This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

(Co)homology of Γ\Gamma-groups and Γ\Gamma-homological algebra

Hvedri Inassaridze A. Razmadze Mathematical Institute of Tbilisi State University, 6, Tamarashvili Str., Tbilisi 0179, Georgia. [email protected]
Abstract.

This is a further investigation of our approach to group actions in homological algebra in the settings of homology of Γ\Gamma-simplicial groups, particularly of Γ\Gamma-equivariant homology and cohomology of Γ\Gamma-groups. This approach could be called Γ\Gamma-homological algebra. The abstract kernel of non-abelian extensions of groups, its relation with the obstruction to the existence of non-abelian extensions and with the second group cohomology are extended to the case of non-abelian Γ\Gamma-extensions of Γ\Gamma-groups. We compute the rational Γ\Gamma-equivariant (co)homology groups of finite cyclic Γ\Gamma-groups. The isomorphism of the group of n-fold Γ\Gamma-equivariant extensions of a Γ\Gamma-group G by a GΓG\rtimes\Gamma-module A with the (n+1)th Γ\Gamma-equivariant group cohomology of G with coefficients in A is proven.We define the Γ\Gamma-equivariant Hochschild homology as the homology of the Γ\Gamma- Hochschild complex when the action of the group Γ\Gamma on the Hochschild complex is induced by its action on the basic ring. Important properties of the Γ\Gamma-equivariant Hochschild homology related to Kahler differentials, Morita equivalence and derived functors are established. Group (co)homology and Γ\Gamma-equivariant group (co)homology of crossed Γ\Gamma-modules are introduced and investigated by using relevant derived functors. Relations with extensions of crossed Γ\Gamma-modules, in particular with relative extensions of group epimorphisms in the sense of Loday and with Γ\Gamma-equivariant extensions of crossed Γ\Gamma-modules are established. Universal and Γ\Gamma-equivariant universal central Γ\Gamma-extensions of Γ\Gamma-perfect crossed Γ\Gamma-modules are constructed and Hopf formulas for the integral homology and Γ\Gamma-equivariant integral homology of crossed Γ\Gamma-modules are obtained. Finally, applications to algebraic K-theory, Galois theory of commutative rings and cohomological dimension of groups are given.

Key words and phrases:
extensions of Γ\Gamma-groups, Hochschild homology, symbol group, Γ\Gamma-equivariant group (co)homology, homology of crossed Γ\Gamma-modules
2010 Mathematics Subject Classification:
13D03, 13D07, 20E22, 18G10, 18G25, 18G45, 18G50, 20J05

1. introduction

We continue the study of our approach to group actions in homological algebra which we call Γ\Gamma-homological algebra that was started in [27] and continued in [28]. The origin of the equivariant study of group extensions theory in homological algebra goes back to Whitehead paper [48]. Group actions on algebraic and topological objects have many important applications in K-theory and homotopy theory([6,16,31,41]). Our goal is to continue the development of extension theory in the category of Γ\Gamma-groups and of the relevant equivariant (co)homology theory that has been initiated in [27,28]. A different (co)homology theory of groups with operators was provided and investigated in [7-10], motivated by the graded categorical groups classification problem [8]. The introduction of Γ\Gamma-equivariant chain complexes and their homology groups substantially contribute to the realization of our aim. Moreover this approach allows us to present a version of equivariant Hochschild homology of any unital k-algebra A induced by the action of the group Γ\Gamma on the k-algebra A. The Γ\Gamma-equivariant Hochschild homology is closely related to Γ\Gamma- equivariant homology of groups [27]. This equivariant version differs of the equivariant Hochschild homology given in [38].

