This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Collinear and triangular solutions to the coplanar and circular three-body problem in the parametrized post-Newtonian formalism

Yuya Nakamura [email protected]    Hideki Asada [email protected] Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
Abstract

This paper investigates the coplanar and circular three-body problem in the parametrized post-Newtonian (PPN) formalism, for which we focus on a class of fully conservative theories characterized by the Eddington-Robertson parameters β\beta and γ\gamma. It is shown that there can still exist a collinear equilibrium configuration and a triangular one, each of which is a generalization of the post-Newtonian equilibrium configuration in general relativity. The collinear configuration can exist for arbitrary mass ratio, β\beta, and γ\gamma. On the other hand, the PPN triangular configuration depends on the nonlinearity parameter β\beta but not on γ\gamma. For any value of β\beta, the equilateral configuration is possible, if and only if three finite masses are equal or two test masses orbit around one finite mass. For general mass cases, the PPN triangle is not equilateral as in the post-Newtonian case. It is shown also that the PPN displacements from the Lagrange points in the Newtonian gravity L1L_{1}, L2L_{2} and L3L_{3} depend on β\beta and γ\gamma, whereas those to L4L_{4} and L5L_{5} rely only on β\beta.

pacs:
04.25.Nx, 45.50.Pk, 95.10.Ce, 95.30.Sf

I Introduction

The three-body problem is among the classical ones in physics. It led to the notion of the chaos Goldstein . On the other hand, particular solutions such as Euler’s collinear solution and Lagrange’s equilateral one Danby ; Marchal express regular orbits and they have still attracted interest e.g. Asada ; Torigoe ; Seto ; Schnittman ; Connors . If one mass is zero and the other two masses are finite, the collinear solution and triangular one correspond to Lagrange points L1L_{1}, L2L_{2}, L3L_{3}, L4L_{4} and L5L_{5} as particular solutions for the coplanar restricted three-body problem.

In his pioneering work Nordtvedt , Nordtvedt found that the position of the triangular points is very sensitive to the ratio of the gravitational mass to the inertial mass in gravitational experimental tests, where the post-Newtonian (PN) terms are not fully taken into account.

Krefetz Krefetz and Maindl Maindl studied the restricted three-body problem in the PN approximation and found the PN triangular configuration for a general mass ratio between two masses. These investigations were extended to the PN three-body problem for general masses Yamada2010 ; Yamada2011 ; Ichita2011 ; Yamada2012 ; Yamada2015 ; Yamada2016 , and the PN counterparts for Euler’s collinear Yamada2010 ; Yamada2011 and Lagrange’s equilateral solutions Ichita2011 ; Yamada2012 were obtained. It should be noted that the PN triangular solutions are not necessarily equilateral for general mass ratios and they are equilateral only for either the equal mass case or two test masses. The stability of the PN solution and the radiation reaction at 2.5PN order were also examined Yamada2015 ; Yamada2016 .

In a scalar-tensor theory of gravity, a collinear configuration for three-body problem was discussed Zhou . In addition to such fully classical treatments, a possible quantum gravity correction to the Lagrange points was proposed Battista2015a ; Battista2015b .

Moreover, the recent discovery of a relativistic hierarchical triple system including a neutron star Ransom has generated renewed interest in the relativistic three-body problem and the related gravitational experiments Archibald ; Will2018 ; Voisin .

The main purpose of the present paper is to reexamine the coplanar and circular three-body problem especially in the PPN formalism. One may ask if collinear and triangular configurations are still solutions for the coplanar three-body problem in the PPN gravity. If so, how large are the PPN effects of the three-body configuration? We focus on the Eddington-Robertson parameters β\beta and γ\gamma, because the two parameters are the most important ones; β\beta measures how much nonlinearity there is in the superposition law for gravity and γ\gamma measures how much space curvature is produced by unit rest mass Will ; Poisson . Hence, preferred locations, preferred frames or a violation of conservation of total momentum will not be considered in this paper. We confine ourselves to a class of fully conservative theories. See e.g. Klioner for the celestial mechanics in this class of PPN theories.

This paper is organized as follows. In Section II, collinear configurations are discussed in the PPN formalism. Section III investigates PPN triangular configurations. In Section IV, the PPN corrections to the Lagrange points are examined. For brevity, the Lagrange points defined in Newtonian gravity are referred to as the Newtonian Lagrange points in this paper. Section V summarizes this paper. Throughout this paper, G=c=1G=c=1. A,BA,B and C{1,2,3}C\in\{1,2,3\} label three masses.

II Collinear configuration in PPN gravity

II.1 Euler’s collinear solution in Newton gravity

Let us begin with briefly mentioning the Euler’s collinear solution for the circular three-body problem in Newton gravity Danby ; Marchal , for which each mass MAM_{A} (A=1,2,3A=1,2,3) at 𝒙A\bm{x}_{A} is orbiting around the common center of mass (COM) at 𝒙G\bm{x}_{G}, and the orbital velocity and acceleration are denoted as 𝒗A\bm{v}_{A} and 𝒂A\bm{a}_{A}, respectively. In this section, we suppose that three masses are always aligned, for which it is convenient to use the corotating frame with a constant angular velocity ω\omega on the orbital plane chosen as the xyx-y plane.

Without loss of generality, we assume x1>x2>x3x_{1}>x_{2}>x_{3} for 𝒙A(xA,0)\bm{x}_{A}\equiv(x_{A},0). Let RAR_{A} denote the relative position of each mass MAM_{A} from the COM at 𝒙G(xG,0)\bm{x}_{G}\equiv(x_{G},0). Namely, RA=xAxGR_{A}=x_{A}-x_{G}. Note that |RA||𝒙A||R_{A}|\neq|\bm{x}_{A}| unless xG=0x_{G}=0 is chosen. We define the relative vector between masses as 𝑹AB𝒙A𝒙B\bm{R}_{AB}\equiv\bm{x}_{A}-\bm{x}_{B}, for which the relative length is RAB=|𝑹AB|R_{AB}=|\bm{R}_{AB}|. See Figure 1 for a configuration of the Euler’s collinear solution.

Refer to caption
Figure 1: Schematic figure for the collinear configuration of three masses.

