This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

∎∎

11institutetext: Ran Lu 22institutetext: Department of mathematical and statistical sciences, University of Alberta, Edmonton, Canada
22email: [email protected]

Compactly supported multivariate dual multiframelets with high vanishing moments and high balancing orders

Ran Lu
(Received: date / Accepted: date)
Abstract

Comparing with univariate framelets, the main challenge involved in studying multivariate framelets is that we have to deal with the highly non-trivial problem of factorizing multivariate polynomial matrices. As a consequence, multivariate framelets are much less studied than univariate framelets in the literature. Among existing works on multivariate framelets, multivariate multiframelets are much less considered comparing with the extensively studied scalar framelets. Hence multiframelets are far from being well understood. In this paper, we focus on multivariate dual multiframelets (or dual vector framelets) obtained through the popular oblique extension principle (OEP), which are called OEP-based dual multiframelets. We will show that from any given pair of compactly supported refinable vector functions, one can always construct an OEP-based dual multiframelet, such that its generators have the highest possible order of vanishing moments. Moreover, the associated discrete framelet transform is compact and balanced.

Keywords:
Multiframelets Oblique extension principle Refinable vector functions Vanishing moments Balancing property Compact framelet transform

1 Introduction

Dual framelets derived from refinable vector functions are of interest in applications such as image process and numerical algorithms. The added redundancy in framelet systems enhances their performance over biorthogonal wavelets in practice. For literatures studying framelets/wavelets and their applications, see e.g. cpss13 ; cpss15 ; cs08 ; ch01 ; chs02 ; dh04 ; dhrs03 ; dhacha ; dh18pp ; ds13 ; Ehler07 ; eh08 ; fjs16 ; goodman94 ; han97 ; han03-0 ; han03 ; han09 ; han10 ; hjsz18 ; hl19pp ; hl20pp ; hm03 ; hm05 ; jj02 ; js15 ; kps16 ; lj06 ; lv98 ; mo06 ; sz16 and references therein. Dual framelets are usually constructed from refinable vector functions via a popular method which is called the oblique extension principle (OEP), and such framelets are called OEP-based framelets. In this paper, we concentrate on compactly supported OEP-based dual framelets. There are three key features which are desired for a compactly supported OEP-based dual framelet in applications: (1) the sparseness of the framelet expansion, which is linked to the vanishing moments of framelet generators; (2) the compactness of the underlying discrete framelet transform, that is, whether or not the transform can be implemented by convolution using finitely supported filters only; (3) the sparseness of the underlying discrete framelet transform, which is closely related to the balancing property of the transform. Quite often, one has to sacrifice (2) to achieve (1), and (3) seems to be too much to expect in most cases. Our goal is to investigate whether or not an OEP-based dual framelet can achieve (1)-(3) simultaneously.

1.1 Background

To better explain our motivations, let us recall some basic concepts. Throughout this paper, 𝖬\mathsf{M} is a d×dd\times d dilation matrix, i.e., 𝖬d×d\mathsf{M}\in\mathbb{Z}^{d\times d} and its eigenvalues are all greater than one in modulus. For simplicity, let

d𝖬:=|det(𝖬)|.d_{\mathsf{M}}:=|\det(\mathsf{M})|.

Denote (L2(d))r×s(L_{2}(\mathbb{R}^{d}))^{r\times s} the linear space of all r×sr\times s matrices of square integrable functions in L2(d)L_{2}(\mathbb{R}^{d}). For simplicity, (L2(d))r:=(L2(d))r×1(L_{2}(\mathbb{R}^{d}))^{r}:=(L_{2}(\mathbb{R}^{d}))^{r\times 1}. We introduce the following notion of inner product:

f,g:=df(x)g(x)¯𝖳𝑑x,f(L2(d))r×s,g(L2(d))t×s.\langle f,g\rangle:=\int_{\mathbb{R}^{d}}f(x)\overline{g(x)}^{\mathsf{T}}dx,\qquad\forall f\in(L_{2}(\mathbb{R}^{d}))^{r\times s},\quad g\in(L_{2}(\mathbb{R}^{d}))^{t\times s}.

Let ϕ̊,ϕ~̊(L2(d))r\mathring{\phi},\mathring{\tilde{\phi}}\in(L_{2}(\mathbb{R}^{d}))^{r}, ψ,ψ~(L2(d))s\psi,\tilde{\psi}\in(L_{2}(\mathbb{R}^{d}))^{s}. We say that {ϕ̊;ψ}\{\mathring{\phi};\psi\} is an 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}) if there exist positive constants C1C_{1} and C2C_{2} such that

C1fL2(d)2kd|f,ϕ̊(k)|2+j=0kd|f,ψ𝖬j;k|2C2fL2(d)2,fL2(d),C_{1}\|f\|_{L_{2}(\mathbb{R}^{d})}^{2}\leqslant\sum_{k\in\mathbb{Z}^{d}}|\langle f,\mathring{\phi}(\cdot-k)\rangle|^{2}+\sum_{j=0}^{\infty}\sum_{k\in\mathbb{Z}^{d}}|\langle f,\psi_{\mathsf{M}^{j};k}\rangle|^{2}\leqslant C_{2}\|f\|_{L_{2}(\mathbb{R}^{d})}^{2},\quad f\in L_{2}(\mathbb{R}^{d}),

where ψ𝖬j;k:=d𝖬j/2ψ(𝖬jk)\psi_{\mathsf{M}^{j};k}:=d_{\mathsf{M}}^{j/2}\psi(\mathsf{M}^{j}\cdot-k) and |f,ψ𝖬j;k|2:=f,ψ𝖬j;kl22|\langle f,\psi_{\mathsf{M}^{j};k}\rangle|^{2}:=\|\langle f,\psi_{\mathsf{M}^{j};k}\rangle\|^{2}_{l_{2}}. ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is called a dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}) if both {ϕ̊;ψ}\{\mathring{\phi};\psi\} and {ϕ~̊;ψ~}\{\mathring{\tilde{\phi}};\tilde{\psi}\} are 𝖬\mathsf{M}-framelets in L2(d)L_{2}(\mathbb{R}^{d}) and satisfy

f=kdf,ϕ̊(k)ϕ~̊(k)+j=0kdf,ψ𝖬j;kψ~𝖬j;k,fL2(d),f=\sum_{k\in\mathbb{Z}^{d}}\langle f,\mathring{\phi}(\cdot-k)\rangle\mathring{\tilde{\phi}}(\cdot-k)+\sum_{j=0}^{\infty}\sum_{k\in\mathbb{Z}^{d}}\langle f,\psi_{\mathsf{M}^{j};k}\rangle\tilde{\psi}_{\mathsf{M}^{j};k},\qquad\forall f\in L_{2}(\mathbb{R}^{d}), (1.1)

with the above series converging unconditionally in L2(d)L_{2}(\mathbb{R}^{d}). ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is called a dual multiframelet if the multiplicity r>1r>1, and is called a scalar framelet if r=1r=1. Unless specified, we shall use the term framelet to refer both.

For a dual 𝖬\mathsf{M}-framelet ({ϕ̊;ψ},{ϕ̊~;ψ~})(\{\mathring{\phi};\psi\},\{\tilde{\mathring{\phi}};\tilde{\psi}\}), the sparseness of the frame expansion (1.1) is closely related to the vanishing moments on the framelet generators ψ\psi and ψ~\tilde{\psi}. We say that ψ\psi has mm vanishing moments if

d𝗉(x)ψ(x)𝑑x=0,𝗉m1,\int_{\mathbb{R}^{d}}\mathsf{p}(x)\psi(x)dx=0,\qquad\forall\mathsf{p}\in\mathbb{P}_{m-1},

where m1\mathbb{P}_{m-1} is the space of all dd-variate polynomials of degree at most m1m-1. Note that ψ\psi has mm vanishing moments if and only if

ψ^(ξ)=𝒪(ξm),ξ0,\widehat{\psi}(\xi)=\mathcal{O}(\|\xi\|^{m}),\qquad\xi\to 0,

where f(ξ)=g(ξ)+𝒪(ξm)f(\xi)=g(\xi)+\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0 means μf(0)=μg(0)\partial^{\mu}f(0)=\partial^{\mu}g(0) for all μ0;md\mu\in\mathbb{N}^{d}_{0;m} with |μ|:=μ1++μd<m|\mu|:=\mu_{1}+\cdots+\mu_{d}<m. We define vm(ψ):=m\operatorname{vm}(\psi):=m with mm being the largest such integer. It is well known in approximation theory (see e.g. (hanbook, , Proposition 5.5.2)) that if vm(ψ)=m\operatorname{vm}(\psi)=m and vm(ψ~)=m~\operatorname{vm}(\tilde{\psi})=\tilde{m}, then we necessarily have

kd𝗉,ϕ̊(k)ϕ~̊(k):==1rkd𝗉,ϕ̊(k)ϕ~̊(k)=𝗉,𝗉m1.\sum_{k\in\mathbb{Z}^{d}}\langle\mathsf{p},\mathring{\phi}(\cdot-k)\rangle\mathring{\tilde{\phi}}(\cdot-k):=\sum_{\ell=1}^{r}\sum_{k\in\mathbb{Z}^{d}}\langle\mathsf{p},\mathring{\phi}_{\ell}(\cdot-k)\rangle\mathring{\tilde{\phi}}_{\ell}(\cdot-k)=\mathsf{p},\qquad\forall\,\mathsf{p}\in\mathbb{P}_{m-1}. (1.2)

which plays a crucial role in approximation theory and numerical analysis for the convergence rate of the associated approximation/numerical scheme. Moreover, we have

ϕ̊^(ξ)¯𝖳ϕ~̊^(ξ+2πk)=𝒪(ξm),ϕ̊^(ξ+2πk)¯𝖳ϕ~̊^(ξ)=𝒪(ξm~),kd\{0},\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\xi+2\pi k)=\mathcal{O}(\|\xi\|^{m}),\qquad\overline{\widehat{\mathring{\phi}}(\xi+2\pi k)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\xi)=\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad k\in\mathbb{Z}^{d}\backslash\{0\},

and

ϕ̊^(ξ)¯𝖳ϕ~̊^(ξ)=1+𝒪(ξm~+m),\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\xi)=1+\mathcal{O}(\|\xi\|^{\tilde{m}+m}),

as ξ0\xi\to 0.

A popular method called oblique extension principle (OEP) has been introduced in the literature, which allows us to construct dual framelets with all generators having sufficiently high vanishing moments from refinable vector functions cpss13 ; cpss15 ; cs08 ; ch01 ; cj00 ; dhacha ; fjs16 ; hjsz18 ; js15 ; kps16 ; lj06 ; sz16 . Denote (l0(d))r×s(l_{0}(\mathbb{Z}^{d}))^{r\times s} the linear space of all r×sr\times s matrix-valued sequences u={u(k)}kd:dr×su=\{u(k)\}_{k\in\mathbb{Z}^{d}}:\mathbb{Z}^{d}\to\mathbb{C}^{r\times s} with finitely many non-zero terms. Any element u(l0(d))r×su\in(l_{0}(\mathbb{Z}^{d}))^{r\times s} is said to be a finitely supported (matrix-valued) filter/mask. For ϕ(L2(d))r\phi\in(L_{2}(\mathbb{R}^{d}))^{r}, we say that ϕ\phi is an 𝖬\mathsf{M}-refinable vector function with a refinement filter/mask a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} if the following refinement equation is satisfied:

ϕ(x)=d𝖬kda(k)ϕ(𝖬xk),xd.\phi(x)=d_{\mathsf{M}}\sum_{k\in\mathbb{Z}^{d}}a(k)\phi(\mathsf{M}x-k),\qquad x\in\mathbb{R}^{d}. (1.3)

If r=1r=1, then we simply say that ϕ\phi is an 𝖬\mathsf{M}-refinable (scalar) function. For u(l0(d))r×su\in(l_{0}(\mathbb{Z}^{d}))^{r\times s}, define its Fourier series via u^(ξ):=kdu(k)eikξ\widehat{u}(\xi):=\sum_{k\in\mathbb{Z}^{d}}u(k)e^{-ik\cdot\xi} for ξd\xi\in\mathbb{R}^{d}. The Fourier transform is defined via f^(ξ):=df(x)eixξ𝑑x\widehat{f}(\xi):=\int_{\mathbb{R}^{d}}f(x)e^{-ix\cdot\xi}dx for ξd\xi\in\mathbb{R}^{d} for all fL1(d)f\in L_{1}(\mathbb{R}^{d}), and can be naturally extended to L2(d)L_{2}(\mathbb{R}^{d}) functions and tempered distributions. The refinement equation (1.3) is equivalent to

ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ),ξd,\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi),\qquad\xi\in\mathbb{R}^{d}, (1.4)

where ϕ^\widehat{\phi} is the r×1r\times 1 vector obtained by taking entry-wise Fourier transform on ϕ\phi. Most known framelets are constructed from refinable vector functions via OEP, and we refer them as OEP-based framelets. There are several versions of OEP which have been introduced in the literature (see chs02 ; dhrs03 ; hanbook ; hl20pp ). Here we recall the following version of OEP for compactly supported multivariate multiframelets:

Theorem 1.1 (Oblique extension principle (OEP))

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix. Let θ,θ~,a,a~(l0(d))r×r\theta,\tilde{\theta},a,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and ϕ,ϕ~(L2(d))r\phi,\tilde{\phi}\in(L_{2}(\mathbb{R}^{d}))^{r} be compactly supported 𝖬\mathsf{M}-refinable vector functions with refinement filters aa and a~\tilde{a}, respectively. For matrix-valued filters b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r}, define

ϕ̊^(ξ):=θ^(ξ)ϕ^(ξ),ψ^(ξ):=b~^(𝖬𝖳ξ)ϕ^(𝖬𝖳ξ),\widehat{\mathring{\phi}}(\xi):=\widehat{\theta}(\xi)\widehat{\phi}(\xi),\quad\widehat{\psi}(\xi):=\widehat{\tilde{b}}(\mathsf{M}^{-\mathsf{T}}\xi)\widehat{\phi}(\mathsf{M}^{-\mathsf{T}}\xi), (1.5)
ϕ̊~^(ξ):=θ~^(ξ)ϕ~^(ξ),ψ~^(ξ):=b~^(𝖬𝖳ξ)ϕ~^(𝖬𝖳ξ).\widehat{\tilde{\mathring{\phi}}}(\xi):=\widehat{\tilde{\theta}}(\xi)\widehat{\tilde{\phi}}(\xi),\quad\widehat{\tilde{\psi}}(\xi):=\widehat{\tilde{b}}(\mathsf{M}^{-\mathsf{T}}\xi)\widehat{\tilde{\phi}}(\mathsf{M}^{-\mathsf{T}}\xi). (1.6)

Then ({ϕ̊;ψ},{ϕ̊~;ψ~})(\{\mathring{\phi};\psi\},\{\tilde{\mathring{\phi}};\tilde{\psi}\}) is a dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}) if the following conditions are satisfied:

  1. (1)

    ϕ^(0)¯𝖳Θ^(0)ϕ~^(0)=1\overline{\widehat{\phi}(0)}^{\mathsf{T}}\widehat{\Theta}(0)\widehat{\tilde{\phi}}(0)=1 with Θ^(ξ):=θ^(ξ)¯𝖳θ~^(ξ)\widehat{\Theta}(\xi):=\overline{\widehat{\theta}(\xi)}^{\mathsf{T}}\widehat{\tilde{\theta}}(\xi);

  2. (2)

    ψ^(0)=ψ~^(0)=0\widehat{\psi}(0)=\widehat{\tilde{\psi}}(0)=0.

  3. (3)

    ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} forms an OEP-based dual 𝖬\mathsf{M}-framelet filter bank, i.e.,

    a^(ξ)¯𝖳Θ^(𝖬𝖳ξ)a~^(ξ+2πω)+b^(ξ)¯𝖳b~^(ξ+2πω)=𝜹(ω)Θ^(ξ),\overline{\widehat{{a}}(\xi)}^{\mathsf{T}}\widehat{\Theta}(\mathsf{M}^{\mathsf{T}}\xi){\widehat{\tilde{a}}(\xi+2\pi\omega)}+\overline{\widehat{{b}}(\xi)}^{\mathsf{T}}{\widehat{\tilde{b}}(\xi+2\pi\omega)}=\boldsymbol{\delta}(\omega)\widehat{\Theta}(\xi), (1.7)

    for all ξd\xi\in\mathbb{R}^{d} and ωΩ𝖬\omega\in\Omega_{\mathsf{M}}, where

    𝜹(0):=1and𝜹(x):=0,x0\boldsymbol{\delta}(0):=1\quad\mbox{and}\quad\boldsymbol{\delta}(x):=0,\qquad\forall\,x\neq 0 (1.8)

    and Ω𝖬\Omega_{\mathsf{M}} is a particular choice of the representatives of cosets in [𝖬𝖳d]/d[\mathsf{M}^{-\mathsf{T}}\mathbb{Z}^{d}]/\mathbb{Z}^{d} given by

    Ω𝖬:={ω1,,ωd𝖬}:=(𝖬𝖳d)[0,1)dwithω1:=0.\Omega_{\mathsf{M}}:=\{\omega_{1},\dots,\omega_{d_{\mathsf{M}}}\}:=(\mathsf{M}^{-\mathsf{T}}\mathbb{Z}^{d})\cap[0,1)^{d}\quad\mbox{with}\quad\omega_{1}:=0. (1.9)

It is clear that the key step to construct an OEP-based dual framelet is to obtain filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} such that ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} is a dual framelet filter bank which satisfies (1.7). For any u(l0(d))s×ru\in(l_{0}(\mathbb{Z}^{d}))^{s\times r}, define

Pu;𝖬(ξ):=[u^(ξ+2πω1),,u^(ξ+2πωd𝖬)],ξd,P_{u;\mathsf{M}}(\xi):=[\widehat{u}(\xi+2\pi\omega_{1}),\ldots,\widehat{u}(\xi+2\pi\omega_{d_{\mathsf{M}}})],\qquad\xi\in\mathbb{R}^{d}, (1.10)

which is an s×(rd𝖬)s\times(rd_{\mathsf{M}}) matrix of 2πd2\pi\mathbb{Z}^{d}-periodic dd-variate trigonometric polynomials. It is obvious that (1.7) is equivalent to

Pb;𝖬(ξ)¯𝖳Pb~;𝖬(ξ)=a,a~,Θ(ξ),\overline{P_{b;\mathsf{M}}(\xi)}^{\mathsf{T}}P_{\tilde{b};\mathsf{M}}(\xi)=\mathcal{M}_{a,\tilde{a},\Theta}(\xi), (1.11)

where

a,a~,Θ(ξ):=\displaystyle\mathcal{M}_{a,\tilde{a},\Theta}(\xi):= 𝖣𝗂𝖺𝗀(Θ^(ξ+2πω1),,Θ^(ξ+2πωd𝖬))\displaystyle{\mathsf{Diag}}\left(\widehat{\Theta}(\xi+2\pi\omega_{1}),\ldots,\widehat{\Theta}(\xi+2\pi\omega_{d_{\mathsf{M}}})\right) (1.12)
Pa;𝖬(ξ)¯𝖳Θ^(𝖬𝖳ξ)Pa~;𝖬(ξ).\displaystyle-\overline{P_{a;\mathsf{M}}(\xi)}^{\mathsf{T}}\widehat{\Theta}(\mathsf{M}^{\mathsf{T}}\xi)P_{\tilde{a};\mathsf{M}}(\xi).

For an OEP-based dual 𝖬\mathsf{M}-framelet ({ϕ̊;ψ},{ϕ̊~;ψ~})(\{\mathring{\phi};\psi\},\{\tilde{\mathring{\phi}};\tilde{\psi}\}), The orders of vanishing moments of ψ\psi and ψ~\tilde{\psi} are closely related to the sum rules of the filters aa and a~\tilde{a} associated to ϕ\phi and ϕ~\tilde{\phi}. We say that a filter a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} has order mm sum rules with respect to 𝖬\mathsf{M} with a matching filter υ(l0(d))1×r\upsilon\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} if υ^(0)0\widehat{\upsilon}(0)\neq 0 and

υ^(𝖬𝖳ξ)a^(ξ+2πω)=𝜹(ω)υ^(ξ)+𝒪(ξm),ξ0,ωΩ𝖬.\widehat{\upsilon}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{a}(\xi+2\pi\omega)=\boldsymbol{\delta}(\omega)\widehat{\upsilon}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\forall\,\omega\in\Omega_{\mathsf{M}}. (1.13)

In particular, we define

sr(a,𝖬):=sup{m0:(1.13) holds for some v(l0(d))1×r}.\operatorname{sr}(a,\mathsf{M}):=\sup\{m\in\mathbb{N}_{0}:\text{\eqref{sr} holds for some }v\in(l_{0}(\mathbb{Z}^{d}))^{1\times r}\}.

