ig}(p^{r},N)\simeq{\rm ExIg}(p^{r},i,N) sitting in the commutative diagram

Ig(pr,N)\textstyle{{\rm Ig}(p^{r},N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\simeq}ρ\scriptstyle{\rho}ExIg(pr,i,N)\textstyle{{\rm ExIg}(p^{r},i,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ρ\scriptstyle{\rho^{\prime}}𝔛(N)/k(σi)\textstyle{\mathfrak{X}(N)_{/k}^{(\sigma^{-i})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fi\scriptstyle{F^{i}}𝔛(N)/k\textstyle{\mathfrak{X}(N)_{/k}}

where FiF^{i} is the iith-fold relative Frobenius F𝔛(N)/kiF_{\mathfrak{X}(N)/k}^{i}.

We introduce the following definition from [KM85, §13.1] which will allow us to describe the special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}). Consider the general situation with kk a field, YY a smooth scheme over kk, and XYX\rightarrow Y a finite flat morphism of schemes. Suppose there exists a nonempty finite set SS of kk-rational points of YY such that for each y0Sy_{0}\in S there exists a unique closed kk-rational point x0Xx_{0}\in X over y0y_{0} such that 𝒪^X,x0k[[x,y]]/(f)\hat{{\cal O}}_{X,x_{0}}\simeq k[[x,y]]/(f) for some fk[[x,y]]f\in k[[x,y]]. The points of SS are referred to as the supersingular points; indeed in the situation XX and YY are modular curves, SS will be taken to be the supersingular points of YY which correspond to supersingular elliptic curves. Furthermore, we assume there is a finite collection of kk-schemes {Zi}iI\left\{Z_{i}\right\}_{i\in I} with a morphism iIZiX\coprod_{i\in I}Z_{i}\rightarrow X such that

  • for each iIi\in I and y0Sy_{0}\in S there exists a unique closed, kk-rational point zi,0Ziz_{i,0}\in Z_{i} over y0y_{0}.

  • ZiZ_{i} is finite flat over YY and (Zi)red(Z_{i})^{{\rm red}} is smooth over kk.

  • ZiXZ_{i}\rightarrow X is a closed immersion and iIZiX\coprod_{i\in I}Z_{i}\rightarrow X is an isomorphism over the complement of SS in YY.

By [KM85, 13.1.3], known as the “Crossings Theorem”, if YY is connected, then the ZiZ_{i} are the irreducible components of XX. Furthermore, if each ZiZ_{i} is reduced, then XX is also reduced.

Definition A.22.

In the situation just discussed, we say XX is the disjoint union of the ZiZ_{i}’s with crossings at the supersingular points.

Remark A.23.

Following [KM85, 13.1.7], we can relax the kk-rationality of x0x_{0} and y0y_{0} and instead require kk-rationality after extending scalars to a separable closure of kk. In this situation, we still say XX is the disjoint union of the ZiZ_{i}’s with crossings at the supersingular points.

Next we describe 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}). We identify (/pr)×(\mathbb{Z}/p^{r}\mathbb{Z})^{\times} as the subgroup

{(u00u):u(/pr)×}\left\{\left(\begin{array}[]{cc}u&0\\ 0&u\end{array}\right):u\in(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}\right\}

of GL2(/pr){\rm GL}_{2}(\mathbb{Z}/p^{r}\mathbb{Z}). According to [KM85, 13.7.1], the moduli problem [Γ(pr)]cank\left[\Gamma(p^{r})\right]^{{\rm can}}\otimes{k} on Ellk{\rm Ell}_{k} assigns to each elliptic curve ESE\rightarrow S the set of all Drinfeld prp^{r}-bases (P,Q)(P,Q) with epr(P,Q)=1e_{p^{r}}(P,Q)=1. Let ϕ:(/pr)2E[pr]\phi:(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\rightarrow E[p^{r}] denote the homomorphism of SS-schemes corresponding to (P,Q)(P,Q). Consider the diagram

(/pr)2\textstyle{(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}Λ\scriptstyle{\Lambda}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}kerFr\textstyle{\ker F^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E[pr]\textstyle{E[p^{r}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Fr\scriptstyle{F^{r}}ker(Vr)\textstyle{\ker(V^{r})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

where Λ=Frϕ\Lambda=F^{r}\circ\phi. By [KM85, 13.7.2(3)], a choice of /pr\mathbb{Z}/p^{r}\mathbb{Z}-basis of (/pr)2/kerΛ(\mathbb{Z}/p^{r}\mathbb{Z})^{2}/\ker\Lambda defines an isomorphism /prker(Vr)\mathbb{Z}/p^{r}\mathbb{Z}\overset{\sim}{\rightarrow}\ker(V^{r}), allowing us to view Λ\Lambda as a surjective homomorphism (/pr)2/pr(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\rightarrow\mathbb{Z}/p^{r}\mathbb{Z}.

Definition A.24.

The component label of ϕ\phi is the class of Λ\Lambda in

(/pr)×/HomSurj((/pr)2,/pr).(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}/{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z}).

By [KM85, 13.7.4, 13.7.5], this establishes a canonical bijection between the irreducible components of the special fiber and the set of component labels. The following is [KM85, 13.7.6].

Theorem A.25.

