This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Comparative study of superconducting and normal-state anisotropy in Fe1+yTe0.6Se0.4 superconductors with controlled amounts of interstitial excess Fe

Yue Sun1 [email protected]    Yongqiang Pan2, Nan Zhou2, Xiangzhuo Xing2, Zhixiang Shi2 [email protected]    Jinhua Wang3, Zengwei Zhu3, Akira Sugimoto4, Toshikazu Ekino4, Tsuyoshi Tamegai5    Haruhisa Kitano1 [email protected] 1Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara 252-5258, Japan
2School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China
3Wuhan National High Magnetic Field Center, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
4Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
5Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
Abstract

We report a systematic study of the superconducting (SC) and normal-state anisotropy of Fe1+yTe0.6Se0.4 single crystals with controlled amounts of excess Fe (yy = 0, 0.07, and 0.14). The SC state anisotropy γH\gamma_{H} was obtained by measuring the upper critical fields under high magnetic fields over 50 T for both HabH\parallel ab and HcH\parallel c. On the other hand, the normal state anisotropy γρ\gamma_{\rho} was obtained by measuring the resistivity with current flowing in the abab plane (ρab\rho_{ab}) and along the cc axis (ρc\rho_{c}). To precisely measure ρab\rho_{ab} and ρc\rho_{c} in the same part of a specimen avoiding the variation dependent on pieces or parts, we adopt a new method using a micro-fabricated bridge with an additional neck part along cc axis. The γH\gamma_{H} decreases from a value dependent on the amount of excess Fe at TcT_{\rm{c}} to a common value \sim 1 at 2 K. The different γH\gamma_{H} at TcT_{\rm{c}} (\sim1.5 for yy = 0, and 2.5 for yy = 0.14) suggests that the anisotropy of effective mass mc/mabm_{c}^{*}/m_{ab}^{*} increases from \sim 2.25 (yy = 0) to 6.25 (yy = 0.14) with the excess Fe. The almost isotropic γH\gamma_{H} at low temperatures is due to the strong spin paramagnetic effect at HabH\parallel ab. By contrast, the γρ\gamma_{\rho} shows a much larger value of \sim 17 (yy = 0) to \sim 50 (yy = 0.14) at the temperature just above TcT_{\rm{c}}. Combined the results of γH\gamma_{H} and γρ\gamma_{\rho} near TcT_{\rm{c}}, we found out that the discrepant anisotropies between the SC and normal states originates from a large anisotropy of scattering time τab\tau_{ab}/τc\tau_{c} \sim 7.8. The τab\tau_{ab}/τc\tau_{c} is found to be independent of the excess Fe.

preprint: Sun/Anisotropy of FeTeSe

I introduction

Fe1+yTe1-xSex compounds are unique in iron-based superconductors (IBSs) because of their structural simplicity, consisting of only FeTe/Se layers. They have attracted much interest both in the fundamental physics and application research. In the fundamental physics, the SC transition temperature (TcT_{\rm{c}}) is found to be remarkably enhanced by applying pressure Medvedev et al. (2009); Gresty et al. (2009), intercalating spacer layers Burrard-Lucas et al. (2013); Lu et al. (2015), carrier doping by gating Shiogai et al. (2016); Lei et al. (2016), and reducing the thickness to monolayer He et al. (2013); Ge et al. (2015). A nematic state, which break the rotational symmetry, is observed in FeSe without long-range magnetic order Wang et al. (2016a); Wen et al. (2016); Wang et al. (2016b). The small Fermi energy, comparable to the superconducting gap size, indicates that superconductivity in Fe1+yTe1-xSex may be in the crossover regime from Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) Kasahara et al. (2014); Lubashevsky et al. (2012). More interestingly, a topological surface superconductivity Zhang et al. (2018, 2019) and the possible Majorana bound state have been observed Wang et al. (2018); Machida et al. (2019), which make Fe1+yTe1-xSex the first high-temperature topological superconductor. In the view of application, the large upper critical field (Hc2H_{\rm{c2}}) and less toxic nature compared with iron pnictides make Fe1+yTe1-xSex an ideal candidate for fabricating SC wires and tapes. In practice, the SC tapes with a large critical current density, over 106 A/cm2 under self-field and over 105 A/cm2 under 30 T at 4.2 K, have already been fabricated Si et al. (2013).

Determination of the anisotropy (γ\gamma) is crucial for both fundamental physics and practical applications Gurevich (2011); Hosono et al. (2018). It provides information on the underlying electronic structure such as the Fermi-surface topology, and also shed light on the SC gap structure. In application, small γ\gamma is advantageous for allowing high critical current density in the presence of magnetic field, due to the reduction of flux cutting effects and strong thermal fluctuations. Therefore, the anisotropy of Fe1+yTe1-xSex is pivotal for both understanding the intriguing physics and the future application.

In the SC state, γ\gamma can be obtained by measuring Hc2H_{\rm{c2}} or the penetration depth (λ\lambda). The former defines γH\gamma_{H} = Hc2abH_{c2}^{ab}/Hc2cH_{c2}^{c} = ξab\xi_{ab}/ξc\xi_{c}, where ξab\xi_{ab} and ξc\xi_{c} are the coherence lengths in the abab plane and along cc axis, respectively. The later provides γλ\gamma_{\lambda} = λc\lambda_{c}/λab\lambda_{ab}, where λc\lambda_{c} and λab\lambda_{ab} are the penetration depths. Within the Ginzburg-Landau (GL) theory for a single-gap superconductor at the temperatures close to TcT_{\rm{c}}, γH\gamma_{H} = mc/mab\sqrt{m_{c}^{*}/m_{ab}^{*}} = γλ\gamma_{\lambda}, where mcm_{c}^{*} and mabm_{ab}^{*} are the effective masses along cc axis and in the abab plane, respectively Tinkham (1996); Yuan et al. (2015). On the other hand, γ\gamma in the normal state can be obtained by γρ\gamma_{\rho} = ρc\rho_{c}/ρab\rho_{ab}, where ρc\rho_{c} and ρab\rho_{ab} are the resistivity along the cc axis and in the abab plane, respectively. In the approximation of isotropic scattering, ρc\rho_{c}/ρab\rho_{ab} = mc/mabm_{c}^{*}/m_{ab}^{*}. Therefore, γ\gamma in the SC and normal state can be connected by the relation γH\gamma_{H} (γλ\gamma_{\lambda}) \sim γρ1/2\gamma_{\rho}^{1/2} Tanatar et al. (2009).

