This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The most updated version of the paper is available on https://naprienko.com/papers/miw/

Combinatorics of Iwahori Whittaker Functions

Abstract.

We give a combinatorial evaluation of Iwahori Whittaker functions for unramified genuine principal series representations on metaplectic covers of the general linear group over a non-archimedean local field. To describe the combinatorics, we introduce new combinatorial data that we call colored data: colored Lusztig data, colored Gelfand-Tsetlin patterns, and colored lattice models. We show that all three are equivalent. To achieve the result, we give an explicit Iwahori decomposition for the maximal unipotent subgroup of a split reductive group which gives the parametrization of the generalized Mirković-Vilonen cycles in the affine flag varieties and is of interest in itself.

Our result is based and naturally extends Peter McNamara’s evaluation of the metaplectic spherical Whittaker function in terms of Lusztig data.

Key words and phrases:
Whittaker functions, Iwahori decomposition, colored lattice models, Lusztig data
2020 Mathematics Subject Classification:
Primary: 22E50; Secondary: 82B23, 05E05, 11F70

1. Introduction

Consider a split reductive group over a non-archimedean local field. The principal series representation is a representation parabolically induced from a character of the maximal torus. We consider Whittaker functions on the group which are certain matrix coefficients on the principal series representation corresponding to Whittaker functionals and spherical/Iwahori vectors. See Appendix A for details.

The non-achimedean Whittaker functions were introduced by Jacquet in [Jac67] and were given in the form of a pp-adic Jacquet integral over the maximal unipotent subgroup. There is a rich theory of combinatorial evaluation of the non-achimedean Whittaker functions explored in [McN11, BBF11b, BBBG19, BBBG20] and related special functions in [Tok88, Oka90, HK07] and others.

The spherical Whittaker function W0W_{0} is the first and simplest example. It was computed explicitly by T. Shintani in [Shi76] for Lie groups of type A. Later Casselman and Shalika in [CS80] gave a formula for all Lie types as a product of the deformed Weyl denominator times the character of the dual Langlands group.

The spherical Whittaker functions W0nW_{0}^{n} of the metaplectic nn-covers for Lie groups of type A is the next example. In [McN11], McNamara gave the expression of W0nW_{0}^{n} in terms of Lusztig data and showed that this data is equivalent to Mirković-Vilonen cycles of the affine grassmanian. In [BBF11b], Brubaker, Bump, and Friedberg also expressed W0nW_{0}^{n} (as the Whittaker coefficient of Borel Eisenstein series) in terms of crystal graphs (and in terms of strict Gelfand-Tsetlin patterns).

The Iwahori Whittaker functions WwW_{w} in type A are refinements of the spherical Whittaker functions that comes from the Iwahori decomposition instead of the Iwasawa decomposition. In [BBBG19], a recursive evaluation of the functions WwW_{w} was given using the intertwining operators. By connecting the intertwiners with Yang-Baxter equations, functions WwW_{w} were expressed in terms of colored lattice models. Moreover, In [BBBG20], the calculation was extended for metaplectic nn-covers of Lie groups of type A in terms of supersymmetric lattice models using similar methods. At the present, it is the most general result which specializes to all functions mentioned above.

Thanks to the Casselman-Shalika formula (the CS-formula) for the spherical Whittaker function W0W_{0}, one can study the combinatorics by analyzing the explicit expression given in terms of the special functions. In this approach, one does not need any representation theory to obtain the combinatorial results. These special functions occur independently in the literature with no relation to the Whittaker functions.

Tokuyama in [Tok88] found an exact expression for the generating function of strict Gelfand-Tsetlin patterns which incidentally matched the CS-formula. In [Oka90], the CS-formula was expressed in terms of partially strict shifted plane partitions. In [HK07], it was computed combinatorically by applying jeu de taquin to the primed tableaux. In [BBF11a], Brubaker, Bump, and Friedberg evaluated the CS-formula as the partition function of a free-fermionic solvable lattice model which gave a new combinatorial interpretation using Yang-Baxter equation, a tool from statistical mechanics. A posteriori, all these methods give a combinatorial evaluation of the spherical Whittaker function W0W_{0}.

Some progress was made for other types other Lie types as well. In [HK02], a variation of the CS-formula was given combinatorically by Hamel and King. Moreover, they introduced lattice models with U-turns. In [Iva12], Ivanov used lattice models with U-turns and introduced Yang-Baxter equation that allowed to get the CS-formula for the symplectic group as the partition function of his model. Later, in [Gra17] Gray extended lattice models with U-turns and conjectured that the partition function is the spherical Whittaker function for the metaplectic covers of the symplectic group. In [FZ16], a partial evaluation of the CS-formula for type B was found by Friedberg and Zhang. Also, in [DeF21] DeFranco gave the CS-formula for type G2G_{2} by brute force. A non-finite variant of such computations was given for the metaplectic cover of G2G_{2} by Leslie in [Les19].

Spherical vector Iwahori vector
Type A [Tok88], [Oka90], [HK07], [BBF11a] [BBBG19], this paper
Metaplectic type A [BBF11b], [McN11] [BBBG20], this paper
Type C [HK02] (partial), [Iva12]
Metaplectic type C [Gra17] (partial)
Type B [FZ16] (partial)
Type G2 [DeF21]
Other types
Table 1. Combinatorial evaluations of the Whittaker functions and related special functions given by the Casselman-Shalika formula

The main goal of this paper is to extend McNamara’s approach from the spherical Whittaker function to the Iwahori Whittaker functions. An advantage of McNamara’s approach is the description of the spherical Whittaker function as a sum over combinatorial data. Each term in the sum corresponds to a Mirković-Vilonen cycle. The combinatorial sum is obtained directly, without using intertwining operators, recursive relations, explicit expressions, or multiple Dirichlet series. This geometric approach has the following steps.

  1. (1)

    Write explicit Iwasawa decomposition for the maximal unipotent subgroup UU that corresponds to Mirković-Vilonen cycles in the affine grassmanian. It gives the decomposition U=mCmiU=\bigsqcup_{m}C_{m}^{\textbf{i}} into cells;

  2. (2)

    The spherical Whittaker function W0nW_{0}^{n} is defined by a pp-adic integral over UU. The explicit decomposition for UU gives a combinatorial sum mCmi\sum_{m}\int_{C_{m}^{\textbf{i}}};

  3. (3)

    Evaluate each individual integral Cmi\int_{C_{m}^{\textbf{i}}} explicitly in appropriate coordinates to obtain combinatorial weights for each term;

  4. (4)

    Describe the decomposition and weights combinatorically, for example, in terms of Gelfand-Tsetlin patterns.

In Section 4 of [McN11], McNamara found an explicit Iwasawa decomposition for the maximal unipotent subgroup UU into disjoint cells CmiC_{m}^{\textbf{i}}. In Section 2, we extend his decomposition and produce explicit Iwahori decomposition for UU into cells Sm,σiS_{m,\sigma}^{\textbf{i}} that are the refinement of McNamara’s decomposition.

In Section 8 of [McN11], McNamara computes the values of the spherical Whittaker functions using the explicit decomposition. In Section 4 we extend the calculation to the case of the Iwahori Whittaker functions using cells Sm,σiS_{m,\sigma}^{\textbf{i}}.

There Iwahori case has several difficulties compared to the spherical case from McNamara’s work. First, the space of Iwahori Whittaker functions is not one dimensional which results in computing each Iwahori basis element separately. Second, the Iwahori Whittaker functions are defined by the affine Weyl group, not just by the diagonal which results in two parameters for the group element to consider. Third, we introduce new combinatorial data that we call colored data. We give equivalent definitions of colored Lusztig data, colored Gelfand-Tsetlin patterns, and colored lattice models.

The lattice model we introduce is dual to the one from [BBBG19, BBBG20]. This gives a geometric meaning to the admissible states of the lattice model as they are in bijection with the cells Sm,σiS_{m,\sigma}^{\textbf{i}} and the weights are the pp-adic integrals over the corresponding cells. We remark that we don’t use the intertwining operators or Yang-Baxter equation in our approach. Instead, we give the combinatorial evaluation directly from the definition of the Iwahori Whittaker functions by the Jacquet integral.

Let us be more precise now.

Let GG be a split reductive group over a non-achimedean local field and let G~\widetilde{G} be an nn-fold metaplectic cover of GG. Let T~\widetilde{T} be a fixed split maximal torus of G~\widetilde{G}, B~\widetilde{B} the Borel subgroup, U±U^{\pm} be the maximal unipotent subgroup and its opposite, JJ the opposite Iwahori subgroup, and WW the Weyl group. See Section A.1 for details. In Section 2, we give the explicit Iwahori decomposition for UU that depends on a long word decomposition i:

Theorem (Theorem 2.3).

Let uUu\in U and wWw^{\prime}\in W. Then there is an explicit Iwahori decomposition uw=p1h1π1j1U+T~WJuw^{\prime}=p_{1}h_{1}\pi_{1}j_{1}\in U^{+}\widetilde{T}WJ with p1U+p_{1}\in U^{+}, h1T~h_{1}\in\widetilde{T}, π1W\pi_{1}\in W, j1Jj_{1}\in J given by Proposition 2.2.

We use this explicit decomposition to write UU as a union of cells which are related to the generalized Mirković-Vilonen cycles in the affine flag varieties. In this paper, it will be important that we can describe each cell in appropriate coordinates to compute integrals explicitly.

Theorem (Theorem 2.9).

The following decomposition holds.

UB~w0wJ(w)1=mNσΣ(m,w,w)Sm,σi,U\cap\widetilde{B}w_{0}wJ(w^{\prime})^{-1}=\bigsqcup_{\begin{subarray}{c}m\in\mathbb{N}^{N}\\ \sigma\in\Sigma(m,w,w^{\prime})\end{subarray}}S_{m,\sigma}^{\textbf{i}},

where colorings Σ(m,w,w)\Sigma(m,w,w^{\prime}) are defined by Definition 2.8.

Similar to Section 7 of [McN11], we can show that cells Sm,σiS_{m,\sigma}^{\textbf{i}} are in bijection with the generalized Mirković-Vilonen cycles in the affine flag variety which gives a parametrization of the generalized Mirković-Vilonen cycles. Alternative parametrization in terms of refined alcove paths was explored in [PRS09] by Parkinson, Ram, and Schwer.

Remark 1.1.

We remark that our parametrization of the generalized Mirković-Vilonen cycles resembles the Lusztig graph which has the natural crystal structure. It is interesting to find the “colored crystal structure” on the generalized Mirković-Vilonen cycles in the affine flag variety.

Let now specialize to G=GLr+1G=\operatorname{GL}_{r+1}. In Section A.4 we define Iwahori Whittaker functions Ww:G~W_{w}\colon\widetilde{G}\to\mathbb{C} parametrized by Weyl group elements wWw\in W. In short, these are the matrix coefficients on the unramified genuine principal series representation of G~\widetilde{G} corresponding to the averaged Whittaker functional and an Iwahori fixed vector. In Section 4, we evaluate all values of WwW_{w} in terms of colored Lusztig data, combinatorial objects we introduce in Section 3.

Theorem (Theorem 4.6).

Let λΛ\lambda\in\Lambda with λr+1=0\lambda_{r+1}=0 and let w,wWw,w^{\prime}\in W. Then the integrals ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) defined by eq. A.1 that determines values of Iwahori Whittaker functions is given by

ϕw(λ,w;z)=m𝐋𝐮(λ+ρ,w,w)αΦ+G(m,α;q)zmαα,\phi_{w}(\lambda,w^{\prime};z)=\sum_{\textbf{m}\in\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime})}\prod_{\alpha\in\Phi^{+}}\operatorname{G}(\textbf{m},\alpha;q)z^{m_{\alpha}\alpha},

where contributions G(m,α;q)[q1]\operatorname{G}(\textbf{m},\alpha;q)\in\mathbb{Z}[q^{-1}] are given explicitly by (3.3).

Compare it with Theorem 8.6 from [McN11]:

Theorem (Theorem 8.6, [McN11]).

Let λΛ\lambda\in\Lambda with λr+1=0\lambda_{r+1}=0. Then the integrals ϕ0(λ;z)\phi_{0}(\lambda;z) defined in the paper that determines values of the spherical Whittaker function is given by

ϕ0(λ;z)=mLu(λ+ρ)αΦ+w(m,α;q)zmαα,\phi_{0}(\lambda;z)=\sum_{\textbf{m}\in\operatorname{Lu}(\lambda+\rho)}\prod_{\alpha\in\Phi^{+}}w(m,\alpha;q)z^{m_{\alpha}\alpha},

where contributions w(m,α;q)w(m,\alpha;q) are given explicitly by (8.2) in [McN11].

As usual, one can use the combinatorial formulas to get the branching rules, specializations, and asymptotics for the Iwahori Whittaker functions. We do not do it here.

Remark 1.2.

Note that ϕ0(λ;z)=wWϕw(λ,w;z)\phi_{0}(\lambda;z)=\sum_{w\in W}\phi_{w}(\lambda,w^{\prime};z). Therefore, Theorem 4.6 is a refinement of McNamara’s calculation. We remark that in the summation, non-trivial cancellations between Iwahori Whittaker functions happen which are “invisible” in the spherical case. See Section 5 for examples.

In Section 3, we define colored Lusztig data, colored Gelfand-Tsetlin patterns, and supersymmetric lattice models. We show that all of them are equivalent. Thus, Theorem 4.6 can be written over any of these equivalent data. In examples in Section 5 we primarily use colored GT-patterns.

Theorem 1.3 (Theorem 3.1).

There are weight-preserving bijections between

  • colored Lusztig data 𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}),

  • colored Gelfand-Tsetlin patterns 𝐆𝐓(λ+ρ,w,w)\operatorname{\mathbf{GT}}(\lambda+\rho,w,w^{\prime}),

  • colored states 𝔖(λ+ρ,w,w)\mathfrak{S}(\lambda+\rho,w,w^{\prime}).

This result connects our approach to colored lattice models and supersymmetric lattice models dual to ones introduced in [BBBG19] and [BBBG20]. We note that the alternative choice of the long word decomposition yields the exact lattice models. By combining two models, one can obtain the standard results like the Cauchy identities and duality for the supersymmetric ice.

Remark 1.4.

Note that the Boltzmann weights for the lattice models are given by pp-adic integrals over the corresponding cells. A posteriori, the lattice model is integrable and satisfies the Yang-Baxter equation. In other words, this approach allows one to come up with solvable lattice models and Boltzmann weights without “guessing” the weights.

We finally remark that our approach can be adapted in other settings. Instead of the general linear group, one can choose any other split reductive group and its covers. Instead of the delta word decomposition, one can pick the gamma word decomposition to obtain combinatorics matching colored lattice models from [BBBG19, BBBG20]. The main difficulty lies in the explicit expression of the character ψλ\psi_{\lambda} in coordinates which is the reason why we need to pick a “good” word decomposition.

We use notation =0\mathbb{N}=\mathbb{Z}_{\geq 0}.


Acknowledgements. We thank Dan Bump for being a great advisor and his support throughout the project. We thank Alexei Borodin and Ben Brubaker for their helpful comments on the presentation of the paper. We thank Claire Frechette for the discussion about the general metaplectic covers. Thank you!

2. Explicit Iwahori Decomposition

In Section 4 of [McN11], McNamara gives an explicit Iwasawa decomposition for the opposite maximal unipotent subgroup of a metaplectic cover of a split reductive group. We extend his results to get an explicit Iwahori decomposition. We loosely follow the exposition of Section 4 of [McN11].

Let GG be a split reductive group over a non-archumedian local field FF. Let G~\widetilde{G} be an nn-fold metaplectic cover of GG. We use notation from Section A.1, A.4: ring of integers 𝒪F\mathcal{O}_{F}, maximal ideal 𝔭\mathfrak{p}, torus T~\widetilde{T}, Borel subgroup B~\widetilde{B}, maximal unipotent subgroup U+U^{+} and its opposite U=UU=U^{-}, and the opposite Iwahori subgroup JJ. And from Section A.5: positive roots Φ+\Phi^{+}, coroots Φ\Phi^{\vee}, the Weyl group WW, simple reflections sis_{i}, and generators eαe_{\alpha} and hαh_{\alpha}.

Let i=(i1,,iN)\textbf{i}=(i_{1},\dots,i_{N}) be a NN-tuple of indices such that w0=si1si2siNw_{0}=s_{i_{1}}s_{i_{2}}\dots s_{i_{N}} is a reduced decomposition of the long word w0Ww_{0}\in W. The choice of i defines a total ordering <i<_{\textbf{i}} on the set of positive roots given by

Φ+={γ1,γ2,,γN},γ1<iγ2<i<iγN,\Phi^{+}=\{\gamma_{1},\gamma_{2},\dots,\gamma_{N}\},\quad\gamma_{1}<_{\textbf{i}}\gamma_{2}<_{\textbf{i}}\dots<_{\textbf{i}}\gamma_{N},

where γj=siNsiN1sij+1αij\gamma_{j}=s_{i_{N}}s_{i_{N-1}}\dots s_{i_{j+1}}\alpha_{i_{j}}. The proof can be found in any Lie theory text, for example [Bou68][Ch VI, §6].

For each k=0,1,2,,Nk=0,1,2,\dots,N, let GkG_{k} denote the set of elements gG~g\in\widetilde{G} which can be expressed in the form

g=(j=1k1eγj(tj))(j=k+1Neγj(tj)),all tjF.g=\left(\prod_{j=1}^{k-1}e_{-\gamma_{j}}(t_{j})\right)\left(\prod_{j=k+1}^{N}e_{\gamma_{j}}(t_{j})\right),\quad\text{all $t_{j}\in F$}.

Note that G0=U+G_{0}=U^{+}. It slightly differs from GkG_{k} from Section 4 of [McN11] as we don’t include the torus element in our definition.

Lemma 2.1 (Lemma 4.3 from [McN11]).

For all zFz\in F and gGkg\in G_{k}, there exists a unique gGkg^{\prime}\in G_{k} such that

eγk(z)g=geγk(z).e_{-\gamma_{k}}(z)g=g^{\prime}e_{-\gamma_{k}}(z).
Proof.

In the proof of Lemma 4.3 from [McN11] the argument zz changes only when crossing a torus element which we don’t have in our definition of GkG_{k}. ∎

Before we give an explicit Iwahori decomposition, we need a technical result which is an extension of Algorithm 4.4 of [McN11] to the Iwahori subgroup.

Proposition 2.2.

Let uUu\in U and wWw^{\prime}\in W. Write uUu\in U as u=eγ1(x1)eγN(xN)u=e_{-\gamma_{1}}(x_{1})\dots e_{-\gamma_{N}}(x_{N}) for unique x1,,xNFx_{1},\dots,x_{N}\in F. Then there exist coordinates y1,y2,,yNy_{1},y_{2},\dots,y_{N}, shifts t1,t2,,tNt_{1},t_{2},\dots,t_{N}, and elements {pk,hk,πk,jk}k=1N+1\{p_{k},h_{k},\pi_{k},j_{k}\}_{k=1}^{N+1} with pkeγk1(tk1)Gk1p_{k}\in e_{-\gamma_{k-1}}(t_{k-1})G_{k-1}, hkT~h_{k}\in\widetilde{T}, πkW\pi_{k}\in W, and jkJj_{k}\in J, such that for each k=1,2,,N+1k=1,2,\dots,N+1 we have

uw=(j=1k1eγj(xj))pkhkπkjk,uw^{\prime}=\left(\prod_{j=1}^{k-1}e_{-\gamma_{j}}(x_{j})\right)p_{k}h_{k}\pi_{k}j_{k},

and explicit expressions

hk=j=Nk{hγj(yj1),if yk𝒪 or if (yk𝒪× and πk+11(γk)Φ)1,if yk𝔭 or if (yk𝒪× and πk+11(γk)Φ+),h_{k}=\prod_{j=N}^{k}\begin{cases}h_{\gamma_{j}}(y_{j}^{-1}),\quad&\text{if $y_{k}\not\in\mathcal{O}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}$)}\\ 1,\quad&\text{if $y_{k}\in\mathfrak{p}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}$)}\end{cases},
πk=j=kN{sγj,if yk𝒪 or if (yk𝒪× and πk+11(γk)Φ)1,if yk𝔭 or if (yk𝒪× and πk+11(γk)Φ+),\pi_{k}=\prod_{j=k}^{N}\begin{cases}s_{\gamma_{j}},&\text{if $y_{k}\not\in\mathcal{O}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}$)}\\ 1,\quad&\text{if $y_{k}\in\mathfrak{p}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}$)}\end{cases},
jk=j=kN{eσj+11(γj)(yj1),if yk𝒪 or if (yk𝒪× and πk+11(γk)Φ)eσj+11(γj)(yj),if yk𝔭 or if (yk𝒪× and πk+11(γk)Φ+).j_{k}=\prod_{j=k}^{N}\begin{cases}e_{\sigma_{j+1}^{-1}(\gamma_{j})}(y_{j}^{-1}),\quad&\text{if $y_{k}\not\in\mathcal{O}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}$)}\\ e_{-\sigma_{j+1}^{-1}(\gamma_{j})}(y_{j}),\quad&\text{if $y_{k}\in\mathfrak{p}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}$)}\end{cases}.
yk=(xk+tk)j=k+1N{yjγk,γj,if yk𝒪 or if (yk𝒪× and πk+11(γk)Φ)1,if yk𝔭 or if (yk𝒪× and πk+11(γk)Φ+)y_{k}=(x_{k}+t_{k})\prod_{j=k+1}^{N}\begin{cases}y_{j}^{-\langle\gamma_{k},\gamma_{j}^{\vee}\rangle},\quad&\text{if $y_{k}\not\in\mathcal{O}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}$)}\\ 1,\quad&\text{if $y_{k}\in\mathfrak{p}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}$)}\\ \end{cases}
Proof.