We study extensions of Γ\Gamma-groups that can be viewed as a part of group actions in homological algebra, particularly of group actions on simplicial groups. Two important classes of Γ\Gamma-group extensions are considered. The first class is consisting of extensions having Γ\Gamma-section map. The investigation of these extensions was initiated in [27] and called Γ\Gamma-equivariant extensions of Γ\Gamma-groups by Γ\Gamma-equivariant G-modules. For the second class we deal with extensions of Γ\Gamma-groups endowed with a crossed Γ\Gamma-module structure and called Γ\Gamma-extensions of crossed Γ\Gamma-modules (having Γ\Gamma-section map). Our approach to extensions of crossed modules substantially extends the class of relative extensions of group epimorphisms introduced and investigated by Loday [33]. It should be noted that homology and cohomology of crossed modules related to extensions of crossed modules were investigated by many authors [3,7,12-13,15-17,23].

The study of Γ\Gamma-group extensions having Γ\Gamma-section map is closely related to the extension problem of group actions satisfying some conditions, in our case to lifting group actions that split for the given extension of groups.

Applications to algebraic K-theory, Galois theory of commutative rings and cohomological dimension of Γ\Gamma-groups are given.

The paper is divided into seven sections:

2. Preliminaries

3. Extensions of Γ\Gamma-groups,

4. Some computations,

5. Γ\Gamma-derived functors and Γ\Gamma-equivariant Hochschild homology,

6. Extensions of crossed Γ\Gamma-modules,

7. Homology and central Γ\Gamma-extensions of crossed Γ\Gamma-modules,

8. Applications to algebraic K-theory, Galois theory of commutative rings and cohomological dimension of groups.

Some notation that will be used throughout the paper:

[ΓG][\Gamma G] denotes the set of elements gγg1{}^{\gamma}gg^{-1} and ΓG\Gamma G is the normal subgroup of G generated by the set [ΓG][\Gamma G]. GΓG_{\Gamma} denotes the quotient group G/ΓGG/\Gamma G.

[G,G]Γ[G,G]_{\Gamma} denotes the subgroup of the Γ\Gamma-group G generated by the commutant subgroup [G,G] and the elements of the form gγg1{}^{\gamma}gg^{-1}, gGg\in G, γΓ\gamma\in\Gamma. It is called the Γ\Gamma-commutant of the group G.

[G,H]Γ[G,H]_{\Gamma} denotes the subgroup of G generated by the elements xγyx1y1x^{\gamma}yx^{-1}y^{-1}, where gGg\in G, y belongs to the normal subgroup H of G, and γΓ\gamma\in\Gamma.

GΓabG^{ab}_{\Gamma} denotes the abelianization of the group GΓG_{\Gamma}.

2. Preliminaries

In this section we recall some definitions and propositions given in [27] which will be used later. Moreover it is shown how equivariant versions of well known homological properties of groups are obtained by using our approach to group actions in homological algebra.

Let 𝐆Γ{\mathbf{G}}^{\Gamma} be the category whose objects are groups on which a fixed group Γ\Gamma is acting, called Γ\Gamma-groups, and morphisms are group homomorphisms compatible with the action of Γ\Gamma.

Any exact sequence E of Γ\Gamma-groups

(2.1) E:1AB𝜏G1E:1\rightarrow A\rightarrow B\overset{\tau}{\rightarrow}G\rightarrow 1

is called Γ\Gamma-extension of the Γ\Gamma-group G by the Γ\Gamma-group A. The extension E is an extension with Γ\Gamma-section map if there is a map β:GX\beta:G\rightarrow X such that τβ=1G\tau\beta=1_{G} and β\beta is compatible with the action of Γ\Gamma, β(γg)=γβ(g),gG,σΓ\beta(^{\gamma}g)=^{\gamma}{\beta(g),g\in G,\sigma\in\Gamma}. In addition if β\beta is a homomorphism then the extension E is called split extension.

Definition 2.1.

(1) A Γ\Gamma-equivariant G-module A is a G-module equipped with a Γ\Gamma-module structure and the actions of G and Γ\Gamma are related to each other by the equality

(ga)σ=σg(σa){}^{\sigma}(^{g}a)=^{\sigma}g(^{\sigma}a)

for gGg\in G, σΓ\sigma\in\Gamma,aAa\in A.