Table 1: SC and normal-state anisotropies for typical IBSs. SC state anisotropy is calculated as γH\gamma_{H} = Hc2abH_{c2}^{ab}/Hc2cH_{c2}^{c}, where Hc2abH_{c2}^{ab} and Hc2cH_{c2}^{c} are the upper critical fields in the abab plane and along the cc axis. Normal-state anisotropy is obtained as γρ\gamma_{\rho} = ρc\rho_{c}/ρab\rho_{ab}, where ρc\rho_{c} and ρab\rho_{ab} are resistivity along cc axis and in the abab plane. To compare with γH\gamma_{H}, γρ1/2\gamma_{\rho}^{1/2} is calculated and presented in the table. Anisotropies for Fe1.0Te0.6Se0.4, Fe1.07Te0.6Se0.4, and Fe1.14Te0.6Se0.4 are the results of the current research.
γH\gamma_{H} (SC state) γρ1/2\gamma_{\rho}^{1/2} (normal state)
Ba(Fe1-xCox)2As2 1.5\sim2.0 Yamamoto et al. (2009) 1.4\sim2.1Tanatar et al. (2009)
Ba1-xKxFe2As2 1\sim2 Yuan et al. (2009) 3.2\sim5.5 Zverev et al. (2009)
BaFe2(As1-xPx)2 1.5\sim2.6 Chaparro et al. (2012); Miura et al. (2013) 2\sim2.8 Tanatar et al. (2013)
LiFeAs 1.5\sim2.5 Zhang et al. (2011) 1.2\sim1.9 Song et al. (2010)
KFe2As2 3.5\sim5.5 Terashima et al. (2009) 3.2\sim6.3 Terashima et al. (2009)
SmFeAsO1-xFx 4\sim5 Moll et al. (2010) 1.4\sim3.5 Moll et al. (2010)
Ca1-xLaxFeAs2 4.9-5.2 Xing et al. (2019) 3.9-5.5 Jiang et al. (2016)
Fe1.0Te0.6Se0.4 1\sim1.6 2.5\sim4
Fe1.07Te0.6Se0.4 1\sim1.8 -
Fe1.14Te0.6Se0.4 1\sim2.5 5.7\sim7
Fe1.18Te0.6Se0.4 - 7.7\sim8.8 Liu et al. (2009)

So far, the relation γH\gamma_{H} \sim γρ1/2\gamma_{\rho}^{1/2} has already been verified in most IBSs, as summarized in Table \Romannum1. However, the relation seems to be violated in Fe1+yTe1-xSex. A small SC-state anisotropy, γH\gamma_{H}(γλ\gamma_{\lambda}) << 3, has already been confirmed by several previous reports Fang et al. (2010); Khim et al. (2010); Bendele et al. (2010). By contrast, an unexpectedly large normal-state anisotropy γρ\gamma_{\rho} \sim 50-70 was reported Noji et al. (2010). Such a discrepancy between the SC and normal-state anisotropies still remains unresolved, which confuses both the study of fundamental physics and the application of Fe1+yTe1-xSex.

In this report, we successfully resolved the discrepancy by systematically probing the SC and normal-state anisotropies of Fe1+yTe0.6Se0.4 single crystals with different amounts of excess Fe. Such discrepancy is demonstrated to originate from a large anisotropy in scattering times τab\tau_{ab}/τc\tau_{c} \sim 7.8 in the normal state.

II experiment

Fe1+yTe0.6Se0.4 single crystals were grown by the self-flux method as described in detail elsewhere Sun et al. (2013a). The as-grown crystals usually contain some amounts (represented by yy) of excess Fe residing in the interstitial sites of the Te/Se layer. The excess Fe can be removed and its amount can be tuned by post annealing Sun et al. (2014a, 2013b, 2013c, 2019). After annealing, a series of single crystals with different amounts of excess Fe can be prepared. More details about the crystal preparation, excess Fe, and the basic properties can be found in our recent review paper Sun et al. (2019). The inductively-coupled plasma (ICP) atomic emission spectroscopy and the scanning tunneling microscopy (STM) were used for detecting the amount of excess Fe. STM images were obtained by a modified Omicron LT–UHV–STM system Sugimoto et al. (2008). The sample was cleaved in situ at 4 K in an ultra-high vacuum chamber of \sim 10-8 Pa to obtain fresh and unaffected crystal surface. Resistivity measurements were performed by the four-probe method. The electrical transport measurements under high magnetic field were performed at Wuhan High Magnetic Field Center, China. The bridges in the abab plane and along the cc axis used for the measurements of normal state anisotropy, as shown schematically in the insets of Figs. 3(a) and 3(b), were fabricated by using the focused ion beam (FIB) technique Sun et al. (2020); Kakehi et al. (2016); Kakizaki et al. (2017).

III results and discussion

Refer to caption
Figure 1: STM images for (a) Fe1.14Te0.6Se0.4, (b) Fe1.07Te0.6Se0.4, and (c) Fe1.0Te0.6Se0.4 single crystals. The bright spots in (a) and (b) correspond to the excess Fe, which disappear in (c). (a) and (c) have been used in our previous publication Sun et al. (2014a). Temperature dependence of the in-plane resistivities scaled by the values at 300 K for (d) Fe1.14Te0.6Se0.4, (e) Fe1.07Te0.6Se0.4, and (f) Fe1.0Te0.6Se0.4.

In our as-grown single crystals, the amount of excess Fe is \sim 14% as analyzed by ICP atomic emission spectroscopy. Although the excess Fe may be removed after annealing, it should still remain in the crystal, mainly on the surface, in some form of oxides Sun et al. (2019). Therefore, traditional compositional analysis methods such as the ICP, energy dispersive X-ray spectroscopy (EDX) and electron probe microanalyzer (EPMA) cannot precisely detect the amount change of excess Fe. To precisely determine the change in the number of excess Fe, we employ the STM measurement, which has atomic resolution. The excess Fe occupies the interstitial site in the Te/Se layer, and the previous report proved that the cleaved Fe1+yTe1-xSex single crystal possesses only the termination layer of Te/Se, which guarantee that the STM can directly observe the excess Fe in Te/Se layer without the influence of neighboring Fe layers Massee et al. (2009). Fig. 1(a) shows the STM image for the as-grown crystal. There are several randomly distributed bright spots in the image, which represent the excess Fe according to the previous STM analysis Massee et al. (2009); Hanaguri et al. (2010); Ukita et al. (2011). After annealing, the amount of bright spots, i.e. the excess Fe, is obviously reduced as shown in Fig. 1(b), and disappears in Fig. 1(c). By counting the number of the bright spots in the STM images together with the ICP result of 14% excess Fe for the as-grown crystal, the amount of excess Fe in Figs. 1(b) and 1(c) can be estimated as \sim 7% and 0, respectively. Hence, the three crystals are labeled as Fe1.14Te0.6Se0.4, Fe1.07Te0.6Se0.4, and Fe1.0Te0.6Se0.4 in the rest of this article.

