This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Combining First-Order Classical and Intuitionistic Logic

Masanobu Toyooka Hokkaido University
Sapporo, JapanGraduate School of Letters [email protected] Hokkaido University
Sapporo, JapanFaculty of Humanities and Human Science
   Katsuhiko Sano Hokkaido University
Sapporo, JapanFaculty of Humanities and Human Science [email protected]
Abstract

This paper studies a first-order expansion of a combination 𝐂+𝐉\mathbf{C+J} of intuitionistic and classical propositional logic, which was studied by Humberstone (1979) and del Cerro and Herzig (1996), from a proof-theoretic viewpoint. While 𝐂+𝐉\mathbf{C+J} has both classical and intuitionistic implications, our first-order expansion adds classical and intuitionistic universal quantifiers and one existential quantifier to 𝐂+𝐉\mathbf{C+J}. This paper provides a multi-succedent sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) for our combination of the first-order intuitionistic and classical logic. Our sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) restricts contexts of the right rules for intuitionistic implication and intuitionistic universal quantifier to particular forms of formulas. The cut-elimination theorem is established to ensure the subformula property. As a corollary, 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is conservative over both first-order intuitionistic and classical logic. Strong completeness of 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is proved via a canonical model argument.

1 Introduction

1.1 Introduction and Motivation

This paper studies a proof-theoretic aspect of a first-order expansion of a combined logic 𝐂+𝐉\mathbf{C+J} of intuitionistic and classical propositional logic, which was studied by Humberstone [8] and del Cerro and Herzig [3]. While 𝐂+𝐉\mathbf{C+J} has both classical and intuitionistic implications, our first-order expansion adds classical and intuitionistic universal quantifiers and one existential quantifier to 𝐂+𝐉\mathbf{C+J}. In particular, this paper proposes a cut-free sequent calculus called 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), which is an expansion of the calculus 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) in [25] for the combination of intuitionistic and classical propositional logic.

There are various semantic methods to combine intuitionistic and classical logic, such as ones in [2, 4, 5], but this paper follows the semantic treatment in [3, 8], whose main idea is adding intuitionistic and classical implications into one logic called 𝐂+𝐉\mathbf{C+J}. Each implication (expressed as _𝚒,_𝚌\mathbin{\to}_{\_}{\mathtt{i}},\mathbin{\to}_{\_}{\mathtt{c}}, respectively) is interpreted in a Kripke model as follows:

w_MA_𝚒Bifffor all vW,(wRv and v_MA jointly imply v_MB),w_MA_𝚌Biffw_MA implies w_MB,\begin{array}[]{lll}w\models_{\_}{M}A\mathbin{\to}_{\_}{\mathtt{i}}B&\mathrm{iff}&\text{for all }v\in W,(wRv\text{ and }v\models_{\_}{M}A\text{ jointly imply }v\models_{\_}{M}B),\\ w\models_{\_}{M}A\mathbin{\to}_{\_}{\mathtt{c}}B&\mathrm{iff}&w\models_{\_}{M}A\text{ implies }w\models_{\_}{M}B,\\ \end{array}

where MM is an intuitionistic Kripke model, ww is a possible world in MM, and RR is a preorder equipped in MM.

It is well-known that an intuitionistically valid formula A_𝚒(B_𝚒A)A\mathbin{\to}_{\_}{\mathtt{i}}(B\mathbin{\to}_{\_}{\mathtt{i}}A) corresponds to the property called heredity with respect to AA in intuitionistic Kripke semantics, which is defined as: wAw\models A and wRvwRv jointly imply vAv\models A for all Kripke models MM and all states ww and vv in MM111The correspondence between heredity and the formula A_𝚒(B_𝚒A)A\mathbin{\to}_{\_}{\mathtt{i}}(B\mathbin{\to}_{\_}{\mathtt{i}}A) is mentioned in [9, 10, 24]. However, the existence of classical implication breaks this heredity in the Kripke semantics of 𝐂+𝐉\mathbf{C+J}, i.e., there is a Kripke model where ¬_𝚌p_𝚒(_𝚒¬_𝚌p)\neg_{\_}{\mathtt{c}}p\mathbin{\to}_{\_}{\mathtt{i}}(\top\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}p) is not valid. Because of this semantic phenomenon, del Cerro and Herzig [3] added to their Hilbert system for 𝐂+𝐉\mathbf{C+J} the following syntactically restricted axiom:

(PER)A_𝚌(B_𝚒A) A is a persistent formula,\texttt{(PER)}A\mathbin{\to}_{\_}{\mathtt{c}}(B\mathbin{\to}_{\_}{\mathtt{i}}A)^{{\dagger}}\quad{\dagger}\text{ $A$ is a persistent formula},

where a persistent formula can be understood essentially as a formula of the form atomic pp or A_𝚒BA\mathbin{\to}_{\_}{\mathtt{i}}B (AA and BB possibly contain the classical implication)222The reason why we use the expression “essentially” is the definition provided in [3] is slightly different..

By employing the idea of the axiom (PER), a cut-free sequent calculus 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) of 𝐂+𝐉\mathbf{C+J} was proposed in [25] where the right rule for the intuitionistic implication is restricted as follows:

C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_n,AB(_𝚒)C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_nA_𝚒B,C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow A\mathbin{\to}_{\_}{\mathtt{i}}BC_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n},A\Rightarrow B,

while the ordinary right rule for the intuitionistic implication is of the following form:

Γ,ABΓA_𝚒B.\Gamma\Rightarrow A\to_{\_}{\mathtt{i}}B\Gamma,A\Rightarrow B.

Even though this restriction is imposed, a sequent derivable in intuitionistic logic is also derivable in 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}). This is because the ordinary rule is derivable in 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) if the context of the rule contains only intuitionistic formulas. The ordinary rule is also derivable in the calculus obtained from intuitionistic propositional sequent calculus by replacing it with the restricted one. Therefore, the restricted version of the rule captures the core of the original one.

When expanding 𝐂+𝐉\mathbf{C+J} to a first-order syntax, we add intuitionistic and classical universal quantifiers (expressed as _𝚒,_𝚌\forall_{\_}{\mathtt{i}},\forall_{\_}{\mathtt{c}}, respectively) and one existential quantifier (expressed as \exists). Each universal quantifier is interpreted in a Kripke model as follows:

w_M_𝚒xAiff for all vW,(wRv implies for all dD(v),v_MA[d¯/x]),w_M_𝚌xAiff for all dD(w),w_MA[d¯/x],\begin{array}[]{lll}w\models_{\_}{M}\forall_{\_}{\mathtt{i}}xA&\mathrm{iff}&\text{ for all }v\in W,(wRv\text{ implies }\text{for all }d\in D(v),v\models_{\_}{M}A[\underline{d}/x]),\\ w\models_{\_}{M}\forall_{\_}{\mathtt{c}}xA&\mathrm{iff}&\text{ for all }d\in D(w),w\models_{\_}{M}A[\underline{d}/x],\\ \end{array}

where MM is a Kripke model for first-order intuitionistic logic and d¯\underline{d} is a syntactic name of an element dd in a domain. As a Kripke model for propositional intuitionistic logic, ww and vv are possible worlds in MM and RR is a preorder equipped in MM.

Similar to the classical implication, the classical universal quantifier also breaks the heredity in a Kripke semantics, while the intuitionistic one does not. Therefore, we have to regard a formula of the form _𝚒xA\forall_{\_}{\mathtt{i}}xA as a persistent formula. This consideration enables us to expand 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) naturally to 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). In 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), the right rule for the intuitionistic implication can be modified to cover the new notion of persistent formula in the first-order syntax. Moreover, the right rule for the intuitionistic universal quantifier is defined as follows:

_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_nA[z/x](_𝚒)_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_n_𝚒xA,\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow\forall_{\_}{\mathtt{i}}xA\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow A[z/x],

where zz must not occur free in the lower sequent. This paper establishes that this calculus enjoys the cut-elimination, which guarantees the subformula property, and shows that the calculus is sound and semantically complete with respect to the class of all intuitionistic Kripke models.

This paper is structured as follows. Section 2 provides our syntax, Kripke semantics for it, and the sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). The soundness is shown in the section. Section 3 demonstrates the cut elimination theorem. Section 4 establishes the strong completeness for Kripke semantics via a canonical model argument. Section 5 concludes the paper and gives further direction of research.

1.2 Related Work

An attempt related to our approach the most was the one in [12]. In [12], a sequent calculus for a first-order combination of intuitionistic and classical logic, denoted by 𝐅𝐎\mathbf{FO^{\supset}}, was given. This calculus is provided by adding intuitionistic implication to first-order classical logic, so it has only one universal quantifier (a classical one). Therefore, this study is also regarded as a different first-order expansion of 𝐂+𝐉\mathbf{C+J} from ours. From our perspective, however, the intuitionistic universal quantifier is missing in [12]. In order to deal with the failure of the heredity mentioned in Section 1.1, the calculus employs the notion of structured single succedent sequent of the form: Γ_1;;Γ_nA\Gamma_{\_}{1};\cdots;\Gamma_{\_}{n}\Rightarrow A, where Γ_i\Gamma_{\_}{i} is a finite set of formulas. For example, B_1,B_2;C_1,C_2,C_3;DAB_{\_}{1},B_{\_}{2};C_{\_}{1},C_{\_}{2},C_{\_}{3};D\Rightarrow A is a structured sequent and its semantic interpretation (see [12, Definition 16]) is: for any w_1,w_2,w_3w_{\_}{1},w_{\_}{2},w_{\_}{3} such that w_1w_2w_3w_{\_}{1}\leqslant w_{\_}{2}\leqslant w_{\_}{3}, if w_1B_iw_{\_}{1}\models B_{\_}{i} for all ii, w_2C_jw_{\_}{2}\models C_{\_}{j} for all jj and w_3Dw_{\_}{3}\models D, then w_3Aw_{\_}{3}\models A. Thanks to this notion, no restriction on contexts is needed for sequents in 𝐅𝐎\mathbf{FO^{\supset}}. It is noted that some rule for 𝐅𝐎\mathbf{FO^{\supset}} does not satisfy the subformula property. Lucio [12] proved that 𝐅𝐎\mathbf{FO^{\supset}} is sound and complete for the intended Kripke semantics.

Other than 𝐂+𝐉\mathbf{C+J}, there are many attempts to combine intuitionistic and classical logic. In [2], a logic called 𝐂𝐈𝐏𝐋\mathbf{CIPL}, whose syntax consists of propositional variables and intuitionistic and classical implications, was proposed, and a Hilbert system and a Kripke semantics were given. The Kripke semantics has an interpretation of classical implication different from that of 𝐂+𝐉\mathbf{C+J}. In [4, 5], the logic called 𝐈𝐏𝐂\mathbf{IPC}^{\sim} was given by adding a negation called “empirical negation” to intuitionistic logic. This negation may be regarded as classical negation, but the semantic interpretation of empirical negation was different from classical one. That is, the empirical negation is evaluated at a base state of a Kripke model where a base state can see all states. Also, a semantic consequence relation in [4, 5] is defined in terms of base states of Kripke models. It should be noted that all formulas satisfy heredity in 𝐈𝐏𝐂\mathbf{IPC}^{\sim}. In [4, 5], a Hilbert system was given for 𝐈𝐏𝐂\mathbf{IPC}^{\sim}. We, however, emphasize that all of [2, 4, 5] stay at the propositional level. Our study of a first-order expansion of 𝐂+𝐉\mathbf{C+J} may be useful to expand these systems to the first-order level.