The category of Γ\Gamma-equivariant G-modules is equivalent to the category of GΓG\rtimes\Gamma-modules, where GΓG\rtimes\Gamma is the semi-direct product of G and Γ\Gamma [9].

If E is an extension with Γ\Gamma-section map and A is a Γ\Gamma-equivariant G-module it is called Γ\Gamma-equivariant extension of G by A. In addition if X and G are Γ\Gamma-equivariant G-modules it is called proper sequence of Γ\Gamma-equivariant G-modules.

(2) A Γ\Gamma-equivariant G-module F is called relatively free GΓG\rtimes\Gamma-module if it is a free G-module with basis a Γ\Gamma-set and relatively projective Γ\Gamma-equivariant G-modules are retracts of relatively free Γ\Gamma-equivariant G-modules.

The class 𝒫\mathcal{P} of relatively projective Γ\Gamma-equivariant G-modules is a projective class with respect to proper sequences of Γ\Gamma-equivariant G-modules.

For the cohomological description of the set EΓ1(G,A)E^{1}_{\Gamma}(G,A) of equivalence classes of Γ\Gamma-equivariant extensions of G by A the Γ\Gamma-equivariant homology and cohomology of Γ\Gamma-groups have been introduced as relative Torn𝒫Tor_{n}^{\mathcal{P}} and Ext𝒫n,n0Ext^{n}_{\mathcal{P}},n\geq 0 in the category of Γ\Gamma-equivariant G-modules [27], namely

Definition 2.2.

The Γ\Gamma-equivariant homology and cohomology of Γ\Gamma-groups are defined as follows

HnΓ(G,A)=Torn𝒫(,A),HΓn(G,A)=Ext𝒫n(,A),n0,H_{n}^{\Gamma}(G,A)=Tor_{n}^{\mathcal{P}}(\mathbb{Z},A),H^{n}_{\Gamma}(G,A)=Ext^{n}_{\mathcal{P}}(\mathbb{Z},A),n\geq 0,

where the functors \bigotimes and HomHom are taken over the ring (GΓ)\mathbb{Z}(G\rtimes\Gamma) and the groups G and Γ\Gamma are trivially acting on the abelian group \mathbb{Z} of integers.

Let

(2.2) BnB1B00\cdot\cdot\cdot\rightarrow B_{n}\rightarrow\cdot\cdot\cdot\rightarrow B_{1}\rightarrow B_{0}\rightarrow\mathbb{Z}\rightarrow 0

be the bar resolution of \mathbb{Z}, where B0=(G)B_{0}=\mathbb{Z}(G) and Bn,n>0B_{n},n>0,is the free (G)\mathbb{Z}(G)-module generated by [g1,g2,,gn][g_{1},g_{2},...,g_{n}], giGg_{i}\in G. The action of Γ\Gamma on G induces an action of Γ\Gamma on the sequence (2.2) defined by (mg)γ=mγg{}^{\gamma}(mg)=m^{\gamma}g and (g[g1,g2,,gn])γ=γg[γg1,γg2,,γgn]{}^{\gamma}(g[g_{1},g_{2},...,g_{n}])=^{\gamma}{g}[^{\gamma}{g_{1}},^{\gamma}{g_{2}},...,^{\gamma}{g_{n}}] for B0B_{0} and BnB_{n} respectively, n1n\geq 1. Then the sequence 2.2 is the Γ\Gamma-equivariant bar resolution of \mathbb{Z}, the groups BnB_{n} being relatively free Γ\Gamma-equivariant G-modules and there are isomorphisms HnΓ(G,A)Hn(BGΓA)H_{n}^{\Gamma}(G,A)\cong H_{n}(B_{*}{\bigotimes}_{G\ltimes\Gamma}A), HΓn(G,A)Hn(HomGΓ(B,A))H^{n}_{\Gamma}(G,A)\cong H_{n}(Hom_{G\ltimes\Gamma}(B_{*},A)).