Figs. 1(d)-1(f) show the temperature dependence of resistivities for the three crystals, scaled by the values at 300 K. All the crystals manifest a similar onset of TcT_{\rm{c}} \sim 15 K. However, the temperature dependent behaviors for the resistivity are quite different. Fe1.14Te0.6Se0.4 manifests a semiconducting behavior (dρ\rho/dTT << 0) when the temperature approaches to TcT_{\rm{c}}. The residual resistivity ratio RRR, defined as ρ\rho(300 K)/ρ\rho(TconsetT_{\rm{c}}^{\rm{onset}}), is estimated as \sim 0.74. For Fe1.07Te0.6Se0.4, the semiconducting behavior is suppressed, and replaced by a temperature-independent behavior with RRR = 0.92. On the other hand, resistivity for Fe1.0Te0.6Se0.4 manifests a metallic behavior (dρ\rho/dTT >> 0) with RRR = 2. These observations suggest that the semiconducting behavior (dρ\rho/dTT << 0) in Fe1.14Te0.6Se0.4 originates from the localization effect of excess Fe, which can be suppressed by removing the excess Fe Liu et al. (2009); Sun et al. (2014b). More details about the transport properties such as the Hall effect and magnetoresistance have been reported in our previous publications Sun et al. (2014b, 2016).

Refer to caption
Figure 2: The magnetic field dependence of the in-plane resistivity ρab\rho_{ab} for Fe1.0Te0.6Se0.4 with (a) HcH\parallel c at 2, 2.6, 4.2, 6, 8, 10, 11, 12, 13, and 15 K, (b) HabH\parallel ab at 2.5, 3.5, 4.2, 5, 8, 10, 11, 12, 13, 14, 14.5 and 15 K, for Fe1.07Te0.6Se0.4 with (c) HcH\parallel c at 2.1, 3.2, 4.2, 6, 7.5, 9, 10.5, 13.5, 14, and 16 K, (d) HabH\parallel ab at 1.6, 3.2, 4.2, 6, 8, 11, 12.5, 13.2, 14, and 16 K, for Fe1.14Te0.6Se0.4 with (e) HcH\parallel c at 2, 2.6, 4.3, 6, 8, 10, 11, 12, 13, and 15 K, (f) HabH\parallel ab at 1.8, 2.5, 3.5, 4.2, 5.5, 6.5, 9, 11.5, 12.5, and 13.5 K. Schematics of the experimental configuration for the resistivity measurements with (g) HcH\parallel c and (h) HabH\parallel ab, respectively. Reduced temperature (T/TcT/T_{c}) dependence of upper critical fields for (i) Fe1.0Te0.6Se0.4, (j) Fe1.07Te0.6Se0.4, and (k) Fe1.14Te0.6Se0.4, where the solid and open symbols represent HcH\parallel c and HabH\parallel ab, respectively. (l) Temperature dependence of the anisotropies in the SC state for the three crystals.

To probe the anisotropy in the SC state, the SC transition was measured under a high magnetic field over 50 T for the three crystals. Figs. 2(a)-2(f) show the in-plane resisivity ρab\rho_{ab} of the three crystals as a function of the magnetic field along the cc axis (HcH\parallel c) and parallel to the abab plane (HabH\parallel ab). Hc2abH_{c2}^{ab} (open symbols) and Hc2cH_{c2}^{c} (solid symbols) for the three crystals are determined by the 90% of the resistivity value just above the SC transition. (Due to the broad transition under HcH\parallel c for Fe1.14Te0.6Se0.4, the criteria of 50% and 10% of the resistivity value cannot be obtained at high temperatures.) Clearly, with such large field, we can reach the Hc2H_{c2} down to very low temperatures \sim 2 K, which is over 44 T for both HabH\parallel ab and HcH\parallel c in all the three crystals (see Figs. 2(i) - 2(k)). The obtained Hc2H_{c2} is larger than the expected Pauli-limiting field estimated as HpH_{p}(0) = 1.86 TcT_{\rm{c}} \sim 27 T for a weak-coupling BCS superconductor, which indicates that the spin paramagnetic effect plays an important role in the determination of Hc2H_{c2}(0). On the other hand, Hc2abH_{c2}^{ab} shows a convex shape with similar curvatures for all the three crystals. The convex shape in Hc2abH_{c2}^{ab} is a common feature for IBSs Fang et al. (2010); Khim et al. (2010); Yuan et al. (2009); Zhang et al. (2011); Fuchs et al. (2009), which is usually explained by the strong spin paramagnetic effect with relative large Maki parameter α\alpha within the Werthamer-Helfand-Hohenberg (WHH) theory Helfand and Werthamer (1966). Therefore, almost the same behavior of Hc2abH_{c2}^{ab} for the three crystals indicates that the excess Fe has little effect on the spin paramagnetic effect for HabH\parallel ab.

On the other hand, Hc2cH_{c2}^{c} for most IBSs manifests a nearly linear behavior (or less convex than Hc2abH_{c2}^{ab}), suggesting that the spin paramagnetic effect for HcH\parallel c is negligible (or much smaller than HabH\parallel ab) Fang et al. (2010); Khim et al. (2010); Yuan et al. (2009); Zhang et al. (2011). For Fe1+yTe1-xSex, both the convex and linear Hc2cH_{c2}^{c} have been reported previously Fang et al. (2010); Khim et al. (2010). In our case, Hc2cH_{c2}^{c} for Fe1.14Te0.6Se0.4 shows a linear behavior, while a slightly convex behavior (with smaller curvature than Hc2abH_{c2}^{ab}) is observed in Fe1.07Te0.6Se0.4 and Fe1.0Te0.6Se0.4. Our results reveal that the previous controversy in the Hc2cH_{c2}^{c} of Fe1+yTe1-xSex is due to the sample dependence of excess Fe. For the crystals free from or with small amount of excess Fe, the spin paramagnetic effect is finite for HcH\parallel c, although smaller than that for HabH\parallel ab. However, the spin paramagnetic effect for HcH\parallel c is is more easily suppressed by excess Fe, and becomes almost negligible in crystal with too much excess Fe. We also note that Hc2cH_{c2}^{c} for Fe1.14Te0.6Se0.4 shows a weaker rise close to TcT_{\rm{c}} than those for Fe1.0Te0.6Se0.4 and Fe1.07Te0.6Se0.4, suggesting a more strongly-divergent behavior of ξab\xi_{ab} close to TcT_{\rm{c}}. This leads to the finite difference of the SC state anisotropy dependent on the excess Fe, as will be discussed below.

