This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\marginsize

1.2in0.9in0.9in1.5in

Communication-Censored-ADMM for Electric Vehicle Charging in Unbalanced Distribution Grids

A. Bhardwaj*    W. de Carvalho    N. Nimalsiri    E. L. Ratnam    N. Rin *School of Engineering, The Australian National University, Canberra, Australia.
Corresponding author [email protected]
Abstract

We propose an alternating direction method of multipliers (ADMM)-based algorithm for coordinating the charge and discharge of electric vehicles (EVs) to manage grid voltages while minimizing EV time-of-use energy costs. We prove that by including a Communication-Censored strategy, the algorithm maintains its solution integrity, while reducing peer-to-peer communications. By means of a case study on a representative unbalanced two node circuit, we demonstrate that our proposed Communication-Censored-ADMM (CC-ADMM) EV charging strategy reduces peer-to-peer communications by up to 80%80\%, compared to a benchmark ADMM approach.

Index Terms:
communication-censoring ADMM, electric vehicles, unbalanced distribution grids, voltage regulation, distributed optimization

I Introduction

The transportation sector is rapidly evolving to support the grid-integration of electric vehicles (EVs), unlocking financial and environmental benefits for EV customers [1, 2]. EV charging however, potentially increases the duration and magnitude of grid congestion peaks when not managed carefully. Furthermore, during periods of grid congestion, EV charging potentially fluctuates supply voltages beyond safe operating limits [3]. Consequently, a key challenge with EV proliferation is coordinating EV charging (and discharging) to ensure steady-state supply voltages across an electrical distribution grid remain within prescribed operating limits [4].

Numerous optimization strategies have been proposed to coordinate EV (dis)charging to manage voltages throughout the distribution grid ([5], [6], [7]), with recent works tackling the issue of model uncertainties (see [8], [9] for reinforcement learning approaches, and [10] for perspectives on online optimization). Optimization-based EV coordination approaches can be split into two main classes - centralized and distributed 111Some authors in the literature (such as Khaki et al. in [11]) use the term distributed even when including a coordinating agent. In this paper, distributed means fully decentralized — i.e., the EVs only communicate amongst themselves and not with a coordinating agent.. Comparatively, distributed approaches consider ways to parallelize and scale mathematical computations, allowing for larger populations of EVs to be coordinated across an electrical network [12]. Over the last decade, the Alternating Direction Method of Multipliers (ADMM) [13] technique has provided a simple yet effective approach to distributed EV (dis)charging.

The ADMM-based EV coordination algorithms presented in [14] and [15] are designed to avoid system voltages breaches. The authors in [16] propose to minimize grid load variations using EV (dis)charging with a hierarchical ADMM approach. More recently, Nimalsiri et al. propose in [17] an ADMM-based approach to minimize time-of-use EV charge operational costs while regulating unbalanced supply voltages to within operational limits. Yet none of the aforementioned approaches consider ways to reduce the communication cost associated with ADMM-based distributed algorithms.

Specifically, the distributed algorithms in [15, 17] assume a communication network where each EV must communicate at every time step, with all other EVs in its vicinity. For large scale networks, this communication overhead dwarfs the associated distributed computation costs. Consequently, a tradeoff exists for EV scalability, in the context of ease of computation and growing communication costs, which has been studied in different contexts, e.g., [18, 19, 20]. As such, we are motivated to reduce ADMM-based communications in addition to minimizing time-of-use EV charge costs, all while regulating unbalanced grid voltages to avoid quasi steady-state operation breaches.

In this paper, we propose a distributed Communication-Censored-ADMM EV (dis)charging algorithm, which we refer to as 1, to reduce the overall communication costs of coordinating EV (dis)charging, while regulating unbalanced grid voltages to avoid quasi steady-state operation breaches. Furthermore, we seek to minimize time-of-use EV charge costs, all while preserving the ADMM-based algorithm accuracy. Specifically, we extend the ADMM-based algorithm presented in [17] for coordinated EV (dis)charging in a number of ways. First, we incorporate EV-based inverter reactive power control for improved voltage regulation. Then, we integrate the communication censored-ADMM approach of [21] with our model to create CC-ADMM. Most importantly, we obtain theoretical convergence guarantees that the CC-ADMM converges to an optimal solution of the EV (dis)charge problem. By means of a case study, we compare communication costs and solution accuracy of CC-ADMM against the benchmark Dis-Net-EVCD algorithm from [17], for two examples.

The remainder of this paper is organized as follows. In Section II we introduce a residential EV system which is connected to an unbalanced distribution grid. In Section III we present the EV (dis)charging problem as a centralized optimization problem. Section IV reformulates the centralized EV (dis)charging problem into the ADMM framework, and shows that the CC-ADMM algorithm converges to an optimal solution. Section V includes numerical simulation results to demonstrate the potential of the communication censored approach.

Notation

We use the symbols n,n\mathbb{R}^{n},\mathbb{C}^{n} to denote the nn-dimensional vector space of real and complex numbers, respectively. Throughout, a vector 𝐱n\mathbf{x}\in\mathbb{C}^{n} represents a column vector. We denote by 𝐱Tn\mathbf{x}^{\operatorname{T}}\in\mathbb{C}^{n} the transpose of 𝐱\mathbf{x}, which is a row vector. For a vector 𝐱n\mathbf{x}\in\mathbb{C}^{n} we write 𝐱i\mathbf{x}_{i} for the ithi^{\text{th}} component of 𝐱\mathbf{x}. We write 0n\mathbb{R}^{n}_{\geq 0} for the non-negative orthant in (the set of vectors which have only non-negative components). We write 𝟙nn\mathds{1}_{n}\in\mathbb{R}^{n} for the vector which has all components equal to 1 (we omit the subscript nn when the dimension is clear from the context). The inner product of vectors 𝐱,𝐲n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} is denoted by 𝐱T𝐲\mathbf{x}^{\operatorname{T}}\mathbf{y} or 𝐱,𝐲\left\langle\mathbf{x},\mathbf{y}\right\rangle. Given two vectors 𝐱,𝐲n\mathbf{x},\mathbf{y}\in\mathbb{R}^{n} the inequality 𝐱𝐲\mathbf{x}\leq\mathbf{y} is to be understood componentwise (i.e., 𝐱i𝐲i\mathbf{x}_{i}\leq\mathbf{y}_{i} for i=1,,ni=1,\dotsc,n). We denote by 𝐱\left\lVert\mathbf{x}\right\rVert the Euclidian norm of 𝐱n\mathbf{x}\in\mathbb{R}^{n}, which is 𝐱T𝐱\sqrt{\mathbf{x}^{\operatorname{T}}\mathbf{x}}.

The set of real and complex matrices are denoted by n×n\mathbb{R}^{n\times n} and n×n\mathbb{C}^{n\times n}, respectively. Given a matrix Wn×nW\in\mathbb{C}^{n\times n}, we write [W]i,j[W]_{i,j} for the entry in row ii and column jj of the matrix WW. We denote the identity matrix in n×n\mathbb{C}^{n\times n} by InI_{n} (we omit the subscript when the size is clear from the context). The zero vector in n\mathbb{C}^{n} is denoted by 𝟎n\mathbf{0}_{n}, and the zero matrix in n×n\mathbb{C}^{n\times n} is denoted by 𝟎n×n\mathbf{0}_{n\times n}, where we omit the subscripts when the distinction and sizes can be easily deduced by the context. Given matrices A1,,Amn×nA_{1},\dotsc,A_{m}\in\mathbb{C}^{n\times n}, we denote the direct sum as

i=1mAi=[A1𝟎n×n𝟎n×n𝟎n×nA2𝟎n×n𝟎n×n𝟎n×nAm].\bigoplus_{i=1}^{m}A_{i}=\begin{bmatrix}A_{1}&\mathbf{0}_{n\times n}&\dotsc&\dotsc&\mathbf{0}_{n\times n}\\ \mathbf{0}_{n\times n}&A_{2}&\mathbf{0}_{n\times n}&\dotsc&\mathbf{0}_{n\times n}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ \mathbf{0}_{n\times n}&\dotsc&\dotsc&\dotsc&A_{m}\end{bmatrix}.

Given two sets A,BA,B, we use the following standard notations

A×B\displaystyle A\times B ={(a,b)|aA,bB},\displaystyle=\left\{(a,b)\;\middle|\;a\in A,\ b\in B\right\},
AB\displaystyle A\cup B ={c|cA or cB},\displaystyle=\left\{c\;\middle|\;c\in A\text{ or }c\in B\right\},
AB\displaystyle A\cap B ={c|cA and cB},\displaystyle=\left\{c\;\middle|\;c\in A\text{ and }c\in B\right\},

and we denote by |A|\lvert A\rvert the cardinality of the set AA. Further notation will be introduced as necessary.

II Problem Formulation

II-A Residential EV Energy System

Fig. 1 illustrates the topology of a grid-connected Residential EV Energy System for a single customer, consisting of a meter, an EV and residential load situated behind the Point of Common Coupling (PCC). In what follows, we consider a set of NN customers 𝒩:={1,,n,,N}\mathcal{N}:=\left\{1,\dotsc,n,\dotsc,N\right\}, where each customer nn charges or discharges EVnEV_{n}. We assume that for each customer, EVnEV_{n} is enabled with both real and reactive power control by way of the EV battery inverter.

Let Δ\Delta be a time interval length 222Emerging grid sensors such as micro-phasor measurement units (micro-PMUs) provide voltage and current phasor data at a high temporal resolution (see [22, 23]). We anticipate customer metering technology to follow a similar trajectory, reporting high temporal voltage and current data, which would also improve the applicability of our approach., and 𝒯:={1,,T}\mathcal{T}:=\left\{1,\dotsc,T\right\} be a time horizon partition, so that the planning horizon is [0,ΔT][0,\Delta T].