Prawitz [23] provided a system called ecumenical system as a natural deduction system. The underlying syntax of this system is obtained by adding classical implication, disjunction, and existential quantifier to a syntax of intuitionistic logic. An interesting syntactic feature of this system is that it has only one negation (regarded as intuitionistic negation), while two implications exist. A Kripke semantics and a sequent calculus for the propositional fragment were given in [20] and [21] respectively, and a Kripke semantics and a sequent calculus 𝐋𝐄𝐜𝐢\mathbf{LEci} of the full fragment were proposed in [22]. The main idea of the system is defining a classical logical connectives or quantifier in terms of intuitionistic ones. For example, the interpretation for the classical implication is defined as follows: wA_𝚌Bw\models A\mathbin{\to}_{\_}{\mathtt{c}}B iff w¬(A¬B)w\models\neg(A\land\neg B), where ¬\neg is intuitionistic negation. Corresponding to this interpretation, the right rule for the classical implication is defined as follows:

Γ,A,¬BΓA_𝚌B.\Gamma\Rightarrow A\mathbin{\to}_{\_}{\mathtt{c}}B\Gamma,A,\neg B\Rightarrow\bot.

It is noted that cut-elimination was shown in [22], but the calculus does not satisfy the subformula property as we can easily see from the above right rule of the classical implication. It is remarked that, although our syntax is different from [20, 21, 22, 23], our sequent calculus is fully analytic, i.e., all the inference rules except the rule of cut satisfy the subformula property and the calculus also enjoys the cut-elimination theorem.

2 Syntax, Kripke Semantics, and Sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J})

2.1 Syntax

This section introduces the syntax for 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). Our syntax \mathcal{L} consists of the following:

  • A countably infinite set of variables 𝖵𝖺𝗋\mathsf{Var} := {x_1,x_2,}\{x_{\_}{1},x_{\_}{2},\ldots\},

  • A countably infinite set of constant symbols {c_1,c_2,}\{c_{\_}{1},c_{\_}{2},\ldots\},

  • A countably infinite set of predicate symbols {P_1,P_2,}\{P_{\_}{1},P_{\_}{2},\ldots\},

  • Logical connectives: ,,,_𝚒,_𝚌\bot,\land,\lor,\mathbin{\to}_{\_}{\mathtt{i}},\mathbin{\to}_{\_}{\mathtt{c}},

  • Quantifiers: _𝚒,_𝚌,\forall_{\_}{\mathtt{i}},\forall_{\_}{\mathtt{c}},\exists.

The intuitionistic and classical implications and universal quantifiers are denoted by _𝚒\mathbin{\to}_{\_}{\mathtt{i}}, _𝚌\mathbin{\to}_{\_}{\mathtt{c}} and _𝚒\forall_{\_}{\mathtt{i}}, _𝚌\forall_{\_}{\mathtt{c}}, respectively. Only one disjunction and existential quantifier are contained, since their satisfaction relations in standard Kripke semantics are the same between classical logic and intuitionistic logic. We denote by _𝐂\mathcal{L}_{\_}{\mathbf{C}} (the syntax for the classical logic) and _𝐉\mathcal{L}_{\_}{\mathbf{J}} (the syntax for the intuitionistic logic) the resulting syntax dropping _𝚒\mathbin{\to}_{\_}{\mathtt{i}} and _𝚒\forall_{\_}{\mathtt{i}}, _𝚌\mathbin{\to}_{\_}{\mathtt{c}} and _𝚌\forall_{\_}{\mathtt{c}}, respectively. We define \top := _𝚒\bot\mathbin{\to}_{\_}{\mathtt{i}}\bot, ¬_𝚌A\neg_{\_}{\mathtt{c}}A := A_𝚌A\mathbin{\to}_{\_}{\mathtt{c}}\bot, and ¬_𝚒A\neg_{\_}{\mathtt{i}}A := A_𝚒A\mathbin{\to}_{\_}{\mathtt{i}}\bot.

Terms consist of variables and constant symbols and are denoted by t_1,t_2,t_{\_}{1},t_{\_}{2},\ldots. A constant symbol is called a closed term, since it has no occurrence of free variables. The set of all formulas 𝖥𝗈𝗋𝗆_\mathsf{Form}_{\_}{\mathcal{L}} (often written as 𝖥𝗈𝗋𝗆\mathsf{Form}) for the syntax \mathcal{L}, is defined inductively as follows:

A::=P(t_1,,t_n)||AA|AA|A_𝚒A|A_𝚌A|_𝚒xA,|_𝚌xA|xA,A::=P(t_{\_}{1},\ldots,t_{\_}{n})\,|\,\perp\,|\,A\lor A\,|\,A\land A\,|\,A\mathbin{\to}_{\_}{\mathtt{i}}A\,|\,A\mathbin{\to}_{\_}{\mathtt{c}}A\,|\,\forall_{\_}{\mathtt{i}}xA,\,|\,\forall_{\_}{\mathtt{c}}xA\,|\,\exists xA,

where PP denotes a predicate symbol. We denote by 𝖥𝗈𝗋𝗆_𝐂\mathsf{Form}_{\_}{\mathbf{C}} and 𝖥𝗈𝗋𝗆_𝐉\mathsf{Form}_{\_}{\mathbf{J}} the set of all classical formulas and the set of all intuitionistic formulas in \mathcal{L}, respectively. The set of free variables in a formula AA is denoted by 𝖥𝖵(A)\mathsf{FV}(A). We define a closed formula as a formula which has no occurrence of a free variable. We employ the notion of clash avoiding substitution [t/x][t/x] when we do substitution in a formula, as [17]. By employing this notion, we can avoid the case where tt becomes a bound variable in the formula as an effect of substitution of tt for xx. We also consider a syntax LL different from \mathcal{L}, which contains all the logical connectives and the set of predicate and constant symbols of \mathcal{L}. That is, LL and \mathcal{L} are different only in a set of variables. We denote the set of variables in a syntax LL by 𝖵𝖺𝗋(L)\mathsf{Var}(L), and the set of all formulas in a syntax LL is denoted by 𝖥𝗈𝗋𝗆_L\mathsf{Form}_{\_}{L}. We call a formula AA an LL-formula if A𝖥𝗈𝗋𝗆_LA\in\mathsf{Form}_{\_}{L}.

2.2 Semantics

Let us move to the semantics for our syntax \mathcal{L}. We give a valuation and a satisfaction relation only to closed formulas, and deal with possibly non-closed formulas in the definition of semantic consequence relation (Definition 5). First, we define a Kripke frame FF and then proceed to defining valuation VV.

Definition 1.

A Kripke frame is a tuple FF = (W,R,(D(w))_wW)(W,R,(D(w))_{\_}{w\in W}) where

  • WW is a non-empty set of possible worlds,

  • RR is a preorder on WW, i.e., RR satisfies reflexivity and transitivity,

  • D(w)D(w) is a non-empty set,

and satisfies the following:

  • For all w,vW,wRvw,v\in W,wRv implies D(w)D(v)D(w)\subseteq D(v),

  • _wWD(w){\bigcap}_{\_}{w\in W}D(w)\neq\emptyset.

Definition 2.

A valuation VV on a Kripke frame (W,R,(D(w))_wW)(W,R,(D(w))_{\_}{w\in W}) is defined as the following:

(rigidity for constants)

V(c)_wWD(w)V(c)\in{\bigcap}_{\_}{w\in W}D(w) (cc is a constant symbol),

(heredity for predicates)

V(P,w)D(w)nV(P,w)\subseteq D(w)^{n} such that for all w,vW,(wRvw,v\in W,(wRv implies V(P,w)V(P,v))V(P,w)\subseteq V(P,v)).

We define a quadruple MM = (W,R,(D(w))_wW,V)(W,R,(D(w))_{\_}{w\in W},V) as a Kripke model.

Let (A)\mathcal{L}(A) be an expanded syntax of \mathcal{L} by the constant symbols {a¯|aA}\{\underline{a}|a\in A\} to all the elements of AA.

Definition 3.

For all closed terms tt of (D(w))\mathcal{L}(D(w)), V(t)V(t) is defined as the following:

  • V(t)V(t) = dd if td¯t\equiv\underline{d} and dD(w)d\in D(w),

  • V(t)V(t) = V(c)V(c) if tct\equiv c.

Definition 4.

Given a model MM = (W,R,(D(w))_wW,V)(W,R,(D(w))_{\_}{w\in W},V), a world wWw\in W and a closed formula AA of (D(w))\mathcal{L}(D(w)), the satisfaction relation w_MAw\models_{\_}{M}A is defined inductively as follows:

w_MP(t_1,,t_m)iffV(t_1),,V(t_m)V(P,w),w⊧̸_Mw_MABiffw_MA and w_MB,w_MABiffw_MA or w_MB,w_MA_𝚒Bifffor all vW,(wRv and v_MA jointly imply v_MB),w_MA_𝚌Biffw_MA implies w_MB,w_M_𝚒xAiff for all vW,(wRv implies for all dD(v),v_MA[d¯/x]),w_M_𝚌xAiff for all dD(w),w_MA[d¯/x],w_MxAiff for some dD(w),w_MA[d¯/x].\begin{array}[]{lll}w\models_{\_}{M}P(t_{\_}{1},\ldots,t_{\_}{m})&\mathrm{iff}&\langle V(t_{\_}{1}),\ldots,V(t_{\_}{m})\rangle\in V(P,w),\\ w\not\models_{\_}{M}\bot&\text{}\\ w\models_{\_}{M}A\land B&\mathrm{iff}&w\models_{\_}{M}A\text{ and }w\models_{\_}{M}B,\\ w\models_{\_}{M}A\lor B&\mathrm{iff}&w\models_{\_}{M}A\text{ or }w\models_{\_}{M}B,\\ w\models_{\_}{M}A\mathbin{\to}_{\_}{\mathtt{i}}B&\mathrm{iff}&\text{for all }v\in W,(wRv\text{ and }v\models_{\_}{M}A\text{ jointly imply }v\models_{\_}{M}B),\\ w\models_{\_}{M}A\mathbin{\to}_{\_}{\mathtt{c}}B&\mathrm{iff}&w\models_{\_}{M}A\text{ implies }w\models_{\_}{M}B,\\ w\models_{\_}{M}\forall_{\_}{\mathtt{i}}xA&\mathrm{iff}&\text{ for all }v\in W,(wRv\text{ implies }\text{for all }d\in D(v),v\models_{\_}{M}A[\underline{d}/x]),\\ w\models_{\_}{M}\forall_{\_}{\mathtt{c}}xA&\mathrm{iff}&\text{ for all }d\in D(w),w\models_{\_}{M}A[\underline{d}/x],\\ w\models_{\_}{M}\exists xA&\mathrm{iff}&\text{ for some }d\in D(w),w\models_{\_}{M}A[\underline{d}/x].\\ \end{array}

We say that a closed formula AA satisfies heredity if, for every model MM = (W,R,(D(w))_wW,V)(W,R,(D(w))_{\_}{w\in W},V) and every w,vWw,v\in W, w_MAw\models_{\_}{M}A and wRvwRv jointly imply v_MAv\models_{\_}{M}A. The notion of semantic consequence relation is defined as below.

Definition 5.

Suppose Γ{A}𝖥𝗈𝗋𝗆\Gamma\cup\{A\}\subseteq\mathsf{Form}. Then, the semantic consequence relation ΓA\Gamma\models A is defined as follows: For all MM = (W,R,(D(w))_wW,V)(W,R,(D(w))_{\_}{w\in W},V), all wWw\in W and all d:𝖵𝖺𝗋D(w)d:\mathsf{Var}\to D(w), ifw_MC[d(x_1)¯/x_1][d(x_m)¯/x_m]w\models_{\_}{M}C[\underline{d(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(x_{\_}{m})}/x_{\_}{m}] for any CΓC\in\Gamma, then wA[d(z_1)¯/z_1][d(z_n)¯/z_n]w\models A[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}], where x_1,,x_mx_{\_}{1},\ldots,x_{\_}{m} are all free variables in CC and z_1,,z_nz_{\_}{1},\ldots,z_{\_}{n} are all free variables in AA. A formula AA is valid if A\models A holds.