Due to the convex shape, Hc2abH_{c2}^{ab} finally meets Hc2cH_{c2}^{c} at low temperatures for all the three crystals, which means that the Hc2H_{c2} becomes isotropic. With further decreasing temperature, Hc2abH_{c2}^{ab} becomes even smaller than Hc2cH_{c2}^{c}. Such a crossover behavior is a unique feature of Fe1+yTe1-xSex, which is not observed in other IBSs Gurevich (2011). In a similar compound FeSe, a high-filed phase was observed at low temperatures, and suggested to originate from the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state Kasahara et al. (2020). The large value of Maki parameter α\alpha and the possibility of FFLO state in FeTe1-xSex have also been discussed previously Khim et al. (2010). However, the realization of the FFLO state usually needs the crystal to be in the clean limit, i.e. the mean free path (\ell) should be much larger that the coherence length (ξ\xi). According to the expressions \ell = πcNe2kFρ0\frac{\pi{c}\hbar}{{N}{e^{2}}{k_{F}}{\rho_{0}}} Kasahara et al. (2020), where c is the lattice parameter, N is the number of formula units per unit cell, kkF \sim 1.0 nm-1 Lubashevsky et al. (2012) is the Fermi wave vector, and ρ\rho0 \sim 200 μΩ\mu\Omega Sun et al. (2013d) is the residual resistivity, \ell for Fe1.0Te0.6Se0.4 is estimated as \sim 1.8 nm. \ell is smaller than ξ\xi \sim 2.8 nm Lei et al. (2010), implying that the crystal is in the dirty limit rather than the clean limit. On the other hand, considering the fact that the transition from BCS state to the FFLO state is of first order, the FFLO state should be readily destroyed by disorders. It is obviously in stark contrast to our observations that the crossover of Hc2abH_{c2}^{ab} and Hc2cH_{c2}^{c} is almost identical in the three crystals containing different amounts of excess Fe. Therefore, the above discussion has ruled out the possibility of the FFLO state in Fe1+yTe0.6Se0.4. A possible origin of the crossover behavior in the Hc2H_{c2} is the multi-band effect. The upturn in Hc2cH_{c2}^{c} may be due to the contribution from another band. Similar upturn behavior has also been observed in S-doped FeSe Abdel-Hafiez et al. (2015) and Ba2Ti2Fe2As4O Abdel-Hafiez et al. (2018). We want to point out that such upturn behavior only occurs at low temperatures, which will not affect the value of anisotropy at high temperatures close to TcT_{\rm{c}}.

The SC state anisotropies for the three crystals estimated as γH\gamma_{H} = Hc2abH_{c2}^{ab}/Hc2cH_{c2}^{c} are shown in Fig. 2(l). At low temperatures, γH\gamma_{H} becomes isotropic for all the three crystals. Then, γH\gamma_{H} gradually increases with increasing temperature, and manifests a stronger increase with excess Fe. The temperature dependence of γH\gamma_{H} has been discussed by using Δ(kz)\Delta(k_{z})=Δ0\Delta_{0}(1+η\etacoskzαk_{z}\alpha), including the coefficient η\eta for the kzk_{z} dispersion of the gap Kogan and Prozorov (2012). γH\gamma_{H} reaches a value \sim 1.5 close to TcT_{\rm{c}} for Fe1.0Te0.6Se0.4. On the other hand, γH\gamma_{H} close to TcT_{\rm{c}} slightly increases with increasing the amount of excess Fe, and reaches a value \sim 2.5 for Fe1.14Te0.6Se0.4. Within the anisotropic three-dimensional GL-theory for a single-gap superconductor, γH\gamma_{H} = Hc2abH_{c2}^{ab}/Hc2cH_{c2}^{c} = mc/mab\sqrt{m_{c}^{*}/m_{ab}^{*}}, through the anisotropy of the GL coherence lengths. The anisotropy of effective mass mc/mabm_{c}^{*}/m_{ab}^{*} is estimated as 2.25, 3.24, and 6.25 for Fe1.0Te0.6Se0.4, Fe1.07Te0.6Se0.4, and Fe1.14Te0.6Se0.4, respectively. The influence of excess Fe on the mabm_{ab}^{*} of the heavy band has been reported in the previous ARPES measurements Rinott et al. (2017). Here, our results reveal that the anisotropy of mc/mabm_{c}^{*}/m_{ab}^{*} is also strongly affected by the excess Fe.

Refer to caption
Figure 3: (a) Temperature dependence of the resistivity for the in-plane bridge R1R_{1}. Insets show the sketch and corresponding series resistors for R1R_{1}. (b) Temperature dependence of the resistivity for the further fabricated structure with two overlapped slits along the cc axis. Upper inset is the scanning ion microscopy image of the structure. Lower inset shows the sketch and corresponding series resistors for R2R_{2}.

In order to estimate the normal-state anisotropy, we need to measure the resistivity both in the abab plane (ρab\rho_{ab}) and along the cc axis (ρc\rho_{c}). To measure ρc\rho_{c} for bulk sample, the specific configuration of contact electrodes is required for layered superconductors such as IBSs. This leads to a problem that ρc\rho_{c} and ρab\rho_{ab} are obtained from different samples. Here, we report a method to obtain the ρc\rho_{c} measured in a part of the region where ρab\rho_{ab} was measured, by using a cc-axis neck structure fabricated additionally in the in-plane bridge. To fabricate the cc-axis bridge, the crystal was first cleaved into a slice with \sim10 μ\mum in thickness, by using scotch tape. The slice was glued on a sapphire substrate, and sputtered by four Au contacts to improve the electric contact. Then the sliced crystal was etched by using FIB and a narrow in-plane bridge with a width of \sim1 μ\mum was fabricated between voltage terminals, as shown schematically in the inset of Fig. 3(a). The resistance R1R_{1} for the in-plane bridge is measured by four probe method, which can be treated as a sum of three resistances in series, and expressed as

R1=RabL1+Rabcenter+RabR1=ρab(lL1t0W0+lcentert0w+lR1t0W0),\begin{split}R_{1}&=R_{ab}^{L1}+R_{ab}^{center}+R_{ab}^{R1}\\ &=\rho_{ab}(\frac{l_{L1}}{t_{0}W_{0}}+\frac{l_{center}}{t_{0}w}+\frac{l_{R1}}{t_{0}W_{0}}),\end{split} (1)

where t0t_{0} is the thickness, ww and W0W_{0} are the width, lL1l_{L1}, lcenterl_{center}, and lR1l_{R1} are the length of the three parts, as shown in the inset of Fig. 3(a). Temperature dependence of R1R_{1} is shown in the main panel of Fig. 3(a).