Let pn(t)p_{n}(t)\in\mathbb{R} denote the real power to or from EVnEV_{n} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t] (in kW), and similarly, let qn(t)q_{n}(t)\in\mathbb{R} denote the reactive power to or from EVnEV_{n} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t] (in kVAR).

Refer to caption
Figure 1: A Residential EV Energy System, where the arrows indicate the positive direction of power flow. For example, non-negative pn(t)p_{n}(t) is real power to EVnEV_{n}, and negative pn(t)p_{n}(t) is real power from EVnEV_{n}. Here, gn(t),hn(t),ln(t),kn(t)g_{n}(t),h_{n}(t),l_{n}(t),k_{n}(t) are the real and reactive powers through the PCC, and the residential load, respectively.

The power profile of EVnEV_{n} over [0,ΔT][0,\Delta T] is defined as

(𝐩n,𝐪n)=([pn(1)pn(T)],[qn(1)qn(T)])T×T.\left(\mathbf{p}_{n},\mathbf{q}_{n}\right)=\left(\begin{bmatrix}p_{n}(1)\\ \vdots\\ p_{n}(T)\end{bmatrix},\begin{bmatrix}q_{n}(1)\\ \vdots\\ q_{n}(T)\end{bmatrix}\right)\in\mathbb{R}^{T}\times\mathbb{R}^{T}.

Each EVnEV_{n} has associated with it the following set of design parameters; arrival time index an𝒯a_{n}\in\mathcal{T}, departure time index dn𝒯d_{n}\in\mathcal{T}, battery capacity bnb_{n}, inverter capacity s¯n\overline{s}_{n}, initial state of charge (SoC) σ^n\hat{\sigma}_{n}, target SoC σn\sigma^{*}_{n}, minimum SoC σ¯n\underline{\sigma}_{n}, maximum SoC σ¯n\overline{\sigma}_{n}, maximum charge rate p¯n\overline{p}_{n}, and minimum charge rate p¯n\underline{p}_{n}. These design parameters are collected into the set

Λn:={an,dn,bn,s¯n,σ^n,σn,σ¯n,σ¯n,p¯n,p¯n}.\Lambda_{n}:=\left\{\begin{gathered}a_{n},d_{n},b_{n},\overline{s}_{n},\hat{\sigma}_{n},\sigma_{n}^{*},\overline{\sigma}_{n},\underline{\sigma}_{n},\overline{p}_{n},\underline{p}_{n}\end{gathered}\right\}.
Remark II.1.

We do not include battery (dis)charge efficiencies in the set of design parameters for convenience. Adding these parameters will convert our optimization-based problem formulation (which follows) into a more difficult mixed integer program. However, with careful consideration, the core ideas we present in this paper can also be applied in the mixed integer program setting.

Let the apparent power to or from EVnEV_{n} be denoted by sn(t){s}_{n}(t), defined (for all Δt[0,ΔT]\Delta t\in[0,\Delta T]) by

sn(t)2:=pn(t)2+qn(t)2.{s}_{n}(t)^{2}:=p_{n}(t)^{2}+q_{n}(t)^{2}.

The apparent power through the inverter of EVnEV_{n} is constrained as sn(t)s¯ns_{n}(t)\leq\overline{s}_{n}, where s¯n\overline{s}_{n} denotes the inverter capacity. It follows that, for all Δt[0,ΔT]\Delta t\in[0,\Delta T],

pn(t)2+qn(t)2s¯n2.p_{n}(t)^{2}+q_{n}(t)^{2}\leq\overline{s}_{n}^{2}. (1)

Each customer nn must specify a departure time and target SoC which is feasible within the departure time, i.e., it must hold that

σσ^+Δ(dnan)p¯n.\sigma^{*}\leq\hat{\sigma}+{\color[rgb]{0,0,0}\Delta(d_{n}-a_{n})\overline{p}_{n}}.

The battery SoC of EVnEV_{n} at time Δt[0ΔT]\Delta t\in[0\Delta T] is denoted by σn(t)\sigma_{n}(t), which can be defined as

σn(t):=σ^+Δj=1tpn(j),\sigma_{n}(t):=\hat{\sigma}+{\color[rgb]{0,0,0}\Delta\sum_{j=1}^{t}p_{n}(j)}, (2)

and the SoC profile of EVnEV_{n} is then defined as

𝝈n:=[σn(1)σn(t)σn(T)]0T.\boldsymbol{\sigma}_{n}:=\begin{bmatrix}\sigma_{n}(1)\\ \vdots\\ \sigma_{n}(t)\\ \vdots\\ \sigma_{n}(T)\end{bmatrix}\in\mathbb{R}^{T}_{\geq 0}.

II-B EV Battery Constraints and EV Operation Costs

The battery of EVnEV_{n} is constrained to prevent over-(dis)charging, in the following way

σ¯nσn(t)σ¯n,\underline{\sigma}_{n}\leq\sigma_{n}(t)\leq\overline{\sigma}_{n}, (3)

which implies that the SoC profile must satisfy

σ¯n𝟙𝝈nσ¯n𝟙.\underline{\sigma}_{n}\mathds{1}\leq\boldsymbol{\sigma}_{n}\leq\overline{\sigma}_{n}\mathds{1}.

Let α¯n=(σ¯nσ^n)/Δ\underline{\alpha}_{n}=(\underline{\sigma}_{n}-\hat{\sigma}_{n})/\Delta, and α¯n=(σ¯nσ^n)/Δ\overline{\alpha}_{n}=(\overline{\sigma}_{n}-\hat{\sigma}_{n})/\Delta. Then using (2) together with (3) gives

α¯n𝟙M𝐩nα¯n𝟙,{\color[rgb]{0,0,0}\underline{\alpha}_{n}}\mathds{1}\leq M\mathbf{p}_{n}\leq{\color[rgb]{0,0,0}\overline{\alpha}_{n}}\mathds{1}, (4)

where

M=[10011000111]T×T.M=\begin{bmatrix}1&0&\dotso&\dotso&0\\ 1&1&0&\dotso&0\\ \vdots&\vdots&\dotso&\dotso&0\\ 1&1&\dotso&\dotso&1\end{bmatrix}\in\mathbb{R}^{T\times T}.

Due to the limited (dis)charging power of the battery, we have

p¯npn(t)p¯n,\underline{p}_{n}\leq p_{n}(t)\leq\overline{p}_{n},

which implies that the power profile vector 𝐩n\mathbf{p}_{n} is constrained as

p¯n𝟙𝐩np¯n𝟙.\underline{p}_{n}\mathds{1}\leq\mathbf{p}_{n}\leq\overline{p}_{n}\mathds{1}. (5)

To incorporate the charging demand for EVnEV_{n}, we let en=(σnσ^n)/Δe_{n}=(\sigma^{*}_{n}-\hat{\sigma}_{n})/\Delta and enforce σn(T)σn\sigma_{n}(T)\geq\sigma_{n}^{*}. Combining this charging demand with (2) gives

𝟙T𝐩nen.\mathds{1}^{\operatorname{T}}\mathbf{p}_{n}\geq e_{n}.

To limit the duration of (dis)charging for EVnEV_{n} to the period EVnEV_{n} is grid connected ([an,dn][a_{n},d_{n}]), we define the availability matrix LnL_{n} as follows

[Ln]i,j:={1, if i=j and an<idn,0, otherwise. \left[L_{n}\right]_{i,j}:=\begin{cases}1,&\text{ if }i=j\text{ and }a_{n}<i\leq d_{n},\\ 0,&\text{ otherwise. }\end{cases}

Accordingly, we further constrain 𝐩n\mathbf{p}_{n} and 𝐪n\mathbf{q}_{n} by

(ILn)𝐩n=(ILn)𝐪n=𝟎,\left(I-L_{n}\right)\mathbf{p}_{n}=\left(I-L_{n}\right)\mathbf{q}_{n}=\mathbf{0},

where IT×TI\in\mathbb{R}^{T\times T} is the identity matrix, and 𝟎T\mathbf{0}\in\mathbb{R}^{T} is the zero vector. Let us define

𝐅n:=[I𝟎T×TI𝟎T×TM𝟎T×TM𝟎T×T𝟙T𝟎T×T(ILn)𝟎T×T(LnI)𝟎T×T𝟎T×T(ILn)𝟎T×T(LnI)],𝐟n:=[p¯n𝟙p¯n𝟙α¯n𝟙α¯n𝟙en𝟎𝟎𝟎𝟎].\mathbf{F}_{n}:=\begin{bmatrix}\phantom{-}I&\mathbf{0}_{T\times T}\\ -I&\mathbf{0}_{T\times T}\\ \phantom{-}M&\mathbf{0}_{T\times T}\\ -M&\mathbf{0}_{T\times T}\\ \phantom{-}\mathds{1}^{\operatorname{T}}&\mathbf{0}_{T\times T}\\ \left(I-L_{n}\right)&\mathbf{0}_{T\times T}\\ \left(L_{n}-I\right)&\mathbf{0}_{T\times T}\\ \mathbf{0}_{T\times T}&\left(I-L_{n}\right)\\ \mathbf{0}_{T\times T}&\left(L_{n}-I\right)\\ \end{bmatrix},\quad\mathbf{f}_{n}:=\begin{bmatrix}\phantom{-}\underline{p}_{n}\mathds{1}\\ -\overline{p}_{n}\mathds{1}\\ \phantom{-}\underline{\alpha}_{n}\mathds{1}\\ -\overline{\alpha}_{n}\mathds{1}\\ e_{n}\\ \mathbf{0}\\ \mathbf{0}\\ \mathbf{0}\\ \mathbf{0}\end{bmatrix}.