By Definition 5, we can consider semantic consequence relation not only of closed but also of possibly non-closed formulas.

We proceed to the matter of heredity in a Kripke model. Heredity is known as an important feature of pure intuitionistic logic, i.e., Fact 1 holds.

Fact 1.

All closed formulas A𝖥𝗈𝗋𝗆_𝐉A\in\mathsf{Form}_{\_}{\mathbf{J}} i.e., the set of formulas expressive in the syntax of the intuitionistic logic, satisfy heredity.

However, this feature is lost when we add classical implication and universal quantifier to the intuitionistic logic. Consider a predicate PP whose arity is one, and consider a model MM = (W,R,(D(w))_wW,V)(W,R,(D(w))_{\_}{w\in W},V) such that W={w,v},R={(w,w),(w,v),(v,v)},D(w)=D(v)={d}W=\{w,v\},R=\{(w,w),(w,v),(v,v)\},D(w)=D(v)=\{d\}, V(c)V(c) = dD(w)D(v)d\in D(w)\cap D(v), dV(P,w)d\notin V(P,w), and dV(P,v)d\in V(P,v). In this model, wRvwRv and w_M¬_𝚌P(c)w\models_{\_}{M}\neg_{\_}{\mathtt{c}}P(c) hold, but v⊧̸_M¬_𝚌P(c)v\not\models_{\_}{M}\neg_{\_}{\mathtt{c}}P(c) holds. Moreover, w⊧̸_M_𝚌¬_𝚌P(c)w\not\models_{\_}{M}\top\mathbin{\to}_{\_}{\mathtt{c}}\neg_{\_}{\mathtt{c}}P(c) and w⊧̸_M_𝚒¬_𝚌P(c)w\not\models_{\_}{M}\top\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(c). These arguments give us the following propositions.

Proposition 2.

A formula ¬_𝚌P(c)\neg_{\_}{\mathtt{c}}P(c) does not satisfy heredity.

Proposition 3.

Neither ¬_𝚌P(c)_𝚒(_𝚒¬_𝚌P(c))\neg_{\_}{\mathtt{c}}P(c)\mathbin{\to}_{\_}{\mathtt{i}}(\top\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(c)) nor ¬_𝚌P(c)_𝚌(_𝚒¬_𝚌P(c))\neg_{\_}{\mathtt{c}}P(c)\mathbin{\to}_{\_}{\mathtt{c}}(\top\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(c)) is valid.

By Proposition 3, it is obvious that an intuitionistic tautology A_𝚒(B_𝚒A)A\mathbin{\to}_{\_}{\mathtt{i}}(B\mathbin{\to}_{\_}{\mathtt{i}}A) is no longer valid. As we have mentioned in Section 1.1, this fact affects the construction of the Hilbert system in [3]. A similar phenomenon also happens about classical universal quantifier. Consider the same model MM as above. Then, wRvwRv and w_M¬_𝚌_𝚌xP(x)w\models_{\_}{M}\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x) hold, but v⊧̸_M¬_𝚌_𝚌xP(x)v\not\models_{\_}{M}\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x). Therefore, we get the following proposition.

Proposition 4.

A formula ¬_𝚌_𝚌xP(x)\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x) does not satisfy heredity.

Let us still consider the same model MM. Then, w_M_𝚒y(¬_𝚌_𝚌xP(x)_𝚒¬_𝚌P(y))w\models_{\_}{M}\forall_{\_}{\mathtt{i}}y(\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(y)) and wRwwRw hold. But w⊧̸_M¬_𝚌_𝚌xP(x)_𝚒_𝚒y¬_𝚌P(y)w\not\models_{\_}{M}\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{i}}y\neg_{\_}{\mathtt{c}}P(y) holds. This is because w_M¬_𝚌_𝚌xP(x)w\models_{\_}{M}\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x) and wRwwRw, but w⊧̸_𝚒y¬_𝚌P(y)w\not\models\forall_{\_}{\mathtt{i}}y\neg_{\_}{\mathtt{c}}P(y). This gives us the following proposition.

Proposition 5.

A formula _𝚒y(¬_𝚌_𝚌xP(x)_𝚒¬_𝚌P(y))_𝚒(¬_𝚌_𝚌xP(x)_𝚒_𝚒y¬_𝚌P(y))\forall_{\_}{\mathtt{i}}y(\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(y))\mathbin{\to}_{\_}{\mathtt{i}}(\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{i}}y\neg_{\_}{\mathtt{c}}P(y)) is not valid.

Proposition 5 implies an intuitionistic tautology _𝚒y(A_𝚒B)_𝚒(A_𝚒_𝚒yB)\forall_{\_}{\mathtt{i}}y(A\mathbin{\to}_{\_}{\mathtt{i}}B)\mathbin{\to}_{\_}{\mathtt{i}}(A\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{i}}yB), where yy does not occur free in AA, is no longer valid, either.

2.3 Sequent Calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J})

This section provides a sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), which is a first-order expansion of propositional 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) in [25]. The calculus employs the ordinary notion of multi-succedent sequent. A sequent is a pair of finite multisets of formulas denoted by ΓΔ\Gamma\Rightarrow\Delta, which is read as “if all formulas in Γ\Gamma hold then some formulas in Δ\Delta hold.”

The sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) consists of the axioms and the rules in Table 1. The notion of derivability is defined as an existence of a finite tree, which is called a derivation, generated by inference rules of Table 1 from initial sequents (Id)(Id) and ()(\bot) of Table 1.

Our basic strategy of constructing 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is to add classical implication and universal quantifier to the multi-succedent sequent calculus 𝐦𝐋𝐉\mathbf{mLJ}, proposed by Maehara [13], where the right rules for intuitionistic implication and universal quantifier are of the following form:

A,ΓBΓA_𝚒B,ΓA[z/x]Γ_𝚒xA,\Gamma\Rightarrow A\mathbin{\to}_{\_}{\mathtt{i}}BA,\Gamma\Rightarrow B,\qquad\Gamma\Rightarrow\forall_{\_}{\mathtt{i}}xA\Gamma\Rightarrow A[z/x],

where Γ\Gamma is a finite multiset of intuitionistic formulas. However, if the ordinary left and right rules for classical implication were added to 𝐦𝐋𝐉\mathbf{mLJ}, the soundness of the resulting calculus would fail, because formulas ¬_𝚌P(t)_𝚌(_𝚒¬_𝚌P(t))\neg_{\_}{\mathtt{c}}P(t)\mathbin{\to}_{\_}{\mathtt{c}}(\top\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(t)) and _𝚒y(¬_𝚌_𝚌xP(x)_𝚒¬_𝚌P(y))_𝚒(¬_𝚌_𝚌xP(x)_𝚒_𝚒y¬_𝚌P(y))\forall_{\_}{\mathtt{i}}y(\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\neg_{\_}{\mathtt{c}}P(y))\mathbin{\to}_{\_}{\mathtt{i}}(\neg_{\_}{\mathtt{c}}\forall_{\_}{\mathtt{c}}xP(x)\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{i}}y\neg_{\_}{\mathtt{c}}P(y)) would be derivable, which are found invalid by Propositions 3 and 5. This is the reason why the original right rules for intuitionistic implication and universal quantifier of 𝐦𝐋𝐉\mathbf{mLJ} described above are restricted to the right rules given in Table 1. Although the restriction should be imposed on a context Γ\Gamma of theses rules, no extra restriction is needed. Thus, the following applications of (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}) are always legitimate:

AB(_𝚒)A_𝚒B,A[z/x](_𝚒)_𝚒xA.\Rightarrow A\mathbin{\to}_{\_}{\mathtt{i}}BA\Rightarrow B,\qquad\Rightarrow\forall_{\_}{\mathtt{i}}xA\Rightarrow A[z/x].

Based on the abbreviation defined in Section 2.1, the following rules for the negations are obtained.

A,_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_n(¬_𝚒)_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_n¬_𝚒AΓΔ,A(¬_𝚒)¬_𝚒A,ΓΔ\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow\neg_{\_}{\mathtt{i}}AA,\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow\quad\neg_{\_}{\mathtt{i}}A,\Gamma\Rightarrow\Delta\Gamma\Rightarrow\Delta,A
Γ,AΔ(¬_𝚌)Γ¬_𝚌A,ΔΓΔ,A(¬_𝚌)¬_𝚌A,ΓΔ.\Gamma\Rightarrow\neg_{\_}{\mathtt{c}}A,\Delta\Gamma,A\Rightarrow\Delta\quad\neg_{\_}{\mathtt{c}}A,\Gamma\Rightarrow\Delta\Gamma\Rightarrow\Delta,A.

For example, the sequent _𝚒_𝚌xP(x)_𝚌x(_𝚒P(x))\top\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{c}}xP(x)\Rightarrow\forall_{\_}{\mathtt{c}}x(\top\mathbin{\to}_{\_}{\mathtt{i}}P(x)) is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) as follows:

P(z)P(z)(_𝚌)_𝚌xP(x)P(z)(_𝚒)_𝚒_𝚌xP(x),P(z)(_𝚒)_𝚒_𝚌xP(x)_𝚒P(z)(_𝚌)_𝚒_𝚌xP(x)_𝚌x(_𝚒P(x)).\top\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{c}}xP(x)\Rightarrow\forall_{\_}{\mathtt{c}}x(\top\mathbin{\to}_{\_}{\mathtt{i}}P(x))\top\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{c}}xP(x)\Rightarrow\top\mathbin{\to}_{\_}{\mathtt{i}}P(z)\top\mathbin{\to}_{\_}{\mathtt{i}}\forall_{\_}{\mathtt{c}}xP(x),\top\Rightarrow P(z)\lx@proof@logical@and{\top\Rightarrow\top}{\forall_{\_}{\mathtt{c}}xP(x)\Rightarrow P(z)P(z)\Rightarrow P(z)}.
Table 1: Sequent Calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J})

 Axioms

(Id)AA()A\Rightarrow A~{}~{}~{}\bot\Rightarrow

Structural Rules

ΓΔ(w)ΓΔ,AΓΔ(w)A,ΓΔΓΔ,A,A(c)ΓΔ,AA,A,ΓΔ(c)A,ΓΔ\Gamma\Rightarrow\Delta,A\Gamma\Rightarrow\Delta~{}~{}~{}A,\Gamma\Rightarrow\Delta\Gamma\Rightarrow\Delta~{}~{}~{}\Gamma\Rightarrow\Delta,A\Gamma\Rightarrow\Delta,A,A~{}~{}~{}A,\Gamma\Rightarrow\Delta A,A,\Gamma\Rightarrow\Delta
ΓΔ,AA,ΠΣ(Cut)Γ,ΠΔ,Σ\Gamma,\Pi\Rightarrow\Delta,\Sigma\lx@proof@logical@and\Gamma\Rightarrow\Delta,AA,\Pi\Rightarrow\Sigma