It can be easily deduced from (1.7) that vm(ψ)sr(a~,𝖬)\operatorname{vm}(\psi)\leqslant\operatorname{sr}(\tilde{a},\mathsf{M}) and vm(ψ~)sr(a,𝖬)\operatorname{vm}(\tilde{\psi})\leqslant\operatorname{sr}(a,\mathsf{M}) always hold no matter how we choose θ\theta and θ~\tilde{\theta}. Therefore, we are curious about whether or not one can construct filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} in a way such that the matrix a,a~,Θ\mathcal{M}_{a,\tilde{a},\Theta} admits a factorization as in (1.11) for some b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} such that b^(ξ)ϕ^(ξ)=𝒪(ξsr(a~,𝖬))\widehat{b}(\xi)\widehat{\phi}(\xi)=\mathcal{O}(\|\xi\|^{\operatorname{sr}(\tilde{a},\mathsf{M})}) and b~^(ξ)ϕ~^(ξ)=𝒪(ξsr(a,𝖬))\widehat{\tilde{b}}(\xi)\widehat{\tilde{\phi}}(\xi)=\mathcal{O}(\|\xi\|^{\operatorname{sr}(a,\mathsf{M})}) as ξ0\xi\to 0.

1.2 The major shortcoming of OEP for scalar framelets

With OEP, a lot of compactly supported scalar dual framelets with the highest possible vanishing moments have been constructed in the literature, to mention only a few, see cs10 ; ch00 ; chs02 ; dh04 ; dhrs03 ; dhacha ; dh18pp ; han97 ; han09 ; hanbook ; hm03 ; hm05 ; jqt01 ; js15 ; mothesis ; rs97 ; sel01 and many references therein. Though OEP appears perfect for improving the vanishing moments of framelet generators, it has a serious shortcoming. To properly address this issue, we need to briefly recall the discrete framelet transform employing an OEP-based filter bank.

By (l(d))s×r(l(\mathbb{Z}^{d}))^{s\times r} we denote the linear space of all sequences v:ds×rv:\mathbb{Z}^{d}\rightarrow\mathbb{C}^{s\times r}. We call every element v(l(d))s×rv\in(l(\mathbb{Z}^{d}))^{s\times r} a matrix-valued filter. For a filter a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}, we define the filter aa^{\star} via a^(ξ):=a^(ξ)¯𝖳\widehat{a^{\star}}(\xi):=\overline{\widehat{a}(\xi)}^{\mathsf{T}}, or equivalently, a(k):=a(k)¯𝖳a^{\star}(k):=\overline{a(-k)}^{\mathsf{T}} for all kdk\in\mathbb{Z}^{d}. We define the convolution of two filters via

[vu](n):=kv(k)u(nk),nd,v(l(d))s×r,u(l0(d))r×t.[v*u](n):=\sum_{k\in\mathbb{Z}}v(k)u(n-k),\quad n\in\mathbb{Z}^{d},\quad v\in(l(\mathbb{Z}^{d}))^{s\times r},\quad u\in(l_{0}(\mathbb{Z}^{d}))^{r\times t}.

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix, define the upsampling operator 𝖬:(l(d))s×r(l(d))s×r\uparrow\mathsf{M}:(l(\mathbb{Z}^{d}))^{s\times r}\to(l(\mathbb{Z}^{d}))^{s\times r} as

[v𝖬](k):={v(𝖬1k),if kd[𝖬1d],0,elsewhere,,kd,v(l(d))s×r.[v\uparrow\mathsf{M}](k):=\begin{cases}v(\mathsf{M}^{-1}k),&\text{if }k\in\mathbb{Z}^{d}\cap[\mathsf{M}^{-1}\mathbb{Z}^{d}],\\ 0,&\text{elsewhere},\end{cases},\qquad\forall k\in\mathbb{Z}^{d},\quad v\in(l(\mathbb{Z}^{d}))^{s\times r}.

We introduce the following operators acting on matrix-valued sequence spaces:

  • For u(l0(d))r×tu\in(l_{0}(\mathbb{Z}^{d}))^{r\times t}, the subdivision operator 𝒮u,𝖬\mathcal{S}_{u,\mathsf{M}} is defined via

    𝒮u,𝖬v=|det(𝖬)|12[v𝖬]u=|det(𝖬)|12kdv(k)u(𝖬k),\mathcal{S}_{u,\mathsf{M}}v=|\det(\mathsf{M})|^{\frac{1}{2}}[v\uparrow\mathsf{M}]*u=|\det(\mathsf{M})|^{\frac{1}{2}}\sum_{k\in\mathbb{Z}^{d}}v(k)u(\cdot-\mathsf{M}k),

    for all v(l(d))s×rv\in(l(\mathbb{Z}^{d}))^{s\times r}.

  • For u(l0(d))t×ru\in(l_{0}(\mathbb{Z}^{d}))^{t\times r}, the transition operator 𝒯u,𝖬\mathcal{T}_{u,\mathsf{M}} is defined via

    𝒯u,𝖬v=|det(𝖬)|12[vu]𝖬=|det(𝖬)|12kdv(k)u(k𝖬)¯𝖳,\mathcal{T}_{u,\mathsf{M}}v=|\det(\mathsf{M})|^{\frac{1}{2}}[v*u^{\star}]\downarrow\mathsf{M}=|\det(\mathsf{M})|^{\frac{1}{2}}\sum_{k\in\mathbb{Z}^{d}}v(k)\overline{u(k-\mathsf{M}\cdot)}^{\mathsf{T}},

    for all v(l(d))s×rv\in(l(\mathbb{Z}^{d}))^{s\times r}.

Let θ,θ~,a,a~(l0(d))r×r\theta,\tilde{\theta},a,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} be finitely supported filters. For any JJ\in\mathbb{N} and any input data v0(l(d))1×rv_{0}\in(l(\mathbb{Z}^{d}))^{1\times r}, the JJ-level discrete framelet transform employing the filter bank ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} where Θ:=θθ~\Theta:=\theta^{\star}*\tilde{\theta} is implemented as follows:

  1. (S1)

    Decomposition/Analysis: Recursively compute vj,wjv_{j},w_{j} for j=1,,sj=1,\dots,s via

    vj:=𝒯a,𝖬vj1,wj:=𝒯b,𝖬vj1.v_{j}:=\mathcal{T}_{a,\mathsf{M}}v_{j-1},\qquad w_{j}:=\mathcal{T}_{b,\mathsf{M}}v_{j-1}. (1.14)
  2. (S2)

    Reconstruction/Synthesis: Define v~J:=vJΘ\tilde{v}_{J}:=v_{J}*\Theta. Recursively compute v~j1\tilde{v}_{j-1} for j=J,,1j=J,\dots,1 via

    v~j1:=𝒮a~,𝖬v̊j+𝒮b~,𝖬wj.\tilde{v}_{j-1}:=\mathcal{S}_{\tilde{a},\mathsf{M}}{\mathring{v}}_{j}+\mathcal{S}_{\tilde{b},\mathsf{M}}w_{j}. (1.15)
  3. (S3)

    Deconvolution: Recover v˘0\breve{v}_{0} from v~0\tilde{v}_{0} through v˘0Θ=v~0.\breve{v}_{0}*\Theta=\tilde{v}_{0}.

We call {a;b}\{a;b\} the analysis filter bank and {a~;b~}\{\tilde{a};\tilde{b}\} the synthesis filter bank. If any input data v(l(d))1×rv\in(l(\mathbb{Z}^{d}))^{1\times r} can be exactly retrieved from the above transform, then we say that the JJ-level discrete framelet transform has the perfect reconstruction property.

Here comes the major shortcoming of OEP. The deconvolution step (S3) is where the trouble arises. If ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} is an OEP-based dual 𝖬\mathsf{M}-framelet filter bank satisfying (1.7), then the original input data v0v_{0} is guaranteed to be a solution of the deconvolution problem v̊0Θ=v~0\mathring{v}_{0}*\Theta=\tilde{v}_{0}. However, the deconvolution is inefficient and non-stable, that is, there could be multiple solutions to the deconvolution problem. Thus we cannot expect that the input data can be exactly retrieved by implementing the transform. As observed by (hl20pp, , Theorem 2.3), a necessary and sufficient condition for a multi-level discrete framelet transform to have the perfect reconstruction property is that Θ\Theta is a strongly invertible filter.

Definition 1.2

Let Θ(l0(d))r×r\Theta\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} be a finitely supported filter. We say that Θ^\widehat{\Theta} (or simply Θ\Theta) is strongly invertible if there exists Θ1(l0(d))r×r\Theta^{-1}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that Θ1^=Θ^1\widehat{\Theta^{-1}}=\widehat{\Theta}^{-1}, or equivalently all entries of Θ^1\widehat{\Theta}^{-1} are 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials.

When Θ\Theta is strongly invertible, the discrete framelet transform is said to be compact, i.e., the transform is implemented by convolution/deconvolution with finitely supported filters only. The strong invertibility of Θ\Theta forces both θ\theta and θ~\tilde{\theta} to be strongly invertible. In this case, we can define finitely supported filters å,a~̊(l0(d))r×r{\mathring{a}},{\mathring{\tilde{a}}}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b̊,b~̊(l0(d))s×r{\mathring{b}},{\mathring{\tilde{b}}}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} via

å^(ξ):=θ^(𝖬𝖳ξ)a^(ξ)θ^(ξ)1,a~̊^(ξ):=θ~^(𝖬𝖳ξ)a~^(ξ)θ~^(ξ)1,\widehat{{\mathring{a}}}(\xi):=\widehat{\theta}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{a}(\xi)\widehat{\theta}(\xi)^{-1},\qquad\widehat{{\mathring{\tilde{a}}}}(\xi):=\widehat{\tilde{\theta}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{\tilde{a}}(\xi)\widehat{\tilde{\theta}}(\xi)^{-1}, (1.16)
b̊^(ξ):=b^(ξ)θ^(ξ)1b~̊^(ξ):=b~^(ξ)θ~^(ξ)1.\widehat{{\mathring{b}}}(\xi):=\widehat{b}(\xi)\widehat{\theta}(\xi)^{-1}\qquad\widehat{{\mathring{\tilde{b}}}}(\xi):=\widehat{\tilde{b}}(\xi)\widehat{\tilde{\theta}}(\xi)^{-1}. (1.17)

Moreover, if ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is a dual 𝖬\mathsf{M}-framelet associated with the OEP-based dual framelet filter bank ({a;b};{a~;b~}Θ(\{a;b\};\{\tilde{a};\tilde{b}\}_{\Theta}, then the following refinable relations hold:

ϕ̊^(𝖬𝖳ξ)=å^(ξ)ϕ̊(ξ)^,ψ^(𝖬𝖳ξ)=b̊^(ξ)ϕ̊(ξ)^,\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{{\mathring{a}}}(\xi)\widehat{\mathring{\phi}(\xi)},\qquad\widehat{\psi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{{\mathring{b}}}(\xi)\widehat{\mathring{\phi}(\xi)}, (1.18)
ϕ~̊^(𝖬𝖳ξ)=a~̊^(ξ)ϕ~̊(ξ)^,ψ~^(𝖬𝖳ξ)=b~̊^(ξ)ϕ~̊(ξ)^.\widehat{\mathring{\tilde{\phi}}}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{{\mathring{\tilde{a}}}}(\xi)\widehat{\mathring{\tilde{\phi}}(\xi)},\qquad\widehat{\tilde{\psi}}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{{\mathring{\tilde{b}}}}(\xi)\widehat{\mathring{\tilde{\phi}}(\xi)}. (1.19)

The underlying discrete framelet transform is now employed with the filter bank ({å;b̊},{a~̊;b~̊})Ir(\{{\mathring{a}};{\mathring{b}}\},\{{\mathring{\tilde{a}}};{\mathring{\tilde{b}}}\})_{I_{r}} without the non-stable deconvolution step as as follows:

  1. (S1’)

    Decomposition/Analysis: Recursively compute the framelet coefficients v̊j,ẘj{\mathring{v}}_{j},{\mathring{w}}_{j} for j=1,,sj=1,\dots,s via

    v̊j:=𝒯å,𝖬v̊j1,ẘj:=𝒯b̊,𝖬v̊j1,{\mathring{v}}_{j}:=\mathcal{T}_{{\mathring{a}},\mathsf{M}}{\mathring{v}}_{j-1},\qquad{\mathring{w}}_{j}:=\mathcal{T}_{{\mathring{b}},\mathsf{M}}{\mathring{v}}_{j-1},

    where v̊0:=v0{\mathring{v}}_{0}:=v_{0} is an input data.

  2. (S2’)

    Reconstruction/Synthesis: Define v~̊J:=v̊J{\mathring{\tilde{v}}}_{J}:={\mathring{v}}_{J}. Recursively compute v~̊j1{\mathring{\tilde{v}}}_{j-1} for j=J,,1j=J,\dots,1 via

    v~̊j1:=𝒮a~̊,𝖬v~̊j+𝒮b~̊,𝖬ẘj.{\mathring{\tilde{v}}}_{j-1}:=\mathcal{S}_{{\mathring{\tilde{a}}},\mathsf{M}}{\mathring{\tilde{v}}}_{j}+\mathcal{S}_{{\mathring{\tilde{b}}},\mathsf{M}}{\mathring{w}}_{j}.

For a scalar filter Θ\Theta (i.e., r=1r=1), it is strongly invertible if and only if Θ^\widehat{\Theta} is a non-zero monomial, i.e., Θ^(ξ)=ceikξ\widehat{\Theta}(\xi)=ce^{-ik\cdot\xi} for some c{0}c\in\mathbb{C}\setminus\{0\} and kdk\in\mathbb{Z}^{d}. Thus to have a compact discrete framelet transform in the case r=1r=1, θ^\widehat{\theta} and θ~^\widehat{\tilde{\theta}} must be both monomials. However, we lose the main advantage of OEP of improving the vanishing moments of framelet generators by choosing such filters θ\theta and θ~\tilde{\theta}.

1.3 Advantages and difficulties with multiframelets

The previously mentioned shortcoming of OEP motivates us to consider multiframelets, that is, framelets with multiplicity r>1r>1. Multiframelets have certain advantages over scalar framelets and have been initially studied in ghm94 ; glt93 and references therein. In sharp contrast to the extensively studied OEP-based scalar framelets, constructing multiframelets through OEP is much more difficult and is much less studied. To our best knowledge, we are only aware of han09 ; hm03 ; hl19pp ; mothesis for studying one-dimensional OEP-based multiframelets, and hl20pp for investigating OEP-based quasi-tight multiframelets in arbitrary dimensions.

Here we briefly explain the difficulties involved in studying multiframelets. We see from Theorem 1.1 that the most important step of constructing OEP-based framelets is choosing the appropriate filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. In many situations, this is not easy. Except for the examples in han09 ; hl19pp , all constructed OEP-based dual framelets with non-trivial Θ\Theta (where Θ:=θθ~\Theta:=\theta^{\star}*\tilde{\theta}) do not have a compact underlying discrete framelet transform, i.e., Θ\Theta is not strongly invertible.

On the other hand, the sparsity of a discrete framelet transform is another issue which needs to be worried about when the multiplicity r>1r>1. First we look at the scalar case r=1r=1. Let ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) be an OEP-based dual 𝖬\mathsf{M}-framelet obtained through Theorem 1.1 with an underlying OEP-based dual 𝖬\mathsf{M}-framelet filter bank ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta}. Suppose that vm(ψ)=m\operatorname{vm}(\psi)=m. Then the framelet representation (1.1) has sparsity in the sense that the polynomial preservation property (1.2) holds. Moreover, item (1) of Theorem 1.1 yields ϕ^(0)0\widehat{\phi}(0)\neq 0. Thus it follows from ψ^:=b^(𝖬𝖳)ϕ^(𝖬𝖳)\widehat{\psi}:=\widehat{b}(\mathsf{M}^{-\mathsf{T}}\cdot)\widehat{\phi}(\mathsf{M}^{-\mathsf{T}}\cdot) that b^(ξ)=𝒪(ξm)\widehat{b}(\xi)=\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0. For any polynomial 𝗉m1\mathsf{p}\in\mathbb{P}_{m-1}, using Taylor expansion yields 𝗉(xk)=α0d(k)αα!α𝗉(x)\mathsf{p}(x-k)=\sum_{\alpha\in\mathbb{N}^{d}_{0}}\frac{(-k)^{\alpha}}{\alpha!}\partial^{\alpha}\mathsf{p}(x) for all x,kdx,k\in\mathbb{R}^{d}. Thus for any finitely supported sequence ul0(d)u\in l_{0}(\mathbb{Z}^{d}), we have

(x)\displaystyle(x) =kd𝗉(xk)u(k)=α0d[α𝗉](x)(kd(k)αα!u(k))\displaystyle=\sum_{k\in\mathbb{Z}^{d}}\mathsf{p}(x-k)u(k)=\sum_{\alpha\in\mathbb{N}^{d}_{0}}[\partial^{\alpha}\mathsf{p}](x)\left(\sum_{k\in\mathbb{Z}^{d}}\frac{(-k)^{\alpha}}{\alpha!}u(k)\right)
=α0d(i)|α|α![α𝗉](x)[αu^](0),\displaystyle=\sum_{\alpha\in\mathbb{N}^{d}_{0}}\frac{(-i)^{|\alpha|}}{\alpha!}[\partial^{\alpha}\mathsf{p}](x)[\partial^{\alpha}\widehat{u}](0),

which is a polynomial whose degree is no bigger than the degree of 𝗉\mathsf{p}, i.e., 𝗉um1\mathsf{p}*u\in\mathbb{P}_{m-1}. Denote m1|d\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}} the linear space of all dd-variate polynomial sequences of degree at most m1m-1. We now input a polynomial sequence data 𝗉m1|d\mathsf{p}\in\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}} and implement the JJ-level discrete framelet transform with the filter bank ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta}. Observe that the framelet coefficient v1v_{1} (see (1.14)) satisfies v1=𝒯a,𝖬𝗉=|det(𝖬)|12[𝗉a](𝖬)m1v_{1}=\mathcal{T}_{a,\mathsf{M}}\mathsf{p}=|\det(\mathsf{M})|^{\frac{1}{2}}[\mathsf{p}*a^{\star}](\mathsf{M}\cdot)\in\mathbb{P}_{m-1}, and by induction we conclude that vjm1|dv_{j}\in\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}} for all j=1,2,,Jj=1,2,\dots,J. It follows that the framelet coefficients wjw_{j} (see (1.15)) now satisfy

wj=𝒯b,𝖬vj1=|det(𝖬)|12[vj1b](𝖬)=α0d(i)|α|α![αvj1]()[αb^](0)=0,w_{j}=\mathcal{T}_{b,\mathsf{M}}v_{j-1}=|\det(\mathsf{M})|^{\frac{1}{2}}[v_{j-1}*b^{\star}](\mathsf{M}\cdot)=\sum_{\alpha\in\mathbb{N}^{d}_{0}}\frac{(-i)^{|\alpha|}}{\alpha!}[\partial^{\alpha}v_{j-1}](\cdot)[\partial^{\alpha}\widehat{b}](0)=0,

for all j=1,,Jj=1,\dots,J, where the last step follows from b^(ξ)=𝒪(ξm)\widehat{b}(\xi)=\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0 and vjm1|dv_{j}\in\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}}. Consequently, all framelet coefficients wjw_{j} vanish. This means that the sparsity of the framelet expansion (1.1) automatically guarantees the sparsity of the underlying multi-level discrete framelet transform. Unfortunately this is in general not the case when r>1r>1, simply due to the fact that ψ^(ξ)=b^(𝖬𝖳ξ)ϕ^(𝖬𝖳ξ)=𝒪(ξm)\widehat{\psi}(\xi)=\widehat{b}(\mathsf{M}^{-\mathsf{T}}\xi)\widehat{\phi}(\mathsf{M}^{-\mathsf{T}}\xi)=\mathcal{O}(\|\xi\|^{m}) does not imply any moment property of b^(ξ)\widehat{b}(\xi) at ξ=0\xi=0. This issue is known as the balancing property of a framelet in the literature (cj00 ; cj03 ; han09 ; han10 ; hanbook ; lv98 ; sel00 ). See Section 2 for a brief review of this topic.