By decreasing induction on kk. For k=N+1k=N+1, we have pN+1=1p_{N+1}=1, hN+1=1h_{N+1}=1, πN+1=w\pi_{N+1}=w^{\prime}, tN=0t_{N}=0, and jN+1=1j_{N+1}=1. Next, suppose

uw=(j=1keγj(xj))pk+1hk+1πk+1jk+1.uw^{\prime}=\left(\prod_{j=1}^{k}e_{-\gamma_{j}}(x_{j})\right)p_{k+1}h_{k+1}\pi_{k+1}j_{k+1}.

We take the last term eγk(xk)e_{-\gamma_{k}}(x_{k}) in the product and commute it with elements on the right. We write pk+1=eγk(tk)pkp_{k+1}=e_{-\gamma_{k}}(t_{k})p_{k}^{\prime} for some pkGkp_{k}^{\prime}\in G_{k}. By Lemma 2.1,

eγk(xk)pk+1=eγk(xk+tk)pk=pk′′eγk(xk+tk),e_{-\gamma_{k}}(x_{k})p_{k+1}=e_{-\gamma_{k}}(x_{k}+t_{k})p_{k}^{\prime}=p_{k}^{\prime\prime}e_{-\gamma_{k}}(x_{k}+t_{k}),

for some new pk′′Gkp_{k}^{\prime\prime}\in G_{k}. Next, commute with hk+1h_{k+1} to get eγk(xk+tk)hk+1=hk+1eγk(yk)e_{-\gamma_{k}}(x_{k}+t_{k})h_{k+1}=h_{k+1}e_{-\gamma_{k}}(y_{k}). To commute with πk+1\pi_{k+1}, we consider the following cases.

If yk𝒪y_{k}\not\in\mathcal{O} or if (yk𝒪×y_{k}\in\mathcal{O}^{\times} and πk+11(γk)Φ\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}):

We apply the identity

eγ(z)=hγ(z1)eγ(z)sγeγ(z1).e_{-\gamma}(z)=h_{\gamma}(z^{-1})e_{\gamma}(z)s_{\gamma}e_{\gamma}(z^{-1}).

to eγk(yk)e_{-\gamma_{k}}(y_{k}) and get

eγk(yk)πk+1=hγ(yk1)eγ(yk)sγkeγk(yk1)πk+1=hγk(yk1)eγk(yk)sγkπk+1eπk+11(γk)(yk1).e_{-\gamma_{k}}(y_{k})\pi_{k+1}=h_{\gamma}(y_{k}^{-1})e_{\gamma}(y_{k})s_{\gamma_{k}}e_{\gamma_{k}}(y_{k}^{-1})\pi_{k+1}=h_{\gamma_{k}}(y_{k}^{-1})e_{\gamma_{k}}(y_{k})s_{\gamma_{k}}\pi_{k+1}e_{\pi_{k+1}^{-1}(\gamma_{k})}(y_{k}^{-1}).

Let hk+1hγk(yk1)eγk(yk)(hk+1hγk(yk1))1=eγk(b)h_{k+1}h_{\gamma_{k}}(y_{k}^{-1})e_{\gamma_{k}}(y_{k})(h_{k+1}h_{\gamma_{k}}(y_{k}^{-1}))^{-1}=e_{\gamma_{k}}(b), then we define

pk\displaystyle p_{k} =pk′′eγk(b)eγk1(tk1)Gk1\displaystyle=p_{k}^{\prime\prime}e_{\gamma_{k}}(b)\in e_{-\gamma_{k-1}}(t_{k-1})G_{k-1}
hk\displaystyle h_{k} =hk+1hγk(yk1)T~\displaystyle=h_{k+1}h_{\gamma_{k}}(y_{k}^{-1})\in\widetilde{T}
πk\displaystyle\pi_{k} =sγkπk+1W\displaystyle=s_{\gamma_{k}}\pi_{k+1}\in W
jk\displaystyle j_{k} =eσk+11(γk)(yk1)jk+1J.\displaystyle=e_{\sigma_{k+1}^{-1}(\gamma_{k})}(y_{k}^{-1})j_{k+1}\in J.
If yk𝔭y_{k}\in\mathfrak{p} or if (yk𝒪×y_{k}\in\mathcal{O}^{\times} and πk+11(γk)Φ+\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}):

Then eγk(yk)πk+1=πk+1eπk+11(γk)(yk)e_{-\gamma_{k}}(y_{k})\pi_{k+1}=\pi_{k+1}e_{-\pi_{k+1}^{-1}(\gamma_{k})}(y_{k}).

Then we define

pk\displaystyle p_{k} =pk′′Gk1\displaystyle=p_{k}^{\prime\prime}\in G_{k-1}
hk\displaystyle h_{k} =hk+1T~\displaystyle=h_{k+1}\in\widetilde{T}
πk\displaystyle\pi_{k} =πk+1W\displaystyle=\pi_{k+1}\in W
jk\displaystyle j_{k} =eπk+11(γk)(yk)jk+1J.\displaystyle=e_{-\pi_{k+1}^{-1}(\gamma_{k})}(y_{k})j_{k+1}\in J.

In any case, the induction step is successful, and we are done. ∎

Theorem 2.3 (Explicit Iwahori Decomposition).

Let uUu\in U and wWw^{\prime}\in W. Then there is an explicit Iwahori decomposition uw=p1h1π1j1U+T~WJuw^{\prime}=p_{1}h_{1}\pi_{1}j_{1}\in U^{+}\widetilde{T}WJ with p1U+p_{1}\in U^{+}, h1T~h_{1}\in\widetilde{T}, π1W\pi_{1}\in W, j1Jj_{1}\in J given by Proposition 2.2.

Proof.

Set k=1k=1 in Proposition 2.2 and notice that p1G0=U+p_{1}\in G_{0}=U^{+}. ∎

We can also reformulate the result in terms of simple reflections. We favor this reformulation because it is easier to give a combinatorial description in terms of simple reflections.

Lemma 2.4.

Define

σk=[j=kN{1,if yk𝒪 or if (yk𝒪× and πk+11(γk)Φ)sij,if yk𝔭 or if (yk𝒪× and πk+11(γk)Φ+)]w.\sigma_{k}=\left[\prod_{j=k}^{N}\begin{cases}1,&\text{if $y_{k}\not\in\mathcal{O}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}$)}\\ s_{i_{j}},\quad&\text{if $y_{k}\in\mathfrak{p}$ or if ($y_{k}\in\mathcal{O}^{\times}$ and $\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}$)}\end{cases}\right]w^{\prime}.

Then πk=(j=Nksij)σk\pi_{k}=\left(\prod_{j=N}^{k}s_{i_{j}}\right)\sigma_{k}, in particular, π1=w0σ1\pi_{1}=w_{0}\sigma_{1}. Then we can rewrite expressions for hk,πk,jkh_{k},\pi_{k},j_{k} from the theorem in terms of simple reflections.

Proof.

Recall that γk=siNsiN1sik+1αik\gamma_{k}=s_{i_{N}}s_{i_{N-1}}\dots s_{i_{k+1}}\alpha_{i_{k}}, and so

sγk=(siNsiN1sik+1)sik(sik+11siN11siN1).s_{\gamma_{k}}=(s_{i_{N}}s_{i_{N-1}}\dots s_{i_{k+1}})s_{i_{k}}(s_{i_{k+1}}^{-1}\dots s_{i_{N-1}}^{-1}s_{i_{N}}^{-1}).

Note that siNsiN1sik=sγksγk+1sγNs_{i_{N}}s_{i_{N-1}}\dots s_{i_{k}}=s_{\gamma_{k}}s_{\gamma_{k+1}}\dots s_{\gamma_{N}}.

We prove πk=(j=Nksij)σk\pi_{k}=\left(\prod_{j=N}^{k}s_{i_{j}}\right)\sigma_{k} by decreasing induction on kk. For k=N+1k=N+1 we have πN+1=σN+1=w\pi_{N+1}=\sigma_{N+1}=w^{\prime}. Next, if πk+1=(j=Nk+1sij)σk+1\pi_{k+1}=\left(\prod_{j=N}^{k+1}s_{i_{j}}\right)\sigma_{k+1}, we consider two cases.

If yk𝔭y_{k}\in\mathfrak{p} or if (yk𝒪×y_{k}\in\mathcal{O}^{\times} and πk+11(γk)Φ+\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{+}), we get

πk=πk+1=(j=Nk+1sij)σk+1=(j=Nksij)σk.\pi_{k}=\pi_{k+1}=\left(\prod_{j=N}^{k+1}s_{i_{j}}\right)\sigma_{k+1}=\left(\prod_{j=N}^{k}s_{i_{j}}\right)\sigma_{k}.

If yk𝒪y_{k}\not\in\mathcal{O} or if (yk𝒪×y_{k}\in\mathcal{O}^{\times} and πk+11(γk)Φ\pi_{k+1}^{-1}(\gamma_{k})\in\Phi^{-}), we get

πk=sγkπk+1=sγk(j=Nk+1sij)σk+1=(j=Nksij)σk.\pi_{k}=s_{\gamma_{k}}\pi_{k+1}=s_{\gamma_{k}}\left(\prod_{j=N}^{k+1}s_{i_{j}}\right)\sigma_{k+1}=\left(\prod_{j=N}^{k}s_{i_{j}}\right)\sigma_{k}.

We also note that

πk+11(γk)=(σk+11j=k+1Nsij)(siNsiN1sik+1αik)=σk+11(αik).\pi_{k+1}^{-1}(\gamma_{k})=\left(\sigma_{k+1}^{-1}\prod_{j={k+1}}^{N}s_{i_{j}}\right)\left(s_{i_{N}}s_{i_{N-1}}\dots s_{i_{k+1}}\alpha_{i_{k}}\right)=\sigma_{k+1}^{-1}(\alpha_{i_{k}}).

Now all the data can be written in terms of the simple reflections. ∎

Now we extract the combinatorial essence from the results above. We want to describe all possible sequences of σ1,σ2,,σN+1\sigma_{1},\sigma_{2},\dots,\sigma_{N+1} that can occur in the explicit Iwahori decomposition. We drop variables yky_{k} and keep only their valuations mk=max(val(yk1),0)m_{k}=\max(\operatorname{val}(y_{k}^{-1}),0), in other words, if yk𝒪y_{k}\not\in\mathcal{O}, we take the valuation of its inverse, and if yk𝒪y_{k}\in\mathcal{O}, we set mkm_{k} to be zero.

Definition 2.5.

Let mNm\in\mathbb{N}^{N} and let w,wWw,w^{\prime}\in W. An (m,w,w)(m,w,w^{\prime})-coloring is a sequence (σ1,,σN+1)WN+1(\sigma_{1},\dots,\sigma_{N+1})\in W^{N+1} with σ1=w\sigma_{1}=w, σN+1=w\sigma_{N+1}=w^{\prime}, and

(2.1) σk={σk+1,if mk>0sikσk+1,if mk=0 and σk+11(αik)Φ+σk+1 or sikσk+1,if mk=0 and σk+11(αik)Φ.\sigma_{k}=\begin{cases}\sigma_{k+1},&\text{if $m_{k}>0$}\\ s_{i_{k}}\sigma_{k+1},&\text{if $m_{k}=0$ and $\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{+}$}\\ \text{$\sigma_{k+1}$ or $s_{i_{k}}\sigma_{k+1}$},&\text{if $m_{k}=0$ and $\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{-}$}\end{cases}.

Denote by Σ(m,w,w)\Sigma(m,w,w^{\prime}) the set of (m,w,w)(m,w,w^{\prime})-colorings.

We call ww^{\prime} the input, and ww the output of the coloring.

Informally, start with wWw^{\prime}\in W and then read (m1,m2,,mN)(m_{1},m_{2},\dots,m_{N}) from right to left. At each entry, update the current element. If mk>0m_{k}>0, skip it. If mk=0m_{k}=0, multiply by siks_{i_{k}} if applying the inverse of the current element to αik\alpha_{i_{k}} lies in Φ+\Phi^{+}. Otherwise, either multiply or skip it. Then Σ(m,w,w)\Sigma(m,w,w^{\prime}) is the set of such sequences that end with wWw\in W. Note that Σ(m,w,w)\Sigma(m,w,w^{\prime}) may be empty.

Remark 2.6.

Note that the coloring depends on the vanishing of entries of mm, that is, whether an entry is zero or not, but not on the non-zero values of mkm_{k}’s.

Example 2.7.

Let G=GL3G=\operatorname{GL}_{3} and let i=(2,1,2)\textbf{i}=(2,1,2). Then the positive roots are

Φ+={(1,2),(1,3),(2,3)} with (1,2)<i(1,3)<i(2,3).\Phi^{+}=\{(1,2),(1,3),(2,3)\}\text{ with }(1,2)<_{\textbf{i}}(1,3)<_{\textbf{i}}(2,3).

Let w=1w^{\prime}=1 be the input. Here are examples of different (m,w,w)(m,w,w^{\prime})-colorings.

m=(0,0,0)m=(0,0,0):

(s2s1s2,s1s2,s2,1)(s_{2}s_{1}s_{2},s_{1}s_{2},s_{2},1) has output s2s1s2=w0s_{2}s_{1}s_{2}=w_{0}

m=(0,0,1)m=(0,0,1):

(s2s1,s1,1,1)(s_{2}s_{1},s_{1},1,1) has output s2s1s_{2}s_{1}

m=(0,1,0)m=(0,1,0):

(1,s2,s2,1)(1,s_{2},s_{2},1) has output 11 and (s2,s2,s2,1)(s_{2},s_{2},s_{2},1) has output s2s_{2}

m=(0,1,1)m=(0,1,1):

(s2,1,1,1)(s_{2},1,1,1) has output s2s_{2}

m=(1,0,0)m=(1,0,0):

(s1s2,s1s2,s2,1)(s_{1}s_{2},s_{1}s_{2},s_{2},1) has output s1s2s_{1}s_{2}

m=(1,0,1)m=(1,0,1):

(s2s1,s1,1,1)(s_{2}s_{1},s_{1},1,1) has output s2s1s_{2}s_{1}

m=(1,1,0)m=(1,1,0):

(s2,s2,s2,1)(s_{2},s_{2},s_{2},1) has output s2s_{2}

m=(1,1,1)m=(1,1,1):

(1,1,1,1)(1,1,1,1) has output 11.

Definition 2.8.

For mNm\in\mathbb{N}^{N} and a coloring τΣ(m,w,w)\tau\in\Sigma(m,w,w^{\prime}) we define cells Sm,τ=Sm,τiS_{m,\tau}=S_{m,\tau}^{\textbf{i}} by

Sm,τ={uUmax(val(yk1),0)=mk and σk=τk},S_{m,\tau}=\{u\in U\mid\max(\operatorname{val}(y_{k}^{-1}),0)=m_{k}\text{ and }\sigma_{k}=\tau_{k}\},

using coordinates introduced in Theorem 2.3 and Lemma 2.4.

Theorem 2.9.

The following decomposition holds.

UBw0wJ(w)1=mNσΣ(m,w,w)Sm,σ.U\cap Bw_{0}wJ(w^{\prime})^{-1}=\bigsqcup_{\begin{subarray}{c}m\in\mathbb{N}^{N}\\ \sigma\in\Sigma(m,w,w^{\prime})\end{subarray}}S_{m,\sigma}.
Proof.

We first show that Sm,σBw0wJ(w)1S_{m,\sigma}\subset Bw_{0}wJ(w^{\prime})^{-1}. Let uSm,σu\in S_{m,\sigma}. By definition in local coordinates of Theorem 2.3, we have π1=w0σ1=w0w\pi_{1}=w_{0}\sigma_{1}=w_{0}w, hence, uBw0wJ(w)1u\in Bw_{0}wJ(w^{\prime})^{-1}.

Now we show that uUBw0wJ(w)1u\in U\cap Bw_{0}wJ(w^{\prime})^{-1} lies in Sm,σS_{m,\sigma} for some mNm\in\mathbb{N}^{N} and coloring σΣ(m,w,w)\sigma\in\Sigma(m,w,w^{\prime}). Let uBw0wJ(w)1u\in Bw_{0}wJ(w^{\prime})^{-1}. We use the coordinates from Theorem 2.3 to get explicit Iwahori decomposition to define mm and σ\sigma.

We set mk=max(val(yk1),0)m_{k}=\max(\operatorname{val}(y_{k}^{-1}),0). Next, we set σk\sigma_{k} to be the sigmas introduced in Lemma 2.4. Note that π1=w0σ1\pi_{1}=w_{0}\sigma_{1} and from uBwπ1J(w)1u\in Bw\pi_{1}J(w^{\prime})^{-1} and uBw0σ1J(w)1u\in Bw_{0}\sigma_{1}J(w^{\prime})^{-1} by Iwahori decomposition, we conclude that σ1=w\sigma_{1}=w. Next, σ\sigma is indeed a (m,w,w)(m,w,w^{\prime})-coloring: if mk>0m_{k}>0, then yk𝔭y_{k}\in\mathfrak{p}, and so πk=γkπk+1\pi_{k}=\gamma_{k}\pi_{k+1} and σk=σk+1\sigma_{k}=\sigma_{k+1}. If mk=0m_{k}=0 and σk+11(αik)Φ+\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{+}, then πk=πk+1\pi_{k}=\pi_{k+1} and σk=sikσk+1\sigma_{k}=s_{i_{k}}\sigma_{k+1}. If mk=0m_{k}=0 and σk+11(αik)Φ\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{-}, then we either have σk=sikσk+1\sigma_{k}=s_{i_{k}}\sigma_{k+1} in case yk𝔭y_{k}\in\mathfrak{p}, or σk=σk+1\sigma_{k}=\sigma_{k+1} in case yk𝒪×y_{k}\in\mathcal{O}^{\times}. Therefore, σ\sigma is a (m,w,w)(m,w,w^{\prime})-coloring, and we are done. ∎

Remark 2.10.

Similar to Section 7 in [McN11], we can show that the cells Sm,σiS_{m,\sigma}^{\textbf{i}} parametrize the generalized Mirković-Vilonen cycles in the affine flag varieties. Alternative parametrization in terms of refined alcove paths was given in [PRS09] by Parkinson, Ram, and Schwer.

Write yk=ϖmkuky_{k}=\varpi^{-m_{k}}u_{k}, uk𝒪F×u_{k}\in\mathcal{O}_{F}\times for yk𝒪Fy_{k}\not\in\mathcal{O}_{F} and yk=uky_{k}=u_{k}, uk𝒪Fu_{k}\in\mathcal{O}_{F} for yk𝒪Fy_{k}\in\mathcal{O}_{F}. From the proof of Theorem 2.9, we find a cell Sm,σS_{m,\sigma} is a set of elements in UU with ukDku_{k}\in D_{k}, where the domains Dk=Dk(m,σ)D_{k}=D_{k}(m,\sigma) are defined by

Dk{𝒪×,if mk>0𝒪,if mk=0σk+11(αik)Φ+𝒪×,if mk=0σk+11(αik)Φ, and σk=σk+1𝔭,if mk=0σk+11(αik)Φ, and σk=sikσk+1.D_{k}\coloneqq\begin{cases}\mathcal{O}^{\times},&\text{if $m_{k}>0$}\\ \mathcal{O},&\text{if $m_{k}=0$, $\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{+}$}\\ \mathcal{O}^{\times},&\text{if $m_{k}=0$, $\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{-}$, and $\sigma_{k}=\sigma_{k+1}$}\\ \mathfrak{p},&\text{if $m_{k}=0$, $\sigma_{k+1}^{-1}(\alpha_{i_{k}})\in\Phi^{-}$, and $\sigma_{k}=s_{i_{k}}\sigma_{k+1}$}\end{cases}.

