This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Compact hyperbolic Coxeter four-dimensional polytopes with eight facets

Jiming Ma School of Mathematical Sciences
Fudan University
Shanghai 200433, China
[email protected]
 and  Fangting Zheng Department of Mathematical Sciences
Xi’an Jiaotong Liverpool University
Suzhou 200433, China
[email protected]
(Date: Nov. 22, 2022)
Abstract.

In this paper, we obtain the complete classification for compact hyperbolic Coxeter four-dimensional polytopes with eight facets.

Key words and phrases:
compact Coxeter polytopes, hyperbolic orbifolds, acute-angled, 4-polytopes with 8 facets
2010 Mathematics Subject Classification:
52B11, 51F15, 51M10
Jiming Ma was partially supported by NSFC 11771088 and 12171092. Fangting Zheng was supported by NSFC 12101504 and XJTLU Research Development Fund RDF-19-01-29

1. Introduction

A Coxeter polytope in the spherical, hyperbolic or Euclidean space is a polytope whose dihedral angles are all integer sub-multiples of π\pi. Let 𝕏d\mathbb{X}^{d} be 𝔼d\mathbb{E}^{d}, 𝕊d\mathbb{S}^{d}, or d\mathbb{H}^{d}. If ΓIsom(𝕏d)\Gamma\subset Isom(\mathbb{X}^{d}) is a finitely generated discrete reflection group, then its fundamental domain is a Coxeter polytope in 𝕏d\mathbb{X}^{d}. On the other hand, if Γ=Γ(P)\Gamma=\Gamma(P) is generated by reflections in the bounding hyperplanes of a Coxeter polytope P𝕏dP\subset\mathbb{X}^{d}, then Γ\Gamma is a discrete group of isometries of 𝕏d\mathbb{X}^{d} and PP is its fundamental domain.

There is an extensive body of literature in this field. In early work, [Cox34] has proved that any spherical Coxeter polytope is a simplex and any Euclidean Coxeter polytope is either a simplex or a direct product of simplices. See, for example, [Cox34, Bou68] for full lists of spherical and Euclidean Coxeter polytopes.

However, for hyperbolic Coxeter polytopes, the classification remains an active research topic. It was proved by Vinberg [Vin85(1)85^{(1)}] that no compact hyperbolic Coxeter polytope exists in dimensions d30d\geq 30, and non-compact hyperbolic Coxeter polytope of finite volume does not exist in dimensions d996d\geq 996 [Pro87]. These bounds, however, may not be sharp. Examples of compact polytopes are known up to dimension 88 [Bug84, Bug92]; non-compact polytopes of finite volume are known up to dimension 2121 [Vin72, VK78, Bor98]. As for the classification, complete results are only available in dimensions less than or equal to three. Poincare finished the classification of 2-dimensional hyperbolic polytopes in [P1882]. That result was important to the work of Klein and Poincare on discrete groups of isometries of the hyperbolic plane. In 1970, Andreev proved an analogue for the 33-dimensional hyperbolic convex finite volume polytopes [And70(1)70^{(1)}, And70(2)70^{(2)}]. This theorem played a fundamental role in Thurston’s work on the geometrization of 3-dimensional Haken manifolds.

In higher dimensions, although a complete classification is not available, interesting examples have been displayed in [Mak65, Mak66, Vin67, Mak68, Vin69, Rus89, ImH90, All06]. In addition, enumerations are reported for the cases in which the differences between the numbers of facets mm and the dimensions dd of polytopes are fixed to some small number. When md=1m-d=1, Lannér classified all compact hyperbolic Coxeter simplices [Lan50]. The enumeration of non-compact hyperbolic simplices with finite volume has been reported by several authors, see e.g. [Bou68, Vin67, Kos67]. For md=2m-d=2, Kaplinskaja described all compact or non-compact but of finite volume hyperbolic Coxeter simplicial prisms [Kap74]. Esselmann [Ess96] later enumerated other compact possibilities in this family, which are named Esselmann polytopes. Tumarkin [Tuma04(1)04^{(1)}] classified all other non-compact but of finite volume hyperbolic Coxeter dd-dimensional polytopes with n+2n+2 facets. In the case of md=3m-d=3, Esselman proved in 1994 that compact hyperbolic Coxeter dd-polytopes with d+3d+3 facets only exist when d8d\leq 8 [Ess94]. By expanding the techniques derived by Esselmann in [Ess94] and [Ess96], Tumarkin completed the classification of compact hyperbolic Coxeter dd-polytopes with d+3d+3 facets [Tum07]. In the non-compact case, Tumarkin proved in [Tum04(2)04^{(2)}, Tum03] that such polytopes do not exist in dimensions greater than or equal to 1717; there is a unique polytope in dimension of 1616. Moreover, the author provided in the same papers the complete classification of a special family of pyramids over a product of three simplices, which exist only in dimension of 4,5,,94,5,\cdots,9 and 1313. The classification for the case of finite volume has not completed yet. Regarding this sub-family, Roberts provided a list with exactly one non-simple vertex [Rob15]. In the case of md=4m-d=4, Flikson-Tumarkin showed in [FT08(1)08^{(1)}] that compact hyperbolic Coxeter dd-polytope with d+4d+4 facets does not exist when dd is greater than or equal to 88. This bound is sharp because of the example constructed by Bugeanko [Bug84]. In addition, Flikson-Tumarkin showed that Bugeanko’s example is the only 77-dimensional polytope with 1111 facets. However, complete classifications for d=4,5,6d=4,5,6 are not presented there.

Besides, some scholars have also considered polytopes with small numbers of disjoint pairs [FT08(2)08^{(2)}, FT09, FT14] or of certain combinatoric types, such as dd-pyramid [Tuma04(1)04^{(1)}, Tum04(2)04^{(2)}] and dd-cube [Jac17, JT18]. An updating overview of the current knowledge for hyperbolic Coxeter polytopes is available on Anna Felikson’s webpage [F].

In this paper, we classify all the compact hyperbolic Coxeter 44-polytope with 88 facet. The main theorem is as follows:

Theorem 1.1.

There are exactly 348348 compact hyperbolic Coxeter 44-polytopes with 88 facets. In particular, P21P_{21} has two dihedral angles of π12\displaystyle\frac{\pi}{12}, and P17,8P_{17,8} has an dihedral angle of π7\displaystyle\frac{\pi}{7}. Among hyperbolic Coxeter polytopes of dimensions larger than or equal to 44, these two values of dihedral angles appear for the first time and π12\displaystyle\frac{\pi}{12} is the smallest dihedral angle known so far.

We remark that Burcroff has also carried out the same list independently almost in the same time [Bur22]. Mutually comparing the results benefit both authors. Burcroff communicated with us when our preprint appear. She kindly pointed out several typos about conveying the information into Coxeter diagrams. Ours also help she find out two lost or double-counted combinatoric types that admit hyperbolic structure. We now all agree that 348348 is the correct number. The correspondence between the notions of our and Burcroff’s polytopes is presented in Section 7.

The paper [JT18] is the main inspiration for our recent work on enumerating hyperbolic Coxeter polytopes. In comparison with [JT18], we use a more universal “block-pasting” algorithm, which is first introduced in [MZ18], rather than the “tracing back” attempt. More geometric obstructions are adopted and programmed to considerably reduce the computational load. Our algorithm efficiently enumerates hyperbolic Coxeter polytopes over arbitrary combinatoric type rather than merely the nn-cube.

Last but not the least, our main motivation in studying the hyperbolic Coxeter polytopes is for the construction of high-dimensional hyperbolic manifolds. However, this is not the theme here. Readers can refer to, for example, [KM13], for interesting hyperbolic manifolds built via special hyperbolic Coxeter polytopes.

The paper is organized as follows. We provide in Section 22 some preliminaries about (compact) hyperbolic (Coxeter) polytopes. In Section 33, we recall the 2-phases procedure and related terminologies introduced by Jacquemet and Tschantz [Jac17, JT18] for numerating all hyperbolic Coxeter nn-cubes. The 3737 combinatorial types of simple 44-polytopes with 88 facets are reported in Section 44. Enumeration of all the “SEILper”-potential matrices are explained in Section 55. The “6-rounds” procedure are applied to the “SEILper”-potential matrices for the Gram matrices of actual hyperbolic Coxeter polytopes in Section 66. Validations and the complete lists of the resulting Coxeter diagrams of the Theorem 1.1 are shown in Section 77.

Acknowledgment

We would like to thank Amanda Burcroff a lot for communicating with us about her result and pointing out several confusing drawing typos in the first arXiv version. The computations is pretty delicate and complex, and the list now is much more convincing due to the mutual check. We are also grateful to Nikolay Bogachev for his interest and discussion about the results, and noting the missing of a hyperparallel distance data and some textual mistakes in previous version. The computations throughout this paper are performed on a cluster of server of PARATERA, engrid12, line priv_\_para (CPU:Intel(R) Xeon(R) Gold 5218 16 Core [email protected]).

2. preliminary

In this section, we recall some essential facts about compact Coxeter hyperbolic polytopes, including Gram matrices, Coxeter diagrams, characterization theorems, etc. Readers can refer to, for example, [Vin93] for more details.

2.1. Hyperbolic space, hyperplane and convex polytope

We first describe a hyperboloid model of the dd-dimensional hyperbolic space d\mathbb{H}^{d}. Let 𝔼d,1\mathbb{E}^{d,1} be a d+1d+1-dimensional Euclidean vector space equipped with a Lorentzian scalar product ,\langle\cdot,\cdot\rangle of signature (d,1)(d,1). We denote by C+C_{+} and CC_{-} the connected components of the open cone

C={x=(x1,,xd,xd+1)𝔼d,1:x,x<0}C=\{x=(x_{1},...,x_{d},x_{d+1})\in\mathbb{E}^{d,1}:\langle x,x\rangle<0\}

with xd+1>0x_{d+1}>0 and xd+1<0x_{d+1}<0, respectively. Let R+R_{+} be the group of positive numbers acting on 𝔼d,1\mathbb{E}^{d,1} by homothety. The hyperbolic space d\mathbb{H}^{d} can be identified with the quotient set C+/R+C_{+}/R_{+}, which is a subset of P𝕊d=(𝔼d,1\{0})/R+.P\mathbb{S}^{d}=(\mathbb{E}^{d,1}\backslash\{0\})/R_{+}. There is a natural projection

π:(𝔼d,1\{0})P𝕊d.\pi:(\mathbb{E}^{d,1}\backslash\{0\})\rightarrow P\mathbb{S}^{d}.

We denote d¯\overline{\mathbb{H}^{d}} as the completion of d\mathbb{H}^{d} in P𝕊dP\mathbb{S}^{d}. The points of the boundary d=d¯\d\partial\mathbb{H}^{d}=\overline{\mathbb{H}^{d}}\backslash\mathbb{H}^{d} are called the ideal points. The affine subspaces of d\mathbb{H}^{d} of dimension d1d-1 are hyperplanes. In particular, every hyperplane of d\mathbb{H}^{d} can be represented as

He={π(x):xC+,x,e=0},H_{e}=\{\pi(x):x\in C_{+},\langle x,e\rangle=0\},

where ee is a vector with e,e=1\langle e,e\rangle=1. The half-spaces separated by HeH_{e} are denoted by He+H_{e}^{+} and HeH_{e}^{-}, where

(2.1) He={π(x):xC+,x,e0}.H_{e}^{-}=\{\pi(x):x\in C_{+},\langle x,e\rangle\leq 0\}.

The mutual disposition of hyperplanes HeH_{e} and HfH_{f} can be described in terms of the corresponding two vectors ee and ff as follows:

  • The hyperplanes HeH_{e} and HfH_{f} intersect if |e,f|<1|\langle e,f\rangle|<1. The value of the dihedral angle of HeHfH_{e}^{-}\cap H_{f}^{-}, denoted by HeHf\angle H_{e}H_{f}, can be obtained via the formula

    cosHeHf=e,f;\cos\angle H_{e}H_{f}=-\langle e,f\rangle;
  • The hyperplanes HeH_{e} and HfH_{f} are ultra-parallel if |e,f|=1|\langle e,f\rangle|=1;

  • The hyperplanes HeH_{e} and HfH_{f} diverge if |e,f|>1|\langle e,f\rangle|>1. The distance ρ(He,Hf)\rho(H_{e},H_{f}) between HeH_{e} and HfH_{f}, when He+HfH_{e}^{+}\subset H_{f}^{-} and Hf+HeH_{f}^{+}\subset H_{e}^{-}, is determined by

    coshρ(He,Hf)=e,f.\cosh\rho(H_{e},H_{f})=-\langle e,f\rangle.

We say a hyperplane HeH_{e} supports a closed bounded convex set SS if HeS0H_{e}\cap S\neq 0 and SS lies in one of the two closed half-spaces bounded by HeH_{e}. If a hyperplane HeH_{e} supports SS, then HeSH_{e}\cap S is called a face of SS.

Definition 2.1.

A dd-dimensional convex hyperbolic polytope is a subset of the form

(2.2) P=iHi¯d¯,P=\overline{\mathop{\cap}\limits_{i\in\mathcal{I}}H_{i}^{-}}\in\overline{\mathbb{H}^{d}},

where HiH_{i}^{-} is the negative half-space bounded by the hyperplane HiH_{i} in d\mathbb{H}^{d} and the line “— ” above the intersection means taking the completion in d¯\overline{\mathbb{H}^{d}}, under the following assumptions:

  • PP contains a non-empty open subset of d\mathbb{H}^{d} and is of finite volume;

  • Every bounded subset SS of PP intersects only finitely many HiH_{i}.

A convex polytope of the form (2.2) is called acute-angled if for distinct i,ji,j, either HiHjπ2\angle H_{i}H_{j}\leq\frac{\pi}{2} or Hi+Hj+=H_{i}^{+}\cap H_{j}^{+}=\emptyset. It is obvious that Coxeter polytopes are acute-angled. We denote eie_{i} as the corresponding unit vector of HiH_{i}, namely eie_{i} is orthogonal to HiH_{i} and point away from PP. The polytope PP has the following form in the hyperboloid model.

P=π(K)d¯,P=\pi(K)\cap\overline{\mathbb{H}^{d}},

where K=K(P)K=K(P) is the convex polyhedral cone in 𝔼d,1\mathbb{E}^{d,1} given by

K={x𝔼d,1:x,ei0for alli}.K=\{x\in\mathbb{E}^{d,1}:\langle x,e_{i}\rangle\leq 0~{}\text{for all}~{}i\}.

In the sequel, a dd-dimensional convex polytope PP is called a dd-polytope. A jj-dimensional face is named a jj-face of PP. In particular, a (d1)(d-1)-face is called a facet of PP. We assume that each of the hyperplane HiH_{i} intersects with PP on its facet. In other words, the hyperplane HiH_{i} is uniquely determined by PP and is called a bounding hyperplane of the polytope PP. A hyperbolic polytope PP is called compact if all of its 0-faces, i.e., vertices, are in d\mathbb{H}^{d}. It is called of finite volume if some vertices of PP lie in d\partial\mathbb{H}^{d}.

2.2. Gram matrices, Perron-Frobenius Theorem, and Coxeter diagrams

Most of the content in this subsection is well-known by peers in this field. We present them for the convenience of the readers. In particular, Theorem 2.3 and 2.4 are extremely important throughout this paper.