The coordinate origin x=0x=0 is chosen between M1M_{1} and M3M_{3}, such that R1>R2>R3R_{1}>R_{2}>R_{3}, R1>0R_{1}>0 and R3<0R_{3}<0. By taking account of this sign convention, the equation of motion becomes

R1ω2\displaystyle R_{1}\omega^{2} =\displaystyle= M2R122+M3R132,\displaystyle\frac{M_{2}}{R_{12}^{2}}+\frac{M_{3}}{R_{13}^{2}}, (1)
R2ω2\displaystyle R_{2}\omega^{2} =\displaystyle= M1R122+M3R232,\displaystyle-\frac{M_{1}}{R_{12}^{2}}+\frac{M_{3}}{R_{23}^{2}}, (2)
R3ω2\displaystyle R_{3}\omega^{2} =\displaystyle= M1R132M2R232.\displaystyle-\frac{M_{1}}{R_{13}^{2}}-\frac{M_{2}}{R_{23}^{2}}. (3)

We define the distance ratio as zR23/R12z\equiv R_{23}/R_{12}, which plays a key role in the following calculations. Note that z>0z>0 by definition. We subtract Eq. (2) from Eq. (1) and Eq. (3) from Eq. (2). By combining the results including the same angular velocity ω\omega, we obtain a fifth-order equation for zz as

(M1+M2)z5+(3M1+2M2)z4+(3M1+M2)z3\displaystyle(M_{1}+M_{2})z^{5}+(3M_{1}+2M_{2})z^{4}+(3M_{1}+M_{2})z^{3}
(M2+3M3)z2(2M2+3M3)z(M2+M3)=0,\displaystyle-(M_{2}+3M_{3})z^{2}-(2M_{2}+3M_{3})z-(M_{2}+M_{3})=0, (4)

for which there exists the only positive root Danby ; Marchal . In order to obtain Eq. (4), we do not have to specify the coordinate origin e.g. xG=0x_{G}=0. This is because Eq. (4) does not refer to any coordinate system. Once Eq. (4) is solved for zz, we can obtain ω\omega by substituting zz into any of Eqs. (1)-(3).

II.2 PPN collinear configuration

In a class of fully conservative theories including only the Eddington-Robertson parameters β\beta and γ\gamma, the equation of motion is Will ; Poisson

𝒂A=\displaystyle\bm{a}_{A}= BAMBRAB2𝒏AB\displaystyle-\sum_{B\neq A}\frac{M_{B}}{R_{AB}^{2}}\bm{n}_{AB}
BAMBRAB2{γvA22(γ+1)(𝒗A𝒗B)\displaystyle-\sum_{B\neq A}\frac{M_{B}}{R_{AB}^{2}}\bigg{\{}\gamma v_{A}^{2}-2(\gamma+1)(\bm{v}_{A}\cdot\bm{v}_{B})
+(γ+1)vB232(𝒏AB𝒗B)2(2γ+2β+1)MARAB\displaystyle~{}~{}~{}~{}~{}+(\gamma+1)v_{B}^{2}-\frac{3}{2}(\bm{n}_{AB}\cdot\bm{v}_{B})^{2}-\bigg{(}2\gamma+2\beta+1\bigg{)}\frac{M_{A}}{R_{AB}}
2(γ+β)MBRAB}𝒏AB\displaystyle~{}~{}~{}~{}~{}-2(\gamma+\beta)\frac{M_{B}}{R_{AB}}\bigg{\}}\bm{n}_{AB}
+BAMBRAB2{𝒏AB[2(γ+1)𝒗A(2γ+1)𝒗B]}(𝒗A𝒗B)\displaystyle+\sum_{B\neq A}\frac{M_{B}}{R_{AB}^{2}}\bigg{\{}\bm{n}_{AB}\cdot[2(\gamma+1)\bm{v}_{A}-(2\gamma+1)\bm{v}_{B}]\bigg{\}}(\bm{v}_{A}-\bm{v}_{B})
+BACA,BMBMCRAB2[2(γ+β)RAC+2β1RBC\displaystyle+\sum_{B\neq A}\sum_{C\neq A,B}\frac{M_{B}M_{C}}{R_{AB}^{2}}\bigg{[}\frac{2(\gamma+\beta)}{R_{AC}}+\frac{2\beta-1}{R_{BC}}
12RABRBC2(𝒏AB𝒏BC)]𝒏AB\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\frac{1}{2}\frac{R_{AB}}{R_{BC}^{2}}(\bm{n}_{AB}\cdot\bm{n}_{BC})\bigg{]}\bm{n}_{AB}
12(4γ+3)BACA,BMBMCRABRBC2𝒏BC+O(c4),\displaystyle-\frac{1}{2}(4\gamma+3)\sum_{B\neq A}\sum_{C\neq A,B}\frac{M_{B}M_{C}}{R_{AB}R_{BC}^{2}}\bm{n}_{BC}+O(c^{-4}), (5)

where

𝒏AB\displaystyle\bm{n}_{AB} 𝑹ABRAB.\displaystyle\equiv\frac{\bm{R}_{AB}}{R_{AB}}. (6)

For three aligned masses, Eq. (5) becomes the force-balance equation as

ω2=FN+FM+FVω2,\displaystyle\ell\omega^{2}=F_{N}+F_{M}+F_{V}\omega^{2}, (7)

where we define R31\ell\equiv R_{31}, the mass ratio νAMA/M\nu_{A}\equiv M_{A}/M for MAMAM\equiv\sum_{A}M_{A}, and

FN=M2z2[\displaystyle F_{N}=\frac{M}{\ell^{2}z^{2}}[ 1ν1ν3+2(1ν1ν3)z+(2ν1ν3)z2\displaystyle 1-\nu_{1}-\nu_{3}+2(1-\nu_{1}-\nu_{3})z+(2-\nu_{1}-\nu_{3})z^{2}
+2(1ν1ν3)z3+(1ν1ν3)z4],\displaystyle+2(1-\nu_{1}-\nu_{3})z^{3}+(1-\nu_{1}-\nu_{3})z^{4}], (8)
FM=M23z3[\displaystyle F_{M}=-\frac{M^{2}}{\ell^{3}z^{3}}[ {2(β+γ)ν2+(1+2β+2γ)ν3}ν2\displaystyle\{2(\beta+\gamma)\nu_{2}+(1+2\beta+2\gamma)\nu_{3}\}\nu_{2}
+{(1+4β+2γ)ν1+6(β+γ)ν2\displaystyle+\{(-1+4\beta+2\gamma)\nu_{1}+6(\beta+\gamma)\nu_{2}
+3(1+2β+2γ)ν3}ν2z\displaystyle~{}~{}~{}~{}~{}+3(1+2\beta+2\gamma)\nu_{3}\}\nu_{2}z
+{(5+12β+4γ)ν1+6(β+γ)ν2\displaystyle+\{(-5+12\beta+4\gamma)\nu_{1}+6(\beta+\gamma)\nu_{2}
(110β4γ)ν3}ν2z2\displaystyle~{}~{}~{}~{}~{}-(1-10\beta-4\gamma)\nu_{3}\}\nu_{2}z^{2}
+{2(β+γ)ν12+4(β+γ)ν22\displaystyle+\{2(\beta+\gamma)\nu_{1}^{2}+4(\beta+\gamma)\nu_{2}^{2}
(714β2γ)ν2ν3+2(β+γ)ν32\displaystyle~{}~{}~{}~{}~{}-(7-14\beta-2\gamma)\nu_{2}\nu_{3}+2(\beta+\gamma)\nu_{3}^{2}
+((7+14β+2γ)ν2\displaystyle+((-7+14\beta+2\gamma)\nu_{2}
+2(1+2β+2γ)ν3)ν1}z3\displaystyle~{}~{}~{}~{}~{}+2(1+2\beta+2\gamma)\nu_{3})\nu_{1}\}z^{3}
+{(1+10β+4γ)ν1+6(β+γ)ν2\displaystyle+\{(-1+10\beta+4\gamma)\nu_{1}+6(\beta+\gamma)\nu_{2}
+(12β+4γ5)ν3}ν2z4\displaystyle~{}~{}~{}~{}~{}+(12\beta+4\gamma-5)\nu_{3}\}\nu_{2}z^{4}
+{3(1+2β+2γ)ν1+6(β+γ)ν2\displaystyle+\{3(1+2\beta+2\gamma)\nu_{1}+6(\beta+\gamma)\nu_{2}
+(1+4β+2γ)ν3}ν2z5\displaystyle~{}~{}~{}~{}~{}+(-1+4\beta+2\gamma)\nu_{3}\}\nu_{2}z^{5}
+{(1+2β+2γ)ν1+2(β+γ)ν2}ν2z6],\displaystyle+\{(1+2\beta+2\gamma)\nu_{1}+2(\beta+\gamma)\nu_{2}\}\nu_{2}z^{6}], (9)