Now we give the relation to the cells introduced by McNamara in [McN11].

Theorem 2.11 ([McN11], Section 4).

The following decomposition of UU holds.

U=mNCmi,U=\bigsqcup_{m\in\mathbb{N}^{N}}C_{m}^{\textbf{i}},

where cells Cm=CmiC_{m}=C_{m}^{\textbf{i}} are defined in Section 4 of [McN11].

We have the following relation of our cells with McNamara’s cells.

Proposition 2.12.

McNamara cells decomposes into cells Sm,σS_{m,\sigma} as follows:

CmBw0wJ(w)1=σΣ(m,w,w)Sm,σ.C_{m}\cap Bw_{0}wJ(w^{\prime})^{-1}=\bigsqcup_{\sigma\in\Sigma(m,w,w^{\prime})}S_{m,\sigma}.
Remark 2.13.

This connection of cells Sm,σS_{m,\sigma} explains the splitting phenomena observed in the colored lattice models. Since the integral over a cell CmC_{m} equals to the sum of integrals over correspodning Sm,σS_{m,\sigma}, we get a transition from colored models to uncolored models.

3. Colored data

In the case of the general linear group and a good choice of a long word decomposition, it is possible to write down colorings from Section 2 combinatorically which will be useful when computing Iwahori Whittaker functions in Section 4. In that section we will need weights and contributions of the colored data. For coherency, we define them in this section next to the corresponding data. The statistics rijr_{ij} and sijs_{ij} and the Gauss sums g(rij,sij)g(r_{ij},s_{ij}) are defined in Section 4.

Let G=GLr+1G=\operatorname{GL}_{r+1}. Realize the root system as Φ={(i,j)21i<jr+1}\Phi=\{(i,j)\in\mathbb{Z}^{2}\mid 1\leq i<j\leq r+1\} and the positive roots as Φ+={(i,j)21i<jr+1}\Phi^{+}=\{(i,j)\in\mathbb{Z}^{2}\mid 1\leq i<j\leq r+1\}. Denote the order of Φ+\Phi^{+} by N=r(r+1)/2N=r(r+1)/2. We identify weights Λ=X(T)r+1\Lambda=X_{*}(T)\cong\mathbb{Z}^{r+1} and use the standard elementary basis eie_{i}, so that simple roots αi=eiei+1\alpha_{i}=e_{i}-e_{i+1}. The fundamental weights ϖi\varpi_{i} are defined by

ϖi=(1,1,,1i times,0,,0r+1i times),i=1,,r+1.\varpi_{i}=(\underbrace{1,1,\dots,1}_{\text{$i$ times}},\underbrace{0,\dots,0}_{\text{$r+1-i$ times}}),\quad i=1,\dots,r+1.

We write a weight λ=(λ1,λ2,,λr+1)\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{r+1}) uniquely as λ=iΛiϖi\lambda=\sum_{i}\Lambda_{i}\varpi_{i} with Λi=λiλi+1\Lambda_{i}=\lambda_{i}-\lambda_{i+1}.

Let i=Δ\textbf{i}=\Delta be the delta word, where

Δ=(r,r1,r,r2,r1,r,,1,2,,r).\Delta=(r,r-1,r,r-2,r-1,r,\dots,1,2,\dots,r).

The choice of the delta word induces a total ordering <Δ<_{\Delta} on the positive roots given by (i,j)<Δ(i,j)(i,j)<_{\Delta}(i^{\prime},j^{\prime}) if j<jj<j^{\prime} or if j=jj=j^{\prime} and i<ii<i^{\prime}. I.e.,

(1,2)<Δ(1,3)<Δ(2,3)<Δ(1,4)<Δ(2,4)<Δ<Δ(r,r+1).(1,2)<_{\Delta}(1,3)<_{\Delta}(2,3)<_{\Delta}(1,4)<_{\Delta}(2,4)<_{\Delta}\dots<_{\Delta}(r,r+1).

We choose the delta word because it allows us to use the induction argument. To emphasize it, we write data labeled by positive roots in the form of a table, reading the data from the end and writing in the table from right to left, from top to bottom. For example,

Δ=(12r1r2r1rr1rr),Φ+=((1,r+1)(2,r+1)(r1,r+1)(r,r+1)(1,r)(r2,r)(r1,r)(1,3)(2,3)(1,2)).\Delta=\begin{pmatrix}1&2&\dots&r-1&r\\ &2&\dots&r-1&r\\ &&\ddots&\vdots&\vdots\\ &&&r-1&r\\ &&&&r\end{pmatrix},\quad\Phi^{+}=\begin{pmatrix}(1,r+1)&(2,r+1)&\dots&(r-1,r+1)&(r,r+1)\\ &(1,r)&\dots&(r-2,r)&(r-1,r)\\ &&\ddots&\vdots&\vdots\\ &&&(1,3)&(2,3)\\ &&&&(1,2)\end{pmatrix}.

We identify WSr+1W\cong S_{r+1}. For the delta word, we interpret colorings in terms of actions on the set {1,2,,r+1}\{1,2,\dots,r+1\}; in this context we refer to numbers 1,2,,r+11,2,\dots,r+1 as colors.

The results of the section are summarized in the following

Theorem 3.1 (Equivalence of Colored Data).

There are weight-preserving bijections between

  • colored Lusztig data 𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}),

  • colored Gelfand-Tsetlin patterns 𝐆𝐓(λ+ρ,w,w)\operatorname{\mathbf{GT}}(\lambda+\rho,w,w^{\prime}),

  • colored states 𝔖(λ+ρ,w,w)\mathfrak{S}(\lambda+\rho,w,w^{\prime}).

3.1. Colored Lusztig data

Let us rewrite Definition 2.5 for (m,w,w)(m,w,w^{\prime})-colorings in terms of permutations w,wSr+1w,w^{\prime}\in S_{r+1}. Note that w(αi)Φ+w(\alpha_{i})\in\Phi^{+} if and only if w(i)<w(i+1)w(i)<w(i+1).

Let mNm\in\mathbb{N}^{N} and let w,wSr+1w,w^{\prime}\in S_{r+1} be two permutations. An (m,w,w)(m,w,w^{\prime})-coloring is a sequence σ=(σ12,σ13,,σr,r+1,σ)Sr+1N+1\sigma=(\sigma_{12},\sigma_{13},\dots,\sigma_{r,r+1},\sigma^{\prime})\in S_{r+1}^{N+1} with σ12=w\sigma_{12}=w and σ=w\sigma^{\prime}=w^{\prime}. For the uniform notation, we denote σi,i=σ1,i+1\sigma_{i,i}=\sigma_{1,i+1} for i1,2,,ri\in 1,2,\dots,r and σ=σ1,r+2=σr+1,r+1\sigma^{\prime}=\sigma_{1,r+2}=\sigma_{r+1,r+1}. Then eq. 2.1 becomes

(3.1) σi,j={σi+1,j,if mi,j>0siσi+1,j,if mi,j=0 and σi+1,j1(i)<σi+1,j1(i+1)σi+1,j or siσi+1,j,if mi,j=0 and σi+1,j1(i)>σi+1,j1(i+1).\sigma_{i,j}=\begin{cases}\sigma_{i+1,j},&\text{if $m_{i,j}>0$}\\ s_{i}\sigma_{i+1,j},&\text{if $m_{i,j}=0$ and $\sigma_{i+1,j}^{-1}(i)<\sigma_{i+1,j}^{-1}(i+1)$}\\ \text{$\sigma_{i+1,j}$ or $s_{i}\sigma_{i+1,j}$},&\text{if $m_{i,j}=0$ and $\sigma_{i+1,j}^{-1}(i)>\sigma_{i+1,j}^{-1}(i+1)$}\end{cases}.

From now on, we consider only the colorings for the delta word for the general linear group. We call σ=w\sigma^{\prime}=w^{\prime} the input and σ=w\sigma=w the output of a coloring σ\sigma. With the new notation, we give a characterization of the colorings in the following

Lemma 3.2.

An (m,w,w)(m,w,w^{\prime})-coloring σ\sigma is uniquely determined by {σ1,r+1j+2(r+1k+2)}\{\sigma_{1,r+1-j+2}(r+1-k+2)\} with j=1,2,,r+1j=1,2,\dots,r+1 and k=j,,r+1k=j,\dots,r+1. We organize this data in table with r+1r+1 rows:

(3.2) (σ1,r+2(1)σ1,r+2(2)σ1,r+2(r)σ1,r+2(r+1)σ1,r+1(2)σ1,r+1(r)σ1,r+1(r+1)σ1,3(r)σ1,3(r+1)σ1,2(r+1)).\begin{pmatrix}\sigma_{1,r+2}(1)&\sigma_{1,r+2}(2)&\dots&\sigma_{1,r+2}(r)&\sigma_{1,r+2}(r+1)\\ &\sigma_{1,r+1}(2)&\dots&\sigma_{1,r+1}(r)&\sigma_{1,r+1}(r+1)\\ &&\ddots&\vdots&\vdots\\ &&&\sigma_{1,3}(r)&\sigma_{1,3}(r+1)&\\ &&&&\sigma_{1,2}(r+1)\end{pmatrix}.

Note that the zeroth row defines the input σ1,r+2=w\sigma_{1,r+2}=w^{\prime}.

Proof.

Write mm and the corresponding simple reflections in the form

m=(m1,r+1m2,r+1mr1,r+1mr,r+1m1,rmr2,rmr1,rm13m23m12),(s1s2sr1srs2sr1srsr1srsr).m=\begin{pmatrix}m_{1,r+1}&m_{2,r+1}&\dots&m_{r-1,r+1}&m_{r,r+1}\\ &m_{1,r}&\dots&m_{r-2,r}&m_{r-1,r}\\ &&\ddots&\vdots&\vdots\\ &&&m_{13}&m_{23}\\ &&&&m_{12}\end{pmatrix},\quad\begin{pmatrix}s_{1}&s_{2}&\dots&s_{r-1}&s_{r}\\ &s_{2}&\dots&s_{r-1}&s_{r}\\ &&\ddots&\vdots&\vdots\\ &&&s_{r-1}&s_{r}\\ &&&&s_{r}\end{pmatrix}.

The evaluation of σ\sigma goes from the top row of mm down to bottom, reading each row from right to left. At each entry we either multiply by the corresponding sjs_{j} or skip it according to the colorings rules eq. 3.1. Note that after the kk-th row the future permutations do not affect colors in positions 1,2,,k1,2,\dots,k since there are no reflections s1,,sks_{1},\dots,s_{k} in the sequel. Hence, by induction it is enough to prove that permutations σk,r+1\sigma_{k,r+1} for k1,2,,rk\in 1,2,\dots,r of the first row are determined by σ1,r+1\sigma_{1,r+1} alone. Indeed, by the colorings rules in eq. 3.1,

σ1,r+1=(s1ϵ1srϵr)w,ϵk{0,1}.\sigma_{1,r+1}=(s_{1}^{\epsilon_{1}}\dots s_{r}^{\epsilon_{r}})w^{\prime},\quad\epsilon_{k}\in\{0,1\}.

But there is a unique way to write σ1,r+1(w)1\sigma_{1,r+1}(w^{\prime})^{-1} as a product of increasing simple reflections. Hence, σ1,r+1\sigma_{1,r+1} determines all ϵk\epsilon_{k}’s which in order determine all σk,r+1\sigma_{k,r+1}’s. Finally, σ1,r+1\sigma_{1,r+1} is determined by its action on colors 2,3,,r+12,3,\dots,r+1 which is the first row of (3.2)\eqref{eq:colortable} (after the zeroth one). ∎

Example 3.3.

Let m=(100)m=\begin{pmatrix}1&0\\ &0\end{pmatrix}. Let the input be w=1w^{\prime}=1. Let us use Lemma 3.2 to write all possible colorings:

output w=1w=1:

(1,s2,s2,1)(1,s_{2},s_{2},1), or (123322)\begin{pmatrix}\hbox{\pagecolor{red}1}&\hbox{\pagecolor{green}2}&\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{3}}\\ &\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{3}}&\hbox{\pagecolor{green}2}\\ &&\hbox{\pagecolor{green}2}\end{pmatrix};

output w=s1w=s_{1}:

(s2,s2,s2,1)(s_{2},s_{2},s_{2},1), or (123323)\begin{pmatrix}\hbox{\pagecolor{red}1}&\hbox{\pagecolor{green}2}&\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{3}}\\ &\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{3}}&\hbox{\pagecolor{green}2}\\ &&\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{3}}\end{pmatrix}.

We cannot resist the temptation to merge mm with the coloring provided by Lemma 3.2. For convenience, we add the zeroth row to mm filled with dashes. We overlay mm and σ\sigma. If mi,jm_{i,j} has color kk, we write mi,jk{}_{k}m_{i,j}. The example above becomes

m=(100),(123130202) and (123130203).m=\begin{pmatrix}-&-&-\\ &1&0\\ &&0\end{pmatrix},\qquad\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}\\ &{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}&{}_{2}\hbox{\pagecolor{green}0}\\ &&{}_{2}\hbox{\pagecolor{green}0}\end{pmatrix}\text{ and }\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}\\ &{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}&{}_{2}\hbox{\pagecolor{green}0}\\ &&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\end{pmatrix}.

Let mNm\in\mathbb{N}^{N} and λ=(λ1,λ2,,λr+1)Λ\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{r+1})\in\Lambda be a weight. We write λ=iΛiϖi\lambda=\sum_{i}\Lambda_{i}\varpi_{i} as the sum of fundamental weights, so Λi=λiλi+1\Lambda_{i}=\lambda_{i}-\lambda_{i+1}. We define statistics si,j=si,j(m,λ)s_{i,j}=s_{i,j}(m,\lambda) by

si,j=Λi+k=jrmi+1,k+1k=jr+1mi,k,s_{i,j}=\Lambda_{i}+\sum_{k=j}^{r}m_{i+1,k+1}-\sum_{k=j}^{r+1}m_{i,k},
Definition 3.4.

Let λ\lambda be a weight. The finite set of mNm\in\mathbb{N}^{N} such that si,j1s_{i,j}\geq-1 for all (i,j)Φ+(i,j)\in\Phi^{+} is called the Lusztig data corresponding to λ+ρ\lambda+\rho and denoted by Lu(λ+ρ)\operatorname{Lu}(\lambda+\rho).

Lusztig data is used to parametrize the Kashiwara crystal (λ+ρ)\mathcal{B}(\lambda+\rho) for GLr+1\operatorname{GL}_{r+1} which explains the shift by ρ\rho in the notation. We exclusively use colorings for the Lusztig data. So we specialize from arbitrary strings N\mathbb{N}^{N} to the set of Lusztig data.

A colored Lusztig data corresponding to λ\lambda with input ww and output ww^{\prime} is the pair (m,σ)(m,\sigma) of a Lusztig datum mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho) and a (m,w,w)(m,w,w^{\prime})-coloring σ\sigma that we visualize as a table of entries of mm colored by σ\sigma using Lemma 3.2 as discussed above. The set of all colored Lusztig data with input ww and output ww^{\prime} is denoted by 𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}).

This definition is not exactly useful since for a given Lusztig datum mm we need to find a coloring σ\sigma, make a coloring by Lemma 3.2, and only then merge the pattern with the coloring to get a colored Lusztig datum. Now we give a purely combinatorial definition of the colored Lusztig data that doesn’t involve (m,w,w)(m,w,w^{\prime})-colorings at all.

Definition 3.5.

Let λΛ\lambda\in\Lambda be a weight and w,wSr+1w,w^{\prime}\in S_{r+1} be two permutations. A coloring σ\sigma of a Lusztig data mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho) with input ww^{\prime} and output ww is an assignment of colors 1,2,,r+11,2,\dots,r+1 to each entry of mm according to the following procedure.

Procedure 3.6.

Write mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho) in the form

m=(m1,r+1m2,r+1mr1,r+1mr,r+1m1,rmr2,rmr1,rm13m23m12).m=\begin{pmatrix}-&-&-&\dots&-&-\\ &m_{1,r+1}&m_{2,r+1}&\dots&m_{r-1,r+1}&m_{r,r+1}\\ &&m_{1,r}&\dots&m_{r-2,r}&m_{r-1,r}\\ &&&\ddots&\vdots&\vdots\\ &&&&m_{13}&m_{23}\\ &&&&&m_{12}\end{pmatrix}.

The zero-th row of dashes is given colors by the input permutation ww^{\prime}, that is, the zero-th row has colors w(1),w(2),,w(r+1)w^{\prime}(1),w^{\prime}(2),\dots,w^{\prime}(r+1). Starting from the next row, we color entries from top to bottom, from right to left, using the following rules at each step.

You have a buffer color ee. Every time you start a new row, you update ee to be the color to the top right most entry of the previous row. While in a row, ee will be updated as the procedure goes. At each step you have a triangle of values and colors

(AaBbC)\begin{pmatrix}{}_{a}A&{}_{b}B\\ &C\end{pmatrix}
If C>0C>0:

Paint CC to the color ee and update e=ae=a.

If C=0C=0 and a<ba<b:

Paint CC to the color aa and don’t update ee

If C=0C=0 and a>ba>b:

You can do one of the following

  1. (1):

    Paint CC to the color ee and update e=ae=a

  2. (2):

    Paint CC to the color aa and don’t update ee

Consider colors that are present in kk-th row, but not in (k+1)(k+1)-th row. Informally, they ”leave“ the table. They form a permutation which should be the output ww.

Note that the colorings from the definition above give all possible colorings by Lemma 3.2. Therefore, we give

Definition 3.7.

Let λΛ\lambda\in\Lambda be a weight and w,wSr+1w,w^{\prime}\in S_{r+1} be two permutations. The set of colored Lusztig data 𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}) is the set of all possible pairs of Lusztig data mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho) and colorings σΣ(m,w,w)\sigma\in\Sigma(m,w,w^{\prime}) given by Definition 3.5 with input ww^{\prime} and output ww.

Remark 3.8.

The coloring procedure itself is not an algorithm as it requires a choice in the case C=0C=0 and a>ba>b. But it is the basis of an algorithm enumerating all colored Lusztig data as the leaves of a binary tree of all possible colorings.

Example 3.9.

Let λ=(1,0,0)\lambda=(1,0,0) and let

m=(100010)Lu(λ+ρ).m=\begin{pmatrix}-&-&-&-\\ &1&0&0\\ &&0&1\\ &&&0\end{pmatrix}\in\operatorname{Lu}(\lambda+\rho).

Here is the application of the coloring procedure to produce a coloring with input w=1w^{\prime}=1 and output w=(12341243)w=\begin{pmatrix}1&2&3&4\\ 1&2&4&3\end{pmatrix}.

m=(1234100010)1(12341003010)2(123410203010)3m=\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &1&0&0\\ &&0&1\\ &&&0\end{pmatrix}\xrightarrow{1}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &1&0&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&0&1\\ &&&0\end{pmatrix}\xrightarrow{2}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &1&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&0&1\\ &&&0\end{pmatrix}\xrightarrow{3}
3(1234140203010)4(12341402030130)5(123414020304130)6\xrightarrow{3}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&0&1\\ &&&0\end{pmatrix}\xrightarrow{4}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&0&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&0\end{pmatrix}\xrightarrow{5}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}--}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&{}_{4}\hbox{\pagecolor{magenta}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&0\end{pmatrix}\xrightarrow{6}
6(1234140203041303).\xrightarrow{6}\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&{}_{4}\hbox{\pagecolor{magenta}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\end{pmatrix}.

At the beginning, the buffer color e=4e=4.

  1. Step 1:

    C=0C=0 and 3=a<b=43=a<b=4. Paint C=0C=0 to the color 33 (blue)

  2. Step 2:

    C=0C=0 and 2=a<b=32=a<b=3. Paint C=0C=0 to the color 22 (green)

  3. Step 3:

    C=1C=1. Paint C=1C=1 to the color 44 and set e=1e=1 (red)

  4. New row:

    Set e=3e=3 (blue)

  5. Step 4:

    C=1C=1. Paint C=1C=1 to the color e=3e=3 (blue)

  6. Step 5:

    C=0C=0 and 4=a>b=24=a>b=2. We have a choice. We choose to paint C=0C=0 to the color a=4a=4. We do not update color ee.