For a hyperbolic Coxeter dd-polytope P=iHi¯P=\overline{\mathop{\cap}\limits_{i\in\mathcal{I}}H_{i}^{-}}, we define the Gram matrix of polytope PP to be the Gram matrix (ei,ej)(\langle e_{i},e_{j}\rangle) of the system of vectors {ei𝔼d,1|i}\{e_{i}\in\mathbb{E}^{d,1}|i\in\mathcal{I}\} that determine HiH_{i}^{-}s. The Gram matrix of PP is the m×mm\times m symmetric matrix G(P)=(gij)1i,jmG(P)=(g_{ij})_{1\leq i,j\leq m} defined as follows:

gij={1 ifj=i,cosπkij ifHiandHjintersect at a dihedral  angle πkij,coshρij ifHiandHjdivergeat at a distanceρij,1 ifHiandHjare ultra-parallel.g_{ij}=\left\{\begin{array}[]{ccl}1&\mbox{~{}}~{}~{}~{}~{}{{\rm if}}&j=i,\\ -\cos\frac{\pi}{k_{ij}}&\mbox{~{}}~{}~{}~{}~{}{{\rm if}}&H_{i}~{}\text{and}~{}H_{j}~{}\text{intersect}\text{ at~{}a~{}dihedral~{} angle~{}}~{}\frac{\pi}{k_{ij}},\\ -\cosh\rho_{ij}&\mbox{~{}}~{}~{}~{}~{}{{\rm if}}&H_{i}~{}\text{and}~{}H_{j}~{}\text{divergeat~{}at~{}a~{}distance}~{}\rho_{ij},\\ -1&\mbox{~{}}~{}~{}~{}~{}{{\rm if}}&H_{i}~{}\text{and}~{}H_{j}~{}\text{are~{}ultra-parallel}.\end{array}\right.

Other than the Gram matrix, a Coxeter polytope PP can also be described by its Coxeter graph Γ=Γ(P)\Gamma=\Gamma(P). Every node ii in Γ\Gamma represents the bounding hyperplane HiH_{i} of PP. Two nodes i1i_{1} and i2i_{2} are joined by an edge with weight 2kij2\leq k_{ij}\leq\infty if HiH_{i} and HjH_{j} intersect in n\mathbb{H}^{n} with angle πkij\frac{\pi}{k_{ij}}. If the hyperplanes HiH_{i} and HjH_{j} have a common perpendicular of length ρij>0\rho_{ij}>0 in n\mathbb{H}^{n}, the nodes i1i_{1} and i2i_{2} are joined by a dotted edge, sometimes labelled coshρij\cosh\rho_{ij}. In the following, an edge of weight 22 is omitted, and an edge of weight 33 is written without its weight. The rank of Γ\Gamma is defined as the number of its nodes. In the compact case, kijk_{ij} is not \infty, and we have 2kij<2\leq k_{ij}<\infty.

A square matrix MM is said to be the direct sum of the matrices M1,M2,,MnM_{1},M_{2},\cdots,M_{n} if by some permutation of the rows and of columns, it can be brought to the form

(M10M20Mn).\begin{pmatrix}M_{1}&&&&0\\ &M_{2}&&&\\ &&\cdot&&\\ &&&\cdot&\\ 0&&&&M_{n}\end{pmatrix}_{.}

A matrix MM that cannot be represented as a direct sum of two matrices is said to be indecomposible111It is also referred to as “irreducible” in some references.. Every matrix can be represented uniquely as a direct sum of indecomposible matrices, which are called (indecomposible) components. We say a polytope is indecomposible if its Gram matrix G(P)G(P) is indecomposible.

Refer to caption
Figure 1. Connected elliptic (left) and connected parabolic (right) Coxeter diagrams.

In 1907, Perron found a remarkable property of the the eigenvalues and eigenvectors of matrices with positive entries. Frobenius later generalized it by investigating the spectral properties of indecomposible non-negative matrices.

Theorem 2.2 (Perron-Frobenius, [Gan59]).

An indecomposible matrix A=(aij)A=(a_{ij}) with non-positive entries always has a single positive eigenvalue rr of AA. The corresponding eigenvector has positive coordinates. The moduli of all of the other eigenvalues do not exceed rr.

It is obvious that Gram matrices G(P)G(P) of an indecomposible Coxeter polytope is an indecomposible symmetric matrix with non-positive entries off the diagonal. Since the diagonal elements of G(P)G(P) are all 11s, G(P)G(P) is either positive definite, semi-positive definite or indefinite. According to the Perron-Frobenius theorem, the defect of a connected semi-positive definite matrix G(P)G(P) does not exceed 11, and any proper submatrix of it is positive definite. For a Coxeter nn-polytope PP, its Coxeter diagram Γ(P)\Gamma(P) is said to be elliptic if G(P)G(P) is positive definite; Γ(P)\Gamma(P) is called parabolic if any indecomposable component of G(P)G(P) is degenerate and every subdiagram is elliptic. The elliptic and connected parabolic diagrams are exactly the Coxeter diagrams of spherical and Euclidean Coxeter simplices, respectively. They are classified by Coxeter [Cox34] as shown in Figure 1.

A connected diagram Γ\Gamma is a Lannér diagram if Γ\Gamma is neither elliptic nor parabolic; any proper subdiagram of Γ\Gamma is elliptic. Those diagrams are irreducible Coxeter diagrams of compact hyperbolic Coxeter simplices. All such diagrams, reported by Lannér [Lan50], are listed in Figure 2.

Refer to caption
Figure 2. The Lannér diagrams.

Although the full list of hyperbolic Coxeter polytopes remains incomplete, some powerful algebraic restrictions are known [Vin85(1)85^{(1)}]:

Theorem 2.3.

([Vin85(2)85^{(2)}], Th. 2.1). Let G=(gij)G=(g_{ij}) be an indecomposable symmetric matrix of signature (d,1)(d,1), where gii=1g_{ii}=1 and gij0g_{ij}\leq 0 if iji\neq j. Then there exists a unique (up to isometry of d\mathbb{H}^{d}) convex hyperbolic polytope PdP\subset\mathbb{H}^{d}, whose Gram matrix coincides with GG.

Theorem 2.4.

([Vin85(2)85^{(2)}], Th. 3.1, Th. 3.2) Let P=iIHidP=\mathop{\cap}\limits_{i\in I}H_{i}^{-}\in\mathbb{H}^{d} be a compact acute-angled polytope and G=G(P)G=G(P) be the Gram matrix. Denote GJG_{J} the principal submatrix of G formed from the rows and columns whose indices belong to JIJ\subset I. Then,

  1. (1)

    The intersection jJHj,JI\mathop{\cap}\limits_{j\in J}H_{j}^{-},J\subset I, is a face FF of PP if and only if the matrix GJG_{J} is positive definite

  2. (2)

    For any JIJ\subset I the matrix, GJG_{J} is not parabolic.

A convex polytope is said to be simple if each of its faces of codimension kk is contained in exactly kk facets. By Theorem 2.4, we have the following corollary:

Corollary 2.5.

Every compact acute-angled polytope is simple.

3. Potential hyperbolic Coxeter matrices

In order to classify all of the compact hyperbolic Coxeter 44-polytopes with 88 facets, we firstly enumerate all Coxeter matrices of simple 44-polytope with 88 facets that satisfy spherical conditions around all of the vertices. These are named potential hyperbolic Coxeter matrices in [JT18]. Almost all of the terminology and theorems in this section are proposed by Jacquemet and Tschantz. We recall them here for reference, and readers can refer to [JT18] for more details.

3.1. Coxeter matrices

The Coxeter matrix of a hyperbolic Coxeter polytope PP is a symmetric matrix M=(mij)1i,jNM=(m_{ij})_{1\leq i,j\leq N} with entries in {}\mathbb{N}\cup\{\infty\} such that

mij={1,if j=i,kij,if Hi and Hj intersect in n with angle πkij,,otherwise.m_{ij}=\left\{\begin{array}[]{cl}1,&\text{if }j=i,\\ k_{ij},&\text{if }H_{i}\text{ and }H_{j}\text{ intersect in }\mathbb{H}^{n}\text{ with angle }\frac{\pi}{k_{ij}},\\ \infty,&\text{otherwise}.\end{array}\right.

Note that, compared with Gram matrix, the Coxeter matrix does not involve the specific information of the distances of the disjoint pairs.

Remark 3.1.

In the subsequent discussions, we refer to the Coxeter matrix MM of a graph Γ\Gamma as the Coxeter matrix MM of the Coxeter polyhedron PP such that Γ=Γ(P)\Gamma=\Gamma(P).

3.2. Partial matrices

Definition 3.2.

Let Ω={n|n2}{}\Omega=\{n\in\mathbb{Z}\,|\,n\geq 2\}\cup\{\infty\} and let \bigstar be a symbol representing an undetermined real value. A partial matrix of size m1m\geq 1 is a symmetric m×mm\times m matrix MM whose diagonal entries are 11, and whose non-diagonal entries belong to Ω{}\Omega\cup\{\bigstar\}.

Definition 3.3.

Let MM be an arbitrary m×mm\times m matrix, and s=(s1,s2,,sk)s=(s_{1},s_{2},\cdots,s_{k}), 1s1<s2<<skm1\leq s_{1}<s_{2}<\cdots<s_{k}\leq m. Let MsM^{s} be the k×kk\times k submatrix of MM with (i,j)(i,j)-entry msi,sjm_{s_{i},s_{j}}.

Definition 3.4.

We say that a partial matrix M=(pij)1i,j,mM=(p_{ij})_{1\leq i,j,\leq m} is a potential matrix for a given polytope PP if

\bullet There are no entries with the value \bigstar;

\bullet There are entries \infty in positions of MM that correspond to disjoint pair;

\bullet For every sequence ss of indices of facets meeting at a vertex vv of PP, the matrix, obtained by replacing value nn with cosπn\cos\frac{\pi}{n} of submatrix MsM^{s}, is elliptic.

For brevity, we use a potential vector

C=(p12,p13,p1m,p23,p24,,p2m,pij,pm1,m),pijC=(p_{12},p_{13},\cdots p_{1m},p_{23},p_{24},\cdots,p_{2m},\cdots p_{ij},\cdots p_{m-1,m}),~{}p_{ij}\neq\infty

to denote the potential matrix, where 1i<jm1\leq i<j\leq m and non-infinity entries are placed by the subscripts lexicographically. The potential matrix and potential vector CC can be constructed one from each other easily. In general, an arbitrary Coxeter matrix corresponds to a Coxeter vector following the same manner. We mainly use the language of vectors to explain the methodology and report the enumeration results. It is worthy to remark that, for a given Coxeter diagram, the corresponding (potential / Gram) matrix and vector are not unique in the sense that they are determined under a given labeling system of the facets and may vary when the system changed. In Section 5, we apply a permutation group to the nodes of the diagram and remove the duplicates to obtain all of the distinct desired vectors

For each rank r2r\geq 2, there are infinitely many finite Coxeter groups, because of the infinite 1-parameter family of all dihedral groups, whose graphs consist of two nodes joined by an edge of weight k2k\geq 2. However, a simple but useful truncation can be utilized:

Proposition 3.5.

There are finitely many finite Coxeter groups of rank rr with Coxeter matrix entries at most seven.

It thus suffices to enumerate potential matrices with entries at most seven, and the other candidates can be obtained from substituting integers greater than seven with the value seven. In other words, we now have more variables, that are restricted to be integers larger than or equal to seven, besides length unknowns. In the following, we always use the terms “Coxeter matrix” or “potential matrix” to mean the one with integer entries less than or equal to seven unless otherwise mentioned.

In [JT18], the problem of finding certain hyperbolic Coxeter polytopes is solved in two phases. In the first step, potential matrices for a particular hyperbolic Coxeter polytope are found; the “Euclidean-square obstruction” is used to reduce the number. Secondly, relevant algebraic conditions are solved for the admissible distances between non-adjacent facets. In our setting, additional universal necessary conditions, except for the vertex spherical restriction and Euclidean square obstruction, are adopted and programmed to reduce the number of the potential matrices.

4. combinatorial type of simple 4-polytopes with 8 facets

In 1909, Brückner reported the enumeration of all the different combinatorial types of simple 4-polytopes with 8 facets. Brückner used the Schlegel diagrams to represent all of the combinatorial types of simple 4-polytope. However, not every Brückner’s diagram is a Schlegel diagram. Grünbaum and Sreedharan then used the ”beyond-beneath” technique, for example see [ [Grü67], Section 5.2], and the Gale diagram developed by M. A. Perles to enumerate once more and corrected some results of Brückner’s. Here is the main theorem:

Theorem 4.1 (Brückner,Grünbaum-Sreedharan).

There are 3737 different combinatorial types of simple 44-polytopes with 88 facets.

We correct some minor errors in their list as in Figure 3, where the polytopes Pi8P^{8}_{i} in [GS67] is now represented by PiP_{i} instead.

Refer to caption
Figure 3. Corrections to Table 4 in [Grü67]

Each line in the third column of Table 44 in [GS67] is for one simple polytope with 88 facets. The data on the first line is as follows:

[1,2,4,5] [1,2,3,4] [1,3,4,5] [1,3,5,6] [2,3,5,6] [1,2,3,7] [1,2,6,7] [1,2,5,8] [1,2,6,8] [2,3,4,5] [1,3,6,7] [2,3,6,7] [1,5,6,8] [2,5,6,8]

where the number 11, 22, \cdots, 88 denote the eight facets and each square bracket corresponds to one vertex that is incident to the enclosed four facets. For example, there are 1414 vertices of the above polytope P1P_{1}.

From the original information, we can search out the following data for each polytope:

  1. (1)

    The permutation subgroup gig_{i} of S8S_{8} that is isomorphic to the symmetry group of PkP_{k};

  2. (2)

    The set dkd_{k} of pairs of the disjoint facets;

  3. (3)

    The set l4l_{4} of sets of four facets of which the intersection is of the combinatorial type of a tetrahedron.

  4. (4)

    The set l4_basisl_{4}\_basis of sets of four facets of which bound a 3-simplex facet. The label of the bounded 3-simplex facet is recorded as well. Note that l4_basisl_{4}\_basis is a subset of l4l_{4} and its can be non-empty only for a 44-dimensional polytope.

  5. (5)

    The set i2i_{2} of sets of facets, where the intersection is of the combinatorial type of a 22-cube.

  6. (6)

    The set s3/s4s_{3}~{}/~{}s_{4} of sets of three / four facets of which the intersection is not an edge / a vertex of PkP_{k}, and no disjoint pairs are included.

  7. (7)

    The set e3/e4e_{3}~{}/~{}e_{4} of sets of three / four facets of which no disjoint pairs are included.

  8. (8)

    The set se5/se6se_{5}~{}/~{}se_{6} of sets of five / six facets of which no disjoint pairs are included.

For example, for the polytope P1P_{1}, the above sets are as shown in Table 1.