For the Γ\Gamma-equivariant cohomology of Γ\Gamma-groups an alternative description by cocycles is provided. To this end the group CΓn(G,A)C^{n}_{\Gamma}(G,A) of Γ\Gamma-maps, f:GnAf:G^{n}\rightarrow A for n>0n>0, called Γ\Gamma-cochains is considered. By using the classical cobord operators δn:CΓn(G,A)CΓn+1(G,A)\delta^{n}:C^{n}_{\Gamma}(G,A)\rightarrow C^{n+1}_{\Gamma}(G,A), n>0n>0, we obtain a cochain complex

0CΓ0(G,A)CΓ1(G,A)CΓ2(G,A)CΓn(G,A),0\rightarrow C^{0}_{\Gamma}(G,A)\rightarrow C^{1}_{\Gamma}(G,A)\rightarrow C^{2}_{\Gamma}(G,A)\rightarrow\cdot\cdot\cdot\rightarrow C^{n}_{\Gamma}(G,A)\rightarrow\cdot\cdot\cdot,

where CΓ0(G,A)=AΓC^{0}_{\Gamma}(G,A)=A^{\Gamma}, Kerδ1=DerΓ(G,A)Ker\delta^{1}=Der_{\Gamma}(G,A) is the group of Γ\Gamma-derivations and the homology groups of the complex CΓ(G,A)C^{*}_{\Gamma}(G,A) are isomorphic to the Γ\Gamma-equivariant cohomology groups of the Γ\Gamma-group G with coefficients in the Γ\Gamma-equivariant G-module A.

Two Γ\Gamma-equivariant extensions E and E’ of G by A are called equivalent if there is a morphism EEE\rightarrow E^{\prime} which is the identity on G and A. We denote by EΓ1(G,A)E^{1}_{\Gamma}(G,A) the set of equivalence classes of Γ\Gamma-equivariant extensions of G by A.

Theorem 2.3.

There is a bijection EΓ1(G,A)HΓ2(G,A).E^{1}_{\Gamma}(G,A)\cong H^{2}_{\Gamma}(G,A).

Remark 2.4.

By using the Baer sum operation the set EΓ1(G,A)E^{1}_{\Gamma}(G,A) becomes an abelian group and the bijection of Theorem 2.3 is an isomorphism. This theorem will be extended to higher dimensions for n2n\geq 2 by introducing the notion of n-fold Γ\Gamma-equivariant extension of G by A (see Theorem 3.7).

Definition 2.5.

A Γ\Gamma-group is called Γ\Gamma-free if it is a free group with basis a Γ\Gamma-set.

Any free group F(G) generated by a Γ\Gamma-group G becomes a Γ\Gamma-free group by the following action of Γ\Gamma: γg=γg{}^{\gamma}{\mid g\mid}=\mid^{\gamma}{g}\mid, gG,γΓg\in G,\gamma\in\Gamma. The defining property of the Γ\Gamma-free group F with basis E is that every Γ\Gamma-map E𝑓GE\overset{f}{\rightarrow}G to a Γ\Gamma-group G is uniquely extended to a Γ\Gamma-homorphism FfGF\overset{f^{\prime}}{\rightarrow}G.

Let 𝔽\mathbb{F} be the projective class of Γ\Gamma-free groups in the category 𝐆Γ{\mathbf{G}}^{\Gamma} of Γ\Gamma-groups.

Theorem 2.6.