The special fiber of 𝔛(Npr)\mathfrak{X}(Np^{r}) is the disjoint union, with crossings at the supersingular points of 𝔛(N)/k\mathfrak{X}(N)_{/k}, of the exotic Igusa curves ExIg(pr,r,N){\rm ExIg}(p^{r},r,N) over 𝔛(N)/k\mathfrak{X}(N)_{/k} indexed by

(/pr)×/HomSurj((/pr)2,/pr).(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}/{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z}).

Furthermore, 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) is reduced.

Note that the claim 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) is reduced comes from the fact that ExIg(pr,r,N){\rm ExIg}(p^{r},r,N) is reduced, together with the “Crossings Theorem” of [KM85, 13.1.3] and [KM85, 13.1.4].

Recall the closed subscheme of cusps (Npr)\mathfrak{C}(Np^{r}) of 𝔛(Npr)\mathfrak{X}(Np^{r}) is a disjoint union of #HS(Npr)\#{\rm HS}(Np^{r}) many sections of 𝔛(Npr)\mathfrak{X}(Np^{r}) which, by Proposition A.15, can be viewed as the closure {x}¯\overline{\left\{x\right\}} of points x(𝔛(N)/K)x\in\mathfrak{C}(\mathfrak{X}(N)_{/K}). By Corollary 2.15, {x}¯\overline{\left\{x\right\}} intersects precisely one irreducible component of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}). The following, which is [KM85, 13.9.3], tells us precisely the component label of the irreducible component which {x}¯\overline{\left\{x\right\}} intersects with, given the index of {x}¯\overline{\left\{x\right\}} in HS(Npr){\rm HS}(Np^{r}) (see the paragraph preceding Proposition A.15).

Theorem A.26.

The natural projection

} \HomSurj((Z/NZ)^2,Z/NZ)×HomSurj((Z/p^rZ)^2,Z/p^rZ){±I}\HomSurj((/N)2,/N)×HomSurj((/pr)2,/pr)\textstyle{\left\{\pm I\right\}\backslash{\rm HomSurj}((\mathbb{Z}/N\mathbb{Z})^{2},\mathbb{Z}/N\mathbb{Z})\times{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

assigns to a component {x}¯\overline{\left\{x\right\}} of (Npr)\mathfrak{C}(Np^{r}) indexed by HS(Npr){\rm HS}(Np^{r}) the irreducible component of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) that {x}¯\overline{\left\{x\right\}} intersects with.

Corollary A.27.

Each irreducible component of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) intersects with the same number of cuspidal components of (Npr)\mathfrak{C}(Np^{r}).

Every group homomorphism Λ:(/pr)2/pr\Lambda:(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\rightarrow\mathbb{Z}/p^{r}\mathbb{Z} is uniquely determined by its image on the basis vectors (1,0)(1,0) and (0,1)(0,1). Let Λ(a,b):(/pr)2/pr\Lambda_{(a,b)}:(\mathbb{Z}/p^{r}\mathbb{Z})^{2}\rightarrow\mathbb{Z}/p^{r}\mathbb{Z} denote the map defined by

Λ(a,b)(1,0)=a and Λ(a,b)(0,1)=b.\Lambda_{(a,b)}(1,0)=a\mbox{ and }\Lambda_{(a,b)}(0,1)=b.

A complete list of representatives in (/pr)×/HomSurj((/pr)2,/pr)(\mathbb{Z}/p^{r}\mathbb{Z})^{\times}/{\rm HomSurj}((\mathbb{Z}/p^{r}\mathbb{Z})^{2},\mathbb{Z}/p^{r}\mathbb{Z}) is given by

{Λ(1,a)a/prΛ(pb,1)b/pr1.\begin{cases}\Lambda_{(1,-a)}&a\in\mathbb{Z}/p^{r}\mathbb{Z}\\ \Lambda_{(-pb,1)}&b\in\mathbb{Z}/p^{r-1}\mathbb{Z}\end{cases}.

With this labeling, the following is clear:

Corollary A.28.

The special fiber 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) has pr+pr1p^{r}+p^{r-1} many irreducible components.

We will record the number of cuspidal components of (Npr)\mathfrak{C}(Np^{r}) an irreducible component of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) intersects with. For convenience, we let C(Npr)=(𝔛/p(ζNpr)C(Np^{r})=\mathfrak{C}(\mathfrak{X}{}_{/\mathbb{Q}_{p}(\zeta_{Np^{r}}}), the set of all cusps of the generic fiber. The following is [Miy89, 4.2.10].

Lemma A.29.

For M3M\geq 3, we have

#C(M)=12M2pM(11/p2)=12M#SL2(/MZ).\#C(M)=\frac{1}{2}M^{2}\prod_{p\mid M}(1-1/p^{2})=\frac{1}{2M}\#{\rm SL}_{2}(\mathbb{Z}/MZ).

We will also need to know how to compute #SL2(/M)\#{\rm SL}_{2}(\mathbb{Z}/M\mathbb{Z}). The following is from [Miy89, 4.2.3, 4.2.4].

Lemma A.30.
  1. a.

    Let AA and BB be coprime integers. Then

    SL2(/AB)SL2(/A)×SL2(/B).{\rm SL}_{2}(\mathbb{Z}/AB\mathbb{Z})\simeq{\rm SL}_{2}(\mathbb{Z}/A\mathbb{Z})\times{\rm SL}_{2}(\mathbb{Z}/B\mathbb{Z}).
  2. b.

    Let pp be prime and r1r\geq 1 an integer. Then

    #SL2(/pr)=p3rp3r2.\#{\rm SL}_{2}(\mathbb{Z}/p^{r}\mathbb{Z})=p^{3r}-p^{3r-2}.
Proposition A.31.