1.4 Main Results and Paper Structure

From the previous discussion, for OEP-based dual framelets, it seems impossible to achieve high vanishing moments on framelet generators without sacrificing the desired features of the underlying discrete framelet transform. The first breakthrough to this problem is han09 , which proves that for r2r\geqslant 2 and d=1d=1, one can always obtain OEP-based dual framelets from arbitrary compactly supported refinable vector functions, such that all framelet generators have the highest possible vanishing moments and the associated discrete framelet transform is compact and balanced. However, the case when d>1d>1 is far from being well investigated. We are only aware of han10 which systematically studies the balancing property from the discrete setting for d>1d>1 and hl20pp which deals with the problem with the approach of the so-called quasi-tight framelets. In this paper, we will systematically study multivariate OEP-based dual framelets with the three key properties. Our main result is the following theorem.

Theorem 1.3

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and r2r\geqslant 2 be an integer. Let ϕ,ϕ~(L2(d))r\phi,\tilde{\phi}\in(L_{2}(\mathbb{R}^{d}))^{r} be compactly supported 𝖬\mathsf{M} refinable vector functions associated with refinement masks a,a~(l0(d))r×ra,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. Suppose that sr(a,𝖬)=m~\operatorname{sr}(a,\mathsf{M})=\tilde{m} and sr(a~,𝖬)=m\operatorname{sr}(\tilde{a},\mathsf{M})=m with matching filters υ,υ~(l0(d))1×r\upsilon,\tilde{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} respectively such that υ^(0)ϕ^(0)0\widehat{\upsilon}(0)\widehat{\phi}(0)\neq 0 and υ~^(0)ϕ~^(0)0\widehat{\tilde{\upsilon}}(0)\widehat{\tilde{\phi}}(0)\neq 0. Let 𝖭\mathsf{N} be a d×dd\times d integer matrix with |det(𝖭)|=r|\det(\mathsf{N})|=r. Then there exist θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} for some ss\in\mathbb{N} such that

  1. (1)

    θ\theta and θ~\tilde{\theta} are both strongly invertible.

  2. (2)

    Define finitely supported filters å,b̊,a~̊,b~̊{\mathring{a}},{\mathring{b}},{\mathring{\tilde{a}}},{\mathring{\tilde{b}}} via (1.16) and (1.17). Then ({å;b̊},{a~̊;b~̊})Ir(\{{\mathring{a}};{\mathring{b}}\},\{{\mathring{\tilde{a}}};{\mathring{\tilde{b}}}\})_{I_{r}} is an OEP-based dual 𝖬\mathsf{M}-framelet filter bank. Moreover, the discrete framelet transform employing the filter bank ({å;b̊},{a~̊;b~̊})Ir(\{{\mathring{a}};{\mathring{b}}\},\{{\mathring{\tilde{a}}};{\mathring{\tilde{b}}}\})_{I_{r}} is order mm E𝖭E_{\mathsf{N}}-balanced, i.e., bo({å;b̊},𝖬,𝖭)=sr(a~̊,𝖬)=m\operatorname{bo}(\{{\mathring{a}};{\mathring{b}}\},\mathsf{M},\mathsf{N})=\operatorname{sr}({\mathring{\tilde{a}}},\mathsf{M})=m (See definition in Section 2).

  3. (3)

    ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is a compactly supported dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}) with vm(ψ)=m\operatorname{vm}(\psi)=m and vm(ψ~)=m~\operatorname{vm}(\tilde{\psi})=\tilde{m}, where ϕ̊,ψ,ϕ~̊,ψ~\mathring{\phi},\psi,\mathring{\tilde{\phi}},\tilde{\psi} are vector-valued functions defined as in (1.5) and (1.6).

For r=1r=1, we have a similar result which only satisfies item (3), for the following reasons: (1) a filter θl0(d)\theta\in l_{0}(\mathbb{Z}^{d}) is strongly invertible if and only if θ=c𝜹(k)\theta=c\boldsymbol{\delta}(\cdot-k) for some cc\in\mathbb{C} and kdk\in\mathbb{Z}^{d}, and using such filters loses the advantage of OEP for increasing vanishing moments on framelet generators; (2) the balancing property does not come in to play when the multiplicity r=1r=1. Theorem 1.3 extends the main result of han09 for the case d=1d=1 to d>1d>1, but is not a simple generalization. Several techniques for the case d=1d=1 simply do not work when d>1d>1. For instance, a 2π2\pi-periodic trigonometric polynomial has mm vanishing moments if and only if it is divisible by (1eiξ)m(1-e^{-i\xi})^{m}, which is an important fact for the construction of dual framelets with high vanishing moments when d=1d=1. Unfortunately, such factorization is no longer available when d>1d>1. A recently developed normal form of a matrix-valued filter (see hl20pp ) plays a crucial role in our study of OEP-based dual framelets with high vanishing moments and high balancing order, and we will provide a short review of this topic in Section 2.

The paper is organized as follows. In Section 2, we briefly review the balancing property of a multi-level discrete transform, as well as a recently developed normal form of a matrix-valued filter. These are what we need to prove our main result. In Section 3, we prove the main result Theorem 1.3. Motivated by the proof of the main theorem, we shall perform structural analysis of compactly supported balanced OEP-based dual multiframelets in Section 4. Finally, a summary of our work and some concluding comments will be given in Section 5.

2 Preliminary

In this section, we review some important concepts and results which we need to prove our main result on OEP-based dual multiframelets.

2.1 The balancing property of a multi-level discrete framelet Transform

As mentioned in Section 1, one issue with OEP when the multiplicity r>1r>1 is the sparseness of the multilevel discrete framelet transform. In many applications, the original data is scalar valued, that is, an input data vl(d)v\in l(\mathbb{Z}^{d}). Thus to implement a multi-level discrete framelet transform, we need to first vectorize the input data. Let 𝖭\mathsf{N} be a d×dd\times d integer matrix with |det(𝖭)|=r|\det(\mathsf{N})|=r, and let Γ𝖭\Gamma_{\mathsf{N}} be a particular choice of the representatives of the cosets in d/[𝖭d]\mathbb{Z}^{d}/[\mathsf{N}\mathbb{Z}^{d}] given by

Γ𝖭:={γ̊1,,γ̊r}=:[𝖭[0,1)d]d,withγ̊1:=0.\Gamma_{\mathsf{N}}:=\{\mathring{\gamma}_{1},\dots,\mathring{\gamma}_{r}\}=:[\mathsf{N}[0,1)^{d}]\cap\mathbb{Z}^{d},\quad\mbox{with}\quad\mathring{\gamma}_{1}:=0. (2.1)

We define the standard vectorization operator with respect to 𝖭\mathsf{N} via

E𝖭v:=(v(𝖭+γ̊1),v(𝖭+γ̊r)),vl(d).E_{\mathsf{N}}v:=(v(\mathsf{N}\cdot+\mathring{\gamma}_{1}),\dots v(\mathsf{N}\cdot+\mathring{\gamma}_{r})),\qquad\forall v\in l(\mathbb{Z}^{d}). (2.2)

Clearly E𝖭E_{\mathsf{N}} is a bijection between l(d)l(\mathbb{Z}^{d}) and (l(d))1×r(l(\mathbb{Z}^{d}))^{1\times r}. The sparsity of a multi-level discrete framelet transform employing an OEP-based dual 𝖬\mathsf{M}-framelet filter bank ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} is measured by the E𝖭E_{\mathsf{N}}-balancing order of the analysis filter bank {a;b}\{a;b\}, denoted by bo({a;b},𝖬,𝖭):=m\operatorname{bo}(\{a;b\},\mathsf{M},\mathsf{N}):=m where mm is the largest integer such that the following two conditions hold:

  1. (i)

    𝒯a,𝖬\mathcal{T}_{a,\mathsf{M}} is invariant on E𝖭(m1|d)E_{\mathsf{N}}(\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}}), i.e.,

    𝒯a,𝖬E𝖭(m1|d)E𝖭(m1|d).\mathcal{T}_{a,\mathsf{M}}E_{\mathsf{N}}(\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}})\subseteq E_{\mathsf{N}}(\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}}). (2.3)
  2. (ii)

    The filter bb has mm E𝖭E_{\mathsf{N}}-balancing vanishing moments, i.e.,

    𝒯b,𝖬E𝖭(𝗉)=0,𝗉m1|d.\mathcal{T}_{b,\mathsf{M}}E_{\mathsf{N}}(\mathsf{p})=0,\qquad\forall\mathsf{p}\in\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}}. (2.4)

If items (i) and (ii) are satisfied, note that the framelet coefficient wj=𝒯b,𝖬𝒯a,𝖬j1E𝖭(𝗉)=0w_{j}=\mathcal{T}_{b,\mathsf{M}}\mathcal{T}_{a,\mathsf{M}}^{j-1}E_{\mathsf{N}}(\mathsf{p})=0 for all 𝗉m1|d\mathsf{p}\in\mathbb{P}_{m-1}|_{\mathbb{Z}^{d}} and j=1,,Jj=1,\dots,J. This preserves sparsity at all levels of the multilevel discrete framelet transform. A complete characterization of the balancing order of a filter bank is given by the following result.

Theorem 2.1

(han10, , Proposition 3.1, Theorem 4.1) Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and r2r\geqslant 2 be a positive integer. Let a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b(l0(d))s×rb\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} for some ss\in\mathbb{N}. Let 𝖭\mathsf{N} be a d×dd\times d integer matrix with |det(𝖭)|=r|\det(\mathsf{N})|=r and E𝖭E_{\mathsf{N}} in (2.2). Define

Υ𝖭^(ξ):=(ei𝖭1γ̊1ξ,,ei𝖭1γ̊rξ),ξd.\widehat{\Upsilon_{\mathsf{N}}}(\xi):=\left(e^{i\mathsf{N}^{-1}\mathring{\gamma}_{1}\cdot\xi},\ldots,e^{i\mathsf{N}^{-1}\mathring{\gamma}_{r}\cdot\xi}\right),\qquad\xi\in\mathbb{R}^{d}. (2.5)

Then the following statements hold:

  1. (1)

    The filter bb has order mm E𝖭E_{\mathsf{N}}-balancing vanishing moments satisfying (2.4) if and only if

    Υ𝖭^(ξ)b^(ξ)¯𝖳=𝒪(ξm),ξ0.\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{b}(\xi)}^{\mathsf{T}}=\mathcal{O}(\|\xi\|^{m}),\qquad\xi\to 0. (2.6)
  2. (2)

    The filter bank {a;b}\{a;b\} has mm E𝖭E_{\mathsf{N}}-balancing order if and only if (2.6) holds and

    Υ𝖭^(ξ)a^(ξ)¯𝖳=c^(ξ)Υ𝖭^(𝖬𝖳ξ)+𝒪(ξm),ξ0,\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{a}(\xi)}^{\mathsf{T}}=\widehat{c}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,

    for some cl0(d)c\in l_{0}(\mathbb{Z}^{d}) with c^(0)0\widehat{c}(0)\neq 0.

Let a,a~,θ,θ~(l0(d))r×ra,\tilde{a},\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} such that ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} is an OEP-based dual 𝖬\mathsf{M}-multiframelet filter bank, where Θ=θθ~\Theta=\theta^{\star}*\tilde{\theta}. Suppose that ϕ,ϕ~(L2(d))r\phi,\tilde{\phi}\in(L_{2}(\mathbb{R}^{d}))^{r} are compactly supported 𝖬\mathsf{M}-refinable vector functions in L2(d)L_{2}(\mathbb{R}^{d}) satisfying ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi) and ϕ~^(𝖬𝖳ξ)=a~^(ξ)ϕ~^(ξ)\widehat{\tilde{\phi}}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{\tilde{a}}(\xi)\widehat{\tilde{\phi}}(\xi). Define ϕ̊,ψ,ϕ~̊,ψ~\mathring{\phi},\psi,\mathring{\tilde{\phi}},\tilde{\psi} as in (1.5) and (1.6). If ϕ^(0)¯𝖳Θ^(0)ϕ~^(0)=1\overline{\widehat{\phi}(0)}^{\mathsf{T}}\widehat{\Theta}(0)\widehat{\tilde{\phi}}(0)=1 and ψ^(0)=ψ~^(0)=0\widehat{\psi}(0)=\widehat{\tilde{\psi}}(0)=0, then Theorem 1.1 tells us that ({ϕ̊;ψ},{ϕ̊~;ψ~})(\{\mathring{\phi};\psi\},\{\tilde{\mathring{\phi}};\tilde{\psi}\}) is a dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}). With m:=sr(a~,𝖬)m:=\operatorname{sr}(\tilde{a},\mathsf{M}), we observe that vm(ψ)m\operatorname{vm}(\psi)\leqslant m, bvm(b,𝖬,𝖭)m\operatorname{bvm}(b,\mathsf{M},\mathsf{N})\leqslant m and bo({a;b},𝖬,𝖭)bvm(b,𝖬,𝖭)\operatorname{bo}(\{a;b\},\mathsf{M},\mathsf{N})\leqslant\operatorname{bvm}(b,\mathsf{M},\mathsf{N}). If bo({a;b},𝖬,𝖭)=bvm(b,𝖬,𝖭)=vm(ψ)=m\operatorname{bo}(\{a;b\},\mathsf{M},\mathsf{N})=\operatorname{bvm}(b,\mathsf{M},\mathsf{N})=\operatorname{vm}(\psi)=m, then we say that the discrete multiframelet transform (or the dual multiframelet ({ϕ̊;ψ},{ϕ̊~;ψ~})(\{\mathring{\phi};\psi\},\{\tilde{\mathring{\phi}};\tilde{\psi}\})) is order mm E𝖭E_{\mathsf{N}}-balanced. For r>1r>1, bo({a,b},𝖬,𝖭)<vm(ψ)\operatorname{bo}(\{a,b\},\mathsf{M},\mathsf{N})<\operatorname{vm}(\psi) often happens. Hence, having high vanishing moments on framelet generators does not guarantee the balancing property and thus significantly reduces the sparsity of the associated discrete multiframelet transform. How to overcome this shortcoming has been extensively studied in the setting of functions in cj00 ; lv98 ; sel00 and in the setting of discrete framelet transforms in han09 ; han10 ; hanbook .

2.2 The normal form of a matrix-valued filter

In this section, we briefly review results on a recently developed normal form of the matrix-valued filter. The matrix-valued filter normal form greatly reduces the difficulty in studying multiframelets and multiwavelets, in a way such that we can mimic the techniques we have for studying scalar framelets and wavelets. Considerable works on this topic have been done. We refer the readers to han03 ; han09 ; han10 ; hanbook ; hl20pp ; hm03 for detailed discussion. The most recent advance on this topic is hl20pp , which not only generalizes all previously existing works under much weaker conditions but also provides a strengthened normal form of a matrix-valued filter which greatly benefits our study on balanced multivariate multiframelets.

We first recall the following lemma which is known as (han10, , Lemma 2.2). This result links different vectors of functions which are smooth at the origin by strongly invertible filters.

Lemma 2.2

[(han10, , Lemma 2.2)] Let v^=(v1^,,vr^)\widehat{v}=(\widehat{v_{1}},\ldots,\widehat{v_{r}}) and u^=(u1^,,ur^)\widehat{u}=(\widehat{u_{1}},\ldots,\widehat{u_{r}}) be 1×r1\times r vectors of functions which are infinitely differentiable at 0 with v^(0)0\widehat{v}(0)\neq 0 and u^(0)0\widehat{u}(0)\neq 0. If r2r\geqslant 2, then for any positive integer nn\in\mathbb{N}, there exists a strongly invertible U(l0(d))r×rU\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that u^(ξ)=v^(ξ)U^(ξ)+𝒪(ξn)\widehat{u}(\xi)=\widehat{v}(\xi)\widehat{U}(\xi)+\mathcal{O}(\|\xi\|^{n}) as ξ0\xi\to 0.

One of the most important results on the normal form of a matrix-valued filter is the following result which has been developed recently, which is a part of (hl20pp, , Theorem and 3.3).

Theorem 2.3

Let v^,v̊^\widehat{v},\widehat{{\mathring{v}}} be 1×r1\times r vectors and ϕ^,ϕ̊^\widehat{\phi},\widehat{\mathring{\phi}} be r×1r\times 1 vectors of functions which are infinitely differentiable at 0. Suppose

v^(ξ)ϕ^(ξ)=1+𝒪(ξm)andv̊^(ξ)ϕ̊^(ξ)=1+𝒪(ξm),ξ0.\widehat{v}(\xi)\widehat{\phi}(\xi)=1+\mathcal{O}(\|\xi\|^{m})\quad\mbox{and}\quad\widehat{{\mathring{v}}}(\xi)\widehat{\mathring{\phi}}(\xi)=1+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0.

If r2r\geqslant 2, then for each nn\in\mathbb{N}, there exists a strongly invertible filter U(l0(d))r×rU\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that

v^(ξ)U^(ξ)1=v̊^(ξ)+𝒪(ξm)andU^(ξ)ϕ^(ξ)=ϕ̊^(ξ)+𝒪(ξn),ξ0.\widehat{v}(\xi)\widehat{U}(\xi)^{-1}=\widehat{{\mathring{v}}}(\xi)+\mathcal{O}(\|\xi\|^{m})\quad\mbox{and}\quad\widehat{U}(\xi)\widehat{\phi}(\xi)=\widehat{\mathring{\phi}}(\xi)+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.
Proof

As this result is important for our study of multiframelets but its proof is long and technical, here we provide a sketch of the proof.

Note that it suffices to prove the claim for nmn\geqslant m, from which the case n<mn<m follows immediately. The proof contains the following steps:

  1. Step 1.

    Choose a strongly invertible U1(l0(d))r×rU_{1}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that

    ϕ˘^(ξ):=U1^(ξ)ϕ^(ξ)=(1,0,,0)𝖳+𝒪(ξn),ξ0.\widehat{\breve{\phi}}(\xi):=\widehat{U_{1}}(\xi)\widehat{\phi}(\xi)=(1,0,\dots,0)^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.

    Define w^:=(w1^,,wr^):=υ^U1^1\widehat{w}:=(\widehat{w_{1}},\dots,\widehat{w_{r}}):=\widehat{\upsilon}\widehat{U_{1}}^{-1} and choose uυ(l0(d))1×ru_{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} such that

    uυ^(ξ)=(1,w2^(ξ),,wr^(ξ))U1^(ξ)+𝒪(ξn),ξ0.\widehat{u_{\upsilon}}(\xi)=(1,\widehat{w_{2}}(\xi),\dots,\widehat{w_{r}}(\xi))\widehat{U_{1}}(\xi)+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.

    Then one can verify that

    uυ^(ξ)=υ^(ξ)+𝒪(ξm),uυ^(ξ)ϕ^(ξ)=1+𝒪(ξn),ξ0.\widehat{u_{\upsilon}}(\xi)=\widehat{\upsilon}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\widehat{u_{\upsilon}}(\xi)\widehat{\phi}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.

    Similarly we can find υ~˘(l0(d))1×r\breve{\tilde{\upsilon}}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} such that

    uυ̊^(ξ)=υ̊^(ξ)+𝒪(ξm),uυ̊^(ξ)ϕ̊^(ξ)=1+𝒪(ξn),ξ0.\widehat{u_{\mathring{\upsilon}}}(\xi)=\widehat{\mathring{\upsilon}}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\widehat{u_{\mathring{\upsilon}}}(\xi)\widehat{\mathring{\phi}}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.
  2. Step 2.