There are isomorphisms

HnΓ(G,A)Ln1𝔽(I(G)GΓA),HΓn(G,A)R𝔽n1DerΓ(G,A)H_{n}^{\Gamma}(G,A)\cong L^{\mathbb{F}}_{n-1}(I(G)\otimes_{G\ltimes\Gamma}A),H^{n}_{\Gamma}(G,A)\cong R^{n-1}_{\mathbb{F}}Der_{\Gamma}(G,A)

for n2n\geq 2, where I(G) is the kernel of the natural homomorphism (G)\mathbb{Z}(G)\rightarrow\mathbb{Z} of Γ\Gamma-equivariant G-modules, Der(G,A) is the group of Γ\Gamma-derivations, Ln1𝔽L^{\mathbb{F}}_{n-1} and R𝔽n1{}^{n-1}_{\mathbb{F}} denote respectively the left and right derived functors with respect to the projective class 𝔽\mathbb{F}.

We also recall some results on Γ\Gamma-equivariant integral homology [27]. These homology groups are simply denoted HnΓ(G)H^{\Gamma}_{n}(G) for HnΓ(G,)H^{\Gamma}_{n}(G,\mathbb{Z}), the groups G and Γ\Gamma acting trivially on \mathbb{Z}.

Theorem 2.7.

(1)There is an isomorphism

Ln𝔽(GΓab)Hn+1Γ(G)L^{\mathbb{F}}_{n}(G^{ab}_{\Gamma})\cong H^{\Gamma}_{n+1}(G)

for n0n\geq 0.

(2) There are exact sequences

0ΓG/[G,G]ΓGH1(G)H1Γ(G)0,0\rightarrow\Gamma G/[G,G]\cap\Gamma G\rightarrow H_{1}(G)\rightarrow H^{\Gamma}_{1}(G)\rightarrow 0,
Hn+1Γ(G)Ln1𝔽U(G)Hn(G)HnΓ(G)\cdot\cdot\cdot\rightarrow H^{\Gamma}_{n+1}(G)\rightarrow L^{\mathbb{F}}_{n-1}U(G)\rightarrow H_{n}(G)\rightarrow H^{\Gamma}_{n}(G)
Ln2𝔽U(G)H3Γ(G)L1𝔽U(G)H2(G)\rightarrow L^{\mathbb{F}}_{n-2}U(G)\rightarrow\nleftarrow\cdot\cdot\cdot\rightarrow H^{\Gamma}_{3}(G)\rightarrow L^{\mathbb{F}}_{1}U(G)\rightarrow H_{2}(G)
H2Γ(G)L0𝔽U(G)H1(G)H1Γ(G)0,\rightarrow H^{\Gamma}_{2}(G)\rightarrow L^{\mathbb{F}}_{0}U(G)\rightarrow H_{1}(G)\rightarrow H^{\Gamma}_{1}(G)\rightarrow 0,

relating Γ\Gamma-equivariant integral homology with the classical integral homology of groups, where U is a covariant functor assigning to any Γ\Gamma-group G the abelian group [G,G]Γ/[G,G][G,G]_{\Gamma}/[G,G].

Theorem 2.8.

Let

1AB𝜏G11\rightarrow A\rightarrow B\overset{\tau}{\rightarrow}G\rightarrow 1

be a short exact sequence of Γ\Gamma-groups with Γ\Gamma-section map and α:PB\alpha:P\rightarrow B be a Γ\Gamma-projective presentation of the Γ\Gamma-group B. Then there is an exact sequence

0VH2Γ(B)H2Γ(G)A/[B,A]ΓH1Γ(B)H1Γ(G)0,0\rightarrow V\rightarrow H^{\Gamma}_{2}(B)\rightarrow H^{\Gamma}_{2}(G)\rightarrow A/[B,A]_{\Gamma}\rightarrow H^{\Gamma}_{1}(B)\rightarrow H^{\Gamma}_{1}(G)\rightarrow 0,

where V is the kernel of the Γ\Gamma-homomorphism [P,S]Γ/[P,R]Γ[B,A]Γ[P,S]_{\Gamma}/[P,R]_{\Gamma}\rightarrow[B,A]_{\Gamma} induced by α\alpha, R = Ker α\alpha and S = Ker τα\tau\alpha.

Theorem 2.9.