 
P1P_{1}
Vert 14 {{1,2,4,5},{1,2,3,4},{1,3,4,5},{1,3,5,6},{2,3,5,6},{1,2,3,7},{1,2,6,7},{1,2,5,8},\{\{1,2,4,5\},\{1,2,3,4\},\{1,3,4,5\},\{1,3,5,6\},\{2,3,5,6\},\{1,2,3,7\},\{1,2,6,7\},\{1,2,5,8\},
{1,2,6,8},{2,3,4,5},{1,3,6,7},{2,3,6,7},{1,5,6,8},{2,5,6,8}}\{1,2,6,8\},\{2,3,4,5\},\{1,3,6,7\},\{2,3,6,7\},\{1,5,6,8\},\{2,5,6,8\}\}
d1d_{1} 6 {{3,8},{4,6},{4,7},{4,8},{5,7},{7,8}}\{\{3,8\},\{4,6\},\{4,7\},\{4,8\},\{5,7\},\{7,8\}\}
l4l_{4} 3 {{1,2,3,5},{1,2,3,6},{1,2,5,6}}\{\{1,2,3,5\},\{1,2,3,6\},\{1,2,5,6\}\}
l4_basisl_{4}\_basis 3 {{4,{1,2,3,5}},{7,{1,2,3,6}},{8,{1,2,5,6}}}\{\{4,\{1,2,3,5\}\},\{7,\{1,2,3,6\}\},\{8,\{1,2,5,6\}\}\}
s3s_{3} 0 \emptyset
s4s_{4} 3 {{1,2,3,5},{1,2,3,6},{1,2,5,6}}\{\{1,2,3,5\},\{1,2,3,6\},\{1,2,5,6\}\}
e3e_{3} 2828 {{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,7},{1,2,8},{1,3,4},{1,3,5},{1,3,6},{1,3,7},\{\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,2,7\},\{1,2,8\},\{1,3,4\},\{1,3,5\},\{1,3,6\},\{1,3,7\},
{1,4,5},{1,5,6},{1,5,8},{1,6,7},{1,6,8},{2,3,4},{2,3,5},{2,3,6},{2,3,7},{2,4,5},\{1,4,5\},\{1,5,6\},\{1,5,8\},\{1,6,7\},\{1,6,8\},\{2,3,4\},\{2,3,5\},\{2,3,6\},\{2,3,7\},\{2,4,5\},
{2,5,6},{2,5,8},{2,6,7},{2,6,8},{3,4,5},{3,5,6},{3,6,7},{5,6,8},\{2,5,6\},\{2,5,8\},\{2,6,7\},\{2,6,8\},\{3,4,5\},\{3,5,6\},\{3,6,7\},\{5,6,8\},
e4e_{4} 1717 {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},{1,2,4,5},{1,2,5,6},{8,1,2,5},{1,2,6,7},{8,1,2,6},\{\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,6\},\{1,2,3,7\},\{1,2,4,5\},\{1,2,5,6\},\{8,1,2,5\},\{1,2,6,7\},\{8,1,2,6\},
{1,3,4,5},{1,3,5,6},{1,3,6,7},{8,1,5,6},{2,3,4,5},{2,3,5,6},{2,3,6,7},{8,2,5,6}}\{1,3,4,5\},\{1,3,5,6\},\{1,3,6,7\},\{8,1,5,6\},\{2,3,4,5\},\{2,3,5,6\},\{2,3,6,7\},\{8,2,5,6\}\}
i2i_{2} 0 \emptyset
se5se_{5} 33 {{1,2,3,4,5,6},{2,3,4,5,6,7},{3,4,5,6,7,8},{4,5,6,7,8,9}}\{\{1,2,3,4,5,6\},\{2,3,4,5,6,7\},\{3,4,5,6,7,8\},\{4,5,6,7,8,9\}\}
se6se_{6} 0 \emptyset
g1g_{1} 12 (12345678)(12345678)
(12376548)(12376548)
(12543687)(12543687)
(12586347)(12586347)
(12673584)(12673584)
(12685374)(12685374)
(21345678)(21345678)
(21376548)(21376548)
(21543687)(21543687)
(21586347)(21586347)
(21673584)(21673584)
(21685374)(21685374)
 
Table 1. Combinatorics of P1P_{1}.

It is worthy to mention that the set l4_basisl_{4}\_basis, if not empty, can help to reduce the computation since the list of simplicial 44-prisms is available. For example, suppose {1,2,3,5}\{1,2,3,5\} (referring to facets F1,F2,F3,F5F_{1},F_{2},F_{3},F_{5}) bound a facet 44 (means F4F_{4}) of 3-simplex. Then we can assume that F4F_{4} is orthogonal to F1F_{1}, F2F_{2}, F3F_{3}, and F5F_{5} (i.e., m14=m24=m34=m54=2m_{14}=m_{24}=m_{34}=m_{54}=2). The vectors obtained this way can be treated as bases, named basis vectors, and all of the other potential vectors that may lead to a Gram vector can be realized by gluing the simplicial 44-prisms, as shown in Figure 4, at their orthogonal ends.

Refer to caption
Figure 4. Compact prisms in 4\mathbb{H}^{4}.

Moreover, among all of the 3737 polytopes, we only need to study those with number of hyperparall pairs larger than or equal to three due to the following theorems:

Theorem 4.2 ([FT08(1)08^{(1)}], part of Theorem A).

If d4d\leq 4 and the dd-polytope PP has no pair of disjoint facets then PP is either a simplex or one of the seven Esselmann polytopes.

Theorem 4.3 ([FT09], Main Theorem A).

A compact hyperbolic Coxeter dd-polytope with exactly one pair of non-intersecting facets has at most d+3d+3 facets.

Theorem 4.4 ([FT14], Theorem 7.1).

Compact hyperbolic Coxeter 44-polytopes with two pairs of disjoint facets has at most 77 facets.

There are 2424 polytopes with at least three pairs of hyperparallel facets. We group them by the number dkd_{k} of disjoint pairs as illustrated in Table 2.

 
dkd_{k}                                 labels of polytopes
66 1 2 3
55 4 5 6 7 13
44 8 9 10 14 15 16 17 34
33 11 12 18 19 20 21 22 26
 
Table 2. Four groups with respect to different numbers of disjoint pairs.

5. Block-pasting algorithms for enumerating all the candidate matrices over certain combinatorial type.

We now use the block-pasting algorithm to determine all of the potential matrices for the 2424 compact combinatorial types reported in Section 4. Recall that the entries have only finite options, i.e., kij{1,2,3,,7}{}k_{ij}\in\{1,2,3,\cdots,7\}\cup\{\infty\}. Compared to the backtracking search algorithm raised in [JT18], “block-pasting” algorithm is more efficient and universal. Generally speaking, the backtracking search algorithm uses the method of “a series circuit”, where the potential matrices are produced one by one. Whereas, the block-pasting algorithm adopts the idea of “a parallel circuit”, where different parts of a potential matrix are generated simultaneously and then pasted together.

For each vertex viv_{i} of a 44-dimensional hyperbolic Coxeter polytope PkP_{k}, we define the i-chunk, denoted as kik_{i}, to be the ordered set of the four facets intersecting at the vertex viv_{i} with increasing subscripts. For example, for the polytope P1P_{1} discussed above, there are 1414 chunks as it has 1414 vertices. We may also use kik_{i} to denote the ordered set of subscripts, i.e., kik_{i} is referred to as a set of integers of length four.

Since the compact hyperbolic 44-dimensional polytopes are simple, each chunk possesses (42)=6\tbinom{4}{2}=6 dihedral angles, namely the angles between every two adjacent facets. For every chunk kik_{i}, we define an i-label set eie_{i} to be the ordered set {10a+b|{a,b}Ei}\{10a+b|\{a,b\}\in E_{i}\}, where EiE_{i}, named the i-index set, is the ordered set of pairs of facet labels. These are formed by choosing every two members from the chunk kik_{i} where the labels increase lexicographically. For example, suppose the four facets intersecting at the first vertex are F1F_{1}, F2F_{2}, F4F_{4}, and F5F_{5}. Then, we have

k1={F1,F2,F4,F5}(or{1,2,4,5}),k_{1}=\{F_{1},F_{2},F_{4},F_{5}\}(\text{or}\{1,2,4,5\}),
E1={{1,2},{1,4},{1,5},{2,4},{2,5},{4,5}},E_{1}=\{\{1,2\},\{1,4\},\{1,5\},\{2,4\},\{2,5\},\{4,5\}\},
e1={12,14,15,24,25,45}.e_{1}=\{12,14,15,24,25,45\}.

Next, we list all of the Coxeter vectors of the elliptic Coxeter diagrams of rank 44. Note that we have made the convention of considering only the diagrams with integer entries less than or equal to seven. The qualified Coxeter diagrams are shown in Figure 5:

Refer to caption
Figure 5. Spherical Coxeter diagram of rank 44 with labels less than or equal to seven.

We apply the permutation group on five letters S4S_{4} to the labels of the nodes of the Coxeter diagrams in Figure 5. This produces all of the possible vectors when varying the order of the four facets. For example, there are 44 vectors for the single diagram D4D_{4} as shown in Figure 6. There are 242242 distinct such vectors of rank 44 elliptic Coxeter diagrams in total. The set of all of these vectors is called the pre-block; it is denoted by 𝒮\mathcal{S}. The set 𝒮\mathcal{S} can be regarded as a 242×6242\times 6 matrix in the obvious way. In the following, we do not distinguish these two viewpoints and may refer to 𝒮\mathcal{S} as either a set or a matrix.

Refer to caption
Figure 6. prepare the pre-block

We then generate every dataframe BiB_{i}, named the ii-block, of size 242×6242\times 6, corresponding to every chunk kik_{i}, for a given polytope PkP_{k}, where 1i|Vk|1\leq i\leq|V_{k}| and |Vk||V_{k}| is the number of vertices of PkP_{k}. Firstly we evaluate BiB_{i} by 𝒮\mathcal{S} and take the ordered set eie_{i} defined above as the column names of BiB_{i}. For example, for e1={12,14,15,24,25,45}e_{1}=\{12,14,15,24,25,45\}, the columns of BiB_{i} are referred to as (12)(12)-, (14)(14)-, (15)(15)-, (24)(24)-, (25)(25)-, (45)(45)-columns.

Denote LL to be a vector of length 2828 as follows:

L={12,13,,18,23,24,,28,34,35,,38,45,46,,48,56,57,58,67,68,78}.L=\{12,13,...,18{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}23,24,...,28{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}34,35,...,38{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}45,46,...,48{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}56,57,58{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}67,68{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0},}~{}78\}.

Then all of the numbers in the label set of dkd_{k} (the set of disjoint pair of facets of PkP_{k}) are excluded from LL to obtain a new vector For brevity, the new vector is also denoted by LL. For example, the numbers excluded for the polytope P1P_{1} are 3838, 4646, 4747, 4848, 5757, and 7878 as illustrated in Table 1. The length of LL is denoted by ll.

Next, we extend every 242×6242\times 6 dataframe to a 242×l242\times l one, with column names LL, by simply putting each (ij)(ij)-column to the position of corresponding labeled column, and filling in the value zero in the other positions. We continue to use the same notation BiB_{i} for the extended dataframe. In the rest of the paper, we always mean the extended dataframe when using the notation BiB_{i}.

After preparing all of the the blocks BiB_{i} for a given polytope PkP_{k}, we proceed to paste them up. More precisely, when pasting B1B_{1} and B2B_{2}, a row from B1B_{1} is matched up with a row of B2B_{2} where every two entries specified by the same index ii, where ie1e2i\in e_{1}\cap e_{2}, have the same values. The index set e1e2e_{1}\cap e_{2} is called a linking key for the pasting. The resulting new row is actually the sum of these two rows in the non-key positions; the values are retained in the key positions. The dataframe of the new data is denoted by B1B2B_{1}\cup^{*}B_{2}.

We use the following example to explain this process. Suppose

B1={x1,x2}={(1,2,4,4,2,6,0,0,,0),(1,2,4,5,2,6,0,0,,0)}B_{1}=\{x_{1},x_{2}\}=\{(1,2,4,4,2,6,0,0,\cdots,0),(1,2,4,5,2,6,0,0,\cdots,0)\},

B2={y1,y2,y3}={(1,2,4,4,0,0,1,7,0,0,,0),(1,2,4,4,0,0,6,5,0,0,,0)B_{2}=\{y_{1},y_{2},y_{3}\}=\{(1,2,4,4,0,0,1,7,0,0,\cdots,0),(1,2,4,4,0,0,6,5,0,0,\cdots,0),

(1,2,3,4,0,0,1,7,0,0,,0)}.(1,2,3,4,0,0,1,7,0,0,\cdots,0)\}.

In this example, x1x_{1} has the same values with y1y_{1} and y2y_{2} on the (12)(12)-, (13)(13)-, (14)(14)- and (15)(15)- positions. In other words, the linking key here is {12,13,14,15}\{12,13,14,15\}. Thus, y1y_{1} and y2y_{2} can paste to x1x_{1}, forming the Coxeter vectors

(1,2,4,4,2,6,1,7,0,,0)and(1,2,4,4,2,6,6,5,0,,0),respectively.(1,2,4,4,2,6,1,7,0,...,0)~{}\text{and}~{}(1,2,4,4,2,6,6,5,0,...,0),\text{respectively}.

In contrast, x2x_{2} cannot be pasted to any element of B2B_{2} as there are no vectors with entry 55 on the (15)(15)-position. Therefore,

B1B2={(1,2,4,4,2,6,1,7,0,0,,0),(1,2,4,4,2,6,6,5,0,0,,0)}.B_{1}\cup^{*}B_{2}=\{(1,2,4,4,2,6,1,7,0,0,\cdots,0),(1,2,4,4,2,6,6,5,0,0,\cdots,0)\}.

We then move on to paste the sets B1B2B_{1}\cup^{*}B_{2} and B3B_{3}. We follow the same procedure with an updated index set. Namely the linking key, is now e1e2e3e_{1}\cup e_{2}\cap e_{3}. We conduct this procedure until we finish pasting the final set B|Vk|B_{|V_{k}|}. The set of linking keys used in this procedure is

{e1e2,e1e2e3,,e1e2ei1ei,,e1e2e|V|1e|V|}.\{e_{1}\cap e_{2},e_{1}\cup e_{2}\cap e_{3},\cdots,e_{1}\cup e_{2}\cup\cdots\cup e_{i-1}\cap e_{i},\cdots,e_{1}\cup e_{2}\cup\cdots\cup e_{|V|-1}\cap e_{|V|}\}.

After pasting the final block B|Vk|B_{|V_{k}|}, we obtain all of the potential vectors of the given polytope. This approach has been Python-programmed on a PARATERA server cluster.

When apply this approach , it successfully enumerated all truncated candidate for P1P_{1}. However it usually encounter memory error in solving other case. For example, for polytope P14P_{14}, the computer get stuck at pasting B11B_{11}. We turn to operate it in a serve and it indeed work out finally, see Figure 7 for more details. The peak of the amount of resulting vector has reached 180,063,922180,063,922, which far exceed the abilities of storage and computation of an ordinary laptop. Moreover, even using the server, we can not further solve more cases. A refined algorithm is needed to continue this research.

Refer to caption
Figure 7. Use “block-pasting” algorithm over polytope P1P_{1} and P14P_{14}.

The philosophy of the refined one is to introduce more necessary conditions other than the vertex spherical restriction, to reduce the amount of vectors in the process of block-pasting. The refined algorithm relies on symmetries of the polytopes and some remarks.

Firstly, we collect data sets 4\mathcal{L}_{4}, 4_basis\mathcal{L}_{4}\_basis, 𝒮3\mathcal{S}_{3}, 𝒮4\mathcal{S}_{4}, 𝒮5\mathcal{S}_{5}, 𝒮6\mathcal{S}_{6}, 3\mathcal{E}_{3}, 4\mathcal{E}_{4}, 5\mathcal{E}_{5}, 6\mathcal{E}_{6}, 2\mathcal{I}_{2}, as claimed in Table 3, by the following two steps:

  1. (1)

    Prepare Coxeter diagrams of rank rr, as assigned in Table 3, and write down the Coxeter vectors under an arbitrary system of node labeling.

  2. (2)

    Apply the permutation group SrS_{r} to the labels of the nodes and produce the desired data set consisting of all of the distinct Coxeter vectors under all of the different labelling systems.

Note that the set 𝒮4\mathcal{S}_{4} is exactly the pre-block 𝒮\mathcal{S} we construct before. Readers can refer to the process of producing 𝒮\mathcal{S} for the details of building these data sets.