and

FV=\displaystyle F_{V}= M(1+z)2z2\displaystyle\frac{M}{(1+z)^{2}z^{2}}
×[ν12ν22ν1ν2(2ν1+ν2)z\displaystyle\times[-\nu_{1}^{2}\nu_{2}-2\nu_{1}\nu_{2}(2\nu_{1}+\nu_{2})z
+{γν13+((2+4γ)ν2+3(1+γ)ν3)ν12\displaystyle~{}~{}~{}+\{\gamma\nu_{1}^{3}+((-2+4\gamma)\nu_{2}+3(1+\gamma)\nu_{3})\nu_{1}^{2}
+(2ν2+ν3)(γν22+(1+2γ)ν2ν3+γν32)\displaystyle~{}~{}~{}+(2\nu_{2}+\nu_{3})(\gamma\nu_{2}^{2}+(1+2\gamma)\nu_{2}\nu_{3}+\gamma\nu_{3}^{2})
+((1+5γ)ν22+8(1+γ)ν2ν3+3(1+γ)ν32)ν1}z2\displaystyle~{}~{}~{}+((-1+5\gamma)\nu_{2}^{2}+8(1+\gamma)\nu_{2}\nu_{3}+3(1+\gamma)\nu_{3}^{2})\nu_{1}\}z^{2}
+2(ν1+2ν2+ν3){γν12+γν22+(1+2γ)ν2ν3\displaystyle~{}~{}~{}+2(\nu_{1}+2\nu_{2}+\nu_{3})\{\gamma\nu_{1}^{2}+\gamma\nu_{2}^{2}+(1+2\gamma)\nu_{2}\nu_{3}
+γν32+((1+2γ)ν2+(3+2γ)ν3)ν1}z3\displaystyle~{}~{}~{}+\gamma\nu_{3}^{2}+((1+2\gamma)\nu_{2}+(3+2\gamma)\nu_{3})\nu_{1}\}z^{3}
+{γν13+2γν23(15γ)ν22ν32(12γ)ν2ν32\displaystyle~{}~{}~{}+\{\gamma\nu_{1}^{3}+2\gamma\nu_{2}^{3}-(1-5\gamma)\nu_{2}^{2}\nu_{3}-2(1-2\gamma)\nu_{2}\nu_{3}^{2}
+γν33+((1+4γ)ν2+3(1+γ)ν3)ν12\displaystyle~{}~{}~{}+\gamma\nu_{3}^{3}+((1+4\gamma)\nu_{2}+3(1+\gamma)\nu_{3})\nu_{1}^{2}
+((2+5γ)ν22+8(1+γ)ν2ν3+3(1+γ)ν32)ν1}z4\displaystyle~{}~{}~{}+((2+5\gamma)\nu_{2}^{2}+8(1+\gamma)\nu_{2}\nu_{3}+3(1+\gamma)\nu_{3}^{2})\nu_{1}\}z^{4}
2ν2ν3(ν2+2ν3)z5ν2ν32z6].\displaystyle~{}~{}~{}-2\nu_{2}\nu_{3}(\nu_{2}+2\nu_{3})z^{5}-\nu_{2}\nu_{3}^{2}z^{6}]. (10)

By rearranging Eq. (5) for the collinear configuration by the same way as in subsection II.A, we find a seventh-order equation for zz as

k=07Akzk=0,\displaystyle\sum_{k=0}^{7}A_{k}z^{k}=0, (11)