We now combine all of the battery constraints and the apparent power constraints, to write the feasibility set of power profile vectors

n:={(𝐩n,𝐪n)|𝐅n[𝐩n𝐪n]𝐟n,pn(t)2+qn(t)2s¯n2t𝒯.}\mathcal{F}_{n}:=\left\{(\mathbf{p}_{n},\mathbf{q}_{n})\;\middle|\;\begin{gathered}\mathbf{F}_{n}\begin{bmatrix}\mathbf{p}_{n}\\ \mathbf{q}_{n}\end{bmatrix}\geq\mathbf{f}_{n},\\ p_{n}(t)^{2}+q_{n}(t)^{2}\leq\overline{s}_{n}^{2}\quad\forall t\in\mathcal{T}.\end{gathered}\right\} (6)

The following proposition can be easily proven.

Proposition II.2.

n\mathcal{F}_{n} is compact and convex.

We assume that each customer is compensated for delivering power to the grid at the same rate they are billed for consuming power from the grid. For our time horizon 𝒯\mathcal{T}, we let the price profile be denoted by

𝜼=[η(1)η(t)η(T)]0T,\boldsymbol{\eta}=\begin{bmatrix}\eta(1)\\ \vdots\\ \eta(t)\\ \vdots\\ \eta(T)\end{bmatrix}\in\mathbb{R}^{T}_{\geq 0},

where η(t)\eta(t) is the price of electricity (in $/kWh) over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. The operational cost for EVnEV_{n} is then defined by

Ωn(𝐩n):=Δ𝜼T𝐩n+κn𝐩nT𝐩n,\Omega_{n}(\mathbf{p}_{n}):={\color[rgb]{0,0,0}\Delta\boldsymbol{\eta}^{\operatorname{T}}\mathbf{p}_{n}+\kappa_{n}\mathbf{p}_{n}^{\operatorname{T}}\mathbf{p}_{n}}, (7)

where κn\kappa_{n} is a (small) regularization parameter which reduces to occurrence of unnecessary EV battery charge-discharge cycles. Specifically, we include the second term in (7) to maintain a smoother battery profile and avoiding unnecessary charge-discharge cycles [24], and in this way, we include the cost of battery degradation within our operational costs for EVnEV_{n}. Positive values of Ωn(𝐩n)\Omega_{n}(\mathbf{p}_{n}) represent financial costs whereas negative values of Ωn(𝐩n)\Omega_{n}(\mathbf{p}_{n}) represent financial gains.

II-C Unbalanced Distribution Grid Model

We consider a three phase, unbalanced, radial distribution feeder that includes two phase and single phase laterals, represented by a graph 𝒢={𝒱0,}\mathcal{G}=\left\{\mathcal{V}_{0},\mathcal{E}\right\}. The set of vertices 𝒱0={0,,i,,k}\mathcal{V}_{0}=\left\{0,\dotsc,i,\dotsc,k\right\} represent nodes along the feeder and the edges 𝒱0×𝒱0\mathcal{E}\subseteq\mathcal{V}_{0}\times\mathcal{V}_{0} represent line segments along the feeder with cardinality ||=k\lvert\mathcal{E}\rvert=k.

Node 0 is considered the root node (feeder head) which is taken as an infinite bus, decoupling the interaction between the feeder and the wider power grid. An edge (ij)(ij)\in\mathcal{E} exists if there is a line segment between node ii and node jj, with node ii being closest to node 0.

We assume that the graph 𝒢\mathcal{G} is simple with no repeated edges or self loops for any i𝒱0i\in\mathcal{V}_{0}. Let 𝒱=𝒱0\{0}\mathcal{V}=\mathcal{V}_{0}\backslash\left\{0\right\}, and for each vertex i𝒱i\in\mathcal{V} let i\mathcal{E}^{i}\subseteq\mathcal{E} be the set of edges on the unique path from node 0 to node ii.

Each edge (ij)(ij)\in\mathcal{E} is either a single phase, two phase, or three phase edge, and each vertex i𝒱0i\in\mathcal{V}_{0} is either a single phase, two phase, or three phase node, where phases are labelled 𝔞,𝔟\mathfrak{a},\mathfrak{b} and 𝔠\mathfrak{c}. The set of all phases at node i𝒱0i\in\mathcal{V}_{0} are denoted Φi\Phi^{i}, e.g., for a three phase node we would have Φi={𝔞,𝔟,𝔠}\Phi^{i}=\left\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\right\}. We assume node 0 is a three phase node.

The set of phases along edge (ij)(ij)\in\mathcal{E} is denoted as Φij\Phi^{ij}, e.g., Φij={𝔞,𝔟,𝔠}\Phi^{ij}=\left\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\right\} for a three phase line segment. For any edge (ij)(ij)\in\mathcal{E} we have

Φij(ΦiΦj).\Phi^{ij}\subseteq\left(\Phi^{i}\cap\Phi^{j}\right).

Next, we denote phases as ϕ\phi and ψ\psi, where ϕ,ψ{𝔞,𝔟,𝔠}\phi,\psi\in\left\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\right\}.

Let {(i:ϕ)}ϕΦi\left\{(i:\phi)\right\}_{\phi\in\Phi^{i}} represent the tuple of phases at node i𝒱i\in\mathcal{V}, e.g., if ii is a three phase node, then we have {(i:ϕ)}ϕΦi={(i:𝔞),(i:𝔟),(i:𝔠)}\left\{(i:\phi)\right\}_{\phi\in\Phi^{i}}=\left\{(i:\mathfrak{a}),(i:\mathfrak{b}),(i:\mathfrak{c})\right\}. Now let

𝒦=i𝒱{(i:ϕ)}ϕΦi\mathcal{K}=\bigcup_{i\in\mathcal{V}}\left\{(i:\phi)\right\}_{\phi\in\Phi^{i}}

with |𝒦|=K\lvert\mathcal{K}\rvert=K giving the sum of the total number of phases across all nodes in 𝒱\mathcal{V}. Each element (i:ϕ)𝒦(i:\phi)\in\mathcal{K} represents a supply point which serves Ni:ϕ0N^{i:\phi}\geq 0 customers, such that

i𝒱ϕΦiNi:ϕ=N.\sum_{i\in\mathcal{V}}\sum_{\phi\in\Phi^{i}}N^{i:\phi}=N. (8)

We label the customers by initializing the customer index at n=1n=1 and increment the index through all customers at a supply point, before continuing the index at each following supply point, and across all supply points in 𝒦\mathcal{K} in ascending order, respectively.

To identify the location of each customer with reference to a supply point (i:ϕ)𝒦(i:\phi)\in\mathcal{K}, let Θ\Theta be a binary matrix with rows indexed by elements of 𝒦\mathcal{K}, and columns indexed by elements of 𝒩\mathcal{N}, and define the entries of Θ\Theta as

[Θ](i:ϕ),n={1,if customer n𝒩 isconnected to supplypoint (i:ϕ)𝒦0,otherwise.\left[\Theta\right]_{(i:\phi),n}\negmedspace=\negmedspace\begin{cases}1,&\text{if customer $n\in\mathcal{N}$ is}\\ &\text{connected to supply}\\ &\text{point $(i:\phi)\in\mathcal{K}$}\\ 0,&\text{otherwise.}\end{cases} (9)

Let rij,ϕψr^{ij,\phi\psi} and xij,ϕψx^{ij,\phi\psi} denote the resistance and reactance of line segment (ij)(ij)\in\mathcal{E} respectively, where ϕ\phi and ψ\psi are the phases along the line segment. Then zij,ϕψ:=rij,ϕψ+𝔦xij,ϕψz^{ij,\phi\psi}:=r^{ij,\phi\psi}+\mathfrak{i}x^{ij,\phi\psi} (where 𝔦2=1)\mathfrak{i}^{2}=-1), so that each line segment has a complex impedance 𝐳ij\mathbf{z}^{ij}, e.g., for a three phase line segment

𝐳ij=[zij,𝔞𝔞zij,𝔞𝔟zij,𝔞𝔠zij,𝔟𝔞zij,𝔟𝔟zij,𝔟𝔠zij,𝔠𝔞zij,𝔠𝔟zij,𝔠𝔠]3×3.\mathbf{z}^{ij}=\begin{bmatrix}z^{ij,\mathfrak{aa}}&z^{ij,\mathfrak{ab}}&z^{ij,\mathfrak{ac}}\\ z^{ij,\mathfrak{ba}}&z^{ij,\mathfrak{bb}}&z^{ij,\mathfrak{bc}}\\ z^{ij,\mathfrak{ca}}&z^{ij,\mathfrak{cb}}&z^{ij,\mathfrak{cc}}\end{bmatrix}\in\mathbb{C}^{3\times 3}.

Let Zij,ϕψ:=(uv)(ij)zuv,ϕψZ^{ij,\phi\psi}:=\sum_{(uv)\in\left(\mathcal{E}^{i}\cap\mathcal{E}^{j}\right)}z^{uv,\phi\psi}\in\mathbb{C} denote the sum of the impedances along the unique path which is common to the paths from node 0 to node ii, and node 0 to node jj, such that both paths incorporate phases ϕ\phi and ψ\psi.

Let ω=e2πi3\omega=e^{\frac{-2\pi\operatorname{i}}{3}} and let [[ϕ]][[\phi]] denote phase ϕ\phi as a numeral, where we set [[𝔞]]=0,[[𝔟]]=1,[[𝔠]]=2[[\mathfrak{a}]]=0,[[\mathfrak{b}]]=1,[[\mathfrak{c}]]=2. Let R0K×KR\in\mathbb{R}_{\geq 0}^{K\times K} be a square matrix with rows and columns indexed by elements of 𝒦\mathcal{K}, with the entries defined as

[R](i:ϕ),(j:ψ)=2{(Zij,ϕψ)ω[[ϕ]][[ψ]]}[R]_{(i:\phi),(j:\psi)}=2\Re\left\{(Z^{ij,\phi\psi})^{*}\cdot\omega^{[[\phi]]-[[\psi]]}\right\}\in\mathbb{R}

where i,j𝒱,ϕΦii,j\in\mathcal{V},\phi\in\Phi^{i}, and ψΦj\psi\in\Phi^{j}. We similarly define the matrix XX as

[X](i:ϕ),(j:ψ)=2{(Zij,ϕψ)ω[[ϕ]][[ψ]]}[X]_{(i:\phi),(j:\psi)}=-2\Im\left\{(Z^{ij,\phi\psi})^{*}\cdot\omega^{[[\phi]]-[[\psi]]}\right\}\in\mathbb{R}

where i,j𝒱,ϕΦii,j\in\mathcal{V},\phi\in\Phi^{i}, and ψΦj\psi\in\Phi^{j}. \Re and \Im denote the real and imaginary parts respectively, and is the complex conjugate.