Logical Rules

A,_𝚒x_1C_1,,_𝚒x_lC_l,D_1_𝚒E_1,,D_m_𝚒E_m,p_1,p_nB(_𝚒)_𝚒x_1C_1,,_𝚒x_lC_l,D_1_𝚒E_1,,D_m_𝚒E_m,p_1,p_nA_𝚒B\forall_{\_}{\mathtt{i}}x_{\_}{1}C_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}C_{\_}{l},D_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}E_{\_}{1},\ldots,D_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}E_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow A\mathbin{\to}_{\_}{\mathtt{i}}BA,\forall_{\_}{\mathtt{i}}x_{\_}{1}C_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}C_{\_}{l},D_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}E_{\_}{1},\ldots,D_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}E_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow B
Γ_1Δ_1,AB,Γ_2Δ_2(_𝚒)A_𝚒B,Γ_1,Γ_2Δ_1,Δ_2A\mathbin{\to}_{\_}{\mathtt{i}}B,\Gamma_{\_}{1},\Gamma_{\_}{2}\Rightarrow\Delta_{\_}{1},\Delta_{\_}{2}\lx@proof@logical@and\Gamma_{\_}{1}\Rightarrow\Delta_{\_}{1},AB,\Gamma_{\_}{2}\Rightarrow\Delta_{\_}{2}
A,ΓΔ,B(_𝚌)ΓΔ,A_𝚌BΓ_1Δ_1,AB,Γ_2Δ_2(_𝚌)A_𝚌B,Γ_1,Γ_2Δ_1,Δ_2\Gamma\Rightarrow\Delta,A\mathbin{\to}_{\_}{\mathtt{c}}BA,\Gamma\Rightarrow\Delta,B~{}~{}~{}A\mathbin{\to}_{\_}{\mathtt{c}}B,\Gamma_{\_}{1},\Gamma_{\_}{2}\Rightarrow\Delta_{\_}{1},\Delta_{\_}{2}\lx@proof@logical@and\Gamma_{\_}{1}\Rightarrow\Delta_{\_}{1},AB,\Gamma_{\_}{2}\Rightarrow\Delta_{\_}{2}
ΓΔ,AΓΔ,B()ΓΔ,ABA,ΓΔ(_1)AB,ΓΔB,ΓΔ(_2)AB,ΓΔ\Gamma\Rightarrow\Delta,A\land B\lx@proof@logical@and\Gamma\Rightarrow\Delta,A\Gamma\Rightarrow\Delta,B~{}~{}~{}A\land B,\Gamma\Rightarrow\Delta A,\Gamma\Rightarrow\Delta~{}~{}~{}A\land B,\Gamma\Rightarrow\Delta B,\Gamma\Rightarrow\Delta
ΓΔ,A(_1)ΓΔ,ABΓΔ,B(_2)ΓΔ,ABA,ΓΔB,ΓΔ()AB,ΓΔ\Gamma\Rightarrow\Delta,A\lor B\Gamma\Rightarrow\Delta,A~{}~{}~{}\Gamma\Rightarrow\Delta,A\lor B\Gamma\Rightarrow\Delta,B~{}~{}~{}A\lor B,\Gamma\Rightarrow\Delta\lx@proof@logical@and A,\Gamma\Rightarrow\Delta B,\Gamma\Rightarrow\Delta
_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_nA[z/x](_𝚒)_𝚒x_1B_1,,_𝚒x_lB_l,C_1_𝚒D_1,,C_m_𝚒D_m,p_1,p_n_𝚒xAA[t/x],ΓΔ(_𝚒)_𝚒xA,ΓΔ\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow\forall_{\_}{\mathtt{i}}xA\forall_{\_}{\mathtt{i}}x_{\_}{1}B_{\_}{1},\ldots,\forall_{\_}{\mathtt{i}}x_{\_}{l}B_{\_}{l},C_{\_}{1}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{1},\ldots,C_{\_}{m}\mathbin{\to}_{\_}{\mathtt{i}}D_{\_}{m},p_{\_}{1},\ldots p_{\_}{n}\Rightarrow A[z/x]~{}~{}~{}\forall_{\_}{\mathtt{i}}xA,\Gamma\Rightarrow\Delta A[t/x],\Gamma\Rightarrow\Delta
ΓΔ,A[z/x](_𝚌)ΓΔ,_𝚌xAA[t/x],ΓΔ(_𝚌)_𝚌xA,ΓΔ\Gamma\Rightarrow\Delta,\forall_{\_}{\mathtt{c}}xA\Gamma\Rightarrow\Delta,A[z/x]~{}~{}~{}\forall_{\_}{\mathtt{c}}xA,\Gamma\Rightarrow\Delta A[t/x],\Gamma\Rightarrow\Delta
ΓΔ,A[t/x]()ΓΔ,xAA[z/x],ΓΔ()xA,ΓΔ\Gamma\Rightarrow\Delta,\exists xA\Gamma\Rightarrow\Delta,A[t/x]~{}~{}~{}\exists xA,\Gamma\Rightarrow\Delta A[z/x],\Gamma\Rightarrow\Delta

{\dagger}: zz does not occur free in the lower sequent.

 

As is noted in Section 1.1 for the propositional 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}), although the context of the right rule for intuitionistic implication is restricted, all sequents derivable in propositional intuitionistic logic are also derivable. Similarly, all sequents derivable in first-order 𝐦𝐋𝐉\mathbf{mLJ} are also derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). The following proposition ensures this.

Proposition 6.

The ordinary right rules for intuitionistic implication and universal quantifier are derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), if the contexts of the rules contain only formulas in 𝖥𝗈𝗋𝗆_𝐉\mathsf{Form}_{\_}{\mathbf{J}}.

The ordinary right rules for intuitionistic implication and universal quantifier are derivable also in the calculus obtained from 𝐦𝐋𝐉\mathbf{mLJ} by replacing them with the restricted ones. This means the restricted version of the rules denotes the core of the ordinary ones.

We proceed to the soundness theorem. We use ΓΔ\Gamma\models\Delta to mean: for some formula CΔC\in\Delta, ΓC\Gamma\models C holds.

Definition 6.

We define persistent formulas inductively as follows:

E::=P(t_1,,t_m)|A_𝚒A|_𝚒xA,E::=\,P(t_{\_}{1},\ldots,t_{\_}{m})\,|\,A\mathbin{\to}_{\_}{\mathtt{i}}A\,|\,\forall_{\_}{\mathtt{i}}xA,

where P(t_1,,t_m)𝖥𝗈𝗋𝗆P(t_{\_}{1},\ldots,t_{\_}{m})\in\mathsf{Form} and A𝖥𝗈𝗋𝗆A\in\mathsf{Form}.

Formulas occurring at a context of the right rules for the intuitionistic implication and universal quantifier must be persistent. In what follows, we use Θ\Theta to denote a multiset of persistent formulas. This is just for making the notation simpler. By this notation, the right rules for the intuitionistic implication and the intuitionistic universal quantifier are described as follows:

A,ΘB(_𝚒)ΘA_𝚒B,ΘA[z/x](_𝚒)Θ_ixA.\Theta\Rightarrow A\mathbin{\to}_{\_}{\mathtt{i}}BA,\Theta\Rightarrow B,\quad\Theta\Rightarrow\forall_{\_}{i}xA\Theta\Rightarrow A[z/x].

Persistent formulas satisfy heredity, which is trivial from Fact 1.

Theorem 1.

If ΓΔ\Gamma\Rightarrow\Delta is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), then ΓΔ\Gamma\models\Delta holds.

Proof.

It can be shown straightforwardly that every axiom and rule in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) except for the rules (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}) preserves validity. Only the cases of (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}) are considered here.

(_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}})

Let x_1,,x_mx_{\_}{1},\ldots,x_{\_}{m} be free variables of a formula in Θ\Theta and z_1,,z_nz_{\_}{1},\ldots,z_{\_}{n} be free variables inA_𝚒BA\mathbin{\to}_{\_}{\mathtt{i}}B. Suppose w_M(Θ)[d(x_1)¯/x_1][d(x_m)¯/x_m]w\models_{\_}{M}\left(\bigwedge\Theta\right)[\underline{d(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(x_{\_}{m})}/x_{\_}{m}]. We have to showw_M(A_𝚒B)[d(z_1)¯/z_1][d(z_n)¯/z_n]w\models_{\_}{M}(A\mathbin{\to}_{\_}{\mathtt{i}}B)[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}], i.e., for all vW,(wRv and v_MA[d(z_1)¯/z_1][d(z_n)¯/z_n]v\in W,(wRv\text{ and }\linebreak v\models_{\_}{M}A[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}] jointly imply v_MB[d(z_1)¯/z_1][d(z_n)¯/z_n])v\models_{\_}{M}B[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}]). Fix any vv which satisfies wRvwRv and v_MA[d(z_1)¯/z_1][d(z_n)¯/z_n]v\models_{\_}{M}A[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}]. Then, since all of the formulas in Θ\Theta satisfy heredity, we obtain v_M(Θ)[d(x_1)¯/x_1][d(x_m)¯/x_m]v\models_{\_}{M}\left(\bigwedge\Theta\right)[\underline{d(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(x_{\_}{m})}/x_{\_}{m}]. By the validity of the premise of (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}), we obtain v_MB[d(z_1)¯/z_1][d(z_n)¯/z_n]v\models_{\_}{M}B[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}], as required.

(_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}})

Let x_1,,x_mx_{\_}{1},\ldots,x_{\_}{m} be free variables of a formula in Θ\Theta and z_1,,z_nz_{\_}{1},\ldots,z_{\_}{n} be free variables in _𝚒xA\forall_{\_}{\mathtt{i}}xA. Suppose w_M(Θ)[d(x_1)¯/x_1][d(x_m)¯/x_m]w\models_{\_}{M}\left(\bigwedge\Theta\right)[\underline{d(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(x_{\_}{m})}/x_{\_}{m}]. We have to show w_M(_𝚒xA)[d(z_1)¯/z_1][d(z_n)¯/z_n]w\models_{\_}{M}(\forall_{\_}{\mathtt{i}}xA)[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}], i.e., for all vWv\in W, (wRvwRv implies for all dD(v)d\in D(v), v_MA[d(z_1)¯/z_1][d(z_n)¯/z_n][d¯/x]v\models_{\_}{M}A[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}][\underline{d}/x]). Fix any vv which satisfies wRvwRv and any dD(v)d\in D(v). Consider an assignment d(z|d)d(z|d) satisfying the following: d(z|d)(y)d(z|d)(y) = d(y)d(y) if yzy\not\equiv z and d(z|d)(y)d(z|d)(y) = dd if yzy\equiv z. Since D(v)D(v) contains all the elements of D(w)D(w), the assignment d(z|d)d(z|d) can be regarded as an assignment: 𝖵𝖺𝗋D(v)\mathsf{Var}\to D(v). By the validity of the premise of (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}), we obtain the following: if v_M(Θ)[d(z|d)(x_1)¯/x_1][d(z|d)(x_m)¯/x_m]v\models_{\_}{M}\left(\bigwedge\Theta\right)[\underline{d(z|d)(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(z|d)(x_{\_}{m})}/x_{\_}{m}] hold, then v_MA[z/x][d(z|d)(z_1)¯/z_1][d(z|d)(z_n)¯/z_n]v\models_{\_}{M}A[z/x][\underline{d(z|d)(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z|d)(z_{\_}{n})}/z_{\_}{n}] hold. Then, since all formulas in Θ\Theta satisfy heredity, v_M(Θ)[d(x_1)¯/x_1][d(x_m)¯/x_m]v\models_{\_}{M}\left(\bigwedge\Theta\right)[\underline{d(x_{\_}{1})}/x_{\_}{1}]\cdots[\underline{d(x_{\_}{m})}/x_{\_}{m}] holds. Since zz does not occur free in any formula EΘE\in\Theta, v_MA[z/x][d(z|d)(z_1)¯/z_1][d(z|d)(z_n)¯/z_n]v\models_{\_}{M}A[z/x][\underline{d(z|d)(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z|d)(z_{\_}{n})}/z_{\_}{n}] is obtained. By this, we can obtain v_MA[d(z_1)¯/z_1][d(z_n)¯/z_n][d¯/x]v\models_{\_}{M}A[\underline{d(z_{\_}{1})}/z_{\_}{1}]\cdots[\underline{d(z_{\_}{n})}/z_{\_}{n}][\underline{d}/x], as required. ∎

3 Cut Elimination

In this section, it is supposed that the sets of bound and free variables are disjoint, as in [11]. Let us denote by 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G^{-}}(\mathbf{FOC}+\mathbf{J}) a sequent calculus obtained from 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) by removing the rule (Cut)(Cut). In [25], with the help of a variant of “Mix rule” by Gentzen (“extended cut rule” used in [11, 18, 19]) to take care of contraction rules, cut elimination theorem was already shown for propositional logic calculus 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}). “Extended cut rule(Ecut)(Ecut) is described as follows:

ΓΔ,AmAn,ΠΣ(Ecut)Γ,ΠΔ,Σ,\Gamma,\Pi\Rightarrow\Delta,\Sigma\lx@proof@logical@and\Gamma\Rightarrow\Delta,A^{m}A^{n},\Pi\Rightarrow\Sigma,

where m,n0m,n\geq 0 and AlA^{l} means A,,A_l times occurrences\underbrace{A,\ldots,A}_{\_}{l\text{ times occurrences}}, i.e., ll times repetition of AA.