where the coefficients are

A7=\displaystyle A_{7}= M[2(β+γ)2ν1+4(β+γ)ν3+2ν12+4ν1ν3\displaystyle\frac{M}{\ell}\bigg{[}-2(\beta+\gamma)-2\nu_{1}+4(\beta+\gamma)\nu_{3}+2\nu_{1}^{2}+4\nu_{1}\nu_{3}
2(β+γ)ν322ν12ν32ν1ν32],\displaystyle~{}~{}~{}~{}~{}-2(\beta+\gamma)\nu_{3}^{2}-2\nu_{1}^{2}\nu_{3}-2\nu_{1}\nu_{3}^{2}\bigg{]}, (12)
A6=\displaystyle A_{6}= 1ν3\displaystyle 1-\nu_{3}
+M[(6β+7γ)(6+2β+2γ)ν1\displaystyle+\frac{M}{\ell}\bigg{[}-(6\beta+7\gamma)-(6+2\beta+2\gamma)\nu_{1}
(28β11γ)ν3+4ν12+(12+2β+2γ)ν1ν3\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-(2-8\beta-11\gamma)\nu_{3}+4\nu_{1}^{2}+(12+2\beta+2\gamma)\nu_{1}\nu_{3}
+(42β4γ)ν32+2ν134ν12ν36ν1ν322ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+(4-2\beta-4\gamma)\nu_{3}^{2}+2\nu_{1}^{3}-4\nu_{1}^{2}\nu_{3}-6\nu_{1}\nu_{3}^{2}-2\nu_{3}^{3}\bigg{]}, (13)
A5=\displaystyle A_{5}= 2+ν12ν3\displaystyle 2+\nu_{1}-2\nu_{3}
+M[3(2β+3γ)3(2+2β+2γ)ν1(611γ)ν3\displaystyle+\frac{M}{\ell}\bigg{[}-3(2\beta+3\gamma)-3(2+2\beta+2\gamma)\nu_{1}-(6-11\gamma)\nu_{3}
+(12+6β+2γ)ν1ν3+(12+6β2γ)ν32\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+(12+6\beta+2\gamma)\nu_{1}\nu_{3}+(12+6\beta-2\gamma)\nu_{3}^{2}
+6ν136ν1ν326ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+6\nu_{1}^{3}-6\nu_{1}\nu_{3}^{2}-6\nu_{3}^{3}\bigg{]}, (14)
A4=\displaystyle A_{4}= 1+2ν1ν3\displaystyle 1+2\nu_{1}-\nu_{3}
+M[2β4γ(2β+8γ)ν1(6+6β8γ)ν3\displaystyle+\frac{M}{\ell}\bigg{[}-2\beta-4\gamma-(2\beta+8\gamma)\nu_{1}-(6+6\beta-8\gamma)\nu_{3}
(6+4β2γ)ν12+(4+2β2γ)ν1ν3\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-(6+4\beta-2\gamma)\nu_{1}^{2}+(4+2\beta-2\gamma)\nu_{1}\nu_{3}
+(12+8β4γ)ν32+6ν13+2ν12ν34ν1ν326ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+(12+8\beta-4\gamma)\nu_{3}^{2}+6\nu_{1}^{3}+2\nu_{1}^{2}\nu_{3}-4\nu_{1}\nu_{3}^{2}-6\nu_{3}^{3}\bigg{]}, (15)
A3=\displaystyle A_{3}= 1+ν12ν3\displaystyle-1+\nu_{1}-2\nu_{3}
+M[2β+4γ+(6+6β8γ)ν1+(2β+8γ)ν3\displaystyle+\frac{M}{\ell}\bigg{[}2\beta+4\gamma+(6+6\beta-8\gamma)\nu_{1}+(2\beta+8\gamma)\nu_{3}
(12+8β4γ)ν12(4+2β2γ)ν1ν3\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-(12+8\beta-4\gamma)\nu_{1}^{2}-(4+2\beta-2\gamma)\nu_{1}\nu_{3}
+(6+4β2γ)ν32+6ν13+4ν12ν32ν1ν326ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+(6+4\beta-2\gamma)\nu_{3}^{2}+6\nu_{1}^{3}+4\nu_{1}^{2}\nu_{3}-2\nu_{1}\nu_{3}^{2}-6\nu_{3}^{3}\bigg{]}, (16)
A2=\displaystyle A_{2}= 2+2ν1ν3\displaystyle-2+2\nu_{1}-\nu_{3}
+M[6β+9γ+(611γ)ν1+(6+6β+6γ)ν3\displaystyle+\frac{M}{\ell}\bigg{[}6\beta+9\gamma+(6-11\gamma)\nu_{1}+(6+6\beta+6\gamma)\nu_{3}
(12+6β2γ)ν12(12+6β+2γ)ν1ν3\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-(12+6\beta-2\gamma)\nu_{1}^{2}-(12+6\beta+2\gamma)\nu_{1}\nu_{3}
+6ν13+6ν12ν36ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}+6\nu_{1}^{3}+6\nu_{1}^{2}\nu_{3}-6\nu_{3}^{3}\bigg{]}, (17)
A1=\displaystyle A_{1}= 1+ν1\displaystyle-1+\nu_{1}
+M[6β+7γ+(28β11γ)ν1+(6+2β+2γ)ν3\displaystyle+\frac{M}{\ell}\bigg{[}6\beta+7\gamma+(2-8\beta-11\gamma)\nu_{1}+(6+2\beta+2\gamma)\nu_{3}
(42β4γ)ν12(12+2β+2γ)ν1ν3\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-(4-2\beta-4\gamma)\nu_{1}^{2}-(12+2\beta+2\gamma)\nu_{1}\nu_{3}
4ν32+2ν13+4ν1ν32+6ν12ν32ν33],\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}-4\nu_{3}^{2}+2\nu_{1}^{3}+4\nu_{1}\nu_{3}^{2}+6\nu_{1}^{2}\nu_{3}-2\nu_{3}^{3}\bigg{]}, (18)
A0=\displaystyle A_{0}= M[2β+2γ4(β+γ)ν1+2ν3+2(β+γ)ν12\displaystyle\frac{M}{\ell}\bigg{[}2\beta+2\gamma-4(\beta+\gamma)\nu_{1}+2\nu_{3}+2(\beta+\gamma)\nu_{1}^{2}
4ν1ν32ν32+2ν12ν3+2ν1ν32].\displaystyle~{}~{}~{}~{}~{}~{}-4\nu_{1}\nu_{3}-2\nu_{3}^{2}+2\nu_{1}^{2}\nu_{3}+2\nu_{1}\nu_{3}^{2}\bigg{]}. (19)

It follows that Eq. (11) recovers the PN collinear configuration by Eq. (13) of Reference Yamada2011 if and only if β=γ=1\beta=\gamma=1. The uniqueness is because the number of the parameters β\beta, γ\gamma is two for eight coefficients A0,,A7A_{0},\cdots,A_{7}.

From Eq. (7) for zz obtained above, the angular velocity ωPPN\omega_{PPN} of the PPN collinear configuration is obtained as

ωPPN=ωN(1+FM2FN+FV2),\displaystyle\omega_{PPN}=\omega_{N}\bigg{(}1+\frac{F_{M}}{2F_{N}}+\frac{F_{V}}{2\ell}\bigg{)}, (20)

where ωN=(FN/)1/2\omega_{N}=(F_{N}/\ell)^{1/2} is the Newtonian angular velocity. The subscript NN denotes the Newtonian case.

III Triangular configuration in PPN gravity

III.1 Lagrange’s equilateral solution in Newtonian gravity

In this subsection, we suppose that the three masses are in coplanar and circular motion with keeping the same separation between the masses, namely RAB=aR_{AB}=a for a constant aa.

It is convenient to choose the coordinate origin as the COM,

AMA𝒙A=0,\sum_{A}M_{A}\bm{x}_{A}=0, (21)

for which the equation of motion for each mass in the equilateral triangle configuration takes a compact form as Danby

d2𝒙Adt2=Ma3𝒙A.\frac{d^{2}\bm{x}_{A}}{dt^{2}}=-\frac{M}{a^{3}}\bm{x}_{A}. (22)

See e.g. Eq. (8.6.5) in Reference Danby for the derivation of Eq. (22). A triangular configuration is a solution, if the Newtonian angular velocity ωN\omega_{N} satisfies

(ωN)2=Ma3.(\omega_{N})^{2}=\frac{M}{a^{3}}. (23)

The orbital radius A\ell_{A} of each mass around the COM is Danby

1\displaystyle\ell_{1} =aν22+ν2ν3+ν32,\displaystyle=a\sqrt{\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2}}, (24)
2\displaystyle\ell_{2} =aν12+ν1ν3+ν32,\displaystyle=a\sqrt{\nu_{1}^{2}+\nu_{1}\nu_{3}+\nu_{3}^{2}}, (25)
3\displaystyle\ell_{3} =aν12+ν1ν2+ν22.\displaystyle=a\sqrt{\nu_{1}^{2}+\nu_{1}\nu_{2}+\nu_{2}^{2}}. (26)

III.2 PPN orbital radius

We suppose again that three masses in circular motion are in a triangular configuration with a constant angular velocity ω\omega. By noting that a vector in the orbital plane can be expressed as a linear combination of 𝒙1\bm{x}_{1} and 𝒗1\bm{v}_{1}, Eq.(5) becomes