Let vi:ϕ(t)v^{i:\phi}(t) denote the squared voltage magnitude of phase ϕΦi\phi\in\Phi^{i} at node i𝒱i\in\mathcal{V}, at time tt. For a node i𝒱i\in\mathcal{V} and time t𝒯t\in\mathcal{T}, let

𝐯i(t):=[{vi:ϕ(t)}ϕΦi]T|Φi|\mathbf{v}^{i}(t):=\begin{bmatrix}\left\{v^{i:\phi}(t)\right\}_{\phi\in\Phi^{i}}\end{bmatrix}^{\operatorname{T}}\in\mathbb{R}^{\lvert\Phi^{i}\rvert}

for example, at a three phase node we have

𝐯i(t)=[vi:𝔞(t)vi:𝔟(t)vi:𝔠(t)].\mathbf{v}^{i}(t)=\begin{bmatrix}v^{i:\mathfrak{a}}(t)\\ v^{i:\mathfrak{b}}(t)\\ v^{i:\mathfrak{c}}(t)\end{bmatrix}.

Collecting across all nodes in 𝒱\mathcal{V} we define

𝐕(t)=[𝐯1(t)𝐯i(t)𝐯k(t)]K\mathbf{V}(t)=\begin{bmatrix}\mathbf{v}^{1}(t)\\ \vdots\\ \mathbf{v}^{i}(t)\\ \vdots\\ \mathbf{v}^{k}(t)\end{bmatrix}\in\mathbb{R}^{K}

and let v0v^{0} be the squared voltage magnitude of each phase at the root node, which we set to the nominal voltage. We also define 𝐕0=v0𝟙K\mathbf{V}^{0}=v^{0}\mathds{1}\in\mathbb{R}^{K}.

Let pi:ϕ(t){p}^{i:\phi}(t)\in\mathbb{R} denote the net real power (in kW) to or from node i𝒱i\in\mathcal{V} on phase ϕΦi\phi\in\Phi^{i} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. In particular, pi:ϕ(t){p}^{i:\phi}(t) is the net real power to or from Ni:ϕN^{i:\phi} customers connected to phase ϕΦi\phi\in\Phi^{i} at node i𝒱i\in\mathcal{V}. Given a node i𝒱i\in\mathcal{V} we let

𝔭i(t):=[{pi:ϕ(t)}ϕΦi]T|Φi|\mathfrak{p}^{i}(t):=\begin{bmatrix}\left\{p^{i:\phi}(t)\right\}_{\phi\in\Phi^{i}}\end{bmatrix}^{\operatorname{T}}\in\mathbb{R}^{\lvert\Phi^{i}\rvert}

and collecting over all nodes in 𝒱\mathcal{V} we define

𝐏(t):=[𝔭1(t)𝔭i(t)𝔭k(t)]K.\mathbf{P}(t):=\begin{bmatrix}\mathfrak{p}^{1}(t)\\ \vdots\\ \mathfrak{p}^{i}(t)\\ \vdots\\ \mathfrak{p}^{k}(t)\end{bmatrix}\in\mathbb{R}^{K}.

Similarly, let qi:ϕ(t)q^{i:\phi}{\color[rgb]{0,0,0}(t)}\in\mathbb{R} denote the net reactive power to or from node i𝒱i\in\mathcal{V} on phase ϕΦi\phi\in\Phi^{i} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. And analogously define

𝔮i(t):=[{qi:ϕ(t)}ϕΦi]|Φi|\mathfrak{q}^{i}(t):=\begin{bmatrix}\left\{q^{i:\phi}(t)\right\}_{\phi\in\Phi^{i}}\end{bmatrix}\in\mathbb{R}^{\lvert\Phi^{i}\rvert}

and

𝐐(t)=[𝔮1(t)𝔮i(t)𝔮k(t)]K.\mathbf{Q}(t)=\begin{bmatrix}\mathfrak{q}^{1}(t)\\ \vdots\\ \mathfrak{q}^{i}(t)\\ \vdots\\ \mathfrak{q}^{k}(t)\end{bmatrix}\in\mathbb{R}^{K}.

Since each supply point (i:ϕ)𝒦(i:\phi)\in\mathcal{K} serves Ni:ϕN^{i:\phi} customers, pi:ϕ(t)p^{i:\phi}(t) and qi:ϕ(t)q^{i:\phi}(t) have contributions from the EV and non-EV load. Accordingly, let us denote by p~i:ϕ(t)\tilde{p}^{i:\phi}(t) and q~i:ϕ(t)\tilde{q}^{i:\phi}(t), respectively, the net real and reactive power to or from the non-EV loads at node i𝒱i\in\mathcal{V} on phase ϕΦi\phi\in\Phi^{i} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. Likewise, we denote by p^i:ϕ(t)\hat{p}^{i:\phi}(t) and q^i:ϕ(t)\hat{q}^{i:\phi}(t), respectively, the real and reactive power to or from the EV loads at supply point (i:ϕ)𝒦(i:\phi)\in\mathcal{K} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. Ignoring losses, we define

pi:ϕ(t)\displaystyle p^{i:\phi}(t) :=p~i:ϕ(t)+p^i:ϕ(t),\displaystyle:=\tilde{p}^{i:\phi}(t)+\hat{p}^{i:\phi}(t),
qi:ϕ(t)\displaystyle q^{i:\phi}(t) :=q~i:ϕ(t)+q^i:ϕ(t).\displaystyle:=\tilde{q}^{i:\phi}(t)+\hat{q}^{i:\phi}(t).

Similarly, we decompose terms 𝔭i(t)\mathfrak{p}^{i}(t), 𝔮i(t)\mathfrak{q}^{i}(t), 𝐏(t)\mathbf{P}(t) and 𝐐(t)\mathbf{Q}(t), such that for all t𝒯t\in\mathcal{T}, we define

𝐏(t)\displaystyle\mathbf{P}(t) :=𝐏~(t)+𝐏^(t),\displaystyle:=\widetilde{\mathbf{P}}(t)+\widehat{\mathbf{P}}(t),
𝐐(t)\displaystyle\mathbf{Q}(t) :=𝐐~(t)+𝐐^(t).\displaystyle:=\widetilde{\mathbf{Q}}(t)+\widehat{\mathbf{Q}}(t).

II-C1 Power Flow Equations

Consider now the power flow equations from [25, 26], which extend the LinDistFlow equations to the unbalanced setting by

𝐕(t)=𝐕0R𝐏(t)X𝐐(t).\mathbf{V}(t)=\mathbf{V}^{0}-R\mathbf{P}(t)-X\mathbf{Q}(t).

Let

𝐕~(t):=𝐕0R𝐏~(t)X𝐐~(t),\widetilde{\mathbf{V}}(t):=\mathbf{V}^{0}-R\widetilde{\mathbf{P}}(t)-X\widetilde{\mathbf{Q}}(t),

which defines the baseline voltage from the aggregate non-EV loads over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t]. Then, our primary equation of interest becomes

𝐕(t)=𝐕~(t)R𝐏^(t)X𝐐^(t).\mathbf{V}(t)=\widetilde{\mathbf{V}}(t)-R\widehat{\mathbf{P}}(t)-X\widehat{\mathbf{Q}}(t). (10)

We now reformulate (10) in terms of the power transfer from each customer in 𝒩\mathcal{N} (instead of each supply point in 𝒦)\mathcal{K}). We define

𝒫(t):=[p1(t)pn(t)pN(t)]N,𝒬(t):=[q1(t)qn(t)qN(t)]N\mathcal{P}(t):=\begin{bmatrix}p_{1}(t)\\ \vdots\\ p_{n}(t)\\ \vdots\\ p_{N}(t)\end{bmatrix}\in\mathbb{R}^{N},\,\mathcal{Q}(t):=\begin{bmatrix}q_{1}(t)\\ \vdots\\ q_{n}(t)\\ \vdots\\ q_{N}(t)\end{bmatrix}\in\mathbb{R}^{N}

as vectors of real and reactive power to or from all EVs in 𝒩\mathcal{N} over the time period [Δ(t1),Δt][\Delta(t-1),\Delta t] (where clearly, the nthn^{\text{th}} element is the power to or from EVnEV_{n}). Then, together with the matrix Θ\Theta (9), we write

𝐏^(t)=Θ𝒫(t),𝐐^(t)=Θ𝒬(t),\widehat{\mathbf{P}}(t)=\Theta\mathcal{P}(t),\quad\widehat{\mathbf{Q}}(t)=\Theta\mathcal{Q}(t),

for any t𝒯t\in\mathcal{T}. Now let D:=RΘK×ND:=-R\Theta\in\mathbb{R}^{K\times N} and E:=XΘK×NE:=-X\Theta\in\mathbb{R}^{K\times N}, and write

D\displaystyle D =[D1DnDN],\displaystyle=\begin{bmatrix}D_{1}&\dotso&D_{n}&\dotso&D_{N}\end{bmatrix},
E\displaystyle E =[E1EnEN],\displaystyle=\begin{bmatrix}E_{1}&\dotso&E_{n}&\dotso&E_{N}\end{bmatrix},

where Dn,EnKD_{n},E_{n}\in\mathbb{R}^{K} for each n𝒩n\in\mathcal{N}. We now rewrite (10) as

𝐕(t)=𝐕~(t)D𝒫(t)E𝒬(t).\mathbf{V}(t)=\widetilde{\mathbf{V}}(t)-D\mathcal{P}(t)-E\mathcal{Q}(t).