 
Types of Coxeter diagrams # Coxeter # distinct Coxeter Vectors data sets
diagrams after permutation on nodes
Coxeter diagrams of compact hyperbolic 3-simplex 9 108 4\mathcal{L}_{4}
rank 33 elliptic Coxeter diagrams 9 31 𝒮3\mathcal{S}_{3}
rank 44 elliptic Coxeter diagrams 29 242 𝒮4\mathcal{S}_{4}
rank 55 elliptic Coxeter diagrams 47 1946 𝒮5\mathcal{S}_{5}
rank 66 elliptic Coxeter diagrams 117 20206 𝒮6\mathcal{S}_{6}
rank 33 connected parabolic Coxeter diagrams 3 10 3\mathcal{E}_{3}
rank 44 connected parabolic Coxeter diagrams 3 27 4\mathcal{E}_{4}
rank 55 connected parabolic Coxeter diagrams 5 257 5\mathcal{E}_{5}
rank 66 connected parabolic Coxeter diagrams 4 870 6\mathcal{E}_{6}
Coxeter diagrams of Euclidean 22-cube 4 3 2\mathcal{I}_{2}
 
Table 3. Data sets used to reduce the computational load.

Next, we modify the block-pasting algorithm by using additional metric restrictions. More precisely, remarks 5.15.4, which are practically reformulated from Theorem 2.4, must be satisfied.

Remark 5.1.

(“l4l4-condition”) The Coxeter vector of the six dihedral angles formed by the four facets with the labels indicated by the data in l4l_{4} is IN 4\mathcal{L}_{4}

Remark 5.2.

(“s3s3/s4s4/s5s5/s6s6-condition”) The Coxeter vector of the three/six/ten/fifteen dihedral angles formed by the three/four/five/six facets with the labels indicated by the data in s3s_{3}/s4s_{4}/se5se_{5}/se6se_{6} is NOT IN 𝒮3\mathcal{S}_{3}/𝒮4\mathcal{S}_{4}/𝒮5\mathcal{S}_{5}/𝒮6\mathcal{S}_{6}.

Remark 5.3.

(“e3e3/e4e4/e5e5/e6e6-condition”) The Coxeter vector of the three/six/ten/fifteen dihedral angles formed by the three/four/five/six facets with the labels indicated by the data in e3e_{3}/e4e_{4}/se5se_{5}/se6se_{6} is NOT IN 3\mathcal{E}_{3}/4\mathcal{E}_{4}/5\mathcal{E}_{5}/6\mathcal{E}_{6}.

Remark 5.4.

(“i2i2-condition”) The Coxeter vector formed by the four facets with the labels indicated by the data in i2i_{2} is NOT IN 2\mathcal{I}_{2}.

The “IN” and “NOT IN” tests are called the “saving” and the “killing” conditions, respectively. The “saving” conditions are much more efficient than the “killing” ones, because the “what kinds of vectors are qualified” is much more restrictive than the “what kinds of vectors are not qualified”. Moreover, we remark that the l3l3-condition and the sets l3l_{3} and 3\mathcal{L}_{3}, which can be defined analogously as the l4l4 setting, are not introduced. This is because the effect of using both s3s3- and e3e3- conditions is equivalent to adopting the l3l3-condition.

We now program these conditions and insert them into appropriate layers during the pasting to reduce the computational load. Here the “appropriate layer” means the layer where the dihedral angles are non-zero for the first time. For example, for {1,2,3}e3\{1,2,3\}\in e_{3}, we find that after the jj-th block pasting, the data in columns (1212-,1313-,2323-) of the dataframe B1B2BjB_{1}\cup^{*}B_{2}\cdots\cup^{*}B_{j} become non-zero. Therefore, the e3e3-condition for {1,2,3}\{1,2,3\} is inserted immediately after the jj-th block pasting. The symmetries of the polytopes are factored out when the pastes are finished. The matrices (or vectors) after all these conditions (metric restrictions and symmetry equivalence) are called “SEILper”-potential matrices (or vectors) of certain combinatorial types. All of the numbers of the results are reported in Tables 4. The numbers in red indicate that the corresponding polytopes have a non-empty set l4_basisl_{4}\_basis; therefore, the results obtained are basis SEILper potential vectors. This calculation is called the basis approach. We confirm these cases without using the l4l4-condition, called the direct approach, in the validation part presented in Section 7.

 
     # dkd_{k}     label      # SEILper     dkd_{k}     label     # SEILper     dkd_{k}     label     # SEILper
 
7 
11 
6 1 8 5 13 88,738 3 11 0
 
7 
11 
6 2 12 4 9 142 3 12 1,071
 
7 
11 
6 3 18 4 10 2 3 18 92,886
 
7 
11 
5 4 231 4 14 0 3 19 532
 
7 
11 
5 5 398 4 15 4,723 3 20 138
 
7 
11 
5 6 10 4 16 73,006 3 21 193,77
 
7 
11 
5 7 4,247 4 17 325,957 3 22 150,444
 
7 
11 
5 8 2,176 4 34 7,608 3 26 49,599
 
Table 4. Results of “SEILper”-potential matrices. Recall that dkd_{k} in the table means the number of disjoint pairs as defined before

6. Signature Constraints of hyperbolic Coxeter nnpolytopes

After preparing all of the SEILper matrices, we proceed to calculate the signatures of the potential Coxeter matrices to determine if they lead to the Gram matrix GG of an actual hyperbolic Coxeter polytope.

Firstly, we modify every SEILper matrix MM as follows:

  1. (1)

    Replace \inftys by length unknowns xix_{i};

  2. (2)

    Replace 22, 33, 44, 55, and 66 by 0, 12-\frac{1}{2}, l2-\frac{l}{2}, m2-\frac{m}{2}, n2-\frac{n}{2}, where

    l21=2,l>0,m2m1=0,m>0,n23=0,n>0;l^{2}-1=2,~{}l>0,~{}m^{2}-m-1=0,~{}m>0,~{}n^{2}-3=0,~{}n>0;
  3. (3)

    Replace 77s by angle unknowns of yi2-\frac{y_{i}}{2}.

By Theorem 2.3, the resulting Gram matrix must have signature (4,1)(4,1). This implies that the determinant of every 6×66\times 6 minor of each modified 8×88\times 8 SEILper matrix is zero. Therefore, we have the following system of 2828 equations and inequality on xix_{i}, ll, mm, nn, and yiy_{i} to further restrict and lead to the Gram matrices of the desired polytopes:

(6.1){2det(Mi)=0,for  any of the (82)=286×6minorMiofM.1.8<yi<2for  allyixi<1for  allxil21=2,l>0,m2m1=0,m>0,n23=0,n>0(6.1)~{}~{}~{}\begin{cases}2\det(M_{i})=0,\text{for~{} any of the~{}}\tbinom{8}{2}=28~{}6\times 6~{}\text{minor}~{}M_{i}~{}\text{of}~{}M.\\ 1.8<y_{i}<2~{}\text{for~{} all}~{}y_{i}\\ x_{i}<-1~{}\text{for~{} all}~{}x_{i}\\ l^{2}-1=2,~{}l>0,~{}m^{2}-m-1=0,~{}m>0,~{}n^{2}-3=0,~{}n>0\end{cases}

The above conditions are initially stated by Jacquemet and Tschantz in [JT18]. Due to practical constraints in Mathematica, we denote 2cos(π4),2cos(π5),2cos(π6)2cos(\frac{\pi}{4}),~{}2cos(\frac{\pi}{5}),~{}2cos(\frac{\pi}{6}) by l2,m2,n2\frac{l}{2},~{}\frac{m}{2},~{}\frac{n}{2}, rather than l,m,nl,~{}m,~{}n and set 2det(Mi)=02\det(M_{i})=0 rather than det(Mi)=0\det(M_{i})=0. Delicate reasons for doing so can be found in [JT18]. Moreover, we first find the Gröbner bases of the polynomials involved, i.e., 2det(Mi),l21,m2m1,n232\det(M_{i}),~{}l^{2}-1,~{}m^{2}-m-1,~{}n^{2}-3, before solving the system. This might help to quickly pass over the cases that have no solution. However, when dealing with some combinatorial types, like P17,P22,P13,P16P_{17},~{}P_{22},~{}P_{13},~{}P_{16}, etc., the computation cannot be accomplished in reasonable amount of time. In some cases, a single matrix can require more than two hours to compute, which is costly and impedes the validation process. Hence, we introduce the following 66-round strategy to make the computation much more feasible and efficient.

  1. (1)

    “One equation killing”

    Select 2244 equations, where each of them corresponds to a 6×66\times 6 minor and the deleted two rows and columns containing did_{i} (or di1d_{i}-1) 222Only if there is no hope to have at least 2 cases where deleted two rows and columns containing all did_{i} length unknowns, we compromise to find those including di1d_{i}-1 length unknowns. length unknowns xix_{i}. We use each equation together with the inequalities corresponding to the unknowns in the minor as a condition set and solve them sequentially with time constraint of 1s.

    The result consists of “out set” (the solution is non-empty after the killing), “left set” (the solution is aborted due to the time constraint), and “break set” (the solution is empty). We pass the SEILper matrices whose results are either in the “out set” or the “left set” to the second round.

  2. (2)

    “Twenty-eight equations killing”

    We now apply the condition system (6.1) to the SEILper matrices that pass the first round with time constraints 10s, where all of the 28 equations are involved. The result also consists of “out / left / break” sets. We save the “out set” to the “pre-result set” and pass those in “left set” to the third round.

  3. (3)

    “Seven equations killing”

    Select 2244 groups of 77 equations, where each of the groups corresponds to a 7×77\times 7 minor. There are (76)=7\tbinom{7}{6}=7 6×66\times 6 minors and the deleted one row and column containing as many length unknowns xix_{i} as possible. We use each group of equations together with the inequalities corresponding to the unknowns left in the minor as condition set and solve with time constraint of 1s.

    Note that, what is left from the second round are those that can not be solved in 10s when allowing all the 2828 equations in. We therefore reduce the number of constraint equations from 2828 to 77 to move forward. We pass the SEILper matrices whose results are either in the “out set” or the “left set” to the fourth round.

  4. (4)

    “Non-Gröbner killing”

    There are not many candidates left up to now. We find in the practice that the function GroebnerBasis in Mathematica either works quite quickly or consumes an unaffordable amount of time. We therefore drop this step and proceed to solve the system (6.1) directly with time constraint of 300s. We save the “out set” to the “pre-result set” and pass the “left set” into next round.

  5. (5)

    “Range Analysis”

    What we expect about the angle unknown yiy_{i} is not an arbitrary integer in the interval (1.8,2)(1.8,2), it should be twice an cosine value of an angle of the form πn,wheren7\displaystyle\frac{\pi}{n},\text{where}~{}n\geq 7. Namely, πarccos(yi/2)7.\displaystyle\frac{\pi}{\arccos(y_{i}/2)}\in\mathbb{Z}_{\geq 7}. We now choose a small number of equations involving angle and (as less as possible) length unknowns, where the upper bound for yiy_{i} is strictly less than 22, e.g. 1.991.99. Then we can run out all the possibilities for the angle unknowns due to the integrality restriction. Alternatively, we might solve for the unknowns explicitly. We use the two methods to analyze the left cases. And for all the polytopes, no new candidates left from the previous step survived.

  6. (6)

    “Pre-result checking”

    The last step is to check whether the signature is indeed (4,1)(4,1) and whether πarccos(yi/2)\displaystyle\frac{\pi}{\arccos~{}(y_{i}/2)} is an integer among the pre-result set.

 
# SEILper R6 #Pre-result R1 R2 R3 R4 R5
#Result #\# left+out #\#out / #\#left #\# left+out #\#out / #\#left
(excluded rows) (excluded rows)
[#xix_{i} / #xix_{i} excluded]
 
325,957 8 47+1=48 40934 (7,8)  [4/3] 47/ 89 15 (8) 1/ 1 0
22963 (4,6) [4/3] 13 (6)
9371 (6,8) [4/3]
8899 (4,8) [4/3]
 
Table 5. The 6-round procedure about the polytope P17P_{17}.

This approach has been Mathematica-programmed on a PARATERA server cluster. And we illustrate the 66-round procedure on the polytope P17P_{17} as an example in Table 5. In the fifth round, the twice Gram matrix 2M2M of the only unsolved case (marked in blue in Table 5) is as below:

2(1(1/2)0(1/2)(1/2)00x1(1/2)1(h1/2)000000(h1/2)1000(1/2)0(1/2)001x2(1/2)(1/2)0(1/2)00x21(1/2)(1/2)0000(1/2)(1/2)1x3x400(1/2)(1/2)(1/2)x310x10000x401).2\begin{pmatrix}1&-(1/2)&0&-(1/2)&-(1/2)&0&0&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{1}}\\ -(1/2)&1&-(h_{1}/2)&0&0&0&0&0\\ 0&-(h_{1}/2)&1&0&0&0&-(1/\sqrt{2})&0\\ -(1/2)&0&0&1&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{2}}&-(1/\sqrt{2})&-(1/2)&0\\ -(1/2)&0&0&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{2}}&1&-(1/\sqrt{2})&-(1/2)&0\\ 0&0&0&-(1/\sqrt{2})&-(1/\sqrt{2})&1&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{3}}&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{4}}\\ 0&0&-(1/\sqrt{2})&-(1/2)&-(1/2)&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{3}}&1&0\\ {\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{1}}&0&0&0&0&{\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}x_{4}}&0&1\\ \end{pmatrix}_{.}

We use Mi,jM_{i,j} to denote the minor of the Gram matrix 2M2M after excluding the ii- and jj- rows and columns. The minors M7,8M_{7,8} and M1,5M_{1,5} contain the only angle unknown h1h_{1} and one length variable x2x_{2}. The determinants of them are:

2+5b3x222h1+2x2h12x2h12+2x22h12=0-2+5b-3x_{2}^{2}-\sqrt{2}h_{1}+\sqrt{2}x_{2}h_{1}-2x_{2}h_{1}^{2}+2x_{2}^{2}h_{1}^{2}=0,

4+10x26x22+h123x2h12+2x22h12=0-4+10x_{2}-6x_{2}^{2}+h_{1}^{2}-3x_{2}h_{1}^{2}+2x_{2}^{2}h_{1}^{2}=0, respectively.

The graph for these equations are as shown in Figure 8, where x2<1x_{2}<-1 and 1.8<h1<21.8<h_{1}<2.

We have two methods to make the claim that no real solutions can be obtained. On one hand, the only solution for the constraints mentioned above is h11.81129,x21.28078h_{1}\approx 1.81129,~{}x_{2}\approx-1.28078, which means that is no qualified solution for h1h_{1}, i.e., the solution is not of the form 2cosπn2\cos\frac{\pi}{n}. On the other hand, we find out that region bounds for h1h_{1} and x2x_{2} under the restriction of

{2+5x23x222h1+2x2h12x2h12+2x22h12=0x2<11.8<h1<2\left\{\begin{array}[]{l}-2+5x_{2}-3x_{2}^{2}-\sqrt{2}h_{1}+\sqrt{2}x_{2}h_{1}-2x_{2}h_{1}^{2}+2x_{2}^{2}h_{1}^{2}=0\\ x_{2}<-1\\ 1.8<h_{1}<2\\ \end{array}\right.

are 1.8<h1<1.973741.8<h_{1}<1.97374, 1.3062x2<1-1.3062\leq x_{2}<-1. That means h1{2cosπn,n=7,8,9,,20}h_{1}\in\{2\cos\frac{\pi}{n},n=7,8,9,...,20\}. We can plug in the value of h1h_{1} into some other determinants containing h1h_{1} and finally find that the solution set is empty.

Refer to caption
Figure 8. Tackling with the solved case of P17P_{17} in the fifth round.