If G is a Γ\Gamma-group, then

(1) H1Γ(G,A)=G/[G,G]ΓAH^{\Gamma}_{1}(G,A)=G/[G,G]_{\Gamma}\otimes A, G and Γ\Gamma are trivially acting on A.

(2) H2Γ(G)H^{\Gamma}_{2}(G) is isomorphic to the group (R[P,P]Γ)/[P,R]Γ(R\cap[P,P]_{\Gamma})/[P,R]_{\Gamma}, where R=KerαR=Ker\alpha and α:PG\alpha:P\rightarrow G is a Γ\Gamma-projective presentation of G (Hopf formula for the Γ\Gamma-equivariant homology of groups).

The Brown - Ellis formula is also obtained extending Hopf formula to higher Γ\Gamma-equivariant homology of groups (see [28]).

Definition 2.10.

A Γ\Gamma-subgroup L of a Γ\Gamma-group G is called retract of G if there is a Γ\Gamma-homomorphism f:GLf:G\rightarrow L sucht that its restriction to L is the identity map.

Theorem 2.11.

Let L be retract of a Γ\Gamma-free group F. For any Γ\Gamma-equivariant G-module A we have

1) exact sequences

0H1Γ(L,A)I(L)(LΓ)AAΓALΓ00\rightarrow H^{\Gamma}_{1}(L,A)\rightarrow I(L)\otimes_{\mathbb{Z}(L\rtimes\Gamma)}A\rightarrow A_{\Gamma}\rightarrow A_{L\rtimes\Gamma}\rightarrow 0 and

0ALΓAΓHom(LΓ)(I(L),A)HΓ1(L,A)00\rightarrow\rightarrow A^{L\rtimes\Gamma}\rightarrow A^{\Gamma}\rightarrow Hom_{\mathbb{Z}(L\rtimes\Gamma)}(I(L),A)\rightarrow H^{1}_{\Gamma}(L,A)\rightarrow 0,

2) HnΓ(L,A)=0H_{n}^{\Gamma}(L,A)=0 and HΓn(L,A)=0H^{n}_{\Gamma}(L,A)=0 for n>1n>1.

The consideration of retracts of Γ\Gamma-free groups has motivated the following

QuestionQuestion: Let G be a Γ\Gamma-subgroup of a Γ\Gamma-free group. What are reasonable conditions, automatically satisfied in the case of trivial G, under which G is a Γ\Gamma-free group? In other words, we are asking whether the well-known Nielsen–Schreier theorem on free groups can be nicely extended to Γ\Gamma-free groups.

As G. Janelidze informed me, at least some partial answers, including the counter-example and Theorem 2.12 below, should be known (although we could not find a proper reference):

We take Γ\Gamma = ( 1, γ\gamma) a two-element cyclic group; F to be the free group on a two-element set, say {x,y}}\{x,y\}\} and f:FΓf:F\rightarrow\Gamma to be the group homomorphism defined by f(x) = γ\gamma = f(y); define G to be Ker f. We make F a Γ\Gamma-group, defining the Γ\Gamma-action on it by xγ=y{}^{\gamma}x=y and yγ=x.{}^{\gamma}y=x. The group Γ\Gamma is a Γ\Gamma-group, assuming that Γ\Gamma acts on itself trivially; this makes f a Γ\Gamma-group homomorphism, and so G is a Γ\Gamma-subgroup of F. After that we observe: (a) G is a free group on a three element set. Indeed, according to Nielsen—Schreier formula, we have rank(G) = (F : G)(rank(F) — 1) + 1 = 2(2 — 1) + 1 = 3. (b) For γΓ\gamma\in\Gamma and tFt\in F , we have tγ=tt=1{}^{\gamma}t=t\Rightarrow t=1. Indeed, if t is a non-empty word, the t and tγ{}^{\gamma}t must begin with different letters. (c) Let B be any basis of G; since it is a basis, 1 doesn’t belongs to B. If B is a Γ\Gamma-subset of G, then, presenting it as the disjoint union of Γ\Gamma-orbits, we obtain a contradiction between (a) and (b). Indeed, (a) implies that at least one orbit must have exactly one element, which contradicts to (b) since 1 doesn’t belongs to B. That means G is not Γ\Gamma-free group.