Each irreducible component of 𝔛¯(Npr)\bar{\mathfrak{X}}(Np^{r}) intersects precisely

#C(Npr)pr+pr1=φ(pr)#C(N)\frac{\#C(Np^{r})}{p^{r}+p^{r-1}}=\varphi(p^{r})\#C(N)

many cuspidal components of (Npr)\mathfrak{C}(Np^{r}).

Proof.

By Corollary A.27, this quantity is independent of irreducible component Λ\Lambda. Hence the number of cuspidal components Λ\Lambda intersects is equal to the total number of cusps of the generic fiber divided by the total number of irreducible components. By Corollary A.28, the number of irreducible components is pr+pr1p^{r}+p^{r-1}.

Using Lemma A.29 and Lemma A.30a, we compute:

#C(Npr)pr+pr1\displaystyle\frac{\#C(Np^{r})}{p^{r}+p^{r-1}} =#SL2(/Npr)2Npr(pr+pr1)\displaystyle=\frac{\#{\rm SL}_{2}(\mathbb{Z}/Np^{r}\mathbb{Z})}{2Np^{r}(p^{r}+p^{r-1})}
=#SL2(/pr)pr(pr+pr1)#SL2(/N)2N\displaystyle=\frac{\#{\rm SL}_{2}(\mathbb{Z}/p^{r}\mathbb{Z})}{p^{r}(p^{r}+p^{r-1})}\cdot\frac{\#{\rm SL}_{2}(\mathbb{Z}/N\mathbb{Z})}{2N}
=#SL2(/pr)pr(pr+pr1)#C(N)\displaystyle=\frac{\#{\rm SL}_{2}(\mathbb{Z}/p^{r}\mathbb{Z})}{p^{r}(p^{r}+p^{r-1})}\#C(N)

Lastly, using Lemma A.30b, we have

=p3rp3r2pr(pr+pr1)#C(N)\displaystyle=\frac{p^{3r}-p^{3r-2}}{p^{r}(p^{r}+p^{r-1})}\#C(N)
=φ(pr)#C(N).\displaystyle=\varphi(p^{r})\#C(N).

Appendix B Appendix – Circulant Matrices

Definition B.1.

An n×nn\times n circulant matrix CC over a field is any matrix of the form

C=(c0cn1c2c1c1c0c3c2cn2cn3c0cn1cn1cn2c1c0)C=\left(\begin{array}[]{ccccc}c_{0}&c_{n-1}&\cdots&c_{2}&c_{1}\\ c_{1}&c_{0}&\cdots&c_{3}&c_{2}\\ \vdots&\vdots&\ddots&\vdots&\vdots\\ c_{n-2}&c_{n-3}&\cdots&c_{0}&c_{n-1}\\ c_{n-1}&c_{n-2}&\cdots&c_{1}&c_{0}\end{array}\right)

where each column is equal to the previous column shifted downward by 1, looping around as appropriate.

The entries ci,jc_{i,j} of an n×nn\times n circulant matrix can be characterized by the equation

ci,j=cij+1,1c_{i,j}=c_{i-j+1,1}

for all 1i,jn1\leq i,j\leq n where the index ij+1i-j+1 is taken modulo nn among the residue classes in {0,1,,n1}\left\{0,1,\dots,n-1\right\}. Let ζn=e2πi/n\zeta_{n}=e^{2\pi i/n} denote a primitive nnth root of unity. The following provides an explicit description of the eigenvalues and corresponding eigenvectors of a circulant matrix.

Lemma B.2.

The eigenvalues of a circulant matrix C=(cij)C=(c_{ij}) are precisely

λj=k=0n1ckζn(j1)(nk)\lambda_{j}=\sum_{k=0}^{n-1}c_{k}\zeta_{n}^{(j-1)(n-k)}

for j=1,,nj=1,\dots,n. A corresponding eigenvector of λj\lambda_{j} is given by

vj=1n(1,ζnj1,ζn2(j1),,ζn(n1)(j1)).\vec{v}_{j}=\frac{1}{\sqrt{n}}\left(1,\zeta_{n}^{j-1},\zeta_{n}^{2(j-1)},\dots,\zeta_{n}^{(n-1)(j-1)}\right).
Proof.

We will verify that Cvj=λjvjC\vec{v}_{j}=\lambda_{j}\vec{v}_{j} for all jj. For 1in1\leq i\leq n, the ithi^{{\rm th}} entry of CvjC\vec{v}_{j} is

1n(ci1+ci2ζnj1+ci3ζn2(j1)++c0ζ(i1)(j1)+cn1ζni(j1)+ciζn(n1)(j1))\frac{1}{\sqrt{n}}\left(c_{i-1}+c_{i-2}\zeta_{n}^{j-1}+c_{i-3}\zeta_{n}^{2(j-1)}+\cdots+c_{0}\zeta^{(i-1)(j-1)}+c_{n-1}\zeta_{n}^{i(j-1)}\cdots+c_{i}\zeta_{n}^{(n-1)(j-1)}\right)
=1nk=0i1ckζn(i1k)(j1)+1n=in1cζn(n1+i)(j1)\displaystyle=\frac{1}{\sqrt{n}}\sum_{k=0}^{i-1}c_{k}\zeta_{n}^{(i-1-k)(j-1)}+\frac{1}{\sqrt{n}}\sum_{\ell=i}^{n-1}c_{\ell}\zeta_{n}^{(n-1+i-\ell)(j-1)}
=1nk=0i1ckζn(n+i1k)(j1)+1n=in1cζn(n1+i)(j1)\displaystyle=\frac{1}{\sqrt{n}}\sum_{k=0}^{i-1}c_{k}\zeta_{n}^{(n+i-1-k)(j-1)}+\frac{1}{\sqrt{n}}\sum_{\ell=i}^{n-1}c_{\ell}\zeta_{n}^{(n-1+i-\ell)(j-1)}
=1nk=0n1ckζ(n+i1k)(j1)\displaystyle=\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}c_{k}\zeta^{(n+i-1-k)(j-1)}