ω2𝒙1=\displaystyle-\omega^{2}\bm{x}_{1}= (ωN)2𝒙1+g1(ωN)2𝒙1\displaystyle-(\omega_{N})^{2}\bm{x}_{1}+g_{1}(\omega_{N})^{2}\bm{x}_{1}
+3M16aν2ν3(ν2ν3)(16β19ν1)ν22+ν2ν3+ν32ωN𝒗1,\displaystyle+\frac{\sqrt{3}M}{16a}\frac{\nu_{2}\nu_{3}(\nu_{2}-\nu_{3})(16\beta-1-9\nu_{1})}{\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2}}\omega_{N}\bm{v}_{1}, (27)

where Eq. (23) is used and

g1=\displaystyle g_{1}= Ma[(2β+γ+(ν2+ν3)(ν2+ν31)716ν2ν3)\displaystyle\frac{M}{a}\left[\left(2\beta+\gamma+(\nu_{2}+\nu_{3})(\nu_{2}+\nu_{3}-1)-\frac{7}{16}\nu_{2}\nu_{3}\right)\right.
+316ν2ν3{9ν2ν3+2(ν2+ν3)(8β5)}ν22+ν2ν3+ν32].\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}\left.+\frac{3}{16}\frac{\nu_{2}\nu_{3}\{9\nu_{2}\nu_{3}+2(\nu_{2}+\nu_{3})(8\beta-5)\}}{\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2}}\right]. (28)

By a cyclic permutation, we obtain the similar equations for M2M_{2} and M3M_{3}.

The second and third terms in the right-had side of Eq. (27) are the PPN forces. The second term is parallel to 𝒙1\bm{x}_{1}, whereas the third term is parallel to 𝒗1\bm{v}_{1} Note that 𝒗1\bm{v}_{1} is not parallel to 𝒙1\bm{x}_{1} in circular motion.

The location of the COM in the fully conservative theories of PPN Baker1978 ; Baker1979 remains the same as that in the PN approximation of general relativity MTW ; LL

𝑮PN=1EAMA𝒙A[1+12(vA2BAMBRAB)],\displaystyle\bm{G}_{PN}=\frac{1}{E}\sum\limits_{A}M_{A}\bm{x}_{A}\left[1+\frac{1}{2}\left(v_{A}^{2}-\sum\limits_{B\neq A}\frac{M_{B}}{R_{AB}}\right)\right], (29)

where EE is defined as

EAMA[1+12(vA2BAMBRAB)].\displaystyle E\equiv\sum\limits_{A}M_{A}\left[1+\frac{1}{2}\left(v_{A}^{2}-\sum\limits_{B\neq A}\frac{M_{B}}{R_{AB}}\right)\right]. (30)

This coincidence allows us to obtain the PPN orbital radius APPN\ell^{PPN}_{A} around the COM by straightforward calculations. The orbital radius of M1M_{1} is formally obtained as

(1PPN)2\displaystyle(\ell^{PPN}_{1})^{2} =\displaystyle= (1)2\displaystyle(\ell_{1})^{2} (31)
+aM2(1a3ωN2M)\displaystyle+\frac{aM}{2}\left(1-\frac{a^{3}\omega_{N}^{2}}{M}\right)
×(2ν12ν222ν22ν322ν32ν12\displaystyle~{}~{}\times(-2\nu_{1}^{2}\nu_{2}^{2}-2\nu_{2}^{2}\nu_{3}^{2}-2\nu_{3}^{2}\nu_{1}^{2}
+2ν1ν23+ν2ν33+ν23ν3+2ν33ν1\displaystyle~{}~{}~{}~{}~{}~{}~{}+2\nu_{1}\nu_{2}^{3}+\nu_{2}\nu_{3}^{3}+\nu_{2}^{3}\nu_{3}+2\nu_{3}^{3}\nu_{1}
2ν12ν2ν3+ν1ν22ν3+ν1ν2ν32),\displaystyle~{}~{}~{}~{}~{}~{}~{}-2\nu_{1}^{2}\nu_{2}\nu_{3}+\nu_{1}\nu_{2}^{2}\nu_{3}+\nu_{1}\nu_{2}\nu_{3}^{2}),

and the similar expressions of 2PPN\ell^{PPN}_{2} and 3PPN\ell^{PPN}_{3} for the orbital radius of M2M_{2} and M3M_{3} are obtained.

Unless the second term of the right-hand side in Eq. (31) vanishes, the difference between 1PPN\ell^{PPN}_{1} and 1\ell_{1} would make our computations rather complicated. However, it vanishes because ωN\omega_{N} satisfies Eq. (23). As a result, the PPN orbital radius remains the same as the Newtonian one. Namely, APPN=A\ell^{PPN}_{A}=\ell_{A}.

III.3 Equilateral condition

First, we discuss a condition for an equilateral configuration.

For Eq. (27) to hold, the coefficient of the velocity vector 𝒗𝟏\bm{v_{1}} must vanish, because there are no other terms including 𝒗𝟏\bm{v_{1}}. The coefficient is proportional to ν2ν3(ν2ν3)\nu_{2}\nu_{3}(\nu_{2}-\nu_{3}). The same thing is true also of M2M_{2} and M3M_{3}. For any value of β\beta, therefore, the equilateral configuration in the PPN gravity can be present if and only if three finite masses are equal or two test masses orbit around one finite mass.

Note that one can find a very particular value of β\beta satisfying

16β19ν1=0,\displaystyle 16\beta-1-9\nu_{1}=0, (32)

which leads to the vanishing coefficient of the velocity vector 𝒗𝟏\bm{v_{1}}. However, this choice is very unlikely, because the particular value of β\beta is dependent on the mass ratio ν1\nu_{1} and it is not universal. Hence, this case will be ignored.

III.4 PPN triangular configuration for general masses

Next, let us consider a PPN triangle configuration for general masses. For this purpose, we introduce a nondimensional parameter εAB\varepsilon_{AB} at the PPN order, such that each side length of the PPN triangle can be expressed as

RAB=a(1+εAB).\displaystyle R_{AB}=a(1+\varepsilon_{AB}). (33)

The equilateral case is achieved by assuming εAB=0\varepsilon_{AB}=0 for every masses. See Figure 2 for the PPN triangular configuration.

Refer to caption
Figure 2: Schematic figure for the PPN triangular configuration of three masses. An inequilateral triangle is described by the parameter εAB\varepsilon_{AB}. RAR_{A} coincides with A\ell_{A} in the Newtonian limit, for which εAB\varepsilon_{AB} vanishes.

In order to fix the degree of freedom corresponding to a scale transformation, we follow Reference Yamada2012 to suppose that the arithmetic mean of the three side lengths is unchanged as

R12+R23+R313=a[1+13(ε12+ε23+ε31)].\displaystyle\frac{R_{12}+R_{23}+R_{31}}{3}=a\bigg{[}1+\frac{1}{3}(\varepsilon_{12}+\varepsilon_{23}+\varepsilon_{31})\bigg{]}. (34)

The left-hand side of Eq. (34) is aa in the Newtonian case, which leads to

ε12+ε23+ε31=0.\displaystyle\varepsilon_{12}+\varepsilon_{23}+\varepsilon_{31}=0. (35)

This is a gauge fixing in εAB\varepsilon_{AB}.