Since Nielsen - Schreier theorem on free groups doesn’t hold for Γ\Gamma-free groups, there is a meaning to study the structure of Γ\Gamma-subgroups of Γ\Gamma-free groups, in particular to establish conditions for Γ\Gamma-subgroups of Γ\Gamma-free groups to be Γ\Gamma-free groups.

For instance, let F be a Γ\Gamma-group and G a Γ\Gamma-subgroup of F. The action of Γ\Gamma on F induces an action of Γ\Gamma on the set G/F={Gt|tF}G/F=\{Gt|t\in F\} of right cosets such that the canonical map p:FG/Fp:F\rightarrow G/F is a surjection of Γ\Gamma-sets.

Theorem 2.12.

(G.Janelidze)

Let F be a Γ\Gamma-free group and G a Γ\Gamma-subgroup of F. Suppose there exists a Γ\Gamma-map s:G/FFs:G/F\rightarrow F satisfying the following conditions: (1) we have ps = 1, (2) there exists a Γ\Gamma-subset X of F such that F is a free group on X and y1ynyn+1s(G/F)y1yns(G/F)y_{1}...y_{n}y_{n+1}\in s(G/F)\Rightarrow y_{1}...y_{n}\in s(G/F) whenever y1ynyn+1y_{1}...y_{n}y_{n+1} is a canonical length n+1 presentation of an element of F with yiX{x1|xX}y_{i}\in X\bigcup\{x^{-1}|x\in X\} for each i = 1,…,n+1. Then G is a Γ\Gamma-free group.

As an application of this theorem consider the following simple example: We take Γ={1,γ,γ2}\Gamma=\{1,\gamma,\gamma^{2}\} a three-element cyclic group, F to be the Γ\Gamma-free group on the three-element set {x,y,z}and defining the Γ\Gamma-action on it by xγ=y,γy=z,γz=x{}^{\gamma}x=y,^{\gamma}y=z,^{\gamma}z=x. We also take /2×/2\mathds{Z}/2\mathds{Z}\times\mathds{Z}/2\mathds{Z} to be a Γ\Gamma-group assuming that Γ\Gamma acts on it by (c,0)γ=(0,c){}^{\gamma}(c,0)=(0,c) and (0,c)γ=(c,c){}^{\gamma}(0,c)=(c,c) where c denotes the generator of /2\mathds{Z}/2\mathds{Z}, and f:F/2×/2f:F\rightarrow\mathds{Z}/2\mathds{Z}\times\mathds{Z}/2\mathds{Z} to be a Γ\Gamma-group homomorphism defined by f(x) = (c,0), f(y) = (0,c) and f(z) = (c,c). Then G=Ker(f)G=Ker(f) is a Γ\Gamma-free group.

Some results related to this problem are obtained in [49,50].

Finally we provide an assertion establishing relation of the Γ\Gamma-equivariant cohomology of groups with the well known equivariant cohomology of topological spaces.

Let G be a Γ\Gamma-group and X a topological space on which the groups G and Γ\Gamma are acting such that G is acting properly and (gx)γ=γg(γx){}^{\gamma}(^{g}x)=^{\gamma}g(^{\gamma}x). γΓ,gG,xX.\gamma\in\Gamma,g\in G,x\in X.

Theorem 2.13.

If X is either acyclic and Γ\Gamma acts trivially on X or X is Γ\Gamma-contractible, then there is an isomorphism

HΓn(G,A)HΓn(X/G,A)H^{n}_{\Gamma}(G,A)\cong H^{n}_{\Gamma}(X/G,A) for n0n\geq 0, where G and Γ\Gamma are trivially acting on the abelian group A and HΓ(X/G,A)H^{*}_{\Gamma}(X/G,A) is the equivariant cohomology of the space X/G.