while the ithi^{{\rm th}} entry of λjvj\lambda_{j}\vec{v}_{j} is

1nζn(i1)(j1)k=0n1ckζn(j1)(nk)\displaystyle\frac{1}{\sqrt{n}}\zeta_{n}^{(i-1)(j-1)}\sum_{k=0}^{n-1}c_{k}\zeta_{n}^{(j-1)(n-k)} =1nk=0n1ckζn(j1)(nk)+(i1)(j1)\displaystyle=\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}c_{k}\zeta_{n}^{(j-1)(n-k)+(i-1)(j-1)}
=1nk=0n1ckζn(j1)(n+i1k)\displaystyle=\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1}c_{k}\zeta_{n}^{(j-1)(n+i-1-k)}

which agrees with the ithi^{{\rm th}} entry of CvjC\vec{v}_{j} for all ii. ∎

Circulant matrices are always diagonalizable (see [KW01, §2]) so we can write C=PDP1C=PDP^{-1} where the columns of PP are the eigenvectors v1,,vn\vec{v}_{1},\dots,\vec{v}_{n} and DD is a diagonal matrix whose diagonal entries are the corresponding eigenvalues λ1,,λn\lambda_{1},\dots,\lambda_{n}. Explicitly,

P=1n(111111ζnζn2ζnn2ζnn11ζnn2ζn(n2)2ζn(n2)(n2)ζn(n2)(n1)1ζnn1ζn(n1)2ζn(n1)(n2)ζn(n1)(n1)).P=\frac{1}{\sqrt{n}}\left(\begin{array}[]{cccccc}1&1&1&\cdots&1&1\\ 1&\zeta_{n}&\zeta_{n}^{2}&\cdots&\zeta_{n}^{n-2}&\zeta_{n}^{n-1}\\ \vdots&\vdots&\vdots&\cdots&\vdots&\vdots\\ 1&\zeta_{n}^{n-2}&\zeta_{n}^{(n-2)2}&\cdots&\zeta_{n}^{(n-2)(n-2)}&\zeta_{n}^{(n-2)(n-1)}\\ 1&\zeta_{n}^{n-1}&\zeta_{n}^{(n-1)2}&\cdots&\zeta_{n}^{(n-1)(n-2)}&\zeta_{n}^{(n-1)(n-1)}\end{array}\right).

We see the (i,j)(i,j)-entry of PP is equal to ζn(i1)(j1)/n\zeta_{n}^{(i-1)(j-1)}/\sqrt{n} for 1i,jn1\leq i,j\leq n.

Lemma B.3.

The matrix PP is unitary i.e. the inverse of PP is equal to the conjugate transpose PP^{*}.

Proof.

Note that PP is symmetric and the conjugate of ζn\zeta_{n} is ζ¯n=ζn1\bar{\zeta}_{n}=\zeta_{n}^{-1}. The (i,j)(i,j)-entry of PPPP^{*} is equal to

1nk=0n1ζnk(i1)ζ¯nk(j1)=1nk=0n1ζnk(i1)ζnk(j1)\frac{1}{n}\sum_{k=0}^{n-1}\zeta_{n}^{k(i-1)}\bar{\zeta}_{n}^{k(j-1)}=\frac{1}{n}\sum_{k=0}^{n-1}\zeta_{n}^{k(i-1)}\zeta_{n}^{-k(j-1)}
=1nk=0n1ζnk(ij)={1if i=j0if ij.=\frac{1}{n}\sum_{k=0}^{n-1}\zeta_{n}^{k(i-j)}=\begin{cases}1&\mbox{if }i=j\\ 0&\mbox{if }i\neq j\end{cases}.

Hence PP=InPP^{*}=I_{n} so P=P1P^{*}=P^{-1}. ∎

Now that we know C=PDPC=PDP^{*}, we can describe the (i,j)(i,j) entry of C1C^{-1}, if it exists.

Proposition B.4.

Let CC be an n×nn\times n invertible circulant matrix whose entries along the first column are c0,,cn1c_{0},\dots,c_{n-1} in that order. Then the (i,j)(i,j)-entry of C1C^{-1} is equal to

1nk=1nλk11ζn(k1)(ij)\frac{1}{n}\sum_{k=1}^{n}\lambda_{k-1}^{-1}\zeta_{n}^{(k-1)(i-j)}

where λj=m=0n1cmζn(j1)(nm)\lambda_{j}=\sum_{m=0}^{n-1}c_{m}\zeta_{n}^{(j-1)(n-m)} are the eigenvalues of CC for 1jn1\leq j\leq n.

Proof.