    Choose strongly invertible filters U2,U3(l0(d))r×rU_{2},U_{3}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that

    (1,0,,0)=uυ̊^(ξ)U2^(ξ)+𝒪(ξn),uυ^(ξ)=(1,0,,0)U3^(ξ)+𝒪(ξn),(1,0,\dots,0)=\widehat{u_{\mathring{\upsilon}}}(\xi)\widehat{U_{2}}(\xi)+\mathcal{O}(\|\xi\|^{n}),\quad\widehat{u_{\upsilon}}(\xi)=(1,0,\dots,0)\widehat{U_{3}}(\xi)+\mathcal{O}(\|\xi\|^{n}),

    as ξ0\xi\to 0. Define

    uϕ^:=(uϕ,1^,uϕ,2^,,uϕ,r^)𝖳:=U3^ϕ^,uϕ̊^:=(uϕ̊,1^,uϕ̊,2^,,uϕ̊,r^)𝖳:=U2^1ϕ̊^.\widehat{u_{\phi}}:=(\widehat{u_{\phi,1}},\widehat{u_{\phi,2}},\dots,\widehat{u_{\phi,r}})^{\mathsf{T}}:=\widehat{U_{3}}\widehat{\phi},\quad\widehat{u_{\mathring{\phi}}}:=(\widehat{u_{\mathring{\phi},1}},\widehat{u_{\mathring{\phi},2}},\dots,\widehat{u_{\mathring{\phi},r}})^{\mathsf{T}}:=\widehat{U_{2}}^{-1}\widehat{\mathring{\phi}}.

    It is easy to verify that

    uϕ,1^(ξ)=uϕ̊,1^(ξ)+𝒪(ξn)=1+𝒪(ξn),ξ0.\widehat{u_{\phi,1}}(\xi)=\widehat{u_{\mathring{\phi},1}}(\xi)+\mathcal{O}(\|\xi\|^{n})=1+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0.
  3. Step 3.

    Choose g2,,grl0(d)g_{2},\dots,g_{r}\in l_{0}(\mathbb{Z}^{d}) such that

    g^(ξ)=uϕ̊,^(ξ)uϕ,^(ξ)+𝒪(ξn),ξ0,=2,,r.\widehat{g_{\ell}}(\xi)=\widehat{u_{\mathring{\phi},\ell}}(\xi)-\widehat{u_{\phi,\ell}}(\xi)+\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0,\quad\ell=2,\dots,r.

    Define a strongly invertible filter U4(l0(d))r×rU_{4}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} via

    U4^:=[100g2^10gr^01].\widehat{U_{4}}:=\begin{bmatrix}1&0&\cdots&0\\ \widehat{g_{2}}&1&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ \widehat{g_{r}}&0&\cdots&1\end{bmatrix}.

    Then U(l0(d))r×rU\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} with U^:=U2^U4^U3^\widehat{U}:=\widehat{U_{2}}\widehat{U_{4}}\widehat{U_{3}} is the desired filter as required.∎

A special case of Theorem 2.3 is the following result ((hl20pp, , Theorem 1.2), cf. (han10, , Theorem 5.1)).

Theorem 2.4

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix, and let mm\in\mathbb{N} and r2r\geqslant 2 be integers. Let ϕ\phi be an r×1r\times 1 vector of compactly supported distributions satisfying ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi) with ϕ^(0)0\widehat{\phi}(0)\neq 0 for some a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. Suppose the filter aa has order mm sum rules with respect to 𝖬\mathsf{M} satisfying (1.13) with a matching filter υ(l0(d))1×r\upsilon\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} such that υ^(0)ϕ^(0)=1\widehat{\upsilon}(0)\widehat{\phi}(0)=1. Then for any positive integer nn\in\mathbb{N}, there exists a strongly invertible filter U(l0(d))r×rU\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that the following statements hold:

  1. (1)

    Define υ̊^:=(υ̊1^,,υ̊r^):=υ^U^1\widehat{\mathring{\upsilon}}:=(\widehat{\mathring{\upsilon}_{1}},\ldots,\widehat{\mathring{\upsilon}_{r}}):=\widehat{\upsilon}\widehat{U}^{-1} and ϕ̊^:=(ϕ̊1^,,ϕ̊r^)𝖳:=U^ϕ^\widehat{\mathring{\phi}}:=(\widehat{\mathring{\phi}_{1}},\ldots,\widehat{\mathring{\phi}_{r}})^{\mathsf{T}}:=\widehat{U}\widehat{\phi}. We have

    ϕ̊1^(ξ)=1+𝒪(ξn)andϕ̊^(ξ)=𝒪(ξn),ξ0,=2,,r,\widehat{\mathring{\phi}_{1}}(\xi)=1+\mathcal{O}(\|\xi\|^{n})\quad\mbox{and}\quad\widehat{\mathring{\phi}_{\ell}}(\xi)=\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0,\quad\ell=2,\ldots,r, (2.7)
    υ̊1^(ξ)=1+𝒪(ξm)andυ̊^(ξ)=𝒪(ξm),ξ0,=2,,r.\widehat{\mathring{\upsilon}_{1}}(\xi)=1+\mathcal{O}(\|\xi\|^{m})\quad\mbox{and}\quad\widehat{\mathring{\upsilon}_{\ell}}(\xi)=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\ell=2,\ldots,r. (2.8)
  2. (2)

    Define å(l0(d))r×r{\mathring{a}}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} via å^:=U^(𝖬𝖳)a^U^1\widehat{\mathring{a}}:=\widehat{U}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{a}\widehat{U}^{-1}. Then ϕ̊^(𝖬𝖳)=å^ϕ̊^\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{a}}}\widehat{\mathring{\phi}} and the new filter å{\mathring{a}} has order mm sum rules with respect to 𝖬\mathsf{M} with the matching filter υ̊(l0(d))1×r\mathring{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r}.

Let å(l0(d))r×r{\mathring{a}}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} be a refinement mask associated to an 𝖬\mathsf{M}-refinable vector function ϕ̊\mathring{\phi} satisfying (2.7), and suppose that å{\mathring{a}} has mm sum rules with a matching filter υ̊(l0(d))1×r\mathring{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} satisfying (2.8). It is not hard to observe that å{\mathring{a}} has the following structure:

å^(ξ)=[å1,1^(ξ)å1,2^(ξ)å2,1^(ξ)å2,2^(ξ)],\widehat{{\mathring{a}}}(\xi)=\left[\begin{matrix}\widehat{{\mathring{a}}_{1,1}}(\xi)&\widehat{{\mathring{a}}_{1,2}}(\xi)\\ \widehat{{\mathring{a}}_{2,1}}(\xi)&\widehat{{\mathring{a}}_{2,2}}(\xi)\end{matrix}\right], (2.9)

where å1,1^,å1,2^,å2,1^\widehat{{\mathring{a}}_{1,1}},\widehat{{\mathring{a}}_{1,2}},\widehat{{\mathring{a}}_{2,1}} and å2,2^\widehat{{\mathring{a}}_{2,2}} are 1×11\times 1, 1×(r1)1\times(r-1), (r1)×1(r-1)\times 1 and (r1)×(r1)(r-1)\times(r-1) matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials such that

å1,1^(ξ)=1+𝒪(ξn),å1,1^(ξ+2πω)=𝒪(ξm),ξ0,ωΩ𝖬{0},\displaystyle\widehat{{\mathring{a}}_{1,1}}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\quad\widehat{{\mathring{a}}_{1,1}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}}\setminus\{0\}, (2.10)
å1,2^(ξ+2πω)=𝒪(ξm),ξ0,ωΩ𝖬,\displaystyle\widehat{{\mathring{a}}_{1,2}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}}, (2.11)
å2,1^(ξ)=𝒪(ξn),ξ0.\displaystyle\widehat{{\mathring{a}}_{2,1}}(\xi)=\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0. (2.12)

Any filter å{\mathring{a}} satisfying (2.9), (2.10), (2.11) and (2.12) is said to take the ideal (m,n)(m,n)-normal form.

If d=1d=1, then the three moment conditions (2.10), (2.11) and (2.12) further yield

å1,1^(ξ)=(1+eiξ++ei(|𝖬|1)ξ)mP1,1(ξ)=1+𝒪(|ξ|n),ξ0,\widehat{{\mathring{a}}_{1,1}}(\xi)=(1+e^{-i\xi}+\dots+e^{-i(|\mathsf{M}|-1)\xi})^{m}P_{1,1}(\xi)=1+\mathcal{O}(|\xi|^{n}),\qquad\xi\to 0,
å1,2^(ξ)=(1ei|𝖬|ξ)mP1,2(ξ),å2,1^(ξ)=(1eiξ)nP2,1(ξ),\widehat{{\mathring{a}}_{1,2}}(\xi)=(1-e^{-i|\mathsf{M}|\xi})^{m}P_{1,2}(\xi),\qquad\widehat{{\mathring{a}}_{2,1}}(\xi)=(1-e^{-i\xi})^{n}P_{2,1}(\xi),

where P1,1,P1,2P_{1,1},P_{1,2} and P2,1P_{2,1} are some 1×1,1×(r1)1\times 1,1\times(r-1) and (r1)×1(r-1)\times 1 matrices of 2π2\pi-periodic trigonometric polynomials. Recall that a 2π2\pi-periodic trigonometric polynomial u^\widehat{u} satisfies u^(ξ)=𝒪(|ξ|m)\widehat{u}(\xi)=\mathcal{O}(|\xi|^{m}) as ξ0\xi\to 0 if and only if (1eiξ)m(1-e^{-i\xi})^{m} divides u^\widehat{u}. This is the crucial property to construct univariate dual framelets with high vanishing moments. Unfortunately for d2d\geqslant 2, there are no corresponding factors for (1+eiξ++ei(|𝖬|1)ξ)m(1+e^{-i\xi}+\dots+e^{-i(|\mathsf{M}|-1)\xi})^{m} and (1eiξ)m(1-e^{-i\xi})^{m}. This means the factorization technique that we have to construct dual framelets with high vanishing moments for the case d=1d=1 is no longer available, which illustrates that the investigation is more difficult for d>1d>1.

3 Proof of Theorem 1.3

The goal of this section is to prove the main result Theorem 1.1. To do this, we first need to introduce several notations. For any kdk\in\mathbb{Z}^{d}, the backward difference operator k\nabla_{k} is defined via

ku(n):=u(n)u(nk),nd,u(l(d))t×r.\nabla_{k}u(n):=u(n)-u(n-k),\qquad\forall n\in\mathbb{Z}^{d},\quad u\in(l(\mathbb{Z}^{d}))^{t\times r}.

For any multi-index α:=(α1,,αd)0d\alpha:=(\alpha_{1},\dots,\alpha_{d})\in\mathbb{N}^{d}_{0}, we define

α:=e1α1e2α2edαd,\nabla^{\alpha}:=\nabla^{\alpha_{1}}_{e_{1}}\nabla^{\alpha_{2}}_{e_{2}}\dots\nabla^{\alpha_{d}}_{e_{d}},

where {e1,,ed}\{e_{1},\dots,e_{d}\} is the standard basis for d\mathbb{R}^{d}. Observe that

αu^(ξ)=α𝜹^(ξ)u^(ξ)=(1eiξ1)α1(1eiξ2)α2(1eiξd)αdu^(ξ),\widehat{\nabla^{\alpha}u}(\xi)=\widehat{\nabla^{\alpha}\boldsymbol{\delta}}(\xi)\widehat{u}(\xi)=(1-e^{-i\xi_{1}})^{\alpha_{1}}(1-e^{-i\xi_{2}})^{\alpha_{2}}\cdots(1-e^{-i\xi_{d}})^{\alpha_{d}}\widehat{u}(\xi),

for all ξ=(ξ1,,ξd)𝖳d\xi=(\xi_{1},\dots,\xi_{d})^{\mathsf{T}}\in\mathbb{R}^{d} and u(l0(d))t×ru\in(l_{0}(\mathbb{Z}^{d}))^{t\times r}.

For d=1d=1, recall that a 2π2\pi-periodic trignometric polynomial c^\widehat{c} satisfies c^(ξ)=𝒪(|ξ|m)\widehat{c}(\xi)=\mathcal{O}(|\xi|^{m}) as ξ0\xi\to 0 if and only if c^\widehat{c} is divisible by (1eiξ)m(1-e^{-i\xi})^{m}. Though such a factorization is not available when d>1d>1 and there is no factor which plays the role of (1eiξ)m(1-e^{-i\xi})^{m} as in the univariate case, the following lemma tells us exactly how one can characterize the moments at zero of a multivariate trigonometric polynomial.

Lemma 3.1

((dhacha, , Lemma 5))Let mm\in\mathbb{N} and c^\widehat{c} be a 2πd2\pi\mathbb{Z}^{d}-periodic dd-variate trigonometric polynomial. Then c^(ξ)=𝒪(ξm)\widehat{c}(\xi)=\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0 if and only if

c^(ξ)=α0;mdα𝜹^(ξ)cα^(ξ)\widehat{c}(\xi)=\sum_{\alpha\in\mathbb{N}^{d}_{0;m}}\widehat{\nabla^{\alpha}\boldsymbol{\delta}}(\xi)\widehat{c_{\alpha}}(\xi)

for some cαl0(d)c_{\alpha}\in l_{0}(\mathbb{Z}^{d}) for all α0;md\alpha\in\mathbb{N}^{d}_{0;m}, where

0;md:={α0d:|α|:=α1++αd=m}.\mathbb{N}^{d}_{0;m}:=\{\alpha\in\mathbb{N}^{d}_{0}:|\alpha|:=\alpha_{1}+\dots+\alpha_{d}=m\}.

Next, we introduce the notion of the so-called coset sequences. Let 𝖬\mathsf{M} be an invertible integer matrix and let γd\gamma\in\mathbb{Z}^{d}. For any matrix-valued sequence u(l(d))t×ru\in(l(\mathbb{Z}^{d}))^{t\times r}, we define the γ\gamma-coset sequence of uu with respect to 𝖬\mathsf{M} via

u[γ;𝖬](k)=u(γ+𝖬k),kd.u^{[\gamma;\mathsf{M}]}(k)=u(\gamma+\mathsf{M}k),\quad k\in\mathbb{Z}^{d}.

For u(l0(d))t×ru\in(l_{0}(\mathbb{Z}^{d}))^{t\times r}, it is easy to see that

u^(ξ)=γΓ𝖬u[γ;𝖬]^(𝖬𝖳ξ)eiγξ,ξd,\widehat{u}(\xi)=\sum_{\gamma\in\Gamma_{\mathsf{M}}}\widehat{u^{[\gamma;\mathsf{M}]}}(\mathsf{M}^{\mathsf{T}}\xi)e^{-i\gamma\cdot\xi},\qquad\xi\in\mathbb{R}^{d}, (3.1)

where Γ𝖬\Gamma_{\mathsf{M}} is a complete set of canonical representatives of the quotient group d/[𝖬d]\mathbb{Z}^{d}/[\mathsf{M}\mathbb{Z}^{d}], with

Γ𝖬:={γ1,,γd𝖬}=:(𝖬[0,1)d)dwithγ1:=0.\Gamma_{\mathsf{M}}:=\{\gamma_{1},\dots,\gamma_{d_{\mathsf{M}}}\}=:(\mathsf{M}[0,1)^{d})\cap\mathbb{Z}^{d}\quad\mbox{with}\quad\gamma_{1}:=0. (3.2)

Define Ω𝖬\Omega_{\mathsf{M}} via (1.9). For any filter u(l0(d))r×ru\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and ωΩ𝖬\omega\in\Omega_{\mathsf{M}}, we introduce the following matrices of trigonometric polynomials associated with uu and ω\omega:

  • Define the (rd𝖬)×(rd𝖬)(rd_{\mathsf{M}})\times(rd_{\mathsf{M}}) block matrix Du,ω;𝖬(ξ)D_{u,\omega;\mathsf{M}}(\xi), whose (l,k)(l,k)-th r×rr\times r blocks are given by

    (Du,ω;𝖬(ξ))l,k:={u^(ξ+2πω),if ωl+ωωkd0,otherwise.(D_{u,\omega;\mathsf{M}}(\xi))_{l,k}:=\begin{cases}\widehat{u}(\xi+2\pi\omega),&\text{if }\omega_{l}+\omega-\omega_{k}\in\mathbb{Z}^{d}\\ 0,&\text{otherwise}.\end{cases} (3.3)
  • Define the (rd𝖬)×(rd𝖬)(rd_{\mathsf{M}})\times(rd_{\mathsf{M}}) block matrix Eu,ω;𝖬(ξ)E_{u,\omega;\mathsf{M}}(\xi), whose (l,k)(l,k)-th r×rr\times r blocks are given by

    (Eu,ω;𝖬(ξ))l,k:=u[γkγl;𝖬]^(ξ)eiγk(2πω).(E_{u,\omega;\mathsf{M}}(\xi))_{l,k}:=\widehat{u^{[\gamma_{k}-\gamma_{l};\mathsf{M}]}}(\xi)e^{-i\gamma_{k}\cdot(2\pi\omega)}. (3.4)
  • Define the r×(rd𝖬)r\times(rd_{\mathsf{M}}) matrix Qu;𝖬(ξ)Q_{u;\mathsf{M}}(\xi) via

    Qu;𝖬(ξ):=[u[γ1;𝖬]^(ξ),u[γ2;𝖬]^(ξ),,u[γd𝖬;𝖬]^(ξ)].Q_{u;\mathsf{M}}(\xi):=\big{[}\widehat{u^{[\gamma_{1};\mathsf{M}]}}(\xi),\widehat{u^{[\gamma_{2};\mathsf{M}]}}(\xi),\dots,\widehat{u^{[\gamma_{d_{\mathsf{M}}};\mathsf{M}]}}(\xi)\big{]}. (3.5)

From (dhacha, , Lemma 7), it is not hard to deduce that

𝖥r;𝖬(ξ)Du,ω;𝖬(ξ)𝖥r;𝖬(ξ)¯𝖳=d𝖬Eu,ω;𝖬(𝖬𝖳ξ),ξd,ωΩ𝖬,\mathsf{F}_{r;\mathsf{M}}(\xi)D_{u,\omega;\mathsf{M}}(\xi)\overline{\mathsf{F}_{r;\mathsf{M}}(\xi)}^{\mathsf{T}}=d_{\mathsf{M}}E_{u,\omega;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi),\qquad\xi\in\mathbb{R}^{d},\omega\in\Omega_{\mathsf{M}}, (3.6)

where 𝖥r;𝖬(ξ)\mathsf{F}_{r;\mathsf{M}}(\xi) is the following (rd𝖬)×(rd𝖬)(rd_{\mathsf{M}})\times(rd_{\mathsf{M}}) matrix:

𝖥r;𝖬(ξ):=(eiγl(ξ+2πωk)Ir)1l,kd𝖬.\mathsf{F}_{r;\mathsf{M}}(\xi):=\left(e^{-i\gamma_{l}\cdot(\xi+2\pi\omega_{k})}I_{r}\right)_{1\leq l,k\leq d_{\mathsf{M}}}. (3.7)

Thus we further deduce that

Pu;𝖬(ξ)=Qu;𝖬(𝖬𝖳ξ)𝖥r;𝖬(ξ),P_{u;\mathsf{M}}(\xi)=Q_{u;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi)\mathsf{F}_{r;\mathsf{M}}(\xi), (3.8)

where Pu;𝖬(ξ):=[u^(ξ+2πω1),u^(ξ+2πω2),,u^(ξ+2πωd𝖬)]P_{u;\mathsf{M}}(\xi):=\big{[}\widehat{u}(\xi+2\pi\omega_{1}),\widehat{u}(\xi+2\pi\omega_{2}),\dots,\widehat{u}(\xi+2\pi\omega_{d_{\mathsf{M}}})\big{]} as in (1.10).

Now let θ,θ~,a,a~(l0(d))r×r\theta,\tilde{\theta},a,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} be finitely supported filters. Recall that ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} (where Θ:=θθ~\Theta:=\theta^{\star}*\tilde{\theta}) is a dual 𝖬\mathsf{M}-framelet filter bank if and only if (1.11) holds. Using (3.8) and 𝖥r;𝖬𝖥r;𝖬¯𝖳=d𝖬Id𝖬r\mathsf{F}_{r;\mathsf{M}}\overline{\mathsf{F}_{r;\mathsf{M}}}^{\mathsf{T}}=d_{\mathsf{M}}I_{d_{\mathsf{M}}r}, it is straight forward to see that (1.11) is equivalent to

𝒩a,a~,Θ(ξ)=Qb;𝖬(ξ)¯𝖳Qb~;𝖬(ξ),\mathcal{N}_{a,\tilde{a},\Theta}(\xi)=\overline{Q_{b;\mathsf{M}}(\xi)}^{\mathsf{T}}Q_{\tilde{b};\mathsf{M}}(\xi), (3.9)

with

𝒩a,a~,Θ(ξ):=d𝖬1EΘ,0;𝖬(ξ)Qa;𝖬(ξ)¯𝖳Θ^(ξ)Qa~;𝖬(ξ).\mathcal{N}_{a,\tilde{a},\Theta}(\xi):=d_{\mathsf{M}}^{-1}E_{\Theta,0;\mathsf{M}}(\xi)-\overline{Q_{a;\mathsf{M}}(\xi)}^{\mathsf{T}}\widehat{\Theta}(\xi)Q_{\tilde{a};\mathsf{M}}(\xi). (3.10)

Therefore, constructing a dual framelet filter bank is equivalent to obtaining a matrix factorization as in (3.10). When the refinement masks aa and a~\tilde{a} are given, all we have to do is to choose some suitable θ\theta and θ~\tilde{\theta}, and then factorize 𝒩a,a~,Θ\mathcal{N}_{a,\tilde{a},\Theta} as in (3.10). Noting that the matrices Qb;𝖬Q_{b;\mathsf{M}} and Qb~;𝖬Q_{\tilde{b};\mathsf{M}} give us all coset sequences of bb and b~\tilde{b}, we can finally reconstruct bb and b~\tilde{b} via (3.1). It is worth mentioning that the approach of passing to coset sequences often appears in the literature of filter bank construction.