  7. New row:

    Set e=3e=3 (blue)

  8. Step 6:

    C=0C=0 and 4=a>b=34=a>b=3. We have a choice. We choose to paint C=0C=0 to the color e=3e=3 (blue)

All possible colorings with the input σ=1\sigma^{\prime}=1 are listed below.

{(1234140203041304),(1234140203041303),(1234140203021302)}.\left\{\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&{}_{4}\hbox{\pagecolor{magenta}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&{}_{4}\hbox{\pagecolor{magenta}0}\end{pmatrix},\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&{}_{4}\hbox{\pagecolor{magenta}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\end{pmatrix},\begin{pmatrix}{}_{1}\hbox{\pagecolor{red}--}&{}_{2}\hbox{\pagecolor{green}--}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{--}}&{}_{4}\hbox{\pagecolor{magenta}--}\\ &{}_{4}\hbox{\pagecolor{magenta}1}&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{0}}\\ &&{}_{2}\hbox{\pagecolor{green}0}&{}_{3}\hbox{\pagecolor{blue}\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@color@gray@fill{1}{1}}\\ &&&{}_{2}\hbox{\pagecolor{green}0}\end{pmatrix}\right\}.

Let m=(m,σ)𝐋𝐮(λ+ρ)\textbf{m}=(m,\sigma)\in\operatorname{\mathbf{Lu}}(\lambda+\rho) be a colored Lusztig datum. A weight zmz^{\textbf{m}} is defined by

zm=αΦ+zmαα=i<j(zi/zj)mij.z^{\textbf{m}}=\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}=\prod_{i<j}(z_{i}/z_{j})^{m_{ij}}.

Let

AaBbCcDd\begin{matrix}{}_{a}A&{}_{b}B&\\ &{}_{c}C&{}_{d}D\end{matrix}

be a block of values and colors in the datum m, where CC is the position of mi,jm_{i,j}. If CC is the right-most entry in mm, for convenience, we assume D>0D>0. Then the contribution G(m,α)\operatorname{G}(\textbf{m},\alpha) at α=(i,j)Φ+\alpha=(i,j)\in\Phi^{+} is defined by

(3.3)

G(AaBbCcDd){{g(ri,j,si,j),if C>01,if C=0 and a<b and sij00,if C=0 and a<b and sij=11q1,if C=0 and a>bca and sij0q1,if C=0 and a>bca and sij=1q1,if C=0 and a>bc=a and sij0q1,if C=0 and a>bc=a and sij=1, if >D0 or if =D0 and db {g(ri,j,0),if C>01,if C=0 and a<b1q1,if C=0 and a>bcaq1,if C=0 and a>bc=a,if D=0 and d=b..\displaystyle\operatorname{G}\left(\begin{matrix}{}_{a}A&{}_{b}B&\\ &{}_{c}C&{}_{d}D\end{matrix}\right)\eqqcolon\begin{cases}\begin{cases}g(r_{i,j},s_{i,j}),&\text{if $C>0$}\\ 1,&\text{if $C=0$ and $a<b$ and $s_{ij}\geq 0$}\\ 0,&\text{if $C=0$ and $a<b$ and $s_{ij}=-1$}\\ 1-q^{-1},&\text{if $C=0$ and $a>b$, $c\neq a$ and $s_{ij}\geq 0$}\\ -q^{-1},&\text{if $C=0$ and $a>b$, $c\neq a$ and $s_{ij}=-1$}\\ q^{-1},&\text{if $C=0$ and $a>b$, $c=a$ and $s_{ij}\geq 0$}\\ q^{-1},&\text{if $C=0$ and $a>b$, $c=a$ and $s_{ij}=-1$}\end{cases},&\parbox[t]{86.72267pt}{if $D>0$ or \\ if $D=0$ and $d\neq b$}\\ \begin{cases}g(r_{i,j},0),&\text{if $C>0$}\\ 1,&\text{if $C=0$ and $a<b$}\\ 1-q^{-1},&\text{if $C=0$ and $a>b$, $c\neq a$}\\ q^{-1},&\text{if $C=0$ and $a>b$, $c=a$}\end{cases},&\text{if $D=0$ and $d=b$}.\end{cases}.

Note that the weight of a colored Lusztig datum is zero if there is any root (i,j)Φ+(i,j)\in\Phi^{+} with C=mi,j=0C=m_{i,j}=0, si,j=1s_{i,j}=-1 and a<ba<b when D>0D>0 or (D=0D=0 and dbd\neq b). It motivates the following

Definition 3.10.

A colored Lusztig datum m𝐋𝐮(λ+ρ,w,w)\textbf{m}\in\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}) is called strict if there are no blocks of values and colors

(AaBbCcDd)\begin{pmatrix}{}_{a}A&{}_{b}B&\\ &{}_{c}C&{}_{d}D\end{pmatrix}

with C=mi,j=0C=m_{i,j}=0, sij=1s_{ij}=-1, and a<ba<b when D>0D>0 or (D=0D=0 and dbd\neq b). Denote the set of strict colored Lusztig data by 𝐒𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{SLu}}(\lambda+\rho,w,w^{\prime}).

In the nn-metaplectic case, g(rα,0)=0g(r_{\alpha},0)=0 if rα0(modn)r_{\alpha}\not\equiv 0\pmod{n}. Analyzing the weight above, we see that it is zero if rα0(modn)r_{\alpha}\not\equiv 0\pmod{n}, sij=0s_{ij}=0, when D>0D>0 or (D=0D=0 and dbd\neq b); or if ri,j0(modn)r_{i,j}\not\equiv 0\pmod{n} when D=0D=0 and d=bd=b. It motivates the following

Definition 3.11.

A colored Lusztig datum m𝐋𝐮(λ+ρ,w,w)\textbf{m}\in\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}) is called (nn-)superstrict if mm is strict and rα0(modn)r_{\alpha}\equiv 0\pmod{n} for all αΦ+\alpha\in\Phi^{+} if si,j=0s_{i,j}=0 when D>0D>0 or (D=0D=0 and dbd\neq b); or if D=0D=0 and d=bd=b. Denote the set of strict colored Lusztig data by 𝐒𝐒𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{SSLu}}(\lambda+\rho,w,w^{\prime}).

Prefix “super” comes from the supersymmetric lattice models that we will introduce later.

3.2. Colored Gelfand-Tsetlin Patterns

We show that the colored Lusztig data is is in a weight-preserving bijection with the colored Gelfand-Tsetlin patterns which we define momentarily.

A Gelfand-Tsetlin pattern (or GT-pattern for short) with the top row (a11,a12,,a1n)n(a_{11},a_{12},\dots,a_{1n})\in\mathbb{N}^{n} is a triangular array of integers

{a11a12a1na22a2n\udotsann}\left\{\begin{matrix}a_{11}&&a_{12}&&\dots&&a_{1n}\\ &a_{22}&&\dots&&a_{2n}&\\ &&\ddots&&\udots&&\\ &&&a_{nn}&&&\end{matrix}\right\}

such that the betweenness condition ai,jai+1,j+1ai,j+1a_{i,j}\geq a_{i+1,j+1}\geq a_{i,j+1} is satisfied for all i,ji,j. In other words, each entry in the pattern lies between two entries above it. Denote by GT(a11,a12,,a1n)\text{GT}(a_{11},a_{12},\dots,a_{1n}) the set of GT-patterns with the top row (a11,a12,,a1n)(a_{11},a_{12},\dots,a_{1n}).

Let μ\mu be a dominant weight, that is, a partition. For our convenience, we parametrize GT(μ)\operatorname{GT}(\mu) by solutions (a1,2,a1,3,,ar,r+1)N(a_{1,2},a_{1,3},\dots,a_{r,r+1})\in\mathbb{N}^{N} of the following inequalities: for each (i,j)Φ+(i,j)\in\Phi^{+}, ai,j0a_{i,j}\geq 0, and

ai,j+1ai,jai+1,j+1,a_{i,j+1}\geq a_{i,j}\geq a_{i+1,j+1},

where we denote ai,r+2=μia_{i,r+2}=\mu_{i} for each i=1,2,,r+1i=1,2,\dots,r+1. This is how it looks:

{μ1μ2μrμr+1a1,r+1a2,r+1ar1,r+1ar,r+1a1,rar1,r\udotsa1,3a2,3a1,2}\left\{\begin{matrix}\mu_{1}&&\mu_{2}&&\dots&&\mu_{r}&&\mu_{r+1}\\ &a_{1,r+1}&&a_{2,r+1}&\dots&a_{r-1,r+1}&&a_{r,r+1}&\\ &&a_{1,r}&&\dots&&a_{r-1,r}&&\\ &&\ddots&&&&\udots&\\ &&&a_{1,3}&&a_{2,3}&&\\ &&&&a_{1,2}&&&\end{matrix}\right\}

A weight of a GT-pattern TT is defined by

zT=αΦ+z(ai,j+1aij)α=i<j(zi/zj)(ai,j+1aij).z^{T}=\prod_{\alpha\in\Phi^{+}}z^{(a_{i,j+1}-a_{ij})\alpha}=\prod_{i<j}(z_{i}/z_{j})^{(a_{i,j+1}-a_{ij})}.

Let dk=dk(T)d_{k}=d_{k}(T) be the sum of entries in kk-th row of a GT-pattern TT, and dr+2=0d_{r+2}=0. Then the weight zTz^{T} is also given by

zT=zλ+ρi=1r+1zidi+1di.z^{T}=z^{\lambda+\rho}\prod_{i=1}^{r+1}z_{i}^{d_{i+1}-d_{i}}.

Indeed, we get the power of zkz_{k} in zT=i<j(zi/zj)ai,j+1aijz^{T}=\prod_{i<j}(z_{i}/z_{j})^{a_{i,j+1}-a_{ij}} as follows:

j=k+1r+1(ak,j+1ak,j)i=1k1(ai,k+1ai,k)=dk+1dk+(λk+r+1k).\sum_{j=k+1}^{r+1}(a_{k,j+1}-a_{k,j})-\sum_{i=1}^{k-1}(a_{i,k+1}-a_{i,k})=d_{k+1}-d_{k}+(\lambda_{k}+r+1-k).

Hence, zT=zλ+ρi=1r+1zidi+1diz^{T}=z^{\lambda+\rho}\prod_{i=1}^{r+1}z_{i}^{d_{i+1}-d_{i}}, as required.

We now show that GT-patterns with the top row λ+ρ\lambda+\rho are in weight-preserving bijection with Lusztig data corresponding to λ+ρ\lambda+\rho.

Lemma 3.12.

There is a weight-preserving bijection between GT-patterns with the top row λ+ρ\lambda+\rho and colored Lusztig data corresponding to λ+ρ\lambda+\rho. The map f:Lu(λ+ρ)GT(λ+ρ)f\colon\operatorname{Lu}(\lambda+\rho)\to\operatorname{GT}(\lambda+\rho) defined by f(m)=T=(a1,2,,ar,r+1)Nf(m)=T=(a_{1,2},\dots,a_{r,r+1})\in\mathbb{N}^{N} with ai,j=ai,j+1mi,ja_{i,j}=a_{i,j+1}-m_{i,j} for all (i,j)Φ+(i,j)\in\Phi^{+} is a weight-preserving bijection, that is, zm=zTz^{m}=z^{T}.

Proof.

First we show that f(m)f(m) is a GT-pattern, that is, ai,j+1ai,jai+1,j+1a_{i,j+1}\geq a_{i,j}\geq a_{i+1,j+1}.

Note that ai,r+2=λi+r+1ia_{i,r+2}=\lambda_{i}+r+1-i since the top row is λ+ρ\lambda+\rho. Thus, by induction,

ai,j=ai,r+2k=jr+1mi,k=λi+r+1ik=jr+1mi,k.a_{i,j}=a_{i,r+2}-\sum_{k=j}^{r+1}m_{i,k}=\lambda_{i}+r+1-i-\sum_{k=j}^{r+1}m_{i,k}.

Recall that si,j=λiλi+1+k=jrmi+1,k+1k=jr+1mi,ks_{i,j}=\lambda_{i}-\lambda_{i+1}+\sum_{k=j}^{r}m_{i+1,k+1}-\sum_{k=j}^{r+1}m_{i,k} and so si,j=ai,jai+1,j+11s_{i,j}=a_{i,j}-a_{i+1,j+1}-1. Since mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho), we have si,j1s_{i,j}\geq-1 for all (i,j)Φ+(i,j)\in\Phi^{+}. Thus, we get si,j=ai,jai+1,j+111s_{i,j}=a_{i,j}-a_{i+1,j+1}-1\geq-1, or ai,jai+1,j+1a_{i,j}\geq a_{i+1,j+1}. On the other hand, since ai,j=ai,j+1mi,ja_{i,j}=a_{i,j+1}-m_{i,j} and mi,j0m_{i,j}\geq 0, we get ai,j+1ai,ja_{i,j+1}\geq a_{i,j}. Thus, f(m)f(m) is indeed a GT-pattern. The same argument shows that the inverse map g:GT(λ+ρ)Lu(λ+ρ)g\colon\operatorname{GT}(\lambda+\rho)\to\operatorname{Lu}(\lambda+\rho) defined by g(T)=(m1,2,,mr,r+1)Ng(T)=(m_{1,2},\dots,m_{r,r+1})\in\mathbb{N}^{N} with mi,j=ai,j+1ai,jm_{i,j}=a_{i,j+1}-a_{i,j} is the inverse to ff, and so ff is a bijection. Since mij=ai,j+1ai,jm_{ij}=a_{i,j+1}-a_{i,j}, the bijection is weight-preserving, that is, zm=zTz^{m}=z^{T}. ∎

Remark 3.13.

More generally, for a dominant weight λ\lambda, the map given by the same formula yeilds a bijection Lu(λ)GT(λ)\operatorname{Lu}(\lambda)\to\operatorname{GT}(\lambda) between two parametrizations of the crystal (λ)\mathcal{B}(\lambda). We won’t need this result in the sequel.

Let m𝐋𝐮(λ+ρ,w,w)\textbf{m}\in\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}) be a colored Lusztig data. By the bijection above, we can define the coloring of a GT-patterns by coloring each entry ai,ja_{i,j} in the same color as mi,jm_{i,j} under the bijection. It defines colored GT-patterns 𝐆𝐓(λ+ρ,w,w)\operatorname{\mathbf{GT}}(\lambda+\rho,w,w^{\prime}).

For convenience, we rewrite the step of coloring 3.6 for the GT-patterns. The coloring of the top row is given by the input ww^{\prime}. Starting from the next row, we color entries from top to bottom, from right to left, using the following rules at each step.

{AaBbC}{{AaBbCe},if C>A{AaBbCa},if C=A and a<b{AaBbCa} or {AaBbCe},if C=A and a>b.\left\{\begin{matrix}{}_{a}A&&{}_{b}B\\ &C&\end{matrix}\right\}\to\begin{cases}\left\{\begin{matrix}{}_{a}A&&{}_{b}B\\ &{}_{e}C&\end{matrix}\right\},&\text{if $C>A$}\\ \left\{\begin{matrix}{}_{a}A&&{}_{b}B\\ &{}_{a}C&\end{matrix}\right\},&\text{if $C=A$ and $a<b$}\\ \left\{\begin{matrix}{}_{a}A&&{}_{b}B\\ &{}_{a}C&\end{matrix}\right\}\text{ or }\left\{\begin{matrix}{}_{a}A&&{}_{b}B\\ &{}_{e}C&\end{matrix}\right\},&\text{if $C=A$ and $a>b$}\par\end{cases}.

Let T𝐆𝐓(λ+ρ,w,w)\textbf{T}\in\operatorname{\mathbf{GT}}(\lambda+\rho,w,w^{\prime}). Let

AaBbCcDd\begin{matrix}{}_{a}A&&{}_{b}B&\\ &{}_{c}C&&{}_{d}D\end{matrix}

be a block of values and colors in the pattern T, where CC is the position of ai,ja_{i,j}. If CC is the right-most entry in TT, for convenience we assume D<BD<B. Then the contribution G(T,α)\operatorname{G}(\textbf{T},\alpha) at α=(i,j)Φ+\alpha=(i,j)\in\Phi^{+} is defined by

(3.4)

G(AaBbCcDd){{g(ri,j,si,j),if C<A1,if C=A>B and a<b0,if C=A=B and a<b1q1,if C=A>B and a>b and c=bq1,if C=A=B and a>b and c=bq1,if C=A>B and a>b and c=aq1,if C=A=B and a>b and c=a, if <DB or if =DB and db {g(ri,j,0),if C<A1,if C=A1q1,if C=A and a<b and c=bq1,if C=A and a>b and c=a,if D=B and d=b.\displaystyle\operatorname{G}\left(\begin{matrix}{}_{a}A&&{}_{b}B&\\ &{}_{c}C&&{}_{d}D\end{matrix}\right)\eqqcolon\begin{cases}\begin{cases}g(r_{i,j},s_{i,j}),&\text{if $C<A$}\\ 1,&\text{if $C=A>B$ and $a<b$}\\ 0,&\text{if $C=A=B$ and $a<b$}\\ 1-q^{-1},&\text{if $C=A>B$ and $a>b$ and $c=b$}\\ -q^{-1},&\text{if $C=A=B$ and $a>b$ and $c=b$}\\ q^{-1},&\text{if $C=A>B$ and $a>b$ and $c=a$}\\ q^{-1},&\text{if $C=A=B$ and $a>b$ and $c=a$}\end{cases},&\parbox[t]{86.72267pt}{if $D<B$ or \\ if $D=B$ and $d\neq b$}\\ \begin{cases}g(r_{i,j},0),&\text{if $C<A$}\\ 1,&\text{if $C=A$}\\ 1-q^{-1},&\text{if $C=A$ and $a<b$ and $c=b$}\\ q^{-1},&\text{if $C=A$ and $a>b$ and $c=a$}\end{cases},&\text{if $D=B$ and $d=b$}\end{cases}.

The statistics rijr_{ij} and sijs_{ij} and the Gauss sums g(rij,sij)g(r_{ij},s_{ij}) are defined in Section 4. We rewrite them in terms of colored GT-patterns: sij=aijai+1,j+11s_{ij}=a_{ij}-a_{i+1,j+1}-1 and rij=ki(ak,j+1akj)r_{ij}=\sum_{k\leq i}(a_{k,j+1}-a_{kj}).

A colored GT-pattern TT is called strict if no triangle of values and colors

{AaAbADd}\left\{\begin{matrix}{}_{a}A&&{}_{b}A&\\ &A&&{}_{d}D\end{matrix}\right\}

with a<ba<b when D<AD<A or (D=AD=A and dbd\neq b) is present in TT. Denote the set of strict colored GT-patterns by 𝐒𝐆𝐓(λ+ρ,w,w)\operatorname{\mathbf{SGT}}(\lambda+\rho,w,w^{\prime}). A colored GT-pattern TT is called (nn-)superstrict if TT is strict and rij0(modn)r_{ij}\equiv 0\pmod{n} for all entries CC with C<A<BC<A<B when D<BD<B or (D=BD=B and dbd\neq b), or when D=BD=B and d=bd=b in the notation above. The same map from Lemma 3.12 gives the bijection between strict Lusztig data and strict GT-patterns; and between nn-superstrict Lusztig data and nn-superstrict GT-patterns.

When computing examples, GT-patterns are especially convenient because of the following observation. A term aija_{ij} with sij=1s_{ij}=-1 will be right-leaning, that is, aij=ai+1,j+1a_{ij}=a_{i+1,j+1}. Similarly, an entry with mi,j=0m_{i,j}=0, will be left-leaning, that is, aij=ai,j+1a_{ij}=a_{i,j+1}. In [BBF11b], such entries were decorated by boxes and circles.

3.3. Colored Lattice Models

We show that the colored data introduced above is in a weight-preserving bijection with the supersymmetric lattice models dual to the ones from [BBBG19, BBBG20]. We work with the delta version of the models while in [BBBG19, BBBG20] the gamma version is used. See the details in Section 8 of [BBF11b].

3.3.1. Non-metaplectic case n=1n=1

We introduce the colored lattice model 𝔖(μ,w,w)\mathfrak{S}(\mu,w,w^{\prime}) that depends on a partition μ\mu of length r+1r+1 and two permutations w,wSr+1w,w^{\prime}\in S_{r+1}.