We compute out the product C1=PD1PC^{-1}=PD^{-1}P^{*}. The matrix PD1PD^{-1} will be of the form

PD1=1n(λ11λ21λ31λn1λ11λ21ζnλ31ζn2λn1ζnn1λ11λ21ζnn2λ31ζn(n2)2λn1ζn(n2)(n1)λ11λ21ζnn1λ31ζn(n1)2λn1ζn(n1)(n1)).PD^{-1}=\frac{1}{\sqrt{n}}\left(\begin{array}[]{ccccc}\lambda_{1}^{-1}&\lambda_{2}^{-1}&\lambda_{3}^{-1}&\cdots&\lambda_{n}^{-1}\\ \lambda_{1}^{-1}&\lambda_{2}^{-1}\zeta_{n}&\lambda_{3}^{-1}\zeta_{n}^{2}&\cdots&\lambda_{n}^{-1}\zeta_{n}^{n-1}\\ \vdots&\vdots&\vdots&\cdots&\vdots\\ \lambda_{1}^{-1}&\lambda_{2}^{-1}\zeta_{n}^{n-2}&\lambda_{3}^{-1}\zeta_{n}^{(n-2)2}&\cdots&\lambda_{n}^{-1}\zeta_{n}^{(n-2)(n-1)}\\ \lambda_{1}^{-1}&\lambda_{2}^{-1}\zeta_{n}^{n-1}&\lambda_{3}^{-1}\zeta_{n}^{(n-1)2}&\cdots&\lambda_{n}^{-1}\zeta_{n}^{(n-1)(n-1)}\end{array}\right).

Thus the (i,j)(i,j)-entry of PD1PD^{-1} is equal to

λj1ζn(i1)(j1)/n\lambda_{j}^{-1}\zeta_{n}^{(i-1)(j-1)}/\sqrt{n}

and so the (i,j)(i,j)-entry of PD1PPD^{-1}P^{*} is equal to

1nk=1nλk1ζn(i1)(k1)ζn(k1)(j1)=1nk=1nλk1ζn(k1)(ij).\frac{1}{n}\sum_{k=1}^{n}\lambda_{k}^{-1}\zeta_{n}^{(i-1)(k-1)}\zeta_{n}^{-(k-1)(j-1)}=\frac{1}{n}\sum_{k=1}^{n}\lambda_{k}^{-1}\zeta_{n}^{(k-1)(i-j)}.\qed

Using our explicit description of the entries of C1C^{-1}, we can establish the following.

Corollary B.5.

The inverse of an invertible circulant matrix is circulant.

Proof.

Let C=(ci,j)C=(c_{i,j}) be an n×nn\times n circulant matrix whose entries along the first column are ordered c0,c1,,cn1c_{0},c_{1},\dots,c_{n-1} so that cm+1,1=cmc_{m+1,1}=c_{m} for 0mn10\leq m\leq n-1. By Lemma B.4, the (i,j)(i,j)-entry of C1C^{-1} is equal to

ci,j=1nk=1n(m=0n1cmζn(k1)(nm))ζn(k1)(ij).c^{i,j}=\frac{1}{n}\sum_{k=1}^{n}\left(\sum_{m=0}^{n-1}c_{m}\zeta_{n}^{(k-1)(n-m)}\right)\zeta_{n}^{(k-1)(i-j)}.

To show C1C^{-1} is circulant, we will establish the relationship ci,j=cij+1,1c^{i,j}=c^{i-j+1,1} where the index ij+1i-j+1 is taken modulo nn in the residue class {0,,n1}\{0,\dots,n-1\}. In the above expression for ci,jc^{i,j}, the index (i,j)(i,j) only appears in the term ζn(k1)(ij)\zeta_{n}^{(k-1)(i-j)}. Observe that

ζn(k1)((ij+1)1)=ζn(k1)(ij).\zeta_{n}^{(k-1)((i-j+1)-1)}=\zeta_{n}^{(k-1)(i-j)}.

Hence ci,j=cij+1,1c^{i,j}=c^{i-j+1,1} so C1C^{-1} is circulant. ∎

Appendix C Appendix – Inverse via the Woodbury Matrix Identity

Let AA be an n×nn\times n invertible matrix, CC an invertible k×kk\times k matrix where knk\leq n, UU an n×kn\times k matrix, and VV a k×nk\times n matrix. The Woodbury matrix identity states

(A+UCV)1=A1A1U(C1+VA1U)1VA1.(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.

A proof of this identity can be found in [HS81, §1.3]. This identity allows us to compute the inverse of A+UCVA+UCV provided we can easily compute the inverses of AA and C1+VA1UC^{-1}+VA^{-1}U.

In general, we can use the Woodbury Matrix Identity to compute the inverse of A+NA+N where AA is an n×nn\times n invertible matrix and NN is an n×nn\times n matrix of rank kk, provided A+NA+N is invertible. Let UU be the n×kn\times k matrix whose columns v1,,vk\vec{v}_{1},\dots,\vec{v}_{k} are the kk linearly independent columns of NN. Let ui\vec{u}_{i} denote the vector in the iith column of NN which can be expressed as

ui=c1v1++ckvk.\vec{u}_{i}=c_{1}\vec{v}_{1}+\cdots+c_{k}\vec{v}_{k}.

We define the iith column of the k×nk\times n matrix VV to consist of entries c1,,ckc_{1},\dots,c_{k} in that order. Consequently, N=UCVN=UCV where C=IkC=I_{k} is the k×kk\times k identity matrix.