After measuring of R1R_{1}, two separated slits were further fabricated in the sidewalls of the in-plane bridge to make a small neck along the cc axis, as shown in the upper inset of Fig. 3(b). The length of cc axis neck was adjusted by a vertical overlap between the two slits (typically \sim1 μ\mum). Such a crank structure enforces the current to flow along the cc axis in the bridge region as marked by the rectangular frame in the lower inset of Fig. 3(b). The whole resistance R2R_{2} for this device can be treated as a sum of seven resistances in series as shown schematically in the lower inset of Fig. 3(b). The current flows along the abab plane in the left and right three parts, while it flows along the cc axis in the center one with dimension of l×w×tl\times w\times t. Therefore, R2R_{2} can be expressed as

R2=RabL1+RabL2+RabL3+Rc+RabR3+RabR2+RabR1=ρab(lL1t0W0+lL2t0w+lL3tLw)+ρc(tlw)+ρab(lR3tRw+lR2t0w+lR1t0W0).\begin{split}R_{2}&=R_{ab}^{L1}+R_{ab}^{L2}+R_{ab}^{L3}+R_{c}+R_{ab}^{R3}+R_{ab}^{R2}+R_{ab}^{R1}\\ &=\rho_{ab}(\frac{l_{L1}}{t_{0}W_{0}}+\frac{l_{L2}}{t_{0}w}+\frac{l_{L3}}{t_{L}w})+\rho_{c}(\frac{t}{lw})\\ &+\rho_{ab}(\frac{l_{R3}}{t_{R}w}+\frac{l_{R2}}{t_{0}w}+\frac{l_{R1}}{t_{0}W_{0}}).\end{split} (2)

ρab\rho_{ab} and ρc\rho_{c} can be simply estimated by solving Eqs. (1) and (2). By this method, ρab\rho_{ab} and ρc\rho_{c} are obtained from almost the same region in an identical crystal, therefore they are not affected by the sample-dependent variations.

Refer to caption
Figure 4: Temperature dependence of the in-plane (left axis) and out-of-plane (right axis) resistivity ρab\rho_{ab} and ρc\rho_{c} for the (a) Fe1.0Te0.6Se0.4 and (b) Fe1.14Te0.6Se0.4. Insets plot the normal-state anisotropy γρ\gamma_{\rho} = ρc\rho_{c}/ρab\rho_{ab} as a function of temperature.

ρab\rho_{ab} and ρc\rho_{c} for the Fe1.0Te0.6Se0.4 obtained by the above method are shown in the main panel of Fig. 4(a). Temperature dependence of ρab\rho_{ab} shows similar behavior as the bulk one [see Fig. 1(f)], which confirms that FIB fabrication will not introduce visible damage in the bridge part. In contrast to the ρab\rho_{ab}, ρc\rho_{c} increases slightly with decreasing temperature down to 60 K, then it shows a metallic behavior down to TcT_{\rm{c}}. Similar temperature dependent behavior of ρc\rho_{c} was also reported previously by using the conventional method for bulk samples Liu et al. (2009). Normal state anisotropy γρ\gamma_{\rho} calculated as ρc\rho_{c}/ρab\rho_{ab} for Fe1.0Te0.6Se0.4 is shown in the inset of Fig. 4(a). γρ\gamma_{\rho} is \sim 7 at 250 K, and gradually increases with decreasing temperature. Below \sim 30 K, the increment accelerates, and γρ\gamma_{\rho} finally reaches a value of \sim 17 just above TcT_{\rm{c}}. On the other hand, ρc\rho_{c} for Fe1.14Te0.6Se0.4 with abundant excess Fe continues to increase with cooling down in the whole temperature range [see Fig. 4(b)]. Besides, the SC transition is not observed in ρc\rho_{c}, which is due to the fact that superconductivity in Fe1.14Te0.6Se0.4 is filamentary as proved by the absent of SC transition in bulk measurements such as specific heat and magnetization Sun et al. (2014a). Our observation indicates that the filamentary superconductivity in crystals with abundant excess Fe is localized, andmay not show up in a small region where we probe ρc\rho_{c}. The γρ\gamma_{\rho} for Fe1.14Te0.6Se0.4 increases with decreasing temperature, while it decreases slightly below \sim 50 K [see the inset of Fig. 4(b)]. In contrast to Fe1.0Te0.6Se0.4, γρ\gamma_{\rho} for Fe1.14Te0.6Se0.4 manifests a much larger value ranging from 32 - 50. Such larger normal-state anisotropy is close to that reported previously Noji et al. (2010). Our results reveal that the normal-state anisotropy is strongly affected by the amount of excess Fe.

To directly observe the temperature evolution of anisotropy in the whole temperature range from the SC to normal state, we summarized the results of γH\gamma_{H} and γρ\gamma_{\rho} in Fig. 5. For comparison, the anisotropy γλ\gamma_{\lambda} estimated from penetration depth measurements (the amount of excess Fe was claimed to be \sim 0) Bendele et al. (2010), and the γρ\gamma_{\rho} calculated from crystal with more excess Fe (yy = 0.18) Liu et al. (2009) are also included. The normal-state anisotropy is compared with γH\gamma_{H} by using a square root of γρ\gamma_{\rho}, since γH\gamma_{H} \sim γρ1/2\gamma_{\rho}^{1/2} is expected in the isotropic scattering case. In the SC state, both γH\gamma_{H} and γλ\gamma_{\lambda} show relatively small values <<3. On the other hand, γλ\gamma_{\lambda} increases with decreasing temperature, while γH\gamma_{H} decreases with decreasing temperature. The different temperature dependence of γλ\gamma_{\lambda} and γH\gamma_{H} in FeTe1-xSex has already been discussed in the previous report Bendele et al. (2010), and was also observed in other IBSs Prozorov and Kogan (2011) and MgB2 Fletcher et al. (2005). It may originate from the multiband effect, where the contributions of electronic bands with different kk-dependent Fermi velocities and gap values lead to different ratios of γλ\gamma_{\lambda} and γH\gamma_{H} Kończykowski et al. (2011).

Refer to caption
Figure 5: Logarithmic plots of the SC state anisotropy γH\gamma_{H} and square root of the normal-state anisotropy γρ1/2\gamma_{\rho}^{1/2} as a function of the reduced temperature (T/TcT/T_{\rm{c}}), at the range of 1.5 K \leq TT \leq 300 K. For comparison, normal-state anisotropy of Fe1.18Te0.6Se0.4 from Ref. Liu et al. (2009) and SC state anisotropy obtained from the penetration-depth measurements γλ\gamma_{\lambda} \equiv λc\lambda_{c}/λab\lambda_{ab} of Fe1.0Te0.6Se0.4 Bendele et al. (2010) are also plotted.