In order to show the cut elimination theorem, it suffices to deal with a derivation of the “(Ecut)(Ecut)-bottom form” defined in Definition 7.

Definition 7.

A derivation 𝒟\mathcal{D} in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is of the (Ecut)(Ecut)-bottom form if it has the following form

𝒟_1rule(𝒟_1)ΓΔ,Am𝒟_2rule(𝒟_2)An,ΠΣ(Ecut)Γ,ΠΔ,Σ,\Gamma,\Pi\Rightarrow\Delta,\Sigma\lx@proof@logical@and{\Gamma\Rightarrow\Delta,A^{m}\lx@proof@logical@and\vdots\mathcal{D}_{\_}{1}}{A^{n},\Pi\Rightarrow\Sigma\lx@proof@logical@and\vdots\mathcal{D}_{\_}{2}},

where rule(𝒟_i)rule(\mathcal{D}_{\_}{i}) is the last applied rule of a given derivation 𝒟_i\mathcal{D}_{\_}{i}, and there is no application of (Ecut)(Ecut) in 𝒟_1\mathcal{D}_{\_}{1} nor 𝒟_2\mathcal{D}_{\_}{2}. Let the weight ww of an Ecut-bottom form be the sum of the number of sequents occurring in 𝒟_1\mathcal{D}_{\_}{1} and 𝒟_2\mathcal{D}_{\_}{2}. Let the complexity cc of an Ecut-bottom form be the number of logical symbols (_𝚒,_𝚌,,,_𝚒,_𝚌\mathbin{\to}_{\_}{\mathtt{i}},\mathbin{\to}_{\_}{\mathtt{c}},\land,\lor,\forall_{\_}{\mathtt{i}},\forall_{\_}{\mathtt{c}}, and \exists) appearing in the Ecut formula. It should be noted that this means substitution does not change the complexity. For example, AA and A[t/x]A[t/x] has the same complexity. We note that w2w\geq 2 and c0c\geq 0.

Definition 8.

We define a principal formula of a logical rule as follows.

  • For every logical rule except for (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}), a principal formula of the rule is the unique compound formula in the lower sequent of the rule which is produced by an application of the logical rule.

  • For (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}), every formula occurring in the lower sequent of the rules is principal.

Based on Definitions 7 and 8, we can show Lemma 2, which is the core of showing the cut elimination theorem. In order to show this lemma, Lemma 1, which is related to substitution, is needed. Recall that [t/x][t/x] is clash avoiding substitution of tt for xx.

Lemma 1.

If there is a derivation 𝒟\mathcal{D} of ΓΔ\Gamma\Rightarrow\Delta, then there is also a derivation 𝒟\mathcal{D}^{\prime} of Γ[t/x]Δ[t/x]\Gamma[t/x]\Rightarrow\Delta[t/x] whose weight is the same as that of 𝒟\mathcal{D}.

Lemma 1 can be shown by induction on the weight of a derivation, as was done in [16, 26].

Lemma 2.

For every derivation of the (Ecut)(Ecut)-bottom form, there is an (Ecut)(Ecut)-free derivation with the same conclusion.

Proof.

By double induction on the complexity and the weight lexicographically. For the case of m=0m=0 or n=0n=0, (Ecut)(Ecut) can be eliminated by applying (w)(\Rightarrow w) or (w)(w\Rightarrow). Thus, we assume m>0m>0 and n>0n>0 in what follows. For the other cases, our argument is divided into the following four cases:

  1. (1)

    𝒟_i\mathcal{D}_{\_}{i} is an initial sequent,

  2. (2)

    rule(𝒟_i)rule(\mathcal{D}_{\_}{i}) is a structural rule,

  3. (3)

    rule(𝒟_i)rule(\mathcal{D}_{\_}{i}) is a logical rule where the Ecut formula is not principal,

  4. (4)

    rule(𝒟_1)rule(\mathcal{D}_{\_}{1}) and rule(𝒟_2)rule(\mathcal{D}_{\_}{2}) are logical rules, and the Ecut formulas are principal in both rules.

The definition of a principal formula (Definition 8) enables cases categorized into (3)(3) to be treated with little difficulty. Here, we only shows the case when rule(𝒟_1)rule(\mathcal{D}_{\_}{1}) is (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}) and rule(𝒟_2)rule(\mathcal{D}_{\_}{2}) is (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}), which is categorized into (4)(4). In this case, a derivation of the (Ecut)(Ecut)-bottom form is described as follows:

𝒟_1B,Θ_1C(_𝚒)Θ_1B_𝚒C𝒟_2(B_𝚒C)n,Θ_2A[z/x](_𝚒)(B_𝚒C)n,Θ_2_𝚒xA(Ecut)Θ_1,Θ_2_𝚒xA,\Theta_{\_}{1},\Theta_{\_}{2}\Rightarrow\forall_{\_}{\mathtt{i}}xA\lx@proof@logical@and{\Theta_{\_}{1}\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}CB,\Theta_{\_}{1}\Rightarrow C\lx@proof@logical@and\vdots\mathcal{D}_{\_}{1}}{(B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow\forall_{\_}{\mathtt{i}}xA(B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow A[z/x]\lx@proof@logical@and\vdots\mathcal{D}_{\_}{2}},

where Θ_1\Theta_{\_}{1} and Θ_2\Theta_{\_}{2} are multisets of persistent formulas, and zz does not occur free in the sequent (B_𝚒C)n,Θ_2_𝚒xA(B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow\forall_{\_}{\mathtt{i}}xA. Since the sets of bound and free variables are disjoint, zz does not occur in (B_𝚒C)n,Θ_2_𝚒xA(B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow\forall_{\_}{\mathtt{i}}xA. However, zz can occur in Θ_1\Theta_{\_}{1}. Suppose yy does not occur free in Θ_1\Theta_{\_}{1}, B_𝚒CB\mathbin{\to}_{\_}{\mathtt{i}}C, Θ_2\Theta_{\_}{2}, or _𝚒xA\forall_{\_}{\mathtt{i}}xA, which implies yy does not occur in these formulas. Then, by Lemma 1, we can obtain the sequent ((B_𝚒C)[y/z])n,Θ_2[y/z]A[z/x][y/z]((B\mathbin{\to}_{\_}{\mathtt{i}}C)[y/z])^{n},\Theta_{\_}{2}[y/z]\Rightarrow A[z/x][y/z]. Since zz does not occur in B_𝚒CB\mathbin{\to}_{\_}{\mathtt{i}}C, Θ_2\Theta_{\_}{2}, or _𝚒xA\forall_{\_}{\mathtt{i}}xA, a sequent (B_𝚒C)n,Θ_2A[y/x](B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow A[y/x] is obtained. By using this sequent, we can obtain the following derivation:

𝒟_1Θ_1B_𝚒C𝒟_2(B_𝚒C)n,Θ_2A[y/x](Ecut)Θ_1,Θ_2A[y/x](_𝚒)Θ_1,Θ_2_𝚒xA.\Theta_{\_}{1},\Theta_{\_}{2}\Rightarrow\forall_{\_}{\mathtt{i}}xA\Theta_{\_}{1},\Theta_{\_}{2}\Rightarrow A[y/x]\lx@proof@logical@and{\Theta_{\_}{1}\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}C\lx@proof@logical@and\vdots\mathcal{D}_{\_}{1}}{(B\mathbin{\to}_{\_}{\mathtt{i}}C)^{n},\Theta_{\_}{2}\Rightarrow A[y/x]\lx@proof@logical@and\vdots\mathcal{D}^{\prime}_{\_}{2}}.

Since the weight of the derivation of the (Ecut)(Ecut)-bottom form becomes lesser, we can apply induction hypothesis and obtain an (Ecut)(Ecut)-free derivation. ∎

Finally, the cut elimination theorem is obtained, as required.

Theorem 2.

If ΓΔ\Gamma\Rightarrow\Delta is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), then ΓΔ\Gamma\Rightarrow\Delta is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G^{-}}(\mathbf{FOC}+\mathbf{J}).

By Theorem 2, the subformula property is also obtained, which ensures the following corollary.

Corollary 1.

The sequent calculus 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is a conservative extension of both first-order intuitionistic and classical logic.

4 Strong Completeness

This section establishes the strong completeness theorem of 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). In [3, 8], the completeness of propositional 𝐂+𝐉\mathbf{C+J} was shown. In [25], the completeness of 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) was shown by establishing the fact that the calculus and the Hilbert system of 𝐂+𝐉\mathbf{C+J} proposed in [3] are equipollent in the following sense:

For any formula A𝖥𝗈𝗋𝗆_𝐂+𝐉A\in\mathsf{Form}_{\_}{\mathbf{C+J}}, the sequent A\Rightarrow A is derivable in 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) iff AA is derivable in the Hilbert system of 𝐂+𝐉\mathbf{C+J}.

Only the weak completeness was shown in [3, 8, 25], but the strong completeness of propositional 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) can be obtained by reinforcing a canonical model argument described in [8]. The strong completeness of the first-order combination 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), which will be established in this section via a canonical model argument, has not been shown so far.

In this section, the expressions such as Γ,Δ,Θ\Gamma,\Delta,\Theta denote sets (not multisets) of formulas. In order to deal with a sequent which contains a possibly infinite set of formulas, we have to expand the notion of derivability as follows:

ΓΔ\Gamma\Rightarrow\Delta is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) if for some finite subset Γ\Gamma^{\prime} of Γ\Gamma and Δ\Delta^{\prime} of Δ\Delta, ΓΔ\Gamma^{\prime}\Rightarrow\Delta^{\prime} is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}).

We also have to expand the syntax \mathcal{L} to +\mathcal{L^{+}} by adding a new countably infinite set of variables.

Definition 9.