Let us now concatenate over the time horizon [0,ΔT][0,\Delta T], and write

𝐕=[𝐕(1)𝐕(t)𝐕(T)]KT\mathbf{V}=\begin{bmatrix}\mathbf{V}(1)\\ \vdots\\ \mathbf{V}(t)\\ \vdots\\ \mathbf{V}(T)\end{bmatrix}\in\mathbb{R}^{KT}

and similarly,

𝐕~=[𝐕~(1)𝐕~(t)𝐕~(T)]KT.\widetilde{\mathbf{V}}=\begin{bmatrix}\widetilde{\mathbf{V}}(1)\\ \vdots\\ \widetilde{\mathbf{V}}(t)\\ \vdots\\ \widetilde{\mathbf{V}}(T)\end{bmatrix}\in\mathbb{R}^{KT}.

Letting

D¯n\displaystyle\overline{D}_{n} =1TDnKT×T,\displaystyle=\bigoplus_{1}^{T}D_{n}\in\mathbb{R}^{KT\times T},
E¯n\displaystyle\overline{E}_{n} =1TEnKT×T,\displaystyle=\bigoplus_{1}^{T}E_{n}\in\mathbb{R}^{KT\times T},

we obtain

𝐕=𝐕~+n=1N(D¯n𝐩n+E¯n𝐪n).\mathbf{V}=\widetilde{\mathbf{V}}+\sum_{n=1}^{N}\left(\overline{D}_{n}\mathbf{p}_{n}+\overline{E}_{n}\mathbf{q}_{n}\right). (11)

III Centralized EV (dis)charging

Here we formulate a centralized optimization problem to obtain the optimal (dis)charge rates for each EVnEV_{n}. First, at each node i𝒱i\in\mathcal{V} we constrain the voltage magnitude on each phase ϕΦi\phi\in\Phi^{i} to stay within safe operational limits [v¯i:ϕ,v¯i:ϕ][\underline{v}^{i:\phi},\overline{v}^{i:\phi}], where v¯i:ϕ,v¯i:ϕ\underline{v}^{i:\phi},\overline{v}^{i:\phi}\in\mathbb{R} are the respective lower and upper bounds for operational limits.

Let us define the following vectors,

𝐯¯\displaystyle\underline{\mathbf{v}} :=[[{v¯1:ϕ}ϕΦ1]T[{v¯i:ϕ}ϕΦi]T[{v¯k:ϕ}ϕΦk]T]K,\displaystyle:=\begin{bmatrix}\begin{bmatrix}\left\{\underline{v}^{1:\phi}\right\}_{\phi\in\Phi^{1}}\end{bmatrix}^{\operatorname{T}}\\ \vdots\\ \begin{bmatrix}\left\{\underline{v}^{i:\phi}\right\}_{\phi\in\Phi^{i}}\end{bmatrix}^{\operatorname{T}}\\ \vdots\\ \begin{bmatrix}\left\{\underline{v}^{k:\phi}\right\}_{\phi\in\Phi^{k}}\end{bmatrix}^{\operatorname{T}}\\ \end{bmatrix}\in\mathbb{R}^{K},
𝐯¯\displaystyle\overline{\mathbf{v}} :=[[{v¯1:ϕ}ϕΦ1]T[{v¯i:ϕ}ϕΦi]T[{v¯k:ϕ}ϕΦk]T]K,\displaystyle:=\begin{bmatrix}\begin{bmatrix}\left\{\overline{v}^{1:\phi}\right\}_{\phi\in\Phi^{1}}\end{bmatrix}^{\operatorname{T}}\\ \vdots\\ \begin{bmatrix}\left\{\overline{v}^{i:\phi}\right\}_{\phi\in\Phi^{i}}\end{bmatrix}^{\operatorname{T}}\\ \vdots\\ \begin{bmatrix}\left\{\overline{v}^{k:\phi}\right\}_{\phi\in\Phi^{k}}\end{bmatrix}^{\operatorname{T}}\\ \end{bmatrix}\in\mathbb{R}^{K},

and

𝐕¯:=[𝐯¯𝐯¯]KT,𝐕¯:=[𝐯¯𝐯¯]KT.\underline{\mathbf{V}}:=\begin{bmatrix}\underline{\mathbf{v}}\\ \vdots\\ \underline{\mathbf{v}}\end{bmatrix}\in\mathbb{R}^{KT},\quad\overline{\mathbf{V}}:=\begin{bmatrix}\overline{\mathbf{v}}\\ \vdots\\ \overline{\mathbf{v}}\end{bmatrix}\in\mathbb{R}^{KT}.

We now constrain the voltage as follows

𝐕¯𝐕=𝐕~+n=1N(D¯n𝐩n+E¯n𝐪n)𝐕¯.\underline{\mathbf{V}}\leq\mathbf{V}=\widetilde{\mathbf{V}}+\sum_{n=1}^{N}\left(\overline{D}_{n}\mathbf{p}_{n}+\overline{E}_{n}\mathbf{q}_{n}\right)\leq\overline{\mathbf{V}}. (12)

To make the presentation clearer, let us define

Γn\displaystyle\Gamma_{n} :=[D¯nD¯n]2KT×T,\displaystyle:=\begin{bmatrix}\overline{D}_{n}\\ -\overline{D}_{n}\end{bmatrix}\in\mathbb{R}^{2KT\times T},
Ξn\displaystyle\Xi_{n} :=[E¯nE¯n]2KT×T,\displaystyle:=\begin{bmatrix}\overline{E}_{n}\\ -\overline{E}_{n}\end{bmatrix}\in\mathbb{R}^{2KT\times T},
𝐰\displaystyle\mathbf{w} :=[𝐕¯𝐕~𝐕¯+𝐕~]2KT\displaystyle:=\begin{bmatrix}\overline{\mathbf{V}}-\widetilde{\mathbf{V}}\\ -\underline{\mathbf{V}}+\widetilde{\mathbf{V}}\end{bmatrix}\in\mathbb{R}^{2KT}

so we may now write (12) as

n=1NΓn𝐩n+Ξn𝐪n𝐰.\sum_{n=1}^{N}\Gamma_{n}\mathbf{p}_{n}+\Xi_{n}\mathbf{q}_{n}\leq\mathbf{w}.

For each customer the operational cost over the time horizon [0,ΔT][0,\Delta T] is given by Ωn(𝐩n)\Omega_{n}(\mathbf{p}_{n}) (7), and we wish to minimize the total operational cost of all customers in 𝒩\mathcal{N} (n=1NΩn(𝐩n)\textstyle\sum_{n=1}^{N}\Omega_{n}(\mathbf{p}_{n})), subject to the feasibility sets n\mathcal{F}_{n} (6). We write the optimization problem (12) as

min𝐩1,,𝐩nT\displaystyle\min_{\mathbf{p}_{1},\dotsc,\mathbf{p}_{n}\in\mathbb{R}^{T}} n=1NΩn(𝐩n)\displaystyle\ \sum_{n=1}^{N}\Omega_{n}(\mathbf{p}_{n}) (12a)
s.t.\displaystyle\operatorname{s.t.} (𝐩n,𝐪n)n\displaystyle\ \left(\mathbf{p}_{n},\mathbf{q}_{n}\right)\in\mathcal{F}_{n} (12b)
s.t.\displaystyle\leavevmode\color[rgb]{1,1,1}\operatorname{s.t.} n=1NΓn𝐩n+Ξn𝐪n𝐰.\displaystyle\ \sum_{n=1}^{N}\Gamma_{n}\mathbf{p}_{n}+\Xi_{n}\mathbf{q}_{n}\leq\mathbf{w}. (12c)
Remark III.1.

It is possible to include the power flow constraints (which are structurally similar to the inverter capacity constraint (1)) into (12). However, as our primary focus in this work is communication costs, and so for the sake of brevity we do not present this here.

IV Distributed Communication Censored Approach

In this section we reformulate problem (12) into an ADMM formulation. Then, we show that for this problem we can use the Communication-Censored-ADMM algorithm of [21], with guarantees of convergence.

Let us begin with a quick summary of the general ADMM paradigm.

IV-A ADMM Summary

Given an optimization problem

min𝐱,𝐳f(𝐱)+g(𝐳)s.t.𝐀𝐱+𝐁𝐳=𝐜,𝐱n,𝐳m.\displaystyle\begin{split}\min_{\mathbf{x},\mathbf{z}}&\ f(\mathbf{x})+g(\mathbf{z})\\ \operatorname{s.t.}&\ \mathbf{A}\mathbf{x}+\mathbf{B}\mathbf{z}=\mathbf{c},\\ &\ \mathbf{x}\in\mathbb{R}^{n},\mathbf{z}\in\mathbb{R}^{m}.\end{split} (13)

ADMM proceeds by first defining the augmented Lagrangian

Lα(𝐱,𝐳,𝐲)\displaystyle L_{\alpha}(\mathbf{x},\mathbf{z},\mathbf{y}) =f(𝐱)+g(𝐳)+𝐲T(𝐀𝐱+𝐁𝐳𝐜)\displaystyle=f(\mathbf{x})+g(\mathbf{z})+\mathbf{y}^{T}(\mathbf{A}\mathbf{x}+\mathbf{B}\mathbf{z}-\mathbf{c})
+α2𝐀𝐱+𝐁𝐳𝐜2\displaystyle\mathrel{\phantom{=}}+\frac{\alpha}{2}\left\lVert\mathbf{A}\mathbf{x}+\mathbf{B}\mathbf{z}-\mathbf{c}\right\rVert^{2}

with dual variable 𝐲\mathbf{y}, and regularization parameter α\alpha (α\alpha can also be thought of as a stepsize, which balances convergence with constraints satisfaction). The decision variables 𝐱,𝐲,𝐳\mathbf{x,y,z} are then updated sequentially on each iteration kk as,

𝐱(k+1)=argmin𝐱nLα(𝐱,𝐳(k),𝐲(k)),\mathbf{x}^{(k+1)}=\operatorname*{arg\,min}_{\mathbf{x}\in\mathbb{R}^{n}}\ L_{\alpha}\left(\mathbf{x},\mathbf{z}^{(k)},\mathbf{y}^{(k)}\right),
𝐳(k+1)=argmin𝐳mLα(𝐱(k+1),𝐳,𝐲(k)),\mathbf{z}^{(k+1)}=\operatorname*{arg\,min}_{\mathbf{z}\in\mathbb{R}^{m}}\ L_{\alpha}\left(\mathbf{x}^{(k+1)},\mathbf{z},\mathbf{y}^{(k)}\right),
𝐲(k+1)=𝐲(k)α(𝐀𝐱(k+1)+𝐁𝐳(k+1)𝐜).\mathbf{y}^{(k+1)}=\mathbf{y}^{(k)}-\alpha\left(\mathbf{A}\mathbf{x}^{(k+1)}+\mathbf{B}\mathbf{z}^{(k+1)}-\mathbf{c}\right).