In terms of εAB\varepsilon_{AB}, Eq. (27) is rearranged as

ω2𝒙1=\displaystyle-\omega^{2}\bm{x}_{1}= (ωN)2𝒙1\displaystyle-(\omega_{N})^{2}\bm{x}_{1}
32(ωN)2ν22+ν2ν3+ν32\displaystyle-\frac{3}{2}\frac{(\omega_{N})^{2}}{\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2}}
×[{ν2(ν1ν21)ε12+ν3(ν1ν31)ε31}𝒙1\displaystyle\times\bigg{[}\bigg{\{}\nu_{2}(\nu_{1}-\nu_{2}-1)\varepsilon_{12}+\nu_{3}(\nu_{1}-\nu_{3}-1)\varepsilon_{31}\bigg{\}}\bm{x}_{1}
+3ν2ν3(ε12ε31)𝒗1ωN]+𝜹1,\displaystyle~{}~{}~{}~{}~{}~{}+\sqrt{3}\nu_{2}\nu_{3}(\varepsilon_{12}-\varepsilon_{31})\frac{\bm{v}_{1}}{\omega_{N}}\bigg{]}+\bm{\delta}_{1}, (36)

where

𝜹1=\displaystyle\bm{\delta}_{1}= g1(ωN)2𝒙1+3Mν2ν3(ν2ν3)(16β19ν1)16a(ν22+ν2ν3+ν32)ωN𝒗1.\displaystyle g_{1}(\omega_{N})^{2}\bm{x}_{1}+\frac{\sqrt{3}M\nu_{2}\nu_{3}(\nu_{2}-\nu_{3})(16\beta-1-9\nu_{1})}{16a(\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2})}\omega_{N}\bm{v}_{1}. (37)

By a cyclic permutation, the equations for M2M_{2} and M3M_{3} can be obtained.

A triangular equilibrium configuration can exist if and only if the two conditions (A) and (B) are simultaneously satisfied; (A) Each mass satisfies Eq. (36), and (B) the configuration is unchanged in time.

Eq. (36) is the equation of motion for M1M_{1}. To be more accurate, therefore, ω\omega in Eq. (36) should be denoted as ω1\omega_{1}. Similarly, we introduce ω2\omega_{2} and ω3\omega_{3} in the equations of motion for M2M_{2} and M3M_{3}, respectively. Then, Condition (B) means ω1=ω2=ω3\omega_{1}=\omega_{2}=\omega_{3}.

Condition (A) is equivalent to Condition (A2); The coefficient of 𝒗A\bm{v}_{A} in the equation of motion vanishes as

ε12ε31M24a(ν2ν3)(16β19ν1)=0,\displaystyle\varepsilon_{12}-\varepsilon_{31}-\frac{M}{24a}(\nu_{2}-\nu_{3})(16\beta-1-9\nu_{1})=0, (38)
ε23ε21M24a(ν3ν1)(16β19ν2)=0,\displaystyle\varepsilon_{23}-\varepsilon_{21}-\frac{M}{24a}(\nu_{3}-\nu_{1})(16\beta-1-9\nu_{2})=0, (39)
ε31ε23M24a(ν1ν2)(16β19ν3)=0.\displaystyle\varepsilon_{31}-\varepsilon_{23}-\frac{M}{24a}(\nu_{1}-\nu_{2})(16\beta-1-9\nu_{3})=0. (40)

From Eqs. (38)-(40) and the gauge fixing as ε12+ε23+ε31=0\varepsilon_{12}+\varepsilon_{23}+\varepsilon_{31}=0, we obtain

ε12=M72a\displaystyle\varepsilon_{12}=\frac{M}{72a} [(ν2ν3)(16β19ν1)\displaystyle\bigg{[}(\nu_{2}-\nu_{3})(16\beta-1-9\nu_{1})
(ν3ν1)(16β19ν2)],\displaystyle-(\nu_{3}-\nu_{1})(16\beta-1-9\nu_{2})\bigg{]}, (41)
ε23=M72a\displaystyle\varepsilon_{23}=\frac{M}{72a} [(ν3ν1)(16β19ν2)\displaystyle\bigg{[}(\nu_{3}-\nu_{1})(16\beta-1-9\nu_{2})
(ν1ν2)(16β19ν3)],\displaystyle-(\nu_{1}-\nu_{2})(16\beta-1-9\nu_{3})\bigg{]}, (42)

and

ε31=M72a\displaystyle\varepsilon_{31}=\frac{M}{72a} [(ν1ν2)(16β19ν3)\displaystyle\bigg{[}(\nu_{1}-\nu_{2})(16\beta-1-9\nu_{3})
(ν2ν3)(16β19ν1)].\displaystyle-(\nu_{2}-\nu_{3})(16\beta-1-9\nu_{1})\bigg{]}. (43)

Therefore, the PPN triangle is inequilateral depending on β\beta via εAB\varepsilon_{AB} but not on γ\gamma. This suggests that also the PPN Lagrange points corresponding to L4L_{4} and L5L_{5} are sensitive to β\beta but are free from γ\gamma, as shown in Section IV.

It follows that Eqs. (41)-(43) recover the PN counterpart of Eq. (26)-(28) of Reference Yamada2012 if and only if β=1\beta=1. The uniqueness is because the PPN parameter is only β\beta for three equations as Eqs. (41)-(43).

Condition (B) is satisfied, if ω1=ω2=ω3ωPPN\omega_{1}=\omega_{2}=\omega_{3}\equiv\omega_{PPN}, where ωPPN\omega_{PPN} means the angular velocity of the PPN configuration. By substituting Eqs. (41) and (43) into Eq. (36), ωPPN\omega_{PPN} is obtained as

ωPPN=ωN(1+δω),\displaystyle\omega_{PPN}=\omega_{N}\left(1+\delta_{\omega}\right), (44)

where, by using Eq. (28), the PPN correction δω\delta_{\omega} is

δω=\displaystyle\delta_{\omega}= 34ν2(ν1ν21)ε12+ν3(ν1ν31)ε31ν22+ν2ν3+ν3212g1\displaystyle\frac{3}{4}\frac{\nu_{2}(\nu_{1}-\nu_{2}-1)\varepsilon_{12}+\nu_{3}(\nu_{1}-\nu_{3}-1)\varepsilon_{31}}{\nu_{2}^{2}+\nu_{2}\nu_{3}+\nu_{3}^{2}}-\frac{1}{2}g_{1}
=\displaystyle= M48a{64β+24γ142(ν1ν2+ν2ν3+ν3ν1)}.\displaystyle-\frac{M}{48a}\{64\beta+24\gamma-1-42(\nu_{1}\nu_{2}+\nu_{2}\nu_{3}+\nu_{3}\nu_{1})\}. (45)

There is a symmetry among M1,M2,M3M_{1},M_{2},M_{3} in the second line of Eq. (45), which means that δω\delta_{\omega} is the same for all bodies. Condition (B) is thus satisfied.

IV PPN corrections to the Lagrange points

IV.1 PPN Lagrange points L1L_{1}, L2L_{2} and L3L_{3}

In this section, we discuss PPN modifications of the Lagrange points that are originally defined in the restricted three-body problem in Newton gravity. We choose νA=1ν\nu_{A}=1-\nu, νB=ν\nu_{B}=\nu and νC=0\nu_{C}=0, where ν\nu is the the mass ratio of the secondary object (a planet).