The model is a rectangular grid consisting of μ1+1\mu_{1}+1 columns numbered from μ1\mu_{1} to 0 from left to right, and nn rows numbered from r+1r+1 to 11 from top to bottom. We launch r+1r+1 colored paths of r+1r+1 different colors that can go only down and left. Any number of paths can occupy a given vertical edges, but only one color can occupy a given horizontal edge. More formally, we allow only configurations from Figure 1 in our model. The edges with no colors are marked by plus signs. See Sections 6-7 of [BBBG19] for details.

++ΣΣccΣΣc+ΣΣ{c}yi(q1)|Σ|(q1)|Σ[1,c1]|(q1)|Σ[c+1,r+1]|(q1)|Σ[1,c1]|+cΣΣ{c}cdΣΣ{d}{c}dcΣΣ{c}{d}yi(1q1)(q1)|Σ[1,c1]|(1q1)(q1)|Σ[d1,c1]|(q1)|Σ[1,d1]|not admissible!\displaystyle\begin{array}[t]{|c|c|c|}\hline\cr\leavevmode\hbox to86.79pt{\vbox to88.9pt{\pgfpicture\makeatletter\hbox{\hskip 43.39658pt\lower-44.45209pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.06357pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{-41.11908pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to79.89pt{\vbox to88.9pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-44.45209pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{-41.11908pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to83.34pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.77489pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\setminus\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ y_{i}(-q^{-1})^{|\Sigma|}&(q^{-1})^{|\Sigma\cap[1,c-1]|}&(-q^{-1})^{|\Sigma\cap[c+1,r+1]|}(q^{-1})^{|\Sigma\cap[1,c-1]|}\\ \hline\cr\leavevmode\hbox to83.34pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 43.39658pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-40.06357pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.21933pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to80.77pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.71068pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{d\}\setminus\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to80.77pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 40.82364pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.49063pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.71068pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{c\}\setminus\{d\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ y_{i}(1-q^{-1})(-q^{-1})^{|\Sigma\cap[1,c-1]|}&(1-q^{-1})(-q^{-1})^{|\Sigma\cap[d-1,c-1]|}(q^{-1})^{|\Sigma\cap[1,d-1]|}&\text{not admissible!}\\ \hline\cr\end{array}


Figure 1. The admissible configurations and Boltzmann weights on ii-th row. Here Σ\Sigma is a set of colors passing through the vertical edge. The empty set corresponds to the plus sign. We assume c>dc>d.

Weight μ\mu and permutations w,ww,w^{\prime} specify the boundary conditions: paths are launched at columns μ1,μ2,,μr+1\mu_{1},\mu_{2},\dots,\mu_{r+1} and have colors w(1),w(2),,w(r+1)w^{\prime}(1),w^{\prime}(2),\dots,w^{\prime}(r+1) in this order. Moreover, the left boundary condition specifies what colors can leave at each row. The order of leaving colors is w(1),w(2),,w(r+1)w(1),w(2),\dots,w(r+1). See Figure 2 for an example.

++33++22++11++0++11++22++33++44++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++112,3\scriptstyle 2,34433114422
++33++22++11++0++11++22++33++44++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++11111122222222223333334444444444442,3\scriptstyle 2,32,4\scriptstyle 2,4
Figure 2. On the left are the boundary conditions of the model 𝔖(μ,w,w)\mathfrak{S}(\mu,w,w^{\prime}) for μ=(3,1,1,0)\mu=(3,1,1,0), w=1w=1, w=(12343142)w^{\prime}=\begin{pmatrix}1&2&3&4\\ 3&1&4&2\end{pmatrix}; on the right an example of a state in this model.
Remark 3.14.

Note that weights we introduce in our model are dual to the weights from Figure 12 of [BBBG19] in the same way as the delta weights are dual to the gamma weights in [BBF11b]. Hence, we can call the model in [BBBG19] the colored gamma ice and our model the colored delta ice.

Let S𝔖(μ,w,w)S\in\mathfrak{S}(\mu,w,w^{\prime}) be a state in the model. We define a weight of SS as the product of Boltzmann weights of all vertices in SS:

wt(S)=vSwt(v),\operatorname{wt}(S)=\prod_{v\in S}\operatorname{wt}(v),

where Boltzmann weights wt(v)\operatorname{wt}(v) are given in Figure 1.

Lemma 3.15.

There is a weight-preserving bijection between strict colored GTGT-patterns 𝐒𝐆𝐓(λ+ρ,w,w)\operatorname{\mathbf{SGT}}(\lambda+\rho,w,w^{\prime}) and colored lattice states 𝔖(λ+ρ,w,w)\mathfrak{S}(\lambda+\rho,w,w^{\prime}). The weight-preserving property here means that

G(T)=αΦ+G(T,α)=zλ+ρvSwt(v)=zλ+ρwt(S),\operatorname{G}(T)=\prod_{\alpha\in\Phi^{+}}\operatorname{G}(T,\alpha)=z^{\lambda+\rho}\prod_{v\in S}\operatorname{wt}(v)=z^{\lambda+\rho}\operatorname{wt}(S),

where yi=zi1y_{i}=z_{i}^{-1}.

Proof.

We first notice that a state in the model is uniquely determined by its vertical edges. Indeed, admissible configurations allow paths to move only down and left. The number of rows is exactly the number of paths. Then the vertical edges prescribe the positions at which each colored path must descent and at each row one path leaves the state.

A colored GT-pattern uniquely specifies the positions and colors of paths on vertical edges. The value corresponds to the position and the color corresponds to the color of a path. Conversely, each state in the lattice models gives a unique colored GT-pattern.

For uniqueness, notice that the only obstruction is when we have the following triangle of entries and colors in a colored GT-pattern:

{AaAbA}.\left\{\begin{matrix}{}_{a}A&&{}_{b}A\\ &A&\end{matrix}\right\}.

By strictness of GT-patterns, we have a>ba>b, hence, there is no ambiguity.

For the weight-preserving property we consider separately the contribution of zz to the weight and the contribution of qq. Note that the only vertices that give zz-contributions are vertices with an empty horizontal edge. Their number is exactly the difference between two elements in a GT-pattern from two consequent rows. Hence, all together, we get exactly the difference of rows.

For qq contribution, we just follow how a GT-pattern is mapped to a lattice state. We consider an example of the first type of a vertex in Figure 1. Consider part of a GT-pattern with the following configuration where a>ba>b.

{AcBc1BckBckBd1Bd2Bdk}\left\{\begin{matrix}{}_{c}A&&{}_{c_{1}}B&\dots&{}_{c_{k}}B&&{}_{c_{k}}B\\ &{}_{d_{1}}B&&{}_{d_{2}}B&\dots&{}_{d_{k}}B\end{matrix}\right\}

Then it maps exactly to the first type of a vertex from Figure 1. The only possible configurations for weights to be strict is when c1>c2>ckc_{1}>c_{2}>\dots c_{k} and d1>d2>>dkd_{1}>d_{2}>\dots>d_{k} due to the strictness condition. But then it forces dk=ckd_{k}=c_{k} for all kk. The weight of such configuration is (q1)k(-q^{-1})^{k} which is exactly the qq contribution of the corresponding vertex in the lattice model.

Other vertices types are similar. ∎

3.3.2. Metaplectic case

Now we introduce the supersymmetric lattice model 𝔖n(μ,w,w)\mathfrak{S}^{n}(\mu,w,w^{\prime}) that depends a partition μ\mu of length r+1r+1, two permutations w,wSr+1w,w^{\prime}\in S_{r+1}, and an integer n=1,2,n=1,2,\dots. The case n=1n=1 corresponds to the non-metaplectic model from the previous section. The supersymmetric model is the dual lattice model to the one considered in [BBBG20], so we use their vocabulary. In particular, they explain that in physics, the prefix s is used to imply that scolor is the supersymmetry partner of color. Scolors are elements on /n\mathbb{Z}/n\mathbb{Z}.

The model is a rectangular grid consisting of μ1+1\mu_{1}+1 columns numbered from μ1\mu_{1} to 0 from left to right. We launch r+1r+1 colored paths of r+1r+1 different colors that can go only down and left. We also launch r+1r+1 scolored paths of different scolors that can go only down and right. Any number of colors or scolors can occupy a given vertical edges, but only one color or scolor can occupy a given horizontal edge. Moreover, colors and scolors should use the same vertical edges. More formally, we allow only configurations from Figure 3 in our model. The edges with no color are marked by plus signs. See [BBBG20] for details.

For convenience, we write c,dc,d for colors, and j¯,f¯\overline{j},\overline{f} for scolors. In other words, j¯,f¯/n\overline{j},\overline{f}\in\mathbb{Z}/n\mathbb{Z}.

f¯f¯ΣΣccΣΣcj¯ΣΣ{c}yig(f¯j¯,1)|Σ|(q1)|Σ[1,c1]|(q1)|Σ[c+1,r+1]|(q1)|Σ[1,c1]|j¯cΣΣ{c}cdΣΣ{d}{c}dcΣΣ{d}{c}yi(1q1)(q1)|Σ[1,c1]|(1q1)(q1)|Σ[d1,c1]|(q1)|Σ[1,d1]|not admissible!\displaystyle\begin{array}[t]{|c|c|c|c|c|}\hline\cr\leavevmode\hbox to81.24pt{\vbox to88.9pt{\pgfpicture\makeatletter\hbox{\hskip 40.61877pt\lower-44.45209pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.28577pt}{-2.83888pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{f}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.83888pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{f}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{-41.11908pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to79.89pt{\vbox to88.9pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-44.45209pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{-41.11908pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to80.57pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.83888pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.77489pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\setminus\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ y_{i}g(\overline{f}-\overline{j},-1)^{|\Sigma|}&(q^{-1})^{|\Sigma\cap[1,c-1]|}&(-q^{-1})^{|\Sigma\cap[c+1,r+1]|}(q^{-1})^{|\Sigma\cap[1,c-1]|}\\ \hline\cr\leavevmode\hbox to80.57pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 40.61877pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.28577pt}{-2.83888pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\overline{j}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.21933pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to80.77pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 39.94632pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-36.61331pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.71068pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{d\}\setminus\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to80.77pt{\vbox to92.07pt{\pgfpicture\makeatletter\hbox{\hskip 40.82364pt\lower-47.61877pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-37.49063pt}{-3.47221pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.28577pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}} {}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{28.45276pt}\pgfsys@lineto{0.0pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.61111pt}{34.28577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.71068pt}{-41.78577pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\Sigma\cup\{d\}\setminus\{c\}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ y_{i}(1-q^{-1})(-q^{-1})^{|\Sigma\cap[1,c-1]|}&(1-q^{-1})(-q^{-1})^{|\Sigma\cap[d-1,c-1]|}(q^{-1})^{|\Sigma\cap[1,d-1]|}&\text{not admissible!}\\ \hline\cr\end{array}

Figure 3. The admissible configurations and Boltzmann weights. We consider ii-th row and jj-th column. Here Σ\Sigma is a set of colors passing through the vertical edge. The empty set corresponds to the plus sign. In the second row are corresponding weights on the row labeled by ii. We assume c>dc>d.

Note that the only admissible configurations are the ones where a path with scolor e¯\overline{e} descends on columns je(modn)j\equiv e\pmod{n}. It will be useful because the Gauss sum g(a,0)=0g(a,0)=0 when a0(modn)a\not\equiv 0\pmod{n}. The possible configurations will rule out the states with zero contributions.

Lemma 3.16.

The Boltzmann weight of a state in the supersymmetric model equals to the weight of the corresponding nn-superstrict colored GT-pattern under the bijection given in Lemma 3.15.

Proof.

We build on Lemma 3.15. We already have a bijection between strict GT-patterns and colored states. Now we refine it to get a bijection between superstrict GT-patterns and supersymmetric states. Indeed, the supercolored paths give exactly the restriction on rijr_{ij} which are given in the definition of the superstrict GT-patterns.

For the weights, we notice that g(rij,0)g(r_{ij},0) is taken care by the limitation of admissible states (or superstrict GT-patterns). The only thing we need to change now is to replace (q)1(-q)^{-1} with g(f¯j¯,1)g(\overline{f}-\overline{j},-1) which is what we do in Figure 3. ∎

4. Computing metaplectic Iwahori Whittaker functions

In this section we compute Iwahori Whittaker functions for the metaplectic covers of the general linear group G=GLr+1G=\operatorname{GL}_{r+1}. We inherit notation from Section 3: basis eie_{i}, weights Λ=X(T)r+1\Lambda=X_{*}(T)\cong\mathbb{Z}^{r+1}, roots Φ={(i,j)21i<jr+1}\Phi=\{(i,j)\in\mathbb{Z}^{2}\mid 1\leq i<j\leq r+1\}, positive roots Φ+={(i,j)21i<jr+1}\Phi^{+}=\{(i,j)\in\mathbb{Z}^{2}\mid 1\leq i<j\leq r+1\}, and the long word decomposition i=Δ\textbf{i}=\Delta.

Let G~\widetilde{G} be a nn-fold metaplecic cover of GG from Section A.1 coresponding to the bilinear form BB defined by B(ei,ej)=δi,jB(e_{i},e_{j})=\delta_{i,j}. Then lα=Q(α)=B(α,α)/2=1l_{\alpha}=Q(\alpha^{\vee})=B(\alpha^{\vee},\alpha^{\vee})/2=1 for any αΦ+\alpha\in\Phi^{+}. At the end of the section we consider other metaplectic covers.

The Iwahori Whittaker functions are determined by (A.1):

ϕw(λ,w;z)=Ufw(uw)ψλ(u)𝑑u.\phi_{w}(\lambda,w^{\prime};z)=\int_{U}f_{w}(uw^{\prime})\psi_{\lambda}(u)\,du.

Recall that fw(uw)=f(u)f_{w}(uw^{\prime})=f(u) for uUBw0wJ(w)1u\in U\cap Bw_{0}wJ(w^{\prime})^{-1} and zero otherwise. Then by Theorem 2.9, we can rewrite values ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) as

ϕw(λ,w;z)=Ufw(uw)ψλ(u)𝑑u=mNσΣ(m,w,w)Sm,σΔf(u)ψλ(u)𝑑u.\phi_{w}(\lambda,w^{\prime};z)=\int_{U}f_{w}(uw^{\prime})\psi_{\lambda}(u)\,du=\sum_{\begin{subarray}{c}m\in\mathbb{N}^{N}\\ \sigma\in\Sigma(m,w,w^{\prime})\end{subarray}}\int_{S_{m,\sigma}^{\Delta}}f(u)\psi_{\lambda}(u)\,du.

Let uSm,σΔu\in S_{m,\sigma}^{\Delta}. We use coordinates y1,y2,,yNy_{1},y_{2},\dots,y_{N} from Proposition 2.2. We introduce new coordinates u1,u2,,uNu_{1},u_{2},\dots,u_{N} as follows: if yk𝒪Fy_{k}\not\in\mathcal{O}_{F} (equivalently, mk>0m_{k}>0), we write yk=ϖmkuky_{k}=\varpi^{-m_{k}}u_{k} for uk𝒪F×u_{k}\in\mathcal{O}_{F}^{\times}, and if yk𝒪Fy_{k}\in\mathcal{O}_{F} (equivalently, mk=0m_{k}=0), then yk=uky_{k}=u_{k} for uk𝒪Fu_{k}\in\mathcal{O}_{F}. We also need coordinates w1,w2,,wNw_{1},w_{2},\dots,w_{N} defined by wk=ukw_{k}=u_{k} if mk>0m_{k}>0 and wk=1w_{k}=1 if mk=0m_{k}=0.

We first give the explicit expression for function ff and the character ψλ\psi_{\lambda} in terms of coordinates u1,u2,,uNu_{1},u_{2},\dots,u_{N} and w1,w2,,wNw_{1},w_{2},\dots,w_{N}.

Lemma 4.1.

Let uSm,σiu\in S_{m,\sigma}^{\textbf{i}} for arbitrary long word decomposition i. Then

f(u)du=(αΦ+zmαα(uα,ϖ)ijmα+α<iββ,αmβ)du1du2duN,f(u)\,du=\left(\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}(u_{\alpha},\varpi)_{ij}^{m_{\alpha}+\sum_{\alpha<_{\textbf{i}}\beta}\langle\beta,\alpha^{\vee}\rangle m_{\beta}}\right)du_{1}du_{2}\dots du_{N},

where

(,)i,j={q1(,),if mi,j>01,otherwise.(\cdot,\cdot)_{i,j}=\begin{cases}q^{-1}(\cdot,\cdot),&\text{if $m_{i,j}>0$}\\ 1,&\text{otherwise}\end{cases}.
Proof.

By Proposition 2.12, we have Sm,σiCmiS_{m,\sigma}^{\textbf{i}}\subset C_{m}^{\textbf{i}}, and then it is Lemma 6.3 in [McN11]. Note that typo in this lemma (there is no Hilbert symbol in the formula). The correct value of ff is given in the same paper in the proof of Theorem 8.4. The idea of the proof is prove it by induction using relation from eq. A.2:

hα(x)hβ(y)hα(x)1=hβ(y)(x,y)β,αlβ.h_{\alpha}(x)h_{\beta}(y)h_{\alpha}(x)^{-1}=h_{\beta}(y)(x,y)^{\langle\beta,\alpha^{\vee}\rangle l_{\beta}}.

In our case lβ=1l_{\beta}=1 for all βΦ\beta\in\Phi^{\vee} due to the choice of the metaplectic cover. ∎

Lemma 4.2.

Let uSm,σΔu\in S_{m,\sigma}^{\Delta}. Then

ψλ(u)=αΦ+ψij(ϖsijuijk=j+1r+1wi,kk=jrwi+1,k+1),\psi_{\lambda}(u)=\prod_{\alpha\in\Phi^{+}}\psi_{ij}\left(\varpi^{s_{ij}}u_{ij}\frac{\prod_{k=j+1}^{r+1}w_{i,k}}{\prod_{k=j}^{r}w_{i+1,k+1}}\right),

where

ψi,j={ψ,if j=i+1ψ,if mi+1,j>0ψ,if mi+1,j=0 and σi+1,j1(i)<σi+1,j1(i+1)1,otherwise.\psi_{i,j}=\begin{cases}\psi,&\text{if $j=i+1$}\\ \psi,&\text{if $m_{i+1,j}>0$}\\ \psi,&\text{if $m_{i+1,j}=0$ and $\sigma_{i+1,j}^{-1}(i)<\sigma_{i+1,j}^{-1}(i+1)$}\\ 1,&\text{otherwise}\end{cases}.
Proof.

Analogous to Proposition 8.2 and the beginning of Theorem 8.4 in [McN11]. The idea of the proof is to follow how the entries of uu change with each step of Proposition 2.2 in coordinates yk,uk,wky_{k},u_{k},w_{k} and write the value of ψλ=i=1rψ(ϖΛixi,i+1)\psi_{\lambda}=\prod_{i=1}^{r}\psi(\varpi^{\Lambda_{i}}x_{i,i+1}) explicitly. ∎

By lemmas above, we have

Sm,σΔf(u)ψλ(u)𝑑u=(αΦ+zmαα)I(m,σ),\int_{S_{m,\sigma}^{\Delta}}f(u)\psi_{\lambda}(u)\,du=\left(\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}\right)I(m,\sigma),

where by I(m,σ)I(m,\sigma) we denote

(4.1) Sm,σΔαΦ+ψij(ϖsijuijk=j+1r+1wi,kk=jrwi+1,k+1)(uα,ϖ)ijmα+α<iββ,αmβdu12du13dur,r+1.\int_{S_{m,\sigma}^{\Delta}}\prod_{\alpha\in\Phi^{+}}\psi_{ij}\left(\varpi^{s_{ij}}u_{ij}\frac{\prod_{k=j+1}^{r+1}w_{i,k}}{\prod_{k=j}^{r}w_{i+1,k+1}}\right)(u_{\alpha},\varpi)_{ij}^{m_{\alpha}+\sum_{\alpha<_{\textbf{i}}\beta}\langle\beta,\alpha^{\vee}\rangle m_{\beta}}\,du_{12}du_{13}\dots du_{r,r+1}.