After conducting all of these procedures in Mathematica, we find that only fourteen of all simple 44-polytopes with 88 facets admit compact hyperbolic structure. Besides, we can glue the 33-prism to seven of them. The results are reported in Table 6. The polytopes with labels in red are the “basis” polytopes, and the ones on last line can be obtained by gluing prism ends to those of the second line from the bottom. The Coxeter diagrams and length information are shown in the end of this paper (pages 22–55).

 
dkd_{k} 6 5 4 3
polytope 1 2 3 4 6 7 8 1313 1616 1717 3434 1818 2121 2626
# (selected) SEILper potential 8 12 18 1 1 11 4 4 12 48 12 75 1 4
# gram (of basis vectors) 8 12 18 1 1 5 1 3 4 8 12 4 1 2
# gram after suitably gluing 130 49 115 2 1 15 2 N N N N N N N
33-prisms to the orthoganal ends
 
Table 6. Results of the compact hyperbolic Coxeter 44-polytopes with 8 facets. The value of polytope labeled by 13,16,17,34,18,21,13,16,17,34,18,21, or 2626 on the last line is “N”, which means the l4_basisl_{4}\_basis set of P13P_{13}/P16P_{16}/P17P_{17}/ P34P_{34}/P18P_{18}/P21P_{21}/P26P_{26} is empty and we are not be able to glue them with prism ends.

7. Validation and Results

1. “Basis Approach” vs. “Direct approach”.

We calculate SEILper potential matrices without using l4_basisl_{4}\_basis-conditions for those polytopes having 33-simplex facets. The numbers of Gram matrices corresponding to all of the possible compact hyperbolic polytopes and the results after the Mathematica round are reported in Table 7. They are the same as the previous work accomplished via “basis approach”.

 
grp 6 5
 
polytopes 1 2 3 4 6 7 8
#SEILper 130 49 115 571 26 8,579 5,258
#Gram 130 49 115 2 1 15 2
 
Table 7. Results obtained by direct approach.

2. The compact hyperbolic 44-cubes are in the family of compact hyperbolic Coxeter 44-polytope with 8 facets. We obtain the same results of exactly 1212 compact hyperbolic 44-cubes obtained by Jacquemet and Tschantz in [JT18] 333It seems that there is a small typo in Table 55 of [JT18], where the lengths for Σ22\Sigma_{2}^{2} and Σ23\Sigma_{2}^{3} should be swapped. as shown in Figure 33.

3. Flikson and Turmarkin constructed 8 compact hyperbolic Coxeter polytopes with 8 facets in [FT14] as follows, which are exactly the eight bases of the polytope P1P_{1} shown in red in Figure 1017.

Refer to caption
Figure 9. Known cases from Flikson and Turmarkin

4. A. Burcroff obtained independently and confirmed the same result in [Bur22] after our mutual check. The correspondence of notions of the polytopes, which admit a hyperbolic structure, between our list and Burcroff’s are presented in Table 8.

 
MZ 1 2 3 4 6 7 8 13 16 17 18 21 26 34
A. Burcroff G1G_{1} G3G_{3} G2G_{2} G7G_{7} G8G_{8} G9G_{9} G6G_{6} G5G_{5} G13G_{13} G11G_{11} G12G_{12} G10G_{10} G14G_{14} G4G_{4}
 
Table 8. Notion correspondence between our list and the list in [Bur22].

1. Coxeter diagrams for P1P_{1}

Refer to caption
Figure 10. P1P_{1}(1/8)
Refer to caption
Figure 11. P1P_{1}(2/8)
Refer to caption
Figure 12. P1P_{1}(3/8)
Refer to caption
Figure 13. P1P_{1}(4/8)
Refer to caption
Figure 14. P1P_{1}(5/8)
Refer to caption
Figure 15. P1P_{1}(6/8)
Refer to caption
Figure 16. P1P_{1}(7/8)
Refer to caption
Figure 17. P1P_{1}(8/8)
a b c
d e f
P1,1\displaystyle P_{1,1} 125+35+43+5\displaystyle\frac{1}{2}\sqrt{5+3\sqrt{5}+4\sqrt{3+\sqrt{5}}} 114(11+62+5(942))\displaystyle\sqrt{\frac{1}{14}(11+6\sqrt{2}+\sqrt{5(9-4\sqrt{2})})} 17(10+410+253+8010)\displaystyle\sqrt{\frac{1}{7}(10+4\sqrt{10}+\sqrt{253+80\sqrt{10}})}
17(5+42)(2+5)\displaystyle\sqrt{\frac{1}{7}(5+4\sqrt{2})(2+\sqrt{5})} 1212(5+35+43+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(5+3\sqrt{5}+4\sqrt{3+\sqrt{5}})} 129+42+5\displaystyle\frac{1}{2}\sqrt{9+4\sqrt{2}+\sqrt{5}}
P1,19\displaystyle P_{1,19} 6162+5562\displaystyle\sqrt{\frac{61}{62}+\frac{5\sqrt{5}}{62}} 7338+25538\displaystyle\sqrt{\frac{73}{38}+\frac{25\sqrt{5}}{38}} 2119(8+35)\displaystyle 2\sqrt{\frac{1}{19}(8+3\sqrt{5})}
31589(63+265)\displaystyle 3\sqrt{\frac{1}{589}(63+26\sqrt{5})} 127+25\displaystyle\frac{1}{2}\sqrt{7+2\sqrt{5}} 7431+33531\displaystyle\sqrt{\frac{74}{31}+\frac{33\sqrt{5}}{31}}
P1,28\displaystyle P_{1,28} 2011+6511\displaystyle\sqrt{\frac{20}{11}+\frac{6\sqrt{5}}{11}} 2011+6511\displaystyle\sqrt{\frac{20}{11}+\frac{6\sqrt{5}}{11}} 1611+7511\displaystyle\sqrt{\frac{16}{11}+\frac{7\sqrt{5}}{11}}
311(3+25)\displaystyle\frac{3}{11}(3+2\sqrt{5}) 125+5\displaystyle\frac{1}{2}\sqrt{5+\sqrt{5}} 1611+7511\displaystyle\sqrt{\frac{16}{11}+\frac{7\sqrt{5}}{11}}
P1,54\displaystyle P_{1,54} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5})
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5})
P1,61\displaystyle P_{1,61} 2311+8511\displaystyle\sqrt{\frac{23}{11}+\frac{8\sqrt{5}}{11}} 2311+8511\displaystyle\sqrt{\frac{23}{11}+\frac{8\sqrt{5}}{11}} 2311+8511\displaystyle\sqrt{\frac{23}{11}+\frac{8\sqrt{5}}{11}}
111(28+155)\displaystyle\frac{1}{11}(28+15\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 2311+8511\displaystyle\sqrt{\frac{23}{11}+\frac{8\sqrt{5}}{11}}
P1,71\displaystyle P_{1,71} 1722+13225\displaystyle\sqrt{\frac{17}{22}+\frac{13}{22\sqrt{5}}} 4211+17511\displaystyle\sqrt{\frac{42}{11}+\frac{17\sqrt{5}}{11}} 6522+25522\displaystyle\sqrt{\frac{65}{22}+\frac{25\sqrt{5}}{22}}
1311+25\displaystyle\sqrt{\frac{13}{11}+\frac{2}{\sqrt{5}}} 198+758\displaystyle\sqrt{\frac{19}{8}+\frac{7\sqrt{5}}{8}} 255(25+95)\displaystyle\sqrt{\frac{2}{55}(25+9\sqrt{5})}
P1,83\displaystyle P_{1,83} 13(1+107210)\displaystyle\sqrt{\frac{1}{3}(1+\sqrt{10}-\sqrt{7-2\sqrt{10}})} 12(2+5+7+35)\displaystyle\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{7+3\sqrt{5}})} 111(24+62+55+410)\displaystyle\sqrt{\frac{1}{11}(24+6\sqrt{2}+5\sqrt{5}+4\sqrt{10})}
(139+4109)1/4\displaystyle(\frac{13}{9}+\frac{4\sqrt{10}}{9})^{1/4} 27+625410\displaystyle\frac{2}{\sqrt{7+6\sqrt{2}-\sqrt{5}-4\sqrt{10}}} 133(1+282+45(2+2))\displaystyle\sqrt{\frac{1}{33}(1+28\sqrt{2}+4\sqrt{5}(2+\sqrt{2}))}
P1,95\displaystyle P_{1,95} 14(5+5)\displaystyle\frac{1}{4}(5+\sqrt{5}) 6522+25522\displaystyle\sqrt{\frac{65}{22}+\frac{25\sqrt{5}}{22}} 431341+1705341\displaystyle\sqrt{\frac{431}{341}+\frac{170\sqrt{5}}{341}}
2611+10511\displaystyle\sqrt{\frac{26}{11}+\frac{10\sqrt{5}}{11}} 531(6+5)\displaystyle\sqrt{\frac{5}{31}(6+\sqrt{5})} 5762+25562\displaystyle\sqrt{\frac{57}{62}+\frac{25\sqrt{5}}{62}}

1. Coxeter diagrams for P2P_{2}

Refer to caption
Figure 18. P2P_{2}(1/4)
Refer to caption
Figure 19. P2P_{2}(2/4)
Refer to caption
Figure 20. P2P_{2}(3/4)
Refer to caption
Figure 21. P2P_{2}(4/4)
a b c
d e f
P2,1\displaystyle P_{2,1} 211(7+5)\displaystyle\sqrt{\frac{2}{11}(7+\sqrt{5})} 138(16+65+191728361+4965361)\displaystyle\frac{1}{38}(16+6\sqrt{5}+19\sqrt{\frac{1728}{361}+\frac{496\sqrt{5}}{361}}) 119(16+65+12(169155))\displaystyle\frac{1}{19}(16+6\sqrt{5}+\sqrt{\frac{1}{2}(169-15\sqrt{5})})
1212(9+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})} 119122(22539+98895+456071390+250754105)\displaystyle\frac{1}{19}\sqrt{\frac{1}{22}(22539+9889\sqrt{5}+4\sqrt{56071390+25075410\sqrt{5}})} 119122(76723+342935+4526827338+2356043465)\displaystyle\frac{1}{19}\sqrt{\frac{1}{22}(76723+34293\sqrt{5}+4\sqrt{526827338+235604346\sqrt{5}})}
P2,13\displaystyle P_{2,13} 1212(9+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})} 12(3+5)\displaystyle\frac{1}{2}(3+\sqrt{5}) 398+1758\displaystyle\sqrt{\frac{39}{8}+\frac{17\sqrt{5}}{8}}
1212(9+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})} 398+1758\displaystyle\sqrt{\frac{39}{8}+\frac{17\sqrt{5}}{8}} 14(11+55)\displaystyle\frac{1}{4}(11+5\sqrt{5})
P2,19\displaystyle P_{2,19} 211(7+5)\displaystyle\sqrt{\frac{2}{11}(7+\sqrt{5})} 14(5+5)\displaystyle\frac{1}{4}(5+\sqrt{5}) 2611+10511\displaystyle\sqrt{\frac{26}{11}+\frac{10\sqrt{5}}{11}}
211(7+5)\displaystyle\sqrt{\frac{2}{11}(7+\sqrt{5})} 2611+10511\displaystyle\sqrt{\frac{26}{11}+\frac{10\sqrt{5}}{11}} 111(35+165)\displaystyle\frac{1}{11}(35+16\sqrt{5})
P2,29\displaystyle P_{2,29} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 1+52\displaystyle 1+\frac{\sqrt{5}}{2} 125(3+5)\displaystyle\frac{1}{2}\sqrt{5(3+\sqrt{5})}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 125(3+5)\displaystyle\frac{1}{2}\sqrt{5(3+\sqrt{5})} 12(7+35)\displaystyle\frac{1}{2}(7+3\sqrt{5})
P2,32\displaystyle P_{2,32} 4338+9538\displaystyle\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}} 18(13+35)\displaystyle\frac{1}{8}(13+3\sqrt{5}) 12538(87+355)\displaystyle\frac{1}{2}\sqrt{\frac{5}{38}(87+35\sqrt{5})}
4338+9538\displaystyle\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}} 12538(87+355)\displaystyle\frac{1}{2}\sqrt{\frac{5}{38}(87+35\sqrt{5})} 138(83+435)\displaystyle\frac{1}{38}(83+43\sqrt{5})
P2,33\displaystyle P_{2,33} 125+5\displaystyle\frac{1}{2}\sqrt{5+\sqrt{5}} 12(3+5)\displaystyle\frac{1}{2}(3+\sqrt{5}) 5+25\displaystyle\sqrt{5+2\sqrt{5}}
125+5\displaystyle\frac{1}{2}\sqrt{5+\sqrt{5}} 5+25\displaystyle\sqrt{5+2\sqrt{5}} 12(7+35)\displaystyle\frac{1}{2}(7+3\sqrt{5})
P2,36\displaystyle P_{2,36} 12(2+5+7+35)\displaystyle\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{7+3\sqrt{5}})} 14(7+35+43+5)\displaystyle\frac{1}{4}(7+3\sqrt{5}+4\sqrt{3+\sqrt{5}}) 1261+432+5(1451+10262)\displaystyle\frac{1}{2}\sqrt{61+43\sqrt{2}+\sqrt{5(1451+1026\sqrt{2})}}
12(2+5+7+35)\displaystyle\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{7+3\sqrt{5}})} 1261+432+275+1910\displaystyle\frac{1}{2}\sqrt{61+43\sqrt{2}+27\sqrt{5}+19\sqrt{10}} 2(2+5)+32(3+5)\displaystyle\sqrt{2}(2+\sqrt{5})+\frac{3}{2}(3+\sqrt{5})
P2,39\displaystyle P_{2,39} 219(9+5)\displaystyle\sqrt{\frac{2}{19}(9+\sqrt{5})} 1221063+4195+829530+132045\displaystyle\frac{1}{22}\sqrt{1063+419\sqrt{5}+8\sqrt{29530+13204\sqrt{5}}} 122(26+105+11340121+1245121)\displaystyle\frac{1}{22}(26+10\sqrt{5}+11\sqrt{\frac{340}{121}+\frac{124\sqrt{5}}{121}})
125+5\displaystyle\frac{1}{2}\sqrt{5+\sqrt{5}} 111119(5426+17075+8356050+1591645)\displaystyle\frac{1}{11}\sqrt{\frac{1}{19}(5426+1707\sqrt{5}+8\sqrt{356050+159164\sqrt{5}})} 11462820115452445229995\displaystyle\frac{11}{\sqrt{4628-2011\sqrt{5}-4\sqrt{52445-22999\sqrt{5}}}}
P2,41\displaystyle P_{2,41} 4338+9538\displaystyle\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}} 1423+95+2202+905\displaystyle\frac{1}{4}\sqrt{23+9\sqrt{5}+2\sqrt{202+90\sqrt{5}}} 14(1+5+28+35)\displaystyle\frac{1}{4}(1+\sqrt{5}+2\sqrt{8+3\sqrt{5}})
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12119(143+375+22442+10825)\displaystyle\frac{1}{2}\sqrt{\frac{1}{19}(143+37\sqrt{5}+2\sqrt{2442+1082\sqrt{5}})} 138(319+1415+243618+195065)\displaystyle\sqrt{\frac{1}{38}(319+141\sqrt{5}+2\sqrt{43618+19506\sqrt{5}})}
P2,43\displaystyle P_{2,43} 219(9+5)\displaystyle\sqrt{\frac{2}{19}(9+\sqrt{5})} 2+52\displaystyle 2+\frac{\sqrt{5}}{2} 7819+34519\displaystyle\sqrt{\frac{78}{19}+\frac{34\sqrt{5}}{19}}
219(9+5)\displaystyle\sqrt{\frac{2}{19}(9+\sqrt{5})} 7819+34519\displaystyle\sqrt{\frac{78}{19}+\frac{34\sqrt{5}}{19}} 119(47+205)\displaystyle\frac{1}{19}(47+20\sqrt{5})
P2,44\displaystyle P_{2,44} 1.9923\displaystyle 1.9923 4.04306\displaystyle 4.04306 4.7181\displaystyle 4.7181
1.08754\displaystyle 1.08754 4.60491\displaystyle 4.60491 8.13984\displaystyle 8.13984
P2,46\displaystyle P_{2,46} 1.9923\displaystyle 1.9923 3.71598\displaystyle 3.71598 5.56213\displaystyle 5.56213
1.345\displaystyle 1.345 4.25068\displaystyle 4.25068 9.72857\displaystyle 9.72857
Remark 7.1.