First, we seek PPN corrections to L1,L2L_{1},L_{2} and L3L_{3}. There are three choices of how to correspond M1,M2M_{1},M_{2} and M3M_{3} to the Sun, a planet and a test mass in the collinear configuration. Indeed the three choices lead to the Lagrange points L1L_{1}, L2L_{2} and L3L_{3}.

We consider the collinear solution by Eq. (11). We denote the physical root for Eq. (11) as z=zN(1+ε)z=z_{N}(1+\varepsilon) for the Newtonian root zNz_{N} with using a small parameter ε\varepsilon (|ε|1|\varepsilon|\ll 1) at the PPN order. We substitute zz into Eq. (11) and rearrange it to obtain ε\varepsilon as

ε=k=07AkPPN(zN)kk=16kAkN(zN)k,\displaystyle\varepsilon=-\cfrac{\sum\limits_{k=0}^{7}A^{PPN}_{k}(z_{N})^{k}}{\sum\limits_{k=1}^{6}kA^{N}_{k}(z_{N})^{k}}, (46)

where O(ε2)O(\varepsilon^{2}) is discarded because of being at the 2PN order, and AkNA^{N}_{k} and AkPPNA^{PPN}_{k} denote the Newtonian and PPN parts of AkA_{k}, respectively, as Ak=AkN+εAkPPNA_{k}=A^{N}_{k}+\varepsilon A^{PPN}_{k} (A0N=0A^{N}_{0}=0 and A7N=0A^{N}_{7}=0 because there are no counterparts in the Newtonian case).

Eq. (46) is used for calculating the PPN corrections to L1,L2L_{1},L_{2} and L3L_{3}. The PPN displacement from the Newtonian Lagrange point L1L_{1} is thus obtained as

δPPNR23\displaystyle\delta_{PPN}R_{23} R23(R23)N\displaystyle\equiv R_{23}-(R_{23})_{N}
=εzN(1+zN)2+O(ε2),\displaystyle=\frac{\varepsilon z_{N}}{(1+z_{N})^{2}}\ell+O(\ell\varepsilon^{2}), (47)

where M1M_{1}, M2M_{2} and M3M_{3} are chosen as a planet, a test mass and the Sun, respectively.

Similarly, the PPN displacement from the Newtonian Lagrange point L2L_{2} becomes

δPPNR31\displaystyle\delta_{PPN}R_{31} R31(R31)N\displaystyle\equiv R_{31}-(R_{31})_{N}
=εzN(1+zN)+O(ε2),\displaystyle=\frac{\varepsilon z_{N}}{(1+z_{N})}\ell+O(\ell\varepsilon^{2}), (48)

where M1M_{1}, M2M_{2} and M3M_{3} are chosen as the Sun, a planet and a test mass, respectively. The PPN displacement from the Newtonian Lagrange point L3L_{3} is

δPPNR23\displaystyle\delta_{PPN}R_{23} R23(R23)N\displaystyle\equiv R_{23}-(R_{23})_{N}
=εzN(1+zN)+O(ε2),\displaystyle=\frac{\varepsilon z_{N}}{(1+z_{N})}\ell+O(\ell\varepsilon^{2}), (49)

where M1M_{1}, M2M_{2} and M3M_{3} are chosen as a planet, the Sun and a test mass, respectively. Here, a value of zNz_{N} depends on L1L_{1}, L2L_{2} or L3L_{3}, which is given by Eq. (4).

IV.2 PPN Lagrange points L4L_{4} and L5L_{5}

Next, we discuss PPN corrections to the Lagrange points L4L_{4} and L5L_{5}, for which we consider the PPN triangular solution. Let aa denote the orbital separation between the primary object and the secondary one, which equals to R12=(1+ε12)R_{12}=\ell(1+\varepsilon_{12}). Therefore, =a(1ε12)+O(aε2)\ell=a(1-\varepsilon_{12})+O(a\varepsilon^{2}), where ε2\varepsilon^{2} denotes the second order in εAB\varepsilon_{AB}. By using this for R23R_{23} and R31R_{31}, we obtain R23=a(1+ε23ε12)+O(aε2)R_{23}=a(1+\varepsilon_{23}-\varepsilon_{12})+O(a\varepsilon^{2}), and R31=a(1+ε31ε12)+O(aε2)R_{31}=a(1+\varepsilon_{31}-\varepsilon_{12})+O(a\varepsilon^{2}).

The PPN displacement from the Newtonian Lagrange point L4L_{4} (and L5L_{5}) with respect to the Sun is obtained as

δPPNR31\displaystyle\delta_{PPN}R_{31}\equiv R31a\displaystyle R_{31}-a
=\displaystyle= a(ε31ε12)+O(aε2)\displaystyle a(\varepsilon_{31}-\varepsilon_{12})+O(a\varepsilon^{2})
=\displaystyle= ν(16β10+9ν)24M\displaystyle-\frac{\nu(16\beta-10+9\nu)}{24}M
+O(M2a),\displaystyle+O\left(\frac{M^{2}}{a}\right), (50)

where ν1=1ν\nu_{1}=1-\nu, ν2=ν\nu_{2}=\nu and ν3=0\nu_{3}=0 are used in the last line.

In the similar manner, the PPN displacement from the Newtonian Lagrange point L4L_{4} (and L5L_{5}) with respect to the planet

δPPNR23\displaystyle\delta_{PPN}R_{23} R23a\displaystyle\equiv R_{23}-a
=a(ε23ε12)+O(aε2)\displaystyle=a(\varepsilon_{23}-\varepsilon_{12})+O(a\varepsilon^{2})
=(1ν)(16β19ν)24M+O(M2a).\displaystyle=-\frac{(1-\nu)(16\beta-1-9\nu)}{24}M+O\left(\frac{M^{2}}{a}\right). (51)

Eq. (51) can be obtained more easily from Eq. (50) if the correspondence as 1νν1-\nu\leftrightarrow\nu is used.

Table 1: The PPN displacement from the Newtonian Lagrange points of the Sun-Jupiter system. The PPN corrections to L1L_{1}, L2L_{2}, L3L_{3} and L4L_{4} are listed in this table, where the sign convention for L1L_{1}, L2L_{2}, L3L_{3} is chosen along the direction from the Sun to the Jupiter, and the correction to L5L_{5} is identical to that to L4L_{4}. The PPN displacement for L4L_{4} is two-dimensional and hence they are indicated by the deviations from the Sun and from the Jupiter.
Lagrange points PPN displacement [m]
L1L_{1} 0.000051+40.00β9.905γ-0.000051+40.00\beta-9.905\gamma
L2L_{2} 0.00004050.27β+12.40γ0.000040-50.27\beta+12.40\gamma
L3L_{3} 0.000122+1.424β+0.01882γ0.000122+1.424\beta+0.01882\gamma
L4(L5)L_{4}(L_{5})-Sun 0.05875×(9.991+16β)-0.05875\times(-9.991+16\beta)
L4(L5)L_{4}(L_{5})-Jupiter 61.53×(1+16β)-61.53\times(-1+16\beta)

IV.3 Example: the Sun-Jupiter case

The PPN corrections to the L1L_{1}, L2L_{2} and L3L_{3} can be expressed as a linear function in β\beta and γ\gamma. The PPN corrections to L4L_{4} and L5L_{5} are in a linear function only of β\beta. The results for the Sun-Jupiter system are summarized in Table 1, where the sign convention is chosen along the direction from the Sun to a planet.