Before we prove Theorem 1.3, we need some supporting results. The following result is a special case of (han03, , Proposition 3.2), which links a refinable vector function ϕ\phi with the matching filter υ\upsilon for the associated matrix-valued filter of ϕ\phi. Here we provide a self-contained simple proof.

Lemma 3.2

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and a(l0(d))r×ra\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. Let ϕ\phi be an r×1r\times 1 vector of compactly supported distributions satisfying ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi) with ϕ^(0)0\widehat{\phi}(0)\neq 0. If aa has order mm sum rules with respect to 𝖬\mathsf{M} satisfying (1.13) with a matching filter υ(l0(d))1×r\upsilon\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} and υ^(0)ϕ^(0)=1\widehat{\upsilon}(0)\widehat{\phi}(0)=1, then

υ^(ξ)ϕ^(ξ)=1+𝒪(ξm),ξ0.\widehat{\upsilon}(\xi)\widehat{\phi}(\xi)=1+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0. (3.11)
Proof

By our assumption on aa, using υ^(𝖬𝖳ξ)a^(ξ)=υ^(ξ)+𝒪(ξm)\widehat{\upsilon}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{a}(\xi)=\widehat{\upsilon}(\xi)+\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0 and ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi), we deduce that

υ^(𝖬𝖳ξ)ϕ^(𝖬𝖳ξ)=υ^(𝖬𝖳ξ)a^(ξ)ϕ^(ξ)=υ^(ξ)ϕ^(ξ)+𝒪(ξm),ξ0.\widehat{\upsilon}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{\upsilon}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{a}(\xi)\widehat{\phi}(\xi)=\widehat{\upsilon}(\xi)\widehat{\phi}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0. (3.12)

We now prove that (3.12) yields (3.11) using (han03, , Proposition 2.1). For a p×qp\times q matrix A=(akj)1kp,1qA=(a_{kj})_{1\leqslant k\leq p,1\leqslant q} and an s×ts\times t matrix BB, their Kronecker product ABA\otimes B is the (ps)×(qt)(ps)\times(qt) block matrix given by

AB=[a11Ba1qBap1BapqB].A\otimes B=\begin{bmatrix}a_{11}B&\dots&a_{1q}B\\ \vdots&\ddots&\vdots\\ a_{p1}B&\dots&a_{pq}B\end{bmatrix}.

For any nn\in\mathbb{N}, define nA:=AA\otimes^{n}A:=A\otimes\dots\otimes A with nn copies of AA. Recall that if A,B,CA,B,C and EE are matrices of sizes such that one can perform the matrix products ACAC and BEBE, then we have (AB)(CE)=(AC)(BE)(A\otimes B)(C\otimes E)=(AC)\otimes(BE). Thus by induction, we have (n(AC))(BE)=[(nA)B][(nC)E](\otimes^{n}(AC))\otimes(BE)=[(\otimes^{n}A)\otimes B][(\otimes^{n}C)\otimes E].

Define the 1×d1\times d vector of differential operators

D:=(1,,d), where j:=ξj,j=1,,d.D:=(\partial_{1},\dots,\partial_{d}),\text{ where }\partial_{j}:=\frac{\partial}{\partial\xi_{j}},\quad j=1,\dots,d. (3.13)

For simplicity, we define g(ξ):=υ^(ξ)ϕ^(ξ)g(\xi):=\widehat{\upsilon}(\xi)\widehat{\phi}(\xi). Direct calculation using the chain rule yields D[g^(𝖬𝖳)]=[(D𝖬𝖳)g^](𝖬𝖳)D\otimes[\widehat{g}(\mathsf{M}^{\mathsf{T}}\cdot)]=[(D\mathsf{M}^{\mathsf{T}})\otimes\widehat{g}](\mathsf{M}^{\mathsf{T}}\cdot). Here D𝖬𝖳:=(j=1d𝖬1jj,,j=1d𝖬djj)D\mathsf{M}^{\mathsf{T}}:=\left(\sum_{j=1}^{d}\mathsf{M}_{1j}\partial_{j},\dots,\sum_{j=1}^{d}\mathsf{M}_{dj}\partial_{j}\right) is a 1×d1\times d vector of differential operators where 𝖬:=(𝖬jk)1j,kd\mathsf{M}:=(\mathsf{M}_{jk})_{1\leqslant j,k\leqslant d}. By induction, for jj\in\mathbb{N}, we have

[jD][g(𝖬𝖳)]=[(j(D𝖬𝖳))g](𝖬𝖳)=([(jD)g](𝖬𝖳))(j(𝖬𝖳)).[\otimes^{j}D]\otimes[g(\mathsf{M}^{\mathsf{T}}\cdot)]=[(\otimes^{j}(D\mathsf{M}^{\mathsf{T}}))\otimes g](\mathsf{M}^{\mathsf{T}}\cdot)=\left([(\otimes^{j}D)\otimes g](\mathsf{M}^{\mathsf{T}}\cdot)\right)(\otimes^{j}(\mathsf{M}^{\mathsf{T}})). (3.14)

It follows from (3.12) and (3.14) that

([(jD)g](0))(j(𝖬𝖳))=[(jD)g](0),j=1,,m1.\left([(\otimes^{j}D)\otimes g](0)\right)(\otimes^{j}(\mathsf{M}^{\mathsf{T}}))=[(\otimes^{j}D)\otimes g](0),\qquad j=1,\ldots,m-1.

Since all the eigenvalues of 𝖬\mathsf{M} are greater than 11 in modulus, so are the eigenvalues of j(𝖬𝖳)\otimes^{j}(\mathsf{M}^{\mathsf{T}}) for every jj\in\mathbb{N}. This forces the above linear system to have only the trivial solution [(jD)g](0)=𝟎1×dj[(\otimes^{j}D)\otimes g](0)=\boldsymbol{0}_{1\times dj} for j=1,,m1j=1,\ldots,m-1. Hence we conclude that μg(0)=0\partial^{\mu}g(0)=0 for all μ0d\mu\in\mathbb{N}^{d}_{0} with 1|μ|m11\leqslant|\mu|\leqslant m-1. By g(0)=υ^(0)ϕ^(0)=1g(0)=\widehat{\upsilon}(0)\widehat{\phi}(0)=1, we proved g(ξ)=1+𝒪(ξm)g(\xi)=1+\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0, which is just (3.11).∎

From Theorem 1.1, the most important step for deducing an OEP-based dual multiframelet is choosing suitable filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} which allow us to perform construction. The following lemma illustrates the existence of θ\theta and θ~\tilde{\theta} with certain important moment conditions.

Lemma 3.3

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and r2r\geqslant 2 be an integer. Let ϕ,ϕ~(L2(d))r\phi,\tilde{\phi}\in(L_{2}(\mathbb{R}^{d}))^{r} be compactly supported 𝖬\mathsf{M} refinable vector functions associated with refinement masks a,a~(l0(d))r×ra,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. Suppose that sr(a,𝖬)=m~\operatorname{sr}(a,\mathsf{M})=\tilde{m} and sr(a~,𝖬)=m\operatorname{sr}(\tilde{a},\mathsf{M})=m with matching filters υ,υ~(l0(d))1×r\upsilon,\tilde{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} respectively such that υ^(0)ϕ^(0)0\widehat{\upsilon}(0)\widehat{\phi}(0)\neq 0 and υ~^(0)ϕ~^(0)0\widehat{\tilde{\upsilon}}(0)\widehat{\tilde{\phi}}(0)\neq 0. Let 𝖭\mathsf{N} be a d×dd\times d integer matrix with |det(𝖭)|=r|\det(\mathsf{N})|=r, and define Υ𝖭^\widehat{\Upsilon_{\mathsf{N}}} as (2.5). Then there exist strongly invertible filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that the following moment conditions hold as ξ0\xi\to 0:

υ̊^(ξ)=Cϕ~̊^(ξ)¯𝖳+𝒪(ξm~)=c^(ξ)Υ𝖭^(ξ)+𝒪(ξm~),\widehat{\mathring{\upsilon}}(\xi)=C\overline{\widehat{\mathring{\tilde{\phi}}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{\tilde{m}})=\widehat{c}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}}), (3.15)
υ~̊^(ξ)=C~ϕ̊^(ξ)¯𝖳+𝒪(ξm)=d^(ξ)Υ𝖭^(ξ)+𝒪(ξm),\widehat{\mathring{\tilde{\upsilon}}}(\xi)=\tilde{C}\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m})=\widehat{d}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{m}), (3.16)
ϕ̊^(ξ)¯𝖳ϕ~̊^^(ξ)=1+𝒪(ξm+m~),\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\widehat{\widehat{\mathring{\tilde{\phi}}}}(\xi)=1+\mathcal{O}(\|\xi\|^{m+\tilde{m}}), (3.17)

for some c,dl0(d)c,d\in l_{0}(\mathbb{Z}^{d}) with c^(0)0\widehat{c}(0)\neq 0 and d^(0)0\widehat{d}(0)\neq 0, and some C,C~{0}C,\tilde{C}\in\mathbb{C}\setminus\{0\}, where υ̊^:=υ^θ^1,ϕ̊^:=θ^ϕ^,υ~̊^:=υ~^θ~^1\widehat{\mathring{\upsilon}}:=\widehat{\upsilon}\widehat{\theta}^{-1},\widehat{\mathring{\phi}}:=\widehat{\theta}\widehat{\phi},\widehat{\mathring{\tilde{\upsilon}}}:=\widehat{\tilde{\upsilon}}\widehat{\tilde{\theta}}^{-1} and ϕ~̊^:=θ~^ϕ~^\widehat{\mathring{\tilde{\phi}}}:=\widehat{\tilde{\theta}}\widehat{\tilde{\phi}}.

Proof

By Lemma 3.2, we have

υ^(ξ)ϕ^(ξ)=1+𝒪(ξm~),υ~^(ξ)ϕ~^(ξ)=1+𝒪(ξm),ξ0.\widehat{\upsilon}(\xi)\widehat{\phi}(\xi)=1+\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad\widehat{\tilde{\upsilon}}(\xi)\widehat{\tilde{\phi}}(\xi)=1+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0.

Thus by Theorem 2.3, there exist strongly invertible filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that

υ̊^(ξ):=υ^(ξ)θ^(ξ)1=r1/2Υ𝖭^(ξ)+𝒪(ξm~),\widehat{\mathring{\upsilon}}(\xi):=\widehat{\upsilon}(\xi)\widehat{\theta}(\xi)^{-1}=r^{-1/2}\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}}),
ϕ̊^(ξ):=θ^(ξ)ϕ^(ξ)=r1/2Υ𝖭^(ξ)¯𝖳+𝒪(ξn),\widehat{\mathring{\phi}}(\xi):=\widehat{\theta}(\xi)\widehat{\phi}(\xi)=r^{-1/2}\overline{\widehat{\Upsilon_{\mathsf{N}}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{n}),
υ~̊^(ξ):=υ~^(ξ)θ~^(ξ)1=r1/2Υ𝖭^(ξ)+𝒪(ξm),\widehat{\mathring{\tilde{\upsilon}}}(\xi):=\widehat{\tilde{\upsilon}}(\xi)\widehat{\tilde{\theta}}(\xi)^{-1}=r^{-1/2}\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{m}),
ϕ~̊^(ξ):=θ~^(ξ)ϕ~^(ξ)=r1/2Υ𝖭^(ξ)¯𝖳+𝒪(ξn),\widehat{\mathring{\tilde{\phi}}}(\xi):=\widehat{\tilde{\theta}}(\xi)\widehat{\tilde{\phi}}(\xi)=r^{-1/2}\overline{\widehat{\Upsilon_{\mathsf{N}}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{n}),

as ξ0\xi\to 0, where n:=m~+mn:=\tilde{m}+m. This proves (3.15) and (3.16). Moreover, it is easy to see that (3.17) holds. This completes the proof.∎

Now we are ready to prove the main result Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.3, there exist strongly invertible filters θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that (3.15), (3.16) and (3.17) hold as ξ0\xi\to 0, where υ̊^:=υ^θ^1,ϕ̊^:=θ^ϕ^,υ~̊^:=υ~^θ~^1\widehat{\mathring{\upsilon}}:=\widehat{\upsilon}\widehat{\theta}^{-1},\widehat{\mathring{\phi}}:=\widehat{\theta}\widehat{\phi},\widehat{\mathring{\tilde{\upsilon}}}:=\widehat{\tilde{\upsilon}}\widehat{\tilde{\theta}}^{-1} and ϕ~̊^:=θ~^ϕ~^\widehat{\mathring{\tilde{\phi}}}:=\widehat{\tilde{\theta}}\widehat{\tilde{\phi}}. In particular, we see that item (1) holds.

Define å,a~̊(l0(d))r×r{\mathring{a}},{\mathring{\tilde{a}}}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} as in (1.16). We have ϕ̊^(𝖬𝖳)=å^ϕ̊^\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{a}}}\widehat{\mathring{\phi}}, and ϕ~̊^(𝖬𝖳)=a~̊^ϕ~̊^\widehat{\mathring{\tilde{\phi}}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{\tilde{a}}}}\widehat{\mathring{\tilde{\phi}}}. Furthermore, å{\mathring{a}} (resp. a~̊{\mathring{\tilde{a}}}) has order m~\tilde{m} (resp. mm) sum rules with respect to 𝖬\mathsf{M} with a matching filter υ̊\mathring{\upsilon} (resp. υ~̊\mathring{\tilde{\upsilon}}).

Define n:=m~+mn:=\tilde{m}+m. By Theorem 2.3, there exists a strongly invertible U(l0(d))r×rU\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} such that

ϕ˘^(ξ):=U^(ξ)ϕ̊^(ξ)=(1,0,,0)𝖳+𝒪(ξn),\widehat{\breve{\phi}}(\xi):=\widehat{U}(\xi)\widehat{\mathring{\phi}}(\xi)=(1,0,\dots,0)^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{n}),
υ˘^(ξ):=υ̊^(ξ)U^(ξ)1=(1,0,,0)+𝒪(ξm~),\widehat{\breve{\upsilon}}(\xi):=\widehat{\mathring{\upsilon}}(\xi)\widehat{U}(\xi)^{-1}=(1,0,\dots,0)+\mathcal{O}(\|\xi\|^{\tilde{m}}),

as ξ0\xi\to 0. Thus by letting a˘^:=U^(𝖬𝖳)å^U^1\widehat{\breve{a}}:=\widehat{U}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{{\mathring{a}}}\widehat{U}^{-1} , we see that a˘\breve{a} takes the ideal (m~,n)(\tilde{m},n)-normal form, that is,

a˘^(ξ)=[a˘1,1^(ξ)a˘1,2^(ξ)a˘2,1^(ξ)a˘2,2^(ξ)],\widehat{\breve{a}}(\xi)=\begin{bmatrix}\widehat{\breve{a}_{1,1}}(\xi)&\widehat{\breve{a}_{1,2}}(\xi)\\ \widehat{\breve{a}_{2,1}}(\xi)&\widehat{\breve{a}_{2,2}}(\xi)\end{bmatrix},

where a˘1,1^,a˘1,2^,a˘2,1^\widehat{\breve{a}_{1,1}},\widehat{\breve{a}_{1,2}},\widehat{\breve{a}_{2,1}} and a˘2,2^\widehat{\breve{a}_{2,2}} are 1×1,1×(r1),(r1)×11\times 1,1\times(r-1),(r-1)\times 1 and (r1)×(r1)(r-1)\times(r-1) matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials such that

a˘1,1^(ξ)=1+𝒪(ξn),a˘1,1^(ξ+2πω)=𝒪(ξm~),ξ0,ωΩ𝖬{0},\displaystyle\widehat{\breve{a}_{1,1}}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\quad\widehat{\breve{a}_{1,1}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}}\setminus\{0\},
a˘1,2^(ξ+2πω)=𝒪(ξm~),ξ0,ωΩ𝖬,\displaystyle\widehat{\breve{a}_{1,2}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}},
a˘2,1^(ξ)=𝒪(ξn),ξ0,\displaystyle\widehat{\breve{a}_{2,1}}(\xi)=\mathcal{O}(\|\xi\|^{n}),\quad\xi\to 0,

as ξ0\xi\to 0, where Ω𝖬:={ω1,,ωd𝖬}\Omega_{\mathsf{M}}:=\{\omega_{1},\dots,\omega_{d_{\mathsf{M}}}\} is defined as (1.9).

On the other hand, we have

υ~˘^(ξ):=υ~̊^(ξ)U^(ξ)¯𝖳=ϕ̊^(ξ)¯𝖳U^(ξ)¯𝖳+𝒪(ξm)=(1,0,,0)+𝒪(ξm),\widehat{\breve{\tilde{\upsilon}}}(\xi):=\widehat{\mathring{\tilde{\upsilon}}}(\xi)\overline{\widehat{U}(\xi)}^{\mathsf{T}}=\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\overline{\widehat{U}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m})=(1,0,\dots,0)+\mathcal{O}(\|\xi\|^{m}),
ϕ~˘^(ξ):=U^(ξ)¯𝖳ϕ~̊^(ξ)=U^(ξ)¯𝖳υ̊^(ξ)¯𝖳+𝒪(ξm~)=(1,0,,0)𝖳+𝒪(ξm~),\widehat{\breve{\tilde{\phi}}}(\xi):=\overline{\widehat{U}(\xi)}^{-\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\xi)=\overline{\widehat{U}(\xi)}^{-\mathsf{T}}\overline{\widehat{\mathring{\upsilon}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{\tilde{m}})=(1,0,\dots,0)^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{\tilde{m}}),

as ξ0\xi\to 0. Moreover, the condition (3.17) implies that

ϕ~˘1^(ξ)=1+𝒪(ξn),ξ0,\widehat{\breve{\tilde{\phi}}_{1}}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\qquad\xi\to 0,

where ϕ~˘1\breve{\tilde{\phi}}_{1} is the first coordinate of ϕ~˘\breve{\tilde{\phi}}. Thus by letting a~˘^:=U^(𝖬𝖳)¯𝖳a~̊^U^¯𝖳\widehat{\breve{\tilde{a}}}:=\overline{\widehat{U}(\mathsf{M}^{\mathsf{T}}\cdot)}^{-\mathsf{T}}\widehat{{\mathring{\tilde{a}}}}\overline{\widehat{U}}^{\mathsf{T}}, we see that ϕ~˘^(𝖬𝖳)=a~˘^ϕ~˘^\widehat{\breve{\tilde{\phi}}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{\breve{\tilde{a}}}\widehat{\breve{\tilde{\phi}}} and a~˘\breve{\tilde{a}} has order mm sum rules with respect to 𝖬\mathsf{M} with a matching filter υ~˘\breve{\tilde{\upsilon}}. Furthermore, we have

a~˘^(ξ)=[a~˘1,1^(ξ)a~˘1,2^(ξ)a~˘2,1^(ξ)a~˘2,2^(ξ)],\widehat{\breve{\tilde{a}}}(\xi)=\begin{bmatrix}\widehat{\breve{\tilde{a}}_{1,1}}(\xi)&\widehat{\breve{\tilde{a}}_{1,2}}(\xi)\\ \widehat{\breve{\tilde{a}}_{2,1}}(\xi)&\widehat{\breve{\tilde{a}}_{2,2}}(\xi)\end{bmatrix},

where a~˘1,1^,a~˘1,2^,a~˘2,1^\widehat{\breve{\tilde{a}}_{1,1}},\widehat{\breve{\tilde{a}}_{1,2}},\widehat{\breve{\tilde{a}}_{2,1}} and a~˘2,2^\widehat{\breve{\tilde{a}}_{2,2}} are 1×1,1×(r1),(r1)×11\times 1,1\times(r-1),(r-1)\times 1 and (r1)×(r1)(r-1)\times(r-1) matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials such that

a~˘1,1^(ξ)=1+𝒪(ξn),a~˘1,1^(ξ+2πω)=𝒪(ξm),ξ0,ωΩ𝖬{0},\displaystyle\widehat{\breve{\tilde{a}}_{1,1}}(\xi)=1+\mathcal{O}(\|\xi\|^{n}),\quad\widehat{\breve{\tilde{a}}_{1,1}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}}\setminus\{0\},
a~˘1,2^(ξ+2πω)=𝒪(ξm),ξ0,ωΩ𝖬,\displaystyle\widehat{\breve{\tilde{a}}_{1,2}}(\xi+2\pi\omega)=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,\quad\forall\omega\in\Omega_{\mathsf{M}},
a~˘2,1^(ξ)=𝒪(ξm~),ξ0,\displaystyle\widehat{\breve{\tilde{a}}_{2,1}}(\xi)=\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad\xi\to 0,

as ξ0\xi\to 0.