Obviously, the anisotropy in the normal state is much larger than that in the SC state. For Fe1.0Te0.6Se0.4, γρ0.5\gamma_{\rho}^{0.5} resides in the region of 2.5 - 4. However, it increases up to \sim 5.7 - 7 in Fe1.14Te0.6Se0.4, and \sim 7.7 - 8.8 in Fe1.18Te0.6Se0.4 Liu et al. (2009). The values of γH\gamma_{H} and γρ\gamma_{\rho} are also summarized in Table \Romannum1. In order to resolve the observed discrepancy between the SC and normal-state anisotropies, we need to reconsider the empirical relation of γH\gamma_{H} \sim γρ0.5\gamma_{\rho}^{0.5}. According to the Drude Model, γρ\gamma_{\rho} can be expressed as

γρ=ρcρab=mcne2τc/mabne2τab=τabτcmcmab,\gamma_{\rho}=\frac{\rho_{c}}{\rho_{ab}}=\frac{m^{*}_{c}}{ne^{2}\tau_{c}}/\frac{m^{*}_{ab}}{ne^{2}\tau_{ab}}=\frac{\tau_{ab}}{\tau_{c}}\frac{m^{*}_{c}}{m^{*}_{ab}}, (3)

where nn is the charge carrier density, and τab\tau_{ab} and τc\tau_{c} are the carrier scattering times in the abab-plane and along the cc axis, respectively. The empirical relation of γH\gamma_{H} \sim γρ0.5\gamma_{\rho}^{0.5} is approximately obtained by assuming the isotropic scattering. Therefore, the different anisotropy between the SC and normal state, observed universally for samples with different amounts of excess Fe, clearly shows the contribution of the anisotropic scattering time τ\tau. By assuming that the ratio of mcm^{*}_{c}/mabm^{*}_{ab} is continuously connected at TcT_{\rm{c}}, we roughly estimate the ratio of τab\tau_{ab}/τc\tau_{c} (=γρ\gamma_{\rho}/γH2\gamma_{H}^{2}) as \sim 7.77 for Fe1.0Te0.6Se0.4 and \sim 7.80 for Fe1.14Te0.6Se0.4. Therefore, the large discrepancy between the SC and normal-state anisotropies is due to the anisotropy of the scattering.

Besides, the anisotropy of τab\tau_{ab}/τc\tau_{c} is almost identical for crystals with different amounts of excess Fe, which indicates that the scattering from excess Fe should be isotropic. The excess Fe in the interstitial position is reported to be strongly magnetic, which provides local moments that interact with the Fe in the FeTe/Se plane Zhang et al. (2009). Neutron scattering measurements find out that the excess Fe in Fe1+yTe1-xSex will cause spin clusters involving more than 50 Fe in the nearest two neighboring Fe-layers Thampy et al. (2012). Considering the amount of excess Fe is as large as 14% in Fe1.14Te0.6Se0.4, the influence of such magnetic clusters to the scattering should be more extensive, compared to the case of isolated impurities. Our observation of the isotropic scattering from excess Fe suggests that the magnetic moment should be randomly orientated without order.

IV conclusions

We investigated the reported discrepancy between the SC and normal state anisotropies of Fe1+yTe1-xSex superconductors by probing the anisotropies of crystals with controlled amounts of excess Fe. The SC-state anisotropy γH\gamma_{H} is found to be in the range of 1 \sim 2.5 in the crystals with excess Fe ranging from 0 to 14%, while the normal-state anisotropy γρ\gamma_{\rho} shows a much larger value of 17 \sim 50 at the temperature above TcT_{\rm{c}}. Combining the results of γH\gamma_{H} and γρ\gamma_{\rho}, we found out that such discrepancy originates from a large anisotropic scattering time τab\tau_{ab}/τc\tau_{c} \sim 7.8 in the normal state. Besides, the τab\tau_{ab}/τc\tau_{c} is found to be independent of the excess Fe.

Acknowledgements.
The authors would like to thank Dr. Shin-ya Ayukawa and Mr. Daiki Kakehi for their stimulating pioneer work, and Dr. Jinsheng Wen from Nanjing University, and Dr. Peng Zhang from ISSP, the University of Tokyo for the helpful discussions. The present work was partly supported by the National Key R&D Program of China (Grant No. 2018YFA0704300), and KAKENHI (JP20H05164, 19K14661, 18K03547, 16K13841, and 17H01141) from JSPS. FIB microfabrication performed in this work was supported by Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University. ICP analyses were performed at Chemical Analysis Section in Materials Analysis Station of NIMS. S.Y. and Y.P. contributed equally to this paper.