The change of variables

tij=uijk=j+1r+1wi,kk=jrwi+1,k+1.t_{ij}=u_{ij}\frac{\prod_{k=j+1}^{r+1}w_{i,k}}{\prod_{k=j}^{r}w_{i+1,k+1}}.

transforms the integral into

I(m,σ)=αΦ+Iα(m,σ),I(m,\sigma)=\prod_{\alpha\in\Phi^{+}}I_{\alpha}(m,\sigma),

where

Iα(m,σ)=Dij(tα,ϖ)rαψ(ϖsαtα)𝑑tα,I_{\alpha}(m,\sigma)=\int_{D_{ij}}(t_{\alpha},\varpi)^{r_{\alpha}}\psi(\varpi^{s_{\alpha}}t_{\alpha})\,dt_{\alpha},

and

si,j=Λi+k=jrmi+1,k+1k=jr+1mi,k,ri,j=kimk,j,s_{i,j}=\Lambda_{i}+\sum_{k=j}^{r}m_{i+1,k+1}-\sum_{k=j}^{r+1}m_{i,k},\quad r_{i,j}=\sum_{k\leq i}m_{k,j},

and the domains Di,j=Di,j(m,σ)D_{i,j}=D_{i,j}(m,\sigma) are defined by

Di,j{𝒪×,if mi,j>0𝒪,if mi,j=0σi+1,j1(i)<σi+1,j1(i+1)𝒪×,if mi,j=0σi+1,j1(i)>σi+1,j1(i+1), and σi,j=σi+1,j𝔭,if mi,j=0σi+1,j1(i)>σi+1,j1(i+1), and σi+1,j=siσi+1,j.D_{i,j}\coloneqq\begin{cases}\mathcal{O}^{\times},&\text{if $m_{i,j}>0$}\\ \mathcal{O},&\text{if $m_{i,j}=0$, $\sigma_{i+1,j}^{-1}(i)<\sigma_{i+1,j}^{-1}(i+1)$}\\ \mathcal{O}^{\times},&\text{if $m_{i,j}=0$, $\sigma_{i+1,j}^{-1}(i)>\sigma_{i+1,j}^{-1}(i+1)$, and $\sigma_{i,j}=\sigma_{i+1,j}$}\\ \mathfrak{p},&\text{if $m_{i,j}=0$, $\sigma_{i+1,j}^{-1}(i)>\sigma_{i+1,j}^{-1}(i+1)$, and $\sigma_{i+1,j}=s_{i}\sigma_{i+1,j}$}\end{cases}.

See Section 8 of [McN11] for details of this computation.

Recall from Definition 3.4 that Lu(λ+ρ)\operatorname{Lu}(\lambda+\rho) denotes the set of Lusztig data corresponding to λ+ρ\lambda+\rho. It is a finite set for any weight λ\lambda.

Lemma 4.3.

The integral I(m,σ)=0I(m,\sigma)=0 unless mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho).

Proof.

Let mNm\in\mathbb{N}^{N} be not in Lu(λ+ρ)\operatorname{Lu}(\lambda+\rho). Let (i,j)Φ+(i,j)\in\Phi^{+} be such that si,j<1s_{i,j}<-1. Recall that character ψ\psi is trivial on 𝒪\mathcal{O} and nontrivial on ϖ1𝒪\varpi^{-1}\mathcal{O}.

Case 1:

Assume that ψi,j=ψ\psi_{i,j}=\psi in Lemma 4.2. Then Iα(m,σ)I_{\alpha}(m,\sigma) becomes

Di,j(ti,j,ϖ)i,jri,jψ(ϖsi,jti,j)𝑑ti,j.\int_{D_{i,j}}(t_{i,j},\varpi)^{r_{i,j}}_{i,j}\psi(\varpi^{s_{i,j}}t_{i,j})\,dt_{i,j}.

Then no matter if Di,jD_{i,j} is 𝒪\mathcal{O}, 𝒪×\mathcal{O}^{\times}, or 𝔭\mathfrak{p}, the condition si,j<1s_{i,j}<-1 implies that Iα(m,σ)=0I_{\alpha}(m,\sigma)=0 as an integral of a nontrivial character over a compact subgroup.

Case 2:

Assume that ψi,j=1\psi_{i,j}=1 in Lemma 4.2. Note that mi+1,j=0m_{i+1,j}=0 implies that si,j=si,j1+mi,j1s_{i,j}=s_{i,j-1}+m_{i,j-1}, and since mi,j10m_{i,j-1}\geq 0, we have si,j1<1s_{i,j-1}<-1. Then consider Ii,j1(m,σ)I_{i,j-1}(m,\sigma) instead. By above, Ii,j1(m,σ)I_{i,j-1}(m,\sigma) is zero unless mi+1,j1=0m_{i+1,j-1}=0. Without loss of generality we assume that mi+1,j10m_{i+1,j-1}\neq 0 (if it exists) by decreasing jj if necessary. In other words, we get that Ii,j1(m,σ)=0I_{i,j-1}(m,\sigma)=0.

In any case, I(m,σ)=αΦ+Iα(m,σ)=0I(m,\sigma)=\prod_{\alpha\in\Phi^{+}}I_{\alpha}(m,\sigma)=0 if mm is not in Lu(λ+ρ)\operatorname{Lu}(\lambda+\rho). ∎

Remark 4.4.

McNamara conjectures that (Remark 8.5 in [McN11]) that the analogous sum for the spherical Whittaker function is always finite for arbitrary root system and arbitrary decomposition i. Leslie in [Les19] shows that it is not always the case and gives an example of a long word decomposition for G2G_{2} that has infinitely many non-zero terms in the corresponding evaluation.

Next, we compute integrals Iα(m,σ)I_{\alpha}(m,\sigma) explicitly. The integrals will be expressed in terms of the (normalized) Gauss sum corresponding to character ψ\psi which is given by

g(a,b)=q1𝒪F×(t,ϖ)aψ(ϖbt)𝑑t,a,b.g(a,b)=q^{-1}\int_{\mathcal{O}_{F}^{\times}}(t,\varpi)^{a}\psi(\varpi^{b}t)\,dt,\quad a,b\in\mathbb{Z}.

Standard manipulations with the integral give the following explicit values:

g(a,b)={0,if b<1,q1,if b=1 and a0(modn),1q1,if b0 and a0(modn),0,if b0 and a0(modn).g(a,b)=\begin{cases}0,\quad&\text{if $b<-1$},\\ -q^{-1},\quad&\text{if $b=-1$ and $a\equiv 0\pmod{n}$},\\ 1-q^{-1},\quad&\text{if $b\geq 0$ and $a\equiv 0\pmod{n}$},\\ 0,\quad&\text{if $b\geq 0$ and $a\not\equiv 0\pmod{n}$}\end{cases}.

Moreover, if a0(modn)a\not\equiv 0\pmod{n}, then |g(a,1)|=q1/2|g(a,-1)|=q^{1/2}.

Lemma 4.5.

Let mLu(λ+ρ)m\in\operatorname{Lu}(\lambda+\rho). Then Iα(m,σ)=G(m,σ,α)I_{\alpha}(m,\sigma)=\operatorname{G}(m,\sigma,\alpha), where

(4.2) G(m,σ,α)={{g(ri,j,si,j),if mi,j>01,if mi,j=0 and Di,j=𝒪 and si,j00,if mi,j=0 and Di,j=𝒪 and si,j=11q1,if mi,j=0 and Di,j=𝒪× and si,j0q1,if mi,j=0 and Di,j=𝒪× and si,j=1q1,if mi,j=0 and Di,j=𝔭 and si,j0q1,if mi,j=0 and Di,j=𝔭 and si,j=1,if ψi,j=ψ{g(ri,j,0),if mi,j>01,if mi,j=0 and Di,j=𝒪1q1,if mi,j=0 and Di,j=𝒪×q1,if mi,j=0 and Di,j=𝔭,if ψi,j=1.\operatorname{G}(m,\sigma,\alpha)=\begin{cases}\begin{cases}g(r_{i,j},s_{i,j}),&\text{if $m_{i,j}>0$}\\ 1,&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}$ and $s_{i,j}\geq 0$}\\ 0,&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}$ and $s_{i,j}=-1$}\\ 1-q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}^{\times}$ and $s_{i,j}\geq 0$}\\ -q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}^{\times}$ and $s_{i,j}=-1$}\\ q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathfrak{p}$ and $s_{i,j}\geq 0$}\\ q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathfrak{p}$ and $s_{i,j}=-1$}\end{cases},\quad&\text{if $\psi_{i,j}=\psi$}\\ \begin{cases}g(r_{i,j},0),&\text{if $m_{i,j}>0$}\\ 1,&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}$}\\ 1-q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathcal{O}^{\times}$}\\ q^{-1},&\text{if $m_{i,j}=0$ and $D_{i,j}=\mathfrak{p}$}\end{cases},\quad&\text{if $\psi_{i,j}=1$}\end{cases}.
Proof.

We mindlessly compute it case by case. Note that we have si,j1s_{i,j}\geq-1 for all (i,j)Φ+(i,j)\in\Phi^{+}.

Case 1:

Assume that ψi,j=ψ\psi_{i,j}=\psi in Lemma 4.2.

Case 1.1:

Let mi,j>0m_{i,j}>0. Then the integral Ii,j(m,σ)I_{i,j}(m,\sigma) becomes

q1𝒪×(ti,j,ϖ)ri,jψ(ϖsi,jti,j)𝑑ti,j=g(ri,j,si,j),q^{-1}\int_{\mathcal{O}^{\times}}(t_{i,j},\varpi)^{r_{i,j}}\psi(\varpi^{s_{i,j}}t_{i,j})\,dt_{i,j}=g(r_{i,j},s_{i,j}),

by the definition of the normalized Gauss sum.

Case 1.2:

Let mi,j=0m_{i,j}=0. Then the integral Ii,j(m,σ)I_{i,j}(m,\sigma) becomes

Di,jψ(ϖsi,jti,j)𝑑ti,j={1,if Di,j=𝒪 and si,j00,if Di,j=𝒪 and si,j=11q1,if Di,j=𝒪× and si,j0q1,if Di,j=𝒪× and si,j=1q1,if Di,j=𝔭 and si,j0q1,if Di,j=𝔭 and si,j=1,\int_{D_{i,j}}\psi(\varpi^{s_{i,j}}t_{i,j})\,dt_{i,j}=\begin{cases}1,&\text{if $D_{i,j}=\mathcal{O}$ and $s_{i,j}\geq 0$}\\ 0,&\text{if $D_{i,j}=\mathcal{O}$ and $s_{i,j}=-1$}\\ 1-q^{-1},&\text{if $D_{i,j}=\mathcal{O}^{\times}$ and $s_{i,j}\geq 0$}\\ -q^{-1},&\text{if $D_{i,j}=\mathcal{O}^{\times}$ and $s_{i,j}=-1$}\\ q^{-1},&\text{if $D_{i,j}=\mathfrak{p}$ and $s_{i,j}\geq 0$}\\ q^{-1},&\text{if $D_{i,j}=\mathfrak{p}$ and $s_{i,j}=-1$}\end{cases},
Case 2:

Assume that ψi,j=1\psi_{i,j}=1 in Lemma 4.2.

Case 2.1:

Let mi,j>0m_{i,j}>0. Then the integral Iα(m,σ)I_{\alpha}(m,\sigma) becomes

q1𝒪×(ti,j,ϖ)ri,j𝑑ti,j=g(ri,j,0).q^{-1}\int_{\mathcal{O}^{\times}}(t_{i,j},\varpi)^{r_{i,j}}\,dt_{i,j}=g(r_{i,j},0).
Case 2.2:

Let mi,j=0m_{i,j}=0. Then the integral Iα(m,σ)I_{\alpha}(m,\sigma) becomes

Di,j𝑑ti,j={1,if Di,j=𝒪1q1,if Di,j=𝒪×q1,if Di,j=𝔭.\int_{D_{i,j}}\,dt_{i,j}=\begin{cases}1,&\text{if $D_{i,j}=\mathcal{O}$}\\ 1-q^{-1},&\text{if $D_{i,j}=\mathcal{O}^{\times}$}\\ q^{-1},&\text{if $D_{i,j}=\mathfrak{p}$}\end{cases}.

Thus, Iα(m,σ)=G(m,σ,α)I_{\alpha}(m,\sigma)=G(m,\sigma,\alpha), and it finishes the proof. ∎

We summarize the proof above.

Theorem 4.6 (Evaluation of Iwahori Whittaker functions).

Let λΛ\lambda\in\Lambda with λr+1=0\lambda_{r+1}=0 and let w,wWw,w^{\prime}\in W. Then the integrals ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) defined by eq. A.1 that determines values of Iwahori Whittaker functions is given by

ϕw(λ,w;z)=m𝐋𝐮(λ+ρ,w,w)αΦ+G(m,α;q)zmαα,\phi_{w}(\lambda,w^{\prime};z)=\sum_{\textbf{m}\in\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime})}\prod_{\alpha\in\Phi^{+}}\operatorname{G}(\textbf{m},\alpha;q)z^{m_{\alpha}\alpha},

where contributions G(m,α;q)[q1]\operatorname{G}(\textbf{m},\alpha;q)\in\mathbb{Z}[q^{-1}] are given explicitly by (3.3).

Proof.

We have

ϕw(λ,w;z)\displaystyle\phi_{w}(\lambda,w^{\prime};z) =Ufw(uw)ψλ(u)𝑑u\displaystyle=\int_{U}f_{w}(uw^{\prime})\psi_{\lambda}(u)\,du
=m,σSm,σΔf(u)ψλ(u)𝑑u\displaystyle=\sum_{m,\sigma}\int_{S_{m,\sigma}^{\Delta}}f(u)\psi_{\lambda}(u)\,du
=m,σ(αΦ+zmαα)I(m,σ)\displaystyle=\sum_{m,\sigma}\left(\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}\right)I(m,\sigma)
=m,σαΦ+zmαααΦ+Iα(m,σ)\displaystyle=\sum_{m,\sigma}\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}\prod_{\alpha\in\Phi^{+}}I_{\alpha}(m,\sigma)
=m,σαΦ+G(m,σ,α)zmαα.\displaystyle=\sum_{m,\sigma}\prod_{\alpha\in\Phi^{+}}\operatorname{G}(m,\sigma,\alpha)z^{m_{\alpha}\alpha}.

By Section 3, the pairs (m,σ)(m,\sigma) are parametrized by colored Lusztig data 𝐋𝐮(λ+ρ,w,w)\operatorname{\mathbf{Lu}}(\lambda+\rho,w,w^{\prime}) and the contributions G(m,σ,α)\operatorname{G}(m,\sigma,\alpha) from eq. 4.2 can be written by G(m,α)\operatorname{G}(\textbf{m},\alpha) from eq. 3.3. It concludes the proof. ∎

4.1. Other metaplectic covers

At the beginning of the section we chose a specific metaplectic cover that corresponds to the bilinear form BB defined by B(ei,ej)=δijB(e_{i},e_{j})=\delta_{ij}. Now we explore the situation of arbitrary metaplectic cover. See [Fre21] for details.

Let G~\widetilde{G} be a metaplectic cover of GG from Section A.1 corresponding to the bilinear linear form BB. The main difference is that lα=Q(α)=B(α,α)/2l_{\alpha}=Q(\alpha^{\vee})=B(\alpha^{\vee},\alpha^{\vee})/2 enters the formula for multiplication on the torus T~\widetilde{T} in eq. A.2:

hα(x)hβ(y)hα(x)1=hβ(y)(x,y)B(β,α).h_{\alpha}(x)h_{\beta}(y)h_{\alpha}(x)^{-1}=h_{\beta}(y)(x,y)^{B(\beta,\alpha^{\vee})}.

Then in Lemma 4.1, we have the explicit expression for function ff as follows:

f(u)du=(αΦ+zmαα(uα,ϖ)ijmα+α<ΔβB(β,α)mβ).f(u)\,du=\left(\prod_{\alpha\in\Phi^{+}}z^{m_{\alpha}\alpha}(u_{\alpha},\varpi)_{ij}^{m_{\alpha}+\sum_{\alpha<_{\Delta}\beta}B(\beta,\alpha^{\vee})m_{\beta}}\right).

Note that the only difference is that β,α\langle\beta,\alpha^{\vee}\rangle is replaced with B(β,α)B(\beta,\alpha^{\vee}) which comes from the multiplication on the torus. It changes the formula for Iα(m,σ)I_{\alpha}(m,\sigma):

Iα(m,σ)=Dij(tα,ϖ)Q(α)rαψ(ϖsαtα)𝑑tα.I_{\alpha}(m,\sigma)=\int_{D_{ij}}(t_{\alpha},\varpi)^{Q(\alpha^{\vee})r_{\alpha}}\psi(\varpi^{s_{\alpha}}t_{\alpha})\,dt_{\alpha}.

It results the change in the formula for weights. Each instance of the normalized Gauss sum g(rα,sα)g(r_{\alpha},s_{\alpha}) will be change to g(Q(α)rα,sα)g(Q(\alpha^{\vee})r_{\alpha},s_{\alpha}). This is the only change.

5. Examples

In this section, we use Theorem 4.6 to compute values ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) given by eq. A.1 which determine the metaplectic Iwahori Whittaker functions for the general linear group. For brevity, in all examples we write t=q1t=-q^{-1}. We write examples in terms of colored GT-patterns, but by Theorem 3.1, they are equivalent to colored Lusztig data or colored lattice models.

Let μ\mu be a weight. We denote ai,r+2=μia_{i,r+2}=\mu_{i} for each i1,,r+1i\in 1,\dots,r+1. A GT-pattern with the top row μ\mu looks like this:

{μ1μ2μrμr+1a1,r+1a2,r+1ar1,r+1ar,r+1a1,rar1,r\udotsa1,3a2,3a1,2}\left\{\begin{matrix}\mu_{1}&&\mu_{2}&&\dots&&\mu_{r}&&\mu_{r+1}\\ &a_{1,r+1}&&a_{2,r+1}&\dots&a_{r-1,r+1}&&a_{r,r+1}&\\ &&a_{1,r}&&\dots&&a_{r-1,r}&&\\ &&\ddots&&&&\udots&\\ &&&a_{1,3}&&a_{2,3}&&\\ &&&&a_{1,2}&&&\end{matrix}\right\}

Recall that the statistics sijs_{ij} are defined by

sij=aijai+1,j+11.s_{ij}=a_{ij}-a_{i+1,j+1}-1.

In particular, sij=1s_{ij}=-1 if an entry aija_{ij} is right-leaning; otherwise sij0s_{ij}\geq 0. We also recall that statistics rijr_{ij} are defined by

ri,j=ki(ai,j+1aij).r_{i,j}=\sum_{k\leq i}(a_{i,j+1}-a_{ij}).

To have an additional check to our computations, we use

Theorem 5.1 ([CS80]).

The value of the spherical Whittaker function on the diagonal element ϖλ\varpi^{\lambda} equals to

(5.1) W0(ϖλ)=wWWw(ϖλw)=αΦ+(1+tzα)sλ(z),for any wW.W_{0}(\varpi^{\lambda})=\sum_{w\in W}W_{w}(\varpi^{\lambda}w^{\prime})=\prod_{\alpha\in\Phi^{+}}(1+tz_{\alpha})s_{\lambda}(z),\quad\text{for any $w^{\prime}\in W$}.

Therefore, in non-metaplectic case n=1n=1, the sum over the Weyl group of Iwahori Whittaker functions will give us the closed Casselman-Shalika expression.

Let G=GL2G=\operatorname{GL}_{2}, so r=1r=1. We use the template {a13a23a12}\left\{\begin{smallmatrix}a_{13}&&a_{23}\\ &a_{12}&\end{smallmatrix}\right\} to read off statistics sijs_{ij} and rijr_{ij}: we get s12=a12a231s_{12}=a_{12}-a_{23}-1 and r12=a13a12r_{12}=a_{13}-a_{12}. The Weyl group consists just of two elements: identity and s1s_{1}. The Weyl vector is ρ=(1,0)\rho=(1,0).

Example 5.2.

Let G=GL2G=\operatorname{GL}_{2}, so r=1r=1. Let λ=(0,0)\lambda=(0,0). Then λ+ρ=(1,0)\lambda+\rho=(1,0). Here are all colored GT-patterns:

Input w=1w^{\prime}=1, output w=1w=1:

{110202}\left\{\begin{smallmatrix}{}_{1}1&&{}_{2}0\\ &{}_{2}0&\end{smallmatrix}\right\};

Input w=1w^{\prime}=1, output w=s1w=s_{1}:

{110211}\left\{\begin{smallmatrix}{}_{1}1&&{}_{2}0\\ &{}_{1}1&\end{smallmatrix}\right\};

Input w=s1w^{\prime}=s_{1}, output w=1w=1:

{120112}\left\{\begin{smallmatrix}{}_{2}1&&{}_{1}0\\ &{}_{2}1&\end{smallmatrix}\right\};

Input w=s1w^{\prime}=s_{1}, output w=s1w=s_{1}:

{120111}\left\{\begin{smallmatrix}{}_{2}1&&{}_{1}0\\ &{}_{1}1&\end{smallmatrix}\right\} and {120101}\left\{\begin{smallmatrix}{}_{2}1&&{}_{1}0\\ &{}_{1}0&\end{smallmatrix}\right\}.