For j=1,,d𝖬j=1,\dots,d_{\mathsf{M}}, define

Aj^(ξ):=𝜹(ωj)Ira˘^(ξ)¯𝖳a~˘^(ξ+2πωj),\widehat{A_{j}}(\xi):=\boldsymbol{\delta}(\omega_{j})I_{r}-\overline{\widehat{\breve{a}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}}(\xi+2\pi\omega_{j}),

where 𝜹\boldsymbol{\delta} is defined as (1.8). We have

A1^(ξ)=Ira˘^(ξ)¯𝖳a~˘^(ξ)=[A1;1^(ξ)A1;2^(ξ)A1;3^(ξ)A1;4^(ξ)],\widehat{A_{1}}(\xi)=I_{r}-\overline{\widehat{\breve{a}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}}(\xi)=\begin{bmatrix}\widehat{A_{1;1}}(\xi)&\widehat{A_{1;2}}(\xi)\\ \widehat{A_{1;3}}(\xi)&\widehat{A_{1;4}}(\xi)\end{bmatrix},

where A1;1^,A1;2^,A1;3^\widehat{A_{1;1}},\widehat{A_{1;2}},\widehat{A_{1;3}} and A1;4^\widehat{A_{1;4}} are 1×1,1×(r1),(r1)×11\times 1,1\times(r-1),(r-1)\times 1 and (r1)×(r1)(r-1)\times(r-1) matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials, satisfying the following moment conditions as ξ0\xi\to 0:

A1;1^(ξ)=1(a˘1,1^(ξ)¯a~˘1,1^(ξ)+a˘2,1^(ξ)¯𝖳a~˘2,1^(ξ))=𝒪(ξn),\displaystyle\widehat{A_{1;1}}(\xi)=1-\left(\overline{\widehat{\breve{a}_{1,1}}(\xi)}\widehat{\breve{\tilde{a}}_{1,1}}(\xi)+\overline{\widehat{\breve{a}_{2,1}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,1}}(\xi)\right)=\mathcal{O}(\|\xi\|^{n}),
A1;2^(ξ)=a˘1,1^(ξ)¯a~˘1,2^(ξ)a˘2,1^(ξ)¯𝖳a~˘2,2^(ξ)=𝒪(ξm),\displaystyle\widehat{A_{1;2}}(\xi)=-\overline{\widehat{\breve{a}_{1,1}}(\xi)}\widehat{\breve{\tilde{a}}_{1,2}}(\xi)-\overline{\widehat{\breve{a}_{2,1}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,2}}(\xi)=\mathcal{O}(\|\xi\|^{m}),
A1;3^(ξ)=a˘1,2^(ξ)¯𝖳a~˘1,1^(ξ)a˘2,2^(ξ)¯𝖳a~˘2,1^(ξ)=𝒪(ξm~).\displaystyle\widehat{A_{1;3}}(\xi)=-\overline{\widehat{\breve{a}_{1,2}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{1,1}}(\xi)-\overline{\widehat{\breve{a}_{2,2}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,1}}(\xi)=\mathcal{O}(\|\xi\|^{\tilde{m}}).

For j=2,,d𝖬j=2,\dots,d_{\mathsf{M}}, we have

Aj^(ξ)=a˘^(ξ)¯𝖳a~˘^(ξ+2πωj)=[Aj;1^(ξ)Aj;2^(ξ)Aj;3^(ξ)Aj;4^(ξ)],\widehat{A_{j}}(\xi)=-\overline{\widehat{\breve{a}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}}(\xi+2\pi\omega_{j})=\begin{bmatrix}\widehat{A_{j;1}}(\xi)&\widehat{A_{j;2}}(\xi)\\ \widehat{A_{j;3}}(\xi)&\widehat{A_{j;4}}(\xi)\end{bmatrix},

where Aj;1^,Aj;2^,Aj;3^\widehat{A_{j;1}},\widehat{A_{j;2}},\widehat{A_{j;3}} and Aj;4^\widehat{A_{j;4}} are 1×1,1×(r1),(r1)×11\times 1,1\times(r-1),(r-1)\times 1 and (r1)×(r1)(r-1)\times(r-1) matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials for each jj, satisfying the following moment conditions as ξ0\xi\to 0:

Aj;1^(ξ)=(a˘1,1^(ξ)¯a~˘1,1^(ξ+2πωj)+a˘2,1^(ξ)¯𝖳a~˘2,1^(ξ+2πωj))=𝒪(ξm),\displaystyle\widehat{A_{j;1}}(\xi)=-\left(\overline{\widehat{\breve{a}_{1,1}}(\xi)}\widehat{\breve{\tilde{a}}_{1,1}}(\xi+2\pi\omega_{j})+\overline{\widehat{\breve{a}_{2,1}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,1}}(\xi+2\pi\omega_{j})\right)=\mathcal{O}(\|\xi\|^{m}),
Aj;1^(ξ2πωj)=(a˘1,1^(ξ2πωj)¯a~˘1,1^(ξ)+a˘2,1^(ξ2πωj)¯𝖳a~˘2,1^(ξ))=𝒪(ξm~),\displaystyle\widehat{A_{j;1}}(\xi-2\pi\omega_{j})=-\left(\overline{\widehat{\breve{a}_{1,1}}(\xi-2\pi\omega_{j})}\widehat{\breve{\tilde{a}}_{1,1}}(\xi)+\overline{\widehat{\breve{a}_{2,1}}(\xi-2\pi\omega_{j})}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,1}}(\xi)\right)=\mathcal{O}(\|\xi\|^{\tilde{m}}),
Aj;2^(ξ)=a˘1,1^(ξ)¯a~˘1,2^(ξ+2πωj)a˘2,1^(ξ)¯𝖳a~˘2,2^(ξ+2πωj)=𝒪(ξm),\displaystyle\widehat{A_{j;2}}(\xi)=-\overline{\widehat{\breve{a}_{1,1}}(\xi)}\widehat{\breve{\tilde{a}}_{1,2}}(\xi+2\pi\omega_{j})-\overline{\widehat{\breve{a}_{2,1}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,2}}(\xi+2\pi\omega_{j})=\mathcal{O}(\|\xi\|^{m}),
Aj;3^(ξ2πωj)=a˘1,2^(ξ2πωj)¯a~˘1,1^(ξ)a˘2,2^(ξ2πωj)¯𝖳a~˘2,1^(ξ)=𝒪(ξm~).\displaystyle\widehat{A_{j;3}}(\xi-2\pi\omega_{j})=-\overline{\widehat{\breve{a}_{1,2}}(\xi-2\pi\omega_{j})}\widehat{\breve{\tilde{a}}_{1,1}}(\xi)-\overline{\widehat{\breve{a}_{2,2}}(\xi-2\pi\omega_{j})}^{\mathsf{T}}\widehat{\breve{\tilde{a}}_{2,1}}(\xi)=\mathcal{O}(\|\xi\|^{\tilde{m}}).

For μ0d\mu\in\mathbb{N}^{d}_{0}, define Δμ(l0(d))r×r\Delta_{\mu}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} via Δμ:=𝖣𝗂𝖺𝗀(μ𝜹,Ir1)\Delta_{\mu}:={\mathsf{Diag}}(\nabla^{\mu}\boldsymbol{\delta},I_{r-1}). From what we have done above, we conclude that

Aj^(ξ)=α0;md,β0;m~dΔα^(ξ)¯𝖳Aj,α,β^(ξ)Δβ^(ξ+2πωj),\widehat{A_{j}}(\xi)=\sum_{\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;{\tilde{m}}}}\overline{\widehat{\Delta_{\alpha}}(\xi)}^{\mathsf{T}}\widehat{A_{j,\alpha,\beta}}(\xi)\widehat{\Delta_{\beta}}(\xi+2\pi\omega_{j}), (3.18)

for some Aj,α,β(l0(d))r×rA_{j,\alpha,\beta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} for all α0;md,β0;m~d\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;{\tilde{m}}} and all j=1,,d𝖬j=1,\dots,d_{\mathsf{M}}.

Define a˘,a~˘,Ir\mathcal{M}_{\breve{a},\breve{\tilde{a}},I_{r}} as in (1.12) with a,a~,Θa,\tilde{a},\Theta being replaced by a˘,a~˘,Ir\breve{a},\breve{\tilde{a}},I_{r} respectively, and recall that Dμ,ω;𝖬D_{\mu,\omega;\mathsf{M}} is defined as (3.3) for all u(l0(d))r×ru\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and ωΩ𝖬\omega\in\Omega_{\mathsf{M}}. Note that

a˘,a~˘,U~=j=1d𝖬DAj,ωj;𝖬=α0;md,β0;m~dDΔα,0;𝖬¯𝖳DAj,α,β,ωj;𝖬DΔβ,0;𝖬,\mathcal{M}_{\breve{a},\breve{\tilde{a}},\tilde{U}}=\sum_{j=1}^{d_{\mathsf{M}}}D_{A_{j},\omega_{j};\mathsf{M}}=\sum_{\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;{\tilde{m}}}}\overline{D_{\Delta_{\alpha},0;\mathsf{M}}}^{\mathsf{T}}D_{A_{j,\alpha,\beta},\omega_{j};\mathsf{M}}D_{\Delta_{\beta},0;\mathsf{M}},

where the last identity follows from (3.18).

Define 𝒩a˘,a~˘,Ir\mathcal{N}_{\breve{a},\breve{\tilde{a}},I_{r}} as in (3.10) with a,a~a,\tilde{a} and Θ\Theta being replaced by a˘,a~˘\breve{a},\breve{\tilde{a}} and IrI_{r} respectively. Recall that Eμ,ω;𝖬E_{\mu,\omega;\mathsf{M}} is defined as (3.4) for all u(l0(d))r×ru\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} and ωΩ𝖬\omega\in\Omega_{\mathsf{M}}, and 𝖥r;𝖬\mathsf{F}_{r;\mathsf{M}} is defined as (3.7). It follows from (3.8) and 𝖥r;𝖬𝖥r;𝖬¯𝖳=d𝖬Id𝖬r\mathsf{F}_{r;\mathsf{M}}\overline{\mathsf{F}_{r;\mathsf{M}}}^{\mathsf{T}}=d_{\mathsf{M}}I_{d_{\mathsf{M}}r} that

𝒩a˘,a~˘,Ir(𝖬𝖳ξ)=d𝖬2𝖥r;𝖬(ξ)a˘,a~˘,Ir(ξ)𝖥r;𝖬(ξ)¯𝖳\displaystyle\mathcal{N}_{\breve{a},\breve{\tilde{a}},I_{r}}(\mathsf{M}^{\mathsf{T}}\xi)=d_{\mathsf{M}}^{-2}\mathsf{F}_{r;\mathsf{M}}(\xi)\mathcal{M}_{\breve{a},\breve{\tilde{a}},I_{r}}(\xi)\overline{\mathsf{F}_{r;\mathsf{M}}(\xi)}^{\mathsf{T}} (3.19)
=\displaystyle= d𝖬1j=1d𝖬α0;md,β0;m~dEΔα,0;𝖬(𝖬𝖳ξ)¯𝖳EAj,α,β,ωj;𝖬(𝖬𝖳ξ)EΔβ,0;𝖬(𝖬𝖳ξ).\displaystyle d_{\mathsf{M}}^{-1}\sum_{j=1}^{d_{\mathsf{M}}}\sum_{\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;\tilde{m}}}\overline{E_{\Delta_{\alpha},0;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi)}^{\mathsf{T}}E_{A_{j,\alpha,\beta},\omega_{j};\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi)E_{\Delta_{\beta},0;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi).

By letting

Eα,β(ξ):=d𝖬1j=1d𝖬EAj,α,β,ωj;𝖬(ξ),ξd,α0;md,β0;m~d,E_{\alpha,\beta}(\xi):=d_{\mathsf{M}}^{-1}\sum_{j=1}^{d_{\mathsf{M}}}E_{A_{j,\alpha,\beta},\omega_{j};\mathsf{M}}(\xi),\qquad\xi\in\mathbb{R}^{d},\quad\alpha\in\mathbb{N}^{d}_{0;m},\quad\beta\in\mathbb{N}^{d}_{0;\tilde{m}},

we have

𝒩a˘,a~˘,Ir(ξ)=α0;md,β0;m~dEΔα,0;𝖬(ξ)¯𝖳Eα,β(ξ)EΔβ,0;𝖬(ξ).\mathcal{N}_{\breve{a},\breve{\tilde{a}},I_{r}}(\xi)=\sum_{\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;\tilde{m}}}\overline{E_{\Delta_{\alpha},0;\mathsf{M}}(\xi)}^{\mathsf{T}}E_{\alpha,\beta}(\xi)E_{\Delta_{\beta},0;\mathsf{M}}(\xi). (3.20)

For every α0;md\alpha\in\mathbb{N}^{d}_{0;m} and β0;m~d\beta\in\mathbb{N}^{d}_{0;\tilde{m}}, choose Eα,β,1E_{\alpha,\beta,1} and Eα,β,1E_{\alpha,\beta,1} which are d𝖬r×d𝖬rd_{\mathsf{M}}r\times d_{\mathsf{M}}r matrices of 2πd2\pi\mathbb{Z}^{d}-periodic trigonometric polynomials such that Eα,β=Eα,β,1¯𝖳Eα,β,2E_{\alpha,\beta}=\overline{E_{\alpha,\beta,1}}^{\mathsf{T}}E_{\alpha,\beta,2}. Define b˘α,β,k,b~˘α,β,k(l0(d))1×r\breve{b}_{\alpha,\beta,k},\breve{\tilde{b}}_{\alpha,\beta,k}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} for k=1,,d𝖬rk=1,\dots,d_{\mathsf{M}}r and all α0;md,β0;m~d\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;\tilde{m}} via

b˘α,β^(ξ):=[b˘α,β,1^(ξ)b˘α,β,d𝖬r^(ξ)]:=Eα,β,1(𝖬𝖳ξ)𝖥r;𝖬(ξ)[Δα^(ξ)𝟎d𝖬(r1)×r],\displaystyle\widehat{\breve{b}_{\alpha,\beta}}(\xi):=\begin{bmatrix}\widehat{\breve{b}_{\alpha,\beta,1}}(\xi)\\ \vdots\\ \widehat{\breve{b}_{\alpha,\beta,d_{\mathsf{M}}r}}(\xi)\end{bmatrix}:=E_{\alpha,\beta,1}(\mathsf{M}^{\mathsf{T}}\xi)\mathsf{F}_{r;\mathsf{M}}(\xi)\begin{bmatrix}\widehat{\Delta_{\alpha}}(\xi)\\ \boldsymbol{0}_{d_{\mathsf{M}}(r-1)\times r}\end{bmatrix}, (3.21)
b~˘α,β^(ξ):=[b~˘α,β,1^(ξ)b~˘α,β,d𝖬r^(ξ)]:=Eα,β,2(𝖬𝖳ξ)𝖥r;𝖬(ξ)[Δβ^(ξ)𝟎d𝖬(r1)×r],\displaystyle\widehat{\breve{\tilde{b}}_{\alpha,\beta}}(\xi):=\begin{bmatrix}\widehat{\breve{\tilde{b}}_{\alpha,\beta,1}}(\xi)\\ \vdots\\ \widehat{\breve{\tilde{b}}_{\alpha,\beta,d_{\mathsf{M}}r}}(\xi)\end{bmatrix}:=E_{\alpha,\beta,2}(\mathsf{M}^{\mathsf{T}}\xi)\mathsf{F}_{r;\mathsf{M}}(\xi)\begin{bmatrix}\widehat{\Delta_{\beta}}(\xi)\\ \boldsymbol{0}_{d_{\mathsf{M}}(r-1)\times r}\end{bmatrix}, (3.22)

where 𝟎t×q\boldsymbol{0}_{t\times q} denotes the t×qt\times q zero matrix. Recall that Pu;𝖬(ξ)=[u^(ξ+2πω1),,u^(ξ+2πωd𝖬)]P_{u;\mathsf{M}}(\xi)=[\widehat{u}(\xi+2\pi\omega_{1}),\dots,\widehat{u}(\xi+2\pi\omega_{d_{\mathsf{M}}})] as in (1.10) for all matrix-valued filter uu. It is not hard to observe that

Pb˘α,β;𝖬(ξ)\displaystyle P_{\breve{b}_{\alpha,\beta};\mathsf{M}}(\xi) =Eα,β,1(𝖬𝖳ξ)𝖥r;𝖬(ξ)DΔα,0;𝖬(ξ)\displaystyle=E_{\alpha,\beta,1}(\mathsf{M}^{\mathsf{T}}\xi)\mathsf{F}_{r;\mathsf{M}}(\xi)D_{\Delta_{\alpha},0;\mathsf{M}}(\xi) (3.23)
=Eα,β,1(𝖬𝖳ξ)EΔα,0;𝖬(𝖬𝖳ξ)𝖥r;𝖬(ξ)¯𝖳,\displaystyle=E_{\alpha,\beta,1}(\mathsf{M}^{\mathsf{T}}\xi)E_{\Delta_{\alpha},0;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi)\overline{\mathsf{F}_{r;\mathsf{M}}(\xi)}^{\mathsf{T}},

where the last identity follows from (3.6) and 𝖥r;𝖬𝖥r;𝖬¯𝖳=d𝖬Id𝖬r\mathsf{F}_{r;\mathsf{M}}\overline{\mathsf{F}_{r;\mathsf{M}}}^{\mathsf{T}}=d_{\mathsf{M}}I_{d_{\mathsf{M}}r}. Similarly,

Pb~˘α,β;𝖬(ξ)=Eα,β,2(𝖬𝖳ξ)EΔβ,0;𝖬(𝖬𝖳ξ)𝖥r;𝖬(ξ)¯𝖳.P_{\breve{\tilde{b}}_{\alpha,\beta};\mathsf{M}}(\xi)=E_{\alpha,\beta,2}(\mathsf{M}^{\mathsf{T}}\xi)E_{\Delta_{\beta},0;\mathsf{M}}(\mathsf{M}^{\mathsf{T}}\xi)\overline{\mathsf{F}_{r;\mathsf{M}}(\xi)}^{\mathsf{T}}. (3.24)

It follows from (3.19), (3.20), (3.23) and (3.24) that

a˘,a~˘,Ir(ξ)\displaystyle\mathcal{M}_{\breve{a},\breve{\tilde{a}},I_{r}}(\xi) =𝖥r;𝖬(ξ)¯𝖳𝒩a˘,a~˘,Ir(𝖬𝖳ξ)𝖥r;𝖬(ξ)\displaystyle=\overline{\mathsf{F}_{r;\mathsf{M}}(\xi)}^{\mathsf{T}}\mathcal{N}_{\breve{a},\breve{\tilde{a}},I_{r}}(\mathsf{M}^{\mathsf{T}}\xi)\mathsf{F}_{r;\mathsf{M}}(\xi) (3.25)
=α0;md,β0;m~dPb˘α,β;𝖬(ξ)¯𝖳Pb~˘α,β;𝖬(ξ).\displaystyle=\sum_{\alpha\in\mathbb{N}^{d}_{0;m},\beta\in\mathbb{N}^{d}_{0;\tilde{m}}}\overline{P_{\breve{b}_{\alpha,\beta};\mathsf{M}}(\xi)}^{\mathsf{T}}P_{\breve{\tilde{b}}_{\alpha,\beta};\mathsf{M}}(\xi).