References

  • Medvedev et al. (2009) S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann,  and C. Felser, Nat. Mater. 8, 630 (2009).
  • Gresty et al. (2009) N. C. Gresty, Y. Takabayashi, A. Y. Ganin, M. T. McDonald, J. B. Claridge, D. Giap, Y. Mizuguchi, Y. Takano, T. Kagayama, Y. Ohishi, M. Takata, M. J. Rosseinsky, S. Margadonna,  and K. Prassides, J. Am. Chem. Soc. 131, 16944 (2009).
  • Burrard-Lucas et al. (2013) M. Burrard-Lucas, D. G. Free, S. J. Sedlmaier, J. D. Wright, S. J. Cassidy, Y. Hara, A. J. Corkett, T. Lancaster, P. J. Baker, S. J. Blundell,  and S. J. Clarke, Nat. Mater. 12, 15 (2013).
  • Lu et al. (2015) X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang, F. Q. Huang, Q. Z. Huang,  and X. H. Chen, Nat. Mater. 14, 325 (2015).
  • Shiogai et al. (2016) J. Shiogai, Y. Ito, T. Mitsuhashi, T. Nojima,  and A. Tsukazaki, Nat. Phys. 12, 42 (2016).
  • Lei et al. (2016) B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun,  and X. H. Chen, Phys. Rev. Lett. 116, 077002 (2016).
  • He et al. (2013) S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue,  and X. J. Zhou, Nat. Mater. 12, 605 (2013).
  • Ge et al. (2015) J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu,  and J.-F. Jia, Nat. Mater. 14, 285 (2015).
  • Wang et al. (2016a) Q. Wang, Y. Shen, B. Pan, Y. Hao, M. Ma, F. Zhou, P. Steffens, K. Schmalzl, T. R. Forrest, M. Abdel-Hafiez, X. Chen, D. A. Chareev, A. N. Vasiliev, P. Bourges, Y. Sidis, H. Cao,  and J. Zhao, Na.t Mater. 15, 159 (2016a).
  • Wen et al. (2016) C. H. P. Wen, H. C. Xu, C. Chen, Z. C. Huang, X. Lou, Y. J. Pu, Q. Song, B. P. Xie, M. Abdel-Hafiez, D. A. Chareev, A. N. Vasiliev, R. Peng,  and D. L. Feng, Nat. Commun. 7, 10840 (2016).
  • Wang et al. (2016b) Q. Wang, Y. Shen, B. Pan, X. Zhang, K. Ikeuchi, K. Iida, A. D. Christianson, H. C. Walker, D. T. Adroja, M. Abdel-Hafiez, X. Chen, D. A. Chareev, A. N. Vasiliev,  and J. Zhao, Nat. Commun. 10, 1038 (2016b).
  • Kasahara et al. (2014) S. Kasahara, T. Watashige, T. Hanaguri, Y. Kohsaka, T. Yamashita, Y. Shimoyama, Y. Mizukami, R. Endo, H. Ikeda, K. Aoyama, T. Terashima, S. Uji, T. Wolf, H. von Löhneysen, T. Shibauchi,  and Y. Matsuda, Proc. Nat. Acad. Sci. 111, 16309 (2014).
  • Lubashevsky et al. (2012) Y. Lubashevsky, E. Lahoud, K. Chashka, D. Podolsky,  and A. Kanigel, Nat. Phys. 8, 309 (2012).
  • Zhang et al. (2018) P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding,  and S. Shin, Science 360, 182 (2018).
  • Zhang et al. (2019) P. Zhang, Z. Wang, X. Wu, K. Yaji, Y. Ishida, Y. Kohama, G. Dai, Y. Sun, C. Bareille, K. Kuroda, T. Kondo, K. Okazaki, K. Kindo, X. Wang, C. Jin, J. Hu, R. Thomale, K. Sumida, S. Wu, K. Miyamoto, T. Okuda, H. Ding, G. D. Gu, T. Tamegai, T. Kawakami, M. Sato,  and S. Shin, Nat. Phys. 15, 41 (2019).
  • Wang et al. (2018) D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y. Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding,  and H.-J. Gao, Science 362, 333 (2018).
  • Machida et al. (2019) T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, T. Hanaguri, T. Sasagawa,  and T. Tamegai, Nat. Mater. 18, 811 (2019).
  • Si et al. (2013) W. Si, S. J. Han, X. Shi, S. N. Ehrlich, J. Jaroszynski, A. Goyal,  and Q. Li, Nat. Commun. 4, 1347 (2013).
  • Gurevich (2011) A. Gurevich, Rep. Prog. Phys. 74, 124501 (2011).
  • Hosono et al. (2018) H. Hosono, A. Yamamoto, H. Hiramatsu,  and Y. Ma, Mater. Today 21, 278 (2018).
  • Tinkham (1996) M. Tinkham, Introduction to superconductivity (Courier Corporation, New York, 1996).
  • Yuan et al. (2015) F. F. Yuan, Y. Sun, W. Zhou, X. Zhou, Q. P. Ding, K. Iida, R. Hühne, L. Schultz, T. Tamegai,  and Z. X. Shi, Appl. Phys. Lett. 107, 012602 (2015).
  • Tanatar et al. (2009) M. A. Tanatar, N. Ni, C. Martin, R. T. Gordon, H. Kim, V. G. Kogan, G. D. Samolyuk, S. L. Bud’ko, P. C. Canfield,  and R. Prozorov, Phys. Rev. B 79, 094507 (2009).
  • Yamamoto et al. (2009) A. Yamamoto, J. Jaroszynski, C. Tarantini, L. Balicas, J. Jiang, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. McGuire, B. C. Sales, D. K. Christen,  and D. Mandrus, Appl. Phys. Lett. 94, 062511 (2009).
  • Yuan et al. (2009) H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo,  and N. L. Wang, Nature 457, 565 (2009).
  • Zverev et al. (2009) V. N. Zverev, A. V. Korobenko, G. L. Sun, D. L. Sun, C. T. Lin,  and A. V. Boris, JETP Lett. 90, 130 (2009).
  • Chaparro et al. (2012) C. Chaparro, L. Fang, H. Claus, A. Rydh, G. W. Crabtree, V. Stanev, W. K. Kwok,  and U. Welp, Phys. Rev. B 85, 184525 (2012).
  • Miura et al. (2013) M. Miura, B. Maiorov, T. Kato, T. Shimode, K. Wada, S. Adachi,  and K. Tanabe, Nat. Commun. 4, 2499 (2013).
  • Tanatar et al. (2013) M. A. Tanatar, K. Hashimoto, S. Kasahara, T. Shibauchi, Y. Matsuda,  and R. Prozorov, Phys. Rev. B 87, 104506 (2013).
  • Zhang et al. (2011) J. L. Zhang, L. Jiao, F. F. Balakirev, X. C. Wang, C. Q. Jin,  and H. Q. Yuan, Phys. Rev. B 83, 174506 (2011).
  • Song et al. (2010) Y. J. Song, J. S. Ghim, B. H. Min, Y. S. Kwon, M. H. Jung,  and J.-S. Rhyee, Applied Physics Letters 96, 212508 (2010).
  • Terashima et al. (2009) T. Terashima, M. Kimata, H. Satsukawa, A. Harada, K. Hazama, S. Uji, H. Harima, G.-F. Chen, J.-L. Luo,  and N.-L. Wang, J. Phys. Soc. Jpn 78, 063702 (2009).
  • Moll et al. (2010) P. J. W. Moll, R. Puzniak, F. Balakirev, K. Rogacki, J. Karpinski, N. D. Zhigadlo,  and B. Batlogg, Nat. Mater. 9, 628 (2010).