.

For P2,44P_{2,44}, the acute solutions are:

f=1111922104+120822+98855+540010+486889872+594142612+388583385+2657085910f=\displaystyle\frac{1}{11\sqrt{19}}\sqrt{22104+12082\sqrt{2}+9885\sqrt{5}+5400\sqrt{10}+4\sqrt{86889872+59414261\sqrt{2}+38858338\sqrt{5}+26570859\sqrt{10}}}

e=131f2+145f2e=\sqrt{1-31f^{2}+14\sqrt{5}f^{2}}

b=1248(42492385310+(5666+67922538529510)f2)b=\displaystyle\frac{1}{248}(-42-49\sqrt{2}-38\sqrt{5}-3\sqrt{10}+(5666+679\sqrt{2}-2538\sqrt{5}-295\sqrt{10})f^{2})

a=11264e(584+1372+3505+16310+(50886+132272227925590310)f2)a=\displaystyle\frac{1}{1264}e(584+137\sqrt{2}+350\sqrt{5}+163\sqrt{10}+(50886+13227\sqrt{2}-22792\sqrt{5}-5903\sqrt{10})f^{2})

d=11896ef(30344+2184721283051067910+19(2034141603012+909645+7169310)f2)d=\displaystyle\frac{1}{1896}ef(30344+21847\sqrt{2}-12830\sqrt{5}-10679\sqrt{10}+19(-203414-160301\sqrt{2}+90964\sqrt{5}+71693\sqrt{10})f^{2})

c=1117552ef(171998011909612+8443205+49539510+(242831436+15041920721086052965c=\displaystyle\frac{1}{117552}ef(-1719980-1190961\sqrt{2}+844320\sqrt{5}+495395\sqrt{10}+(242831436+150419207\sqrt{2}-108605296\sqrt{5}

6726418510)f2)-67264185\sqrt{10})f^{2})

For P2,46P_{2,46}, the acute solutions are:

f=11123358+18572+14985+83110+22(3804500+26014752+17014265+116341310f=\displaystyle\frac{1}{11\sqrt{2}}\sqrt{3358+1857\sqrt{2}+1498\sqrt{5}+831\sqrt{10}+2\sqrt{2(3804500+2601475\sqrt{2}+1701426\sqrt{5}+1163413\sqrt{10}}}

e=111f2+55f2e=\displaystyle\sqrt{1-11f^{2}+5\sqrt{5}f^{2}}

d=1712ef(11881005+5472+85103f2(51628+230745395272+1768710))d=\displaystyle\frac{1}{712}ef(-1188-100\sqrt{5}+547\sqrt{2}+85\sqrt{10}-3f^{2}(-51628+23074\sqrt{5}-39527\sqrt{2}+17687\sqrt{10}))

c=122072ef((514766534027512+23035035+152076110)f2+(10517159662+29055+93510))c=\displaystyle\frac{1}{22072}ef((-5147665-3402751\sqrt{2}+2303503\sqrt{5}+1520761\sqrt{10})f^{2}+(10517-15966\sqrt{2}+2905\sqrt{5}+935\sqrt{10}))

b=1124(2236214561069f23132f2+355f2+13910f2)b=\displaystyle\frac{1}{124}(-22-36\sqrt{2}-14\sqrt{5}-6\sqrt{10}-69f^{2}-313\sqrt{2}f^{2}+35\sqrt{5}f^{2}+139\sqrt{10}f^{2})

a=1356e(171+3132+952110+(1037690162+46445+402710)f2)a=\displaystyle\frac{1}{356}e(171+313\sqrt{2}+9\sqrt{5}-21\sqrt{10}+(-10376-9016\sqrt{2}+4644\sqrt{5}+4027\sqrt{10})f^{2})

3. Coxeter diagrams for P3P_{3}

Refer to caption
Figure 22. P3P_{3}(1/8)
Refer to caption
Figure 23. P3P_{3}(2/8)
Refer to caption
Figure 24. P3P_{3}(3/8)
Refer to caption
Figure 25. P3P_{3}(4/8)
Refer to caption
Figure 26. P3P_{3}(5/8)
Refer to caption
Figure 27. P3P_{3}(6/8)
Refer to caption
Figure 28. P3P_{3}(7/8)
Refer to caption
Figure 29. P3P_{3}(8/8)
aa bb cc
dd ee ff
P3,1P_{3,1} 311(3+25)\frac{3}{11}(3+2\sqrt{5}) 211265+1185\frac{2}{11}\sqrt{265+118\sqrt{5}} 125+5\frac{1}{2}\sqrt{5+\sqrt{5}}
125+5\frac{1}{2}\sqrt{5+\sqrt{5}} 211265+1185\frac{2}{11}\sqrt{265+118\sqrt{5}} 711(3+25)\frac{7}{11}(3+2\sqrt{5})
P3,4P_{3,4} 111(17+45)\frac{1}{11}(17+4\sqrt{5}) 172082299+768852299\sqrt{\frac{17208}{2299}+\frac{7688\sqrt{5}}{2299}} 219(9+5)\sqrt{\frac{2}{19}(9+\sqrt{5})}
219(9+5)\sqrt{\frac{2}{19}(9+\sqrt{5})} 172082299+768852299\sqrt{\frac{17208}{2299}+\frac{7688\sqrt{5}}{2299}} 1209(257+2085)\frac{1}{209}(257+208\sqrt{5})
P3,5P_{3,5} 119(17+45)\frac{1}{19}(17+4\sqrt{5}) 209363971+935253971\sqrt{\frac{20936}{3971}+\frac{9352\sqrt{5}}{3971}} 211(7+5)\sqrt{\frac{2}{11}(7+\sqrt{5})}
211(7+5)\sqrt{\frac{2}{11}(7+\sqrt{5})} 209363971+935253971\sqrt{\frac{20936}{3971}+\frac{9352\sqrt{5}}{3971}} 1209(257+2085)\frac{1}{209}(257+208\sqrt{5})
P3,15P_{3,15} 3.546053.54605 5.885365.88536 1.99231.9923
1.3451.345 5.885365.88536 6.619236.61923
P3,19P_{3,19} 111(8+132+95+510)\frac{1}{11}(8+13\sqrt{2}+9\sqrt{5}+5\sqrt{10}) 1112074+14622+9505+63010\frac{1}{11}\sqrt{2074+1462\sqrt{2}+950\sqrt{5}+630\sqrt{10}} 12(2+5+7+35)\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{7+3\sqrt{5}})}
12(2+5+7+35)\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{7+3\sqrt{5}})} 1112074+14622+9505+63010\frac{1}{11}\sqrt{2074+1462\sqrt{2}+950\sqrt{5}+630\sqrt{10}} 111(37+122+25(5+42))\frac{1}{11}(37+12\sqrt{2}+2\sqrt{5}(5+4\sqrt{2}))
P3,22P_{3,22} 12(3+5)\frac{1}{2}(3+\sqrt{5}) 11511+51511\sqrt{\frac{115}{11}+\frac{51\sqrt{5}}{11}} 1011+3511\sqrt{\frac{10}{11}+\frac{3\sqrt{5}}{11}}
1011+3511\sqrt{\frac{10}{11}+\frac{3\sqrt{5}}{11}} 11511+51511\sqrt{\frac{115}{11}+\frac{51\sqrt{5}}{11}} 711(3+25)\frac{7}{11}(3+2\sqrt{5})
P3,32P_{3,32} 4.414274.41427 6.422826.42282 1.825591.82559
1.232451.23245 6.422826.42282 6.619236.61923
P3,48P_{3,48} 1+5+7+351+\sqrt{5}+\sqrt{7+3\sqrt{5}} 111(222+1612+1045+6710)\sqrt{\frac{1}{11}(222+161\sqrt{2}+104\sqrt{5}+67\sqrt{10})} 122(19+95+2147+655)\sqrt{\frac{1}{22}(19+9\sqrt{5}+2\sqrt{147+65\sqrt{5}})}
122(19+95+2147+655)\sqrt{\frac{1}{22}(19+9\sqrt{5}+2\sqrt{147+65\sqrt{5}})} 111(222+1612+1045+6710)\sqrt{\frac{1}{11}(222+161\sqrt{2}+104\sqrt{5}+67\sqrt{10})} 111(37+122+25(5+42))\frac{1}{11}(37+12\sqrt{2}+2\sqrt{5}(5+4\sqrt{2}))
P3,58P_{3,58} 176(25+75+8108+315)\frac{1}{76}(25+7\sqrt{5}+8\sqrt{108+31\sqrt{5}}) 119122(30747+136895+829359122+131297625)\frac{1}{19}\sqrt{\frac{1}{22}(30747+13689\sqrt{5}+8\sqrt{29359122+13129762\sqrt{5}})} 211(7+5)\sqrt{\frac{2}{11}(7+\sqrt{5})}
1212(9+5)\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})} 138(32+125+191592361+7115361)\frac{1}{38}(32+12\sqrt{5}+19\sqrt{\frac{1592}{361}+\frac{711\sqrt{5}}{361}}) 119122(26791+85295+811214278+50150825)\frac{1}{19}\sqrt{\frac{1}{22}(26791+8529\sqrt{5}+8\sqrt{11214278+5015082\sqrt{5}})}
P3,70P_{3,70} 5.676755.67675 7.838417.83841 1.825591.82559
1.144121.14412 6.048756.04875 6.242796.24279
P3,82P_{3,82} 111197+695+42(845+3585)\frac{1}{11}\sqrt{197+69\sqrt{5}+4\sqrt{2(845+358\sqrt{5})}} 111119(7186+32035+46387730+28566765\frac{1}{11}\sqrt{\frac{1}{19}(7186+3203\sqrt{5}+4\sqrt{6387730+2856676\sqrt{5}}} 219(9+5)\sqrt{\frac{2}{19}(9+\sqrt{5})}
125+5\frac{1}{2}\sqrt{5+\sqrt{5}} 122(26+105+111385121+6195121)\frac{1}{22}(26+10\sqrt{5}+11\sqrt{\frac{1385}{121}+\frac{619\sqrt{5}}{121})} 111119(11128+39835+82439905+10911495)\frac{1}{11}\sqrt{\frac{1}{19}(11128+3983\sqrt{5}+8\sqrt{2439905+1091149\sqrt{5}})}
P3,84P_{3,84} 3.848643.84864 4.979464.97946 1.087541.08754
1.99231.9923 6.475186.47518 5.625685.62568
P3,86P_{3,86} 34+54+52+5\frac{3}{4}+\frac{\sqrt{5}}{4}+\sqrt{\frac{5}{2}+\sqrt{5}} 1+52+52+51+\frac{\sqrt{5}}{2}+\sqrt{\frac{5}{2}+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
1235\frac{1}{\sqrt{2-\frac{3}{\sqrt{5}}}} 122(173+755+43625+16215)\sqrt{\frac{1}{22}(173+75\sqrt{5}+4\sqrt{3625+1621\sqrt{5}})} 122(123+495+41385+6195)\sqrt{\frac{1}{22}(123+49\sqrt{5}+4\sqrt{1385+619\sqrt{5}})}
P3,98P_{3,98} 319(8+35)\frac{3}{19}(8+3\sqrt{5}) 1192442+10825\frac{1}{19}\sqrt{2442+1082\sqrt{5}} 1212(9+5)\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})}
1212(9+5)\frac{1}{2}\sqrt{\frac{1}{2}(9+\sqrt{5})} 1192442+10825\frac{1}{19}\sqrt{2442+1082\sqrt{5}} 119(20+175)\frac{1}{19}(20+17\sqrt{5})
P3,104P_{3,104} 2+52+\sqrt{5} 3+53+\sqrt{5} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 3+53+\sqrt{5} 2+52+\sqrt{5}
P3,110P_{3,110} 12(1+5)\frac{1}{2}(1+\sqrt{5}) 7+35\sqrt{7+3\sqrt{5}} 12(1+5)\frac{1}{2}(1+\sqrt{5})
12(1+5)\frac{1}{2}(1+\sqrt{5}) 7+35\sqrt{7+3\sqrt{5}} 2+52+\sqrt{5}
P3,113P_{3,113} 1232(3+5)+8+35\frac{1}{2}\sqrt{\frac{3}{2}(3+\sqrt{5})+\sqrt{8+3\sqrt{5}}} 138(94+405+2(8331+37255))\sqrt{\frac{1}{38}(94+40\sqrt{5}+\sqrt{2(8331+3725\sqrt{5})})} 4338+9538\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}}
12(1+5)\frac{1}{2}(1+\sqrt{5}) 12(2+5+8+35)\frac{1}{2}(2+\sqrt{5}+\sqrt{8+3\sqrt{5})} 119(8+35)(9+28+35)\sqrt{\frac{1}{19}(8+3\sqrt{5})(9+2\sqrt{8+3\sqrt{5})}}
P3,115P_{3,115} 14(5+5)\frac{1}{4}(5+\sqrt{5}) 10919+48519\sqrt{\frac{109}{19}+\frac{48\sqrt{5}}{19}} 4338+9538\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}}
4338+9538\sqrt{\frac{43}{38}+\frac{9\sqrt{5}}{38}} 10919+48519\sqrt{\frac{109}{19}+\frac{48\sqrt{5}}{19}} 119(20+175)\frac{1}{19}(20+17\sqrt{5})
Remark 7.2.

.