The ADMM algorithm has many desirable properties, such as strong duality, linear convergence rates, etc. Importantly, the ADMM algorithm can be implemented in a distributed way, and can be applied to a variety of problems, as there are very few restrictions on the function gg in (13). For a more detailed explanation, the reader should consult [13].

IV-B ADMM Formulation for 12

We consider a communication network represented by a graph 𝔾:={𝒩,𝔼}\mathbb{G}:=\left\{\mathcal{N},\mathbb{E}\right\}, where the vertex set 𝒩\mathcal{N} is the set of EV customers (as defined previously), and the edges in 𝔼𝒩×𝒩\mathbb{E}\subseteq\mathcal{N}\times\mathcal{N} represent communication links between EV customers (an example is presented in Fig. 2). Specifically, an edge (uv)𝔼(uv)\in\mathbb{E} allows bidirectional communication between customer uu and customer vv. Due to symmetry in the communication network, if edge (uv)𝔼(uv)\in\mathbb{E}, then we must also have (vu)𝔼(vu)\in\mathbb{E}. We denote the set of neighbors of customer uu as 𝒩u:={v𝒩|(uv)𝔼}\mathcal{N}_{u}:=\left\{v\in\mathcal{N}\;\middle|\;(uv)\in\mathbb{E}\right\}. We make the following assumption about 𝔾\mathbb{G}.

Assumption IV.1.

The graph 𝔾\mathbb{G} is connected.

Refer to caption
Figure 2: An example of a communication network represented by a graph 𝔾:={𝒩,𝔼}\mathbb{G}:=\left\{\mathcal{N},\mathbb{E}\right\}

Let us introduce a slack variable 𝐬n2KT\mathbf{s}_{n}\in\mathbb{R}^{2KT} for each customer n𝒩n\in\mathcal{N}, and define the following

Ψn\displaystyle\Psi_{n} :=[ΓnΞnI]2KT×(2T+2KT),\displaystyle:=\begin{bmatrix}\Gamma_{n}&\Xi_{n}&I\end{bmatrix}\in\mathbb{R}^{2KT\times(2T+2KT)},
𝐮n\displaystyle\mathbf{u}_{n} :=[𝐩n𝐪n𝐬n]2T+2KT.\displaystyle:=\begin{bmatrix}\mathbf{p}_{n}\\ \mathbf{q}_{n}\\ \mathbf{s}_{n}\end{bmatrix}\in\mathbb{R}^{2T+2KT}.

Then, we write the inequality constraint (12c) as

n=1NΨn𝐮n=n=1NΓn𝐩n+Ξn𝐪n+𝐬n=𝐰.\sum_{n=1}^{N}\Psi_{n}\mathbf{u}_{n}=\sum_{n=1}^{N}\Gamma_{n}\mathbf{p}_{n}+\Xi_{n}\mathbf{q}_{n}+\mathbf{s}_{n}=\mathbf{w}.

Define the sets

𝒮n\displaystyle\mathcal{S}_{n} :={𝐬n2KT| 0𝐬n},\displaystyle:=\left\{\mathbf{s}_{n}\in\mathbb{R}^{2KT}\;\middle|\;\mathbf{0}\leq\mathbf{s}_{n}\right\},
𝒰n\displaystyle\mathcal{U}_{n} :={𝐮n2T+2KT|(𝐩n,𝐪n)n,𝐬n𝒮n}.\displaystyle:=\left\{\mathbf{u}_{n}\in\mathbb{R}^{2T+2KT}\;\middle|\;\left(\mathbf{p}_{n},\mathbf{q}_{n}\right)\in\mathcal{F}_{n}\,,\ \mathbf{s}_{n}\in\mathcal{S}_{n}\right\}.

Denote the indicator function by

n(𝐮n)={0, if 𝐮n𝒰n, otherwise \mathcal{I}_{n}(\mathbf{u}_{n})=\begin{cases}0,&\text{ if }\mathbf{u}_{n}\in\mathcal{U}_{n}\\ \infty,&\text{ otherwise }\end{cases}

and let

fn(𝐮n):=Ωn(𝐩n)+n(𝐮n).f_{n}(\mathbf{u}_{n}):=\Omega_{n}(\mathbf{p}_{n})+\mathcal{I}_{n}(\mathbf{u}_{n}).
Proposition IV.2.

The optimization problem (12) is equivalent to the following

min𝐮1,,𝐮N2T+2KT\displaystyle\min_{\mathbf{u}_{1},\dotso,\mathbf{u}_{N}\in\mathbb{R}^{2T+2KT}} n=1Nfn(𝐮n)\displaystyle\ \sum_{n=1}^{N}f_{n}(\mathbf{u}_{n}) (13a)
s.t.\displaystyle\operatorname{s.t.} n=1NΨn𝐮n=𝐰.\displaystyle\ \sum_{n=1}^{N}\Psi_{n}\mathbf{u}_{n}=\mathbf{w}. (13b)

Since strong duality holds for Problem (13), together with Assumption IV.1, we can reformulate Problem (13) as a distributed consensus optimization problem using duality as in [27]. Specifically,

min𝝀i2KTβij2KT\displaystyle\min_{\begin{subarray}{c}\boldsymbol{\lambda}_{i}\in\mathbb{R}^{2KT}\\ \beta_{ij}\in\mathbb{R}^{2KT}\end{subarray}} n=1N(φn(𝝀n)+1N𝝀nT𝐰)\displaystyle\ \sum_{n=1}^{N}\left(\varphi_{n}(\boldsymbol{\lambda}_{n})+\frac{1}{N}\boldsymbol{\lambda}_{n}^{\operatorname{T}}\mathbf{w}\right) (13a)
s.t.\displaystyle\operatorname{s.t.} 𝝀n=βnmm𝒩n,n𝒩\displaystyle\ \boldsymbol{\lambda}_{n}=\beta_{nm}\ \forall m\in\mathcal{N}_{n},\ n\in\mathcal{N} (13b)
s.t.\displaystyle\leavevmode\color[rgb]{1,1,1}\operatorname{s.t.} 𝝀m=βnmm𝒩n,n𝒩.\displaystyle\ \boldsymbol{\lambda}_{m}=\beta_{nm}\ \forall m\in\mathcal{N}_{n},\ n\in\mathcal{N}. (13c)

Here, 𝝀n\boldsymbol{\lambda}_{n} is the nthn^{\text{th}} customers local copy of the global dual variable 𝝀\boldsymbol{\lambda}, βnm\beta_{{\color[rgb]{0,0,0}nm}} are auxiliary consensus variables, and for all n𝒩n\in\mathcal{N}

φn(𝝀)=max𝐮n2T+2KT(fn(𝐮n)𝝀TΨn𝐮n).\varphi_{n}(\boldsymbol{\lambda})=\max_{\mathbf{u}_{n}\in\mathbb{R}^{2T+2KT}}\left(-f_{n}(\mathbf{u}_{n})-\boldsymbol{\lambda}^{\operatorname{T}}\Psi_{n}\mathbf{u}_{n}\right).

Notice that Problem (13) is in ADMM form (13). Accordingly, we proceed to solve it using a distributed ADMM algorithm, which have been shown to perform well in [28, 29].

The following assumption is necessary and standard for most optimization paradigms.

Assumption IV.3.

There exists an optimal solution (𝐮1,,𝐮N)(\mathbf{u}_{1}^{*},\dotsc,\mathbf{u}_{N}^{*}) to the problem (13).

Remark IV.4.

Note that as long as the feasibility sets n\mathcal{F}_{n} (6) are non-empty, an optimal solution to (13) exists.

IV-C Communication-Censored-ADMM Formulation for 13

We start with a brief summary of the Communication-Censored-ADMM algorithm.

At each iteration kk, each EVnEV_{n} keeps the following local variables; the variable 𝝀nk\boldsymbol{\lambda}^{k}_{n}, the dual variable νnk\nu^{k}_{n}, the state variable 𝝀^nk\widehat{\boldsymbol{\lambda}}^{k}_{n} which was the last broadcast made to its neighbors, and the state variables of its neighbors 𝝀^mk\widehat{\boldsymbol{\lambda}}^{k}_{m} for m𝒩nm\in\mathcal{N}_{n}, which was the last broadcast from its neighbors.