Define

{b˘:=1,,s}:={b˘α,β:α0;md,β0;m~d},\displaystyle\{\breve{b}_{\ell}:\ell=1,\dots,s\}:=\{\breve{b}_{\alpha,\beta}:\alpha\in\mathbb{N}^{d}_{0;m},\quad\beta\in\mathbb{N}^{d}_{0;\tilde{m}}\},
{b~˘:=1,,s}:={b~˘α,β:α0;md,β0;m~d},\displaystyle\{\breve{\tilde{b}}_{\ell}:\ell=1,\dots,s\}:=\{\breve{\tilde{b}}_{\alpha,\beta}:\alpha\in\mathbb{N}^{d}_{0;m},\quad\beta\in\mathbb{N}^{d}_{0;\tilde{m}}\},

and let b˘:=[b˘1𝖳,,b˘s𝖳]𝖳,b~˘:=[b~˘1𝖳,,b~˘s𝖳]𝖳.\breve{b}:=[\breve{b}_{1}^{\mathsf{T}},\dots,\breve{b}_{s}^{\mathsf{T}}]^{\mathsf{T}},\breve{\tilde{b}}:=[\breve{\tilde{b}}_{1}^{\mathsf{T}},\dots,\breve{\tilde{b}}_{s}^{\mathsf{T}}]^{\mathsf{T}}. We see that (3.25) becomes

a˘,a~˘,Ir(ξ)=Pb˘;𝖬(ξ)¯𝖳Pb~˘;𝖬(ξ),\mathcal{M}_{\breve{a},\breve{\tilde{a}},I_{r}}(\xi)=\overline{P_{\breve{b};\mathsf{M}}(\xi)}^{\mathsf{T}}P_{\breve{\tilde{b}};\mathsf{M}}(\xi),

which is equivalent to say that ({a˘;b˘},{a~˘;b~˘})Ir(\{\breve{a};\breve{b}\},\{\breve{\tilde{a}};\breve{\tilde{b}}\})_{I_{r}} is an OEP-based dual 𝖬\mathsf{M}-framelet filter bank satisfying

a˘^(ξ)¯𝖳a~˘^(ξ+2πω)+b˘^(ξ)¯𝖳b~˘^(ξ+2πω)=𝜹(ω)Ir,ξd,ωΩ𝖬.\overline{\widehat{\breve{a}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{a}}}(\xi+2\pi\omega)+\overline{\widehat{\breve{b}}(\xi)}^{\mathsf{T}}\widehat{\breve{\tilde{b}}}(\xi+2\pi\omega)=\boldsymbol{\delta}(\omega)I_{r},\qquad\xi\in\mathbb{R}^{d},\omega\in\Omega_{\mathsf{M}}. (3.26)

Now define b̊,b~̊,b,b~(l0(d))s×r{\mathring{b}},{\mathring{\tilde{b}}},b,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} via

b̊^:=b˘^U^1,b~̊^:=b~˘^U^¯𝖳,b^:=b̊^θ^1,b~^:=b~̊^θ~^1.\widehat{{\mathring{b}}}:=\widehat{\breve{b}}\widehat{U}^{-1},\quad\widehat{{\mathring{\tilde{b}}}}:=\widehat{\breve{\tilde{b}}}\overline{\widehat{U}}^{\mathsf{T}},\quad\widehat{b}:=\widehat{{\mathring{b}}}\widehat{\theta}^{-1},\quad\widehat{\tilde{b}}:=\widehat{{\mathring{\tilde{b}}}}\widehat{\tilde{\theta}}^{-1}.

It follows from (3.26) that ({å;b̊},{a~̊;b~̊})Ir(\{{\mathring{a}};{\mathring{b}}\},\{{\mathring{\tilde{a}}};{\mathring{\tilde{b}}}\})_{I_{r}} is an OEP-based dual 𝖬\mathsf{M}-framelet filter bank satisfying

å^(ξ)¯𝖳a~̊^(ξ+2πω)+b̊^(ξ)¯𝖳b~̊^(ξ+2πω)=𝜹(ω)Ir,ξd,ωΩ𝖬,\overline{\widehat{{\mathring{a}}}(\xi)}^{\mathsf{T}}\widehat{{\mathring{\tilde{a}}}}(\xi+2\pi\omega)+\overline{\widehat{{\mathring{b}}}(\xi)}^{\mathsf{T}}\widehat{{\mathring{\tilde{b}}}}(\xi+2\pi\omega)=\boldsymbol{\delta}(\omega)I_{r},\qquad\xi\in\mathbb{R}^{d},\omega\in\Omega_{\mathsf{M}},

and ({a;b},{a~;b~})Θ(\{a;b\},\{\tilde{a};\tilde{b}\})_{\Theta} (where Θ:=θθ~\Theta:=\theta^{\star}*\tilde{\theta}) is an OEP-based dual 𝖬\mathsf{M}-framelet filter bank satisfying (1.7). By (3.16) and (3.21), we have

Υ𝖭^(ξ)b̊^(ξ)¯𝖳=d^(ξ)1ϕ̊^(ξ)¯𝖳b̊^(ξ)¯𝖳+𝒪(ξm)=d^(ξ)¯1ϕ˘^(ξ)¯𝖳b˘^(ξ)¯𝖳+𝒪(ξm)\displaystyle\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{{\mathring{b}}}(\xi)}^{\mathsf{T}}=\overline{\widehat{d}(\xi)^{-1}\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\overline{\widehat{{\mathring{b}}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m})=\overline{\widehat{d}(\xi)}^{-1}\overline{\widehat{\breve{\phi}}(\xi)}^{\mathsf{T}}\overline{\widehat{\breve{b}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m}) (3.27)
=\displaystyle= d^(ξ)¯1(1,0,,0)b˘^(ξ)¯𝖳+𝒪(ξm)=𝒪(ξm),ξ0,\displaystyle\overline{\widehat{d}(\xi)}^{-1}(1,0,\dots,0)\overline{\widehat{\breve{b}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m})=\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0,

where dl0(d)d\in l_{0}(\mathbb{Z}^{d}) with d^(0)0\widehat{d}(0)\neq 0 is the same as in (3.16). Similarly, we deduce from (3.15) and (3.22) that

Υ𝖭^(ξ)b~̊^(ξ)¯𝖳=𝒪(ξm),ξ0.\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{{\mathring{\tilde{b}}}}(\xi)}^{\mathsf{T}}=\mathcal{O}(\|\xi\|^{m}),\qquad\xi\to 0. (3.28)

On the other hand, it follows immediately from (3.16) and the refinement relation ϕ̊^(𝖬𝖳)=å^ϕ̊^\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{a}}}\widehat{\mathring{\phi}} that

d^(ξ)d^(𝖬𝖳ξ)Υ𝖭^(ξ)å^(ξ)¯𝖳=Υ𝖭^(𝖬𝖳ξ)+𝒪(ξm~),ξ0.\frac{\widehat{d}(\xi)}{\widehat{d}(\mathsf{M}^{\mathsf{T}}\xi)}\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{{\mathring{a}}}(\xi)}^{\mathsf{T}}=\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}}),\qquad\xi\to 0.

Hence by Theorem 2.1, we have bo({å;b̊},𝖬,𝖭)=m=sr(a~̊;𝖬)\operatorname{bo}(\{{\mathring{a}};{\mathring{b}}\},\mathsf{M},\mathsf{N})=m=\operatorname{sr}({\mathring{\tilde{a}}};\mathsf{M}). This proves item (2).

Now define vector functions ψ\psi and ψ\psi as in (1.5) and (1.6). It follows from (3.15), (3.16), (3.27) and (3.28) that vm(ψ)=m\operatorname{vm}(\psi)=m and vm(ψ~)=m~\operatorname{vm}(\tilde{\psi})=\tilde{m}. Further note that

ϕ^(0)¯𝖳Θ^(0)ϕ~^(0)=ϕ̊^(0)¯𝖳ϕ~̊^(0)=1.\overline{\widehat{\phi}(0)}^{\mathsf{T}}\widehat{\Theta}(0)\widehat{\tilde{\phi}}(0)=\overline{\widehat{\mathring{\phi}}(0)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(0)=1.

It follows from Theorem 1.1 that ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is a dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}). This proves item (3).∎

Theorem 1.3 is valid for the case r>1r>1. For the case r=1r=1, we have to sacrifice the strong invertibility of θ\theta and θ~\tilde{\theta} to improve the orders of vanishing moments of the framelet generators. Nevertheless, the matrix decomposition technique in the proof of Theorem 1.3 can be applied to deduce the following result for the case r=1r=1.

Corollary 3.4

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and let ϕ,ϕ~L2(d)\phi,\tilde{\phi}\in L_{2}(\mathbb{R}^{d}) be compactly supported refinable functions satisfying ϕ^(𝖬𝖳ξ)=a^(ξ)ϕ^(ξ)\widehat{\phi}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi) and ϕ~^(𝖬𝖳ξ)=a~^(ξ)ϕ~^(ξ)\widehat{\tilde{\phi}}(\mathsf{M}^{\mathsf{T}}\xi)=\widehat{\tilde{a}}(\xi)\widehat{\tilde{\phi}}(\xi), where a,a~l0(d)a,\tilde{a}\in l_{0}(\mathbb{Z}^{d}) have order m~\tilde{m} and mm sum rules with respect to 𝖬\mathsf{M} with matching filters υ,υ~l0(d)\upsilon,\tilde{\upsilon}\in l_{0}(\mathbb{Z}^{d}), respectively. Suppose that υ^(0)ϕ^(0)=υ~^(0)ϕ~^(0)=1\widehat{\upsilon}(0)\widehat{\phi}(0)=\widehat{\tilde{\upsilon}}(0)\widehat{\tilde{\phi}}(0)=1. Then there exist b,b~(l0(d))s×1b,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times 1} and θ,θ~l0(d)\theta,\tilde{\theta}\in l_{0}(\mathbb{Z}^{d}) such that

  1. 1.

    ({a;b},{a~;b~})θθ~(\{a;b\},\{\tilde{a};\tilde{b}\})_{\theta^{\star}*\tilde{\theta}} forms an OEP-based dual 𝖬\mathsf{M}-framelet filter bank.

  2. 2.

    ({ϕ̊;ψ},{ϕ~̊;ψ~})(\{\mathring{\phi};\psi\},\{\mathring{\tilde{\phi}};\tilde{\psi}\}) is a compactly supported dual 𝖬\mathsf{M}-framelet in L2(d)L_{2}(\mathbb{R}^{d}), where ϕ̊,ψ,ϕ~̊\mathring{\phi},\psi,\mathring{\tilde{\phi}} and ψ~\tilde{\psi} are defined as in (1.5) and (1.6). Moreover, vm(ψ)=m\operatorname{vm}(\psi)=m and vm(ψ~)=m~\operatorname{vm}(\tilde{\psi})=\tilde{m}.

4 Structural investigation on balanced OEP-based dual framelets

In this section, we perform structural analysis on OEP-based dual framelets with hight balancing orders.

The most important step to obtain an OEP-based dual framelet with high balancing orders is finding the suitable filters θ,θ~\theta,\tilde{\theta}. From Theorem 1.3 and its proof, we have some clue on the choices of such filters. The following theorem states the sufficient conditions for obtaining an OEP-based dual framelet with all desired properties.

Theorem 4.1

Let 𝖬\mathsf{M} be a d×dd\times d dilation matrix and r2r\geqslant 2 be an integer. Let ϕ,ϕ~(L2(d))r\phi,\tilde{\phi}\in(L_{2}(\mathbb{R}^{d}))^{r} be compactly supported 𝖬\mathsf{M} refinable vector functions associated with refinement masks a,a~(l0(d))r×ra,\tilde{a}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r}. Suppose that sr(a,𝖬)=m~\operatorname{sr}(a,\mathsf{M})=\tilde{m} and sr(a~,𝖬)=m\operatorname{sr}(\tilde{a},\mathsf{M})=m with matching filters υ,υ~(l0(d))1×r\upsilon,\tilde{\upsilon}\in(l_{0}(\mathbb{Z}^{d}))^{1\times r} respectively such that υ^(0)ϕ^(0)0\widehat{\upsilon}(0)\widehat{\phi}(0)\neq 0 and υ~^(0)ϕ~^(0)0\widehat{\tilde{\upsilon}}(0)\widehat{\tilde{\phi}}(0)\neq 0. Let 𝖭\mathsf{N} be a d×dd\times d integer matrix with |det(𝖭)|=r|\det(\mathsf{N})|=r, and define Υ𝖭^\widehat{\Upsilon_{\mathsf{N}}} as in (2.5).

Let θ,θ~(l0(d))r×r\theta,\tilde{\theta}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} be strongly invertible finitely supported filters. Then

  1. (i)

    the moment conditions (3.15),(3.16) and (3.17) hold as ξ0\xi\to 0, for some c,dl0(d)c,d\in l_{0}(\mathbb{Z}^{d}) with c^(0)0\widehat{c}(0)\neq 0 and d^(0)0\widehat{d}(0)\neq 0, and some C,C~{0}C,\tilde{C}\in\mathbb{C}\setminus\{0\}, where υ̊^:=υ^θ^1,ϕ̊^:=θ^ϕ^,υ~̊^:=υ~^θ~^1\widehat{\mathring{\upsilon}}:=\widehat{\upsilon}\widehat{\theta}^{-1},\widehat{\mathring{\phi}}:=\widehat{\theta}\widehat{\phi},\widehat{\mathring{\tilde{\upsilon}}}:=\widehat{\tilde{\upsilon}}\widehat{\tilde{\theta}}^{-1} and ϕ~̊^:=θ~^ϕ~^\widehat{\mathring{\tilde{\phi}}}:=\widehat{\tilde{\theta}}\widehat{\tilde{\phi}},

implies

  1. (ii)

    there exist finitely supported filters b,b~(l0(d))s×rb,\tilde{b}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} such that all claims in Theorem 1.3 hold.

Conversely, if in addition assume that

  1. (iii)

    11 is a simple eigenvalue of a^(0)\widehat{a}(0) and a~̊^(0)\widehat{{\mathring{\tilde{a}}}}(0). Moreover,

    λαIra^(0),Irλβa^(0),Irλαa~^(0),λβIra~^(0)\lambda^{\alpha}I_{r}-\widehat{a}(0),\quad I_{r}-\lambda^{\beta}\widehat{a}(0),\quad I_{r}-\lambda^{\alpha}\widehat{\tilde{a}}(0),\quad\lambda^{\beta}I_{r}-\widehat{\tilde{a}}(0)

    are invertible matrices for all α,β0d\alpha,\beta\in\mathbb{N}^{d}_{0} with 0<|α|<m~0<|\alpha|<\tilde{m} and 0<|β|<m0<|\beta|<m, where λ:=(λ1,,λd)\lambda:=(\lambda_{1},\dots,\lambda_{d}) is the vector of the eigenvalues of 𝖬\mathsf{M}.

  2. (iv)

    p^(𝖬𝖳ξ)Υ𝖭^(𝖬𝖳ξ)a~̊^(ξ)=p^(ξ)Υ𝖭^(ξ)+𝒪(ξm)\widehat{p}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{\tilde{a}}}}(\xi)=\widehat{p}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0 for some pl0(d)p\in l_{0}(\mathbb{Z}^{d}) with p^(0)0\widehat{p}(0)\neq 0, where a~̊^:=θ~^(𝖬𝖳)a~^θ~^1\widehat{{\mathring{\tilde{a}}}}:=\widehat{\tilde{\theta}}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{\tilde{a}}\widehat{\tilde{\theta}}^{-1} is defined as in (1.17).

  3. (v)

    q^(ξ)a~̊^(ξ)Υ𝖭^(ξ)¯𝖳=q^(𝖬𝖳ξ)Υ𝖭^(𝖬𝖳ξ)¯𝖳+𝒪(ξm~)\widehat{q}(\xi)\widehat{{\mathring{\tilde{a}}}}(\xi)\overline{\widehat{\Upsilon_{\mathsf{N}}}(\xi)}^{\mathsf{T}}=\widehat{q}(\mathsf{M}^{\mathsf{T}}\xi)\overline{\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{\tilde{m}}) as ξ0\xi\to 0 for some ql0(d)q\in l_{0}(\mathbb{Z}^{d}) with q^(0)0\widehat{q}(0)\neq 0.

Then item (ii) implies (i).

Proof

The implication (i) \Rightarrow (ii) follows immediately from the proof of Theorem 1.3.

Now suppose item (ii) holds. Define å,a~̊(l0(d))r×r{\mathring{a}},{\mathring{\tilde{a}}}\in(l_{0}(\mathbb{Z}^{d}))^{r\times r} as in (1.16) and define b̊,b~̊(l0(d))s×r{\mathring{b}},{\mathring{\tilde{b}}}\in(l_{0}(\mathbb{Z}^{d}))^{s\times r} as in (1.17). By item (2) of Theorem 1.3, we have

å^(ξ)¯𝖳a~̊^(ξ)+b̊^(ξ)¯𝖳b~̊^(ξ)=Ir,\overline{\widehat{{\mathring{a}}}(\xi)}^{\mathsf{T}}\widehat{{\mathring{\tilde{a}}}}(\xi)+\overline{\widehat{{\mathring{b}}}(\xi)}^{\mathsf{T}}\widehat{{\mathring{\tilde{b}}}}(\xi)=I_{r}, (4.1)

and bo({å;b̊},𝖬,𝖭)=m\operatorname{bo}(\{{\mathring{a}};{\mathring{b}}\},\mathsf{M},\mathsf{N})=m. By Theorem 2.1, we have

Υ𝖭^(ξ)b̊^(ξ)¯𝖳=𝒪(ξm),Υ𝖭^(ξ)å^(ξ)¯𝖳=c̊^(ξ)Υ𝖭^(𝖬𝖳ξ)+𝒪(ξm),ξ0,\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{{\mathring{b}}}(\xi)}^{\mathsf{T}}=\mathcal{O}(\|\xi\|^{m}),\quad\widehat{\Upsilon_{\mathsf{N}}}(\xi)\overline{\widehat{{\mathring{a}}}(\xi)}^{\mathsf{T}}=\widehat{{\mathring{c}}}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0, (4.2)

for some c̊l0(d){\mathring{c}}\in l_{0}(\mathbb{Z}^{d}) with c̊^(0)0\widehat{{\mathring{c}}}(0)\neq 0.

Assume in addition that items (iii) - (v) hold.

By left multiplying Υ𝖭^\widehat{\Upsilon_{\mathsf{N}}} on both sides of (4.1) and using item (iv), we have

Υ𝖭^(ξ)=c̊^(ξ)Υ𝖭^(𝖬𝖳ξ)a~̊^(ξ)+𝒪(ξm)=c̊^(ξ)p^(ξ)p^(𝖬𝖳ξ)Υ𝖭^(ξ)+𝒪(ξm),ξ0.\widehat{\Upsilon_{\mathsf{N}}}(\xi)=\widehat{{\mathring{c}}}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{\tilde{a}}}}(\xi)+\mathcal{O}(\|\xi\|^{m})=\widehat{{\mathring{c}}}(\xi)\frac{\widehat{p}(\xi)}{\widehat{p}(\mathsf{M}^{\mathsf{T}}\xi)}\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0.

From the above relation we conclude that c̊^(0)=1\widehat{{\mathring{c}}}(0)=1, and thus

d̊^(𝖬𝖳ξ)Υ𝖭^(𝖬𝖳ξ)a~̊^(ξ)=d̊^(ξ)Υ𝖭^(ξ)+𝒪(ξm),ξ0,\widehat{{\mathring{d}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{\tilde{a}}}}(\xi)=\widehat{{\mathring{d}}}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0, (4.3)

where d̊l0(d){\mathring{d}}\in l_{0}(\mathbb{Z}^{d}) satisfies

d̊^(ξ)=j=1c̊^((𝖬𝖳)jξ)+𝒪(ξm),ξ0.\widehat{{\mathring{d}}}(\xi)=\prod_{j=1}^{\infty}\widehat{{\mathring{c}}}((\mathsf{M}^{\mathsf{T}})^{-j}\xi)+\mathcal{O}(\|\xi\|^{m}),\qquad\xi\to 0.