Using the Woodbury Matrix Identity, we will provide a formula for the inverse in the following situation as encountered in Section 3.3. Let AA be a block diagonal matrix with two invertible blocks of sizes n×nn\times n and m×mm\times m. The inverse A1A^{-1} is also block diagonal with blocks of the same size. We write

A1=(a11a1nan1ann𝟎𝟎b11b1mbm1bmm).A^{-1}=\left(\begin{array}[]{cc}\begin{array}[]{ccc}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn}\end{array}&\mathbf{0}\\ \mathbf{0}&\begin{array}[]{ccc}b_{11}&\cdots&b_{1m}\\ \vdots&\ddots&\vdots\\ b_{m1}&\cdots&b_{mm}\end{array}\end{array}\right).

We also consider the case

U=(011102120n1n11011m0m) and V=(11121n010m01020n111m)U=\left(\begin{array}[]{cc}0_{1}&1_{1}\\ 0_{2}&1_{2}\\ \vdots&\vdots\\ 0_{n}&1_{n}\\ 1_{1}&0_{1}\\ \vdots&\vdots\\ 1_{m}&0_{m}\end{array}\right)\mbox{ and }V=\left(\begin{array}[]{ccccccc}1_{1}&1_{2}&\cdots&1_{n}&0_{1}&\cdots&0_{m}\\ 0_{1}&0_{2}&\cdots&0_{n}&1_{1}&\cdots&1_{m}\end{array}\right)

where the subscripts on the 0 and 11 entries are there to help keep track of their position.

Proposition C.1.

Let T=A+UVT=A+UV where A,U,A,U, and VV are the given matrices above. Let ci,jc^{i,j} denote the (i,j)(i,j)-entry of T1T^{-1}. We have

cij={ai,j+β1αβ(k=1nai,k)(k=1nak,j)if 1i,jn11αβ(k=1nai,k)(k=1mbk,j)if 1in and n<jn+m11αβ(k=1mbi,k)(k=1nak,j)if 1jn and n<in+mbi,j+α1αβ(k=1mbi,k)(k=1mbk,j)if n<i,jn+mc^{ij}=\begin{cases}{\displaystyle a_{i,j}+\frac{\beta}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right)}&\mbox{if }1\leq i,j\leq n\\ {\displaystyle\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right)}&\mbox{if }1\leq i\leq n\mbox{ and }n<j\leq n+m\\ {\displaystyle\frac{-1}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right)}&\mbox{if }1\leq j\leq n\mbox{ and }n<i\leq n+m\\ {\displaystyle b_{i,j}+\frac{\alpha}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right)}&\mbox{if }n<i,j\leq n+m\end{cases}

where α=ai,j\alpha=\sum a_{i,j} is the sum of all entries in the first block in A1A^{-1} and β=bi,j\beta=\sum b_{i,j} is the sum of all entries in the second block in A1A^{-1}.

Proof.

By the Woodbury Matrix Identity,

T1=A1A1U(I2+VA1U)1VA1.T^{-1}=A^{-1}-A^{-1}U(I_{2}+VA^{-1}U)^{-1}VA^{-1}.

We first compute

VA1U\displaystyle VA^{-1}U =V(a11a1nan1ann𝟎𝟎b11b1mbm1bmm)(01110n1n11011m0m)\displaystyle=V\left(\begin{array}[]{cc}\begin{array}[]{ccc}a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn}\end{array}&\mathbf{0}\\ \mathbf{0}&\begin{array}[]{ccc}b_{11}&\cdots&b_{1m}\\ \vdots&\ddots&\vdots\\ b_{m1}&\cdots&b_{mm}\end{array}\end{array}\right)\left(\begin{array}[]{cc}0_{1}&1_{1}\\ \vdots&\vdots\\ 0_{n}&1_{n}\\ 1_{1}&0_{1}\\ \vdots&\vdots\\ 1_{m}&0_{m}\end{array}\right)
=(111n010m010n111m)(0i=1na1i0i=1nan,ii=1mb1,i0i=1mbm,i0)\displaystyle=\left(\begin{array}[]{cccccc}1_{1}&\cdots&1_{n}&0_{1}&\cdots&0_{m}\\ 0_{1}&\cdots&0_{n}&1_{1}&\cdots&1_{m}\end{array}\right)\left(\begin{array}[]{cc}0&{\displaystyle{\displaystyle\sum_{i=1}^{n}a_{1i}}}\\ \vdots&\vdots\\ 0&{\displaystyle{\displaystyle\sum_{i=1}^{n}a_{n,i}}}\\ {\displaystyle\sum_{i=1}^{m}b_{1,i}}&{\displaystyle 0}\\ \vdots&\vdots\\ {\displaystyle{\displaystyle\sum_{i=1}^{m}b_{m,i}}}&0\end{array}\right)
=(0i,j=1naiji,j=1mbij0)\displaystyle=\left(\begin{array}[]{cc}0&{\displaystyle{\displaystyle\sum_{i,j=1}^{n}a_{ij}}}\\ {\displaystyle{\displaystyle\sum_{i,j=1}^{m}b_{ij}}}&0\end{array}\right)
=(0αβ0).\displaystyle=\left(\begin{array}[]{cc}0&\alpha\\ \beta&0\end{array}\right).

Hence

(I2+VA1U)1=(1αβ1)1=11αβ(1αβ1).(I_{2}+VA^{-1}U)^{-1}=\left(\begin{array}[]{cc}1&\alpha\\ \beta&1\end{array}\right)^{-1}=\frac{1}{1-\alpha\beta}\left(\begin{array}[]{cc}1&-\alpha\\ -\beta&1\end{array}\right).