Let ξnk=𝝀^nk1𝝀nk\xi_{n}^{k}=\widehat{\boldsymbol{\lambda}}_{n}^{k-1}-\boldsymbol{\lambda}_{n}^{k}, and for constants γ>0\gamma>0, ε(0,1)\varepsilon\in(0,1) define

Hn(k,ξnk):=ξnkγεk.H_{n}(k,\xi_{n}^{k}):=\left\lVert\xi_{n}^{k}\right\rVert-\gamma\varepsilon^{k}. (14)

Customer n𝒩n\in\mathcal{N} communicates with its neighbors only if Hn(k,ξnk)0H_{n}(k,\xi_{n}^{k})\geq 0, and in this way communication is restricted to only significant updates of the local primal variables. The complete algorithm, which is executed by each EV n𝒩n\in\mathcal{N} in parallel, is presented below in 1.

input : Initial local variables set to 𝝀n0=νn0=𝝀^n0=𝟎\boldsymbol{\lambda}_{n}^{0}=\nu_{n}^{0}=\widehat{\boldsymbol{\lambda}}_{n}^{0}=\mathbf{0} and 𝝀^m0=𝟎\widehat{\boldsymbol{\lambda}}_{m}^{0}=\mathbf{0} for all m𝒩nm\in\mathcal{N}_{n}.
Iteration limit SS. Stepsize cc.
Local cost functions φn\varphi_{n}.
Censoring function HnH_{n}.
for iteration k=1,,Sk=1,\dotsc,S  do
       Compute local variable 𝝀nk\boldsymbol{\lambda}_{n}^{k} as
𝝀nk\displaystyle\boldsymbol{\lambda}_{n}^{k} =argmin𝝀n(φn(𝝀n)+1N𝝀nT𝐰\displaystyle=\operatorname*{arg\,min}_{\boldsymbol{\lambda}_{n}}\Bigg{(}\varphi_{n}(\boldsymbol{\lambda}_{n})+\frac{1}{N}\boldsymbol{\lambda}_{n}^{\operatorname{T}}\mathbf{w}
+𝝀n,νnk1cm𝒩n(𝝀^nk1+𝝀^mk1)\displaystyle+\left\langle\boldsymbol{\lambda}_{n},\nu_{n}^{k-1}-c\sum_{m\in\mathcal{N}_{n}}(\widehat{\boldsymbol{\lambda}}_{n}^{k-1}+\widehat{\boldsymbol{\lambda}}_{m}^{k-1})\right\rangle
+c|𝒩n|𝝀n2)\displaystyle+c\lvert\mathcal{N}_{n}\rvert\left\lVert\boldsymbol{\lambda}_{n}\right\rVert^{2}\Bigg{)}
       Compute ξnk=𝝀^nk1𝝀nk\xi_{n}^{k}=\widehat{\boldsymbol{\lambda}}_{n}^{k-1}-\boldsymbol{\lambda}_{n}^{k}
       if Hn(k,ξnk)0H_{n}(k,\xi_{n}^{k})\geq 0 then
             Transmit 𝝀nk\boldsymbol{\lambda}_{n}^{k} to neighbors and set 𝝀^nk=𝝀nk\widehat{\boldsymbol{\lambda}}_{n}^{k}=\boldsymbol{\lambda}_{n}^{k}
      else
             Do not transmit and set 𝝀^nk=𝝀^nk1\widehat{\boldsymbol{\lambda}}_{n}^{k}=\widehat{\boldsymbol{\lambda}}_{n}^{k-1}
       end if
      if Recieve 𝛌mk\boldsymbol{\lambda}_{m}^{k} from any neighbor mm then
             Set 𝝀^mk=𝝀mk\widehat{\boldsymbol{\lambda}}^{k}_{m}=\boldsymbol{\lambda}_{m}^{k}
      else
             Set 𝝀^mk=𝝀^mk1\widehat{\boldsymbol{\lambda}}_{m}^{k}=\widehat{\boldsymbol{\lambda}}_{m}^{k-1}
       end if
      Update the local dual variable as
νnk=νnk1+cm𝒩n(𝝀^nk𝝀^mk)\nu_{n}^{k}=\nu_{n}^{k-1}+c\sum_{m\in\mathcal{N}_{n}}(\widehat{\boldsymbol{\lambda}}_{n}^{k}-\widehat{\boldsymbol{\lambda}}_{m}^{k})
end for
CC-ADMM 1
Proposition IV.5.

For problem (13), 1 converges to an optimal solution (𝛌1,,𝛌N)(\boldsymbol{\lambda}_{1}^{*},\dotsc,\boldsymbol{\lambda}_{N}^{*}).

Proof.

It can be easily shown that the local cost functions

φn(𝝀n)+1N𝝀nT𝐰\varphi_{n}(\boldsymbol{\lambda}_{n})+\frac{1}{N}\boldsymbol{\lambda}_{n}^{\operatorname{T}}\mathbf{w}

are convex. Taking convexity of the cost functions together with Assumption IV.1 and Assumption IV.3, the result now follows Theorem 1 of [21]. ∎

Note that the 𝝀n\boldsymbol{\lambda}_{n} update step in 1 involves solving the following min-max optimization problem,

𝝀nk=argmin𝝀nmax𝐮n{fn(𝐮n)𝝀nTΨn𝐮n+1N𝝀nT𝐰\displaystyle\boldsymbol{\lambda}_{n}^{k}=\operatorname*{arg\,min}_{\boldsymbol{\lambda}_{n}}\max_{\mathbf{u}_{n}}\Bigg{\{}-f_{n}(\mathbf{u}_{n})-\boldsymbol{\lambda}_{n}^{\operatorname{T}}\Psi_{n}\mathbf{u}_{n}+\frac{1}{N}\boldsymbol{\lambda}_{n}^{\operatorname{T}}\mathbf{w}
+𝝀n,νnk1cm𝒩n(𝝀^nk1+𝝀^mk1)\displaystyle+\left\langle\boldsymbol{\lambda}_{n},\nu_{n}^{k-1}-c\sum_{m\in\mathcal{N}_{n}}(\widehat{\boldsymbol{\lambda}}_{n}^{k-1}+\widehat{\boldsymbol{\lambda}}_{m}^{k-1})\right\rangle
+c|𝒩n|𝝀n2},\displaystyle+c\lvert\mathcal{N}_{n}\rvert\left\lVert\boldsymbol{\lambda}_{n}\right\rVert^{2}\Bigg{\}},

where cc is the stepsize (cf. α\alpha in Section IV-A).

Following [27, Section IV-A], as the objective of this min-max problem is convex in 𝝀n\boldsymbol{\lambda}_{n} and concave in 𝐮n\mathbf{u}_{n}, we can use the Minimax Theorem of [30, Proposition 2.6.2] to switch the order of the max\max and min\min operators. Let

𝐲=𝚿𝒏𝐮n1N𝐰νnk1+cm𝒩n(𝝀^nk1+𝝀^mk1).\mathbf{y}=\boldsymbol{\Psi_{n}}\mathbf{u}_{n}-\frac{1}{N}\mathbf{w}-\nu_{n}^{k-1}+c\sum_{m\in\mathcal{N}_{n}}(\widehat{\boldsymbol{\lambda}}_{n}^{k-1}+\widehat{\boldsymbol{\lambda}}_{m}^{k-1}).

Then the inner minimization problem has a solution

2c|𝒩n|𝝀nk=\displaystyle 2c\lvert\mathcal{N}_{n}\rvert\boldsymbol{\lambda}_{n}^{k}= 𝐲\displaystyle\mathbf{y} (15)

and the outer maximization problem reduces to

𝐮nk=argmin𝐮{fn(𝐮)+14c|𝒩|𝐲2}.\mathbf{u}_{n}^{k}=\operatorname*{arg\,min}_{\mathbf{u}}\left\{f_{n}(\mathbf{u})+\frac{1}{4c\lvert\mathcal{N}\rvert}\left\lVert\mathbf{y}\right\rVert^{2}\right\}. (16)

Updating the variable 𝝀nk\boldsymbol{\lambda}_{n}^{k}, by first updating 𝐮nk\mathbf{u}_{n}^{k} as per (16) and then using (15) is computationally efficient. That is, 1 can be run in parallel by each EV, facilitating efficient paralleled EV charge and discharge operations.

Remark IV.6.

In the CC-ADMM paradigm, robustness to a communication failure of an individual agent is inherited from the underlying peer-to-peer communication network. That is, CC-ADMM is designed to limit the communication between agents at particular times based on the relevance of the transmitted information — it does not remove the ability to communicate.

V Numerical Simulations

To demonstrate 1 for EV (dis)charging, we consider a representative unbalanced three-phase, two node distribution circuit with time-varying loads across a day (T=48,Δ=0.5T=48,\Delta=0.5). The circuit has unbalanced impedences — for instance, Z01,𝔞𝔞=0.1313+0.3856𝔦Z^{01,\mathfrak{a}\mathfrak{a}}=0.1313+0.3856\mathfrak{i}, Z01,𝔟𝔟=0.1278+0.3969𝔦Z^{01,\mathfrak{b}\mathfrak{b}}=0.1278+0.3969\mathfrak{i}, Z01,𝔠𝔠=0.1293+0.3920𝔦Z^{01,\mathfrak{c}\mathfrak{c}}=0.1293+0.3920\mathfrak{i} (𝔦2=1\mathfrak{i}^{2}=-1) 333The complete data of impedences and loads, and the simulation settings for all our examples is openly available at https://github.com/Abhishek-B/IREP-2022.. In what follows, there are 50 customers connected to each of the three supply points, as per the topology illustrated in Fig. 3. Note that each customer connects to the distribution circuit supply points via a PCC, as per the residential EV energy system depicted in Fig. 1.

Refer to caption
Figure 3: Topology for a representative unbalanced three-phase, two node distribution circuit with 5050 EV customers connected to each single phase supply point (represented by grey boxes at node 1). The PCC for each customer as in Fig. 1, is located at one of these three supply points.

We set the following: an=0,dn=T,s¯n=12,p¯n=7,p¯n=7,a_{n}=0,\quad d_{n}=T,\quad\overline{s}_{n}=12,\quad\overline{p}_{n}=7,\quad\underline{p}_{n}=-7, and the operational cost regularization κn=104\kappa_{n}=10^{-4}, for all EVs. The remaining parameters bn,σ^n,σn,σ¯n,σ¯nb_{n},\hat{\sigma}_{n},\sigma^{*}_{n},\overline{\sigma}_{n},\underline{\sigma}_{n} are chosen randomly in accordance with the simulation setup of [4]. We do not list these parameters here, but all of our code and data is publicily available at https://github.com/Abhishek-B/IREP-2022, so that the reader can access our simulation setup, and test parameters there.