Let L_1L_{\_}{1} and L_2L_{\_}{2} be any syntax which has the same logical symbols and contains all constant and predicate symbols of \mathcal{L}. Recall that 𝖵𝖺𝗋(L_i)\mathsf{Var}(L_{\_}{i}) is the set of variables of L_iL_{\_}{i}. We use L_1L_2L_{\_}{1}\sqsubset L_{\_}{2} to mean

𝖵𝖺𝗋(L_1)𝖵𝖺𝗋(L_2)\mathsf{Var}(L_{\_}{1})\subsetneq\mathsf{Var}(L_{\_}{2}) and #(𝖵𝖺𝗋(L_2)𝖵𝖺𝗋(L_1))\#(\mathsf{Var}(L_{\_}{2})\setminus\mathsf{Var}(L_{\_}{1})) = ω\omega.

Then, we should define a prime pair of sets of formulas with respect to a syntax as did in [6] to show the completeness of an ordinary first-order intuitionistic logic.

Definition 10.

A pair (Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L} of sets of formulas with respect to a syntax LL is a prime pair with respect to LL if it satisfies the following:

(Γ\Gamma is a theory)

If ΓA\Gamma\Rightarrow A is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), then AΓA\in\Gamma,

(underivability)

ΓΔ\Gamma\Rightarrow\Delta is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}),

(primeness)

If ABΓA\lor B\in\Gamma holds, then AΓA\in\Gamma or BΓB\in\Gamma holds,

(\exists-property)

If xAΓ\exists xA\in\Gamma holds, then for some term tt of LL, A[t/x]ΓA[t/x]\in\Gamma holds,

(_𝚌\forall_{\_}{\mathtt{c}}-property)

If _𝚌xAΔ\forall_{\_}{\mathtt{c}}xA\in\Delta holds, then for some term tt of LL, A[t/x]ΔA[t/x]\in\Delta holds.

A prime pair (Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L} with respect to LL is called LL-complete if ΓΔ\Gamma\cup\Delta = 𝖥𝗈𝗋𝗆_L\mathsf{Form}_{\_}{L} holds.

The consistency of a prime pair (Γ,Δ)_L(\Gamma,\Delta)_{\_}{L}, i.e., Γ\bot\notin\Gamma can be obtained from the condition (underivability).

Lemma 3.

A prime pair (Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L} with respect to a syntax LL is classical negation complete, i.e., for all formulas AA in LL, either AΓA\in\Gamma or A_𝚌ΓA\mathbin{\to}_{\_}{\mathtt{c}}\bot\in\Gamma holds.

Proof.

Let (Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L} be a prime pair with respect to a syntax LL and AA be a formula in LL. In 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), A(A_𝚌)\Rightarrow A\lor(A\mathbin{\to}_{\_}{\mathtt{c}}\bot) is derivable. Then, by the condition (Γ\Gamma is a theory) in Definition 10, it follows A(A_𝚌)ΓA\lor(A\mathbin{\to}_{\_}{\mathtt{c}}\bot)\in\Gamma. By (primeness) in Definition 10, either AΓA\in\Gamma or A_𝚌ΓA\mathbin{\to}_{\_}{\mathtt{c}}\bot\in\Gamma, as is desired. ∎

The following lemma implies that any underivable pair of sets of formulas can be extended to a prime LL-complete pair for some appropriate syntax LL.

Lemma 4.
  1. (1)

    If a sequent ΓΔ\Gamma\Rightarrow\Delta in \mathcal{L} is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), then there exist a syntax LL and a prime LL-complete pair (Γ,Δ)_L{(\Gamma^{*},\Delta^{*})}_{\_}{L} such that L+\mathcal{L}\sqsubset L\sqsubset\mathcal{L^{+}}, ΓΓ\Gamma\subseteq\Gamma^{*} and ΔΔ\Delta\subseteq\Delta^{*}.

  2. (2)

    Let L_1L_2+\mathcal{L}\sqsubset L_{\_}{1}\sqsubset L_{\_}{2}\sqsubset\mathcal{L^{+}}. If a sequent ΓΔ\Gamma\Rightarrow\Delta in L_1L_{\_}{1} is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), then there exists a prime L_2L_{\_}{2}-complete pair (Γ,Δ)_L_2{(\Gamma^{*},\Delta^{*})}_{\_}{L_{\_}{2}} such that ΓΓ\Gamma\subseteq\Gamma^{*} and ΔΔ\Delta\subseteq\Delta^{*}.

Proof.

Since the ways of showing (1) and (2) are very similar, the only former is described here. Suppose a sequent ΓΔ\Gamma\Rightarrow\Delta in \mathcal{L} is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). Consider a syntax LL such that L+\mathcal{L}\sqsubset L\sqsubset\mathcal{L}^{+}. Let (A_n)_n(A_{\_}{n})_{\_}{n\in\mathbb{N}} be an enumeration of all formulas in L{L}. Since we will work only on this syntax, the suffix “LL” to a pair of sets of formulas is omitted in the rest of this proof. We inductively define a pair (Γ_n,Δ_n)_n{(\Gamma_{\_}{n},\Delta_{\_}{n})}_{\_}{n\in\mathbb{N}} of sets of formulas such that a sequent Γ_nΔ_n\Gamma_{\_}{n}\Rightarrow\Delta_{\_}{n} in LL is not derivable, Γ_nΓ_n+1\Gamma_{\_}{n}\subseteq\Gamma_{\_}{n+1}, and Δ_nΔ_n+1\Delta_{\_}{n}\subseteq\Delta_{\_}{n+1} as follows:

(Basis)

(Γ_0,Δ_0){(\Gamma_{\_}{0},\Delta_{\_}{0})} = (Γ,Δ){(\Gamma,\Delta)},

(Inductive Step)

Suppose (Γ_i,Δ_i){(\Gamma_{\_}{i},\Delta_{\_}{i})} is already defined for any ii which satisfies 0in0\leq i\leq n. Let zz satisfy z𝖵𝖺𝗋(L)z\in\mathsf{Var}(L) and z𝖵𝖺𝗋()z\notin\mathsf{Var}(\mathcal{L}) and do not occur free in Γ_n\Gamma_{\_}{n}, Δ_n\Delta_{\_}{n}, or A_nA_{\_}{n}. Then (Γ_n+1,Δ_n+1){(\Gamma_{\_}{n+1},\Delta_{\_}{n+1})} is defined as follows:

(Γ_n+1,Δ_n+1)={(Γ_n{A_n},Δ_n) if Γ,A_nΔ is underivable and A_nxB,(Γ_n{xB,B[z/x]},Δ_n) if Γ,A_nΔ is underivable and A_nxB,(Γ_n,Δ_n{A_n}) if ΓΔ,A_n is underivable and A_n_𝚌xB,(Γ_n,Δ_n{_𝚌xB,B[z/x]}) if ΓΔ,A_n is underivable and A_n_𝚌xB.{(\Gamma_{\_}{n+1},\Delta_{\_}{n+1})}=\begin{cases}{(\Gamma_{\_}{n}\cup\{A_{\_}{n}\},\Delta_{\_}{n})}&\text{ if }\Gamma,A_{\_}{n}\Rightarrow\Delta\text{ is underivable and }A_{\_}{n}\not\equiv\exists xB,\\ {(\Gamma_{\_}{n}\cup\{\exists xB,B[z/x]\},\Delta_{\_}{n})}&\text{ if }\Gamma,A_{\_}{n}\Rightarrow\Delta\text{ is underivable and }A_{\_}{n}\equiv\exists xB,\\ {(\Gamma_{\_}{n},\Delta_{\_}{n}\cup\{A_{\_}{n}\})}&\text{ if }\Gamma\Rightarrow\Delta,A_{\_}{n}\text{ is underivable and }A_{\_}{n}\not\equiv\forall_{\_}{\mathtt{c}}xB,\\ {(\Gamma_{\_}{n},\Delta_{\_}{n}\cup\{\forall_{\_}{\mathtt{c}}xB,B[z/x]\})}&\text{ if }\Gamma\Rightarrow\Delta,A_{\_}{n}\text{ is underivable and }A_{\_}{n}\equiv\forall_{\_}{\mathtt{c}}xB.\\ \end{cases}

It should be noted that a variable zz cannot be run out of, since the syntax LL is obtained by adding to \mathcal{L} a new countably infinite set of variables. It can be checked that all of the four cases described above preserve underivability. It can also be checked that whatever formula A_nA_{\_}{n} is, it can be distinguished into one of the four cases described above.

Based on the definition, the sets of formulas Γ\Gamma^{*} and Δ\Delta^{*} are defined as follows, respectively:

Γ:=nΓ_n,Δ:=nΔ_n.\Gamma^{*}:=\underset{n\in\mathbb{N}}{\bigcup}{\Gamma_{\_}{n}},\quad\Delta^{*}:=\underset{n\in\mathbb{N}}{\bigcup}{\Delta_{\_}{n}}.

It can be shown that the pair (Γ,Δ)_L{(\Gamma^{*},\Delta^{*})}_{\_}{L} satisfies the conditions required in this lemma. ∎

Definition 11 (Canonical Model).

Define the canonical model McM^{c} = (Wc,Rc,(Dc((Γ,Δ)_L))_(Γ,Δ)_LWc,Vc)(W^{c},R^{c},(D^{c}({(\Gamma,\Delta)}_{\_}{L}))_{\_}{{(\Gamma,\Delta)}_{\_}{L}\in W^{c}},V^{c}) of a syntax \mathcal{L} as follows:

  • WcW^{c} := {(Γ,Δ)_L|L+\{{(\Gamma,\Delta)}_{\_}{L}|\mathcal{L}\sqsubset L\sqsubset\mathcal{L^{+}} and (Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L} is a prime LL-complete pair }\},

  • (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}} iff all of the following hold:

    • If P(t_1,,t_m)ΓP(t_{\_}{1},\ldots,t_{\_}{m})\in\Gamma holds, then P(t_1,,t_m)ΓP(t_{\_}{1},\ldots,t_{\_}{m})\in\Gamma^{\prime} holds,

    • If A_𝚒BΓA\mathbin{\to}_{\_}{\mathtt{i}}B\in\Gamma holds, then A_𝚒BΓA\mathbin{\to}_{\_}{\mathtt{i}}B\in\Gamma^{\prime} holds, and

    • If _𝚒xAΓ\forall_{\_}{\mathtt{i}}xA\in\Gamma holds, then _𝚒xAΓ\forall_{\_}{\mathtt{i}}xA\in\Gamma^{\prime} holds,

  • Dc((Γ,Δ)_L)D^{c}((\Gamma,\Delta)_{\_}{L}) = {t|t is a term of L}\{t|t\text{ is a term of }L\},

  • Define a valuation VcV^{c} as follows:

    • V(t_1),,V(t_m)V(P,(Γ,Δ)_L)\langle V(t_{\_}{1}),\ldots,V(t_{\_}{m})\rangle\in V(P,{(\Gamma,\Delta)}_{\_}{L}) iff P(t_1,,t_m)ΓP(t_{\_}{1},\ldots,t_{\_}{m})\in\Gamma,

    • V(c)V(c) := cc, where cc is a constant in \mathcal{L}.

It is easy to see that the canonical model McM^{c} is well-defined, i.e., RcR^{c} is a preorder and VcV^{c} satisfies heredity for predicates. By the induction on the complexity of a formula, Lemma 5 is shown, where Lemma 3 and Lemma 4 (2) enable us to deal with the cases when AA is of the form B_𝚌CB\mathbin{\to}_{\_}{\mathtt{c}}C and when AA is of the form B_𝚒CB\mathbin{\to}_{\_}{\mathtt{i}}C or _𝚒xB\forall_{\_}{\mathtt{i}}xB, respectively.

Lemma 5 (Truth Lemma).