Next we will compute

U(I21+VA1U)1V\displaystyle U(I_{2}^{-1}+VA^{-1}U)^{-1}V =11αβU(1αβ1)(111n010m010n111m)\displaystyle=\frac{1}{1-\alpha\beta}U\left(\begin{array}[]{cc}1&-\alpha\\ -\beta&1\end{array}\right)\left(\begin{array}[]{cccccc}1_{1}&\cdots&1_{n}&0_{1}&\cdots&0_{m}\\ 0_{1}&\cdots&0_{n}&1_{1}&\cdots&1_{m}\end{array}\right)
=11αβ(01110n1n11011m0m)(111nααββ111m)\displaystyle=\frac{1}{1-\alpha\beta}\left(\begin{array}[]{cc}0_{1}&1_{1}\\ \vdots&\vdots\\ 0_{n}&1_{n}\\ 1_{1}&0_{1}\\ \vdots&\vdots\\ 1_{m}&0_{m}\end{array}\right)\left(\begin{array}[]{cccccc}1_{1}&\cdots&1_{n}&-\alpha&\cdots&-\alpha\\ -\beta&\cdots&-\beta&1_{1}&\cdots&1_{m}\end{array}\right)
=11αβ(ββ11ββ1111αα11αα).\displaystyle=\frac{1}{1-\alpha\beta}\left(\begin{array}[]{cccccc}-\beta&\cdots&-\beta&1&\cdots&1\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ -\beta&\cdots&-\beta&-1&\cdots&-1\\ 1&\cdots&1&-\alpha&\cdots&-\alpha\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 1&\cdots&1&-\alpha&\cdots&-\alpha\end{array}\right).

Lastly, we compute

A1U(I21+VA1U)1VA1\displaystyle A^{-1}U(I_{2}^{-1}+VA^{-1}U)^{-1}VA^{-1}
=11αβ(a11a1,n00an,1an,n0000b11b1,m00bm,1bm,m)(ββ11ββ1111αα11αα)A1\displaystyle=\frac{1}{1-\alpha\beta}\left(\begin{array}[]{cccccc}a_{11}&\cdots&a_{1,n}&0&\cdots&0\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ a_{n,1}&\cdots&a_{n,n}&0&\cdots&0\\ 0&\cdots&0&b_{11}&\cdots&b_{1,m}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 0&\cdots&0&b_{m,1}&\cdots&b_{m,m}\end{array}\right)\left(\begin{array}[]{cccccc}-\beta&\cdots&-\beta&1&\cdots&1\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ -\beta&\cdots&-\beta&1&\cdots&1\\ 1&\cdots&1&-\alpha&\cdots&-\alpha\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 1&\cdots&1&-\alpha&\cdots&-\alpha\end{array}\right)A^{-1}
=11αβ(βa1,βa1,a1,a1,βan,βan,an,an,b1,b1,αb1,αb1,bm,bm,αbm,αbm,)A1.\displaystyle=\frac{1}{1-\alpha\beta}\left(\begin{array}[]{cccccc}-\beta\sum a_{1,\ell}&\cdots&-\beta\sum a_{1,\ell}&\sum a_{1,\ell}&\cdots&\sum a_{1,\ell}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ -\beta\sum a_{n,\ell}&\cdots&-\beta\sum a_{n,\ell}&\sum a_{n,\ell}&\cdots&\sum a_{n,\ell}\\ \sum b_{1,\ell}&\cdots&\sum b_{1,\ell}&-\alpha\sum b_{1,\ell}&\cdots&-\alpha\sum b_{1,\ell}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ \sum b_{m,\ell}&\cdots&\sum b_{m,\ell}&-\alpha\sum b_{m,\ell}&\cdots&-\alpha\sum b_{m,\ell}\end{array}\right)A^{-1}.

We now describe the (i,j)(i,j)-entry of the above product in four different cases.

Case 1(1i,jn1\leq i,j\leq n): The (i,j)(i,j)-entry is equal to

11αβk=1n(βm=1nai,m)ak,j=β1αβ(k=1nai,k)(k=1nak,j).\frac{1}{1-\alpha\beta}\sum_{k=1}^{n}\left(-\beta\sum_{m=1}^{n}a_{i,m}\right)a_{k,j}=-\frac{\beta}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right).

Case 2 (1in1\leq i\leq n and n<jn+mn<j\leq n+m): The (i,j)(i,j)-entry is equal to

11αβk=1m(m=1nai,m)bk,j=11αβ(k=1nai,k)(k=1mbk,j).\frac{1}{1-\alpha\beta}\sum_{k=1}^{m}\left(\sum_{m=1}^{n}a_{i,m}\right)b_{k,j}=\frac{1}{1-\alpha\beta}\left(\sum_{k=1}^{n}a_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right).

Case 3 (1jn1\leq j\leq n and n<in+mn<i\leq n+m): The (i,j)(i,j)-entry is equal to

11αβk=1n(m=1mbi,m)ak,j=11αβ(k=1mbi,k)(k=1nak,j).\frac{1}{1-\alpha\beta}\sum_{k=1}^{n}\left(\sum_{m=1}^{m}b_{i,m}\right)a_{k,j}=\frac{1}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{n}a_{k,j}\right).