For P3,15P_{3,15}, the acute solutions are:

f=111799+4062+3645+16810+22(211980+1450152+948345+6481710f=\frac{1}{11}\sqrt{799+406\sqrt{2}+364\sqrt{5}+168\sqrt{10}+2\sqrt{2(211980+145015\sqrt{2}+94834\sqrt{5}+64817\sqrt{10}}}

e=1215+f2+5f2e=\frac{1}{2}\sqrt{-1-\sqrt{5}+f^{2}+\sqrt{5}f^{2}}

d=1496e(1248+1612+2405+6710+(140+81235(36+72))f2)d={\displaystyle\frac{1}{496}}e(1248+161\sqrt{2}+240\sqrt{5}+67\sqrt{10}+(140+81\sqrt{2}-3\sqrt{5}(36+7\sqrt{2}))f^{2})

c=11488ef(4396+16612+4365+51110+(89613272+3045+59510)f2)c={\displaystyle\frac{1}{1488}}ef(4396+1661\sqrt{2}+436\sqrt{5}+511\sqrt{10}+(-896-1327\sqrt{2}+304\sqrt{5}+595\sqrt{10})f^{2})

b=1186ef(248+21123159410+(10004432+4435+20010)f2)b={\displaystyle\frac{1}{186}}ef(248+211\sqrt{2}-31\sqrt{5}-94\sqrt{10}+(-1000-443\sqrt{2}+443\sqrt{5}+200\sqrt{10})f^{2})

a=1248(259+13275310+(37+692+53510)f2)a={\displaystyle\frac{1}{248}}(-259+13\sqrt{2}-7\sqrt{5}-3\sqrt{10}+(37+69\sqrt{2}+\sqrt{5}-35\sqrt{10})f^{2})

For P3,32P_{3,32}, the acute solutions are:

f=111799+4062+3645+16810+22(211980+1450152+948345+6481710f=\frac{1}{11}\sqrt{799+406\sqrt{2}+364\sqrt{5}+168\sqrt{10}+2\sqrt{2(211980+145015\sqrt{2}+94834\sqrt{5}+64817\sqrt{10}}}

e=122135+f2+35f2e={\displaystyle\frac{1}{2\sqrt{2}}}\sqrt{-1-3\sqrt{5}+f^{2}+3\sqrt{5}f^{2}}

d=12728e(4968+7312+14645+31510+11(2028532(7+5))f2)d={\displaystyle\frac{1}{2728}}e(4968+731\sqrt{2}+1464\sqrt{5}+315\sqrt{10}+11(20-28\sqrt{5}-3\sqrt{2}(-7+\sqrt{5}))f^{2})

c=18184ef(16476+70912+37245+261910+11(2162872+565+12910)f2)c={\displaystyle\frac{1}{8184}}ef(16476+7091\sqrt{2}+3724\sqrt{5}+2619\sqrt{10}+11(-216-287\sqrt{2}+56\sqrt{5}+129\sqrt{10})f^{2})

b=1186ef(248+21123159410+(10004432+4435+20010)f2)b={\displaystyle\frac{1}{186}}ef(248+211\sqrt{2}-31\sqrt{5}-94\sqrt{10}+(-1000-443\sqrt{2}+443\sqrt{5}+200\sqrt{10})f^{2})

a=1496(517+5321951710+(127+329215515710)f2)a={\displaystyle\frac{1}{496}}(-517+53\sqrt{2}-19\sqrt{5}-17\sqrt{10}+(127+329\sqrt{2}-15\sqrt{5}-157\sqrt{10})f^{2})

For P3,70P_{3,70}, the acute solutions are:

f=122135+642+575+2810+42743+18842+12315+83810f={\displaystyle\frac{1}{\sqrt{22}}}\sqrt{135+64\sqrt{2}+57\sqrt{5}+28\sqrt{10}+4\sqrt{2743+1884\sqrt{2}+1231\sqrt{5}+838\sqrt{10}}}

e=122135+f2+35f2e={\displaystyle\frac{1}{2\sqrt{2}}}\sqrt{-1-3\sqrt{5}+f^{2}+3\sqrt{5}f^{2}}

d=123684e(36906+28812+118865+84710+(4504+380824044587410)f2d={\displaystyle\frac{1}{23684}}e(36906+2881\sqrt{2}+11886\sqrt{5}+847\sqrt{10}+(4504+3808\sqrt{2}-4044\sqrt{5}-874\sqrt{10})f^{2}

c=12913132((2545015+8775122+23157485+119498210)ef+(2442218+1364747212701985c={\displaystyle\frac{1}{2913132}}((2545015+877512\sqrt{2}+2315748\sqrt{5}+1194982\sqrt{10})ef+(2442218+1364747\sqrt{2}-1270198\sqrt{5}-

58672110)ef3)586721\sqrt{10})ef^{3})

b=13813((6454+409927435186410)ef+12(861975292+36015+348310)ef3)b={\displaystyle\frac{1}{3813}}((6454+4099\sqrt{2}-743\sqrt{5}-1864\sqrt{10})ef+\frac{1}{2}(-8619-7529\sqrt{2}+3601\sqrt{5}+3483\sqrt{10})ef^{3})

a=1248(97152735+1310+(21532+195+1710)f2)a={\displaystyle\frac{1}{248}}(-97-15\sqrt{2}-73\sqrt{5}+13\sqrt{10}+(21-53\sqrt{2}+19\sqrt{5}+17\sqrt{10})f^{2})

For P3,84P_{3,84}, the acute solutions are:

f=1111911104+57022+51335+227610+84842088+33111692+21655545+148068710f={\displaystyle\frac{1}{11\sqrt{19}}}\sqrt{11104+5702\sqrt{2}+5133\sqrt{5}+2276\sqrt{10}+8\sqrt{4842088+3311169\sqrt{2}+2165554\sqrt{5}+1480687\sqrt{10}}}

e=12125+f2+25f2e={\displaystyle\frac{1}{2}}\sqrt{-1-2\sqrt{5}+f^{2}+2\sqrt{5}f^{2}}

d=124216e(17104+58932360252059710+(115066245172+503845+1246910)f2)d={\displaystyle\frac{1}{24216}}e(-17104+5893\sqrt{2}-3602\sqrt{5}-20597\sqrt{10}+(-115066-24517\sqrt{2}+50384\sqrt{5}+12469\sqrt{10})f^{2})

c=11937062056ef(9466659574+914636627239487331685161812797110+(23059580156239478022792+{\displaystyle\frac{1}{1937062056}}ef(9466659574+914636627\sqrt{2}-3948733168\sqrt{5}-1618127971\sqrt{10}+(-23059580156-23947802279\sqrt{2}+

101587489065+1085095871910)f2)10158748906\sqrt{5}+10850958719\sqrt{10})f^{2})

b=19918884ef(3136033016170472+137956745+309473110+(61953682+76754869255(5508882+b={\displaystyle\frac{1}{9918884}}ef(-31360330-1617047\sqrt{2}+13795674\sqrt{5}+3094731\sqrt{10}+(61953682+76754869\sqrt{2}-5\sqrt{5}(5508882+

68993452))f2)6899345\sqrt{2}))f^{2})

a=1248(57+177226552+375+(6791172+8952+2955)f2)a={\displaystyle\frac{1}{248}}(-57+\frac{177}{\sqrt{2}}-265\sqrt{\frac{5}{2}}+37\sqrt{5}+(-679-\frac{117}{\sqrt{2}}+89\sqrt{\frac{5}{2}}+295\sqrt{5})f^{2})

Refer to caption
Figure 30. P4,P6,P8,P13,P16P_{4},P_{6},P_{8},P_{13},P_{16}
a b c d e
P4,1\displaystyle P_{4,1} 123(3+5)\displaystyle\frac{1}{2}\sqrt{3(3+\sqrt{5})} 319(8+35)\displaystyle\sqrt{\frac{3}{19}(8+3\sqrt{5})} 127+35\displaystyle\frac{1}{2}\sqrt{7+3\sqrt{5}} 219(8+35)\displaystyle\sqrt{\frac{2}{19}(8+3\sqrt{5})} 519(8+35)\displaystyle\sqrt{\frac{5}{19}(8+3\sqrt{5})}
P4,2\displaystyle P_{4,2} 1457+235+430(9+45)\displaystyle\frac{1}{4}\sqrt{57+23\sqrt{5}+4\sqrt{30(9+4\sqrt{5})}} 2419+9519\displaystyle\sqrt{\frac{24}{19}+\frac{9\sqrt{5}}{19}} 14(2(2+5)+21+95)\displaystyle\frac{1}{4}(2(2+\sqrt{5})+\sqrt{21+9\sqrt{5}}) 1619+6519\displaystyle\sqrt{\frac{16}{19}+\frac{6\sqrt{5}}{19}} 12119(249+915+606+3230)\displaystyle\frac{1}{2}\sqrt{\frac{1}{19}(249+91\sqrt{5}+60\sqrt{6}+32\sqrt{30})}
P6,1\displaystyle P_{6,1} 519(8+35)\displaystyle\sqrt{\frac{5}{19}(8+3\sqrt{5})} 519(8+35)\displaystyle\sqrt{\frac{5}{19}(8+3\sqrt{5})} 538(9+5)\displaystyle\sqrt{\frac{5}{38}(9+\sqrt{5})} 538(9+5)\displaystyle\sqrt{\frac{5}{38}(9+\sqrt{5})} 2519(9+5)9\displaystyle\frac{25}{19}(9+\sqrt{5})-9
P8,1\displaystyle P_{8,1} 125+5\displaystyle\frac{1}{2}\sqrt{5+\sqrt{5}} 12(3+5)\displaystyle\frac{1}{2}(3+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 5+25\displaystyle\sqrt{5+2\sqrt{5}}
P8,2\displaystyle P_{8,2} 12(1+5+25)\displaystyle\frac{1}{2}(1+\sqrt{5+2\sqrt{5}}) 7+35+85+385\displaystyle\sqrt{7+3\sqrt{5}+\sqrt{85+38\sqrt{5}}} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 1243+195+2890+3985\displaystyle\frac{1}{2}\sqrt{43+19\sqrt{5}+2\sqrt{890+398\sqrt{5}}}
P13,1\displaystyle P_{13,1} 123+2\displaystyle\frac{1}{2}\sqrt{3+\sqrt{2}} 123+2\displaystyle\frac{1}{2}\sqrt{3+\sqrt{2}} 12(2+2)\displaystyle\frac{1}{2}(2+\sqrt{2}) 1+2\displaystyle 1+\sqrt{2} 12(2+2)\displaystyle\frac{1}{2}(2+\sqrt{2})
P13,2\displaystyle P_{13,2} 1723+8223\displaystyle\sqrt{\frac{17}{23}+\frac{8\sqrt{2}}{23}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 32+12\displaystyle\frac{3}{2}+\frac{1}{\sqrt{2}} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 1723+8223\displaystyle\sqrt{\frac{17}{23}+\frac{8\sqrt{2}}{23}}
P13,3\displaystyle P_{13,3} 1723+8223\displaystyle\sqrt{\frac{17}{23}+\frac{8\sqrt{2}}{23}} 1723+8223\displaystyle\sqrt{\frac{17}{23}+\frac{8\sqrt{2}}{23}} 1+122\displaystyle 1+\frac{1}{2\sqrt{2}} 1+322\displaystyle 1+\frac{3}{2\sqrt{2}} 1+12\displaystyle 1+\frac{1}{\sqrt{2}}
P16,1\displaystyle P_{16,1} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}}
P16,2\displaystyle P_{16,2} 2+2\displaystyle 2+\sqrt{2} 137+927\displaystyle\sqrt{\frac{13}{7}+\frac{9\sqrt{2}}{7}} 27(3+2)\displaystyle\sqrt{\frac{2}{7}(3+\sqrt{2})} 1+12\displaystyle 1+\frac{1}{\sqrt{2}}
P16,3\displaystyle P_{16,3} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\displaystyle\sqrt{1+\frac{1}{\sqrt{2}}}
P16,4\displaystyle P_{16,4} 137+927\displaystyle\sqrt{\frac{13}{7}+\frac{9\sqrt{2}}{7}} 2+2\displaystyle 2+\sqrt{2} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 27(3+2)\displaystyle\sqrt{\frac{2}{7}(3+\sqrt{2})}
Refer to caption
Figure 31. P7P_{7}
a b c
d e
P7,1\displaystyle P_{7,1} 238+958\displaystyle\sqrt{\frac{23}{8}+\frac{9\sqrt{5}}{8}} 1212(6+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(6+\sqrt{5})} 145(3+5)\displaystyle\frac{1}{4}\sqrt{5(3+\sqrt{5})}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 238+958\displaystyle\sqrt{\frac{23}{8}+\frac{9\sqrt{5}}{8}}
P7,2\displaystyle P_{7,2} 18(3(1+5)+206+865)\displaystyle\frac{1}{8}(3(1+\sqrt{5})+\sqrt{206+86\sqrt{5}}) 1212(6+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(6+\sqrt{5})} 1422+1752+655+2905\displaystyle\frac{1}{4}\sqrt{22+\frac{17\sqrt{5}}{2}+\sqrt{655+290\sqrt{5}}}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 18(5+5+206+865)\displaystyle\frac{1}{8}(5+\sqrt{5}+\sqrt{206+86\sqrt{5}})
P7,3\displaystyle P_{7,3} 18(5+35+206+865)\displaystyle\frac{1}{8}(5+3\sqrt{5}+\sqrt{206+86\sqrt{5}}) 1212(6+5)\displaystyle\frac{1}{2}\sqrt{\frac{1}{2}(6+\sqrt{5})} 1412(39+115+470+1305)\displaystyle\frac{1}{4}\sqrt{\frac{1}{2}(39+11\sqrt{5}+\sqrt{470+130\sqrt{5}})}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 18(5+35+206+865)\displaystyle\frac{1}{8}(5+3\sqrt{5}+\sqrt{206+86\sqrt{5}})
P7,4\displaystyle P_{7,4} 1+2\displaystyle 1+\sqrt{2} 1+122\displaystyle 1+\frac{1}{2\sqrt{2}} 1+12\displaystyle 1+\frac{1}{\sqrt{2}}
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 17(9+42)\displaystyle\sqrt{\frac{1}{7}(9+4\sqrt{2})}
P7,5\displaystyle P_{7,5} 1+12+267+1827\displaystyle 1+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}} 1+122\displaystyle 1+\frac{1}{2\sqrt{2}} 114(7+72+291+632)\displaystyle\frac{1}{14}(7+7\sqrt{2}+2\sqrt{91+63\sqrt{2}})
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 27(6+32+25+32)\displaystyle\sqrt{\frac{2}{7}(6+3\sqrt{2}+2\sqrt{5+3\sqrt{2}})}
P7,6\displaystyle P_{7,6} 1+12+267+1827\displaystyle 1+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}} 1+122\displaystyle 1+\frac{1}{2\sqrt{2}} 12(2+527+3627)\displaystyle\frac{1}{2}(\sqrt{2}+\sqrt{\frac{52}{7}+\frac{36\sqrt{2}}{7}})
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 17(13+82+254+382)\displaystyle\sqrt{\frac{1}{7}(13+8\sqrt{2}+2\sqrt{54+38\sqrt{2}})}
P7,7\displaystyle P_{7,7} 131(29+105)\displaystyle\sqrt{\frac{1}{31}(29+10\sqrt{5})} 124+5\displaystyle\frac{1}{2}\sqrt{4+\sqrt{5}} 131(23+95)\displaystyle\sqrt{\frac{1}{31}(23+9\sqrt{5})}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 231(29+105)\displaystyle\sqrt{\frac{2}{31}(29+10\sqrt{5})}
P7,8\displaystyle P_{7,8} 1624347+15775+811(21727+92895)\displaystyle\frac{1}{62}\sqrt{4347+1577\sqrt{5}+8\sqrt{11(21727+9289\sqrt{5})}} 124+5\displaystyle\frac{1}{2}\sqrt{4+\sqrt{5}} 16212(7899+28515+4829048+126745)\displaystyle\frac{1}{62}\sqrt{\frac{1}{2}(7899+2851\sqrt{5}+48\sqrt{29048+12674\sqrt{5}})}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 1124(49+35+8448+1785\displaystyle\frac{1}{124}(49+3\sqrt{5}+8\sqrt{448+178\sqrt{5}}
P7,9\displaystyle P_{7,9} 1311079+4335+475257+335355\displaystyle\frac{1}{31}\sqrt{1079+433\sqrt{5}+4\sqrt{75257+33535\sqrt{5}}} 124+5\displaystyle\frac{1}{2}\sqrt{4+\sqrt{5}} 131968+2135+46613+7875\displaystyle\frac{1}{31}\sqrt{968+213\sqrt{5}+4\sqrt{6613+787\sqrt{5}}}
12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 162(22+145+317168961+28485961)\displaystyle\frac{1}{62}(22+14\sqrt{5}+31\sqrt{\frac{7168}{961}+\frac{2848\sqrt{5}}{961}})
P7,10\displaystyle P_{7,10} 137+927\displaystyle\sqrt{\frac{13}{7}+\frac{9\sqrt{2}}{7}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 217(3+2)\displaystyle 2\sqrt{\frac{1}{7}(3+\sqrt{2})}
1+12\displaystyle 1+\frac{1}{\sqrt{2}} 457+2927\displaystyle\sqrt{\frac{45}{7}+\frac{29\sqrt{2}}{7}}
P7,11\displaystyle P_{7,11} 2+2\displaystyle 2+\sqrt{2} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 1+2\displaystyle 1+\sqrt{2}
1+12\displaystyle 1+\frac{1}{\sqrt{2}} 3+52\displaystyle 3+\frac{5}{\sqrt{2}}
P7,12\displaystyle P_{7,12} 114(25+132)\displaystyle\frac{1}{14}(25+13\sqrt{2}) 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 87+1772\displaystyle\frac{8}{7}+\frac{17}{7\sqrt{2}}
1+12\displaystyle 1+\frac{1}{\sqrt{2}} 114(41+372)\displaystyle\frac{1}{14}(41+37\sqrt{2})
P7,13\displaystyle P_{7,13} 1+2\displaystyle 1+\sqrt{2} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 1+2\displaystyle 1+\sqrt{2}
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 97+427\displaystyle\sqrt{\frac{9}{7}+\frac{4\sqrt{2}}{7}}
P7,14\displaystyle P_{7,14} 1+12+267+1827\displaystyle 1+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 12+12+267+1827\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}}
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 17(13+82+254+382)\displaystyle\sqrt{\frac{1}{7}(13+8\sqrt{2}+2\sqrt{54+38\sqrt{2}})}
P7,15\displaystyle P_{7,15} 1+12+267+1827\displaystyle 1+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 1+12+267+1827\displaystyle 1+\frac{1}{\sqrt{2}}+\sqrt{\frac{26}{7}+\frac{18\sqrt{2}}{7}}
914+227\displaystyle\sqrt{\frac{9}{14}+\frac{2\sqrt{2}}{7}} 27(6+32+25+32)\displaystyle\sqrt{\frac{2}{7}(6+3\sqrt{2}+2\sqrt{5+3\sqrt{2}})}
Refer to caption
Figure 32. P17,P18,P26P_{17},P_{18},P_{26}
aa bb cc dd
P17,1P_{17,1} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 14(3+5)\displaystyle\frac{1}{4}(3+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5})
P17,2P_{17,2} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 32+12\displaystyle\frac{3}{2}+\frac{1}{\sqrt{2}}
P17,3P_{17,3} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 12+12\displaystyle\frac{1}{2}+\frac{1}{\sqrt{2}} 1+12\displaystyle 1+\frac{1}{\sqrt{2}} 32+12\displaystyle\frac{3}{2}+\frac{1}{\sqrt{2}}
P17,4P_{17,4} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 123+35\displaystyle\frac{1}{2}\sqrt{3+\frac{3}{\sqrt{5}}} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5})
P17,5P_{17,5} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 110(5+35)\displaystyle\frac{1}{10}(5+3\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5})
P17,6P_{17,6} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 123+5\displaystyle\frac{1}{2}\sqrt{3+\sqrt{5}} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(3+5)\displaystyle\frac{1}{2}(3+\sqrt{5})
P17,7P_{17,7} 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(1+5)\displaystyle\frac{1}{2}(1+\sqrt{5}) 12(3+5)\displaystyle\frac{1}{2}(3+\sqrt{5})
P17,8P_{17,8} 12(2cosπ7(1+2cosπ7)1)\displaystyle\frac{1}{\sqrt{2}}(2\cos\frac{\pi}{7}(1+2\cos\frac{\pi}{7})-1) 2cos2π712\displaystyle 2\cos^{2}\frac{\pi}{7}-\frac{1}{2} 12(2cosπ7(1+2cosπ7)1)\displaystyle\frac{1}{\sqrt{2}}(2\cos\frac{\pi}{7}(1+2\cos\frac{\pi}{7})-1) 2cosπ7(1+2cosπ7)\displaystyle 2\cos\frac{\pi}{7}(1+2\cos\frac{\pi}{7})
P18,1P_{18,1} 2+22+\sqrt{2} 2+22+\sqrt{2} 5+425+4\sqrt{2}
P18,2P_{18,2} 2+2\sqrt{2+\sqrt{2}} 2+2\sqrt{2+\sqrt{2}} 1+21+\sqrt{2}
P18,3P_{18,3} 2+22+\sqrt{2} 2+22+\sqrt{2} 5+425+4\sqrt{2}
P18,4P_{18,4} 2+2\sqrt{2+\sqrt{2}} 2+2\sqrt{2+\sqrt{2}} 1+21+\sqrt{2}
P26,1P_{26,1} 1+12\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\sqrt{1+\frac{1}{\sqrt{2}}}
P26,2P_{26,2} 1+12\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\sqrt{1+\frac{1}{\sqrt{2}}} 1+12\sqrt{1+\frac{1}{\sqrt{2}}}
Refer to caption
Figure 33. P34P_{34}
Refer to caption
Figure 34. P21P_{21}
aa bb cc dd
P34,1P_{34,1} 14(1+13)\frac{1}{4}(1+\sqrt{13}) 14(1+13)\frac{1}{4}(1+\sqrt{13}) 16(5+13)\sqrt{\frac{1}{6}{(5+\sqrt{13})}} 14(1+13)\frac{1}{4}(1+\sqrt{13})
P34,2P_{34,2} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
P34,3P_{34,3} 52\frac{\sqrt{5}}{2} 110(155)\sqrt{\frac{1}{10}(15-\sqrt{5})} 52\frac{\sqrt{5}}{2} 52\frac{\sqrt{5}}{2}
P34,4P_{34,4} 12+12\frac{1}{2}+\frac{1}{\sqrt{2}} 12+12\frac{1}{2}+\frac{1}{\sqrt{2}} 12+12\frac{1}{2}+\frac{1}{\sqrt{2}} 12+12\frac{1}{2}+\frac{1}{\sqrt{2}}
P34,5P_{34,5} 12(1+5)\frac{1}{2}(1+\sqrt{5}) 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
P34,6P_{34,6} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 12(1+5)\frac{1}{2}(1+\sqrt{5}) 12(1+5)\frac{1}{2}(1+\sqrt{5}) 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
P34,7P_{34,7} 14(1+13)\frac{1}{4}(1+\sqrt{13}) 14(1+13)\frac{1}{4}(1+\sqrt{13}) 14(5+13)\frac{1}{4}(5+\sqrt{13}) 14(1+13)\frac{1}{4}(1+\sqrt{13})
P34,8P_{34,8} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 14(3+5+3+5\frac{1}{4}(3+\sqrt{5}+\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
P34,9P_{34,9} 52\frac{\sqrt{5}}{2} 52\frac{\sqrt{5}}{2} 14(5+5)\frac{1}{4}(5+\sqrt{5}) 52\frac{\sqrt{5}}{2}
P34,10P_{34,10} 14(1+13)\frac{1}{4}(1+\sqrt{13}) 14(1+13)\frac{1}{4}(1+\sqrt{13}) 13(2+13)\frac{1}{3}(2+\sqrt{13}) 14(1+13)\frac{1}{4}(1+\sqrt{13})
P34,11P_{34,11} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 12(1+5)\frac{1}{2}(1+\sqrt{5}) 123+5\frac{1}{2}\sqrt{3+\sqrt{5}} 123+5\frac{1}{2}\sqrt{3+\sqrt{5}}
P34,12P_{34,12} 52\frac{\sqrt{5}}{2} 2152-\frac{1}{\sqrt{5}} 52\frac{\sqrt{5}}{2} 52\frac{\sqrt{5}}{2}
P21,1P_{21,1} 12(23+3(2+3)3/2)-\frac{1}{2}(2\sqrt{3+\sqrt{3}}-(2+\sqrt{3})^{3/2}) 2(2+3)\sqrt{2(2+\sqrt{3})} 12(23+3(2+3)3/2)-\frac{1}{2}(2\sqrt{3+\sqrt{3}}-(2+\sqrt{3})^{3/2})