Theorem 4.6 and eq. 4.2 provide the values of all Iwahori Whittaker functions:

ϕ1(λ,1)=g(1,1)z1,ϕs1(λ,1)=z2,ϕ1(λ,s1)=(t)z2,ϕs1(λ,s1)=(1+t)z2+g(1,1)z1.\begin{array}[]{ll}\phi_{1}(\lambda,1)=g(1,-1)z_{1},&\phi_{s_{1}}(\lambda,1)=z_{2},\\ \phi_{1}(\lambda,s_{1})=(-t)z_{2},&\phi_{s_{1}}(\lambda,s_{1})=(1+t)z_{2}+g(1,-1)z_{1}.\end{array}

In a non-metaplectic case, g(r12,1)=tg(r_{12},-1)=t. Then the calculation is consistent with eq. 5.1:

ϕ1(λ,1)+ϕs1(λ,1)=tz1+z2\displaystyle\phi_{1}(\lambda,1)+\phi_{s_{1}}(\lambda,1)=tz_{1}+z_{2}
ϕ1(λ,s1)+ϕs1(λ,s1)=(t)z2+(1+t)z2+tz1=tz1+z2.\displaystyle\phi_{1}(\lambda,s_{1})+\phi_{s_{1}}(\lambda,s_{1})=(-t)z_{2}+(1+t)z_{2}+tz_{1}=tz_{1}+z_{2}.

More generally, we have

Example 5.3.

Let G=GL2G=\operatorname{GL}_{2}, so r=1r=1. Let λ=(a,0)\lambda=(a,0) for aa\in\mathbb{N}. Then λ+ρ=(a+1,0)\lambda+\rho=(a+1,0). Here are all colored GT-patterns:

Input w=1w^{\prime}=1, output w=1w=1:

{(a+1)10202}\left\{\begin{smallmatrix}{}_{1}(a+1)&&{}_{2}0\\ &{}_{2}0&\end{smallmatrix}\right\}, {(a+1)10212}\left\{\begin{smallmatrix}{}_{1}(a+1)&&{}_{2}0\\ &{}_{2}1&\end{smallmatrix}\right\}, …, {(a+1)102a2}\left\{\begin{smallmatrix}{}_{1}(a+1)&&{}_{2}0\\ &{}_{2}a&\end{smallmatrix}\right\};

Input w=1w^{\prime}=1, output w=s1w=s_{1}:

{(a+1)102(a+1)1}\left\{\begin{smallmatrix}{}_{1}(a+1)&&{}_{2}0\\ &{}_{1}(a+1)&\end{smallmatrix}\right\};

Input w=s1w^{\prime}=s_{1}, output w=1w=1:

{(a+1)201(a+1)2}\left\{\begin{smallmatrix}{}_{2}(a+1)&&{}_{1}0\\ &{}_{2}(a+1)&\end{smallmatrix}\right\};

Input w=s1w^{\prime}=s_{1}, output w=s1w=s_{1}:

{(a+1)20101}\left\{\begin{smallmatrix}{}_{2}(a+1)&&{}_{1}0\\ &{}_{1}0&\end{smallmatrix}\right\}, {(a+1)20111}\left\{\begin{smallmatrix}{}_{2}(a+1)&&{}_{1}0\\ &{}_{1}1&\end{smallmatrix}\right\}, …, {(a+1)201a1}\left\{\begin{smallmatrix}{}_{2}(a+1)&&{}_{1}0\\ &{}_{1}a&\end{smallmatrix}\right\}, and
{(a+1)201(a+1)1}\left\{\begin{smallmatrix}{}_{2}(a+1)&&{}_{1}0\\ &{}_{1}(a+1)&\end{smallmatrix}\right\}.

Theorem 4.6 and eq. 4.2 provide values of all Iwahori Whittaker functions:

ϕ1(λ,1)\displaystyle\phi_{1}(\lambda,1) =g(a+1,1)z1a+1+g(a,0)z1az2++g(1,a1)z1z2a,\displaystyle=g(a+1,-1)z_{1}^{a+1}+g(a,0)z_{1}^{a}z_{2}+\dots+g(1,a-1)z_{1}z_{2}^{a},
ϕs1(λ,1)\displaystyle\phi_{s_{1}}(\lambda,1) =z2a+1,\displaystyle=z_{2}^{a+1},
ϕ1(λ,s1)\displaystyle\phi_{1}(\lambda,s_{1}) =(t)z2a+1,\displaystyle=(-t)z_{2}^{a+1},
ϕs1(λ,s1)\displaystyle\phi_{s_{1}}(\lambda,s_{1}) =g(a+1,1)z1a+1+g(a,0)z1az2++g(1,a1)z1z2a+(1+t)z2a+1.\displaystyle=g(a+1,-1)z_{1}^{a+1}+g(a,0)z_{1}^{a}z_{2}+\dots+g(1,a-1)z_{1}z_{2}^{a}+(1+t)z_{2}^{a+1}.

In a non-metaplectic case, g(r12,1)=tg(r_{12},-1)=t and g(r12,0)=(1+t)g(r_{12},0)=(1+t) for any r12r_{12}. Then the calculation is consistent with eq. 5.1:

ϕ1(λ,1)+ϕs1(λ,1)\displaystyle\phi_{1}(\lambda,1)+\phi_{s_{1}}(\lambda,1) =tz1a+1+(1+t)z1az2++(1+t)z1z2a+z2a+1\displaystyle=tz_{1}^{a+1}+(1+t)z_{1}^{a}z_{2}+\dots+(1+t)z_{1}z_{2}^{a}+z_{2}^{a+1}
=(tz1+z2)sλ(z)\displaystyle=(tz_{1}+z_{2})s_{\lambda}(z)
ϕ1(λ,s1)+ϕs1(λ,s1)\displaystyle\phi_{1}(\lambda,s_{1})+\phi_{s_{1}}(\lambda,s_{1}) =(t)z2a+1+tz1a+1+(1+t)z1az2++(1+t)z1z2a+(1+t)z2a+1\displaystyle=(-t)z_{2}^{a+1}+tz_{1}^{a+1}+(1+t)z_{1}^{a}z_{2}+\dots+(1+t)z_{1}z_{2}^{a}+(1+t)z_{2}^{a+1}
=(tz1+z2)sλ(z),\displaystyle=(tz_{1}+z_{2})s_{\lambda}(z),

where sλ(z)=z1a+z1a1z2++z2as_{\lambda}(z)=z_{1}^{a}+z_{1}^{a-1}z_{2}+\dots+z_{2}^{a}.

The next example shows that λ\lambda should not necessary be a dominant weight to give a non-zero Iwahori Whittaker function. But by Lemma A.4, Ww(g)=0W_{w}(g)=0 unless λ\lambda is ww^{\prime}-almost dominant.

Example 5.4.

Let G=GL2G=\operatorname{GL}_{2}, so r=1r=1. Let λ=(0,1)\lambda=(0,1). Then λ+ρ=(1,1)\lambda+\rho=(1,1). There are only two colored GT-patterns:

Input w=s1w^{\prime}=s_{1}, output w=1w=1:

{121112}\left\{\begin{smallmatrix}{}_{2}1&&{}_{1}1\\ &{}_{2}1&\end{smallmatrix}\right\}.

Input w=s1w^{\prime}=s_{1}, output w=s1w=s_{1}:

{121111}\left\{\begin{smallmatrix}{}_{2}1&&{}_{1}1\\ &{}_{1}1&\end{smallmatrix}\right\}.

We get the values of Iwahori Whittaker functions:

ϕ1(λ,s1)=tz1,ϕs1(λ,s1)=tz1.\phi_{1}(\lambda,s_{1})=-tz_{1},\quad\phi_{s_{1}}(\lambda,s_{1})=tz_{1}.

The sum of Iwahori Whittaker function is zero which is consistent with eq. 5.1 as the spherical Whittaker function is zero for non-dominant weights.

Remark 5.5.

Note the non-trivial cancellations happen when we have choice for coloring an entry. These cancellations are “invisible” when calculating the spherical Whittaker function directly. In particular, a non-strict GT-pattern that has zero contribution to the spherical Whittaker function splits to two terms, each giving a non-zero contribution to the corresponding Iwahori component. Recall that the coloring choice comes from the splitting of 𝒪\mathcal{O} into 𝒪×\mathcal{O}^{\times} and 𝔭\mathfrak{p} when computing Iwahori Whittaker functions.

Example 5.6.

Let λ\lambda be a weight, w,ww,w^{\prime} be permutations such that λ\lambda is ww^{\prime}-almost dominant and w=w0ww=w_{0}w^{\prime}. Then ϕw(λ,w)=(q1)l(w)zλ+ρ\phi_{w}(\lambda,w^{\prime})=(q^{-1})^{l(w)}z^{\lambda+\rho} as there is only one admissible state in the colored data with output equals to the inverse of the input. It is Proposition 3.6 in [BBBG19].

For the next example, we write a table of all colored GT-patterns together with the corresponding colored Lusztig data to demonstrate the weight-preserving bijection.

Example 5.7.

Let G=GL3G=\operatorname{GL}_{3}, so r=2r=2. Let λ=(1,0,0)\lambda=(1,0,0), and let the input be w=1w^{\prime}=1. Let us work in the non-metaplectic case n=1n=1. Then g(rij,1)=tg(r_{ij},-1)=t and g(ri,j,0)=(1+t)g(r_{i,j},0)=(1+t) for any ri,jr_{i,j}. It is convenient to write all colored Lusztig data 𝐋𝐮(λ+ρ)\operatorname{\mathbf{Lu}}(\lambda+\rho) with input ww^{\prime} in a table together with weights and contributions. Then the value ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) is the corresponding sum over rows with output wWw\in W. See the table on the next page. This time Theorem 4.6 and eq. 4.2 provide all diagonal values of the Iwahori Whittaker functions:

ϕ1(λ,1)\displaystyle\phi_{1}(\lambda,1) =(t)(1+t)z12z2z3+(t)(1+t)z1z2z32+t(1+t)2z1z2z32+t3z23z3+t2(1+t)z22z32,\displaystyle=(-t)(1+t)z_{1}^{2}z_{2}z_{3}+(-t)(1+t)z_{1}z_{2}z_{3}^{2}+t(1+t)^{2}z_{1}z_{2}z_{3}^{2}+t^{3}z_{2}^{3}z_{3}+t^{2}(1+t)z_{2}^{2}z_{3}^{2},
ϕs1(λ,1)\displaystyle\phi_{s_{1}}(\lambda,1) =t2z23z3+t2z1z22z3+t(1+t)z12z2z3,\displaystyle=t^{2}z_{2}^{3}z_{3}+t^{2}z_{1}z_{2}^{2}z_{3}+t(1+t)z_{1}^{2}z_{2}z_{3},
ϕs2(λ,1)\displaystyle\phi_{s_{2}}(\lambda,1) =t2z1z33+(t)(1+t)z1z2z32+t(1+t)z12z32+t(1+t)z1z22z3+(1)(1+t)z12z2z3,\displaystyle=t^{2}z_{1}z_{3}^{3}+(-t)(1+t)z_{1}z_{2}z_{3}^{2}+t(1+t)z_{1}^{2}z_{3}^{2}+t(1+t)z_{1}z_{2}^{2}z_{3}+(-1)(1+t)z_{1}^{2}z_{2}z_{3},
ϕs1s2(λ,1)\displaystyle\phi_{s_{1}s_{2}}(\lambda,1) =tz1z23+(1+t)z12z22,\displaystyle=tz_{1}z_{2}^{3}+(1+t)z_{1}^{2}z_{2}^{2},
ϕs2s1(λ,1)\displaystyle\phi_{s_{2}s_{1}}(\lambda,1) =tz13z3,\displaystyle=tz_{1}^{3}z_{3},
ϕs2s1s2(λ,1)\displaystyle\phi_{s_{2}s_{1}s_{2}}(\lambda,1) =z13z2.\displaystyle=z_{1}^{3}z_{2}.

Note that we again can match the Casselman-Shalika formula:

wWϕw(λ,1)\displaystyle\sum_{w\in W}\phi_{w}(\lambda,1) =zρ(1+tz2/z1)(1+tz3/z1)(1+tz3/z2)(z1+z2+z3)\displaystyle=z^{-\rho}(1+tz_{2}/z_{1})(1+tz_{3}/z_{1})(1+tz_{3}/z_{2})(z_{1}+z_{2}+z_{3})
=zραΦ+(1+tzα)sλ(z).\displaystyle=z^{-\rho}\prod_{\alpha\in\Phi^{+}}(1+tz_{\alpha})s_{\lambda}(z).

Appendix A Metaplectic groups and Iwahori Whittaker Functions

Our main object of study is the Iwahori Whittaker functions which are certain matrix coefficients of an unramified genuine principal series representations of metaplectic covers of a split reductive group over a non-archimedean field. We remark that in all discussions one can set the degree of the cover to be one and obtain results about the split reductive group itself. We give only the definitions we directly need, and for the details on representation theory side we refer to [McN11][Sections 2-5], [McN12], [Moo68], and [Ste68].

A.1. Metaplectic groups

The discussion of metaplectic groups is based on [McN11], [McN12], [McN16]. As usual, we start with the way too familiar wall of text.

Let GG be a split (connected) reductive group over a non-archimedian local field FF with ring of integers 𝒪F\mathcal{O}_{F}. Let 𝔭\mathfrak{p} be the maximal ideal of 𝒪F\mathcal{O}_{F} with uniformizer ϖ𝔭\varpi\in\mathfrak{p}. Denote by qq the cardinality of 𝒪F/𝔭\mathcal{O}_{F}/\mathfrak{p}, and the residue field by 𝔽q=𝒪F/𝔭\mathbb{F}_{q}=\mathcal{O}_{F}/\mathfrak{p}. Let TT be a fixed split maximal torus of GG, and let T^\widehat{T} be the corresponding maximal torus of G^\widehat{G}, the Langlads dual group. Let BB be a Borel subgroup of GG containing TT, UU be its unipotent radical, and let K=G(𝒪F)K=G(\mathcal{O}_{F}) be a maximal compact subgroup of GG. Let B,UB^{-},U be the corresponding opposite subgroups.

Let Φ\Phi be the root system of GG which we assume to be irreducible. Then Φ\Phi is a subset of character group X(T)X^{*}(T). The dual root system Φ\Phi^{\vee} is a subset of the cocharacter group X(T)X_{*}(T) which is identified with X(T^)X^{*}(\widehat{T}). We use ,:Φ×Φ\langle\cdot,\cdot\rangle\colon\Phi\times\Phi^{\vee}\to\mathbb{Z} to denote the canonical pairing between Φ\Phi and Φ\Phi^{\vee}. If αΦ\alpha\in\Phi, the corresponding element of Φ\Phi^{\vee} is denoted α\alpha^{\vee}. We will denote Λ=X(T)=X(T^)\Lambda=X_{*}(T)=X^{*}(\widehat{T}). Let II the finite index set of simple roots.

A metaplectic nn-fold cover of GG is a central extension of GG by μn\mu_{n}:

1μnG~𝑝G(F)1.1\longrightarrow\mu_{n}\longrightarrow\widetilde{G}\xrightarrow{\mathmakebox[12pt]{p}}G(F)\longrightarrow 1.

As a set, G~=G×μn\widetilde{G}=G\times\mu_{n} with the group multiplication given by a cocycle in H2(G,μn)H^{2}(G,\mu_{n}). Here pp is the natural projection map G~G(F)\widetilde{G}\to G(F). For any subgroup HH of GG, we denote by H~\widetilde{H} the induced covering group of HH. E.g., B~=p1(B)\widetilde{B}=p^{-1}(B) and T~=p1(T)\widetilde{T}=p^{-1}(T).

If xFx\in F and λΛ\lambda\in\Lambda, we will denote the image of xx in TT under λ\lambda by xλx^{\lambda}. By abuse of notation, we will denote a representative in T~\widetilde{T} by the same symbol xλx^{\lambda}.

Let nn be a positive integer such that q1(mod2n)q\equiv 1\pmod{2n}. It implies that F×F^{\times} contains 2n2n distinct 2n2n-th roots of unity. Let μn\mu_{n} be the group of nn-th roots of unity. Fix a faithful character ε:μn×\varepsilon\colon\mu_{n}\to\mathbb{C}^{\times}. Let (,):F××F×μn(\cdot,\cdot)\colon F^{\times}\times F^{\times}\to\mu_{n} be the nn-th power Hilbert symbol.

Let B:Λ×ΛB\colon\Lambda\times\Lambda\to\mathbb{Z} be an WW-invariant symmetric bilinear form on Λ\Lambda such that Q(α)B(α,α)/2Q(\alpha^{\vee})\coloneqq B(\alpha^{\vee},\alpha^{\vee})/2\in\mathbb{Z} for all coroots α\alpha^{\vee}. (There will never be any possible confusion between this use of the symbol BB and its use for a Borel subgroup).

Under these assumptions on nn and bilinear form BB, by Theorem 3.2 of [McN12], there exists an nn-fold metaplectic cover G~\widetilde{G} of G(F)G(F) such that

[xλ,yμ]=(x,y)B(λ,μ),x,yF,λ,μΛ,[x^{\lambda},y^{\mu}]=(x,y)^{B(\lambda,\mu)},\quad x,y\in F,\quad\lambda,\mu\in\Lambda,

where [,][\cdot,\cdot] is the group commutator and (,)μn(\cdot,\cdot)\in\mu_{n} is the nn-th power Hilbert symbol. The identity does not depend on the choice of representatives for xλx^{\lambda} and yμy^{\mu}.

Fix such a metaplectic cover G~\widetilde{G} of G(F)G(F).

A.2. Unramified genuine principal series

We recall the construction of the unramified genuine principal series representation of metaplectic group G~\widetilde{G}. We follow [McN11, McN12, McN16].

Let T(𝒪F)=T~KT(\mathcal{O}_{F})=\widetilde{T}\cap K. Since the cover splits over KK, the group T(𝒪F)T(\mathcal{O}_{F}) may be regarded as a subgroup of G(F)G(F). Let H=CT~(T(𝒪F))H=C_{\widetilde{T}}(T(\mathcal{O}_{F})), the centralizer of T(𝒪F)T(\mathcal{O}_{F}) in T~\widetilde{T}. It is a maximal abelian subgroup of T~\widetilde{T} by Lemma 1 of [McN12].

A function ff on G~\widetilde{G} is called genuine if f(ζg)=ϵ(ζ)f(g)f(\zeta g)=\epsilon(\zeta)f(g) for ζμn\zeta\in\mu_{n}, gG~g\in\widetilde{G}. A genuine quasicharacter of HH is called unramified if it is trivial on T(𝒪F)T(\mathcal{O}_{F}). Let χ\chi be an unramified quasicharacter of HH, and set

i(χ)=IndHT~(χ)={f:T~f(ht)=χ(h)f(t) for all tT~,hH}.i(\chi)=\operatorname{Ind}_{H}^{\widetilde{T}}(\chi)=\{f\colon\widetilde{T}\to\mathbb{C}\mid f(ht)=\chi(h)f(t)\text{ for all }t\in\widetilde{T},h\in H\}.

The group T~\widetilde{T} acts on i(χ)i(\chi) by right translation. Denote this representation as (πχ,i(χ))(\pi_{\chi},i(\chi)). It is an irreducible finite-dimensional T~\widetilde{T}-module by Theorem 5.1 of [McN12]. Next, we inflate i(χ)i(\chi) from T~\widetilde{T} to B~\widetilde{B} and then induce (with normalization) to G~\widetilde{G} to obtain

I(χ)=IndB~G~(i(χ))={smooth f:G~i(χ)f(bg)=(δ1/2χ)(b)f(g) for all bB~,gG~},I(\chi)=\operatorname{Ind}_{\widetilde{B}}^{\widetilde{G}}(i(\chi))=\{\text{smooth }f\colon\widetilde{G}\to i(\chi)\mid f(bg)=(\delta^{1/2}\chi)(b)f(g)\text{ for all }b\in\widetilde{B},g\in\widetilde{G}\},

where δ\delta is the modular quasicharacter of B~\widetilde{B}. The group G~\widetilde{G} acts by right multiplication on I(χ)I(\chi). This representation is called unramified genuine principal series representation of G~\widetilde{G} and denoted by (πχ,I(χ))(\pi_{\chi},I(\chi)). We assume that I(χ)I(\chi) is irreducible.