For any (Γ,Δ)_LWc{(\Gamma,\Delta)}_{\_}{L}\in W^{c}, any LL-formula AA, i.e., any formula A𝖥𝗈𝗋𝗆_LA\in\mathsf{Form}_{\_}{L}, and any {x_1,,x_n}𝖵𝖺𝗋(L)\{x_{\_}{1},\ldots,x_{\_}{n}\}\subseteq\mathsf{Var}(L) such that 𝖥𝖵(A){x_1,,x_n}\mathsf{FV}(A)\subseteq\{x_{\_}{1},\ldots,x_{\_}{n}\}, the following equivalence holds:

AΓiff(Γ,Δ)_L_McA[x_1¯/x_1][x_n¯/x_n],\begin{array}[]{lll}A\in\Gamma&\mathrm{iff}&{(\Gamma,\Delta)}_{\_}{L}\models_{\_}{M^{c}}A[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}],\\ \end{array}

where it is noted that A[x_1¯/x_1][x_n¯/x_n](Dc(Γ,Δ)_L)A[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]\in\mathcal{L}(D^{c}{(\Gamma,\Delta)}_{\_}{L}).

Proof.

We use induction on the complexity of a formula AA. The case when the main connective of AA is intuitionistic implication and the case when it is intuitionistic universal quantifier are dealt with here.

  • Let AA be of the form B_𝚒CB\mathbin{\to}_{\_}{\mathtt{i}}C.

    (From left to right)

    Suppose B_𝚒CΓB\mathbin{\to}_{\_}{\mathtt{i}}C\in\Gamma. Our goal is to show that(Γ,Δ)_L_Mc(B_𝚒C)[x_1¯/x_1][x_n¯/x_n]{(\Gamma,\Delta)}_{\_}{L}\models_{\_}{M^{c}}(B\mathbin{\to}_{\_}{\mathtt{i}}C)[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}], which is syntactically the same as(Γ,Δ)_L_McB[x_1¯/x_1][x_n¯/x_n]_𝚒C[x_1¯/x_1][x_n¯/x_n]{(\Gamma,\Delta)}_{\_}{L}\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]\mathbin{\to}_{\_}{\mathtt{i}}C[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]. Fix any (Γ,Δ)_LWc{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\in W^{c} such that (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}} and (Γ,Δ)_L_McB[x_1¯/x_1][x_n¯/x_n]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]. It suffices to show (Γ,Δ)_L_McC[x_1¯/x_1][x_n¯/x_n]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}C[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]. By applying induction hypothesis, BΓB\in\Gamma^{\prime} is obtained. Since both B_𝚒CΓB\mathbin{\to}_{\_}{\mathtt{i}}C\in\Gamma and (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}} hold, B_𝚒CΓB\mathbin{\to}_{\_}{\mathtt{i}}C\in\Gamma^{\prime} holds. Thus, both ΓB\Gamma^{\prime}\Rightarrow B and ΓB_𝚒C\Gamma^{\prime}\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}C are derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). By applying to these sequents (_𝚒)(\mathbin{\to}_{\_}{\mathtt{i}}\Rightarrow), (Cut)(Cut), and (c)(c\Rightarrow), the sequent ΓC\Gamma\Rightarrow C is derived. From the condition (Γ\Gamma^{\prime} is a theory) in Definition 10, CΓC\in\Gamma^{\prime} holds, and by applying induction hypothesis, (Γ,Δ)_L_McC[x_1¯/x_1][x_n¯/x_n]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}C[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}] is obtained, as is desired.

    (From right to left)

    Fix any (Γ,Δ)_LWc{(\Gamma,\Delta)}_{\_}{L}\in W^{c}. In order to show the contrapositive, suppose B_𝚒CΓB\mathbin{\to}_{\_}{\mathtt{i}}C\notin\Gamma. From the condition (Γ\Gamma is a theory) in Definition 10, the sequent ΓB_𝚒C\Gamma\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}C is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). Consider the set Θ\Theta of all persistent formulas contained in Γ\Gamma. Since ΘΓ\Theta\subseteq\Gamma, the sequent ΘB_𝚒C\Theta\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}C is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). This implies the sequent B,ΘCB,\Theta\Rightarrow C is not derivable, because if this were, the sequent ΘB_𝚒C\Theta\Rightarrow B\mathbin{\to}_{\_}{\mathtt{i}}C would be derivable by applying (_𝚒)(\Rightarrow\mathbin{\to}_{\_}{\mathtt{i}}). Thus, from Lemma 4 (2), there exists a syntax LL^{\prime} and a prime LL^{\prime}-complete pair (Γ,Δ)_L(\Gamma^{\prime},\Delta^{\prime})_{\_}{L^{\prime}} such that LL+\mathcal{L}\sqsubset L\sqsubset L^{\prime}\sqsubset\mathcal{L^{+}}, Θ{B}Γ\Theta\cup\{B\}\subseteq\Gamma^{\prime} and {C}Δ\{C\}\subseteq\Delta^{\prime}. From the condition (underivability) in Definition 10, CΓC\notin\Gamma^{\prime}. Since Θ\Theta contains all of the persistent formulas in Γ\Gamma, (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}(\Gamma^{\prime},\Delta^{\prime})_{\_}{L^{\prime}} holds. By applying induction hypothesis to BΓB\in\Gamma^{\prime} and CΓC\notin\Gamma^{\prime}, (Γ,Δ)_L_McB[x_1¯/x_1][x_n¯/x_n]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}] and (Γ,Δ)_L⊧̸_McC[x_1¯/x_1][x_n¯/x_n]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\not\models_{\_}{M^{c}}C[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}] are obtained. These ensures (Γ,Δ)_L⊧̸_Mc(B_𝚒C)[x_1¯/x_1][x_n¯/x_n]{(\Gamma,\Delta)}_{\_}{L}\not\models_{\_}{M^{c}}(B\mathbin{\to}_{\_}{\mathtt{i}}C)[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}], as is desired.

  • Let AA be of the form _𝚒xB\forall_{\_}{\mathtt{i}}xB.

    (From left to right)

    Suppose _𝚒xBΓ\forall_{\_}{\mathtt{i}}xB\in\Gamma. Our goal is to show (Γ,Δ)_L_Mc(_𝚒xB)[x_1¯/x_1][x_n¯/x_n]{(\Gamma,\Delta)}_{\_}{L}\models_{\_}{M^{c}}(\forall_{\_}{\mathtt{i}}xB)[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}], which is syntactically the same as (Γ,Δ)_L_Mc_𝚒x(B[x_1¯/x_1][x_n¯/x_n]){(\Gamma,\Delta)}_{\_}{L}\models_{\_}{M^{c}}\forall_{\_}{\mathtt{i}}x(B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]). Fix any (Γ,Δ)_LWc{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\in W^{c} such that (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}. It suffices to show for all tDc((Γ,Δ)_L)t\in D^{c}((\Gamma^{\prime},\Delta^{\prime})_{\_}{L^{\prime}}), (Γ,Δ)_L_McB[x_1¯/x_1][x_n¯/x_n][t¯/x]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{t}/x]. Since both _𝚒xBΓ\forall_{\_}{\mathtt{i}}xB\in\Gamma and (Γ,Δ)_LRc(Γ,Δ)_L{(\Gamma,\Delta)}_{\_}{L}R^{c}{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}} hold, _𝚒xBΓ\forall_{\_}{\mathtt{i}}xB\in\Gamma^{\prime} holds, which implies Γ_𝚒xB\Gamma^{\prime}\Rightarrow\forall_{\_}{\mathtt{i}}xB is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). It is trivial that the sequent B[t/x]B[t/x]B[t/x]\Rightarrow B[t/x]. By applying to these sequents (_𝚒)(\forall_{\_}{\mathtt{i}}\Rightarrow) and (Cut)(Cut), the sequent ΓB[t/x]\Gamma^{\prime}\Rightarrow B[t/x] is obtained. From the condition (Γ\Gamma^{\prime} is a theory) in Definition 10, B[t/x]ΓB[t/x]\in\Gamma^{\prime} holds. The term tt can be a constant, one of x_1,,x_nx_{\_}{1},\ldots,x_{\_}{n}, or a variable different from any of x_1,,x_nx_{\_}{1},\ldots,x_{\_}{n}. The only last case is dealt with here. By applying induction hypothesis, (Γ,Δ)_L_McB[t/x][x_1¯/x_1][x_n¯/x_n][t¯/t]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}B[t/x][\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{t}/t] is obtained. We note that B[t/x][x_1¯/x_1][x_n¯/x_n][t¯/t]B[t/x][\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{t}/t] is B[x_1¯/x_1][x_n¯/x_n][t[x_1¯/x_1][x_n¯/x_n]/x][t¯/t]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][t[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]/x][\underline{t}/t]. Since tt is distinguished from any of x_1,,x_mx_{\_}{1},\ldots,x_{\_}{m}, B[x_1¯/x_1][x_n¯/x_n][t[x_1¯/x_1][x_n¯/x_n]/x][t¯/t]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][t[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]/x][\underline{t}/t] is B[x_1¯/x_1][x_n¯/x_n][t/x][t¯/t]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][t/x][\underline{t}/t], which is syntactically the same as B[x_1¯/x_1][x_n¯/x_n][t¯/x]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{t}/x]. This argument implies (Γ,Δ)_L_McB[x_1¯/x_1][x_n¯/x_n][t¯/x]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L^{\prime}}\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{t}/x], as is desired.

    (From right to left)

    Fix any (Γ,Δ)_LWc{(\Gamma,\Delta)}_{\_}{L}\in W^{c}. In order to show the contrapositive, suppose _𝚒xBΓ\forall_{\_}{\mathtt{i}}xB\notin\Gamma. From the condition (underivability) in Definition 10, the sequent Γ_𝚒xB\Gamma\Rightarrow\forall_{\_}{\mathtt{i}}xB is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). Consider the set Θ\Theta of all persistent formulas contained in Γ\Gamma. Since ΘΓ\Theta\subseteq\Gamma, the sequent Θ_𝚒xB\Theta\Rightarrow\forall_{\_}{\mathtt{i}}xB is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). Consider a syntax L_1L_{\_}{1}, obtained by adding to LL a variable zz, which is not in LL. The fact that the syntax LL is obtained by adding a new countably infinite set of variables to \mathcal{L} ensures L_1\mathcal{L}\sqsubset L_{\_}{1}. Since zz does not occur free in Θ\Theta and _𝚒xB\forall_{\_}{\mathtt{i}}xB, the sequent ΘB[z/x]\Theta\Rightarrow B[z/x] is not derivable, because if this sequent were, the sequent Θ_𝚒xB\Theta\Rightarrow\forall_{\_}{\mathtt{i}}xB would be derivable by applying (_𝚒)(\Rightarrow\forall_{\_}{\mathtt{i}}). Thus, from Lemma 4 (2), there exists a syntax L_2L_{\_}{2} and a prime L_2L_{\_}{2}-complete pair (Γ,Δ)_L_2(\Gamma^{\prime},\Delta^{\prime})_{\_}{L_{\_}{2}} such that L_1L_2+\mathcal{L}\sqsubset L_{\_}{1}\sqsubset L_{\_}{2}\sqsubset\mathcal{L^{+}}, ΘΓ\Theta\subseteq\Gamma^{\prime} and {B[z/x]}Δ\{B[z/x]\}\subseteq\Delta^{\prime}. By (underivability) in Definition 10, B[z/x]ΓB[z/x]\notin\Gamma^{\prime}. Since Θ\Theta contains all of the persistent formulas in Γ\Gamma, (Γ,Δ)_LRc(Γ,Δ)_L_2{(\Gamma,\Delta)}_{\_}{L}R^{c}(\Gamma^{\prime},\Delta^{\prime})_{\_}{L_{\_}{2}} holds. By applying induction hypothesis to B[z/x]ΓB[z/x]\notin\Gamma^{\prime}, (Γ,Δ)_L_2⊧̸_McB[z/x][x_1¯/x_1][x_n¯/x_n][z¯/z]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L_{\_}{2}}\not\models_{\_}{M^{c}}B[z/x][\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{z}/z] is obtained. We note that B[z/x][x_1¯/x_1][x_n¯/x_n][z¯/z]B[z/x][\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{z}/z] is B[x_1¯/x_1][x_n¯/x_n][z[x_1¯/x_1][x_n¯/x_n]/x][z¯/z]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][z[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]/x][\underline{z}/z]. Since xx is distinguished from any of x_1,,x_nx_{\_}{1},\ldots,x_{\_}{n}, B[x_1¯/x_1][x_n¯/x_n][z[x_1¯/x_1][x_n¯/x_n]/x][z¯/z]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][z[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}]/x][\underline{z}/z] is syntactically the same as B[x_1¯/x_1][x_n¯/x_n][z/x][z¯/z]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][z/x][\underline{z}/z], which is B[x_1¯/x_1][x_n¯/x_n][z¯/x]B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{z}/x]. This argument implies (Γ,Δ)_L_2⊧̸_McB[x_1¯/x_1][x_n¯/x_n][z¯/x]{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L_{\_}{2}}\not\models_{\_}{M^{c}}B[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{n}}/x_{\_}{n}][\underline{z}/x]. The above argument ensures (Γ,Δ)_L⊧̸_Mc(_𝚒xB)[x_i¯/x_i]{(\Gamma,\Delta)}_{\_}{L}\not\models_{\_}{M^{c}}(\forall_{\_}{\mathtt{i}}xB)[\underline{x_{\_}{i}}/x_{\_}{i}], as is desired. ∎