References

  • [All06] D. Allcock. Infinitely many hyperbolic Coxeter groups through dimension 19 Geometry &\& Topology 10 (2006), 737–758.
  • [Bur22] A. Burcroff. Near classification of compact hyperbolic Coxeter d-polytopes with d+4d+4 facets and related dimension bounds. arXiv:2201.03437.
  • [And70(1)70^{(1)}] E. M. Andreev. Convex polyhedra in Lobachevskii spaces (Russian). Math. USSR Sbornik 10 (1970), 413–440.
  • [And70(2)70^{(2)}] E. M. Andreev. Convex polyhedra of finite volume in Lobachevskii space (Russian). Math. USSR Sbornik 12 (1970), 255–259.
  • [Bor98] R. Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces. IMRN, 19 (1998), 1011–1031.
  • [Bou68] N. Bourbaki. Groupes et alg‘ebres de Lie. Ch. IV–VI, Hermann, Paris, 1968.
  • [Bug84] V. O. Bugaenko. Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring [5+12]\mathbb{Z}[\frac{\sqrt{5}+1}{2}] Moscow Univ. Math. Bull., 39 (1984), 6–14.
  • [Bug92] V. O. Bugaenko. Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices. Adv. Sov. Math., 8 (1992), 33–55.
  • [Cox34] H. S. M. Coxeter. Discrete groups generated by reflections. Ann. Math., 35 (1934), 588–621.
  • [Ess94] F. Esselmann. Über kompakte hyperbolische Coxeter-Polytope mit wenigen Facetten. Universit at Bielefeld, SFB 343, (1994) No. 94-087.
  • [Ess96] F. Esselmann. The classification of compact hyperbolic Coxeter dd-polytopes with d+2d+2 facets. Comment. Math. Helvetici 71 (1996), 229–242.
  • [F] A. Flikson http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html
  • [FT08(1)08^{(1)}] A. Felikson, P. Tumarkin. On hyperbolic Coxeter polytopes with mutually intersecting facets. J. Combin. Theory A 115 (2008), 121-146.
  • [FT08(2)08^{(2)}] A. Felikson, P. Tumarkin. On compact hyperbolic Coxeter dd-polytopes with d+4d+4 facets. Trans. Moscow Math. Soc. 69 (2008), 105-151.
  • [FT09] A. Felikson, P. Tumarkin. Coxeter polytopes with a unique pair of non-intersecting facets. J. Combin. Theory A 116 (2009), 875-902.
  • [FT14] A. Felikson, P. Tumarkin. Essential hyperbolic Coxeter polytopes. Israel Journal of Mathematics (2014), 199, 1, 113–161.
  • [Gan59] F. R. Gantmacher. The theory of matrix. Chelsca Publishing Company (1959), New York.
  • [Grü67] B. Grünbaum. Convex Polytopes. Wiley, New York, (1967).2nd edn. Springer, Berlin (2003)
  • [Grü72] B. Grünbaum. Arrangements and Spreads. American Mathematical Society, New York (1972).
  • [GS67] B. Grünbaum, V.P. Sreedharan. An enumeration of simplicial 4-polytopes with 8 vertices. J. Combin. Theory 2 (1967), 437–465.
  • [ImH90] H.-C. Im Hof. Napier cycles and hyperbolic Coxeter groups, Bull. Soc. Math. de Belg. S´erie A, XLII (1990), 523–545.
  • [Jac17] M. Jacquemet On hyperbolic Coxeter n-cubes. Europ. J. Combin. 59 (2017), 192-203.
  • [JT18] M. Jacquemet and S. Tschantz. All hyperbolic Coxeter n-cubes J. Combin. Theory A, 158 (2018), 387-406.
  • [Kap74] I. M. Kaplinskaya. Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces. Math. Notes 15 (1974), 88–91.
  • [KM13] A. Kolpakov and B. Martelli. Hyperbolic four-manifolds with one cusp. Geom &\& Funct. Anal., 23, 2013, 1903–1933.
  • [Kos67] J. L. Koszul. Lectures on hyperbolic Coxeter group. University of Notre Dame, 1967.
  • [Lan50] F. Lanner. On complexes with transitive groups of automorphisms. Comm. Sem. Math. Univ. Lund, 11 (1950), 1–71.
  • [MZ18] J. Ma and F. Zheng. Orientable hyperbolic 4-manifolds ove the 120-cell. ArXiv:math:GT/1801.08814.
  • [Mak65] V. S. Makarov. On one class of partitions of Lobachevskian space. Dokl. Akad. Nauk SSSR, 161 no.2, (1965), 277–278. English transl.: Sov. Math. Dokl. 6, 400-401 (1965), Zbl.135,209.
  • [Mak66] V. S. Makarov. On one class of discrete groups of Lobachevskian space having an infinite fundamental region of finite measure. Dokl. Akad. Nauk SSSR, 167 no.2, (1966), 30–33. English transl.: Sov. Math. Dokl. 7, 328-331 (1966), Zbl.146,165.
  • [Mak68] V. S. Makarov. On Fedorov groups of four- and five-dimensional Lobachevsky spaces. Issled. po obshch. algebre. no. 1, Kishinev St. Univ., 1970, 120–129 (Russian).
  • [Mnë88] N. E Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. volume 1346 of Lecture Notes in Mathematics, pages 527–543. Springer, 1988.
  • [P1882] H. Poincaré. Theorié des groupes fuchsiens (French). Acta Math. 1, 1882, no. 1, 1–76.
  • [Pro87] M. N. Prokhorov. The absence of discrete reflection groups with non-compact fundamental polyhedron of finite volume in Lobachevsky space of large dimension. Math. USSR Izv., 28 (1987), 401–411.
  • [Rob15] M. Roberts. A Classification of Non-Compact Coxeter Polytopes with n+3n+3 Facets and One Non-Simple Vertex arXiv:1511.08451.
  • [Rus89] O. P. Rusmanov. Examples of non-arithmetic crystallographic Coxeter groups in nn-dimensional Lobachevsky space for 6n106\leq n\leq 10. Problems in Group Theory and Homology Algebra, Yaroslavl, 1989, 138–142 (Russian).
  • [Tum03] P. Tumarkin. Non-compact hyperbolic Coxeter n-polytopes with n+3 facets, short version (3 pages). Russian Math. Surveys, 58 (2003), 805-806.
  • [Tuma04(1)04^{(1)}] P. Tumarkin. Hyperbolic Coxeter nn-polytopes with n+2n+2 facets. Math. Notes 75 (2004), 848–854.
  • [Tum04(2)04^{(2)}] P. Tumarkin. Hyperbolic Coxeter n-polytopes with n+3n+3 facets. Trans. Moscow Math. Soc. (2004), 235–25.
  • [Tum07] P. Tumarkin. Compact hyperbolic Coxeter n-polytopes with n+3n+3 facets. the electronic journal of combinatorics 14 (2007).
  • [Vin67] E. B. Vinberg. Discrete groups generated by reflections in Lobachevskii spaces. Mat. USSR Sb. 1 (1967), 429–444.
  • [Vin69] E. B. Vinberg. Some examples of crystallographic groups in Lobachevskian spaces. 78(120), no. 4,(1969), 633–639.
  • [Vin72] E. B. Vinberg. On groups of unit elements of certain quadratic forms. Math. USSR Sb., 16 (1972), 17–35.
  • [Vin85(1)85^{(1)}] E. B. Vinberg. The absence of crystallographic groups of reflections in Lobachevsky spaces of large dimension. Trans. Moscow Math. Soc., 47 (1985), 75–112.
  • [Vin85(2)85^{(2)}] E. B. Vinberg. Hyperbolic reflection groups. Russian Math. Surveys 40 (1985), 31–75.
  • [Vin93] E. B. Vinberg, editor. Geometry II - Spaces of Constant Curvature. Springer, 1993.
  • [VK78] E. B. Vinberg and I. M. Kaplinskaya. On the groups O18,1()O_{18,1}(\mathbb{Z}) and O19,1()O_{19,1}(\mathbb{Z}). Soviet Math. Dokl. 19 (1978), 194–197.