By Lemma 6.3 of [McN12], I(χ)I(\chi) has a one-dimensional space of KK-fixed vectors. Fix a non-zero vector ϕKχI(χ)K\phi_{K}^{\chi}\in I(\chi)^{K} which is called a spherical vector.

A.3. Whittaker functionals on metaplectic covers

We define Whittaker functionals on G~\widetilde{G} following [McN12], [McN16].

Choose Haar measure on FF such that 𝒪\mathcal{O} has volume 11, and denote it by dxdx. Choose a normalization of Haar measure on UU such that du=i=1Ndxidu=\prod_{i=1}^{N}dx_{i}.

Fix a non-degenerate character ψ:U\psi\colon U\to\mathbb{C} of UU such that the restriction to the subgroup Uα={eα(x)xF}FU_{-\alpha}=\{e_{-\alpha}(x)\mid x\in F\}\cong F for each simple root α\alpha has conductor 𝒪F\mathcal{O}_{F}, that is, trivial on 𝒪F×\mathcal{O}_{F}^{\times}, but non-trivial on ϖ1𝒪F\varpi^{-1}\mathcal{O}_{F}.

A (complex-valued) Whittaker functional (with respect to ψ\psi) on a representation (π,V)(\pi,V) of G~\widetilde{G} is a linear functional W:VW\colon V\to\mathbb{C} such that W(π(u)v)=ψ(u)W(v)W(\pi(u)v)=\psi(u)W(v) for all uUu\in U, vVv\in V.

By [McN16] (Section 6), there is a unique (up to constant) i(χ)i(\chi)-valued function Wχ:I(χ)i(χ)W^{\chi}\colon I(\chi)\to i(\chi) on (πχ,I(χ))(\pi_{\chi},I(\chi)) given by the integral

Wχ(ϕ)=Uϕ(u)ψ(u)1𝑑u.W^{\chi}(\phi)=\int_{U}\phi(u)\psi(u)^{-1}du.

The integral is convergent if |z|α<1|z|^{\alpha^{\vee}}<1 for all positive roots α\alpha, and can be extended to all zz by analytic continuation.

To get a Whittaker functional we need to compose WχW^{\chi} with a linear functional on i(χ)i(\chi). More precisely, there is an isomorphism between i(χ)i(\chi)^{*} and the space of \mathbb{C}-valued Whittaker functionals on I(χ)I(\chi) given by composition (Theorem 6.2 of [McN16])

LLWχ,Li(χ).L\mapsto L\circ W^{\chi},\quad L\in i(\chi)^{*}.

Thus, the dimension of the space of Whittaker functionals on I(χ)I(\chi) is dim(i(χ))=|T~/H|\dim(i(\chi))=|\widetilde{T}/H| by Theorem 8.1 of [McN12].

Remark A.1.

Note that in the non-metaplectic case (n=1n=1), the space of Whittaker functionals is one-dimensional. In the metaplectic case (n>1n>1) we have a richer theory of Whittaker functionals.

Now we construct a natural basis of the Whittaker functionals. Let v0=ϕKχ(1)i(χ)v_{0}=\phi_{K}^{\chi}(1)\in i(\chi) and let Γ\Gamma be a subset of coweights such that {ϖγ}γΓ\{\varpi^{\gamma}\}_{\gamma\in\Gamma} is a set of coset representatives for T~/H\widetilde{T}/H. When unambiguous, we identify γΓ\gamma\in\Gamma with this set. Then vectors {πχ(ϖγ)v0}γΓ\{\pi_{\chi}(\varpi^{\gamma})v_{0}\}_{\gamma\in\Gamma} form a basis of i(χ)i(\chi). Let LγχL^{\chi}_{\gamma} for γΓ\gamma\in\Gamma denote the corresponding dual basis of i(χ)i(\chi)^{*}, so we have

Lγχ(πχ(ϖλ)v0)={χ(ϖλ),if ϖλγH,0,otherwise.L_{\gamma}^{\chi}(\pi_{\chi}(\varpi^{\lambda})v_{0})=\begin{cases}\chi(\varpi^{\lambda}),&\text{if $\varpi^{\lambda-\gamma}\in H$},\\ 0,&\text{otherwise}\end{cases}.

By above, the space of Whittaker functionals on I(χ)I(\chi) has the following basis

Wγχ=LγχWχ,γΓ.W^{\chi}_{\gamma}=L^{\chi}_{\gamma}\circ W^{\chi},\quad\gamma\in\Gamma.

A.4. Iwahori Whittaker function for metaplectic covers

Define the Iwahori subgroup J=JJ=J of G(F)G(F) as the preimage of B(𝔽q)B^{-}(\mathbb{F}_{q}) under the mod 𝔭\mathfrak{p} reduction G(𝒪F)G(𝔽q)G(\mathcal{O}_{F})\to G(\mathbb{F}_{q}). The space of Iwahori fixed vectors I(χ)JI(\chi)^{J} has dimension |W||W|. For each wWw\in W, define an Iwahori fixed vector ϕwχI(χ)J\phi_{w}^{\chi}\in I(\chi)^{J} by

ϕwχ(ζbwj)={ε(ζ)ϕKχ(b),if w=w0w,0,otherwise.\phi_{w}^{\chi}\left(\zeta bw^{\prime}j\right)=\begin{cases}\varepsilon(\zeta)\phi_{K}^{\chi}(b),&\text{if $w^{\prime}=w_{0}w$},\\ 0,&\text{otherwise}\end{cases}.

where ϕK\phi_{K} is the spherical fixed above, and ζμn\zeta\in\mu_{n}, bB~b\in\widetilde{B}, wWw^{\prime}\in W, and jJj\in J; we use the metaplectic Iwahori decomposition G~=B~WJ\widetilde{G}=\widetilde{B}WJ to express an arbitrary element as product of such terms. Note the twist by w0w_{0} in the definition. By construction, ϕwχ\phi_{w}^{\chi} form a basis of I(χ)JI(\chi)^{J}, and are sometimes called the standard Iwahori basis.

Remark A.2.

Note that ϕKχ=wWϕwχ\phi_{K}^{\chi}=\sum_{w\in W}\phi_{w}^{\chi}. Thus, we have a refinement of a spherical vector ϕKχ\phi_{K}^{\chi}, and we can obtain information about the spherical vector by summing over Iwahori basis.

Now we can define the main object of our study, the (metaplectic) Iwahori Whittaker functions Ωw,γχ:G~\Omega_{w,\gamma}^{\chi}\colon\widetilde{G}\to\mathbb{C}, which are the matrix coefficients on I(χ)I(\chi) corresponding to Whittaker basis functionals WγχW_{\gamma}^{\chi} and Iwahori basis vectors ϕwχ\phi_{w}^{\chi}. Explicitly,

Ωw,γχ(g)Wγχ(πχ(g)ϕwχ)=Lγχ(Uϕw(ug)ψ(u)1𝑑u).\Omega^{\chi}_{w,\gamma}(g)\coloneqq W^{\chi}_{\gamma}(\pi_{\chi}(g)\phi_{w}^{\chi})=L^{\chi}_{\gamma}\left(\int_{U}\phi_{w}(ug)\psi(u)^{-1}\,du\right).

Note that LγχL_{\gamma}^{\chi} commutes with the integral. Write g=utwjg=utw^{\prime}j with uU+u\in U^{+}, tT~t\in\widetilde{T}, wWw^{\prime}\in W, and jJj\in J, and write t=ϖμht=\varpi^{\mu}h for ϖμT~/H\varpi^{\mu}\in\widetilde{T}/H, μΓ\mu\in\Gamma, and hHh\in H. For convenience, let us write LγχϕwχL_{\gamma}^{\chi}\circ\phi_{w}^{\chi} as follows

Lγχ(ϕwχ(g))\displaystyle L_{\gamma}^{\chi}(\phi_{w}^{\chi}(g)) =Lγχ(ϕwχ(ϖμh))\displaystyle=L_{\gamma}^{\chi}(\phi_{w}^{\chi}(\varpi^{\mu}h))
=Lγχ(πχ(ϖμ)ϕwχ(h))\displaystyle=L_{\gamma}^{\chi}(\pi_{\chi}(\varpi^{\mu})\phi_{w}^{\chi}(h))
={Lγχ(δ1/2(b)χ(b)v0),if w=w0w0,otherwise\displaystyle=\begin{cases}L_{\gamma}^{\chi}(\delta^{1/2}(b)\chi(b)v_{0}),&\text{if $w=w_{0}w^{\prime}$}\\ 0,&\text{otherwise}\end{cases}
={δ1/2(b)Lγχ(χ(ϖμ)χ(h)v0),if w=w0w0,otherwise\displaystyle=\begin{cases}\delta^{1/2}(b)L_{\gamma}^{\chi}(\chi(\varpi^{\mu})\chi(h)v_{0}),&\text{if $w=w_{0}w^{\prime}$}\\ 0,&\text{otherwise}\end{cases}
={δ1/2(b)χ(ϖλ),if w=w0w and ϖλγH0,otherwise.\displaystyle=\begin{cases}\delta^{1/2}(b)\chi(\varpi^{\lambda}),&\text{if $w=w_{0}w^{\prime}$ and $\varpi^{\lambda-\gamma}\in H$}\\ 0,&\text{otherwise}\end{cases}.

Denote χ(ϖλ)=zλ\chi(\varpi^{\lambda})=z^{\lambda} for zr+1z\in\mathbb{C}^{r+1} for each λΛ\lambda\in\Lambda. Then we write fw,γz=Lγχϕwχf_{w,\gamma}^{z}=L_{\gamma}^{\chi}\circ\phi_{w}^{\chi}. Note that χ\chi does not depend uniquely on zz: in particular, if zn=(z)nz^{n}=(z^{\prime})^{n}, then the corresponding representations are isomorphic. Furthermore, I(χ)I(\chi) is irreducible if and only if znαq±1z^{n\alpha}\neq q^{\pm 1} for all coroots α\alpha. Finally, denote fw=fwz=γΓfw,γzf_{w}=f_{w}^{z}=\sum_{\gamma\in\Gamma}f_{w,\gamma}^{z}, and f=fz=wWfwzf=f^{z}=\sum_{w\in W}f_{w}^{z}. Then in notaion above, fw(g)=f(g)=δ1/2(b)χ(ϖλ)f_{w}(g)=f(g)=\delta^{1/2}(b)\chi(\varpi^{\lambda}) if w=w0ww=w_{0}w^{\prime} and zero otherwise.

The average metaplectic Iwahori Whittaker Function Ww=Wwχ:G~W_{w}=W_{w}^{\chi}\colon\widetilde{G}\to\mathbb{C} is given by

Ww(g)=Ufw(ug)ψ(u)𝑑u.W_{w}(g)=\int_{U}f_{w}(ug)\psi(u)\,du.
Definition A.3 (Definition 2.1, [BBBG20]).

Let wWw^{\prime}\in W, let αi\alpha_{i} be a simple root and αi\alpha_{i}^{\vee} the corresponding coroot. A weight λ\lambda is ww^{\prime}-almost dominant if

αi,λ{0,if (w)1αiΦ+,1,if (w)1αiΦ.for all simple roots αi.\langle\alpha_{i}^{\vee},\lambda\rangle\geq\begin{cases}0,\quad\text{if $(w^{\prime})^{-1}\alpha_{i}\in\Phi^{+}$},\\ -1,\quad\text{if $(w^{\prime})^{-1}\alpha_{i}\in\Phi^{-}$}.\end{cases}\quad\text{for all simple roots $\alpha_{i}$}.
Lemma A.4 (Lemma 3.7, [BBBG20]).

Let λΛ\lambda\in\Lambda and wWw^{\prime}\in W. Then Ww(g)=0W_{w}(g)=0 unless λ\lambda is ww^{\prime}-dominant.

Let gG~g\in\widetilde{G}. By Iwahori decomposition, we can write g=nϖλwjg=n\varpi^{-\lambda}w^{\prime}j with nUn\in U, λΛ\lambda\in\Lambda, wWw^{\prime}\in W, and jJj\in J. Transform WwW_{w} on the left by ψ\psi and on the right by jj trivially to up get

Ufw(uϖλw)ψ(u)𝑑u\int_{U}f_{w}(u\varpi^{\lambda}w^{\prime})\psi(u)\,du

up to a constant. We can assume λr+1=0\lambda_{r+1}=0 as the diagonal element in central, and we just get a factor of zλz^{\lambda}. Conjugate uϖλuϖλu\mapsto\varpi^{-\lambda}u\varpi^{\lambda} to get

Ufw(uw)ψλ(u)𝑑u=ϕw(λ,w;z),\int_{U}f_{w}(uw^{\prime})\psi_{\lambda}(u)\,du=\phi_{w}(\lambda,w^{\prime};z),

up to a constant, ψλ(u)=ψ(ϖλuϖλ)\psi_{\lambda}(u)=\psi(\varpi^{-\lambda}u\varpi^{\lambda}), and

(A.1) ϕw(λ,w;z)=Ufw(uw)ψλ(u)𝑑u.\phi_{w}(\lambda,w^{\prime};z)=\int_{U}f_{w}(uw^{\prime})\psi_{\lambda}(u)\,du.

This integral ϕw(λ,w;z)\phi_{w}(\lambda,w^{\prime};z) is the main object of our study as it gives all the values of the Iwahori Whittaker functions. The recursive calculation of it is given by Brubaker, Buciumas, Bump, and Gustafsson [BBBG19, BBBG20]. The main goal of present paper is to calculate these values combinatorically. We do it in Section 4.

Notice that the eq. A.1 is an integral over UU which lives in the derived group of GG. Hence, all the computations can be reduced to the derived group. We will need the following generators.

A.5. Generators of the derived group

Let G=[G,G]G^{\prime}=[G,G] be the derived group of GG, so GG^{\prime} is semisimple. Let G~\widetilde{G}^{\prime} be the induced covering group. We mainly work with G~\widetilde{G}^{\prime} since all the calculations happen in the subgroup U~\widetilde{U}^{-} of G~\widetilde{G}^{\prime}. Denote T~=T~G~\widetilde{T}^{\prime}=\widetilde{T}\cap\widetilde{G}^{\prime}, B~=B~G~\widetilde{B}^{\prime}=\widetilde{B}\cap\widetilde{G}^{\prime}, and K~=K~G~\widetilde{K}^{\prime}=\widetilde{K}\cap\widetilde{G}^{\prime}. The Iwasawa decomposition G=BKG=BK lifts to G~=B~K~\widetilde{G}=\widetilde{B}\widetilde{K}, and hence G~=B~K~\widetilde{G}^{\prime}=\widetilde{B}^{\prime}\widetilde{K}^{\prime}. By Section 4, [McN12], G~\widetilde{G} splits over UU, UU, and KK. Thus, we can identify U~,U~,K~\widetilde{U},\widetilde{U}^{-},\widetilde{K} with their images in GG and in GG^{\prime}. Also, for αΦ\alpha\in\Phi and x𝒪Fx\in\mathcal{O}_{F}, we have eα(x)K~e_{\alpha}(x)\in\widetilde{K}, as one would expect.

The group G~\widetilde{G}^{\prime} is a quotient of the universal central extension of GG^{\prime}, and thus admits the description in terms of generators of relations. Namely, the group G~\widetilde{G}^{\prime} is generated by symbols eα(x)e_{\alpha}(x) where αΦ\alpha\in\Phi and xFx\in F, subject to the relations

eα(x)eα(y)=eα(x+y),e_{\alpha}(x)e_{\alpha}(y)=e_{\alpha}(x+y),
wα(x)eα(y)wα(x)=eα(x2y),w_{\alpha}(x)e_{\alpha}(y)w_{\alpha}(-x)=e_{-\alpha}(-x^{-2}y),

where wα(x)=eα(x)eα(x1)w_{\alpha}(x)=e_{\alpha}(x)e_{-\alpha}(-x^{-1}), and

eα(x)eβ(y)=[i,j+iα+jβ=γΦeγ(ci,j,α,βxiyj)]eβ(y)eα(x),e_{\alpha}(x)e_{\beta}(y)=\left[\prod_{\begin{subarray}{c}i,j\in\mathbb{Z}^{+}\\ i\alpha+j\beta=\gamma\in\Phi\end{subarray}}e_{\gamma}(c_{i,j,\alpha,\beta}x^{i}y^{j})\right]e_{\beta}(y)e_{\alpha}(x),

for all x,yFx,y\in F and α,βΦ\alpha,\beta\in\Phi with α+β0\alpha+\beta\neq 0, where ci,j,α,βc_{i,j,\alpha,\beta} is a fixed collection of integers, completely determined by the root system Φ\Phi. See Section 3 of [McN11] and [Ste68] for details.

Note that the terms in the last product commute, so there is no ambiguity with respect to order of multiplication. In the noncommutative case we write k=mnxk\prod_{k=m}^{n}x_{k} for xmxm+1xnx_{m}x_{m+1}\dots x_{n}, and k=nmxk\prod_{k=n}^{m}x_{k} for xnxn1xmx_{n}x_{n-1}\dots x_{m} where mnm\leq n.

Moreover, there are additional relations coming from the choice of the central extension. Define the elements hα(x)G~h_{\alpha}(x)\in\widetilde{G}^{\prime} by hα(x)=wα(x)wα(1)h_{\alpha}(x)=w_{\alpha}(x)w_{\alpha}(-1) and let lα=Q(α)=B(α,α)/2l_{\alpha}=Q(\alpha^{\vee})=B(\alpha^{\vee},\alpha^{\vee})/2. Then the following identities hold in G~\widetilde{G}^{\prime}.

(A.2) hα(x)eβ(y)hα(x)1=eβ(xβ,αy),hα(x)hα(y)=(x,y)lαhα(xy),hα(x)hβ(y)hα(x)1=hβ(y)(x,y)β,αlβ,hα(x)=hα(x1),\begin{gathered}h_{\alpha}(x)e_{\beta}(y)h_{\alpha}(x)^{-1}=e_{\beta}(x^{\langle\beta,\alpha^{\vee}\rangle}y),\\ h_{\alpha}(x)h_{\alpha}(y)=(x,y)^{l_{\alpha}}h_{\alpha}(xy),\\ h_{\alpha}(x)h_{\beta}(y)h_{\alpha}(x)^{-1}=h_{\beta}(y)(x,y)^{\langle\beta,\alpha^{\vee}\rangle l_{\beta}},\\ h_{\alpha}(x)=h_{-\alpha}(x^{-1}),\end{gathered}

where we recall that (x,y)μn(x,y)\in\mu_{n} is the value of Hilbert symbol and is central in G~\widetilde{G}.

With these generators, T~\widetilde{T}^{\prime} is generated by the images of all elements of the form hα(x)h_{\alpha}(x) for xFx\in F, U~\widetilde{U}^{\prime} is generated by the images of eα(x)e_{\alpha}(x) for αΦ+\alpha\in\Phi^{+} and xFx\in F. Similarly, U~\widetilde{U}^{-} is the subgroup of G~\widetilde{G}^{\prime} generated by all eα(x)e_{-\alpha}(x) where αΦ+\alpha\in\Phi^{+} and xFx\in F.

Let W=NG(T)/TW=N_{G}(T)/T be the Weyl group. The induced cover W~\widetilde{W} of WW splits over the maximal compact subgroup KK. If we choose coset representatives in KK, we can identify WW with W~\widetilde{W}.

Let siKs_{i}\in K be the representatives of wαi(1)W~w_{\alpha_{i}}(-1)\in\widetilde{W}. Then the elements sis_{i} generate W~\widetilde{W}. For any wWw\in W write w=si1simw=s_{i_{1}}\dots s_{i_{m}}, then we have the element w=si1simw=s_{i_{1}}\dots s_{i_{m}} that maps to wWw\in W under the projection map pp. For any positive root αΦ+\alpha\in\Phi^{+}, choose a simple root αi\alpha_{i} and a Weyl group element wWw\in W such that α=wαi\alpha=w\cdot\alpha_{i}. Then set sα=w~siw~1s_{\alpha}=\widetilde{w}s_{i}\widetilde{w}^{-1}.

References