Moreover, it is easy to see from the second relation in (4.2) that

d̊^(𝖬𝖳ξ)Υ𝖭^(𝖬𝖳ξ)¯𝖳=å^(ξ)d̊^(ξ)Υ𝖭^(ξ)¯𝖳+𝒪(ξm),ξ0.\overline{\widehat{{\mathring{d}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)}^{\mathsf{T}}=\widehat{{\mathring{a}}}(\xi)\overline{\widehat{{\mathring{d}}}(\xi)\widehat{\Upsilon_{\mathsf{N}}}(\xi)}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{m}),\quad\xi\to 0. (4.4)

We now apply the argument in the proof of (han03, , Lemma 2.2) to prove that (3.15) and (3.16) must hold.

Since a~̊{\mathring{\tilde{a}}} has mm sum rules with a matching filter υ~̊\mathring{\tilde{\upsilon}} with υ~̊^:=υ~^θ~^1\widehat{\mathring{\tilde{\upsilon}}}:=\widehat{\tilde{\upsilon}}\widehat{\tilde{\theta}}^{-1}, we have υ~̊^(𝖬𝖳ξ)a~̊^(ξ)=υ~̊^(ξ)+𝒪(ξm)\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{\tilde{a}}}}(\xi)=\widehat{\mathring{\tilde{\upsilon}}}(\xi)+\mathcal{O}(\|\xi\|^{m}) as ξ0\xi\to 0. This implies that

[(jD)(υ~̊^(𝖬𝖳)a~̊^)](0)=[(jD)υ~̊^](0),j=1,,m1,\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{{\mathring{\tilde{a}}}}\right)\right](0)=[(\otimes^{j}D)\otimes\widehat{\mathring{\tilde{\upsilon}}}](0),\qquad j=1,\dots,m-1, (4.5)

where DD is the vector of differential operators defined as (3.13). Rearranging (4.5) yields

[(jD)(υ~̊^(𝖬𝖳)a~̊^(0)υ~̊^)](0)=[(jD)(υ~̊^(𝖬𝖳)(a~̊^(0)a~̊^))](0),\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{{\mathring{\tilde{a}}}}(0)-\widehat{\mathring{\tilde{\upsilon}}}\right)\right](0)=\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\cdot)(\widehat{{\mathring{\tilde{a}}}}(0)-\widehat{{\mathring{\tilde{a}}}})\right)\right](0), (4.6)

for all j=1,,m1.j=1,\dots,m-1. By the generalized product rule, we observe that the right hand of (4.6) only involves μυ~̊^(0)\partial^{\mu}\widehat{\mathring{\tilde{\upsilon}}}(0) with |μ|<j|\mu|<j. By calculation, we have

[(jD)(υ~̊^(𝖬𝖳)a~̊^(0)υ~̊^)](0)\displaystyle\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\cdot)\widehat{{\mathring{\tilde{a}}}}(0)-\widehat{\mathring{\tilde{\upsilon}}}\right)\right](0) (4.7)
=\displaystyle= ([(jD)υ~̊^](0))[(j𝖬𝖳)a~̊^(0)Idjr],\displaystyle\left([(\otimes^{j}D)\otimes\widehat{\mathring{\tilde{\upsilon}}}](0)\right)[(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes\widehat{{\mathring{\tilde{a}}}}(0)-I_{d^{j}r}],

for all jj\in\mathbb{N}. Now by the condition in item (iii) on a~̊{\mathring{\tilde{a}}}, the matrix [(j𝖬𝖳)a~̊^(0)Idjr][(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes\widehat{{\mathring{\tilde{a}}}}(0)-I_{d^{j}r}] is invertible for j=1,,m1j=1,\dots,m-1. Moreover, it follows from (4.6) and (4.7) that up to a multiplicative constant, the values μυ~̊^(0),|μ|<m\partial^{\mu}\widehat{\mathring{\tilde{\upsilon}}}(0),|\mu|<m are uniquely determined via υ~̊^(0)a~̊^(0)=υ~̊^(0)\widehat{\mathring{\tilde{\upsilon}}}(0)\widehat{{\mathring{\tilde{a}}}}(0)=\widehat{\mathring{\tilde{\upsilon}}}(0) and

[(jD)υ~̊^](0)=([(jD)(υ~̊^(𝖬𝖳)(a~̊^(0)a~̊^))](0))[(j𝖬𝖳)a~̊^(0)Idjr]1,[(\otimes^{j}D)\otimes\widehat{\mathring{\tilde{\upsilon}}}](0)=\left(\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\tilde{\upsilon}}}(\mathsf{M}^{\mathsf{T}}\cdot)(\widehat{{\mathring{\tilde{a}}}}(0)-\widehat{{\mathring{\tilde{a}}}})\right)\right](0)\right)[(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes\widehat{{\mathring{\tilde{a}}}}(0)-I_{d^{j}r}]^{-1},

for all j=1,,m1j=1,\dots,m-1.

Next, note that the refinement relation ϕ̊^(𝖬𝖳)=å^ϕ̊^\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{a}}}\widehat{\mathring{\phi}} (where ϕ̊^=θ^ϕ^\widehat{\mathring{\phi}}=\widehat{\theta}\widehat{\phi}) holds. This implies that

[(jD)ϕ̊^(𝖬𝖳)](0)=[(jD)(å^ϕ̊^)](0),j.[(\otimes^{j}D)\otimes\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)](0)=[(\otimes^{j}D)\otimes(\widehat{{\mathring{a}}}\widehat{\mathring{\phi}})](0),\qquad j\in\mathbb{N}. (4.8)

Rearranging (4.8) yields

[(jD)(ϕ̊^(𝖬𝖳)𝖳ϕ̊^𝖳å^(0)𝖳)](0)=[(jD)(ϕ̊^𝖳(å^𝖳å^(0)𝖳))](0),\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)^{\mathsf{T}}-\widehat{\mathring{\phi}}^{\mathsf{T}}\widehat{{\mathring{a}}}(0)^{\mathsf{T}}\right)\right](0)=\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\phi}}^{\mathsf{T}}(\widehat{{\mathring{a}}}^{\mathsf{T}}-\widehat{{\mathring{a}}}(0)^{\mathsf{T}})\right)\right](0), (4.9)

for all jj\in\mathbb{N}. Note that the right hand side of (4.9) only involves μϕ̊^(0)\partial^{\mu}\widehat{\mathring{\phi}}(0) with |μ|<j|\mu|<j. Furthermore, direct calculation yields

[(jD)(ϕ̊^(𝖬𝖳)𝖳ϕ̊^𝖳å^(0)𝖳)](0)\displaystyle\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\cdot)^{\mathsf{T}}-\widehat{\mathring{\phi}}^{\mathsf{T}}\widehat{{\mathring{a}}}(0)^{\mathsf{T}}\right)\right](0) (4.10)
=\displaystyle= ([(jD)ϕ̊^𝖳](0))[(j𝖬𝖳)Ir(jId)å^(0)],\displaystyle\left([(\otimes^{j}D)\otimes\widehat{\mathring{\phi}}^{\mathsf{T}}](0)\right)[(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes I_{r}-(\otimes^{j}I_{d})\otimes\widehat{{\mathring{a}}}(0)],

for all jj\in\mathbb{N}. Now by the condition in item (iii) on å{\mathring{a}}, the matrix [(j𝖬𝖳)Ir(jId)å^(0)][(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes I_{r}-(\otimes^{j}I_{d})\otimes\widehat{{\mathring{a}}}(0)] is invertible for j=1,,m1j=1,\dots,m-1. Moreover, it follows from (4.9) and (4.10) that up to a multiplicative constant, the values μϕ̊^(0),|μ|<m\partial^{\mu}\widehat{\mathring{\phi}}(0),|\mu|<m are uniquely determined via ϕ̊^(0)=å^(0)ϕ̊^(0)\widehat{\mathring{\phi}}(0)=\widehat{{\mathring{a}}}(0)\widehat{\mathring{\phi}}(0) and

[(jD)ϕ̊^𝖳](0)\displaystyle[(\otimes^{j}D)\otimes\widehat{\mathring{\phi}}^{\mathsf{T}}](0)
=\displaystyle= ([(jD)(ϕ̊^𝖳(å^𝖳å^(0)𝖳))](0))[(j𝖬𝖳)Ir(jId)å^(0)]1,\displaystyle\left(\left[(\otimes^{j}D)\otimes\left(\widehat{\mathring{\phi}}^{\mathsf{T}}(\widehat{{\mathring{a}}}^{\mathsf{T}}-\widehat{{\mathring{a}}}(0)^{\mathsf{T}})\right)\right](0)\right)[(\otimes^{j}\mathsf{M}^{\mathsf{T}})\otimes I_{r}-(\otimes^{j}I_{d})\otimes\widehat{{\mathring{a}}}(0)]^{-1},

for all j=1,,m1.j=1,\dots,m-1.

Consequently, by the above analysis and using (4.3) and (4.4), we conclude that (3.16) holds for some C~{0}\tilde{C}\in\mathbb{C}\setminus\{0\}, with dl0(d)d\in l_{0}(\mathbb{Z}^{d}) being a non-zero scalar multiple of d̊{\mathring{d}}.

On the other hand, the condition on a~̊{\mathring{\tilde{a}}} in item (iii) and item (v) together yield

ϕ~̊^(ξ)=Kq^(ξ)Υ𝖭(ξ)^¯𝖳+𝒪(ξm~),ξ0,\widehat{\mathring{\tilde{\phi}}}(\xi)=K\widehat{q}(\xi)\overline{\widehat{\Upsilon_{\mathsf{N}}(\xi)}}^{\mathsf{T}}+\mathcal{O}(\|\xi\|^{\tilde{m}}),\qquad\xi\to 0, (4.11)

for some non-zero constant KK. As item (ii) holds, then in particular item (3) of Theorem 1.3 holds. Then vm(ψ~)=m~\operatorname{vm}(\tilde{\psi})=\tilde{m} and (4.11) imply that b~̊^(ξ)Υ𝖭^(ξ)¯𝖳=𝒪(ξm~)\widehat{{\mathring{\tilde{b}}}}(\xi)\overline{\widehat{\Upsilon_{\mathsf{N}}}(\xi)}^{\mathsf{T}}=\mathcal{O}(\|\xi\|^{\tilde{m}}) as ξ0\xi\to 0. Now right multiplying q^Υ𝖭^¯𝖳\widehat{q}\overline{\widehat{\Upsilon_{\mathsf{N}}}}^{\mathsf{T}} to both sides of (4.1) yields

q^(𝖬𝖳ξ)¯Υ𝖭^(𝖬𝖳ξ)å^(ξ)=q^(ξ)¯Υ𝖭^(ξ)+𝒪(ξm~),ξ0.\overline{\widehat{q}(\mathsf{M}^{\mathsf{T}}\xi)}\widehat{\Upsilon_{\mathsf{N}}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{a}}}(\xi)=\overline{\widehat{q}(\xi)}\widehat{\Upsilon_{\mathsf{N}}}(\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}}),\quad\xi\to 0. (4.12)

Since å{\mathring{a}} has m~\tilde{m} sum rules with a matching filter υ̊^:=υ^θ^1\widehat{\mathring{\upsilon}}:=\widehat{\upsilon}\widehat{\theta}^{-1}, we have υ̊^(𝖬𝖳ξ)å^(ξ)=υ̊^(ξ)+𝒪(ξm~)\widehat{\mathring{\upsilon}}(\mathsf{M}^{\mathsf{T}}\xi)\widehat{{\mathring{a}}}(\xi)=\widehat{\mathring{\upsilon}}(\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}}) as ξ0\xi\to 0. Moreover, a~̊{\mathring{\tilde{a}}} satisfies the refinement equation ϕ~̊^(𝖬𝖳)=a~̊^ϕ~̊^\widehat{\mathring{\tilde{\phi}}}(\mathsf{M}^{\mathsf{T}}\cdot)=\widehat{{\mathring{\tilde{a}}}}\widehat{\mathring{\tilde{\phi}}}. By the condition in item (iii) on å{\mathring{a}}, we conclude from (4.11) and (4.12) that (3.15) must hold for some C{0}C\in\mathbb{C}\setminus\{0\}, with cl0(d)c\in l_{0}(\mathbb{Z}^{d}) being a non-zero scalar multiple of qq.

Finally, by left multiplying ϕ̊^¯𝖳\overline{\widehat{\mathring{\phi}}}^{\mathsf{T}} and right multiplying ϕ~̊^\widehat{\mathring{\tilde{\phi}}} (where ϕ~̊^:=θ~^ϕ~^\widehat{\mathring{\tilde{\phi}}}:=\widehat{\tilde{\theta}}\widehat{\tilde{\phi}}) to (4.1), we have

ϕ̊^(𝖬𝖳ξ)¯𝖳ϕ~̊^(𝖬𝖳ξ)=ϕ̊^(ξ)¯𝖳ϕ~̊^(ξ)+𝒪(ξm~+m),ξ0.\overline{\widehat{\mathring{\phi}}(\mathsf{M}^{\mathsf{T}}\xi)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\mathsf{M}^{\mathsf{T}}\xi)=\overline{\widehat{\mathring{\phi}}(\xi)}^{\mathsf{T}}\widehat{\mathring{\tilde{\phi}}}(\xi)+\mathcal{O}(\|\xi\|^{\tilde{m}+m}),\quad\xi\to 0.

By applying the same argument as in the proof of Lemma 3.2, (3.17) follows from the above identity. The proof is now complete.∎

5 Summary

In this paper, we studied compactly supported multivariate OEP-based dual multiframelets with high order vanishing moments, and with a compact and banalced associated discrete multiframelet transform. We proved the main result Theorem 1.3 on the existence of such OEP-based dual multiframelets, with a constructive proof relying on a recently developed normal form of a matrix-valued filter. Furthermore, we provided structural analysis on compactly supported balanced OEP-based dual multiframelets.

Our investigation on OEP-based dual multiframelets focused on theoretical analysis. It is of practical interest to develop efficient algorithms to construct balanced dual multiframelets. However, this is well known that constructing multivariate framelets and wavelets are not easy in general. Moreover, the extremely strong conditions that both θ\theta and θ~\tilde{\theta} must be strongly invertible makes the problem even harder. To achieve the strong invertibility on both filters θ\theta and θ~\tilde{\theta}, quite often it is unavoidable for them to have large supports, which is the main difficulty for us to perform construction in applications. Whether or not we can make the supports of both θ\theta and θ~\tilde{\theta} as small as possible without sacrificing other desired properties is unknown. This could be a future research topic.

References

  • (1) Charina, M., Putinar, M., Scheiderer, C., Stöckler, J.: An algebraic perspective on multivariate tight wavelet frames. Constr. Approx. 38, 253–276 (2013)
  • (2) Charina, M., Putinar, M., Scheiderer, C., Stöckler, J.: An algebraic perspective on multivariate tight wavelet frames. II. Appl. Comput. Harmon. Anal. 39, 185–213 (2015)
  • (3) Charina, M., Stöckler, J.: Tight wavelet frames for irregular multiresolution analysis. Appl. Comput. Harmon. Anal. 25, 98–113 (2008)
  • (4) Charina, M., Stöckler, J.: Tight wavelet frames via semi-definite programming. J. Approx. Theory 162, 1429–1449 (2010)
  • (5) Chui, C. K., He, W.: Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8, 293–319 (2000)
  • (6) Chui, C. K., He, W.: Construction of multivariate tight frames via Kronecker products. Appl. Comput. Harmon. Anal. 11, 305–312 (2001),
  • (7) Chui, C. K., He, W., Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13, 224–262 (2002)
  • (8) Chui, C. K., Jiang, Q. T.: Balanced multi-wavelets in s\mathbb{R}^{s}, Math. Comp. 74, 1323–1344 (2000)
  • (9) Chui, C. K., Jiang, Q. T.: Multivariate balanced vector-valued refinable functions. in Modern developments in multivariate approximation, 71–102, Internat. Ser. Numer. Math., 145, Birkhäuser, Basel, (2003)
  • (10) Daubechies, I., Han, B.: Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20, 325–352 (2004)
  • (11) Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)
  • (12) Diao, C., Han, B.: Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions. Appl. Comput. Harmon. Anal. 49, 123–151 (2020)
  • (13) Diao, C., Han, B.: Generalized matrix spectral factorization and quasi-tight framelets with minimum number of generators. Math. Comp. 89, 2867–2911 (2020)
  • (14) Dong, B., Shen, Z.: MRA-based wavelet frames and applications. Mathematics in image processing, 9–158, IAS/Park City Math. Ser., 19, Amer. Math. Soc., Providence, RI, (2013)
  • (15) Ehler, E.: On multivariate compactly supported bi-frames. J. Fourier Anal. Appl. 13, 511–532 (2007)
  • (16) Ehler, M., Han, B.: Wavelet bi-frames with few generators from multivariate refinable functions. Appl. Comput. Harmon. Anal. 25 , 407–414 (2008)
  • (17) Fan, Z., Ji, H., Shen, Z.: Dual Gramian analysis: duality principle and unitary extension principle. Math. Comp. 85, 239–270 (2016)
  • (18) Goodman, T. N. T.: Construction of wavelets with multiplicity, Rend. Mat. Appl. 14 , 665–691(1994)
  • (19) Geronimo, J. S., Hardin, D. P., Massopust, P.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory. 78, 373–401 (1994)
  • (20) Goodman, T. N. T., Lee, S. L., Tang, W. S.: Wavelets in wandering subspaces. Trans. Amer. Math. Soc. 338 , 639–654 (1993)
  • (21) Han, B.: On dual wavelet tight frames. Appl. Comput. Harmon. Anal. 4 , 380–413 (1997)
  • (22) Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155 , 43–67 (2003)
  • (23) Han, B.: Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory. 124 , 44–88 (2003)
  • (24) Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 , 14–42 (2009)
  • (25) Han, B.: The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comp. 79, 917–951 (2010)
  • (26) Han, B.: Framelets and wavelets: algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017
  • (27) Han, B., Jiang, Q. T., Shen, Z., Zhuang, X.: Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Math. Comp. 87 , 347–379 (2018)
  • (28) Han, B., Lu, R.: Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transform. arXiv:2001.06032 [math.FA].
  • (29) Han, B., Lu, R.: Multivariate quasi-tight framelets with high balancing orders derived from any compactly supported refinable vector functions. Sci. China Math. To appear.
  • (30) Han, B., Mo, Q.: Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18 , 211–245 (2003)
  • (31) Han, B., Mo, Q.: Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Appl. Comput. Harmon. Anal. 18 , 67–93 (2005)
  • (32) Jia, R. Q., Jiang, Q. T.: Approximation power of refinable vectors of functions. Wavelet analysis and applications, 155–178, AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002.
  • (33) Jiang, Q. T.: Symmetric paraunitary matrix extension and parametrization of symmetric orthogonal multifilter banks. SIAM J. Matrix Anal. Appl. 23 , 167–186 (2001)
  • (34) Jiang, Q. T., Shen, Z.: Tight wavelet frames in low dimensions with canonical filters. J. Approx. Theory. 196 , 55–78 (2015)
  • (35) Krivoshein, A., Protasov, V., Skopina, M.: Multivariate wavelet frames. Industrial and Applied Mathematics. Springer, Singapore, (2016)
  • (36) Lai, M., Stöckler,J.: Construction of multivariate compactly supported tight wavelet frames. Appl. Comput. Harmon. Anal. 21 , 324–348 (2006)
  • (37) Lebrun, J., Vetterli, M.: Balanced multiwavelets: Theory and design. IEEE Trans. Signal Process. 46 , 1119–1125 (1998)
  • (38) Mo, Q.: Compactly supported symmetric MTA wavelet frames, Ph.D. thesis at the University of Alberta, (2003)
  • (39) Mo Q.: The existence of tight MRA multiwavelet frames. J. Concr. Appl. Math. 4, 415–433 (2006)
  • (40) Ron, A., Shen, Z.: Affine systems in L2(d)L_{2}(\mathbb{R}^{d}): the analysis of the analysis operator. J. Funct. Anal. 148 , 408–447 (1997)
  • (41) San Antolín, A., Zalik, R. A.: Some smooth compactly supported tight wavelet frames with vanishing moments. J. Fourier Anal. Appl.22, 887–909 (2016)
  • (42) Selesnick, I. W.: Balanced multiwavelet bases based on symmetric FIR filters. IEEE Trans. Signal Process. 48, 184–191 (2000)
  • (43) Selesnick, I. W.: Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10, 163–181 (2001)