  • Xing et al. (2019) X. Xing, Z. Li, I. Veshchunov, X. Yi, Y. Meng, M. Li, B. Lin, T. Tamegai,  and Z. Shi, New J. Phys. 21, 093015 (2019).
  • Jiang et al. (2016) S. Jiang, C. Liu, H. Cao, T. Birol, J. M. Allred, W. Tian, L. Liu, K. Cho, M. J. Krogstad, J. Ma, K. M. Taddei, M. A. Tanatar, M. Hoesch, R. Prozorov, S. Rosenkranz, Y. J. Uemura, G. Kotliar,  and N. Ni, Phys. Rev. B 93, 054522 (2016).
  • Liu et al. (2009) T. J. Liu, X. Ke, B. Qian, J. Hu, D. Fobes, E. K. Vehstedt, H. Pham, J. H. Yang, M. H. Fang, L. Spinu, P. Schiffer, Y. Liu,  and Z. Q. Mao, Phys. Rev. B 80, 174509 (2009).
  • Fang et al. (2010) M. Fang, J. Yang, F. F. Balakirev, Y. Kohama, J. Singleton, B. Qian, Z. Q. Mao, H. Wang,  and H. Q. Yuan, Phys. Rev. B 81, 020509 (2010).
  • Khim et al. (2010) S. Khim, J. W. Kim, E. S. Choi, Y. Bang, M. Nohara, H. Takagi,  and K. H. Kim, Phys. Rev. B 81, 184511 (2010).
  • Bendele et al. (2010) M. Bendele, S. Weyeneth, R. Puzniak, A. Maisuradze, E. Pomjakushina, K. Conder, V. Pomjakushin, H. Luetkens, S. Katrych, A. Wisniewski, R. Khasanov,  and H. Keller, Phys. Rev. B 81, 224520 (2010).
  • Noji et al. (2010) T. Noji, T. Suzuki, H. Abe, T. Adachi, M. Kato,  and Y. Koike, J. Phys. Soc. Jpn. 79, 084711 (2010).
  • Sun et al. (2013a) Y. Sun, T. Taen, Y. Tsuchiya, Z. X. Shi,  and T. Tamegai, Supercond. Sci. Technol. 26, 015015 (2013a).
  • Sun et al. (2014a) Y. Sun, Y. Tsuchiya, T. Taen, T. Yamada, S. Pyon, A. Sugimoto, T. Ekino, Z. Shi,  and T. Tamegai, Sci. Rep. 4, 4585 (2014a).
  • Sun et al. (2013b) Y. Sun, Y. Tsuchiya, T. Yamada, T. Taen, S. Pyon, Z. Shi,  and T. Tamegai, J. Phys. Soc. Jpn. 82, 093705 (2013b).
  • Sun et al. (2013c) Y. Sun, Y. Tsuchiya, T. Yamada, T. Taen, S. Pyon, Z. Shi,  and T. Tamegai, J. Phys. Soc. Jpn. 82, 115002 (2013c).
  • Sun et al. (2019) Y. Sun, Z. Shi,  and T. Tamegai, Supercond. Sci. Technol. 32, 103001 (2019).
  • Sugimoto et al. (2008) A. Sugimoto, T. Ekino,  and H. Eisaki, J. Phys. Soc. Jpn. 77, 043705 (2008).
  • Sun et al. (2020) Y. Sun, H. Ohnuma, S.-y. Ayukawa, T. Noji, Y. Koike, T. Tamegai,  and H. Kitano, Phys. Rev. B 101, 134516 (2020).
  • Kakehi et al. (2016) D. Kakehi, Y. Takahashi, H. Yamaguchi, S. Koizumi, S. Ayukawa,  and H. Kitano, IEEE Trans. Appl. Supercond. 26, 1 (2016).
  • Kakizaki et al. (2017) Y. Kakizaki, J. Koyama, A. Yamaguchi, S. Umegai, S. ya Ayukawa,  and H. Kitano, Jpn. J. Appl. Phys. 56, 043101 (2017).
  • Massee et al. (2009) F. Massee, S. de Jong, Y. Huang, J. Kaas, E. van Heumen, J. B. Goedkoop,  and M. S. Golden, Phys. Rev. B 80, 140507 (2009).
  • Hanaguri et al. (2010) T. Hanaguri, S. Niitaka, K. Kuroki,  and H. Takagi, Science 328, 474 (2010).
  • Ukita et al. (2011) R. Ukita, A. Sugimoto,  and T. Ekino, Physica C: Superconductivity and its Applications 471, 622 (2011), the 23rd International Symposium on Superconductivity.
  • Sun et al. (2014b) Y. Sun, T. Taen, T. Yamada, S. Pyon, T. Nishizaki, Z. Shi,  and T. Tamegai, Phys. Rev. B 89, 144512 (2014b).
  • Sun et al. (2016) Y. Sun, T. Yamada, S. Pyon,  and T. Tamegai, Sci.Rep. 6, 2045 (2016).
  • Fuchs et al. (2009) G. Fuchs, S.-L. Drechsler, N. Kozlova, M. Bartkowiak, J. E. Hamann-Borrero, G. Behr, K. Nenkov, H.-H. Klauss, H. Maeter, A. Amato, H. Luetkens, A. Kwadrin, R. Khasanov, J. Freudenberger, A. Köhler, M. Knupfer, E. Arushanov, H. Rosner, B. Büchner,  and L. Schultz, New J. Phys. 11, 075007 (2009).
  • Helfand and Werthamer (1966) E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
  • Kasahara et al. (2020) S. Kasahara, Y. Sato, S. Licciardello, M. Čulo, S. Arsenijević, T. Ottenbros, T. Tominaga, J. Böker, I. Eremin, T. Shibauchi, J. Wosnitza, N. E. Hussey,  and Y. Matsuda, Phys. Rev. Lett. 124, 107001 (2020).
  • Sun et al. (2013d) Y. Sun, T. Taen, Y. Tsuchiya, Q. Ding, S. Pyon, Z. Shi,  and T. Tamegai, Appl. Phys. Express 6, 043101 (2013d).
  • Lei et al. (2010) H. Lei, R. Hu, E. S. Choi, J. B. Warren,  and C. Petrovic, Phys. Rev. B 81, 094518 (2010).
  • Abdel-Hafiez et al. (2015) M. Abdel-Hafiez, Y.-Y. Zhang, Z.-Y. Cao, C.-G. Duan, G. Karapetrov, V. M. Pudalov, V. A. Vlasenko, A. V. Sadakov, D. A. Knyazev, T. A. Romanova, D. A. Chareev, O. S. Volkova, A. N. Vasiliev,  and X.-J. Chen, Phys. Rev. B 91, 165109 (2015).
  • Abdel-Hafiez et al. (2018) M. Abdel-Hafiez, J. Brisbois, Z. Zhu, A. Adamski, A. Hassen, A. N. Vasiliev, A. V. Silhanek,  and C. Krellner, Phys. Rev. B 97, 115152 (2018).
  • Kogan and Prozorov (2012) V. G. Kogan and R. Prozorov, Rep. Prog. Phys. 75, 114502 (2012).
  • Rinott et al. (2017) S. Rinott, K. B. Chashka, A. Ribak, E. D. L. Rienks, A. Taleb-Ibrahimi, P. Le Fevre, F. Bertran, M. Randeria,  and A. Kanigel, Sci. Adv. 3, e1602372 (2017).
  • Prozorov and Kogan (2011) R. Prozorov and V. G. Kogan, Rep. Prog. Phys. 74, 124505 (2011).
  • Fletcher et al. (2005) J. D. Fletcher, A. Carrington, O. J. Taylor, S. M. Kazakov,  and J. Karpinski, Phys. Rev. Lett. 95, 097005 (2005).
  • Kończykowski et al. (2011) M. Kończykowski, C. J. van der Beek, M. A. Tanatar, V. Mosser, Y. J. Song, Y. S. Kwon,  and R. Prozorov, Phys. Rev. B 84, 180514 (2011).
  • Zhang et al. (2009) L. Zhang, D. J. Singh,  and M. H. Du, Phys. Rev. B 79, 012506 (2009).
  • Thampy et al. (2012) V. Thampy, J. Kang, J. A. Rodriguez-Rivera, W. Bao, A. T. Savici, J. Hu, T. J. Liu, B. Qian, D. Fobes, Z. Q. Mao, C. B. Fu, W. C. Chen, Q. Ye, R. W. Erwin, T. R. Gentile, Z. Tesanovic,  and C. Broholm, Phys. Rev. Lett. 108, 107002 (2012).