Before closing this section, we mention gravitational experiments. The lunar laser ranging experiment put a constraint on η4βγ3\eta\equiv 4\beta-\gamma-3 as |η|<O(104)|\eta|<O(10^{-4}) Williams1996 ; Williams2004 . If one wish to constrain 1β1-\beta at the level of O(104)O(10^{-4}) by using the location of the Lagrange points, the Lagrange point accuracy of about a few millimeters (e.g. for L4L_{4}) is needed in the solar system, though this is very unlikely in the near future.

On the other hand, possible PPN corrections in a three-body system may be relevant with relativistic astrophysics in e.g. a relativistic hierarchical triple system and a supermassive black hole with a compact binary Rosswog ; Suzuki ; Fang ; Kunz2021 ; Kunz2022 . This subject is beyond the scope of the present paper.

V Conclusion

The coplanar and circular three-body problem was investigated for a class of fully conservative theories in the PPN formalism, characterized by the Eddington-Robertson parameters β\beta and γ\gamma.

The collinear configuration can exist for arbitrary mass ratio, β\beta and γ\gamma. On the other hand, the PPN triangular configuration depends on the nonlinearity parameter β\beta but not on γ\gamma. This is far from trivial, because the parameter β\beta is not separable from γ\gamma apparently at the level of Eq. (5). For any value of β\beta, the equilateral configuration in the PPN gravity is possible, if and only if three finite masses are equal or two test masses orbit around one finite mass. For general mass cases, the PPN triangle is not equilateral.

We showed also that the PPN displacements from the Newtonian Lagrange points L1L_{1}, L2L_{2} and L3L_{3} depend on both β\beta and γ\gamma, while those to L4L_{4} and L5L_{5} rely only upon β\beta. It is left for future to study the stability of the PPN configurations.

VI Acknowledgments

We thank Kei Yamada and Yuuiti Sendouda for fruitful conversations. This work was supported in part by Japan Science and Technology Agency (JST) SPRING, Grant Number, JPMJSP2152 (Y.N.), and in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research, No. 20K03963 (H.A.).

References

  • (1) H. Goldstein, Classical Mechanics (Addison-Wesley, MA, 1980).
  • (2) J. M. A. Danby, Fundamentals of Celestial Mechanics (William-Bell, VA, 1988).
  • (3) C. Marchal, The Three-Body Problem (Elsevier, Amsterdam, 1990).
  • (4) H. Asada, Phys. Rev. D 80 064021 (2009).
  • (5) Y. Torigoe, K. Hattori and H. Asada, Phys. Rev. Lett.  102, 251101 (2009).
  • (6) N. Seto, T. Muto, Phys. Rev. D 81 103004 (2010).
  • (7) J. D. Schnittman, Astrophys. J. 724 39 (2010).
  • (8) M. Connors, P. Wiegert and C. Veillet, Nature 475, 481 (2011).
  • (9) K. Nordtvedt, Phys. Rev. 169 1014 (1968).
  • (10) E. Krefetz, Astron. J 72, 471 (1967).
  • (11) T. I. Maindl, Completing the Inventory of the Solar System, Astronomical Society of the Pacific Conference Proceedings, edited by T.W. Rettig and J.M. Hahn, (Astronomical Society of the Pacific, San Francisco, 1996), 107, 147.
  • (12) K. Yamada, H. Asada, Phys. Rev. D 82, 104019 (2010).
  • (13) K. Yamada, H. Asada, Phys. Rev. D 83, 024040 (2011).
  • (14) T. Ichita, K. Yamada, H. Asada, Phys. Rev. D 83, 084026 (2011).
  • (15) K. Yamada and H. Asada, Phys. Rev. D 86, 124029 (2012).
  • (16) K. Yamada, T. Tsuchiya and H. Asada Phys. Rev. D 91, 124016 (2015).
  • (17) K. Yamada and H. Asada, Phys. Rev. D 93, 084027 (2016).
  • (18) T. Y. Zhou, W. G. Cao, and Y. Xie, Phys. Rev. D 93, 064065 (2016).
  • (19) E. Battista, S. Dell’Agnello, G. Esposito, and J. Simo, Phys. Rev. D 91, 084041 (2015); Erratum, Phys. Rev. D 93, 049902(E) (2016).
  • (20) E. Battista, S. Dell’Agnello, G. Esposito, L. Di Fiore, J. Simo, and A. Grado, Phys. Rev. D 92, 064045 (2015); Erratum, Phys. Rev. D 93, 109904(E) (2016).
  • (21) S. M. Ransom, I. H. Stairs, A. M. Archibald, J. W. T. Hessels, D. L. Kaplan and et al. Nature, 505, 520 (2014).
  • (22) Anne M. Archibald, Nina V. Gusinskaia, Jason W. T. Hessels, Adam T. Deller, David L. Kaplan and et al. Nature, 559, 73 (2018).
  • (23) C. M.Will, Nature, 559, 40 (2018).
  • (24) G. Voisin, I. Cognard, P. C. C. Freire, et al., Astron. Astrophys. 638, A24 (2020).
  • (25) C. M. Will, Living Rev. Relativity, 17, 4 (2014).
  • (26) E. Poisson, and C. M. Will, Gravity, (Cambridge Univ. Press, UK. 2014).
  • (27) S. A. Klioner and M. H. Soffel, Phys. Rev. D 62, 024019 (2000).
  • (28) B. M. Barker and R. F. O’Connell, Phys. Lett. A 68, 289 (1978).
  • (29) B. M. Barker and R. F. O’Connell, J. Math. Phys. 20, 1427 (1979).
  • (30) C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).
  • (31) L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, New York, 1962).
  • (32) J. G. Williams, X. X. Newhall, and J. O. Dickey, Phys. Rev. D 53, 6730 (1996).
  • (33) J. G. Williams, S. G. Turyshev, and D. H. Boggs, Phys. Rev. Lett. 93, 261101 (2004).
  • (34) S. Rosswog, R. Speith, and G. A. Wynn, Mon. Not. Roy. Astron. Soc. 351, 1121 (2004).
  • (35) H. Suzuki, Y. Nakamura, and S. Yamada, Phys. Rev. D 102, 124063 (2020).
  • (36) Y. Fang, and Q. G. Huang, Phys. Rev. D 102, 104002 (2020).
  • (37) A. Kuntz, F. Serra, and E. Trincherini, Phys. Rev. D 104, 024016 (2021).
  • (38) A. Kuntz, Phys. Rev. D 105, 024017 (2022).