Case 4 (n<i,jn+mn<i,j\leq n+m): The (i,j)(i,j)-entry is equal to

11αβk=1pr1(αm=1mbi,m)bk,j=α1αβ(k=1mbi,k)(k=1mbk,j).\frac{1}{1-\alpha\beta}\sum_{k=1}^{p^{r-1}}\left(-\alpha\sum_{m=1}^{m}b_{i,m}\right)b_{k,j}=-\frac{\alpha}{1-\alpha\beta}\left(\sum_{k=1}^{m}b_{i,k}\right)\left(\sum_{k=1}^{m}b_{k,j}\right).

Subtracting these quantities from corresponding (i,j)(i,j)-entry of A1A^{-1} gives our desired result. ∎

Acknowledgements

Most of the results in this paper originated from my PhD thesis. I would like to thank Bryden Cais for his guidance, support, and incredibly helpful feedback. I would also like to thank Brandon Levin, Doug Ulmer, and Hang Xue for their helpful comments. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • [BDP17] Massimo Bertolini, Henri Darmon and Kartik Prasanna pp-adic LL-functions and the coniveau filtration on Chow groups” With an appendix by Brian Conrad In J. Reine Angew. Math. 731, 2017, pp. 21–86 DOI: 10.1515/crelle-2014-0150
  • [Čes17] Kęstutis Česnavičius “A modular description of 𝒳0(n)\mathcal{X}_{0}(n) In Algebra Number Theory 11.9, 2017, pp. 2001–2089 DOI: 10.2140/ant.2017.11.2001
  • [ČNS23] Kęstutis Česnavičius, Michael Neururer and Abhishek Saha “The Manin constant and the modular degree” In J. Eur. Math. Soc., 2023 DOI: DOI 10.4171/JEMS/1367
  • [Con07] Brian Conrad “Arithmetic moduli of generalized elliptic curves” In J. Inst. Math. Jussieu 6.2, 2007, pp. 209–278 DOI: 10.1017/S1474748006000089
  • [DR73] P. Deligne and M. Rapoport “Les schémas de modules de courbes elliptiques” In Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 1973, pp. 143–316. Lecture Notes in Math.\bibrangessepVol. 349
  • [Edi06] Bas Edixhoven “Comparison of integral structures on spaces of modular forms of weight two, and computation of spaces of forms mod 2 of weight one” With appendix A (in French) by Jean-François Mestre and appendix B by Gabor Wiese In J. Inst. Math. Jussieu 5.1, 2006, pp. 1–34 DOI: 10.1017/S1474748005000113
  • [EKS11] Ick Sun Eum, Ja Kyung Koo and Dong Hwa Shin “A modularity criterion for Klein forms, with an application to modular forms of level 13” In J. Math. Anal. Appl. 375.1, 2011, pp. 28–41 DOI: 10.1016/j.jmaa.2010.08.035
  • [HS81] H.. Henderson and S.. Searle “On deriving the inverse of a sum of matrices” In SIAM Rev. 23.1, 1981, pp. 53–60 DOI: 10.1137/1023004
  • [JCP16] Estela De Lourdes Juárez-Ruiz, R. Cortés-Maldonado and Felipe Perez-Rodriguez “Relationship between the Inverses of a Matrix and a Submatrix” In Computacion y Sistemas 20, 2016, pp. 251–262 DOI: 10.13053/CyS-20-2-2083
  • [Kat04] Kazuya Kato pp-adic Hodge theory and values of zeta functions of modular forms” Cohomologies pp-adiques et applications arithmétiques. III In Astérisque, 2004, pp. ix\bibrangessep117–290
  • [Kat73] Nicholas M. Katz pp-adic properties of modular schemes and modular forms” In Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 1973, pp. 69–190. Lecture Notes in Mathematics\bibrangessepVol. 350
  • [KL81] Daniel S. Kubert and Serge Lang “Modular units” 244, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer-Verlag, New York-Berlin, 1981, pp. xiii+358
  • [KM85] Nicholas M. Katz and Barry Mazur “Arithmetic moduli of elliptic curves” 108, Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 1985, pp. xiv+514 DOI: 10.1515/9781400881710
  • [KW01] Dan Kalman and James E. White “Polynomial equations and circulant matrices” In Amer. Math. Monthly 108.9, 2001, pp. 821–840 DOI: 10.2307/2695555
  • [Lan88] Serge Lang “Introduction to Arakelov theory” Springer-Verlag, New York, 1988, pp. x+187 DOI: 10.1007/978-1-4612-1031-3
  • [Liu02] Qing Liu “Algebraic geometry and arithmetic curves” Translated from the French by Reinie Erné, Oxford Science Publications 6, Oxford Graduate Texts in Mathematics Oxford University Press, Oxford, 2002, pp. xvi+576
  • [Miy89] Toshitsune Miyake “Modular forms” Translated from the Japanese by Yoshitaka Maeda Springer-Verlag, Berlin, 1989, pp. x+335 DOI: 10.1007/3-540-29593-3
  • [Ser79] Jean-Pierre Serre “Local fields” Translated from the French by Marvin Jay Greenberg 67, Graduate Texts in Mathematics Springer-Verlag, New York-Berlin, 1979, pp. viii+241
  • [Shi94] Goro Shimura “Introduction to the arithmetic theory of automorphic functions” Reprint of the 1971 original, Kanô Memorial Lectures, 1 11, Publications of the Mathematical Society of Japan Princeton University Press, Princeton, NJ, 1994, pp. xiv+271
  • [Sta21] Stacks Project authors “The Stacks Project”, 2021 URL: https://stacks.math.columbia.edu/