We compare 1 against the benchmark ADMM algorithm of [17] (by turning off the censoring), with step size c=100c=100, and iteration limit S=30S=30 for both algorithms.

Example V.1.

We consider a completely connected communication network, i.e., every customer can communicate with every other customer (for u𝒩,𝒩u=𝒩\{u}u\in\mathcal{N},\mathcal{N}_{u}=\mathcal{N}\backslash\{u\}). Our simulation results are illustrated in Fig. 4 and Fig. 5.

Refer to caption
Figure 4: Voltage profile at node 1 for each of the three phases in Example 1. The baseline voltage profile for each phase represents the distribution circuit without grid-connected EV loads — and we observe a voltage excursion between 6pm and midnight occurring on phase 3. We benchmark the ADMM algorithm from [17] against 1, and observe a flatter voltage profile in all cases — absent voltage excursions. Both ADMM algorithms correct the observed voltage excursion on Phase 3 by way of EV discharging.

Firstly, notice from Fig. 4 that the solution obtained from the benchmark algorithm of [17] and the censored solution of 1 both satisfy safe operational limits of ±5%\pm 5\% about the nominal voltage. Moreover, the censored solution of 1 presents with a generally flatter voltage profile.

The real success comes from looking at the censoring pattern from 1. In Fig. 5, a white square means that a customer broadcast information at that iteration, and black square means they did not. In Fig. 5, we observe that the communication is very sparse. In fact, 1 required 21%21\% of the communications that would be otherwise by required by the benchmark algorithm of [17]. Our simulation results are consistent with findings from [18], where it is discovered that communicating less frequently, provides improvements to the optimization methods over networks with communication.

Refer to caption
Figure 5: Peer-to-peer customer communications at each iteration as per CC-ADMM for Example V.1. Specifically, a white square indicates that a customer has broadcast information for that iteration, and a black square indicates that the customer did not communicate during the respective iteration.
Example V.2.

Next, we consider a communication network where each customer communicates with only 70 other grid-connected customers.

Refer to caption
Figure 6: Voltage profile at node 1 for each of the three phases in Example 2. We benchmark the ADMM algorithm from [17] against 1, and observe a voltage profile which is generally closer to the nominal voltage with 1 in all cases — absent voltage excursions. Both ADMM algorithms correct the observed voltage excursion on Phase 3 by way of EV discharging.

Again, we observe from Fig. 6 that the solution obtained by the benchmark algorithm of [17] and 1 are qualitatively the same, and both satisfy the safe operational constraints of ±5%\pm 5\% about the nominal voltage. In fact, the solution from 1 generally results in a voltage profile closer to the nominal voltage (11 p.u.).

Overall, 1 required 17%17\% of the communication that was otherwise required by the benchmark algorithm from [17]. From Fig. 7, we observe that the communication censoring pattern is sparser in the earlier iterations in comparison to Example V.1. However, we also observe that more customers communicate during later iterations when compared with Example V.1. Accordingly, we observe that 1 reduces the transmission of unnecessary information between EV customers, in the context of a peer-to-peer communication network.

Refer to caption
Figure 7: Peer-to-peer customer communications at each iteration as per CC-ADMM for Example 2. Specifically, a white square indicates that a customer has broadcast information for that iteration, and a black square indicates that the customer did not communicate during the respective iteration.

The communication savings observed in these examples are remarkable, and it speaks to the potential of the censoring strategy for EV (dis)charge coordination in larger scale systems with more complicated dynamics.

VI Conclusion & Future Work

In this paper, we proposed an approach to coordinating EV (dis)charging in unbalanced electrical networks, using a Communication-Censored-ADMM algorithm. We proved that the algorithm is guaranteed to converge to the optimal solution, in the EV (dis)charge setting. The censoring strategy improved the optimization-based EV (dis)charging operations over an electrical network, while also reducing peer-to-peer communications. In the presented case study, we demonstrated the potential benefits of censoring communication between EVs. In future work, more realistic unbalanced electrical networks can be considered for benchmarking the proposed Communication-Censored-ADMM EV (dis)charging against other ADMM-based approaches. Ways to incorporate communication status (success/failure) checks, such as beaconing [31, Section 2.1], in line with Remark IV.6, are also possible.

Acknowledgment

The first author would like to thank Dr. P. Braun and Prof. I. Shames for insightful discussions throughout the project.

References

  • [1] C. Macharis, J. Van Mierlo, and P. Van Den Bossche, “Combining intermodal transport with electric vehicles: Towards more sustainable solutions,” Transportation Planning and Technology, vol. 30, no. 2-3, pp. 311–323, 2007.
  • [2] H. Shareef, M. M. Islam, and A. Mohamed, “A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 403–420, 2016.
  • [3] F. G. Venegas, M. Petit, and Y. Perez, “Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services,” Renewable and Sustainable Energy Reviews, vol. 145, p. 111060, 2021.
  • [4] N. I. Nimalsiri, E. L. Ratnam, C. P. Mediwaththe, D. B. Smith, and S. K. Halgamuge, “Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit,” Applied Energy, vol. 291, p. 116857, 2021.
  • [5] J. De Hoog, T. Alpcan, M. Brazil, D. Thomas, and I. Mareels, “Optima charging of electric vehicles taking distribution network constraints into account,” IEEE Trans. Power Syst., vol. 30, no. 1, pp. 365–375, 2014.
  • [6] X. Huo and M. Liu, “Decentralized electric vehicle charging control via a novel shrunken primal-multi-dual subgradient (spmds) algorithm,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 1367–1373.
  • [7] M. Liu, P. Phanivong, Y. Shi, and D. Callaway, “Decentralized charging control of evs in residential distribution networks,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 266–281, 2017.
  • [8] Z. Wan, H. Li, H. He, and D. Prokhorov, “Model-free real-time ev charging scheduling based on deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5246–5257, 2018.
  • [9] H. Li, Z. Wan, and H. He, “Constrained ev charging scheduling based on safe deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2427–2439, 2019.
  • [10] D. Yuan, A. Bhardwaj, I. Petersen, E. L. Ratnam, and G. Shi, “Towards online optimization for power grids,” ACM SIGENERGY Energy Informatics Review, vol. 1, no. 1, pp. 51–58, 2021.
  • [11] B. Khaki, Y.-W. Chung, C. Chu, and R. Gadh, “Hierarchical distributed ev charging scheduling in distribution grids,” in 2019 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2019, pp. 1–5.
  • [12] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.
  • [13] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via the alternating direction method of multipliers.   Now Publishers Inc, 2011.
  • [14] X. Zhou, S. Zou, P. Wang, and Z. Ma, “Voltage regulation in constrained distribution networks by coordinating electric vehicle charging based on hierarchical admm,” IET Generation, Transmission & Distribution, vol. 14, no. 17, pp. 3444–3457, 2020.
  • [15] T. Rahman, Y. Xu, and Z. Qu, “Continuous-domain real-time distributed admm algorithm for aggregator scheduling and voltage stability in distribution network,” IEEE Transactions on Automation Science and Engineering, 2021.
  • [16] B. Khaki, C. Chu, and R. Gadh, “A hierarchical admm based framework for ev charging scheduling,” in 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D).   IEEE, 2018, pp. 1–9.
  • [17] N. Nimalsiri, E. Ratnam, D. Smith, C. Mediwaththe, and S. Halgamuge, “Distributed optimization-based electric vehicle charging and discharging in unbalanced distribution grids,” TechRxiv, 2021.
  • [18] K. Tsianos, S. Lawlor, and M. Rabbat, “Communication/computation tradeoffs in consensus-based distributed optimization,” Advances in neural information processing systems, vol. 25, 2012.
  • [19] A. Nedić, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.
  • [20] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei, “Balancing communication and computation in distributed optimization,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3141–3155, 2018.
  • [21] Y. Liu, W. Xu, G. Wu, Z. Tian, and Q. Ling, “Communication-censored admm for decentralized consensus optimization,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2565–2579, 2019.
  • [22] A. Von Meier, D. Culler, A. McEachern, and R. Arghandeh, “Micro-synchrophasors for distribution systems,” in ISGT 2014.   IEEE, 2014, pp. 1–5.
  • [23] Y. Zhou, R. Arghandeh, I. Konstantakopoulos, S. Abdullah, A. von Meier, and C. J. Spanos, “Abnormal event detection with high resolution micro-pmu data,” in 2016 Power Systems Computation Conference (PSCC).   IEEE, 2016, pp. 1–7.
  • [24] J. Rivera, P. Wolfrum, S. Hirche, C. Goebel, and H.-A. Jacobsen, “Alternating direction method of multipliers for decentralized electric vehicle charging control,” in 52nd IEEE Conference on Decision and Control.   IEEE, 2013, pp. 6960–6965.
  • [25] L. Gan and S. H. Low, “Convex relaxations and linear approximation for optimal power flow in multiphase radial networks,” in 2014 Power Systems Computation Conference.   IEEE, 2014, pp. 1–9.
  • [26] D. B. Arnold, M. Sankur, R. Dobbe, K. Brady, D. S. Callaway, and A. Von Meier, “Optimal dispatch of reactive power for voltage regulation and balancing in unbalanced distribution systems,” in 2016 IEEE Power and Energy Society General Meeting.   IEEE, 2016, pp. 1–5.
  • [27] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via inexact consensus admm,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, 2014.
  • [28] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed admm over networks,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 5082–5095, 2017.
  • [29] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the admm in decentralized consensus optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.
  • [30] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex analysis and optimization.   Athena Scientific, 2003, vol. 1.
  • [31] R. Badonnel, O. Festor et al., “Fault monitoring in ad-hoc networks based on information theory,” in International Conference on Research in Networking.   Springer, 2006, pp. 427–438.