Finally, we obtain the following desired theorem.

Theorem 3 (Strong Completeness Theorem).

For any set Γ{A}\Gamma\cup\{A\} of formulas in \mathcal{L}, if ΓA\Gamma\models A then ΓA\Gamma\Rightarrow A is derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}).

Proof.

Suppose ΓA\Gamma\Rightarrow A is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) in the original syntax \mathcal{L} to show the contrapositive. By Lemma 4 (1), there exist a syntax LL and a prime LL-complete pair (Γ,Δ)_L{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L} such that L+\mathcal{L}\sqsubset L\sqsubset\mathcal{L^{+}}, ΓΓ\Gamma\subseteq\Gamma^{\prime}, and {A}Δ\{A\}\subseteq\Delta^{\prime}. By Definition 11, the prime LL-complete pair (Γ,Δ)_LWc{(\Gamma^{\prime},\Delta^{\prime})}_{\_}{L}\in W^{c} holds. It is noted that McM^{c} is a Kripke model. By Lemma 5, w_MC[x_1¯/x_1][x_m¯/x_m]w\models_{\_}{M}C[\underline{x_{\_}{1}}/x_{\_}{1}]\cdots[\underline{x_{\_}{m}}/x_{\_}{m}] holds for any CΓC\in\Gamma, and w⊧̸_MA[z_1¯/z_1][z_n¯/z_n]w\not\models_{\_}{M}A[\underline{z_{\_}{1}}/z_{\_}{1}]\cdots[\underline{z_{\_}{n}}/z_{\_}{n}] also holds, where x_1,,x_mx_{\_}{1},\ldots,x_{\_}{m} are all free variables in CC and z_1,,z_nz_{\_}{1},\ldots,z_{\_}{n} are all free variables in AA. This concludes that Γ⊧̸A\Gamma\not\models A. ∎

5 Conclusion and Further Direction

We have four further directions to do in the future. Firstly, a Hilbert-style axiomatization (which is equipollent with 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J})) should be provided. We try to do this based on a Hilbert-style axiomatization proposed in [3], which was shown to be equipollent with propositional 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) in [25].

Secondly, we may establish Craig interpolation theorem for 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). The interpolation theorem in an ordinary first-order intuitionistic and classical logic was shown in [26], but whether the theorem holds in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) is not solved yet. Since two implications (intuitionistic and classical ones) exist in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), the corresponding two types of the theorem can be considered. We have already shown these two theorems for propositional 𝖦(𝐂+𝐉)\mathsf{G}(\mathbf{C}+\mathbf{J}) syntactically in [25] by employing the idea in [14].

Thirdly, strong completeness of the cut-free fragment of 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) should be interesting, because such completeness will ensure the semantic proof of the cut elimination theorem. Then, we need to check if our basic idea for the strong completeness could be done without the notion of LL-completeness in Definition 10. Such an attempt was already done to a single-succedent sequent calculus for first-order intuitionistic logic in [7, 15], but we will deal with multi-succedent 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}).

Fourthly, comparison of 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) with 𝐋𝐄𝐜𝐢\mathbf{LEci}, which is a sequent calculus for Prawitz’s ecumenical system, should be done from a proof-theoretic viewpoint. The calculus 𝐋𝐄𝐜𝐢\mathbf{LEci}, which is mentioned in Section 1.2, was provided in [22] in the 𝐆𝟑\mathbf{G3} style, which has no structural rule. Therefore, what is desired is providing a sequent calculus for the system which has structural rules, since such a calculus enables the comparison of ecumenical system with 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}). It should be noted that 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}) and 𝐋𝐄𝐜𝐢\mathbf{LEci} are not equivalent. This is because A_𝚒(B_𝚒A)A\mathbin{\to}_{\_}{\mathtt{i}}(B\mathbin{\to}_{\_}{\mathtt{i}}A) is not derivable in 𝖦(𝐅𝐎𝐂+𝐉)\mathsf{G}(\mathbf{FOC}+\mathbf{J}), as is explained in Section 2.2, but is derivable in 𝐋𝐄𝐜𝐢\mathbf{LEci}. From a model-theoretic viewpoint, in the Kripke semantics for 𝐋𝐄𝐜𝐢\mathbf{LEci}, all formulas satisfy heredity.

References

  • [1]
  • [2] Carlos Caleiro & Jaime Ramos (2007): Combining classical and intuitionistic implications. In Boris Konev & Frank Wolter, editors: Frontiers of Combining Systems. FroCoS 2007, Lecture Notes in Computer Science, Springer, pp. 118–132, 10.1007/978-3-540-74621-88.
  • [3] Luis Fariñas del Cerro & Andreas Herzig (1996): Combining classical and intuitionistic logic or: Intuitionistic implication as a conditional. In Franz Badder & Klaus U Schulz, editors: Frontiers of Combining Systems. FroCoS 1996, Springer, pp. 93–102, 10.1007/978-94-009-0349-44.
  • [4] Michael De (2013): Empirical negation. Acta Analytica: International Periodical for Philosophy in the Analytical Tradition 28(1), pp. 49–69, 10.1007/s12136-011-0138-9.
  • [5] Michael De & Hitoshi Omori (2014): More on empirical negation. In Rajeev Goré, Bateld Kooi & Agi Kurucz, editors: Advances in Modal Logic, 10, College Publications, pp. 114–133.
  • [6] Dov Gabbay, Valentin Shehtman & Dmitrij Skvortsov (2009): Quantification in Nonclassical logic Volume 1. Studies in Logic and the Founadations of Mathematics 153, Elsevier Science.
  • [7] Olivier Hermant (2005): Semantic cut elimination in the intuitionistic sequent calculus. In Paweł Urzyczyn, editor: TCLA 2005: Typed Lambda Calculi and Applications, Lecture Notes in Computer Science book series (LNCS) 3461, Springer, pp. 221–233, 10.1007/1141717017.
  • [8] Llyod Humberstone (1979): Interval semantics for tense logic: some remarks. Journal of Philosophical Logic 8, pp. 171–196, 10.1007/BF00258426.
  • [9] Dick de Jongh & Fatemeh Shirmohammadzadeh Maleki (2018): Subintuitionistic logics and the implications they prove. Indagationes Mathematicae 29(6), pp. 1525–1545, 10.1016/j.indag.2018.01.013.
  • [10] Dick de Jongh & Fatemeh Shirmohammadzadeh Maleki (2015): Subintuitionistic logics with Kripke semantics. In Helle Hvid Hansen, Sarah E. Marray, Mehrnoosh Sadrzadeh & Henk Zeevat, editors: Revised Selected Papers of the 11th International Tbilisi Symposium on Logic, Language, and Computation, 10148, Springer - Verlag, pp. 333–354, 10.1007/978-3-662-54332-018.
  • [11] Ryo Kashima (2009): Mathematical Logic (in Japanese). Asakura Publishing Company.
  • [12] Paqui Lucio (2000): Structured sequent calculi for combining intuitionistic and classical first-order logic. In Hélène Kirchner & Christophe Ringeissen, editors: Frontiers of Combining Systems. FroCoS 2000, Springer, pp. 88–104, 10.1007/107200847.
  • [13] Shôji Maehara (1954): Eine Darstellung der intuitionistischen Logik in der klassischen. Nagoya Mathematical Journal 7, pp. 45–64, 10.1017/S0027763000018055.
  • [14] Shôji Maehara (1961): Craig’s interpolation theorem (in Japanese). Sûgaku 12(4), pp. 235–237, 10.11429/sugaku1947.12.235.
  • [15] Giorgi Mints (2000): A Short Introduction to Intuitionistic Logic. The University Series in Mathematics, Springer, Boston, 10.1007/b115304.
  • [16] Sara Negri & Jan Von Plato (2001): Structural proof theory. Cambridge University Press, 10.1017/CBO9780511527340.
  • [17] Hiroakira Ono (1994): Logic in Information Science (in Japanese). Nippon Hyoron sha co., Ltd.
  • [18] Hiroakira Ono (2019): Proof Theory and Algebra in Logic, 1st edition. Springer, 10.1007/978-981-13-7997-0.
  • [19] Hiroakira Ono & Yuichi Komori (1985): Logics without the contraction rule. The Journal of Symbolic Logic 50(1), pp. 169–201, 10.2307/2273798.
  • [20] Luiz Carlos Pereira & Ricardo Oscar Rodriguez (2017): Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System. Revista Portuguesa de Filosofia 73(3/4), pp. 1153–1168, 10.17990/RPF/2017_73_3_1153. Available at http://www.jstor.org/stable/26291332.
  • [21] Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva (2018): A proof theoretical view of ecumenical systems. In: Proceedings of the 13th Workshop on Logical and Semantic Framework with Applications, Electronic Proceedings in Theoretical Computer Science, pp. 109–114.
  • [22] Elaine Pimentel, Luiz Carlos Pereira & Valeria de Paiva (2019): An ecumenical notion of entailment. Synthese, 10.1007/s11229-019-02226-5.
  • [23] Dag Prawitz (2015): Classical versus intuitionistic logic. In Edward Herman Haeusler, Wagner de Campos Sanz & Bruno Lopes, editors: Why is this a Proof?, College Publications, pp. 15–32.
  • [24] Greg Restall (1994): Subintuitionistic logics. Notre Dame Journal of Formal Logic 35(1), pp. 116–129, 10.1305/ndjfl/1040609299.
  • [25] Masanobu Toyooka & Katsuhiko Sano (2021): Analytic multi-succedent sequent calculus for combining intuitionistic and classical propositional logic. In Sujata Ghosh & R Ramanujam, editors: ICLA 2021 Proceedings: 9th Indian Conference on Logic and its Applications, pp. 128–133. Available at https://www.isichennai.res.in/~sujata/icla2021/proceedings.pdf.
  • [26] Anne Sjerp Troelstra & Helmut Schwichtenberg (2012): Basic Proof Theory, 2nd edition. Cambridge University Press, 10.1017/CBO9781139168717.