3. Extensions of Γ\Gamma-groups

We introduce an internal property of Γ\Gamma-group extensions possessing a Γ\Gamma-section map that will be used through out the paper.

Definition 3.1.

It will be said that the sequence 2.1 of Γ\Gamma-groups possesses the Γ\Gamma-property if the restriction of τ\tau on the subset [ΓB][\Gamma B] of the group B is injective.

Theorem 3.2.

The sequence 2.1 possesses the Γ\Gamma-property iff it has a Γ\Gamma-section map and Γ\Gamma acts trivially on Kerτ.Ker\tau.

Proof.Proof. Let BΓ(τ)B_{\Gamma(\tau)} denote the normal subgroup of B generated by the elements gγg1{}^{\gamma}gg^{-1} such that τ(γgg1)=1,γΓ,gG.\tau(^{\gamma}gg^{-1})=1,\gamma\in\Gamma,g\in G. It is evident that BΓ(τ)B_{\Gamma(\tau)} is a Γ\Gamma-subgroup of B and the canonical map δ:BB/BΓ(τ)\delta:B\rightarrow B/B_{\Gamma(\tau)} is a Γ\Gamma-homomorphism.

Let α:GB\alpha:G\rightarrow B be a section map for the Γ\Gamma-homomorphism τ\tau, then the sequence

EΓ:1A/BΓ(τ)B/BΓ(τ)τG1E_{\Gamma}:1\rightarrow A/B_{\Gamma(\tau)}\rightarrow B/B_{\Gamma(\tau)}\overset{\tau^{\prime}}{\rightarrow}G\rightarrow 1

is a Γ\Gamma-extension of Γ\Gamma-groups with Γ\Gamma-section map. where τ\tau^{\prime} is induced by τ\tau. In effect, for that it suffices to show that if gσ=γg{}^{\sigma}g=^{\gamma}g then (δα(g))σ=γ(δα(g)){}^{\sigma}(\delta\alpha(g))=^{\gamma}(\delta\alpha(g)), σ,γΓ,gG\sigma,\gamma\in\Gamma,g\in G. One has τ(σα(G))=σ(τα(g))=σg\tau(^{\sigma}\alpha(G))=^{\sigma}{(\tau\alpha(g))}=^{\sigma}g and τ(γα(G))=γ(τα(g))=γg\tau(^{\gamma}\alpha(G))=^{\gamma}{(\tau\alpha(g))}=^{\gamma}g. Thus τ(σα(G))=τ(γα(G))\tau(^{\sigma}\alpha(G))=\tau(^{\gamma}\alpha(G)) and therefore τ(γ1σα(g))=γ1τ(σα(g))=γ1τ(τα(g))=g.\tau(^{\gamma^{-1}\sigma}\alpha(g))=^{\gamma^{-1}}\tau(^{\sigma}\alpha(g))=^{\gamma^{-1}}\tau(^{\tau}\alpha(g))=g. It follows that αγ1σ(g).α(g)1BΓ(τ){}^{\gamma^{-1}\sigma}\alpha(g).\alpha(g)^{-1}\in B_{\Gamma(\tau)} implying the equality δ(γ1σα(g))=δ(α(g))\delta(^{\gamma^{-1}\sigma}\alpha(g))=\delta(\alpha(g)) and finally the required equality.

Now assume the sequence E possesses the Γ\Gamma-property. Then the equali BΓ(τ)=1B_{\Gamma(\tau)}=1 implies the isomorphism of the sequences EEΓE\cong E_{\Gamma}. Conversely let the sequence E satisfies the conditions of the theorem. That means it admits a Γ\Gamma-section map α:GB\alpha:G\rightarrow B and the group Γ\Gamma acts trivially on Kerτ.Ker\tau. Let τ(γbb1)=1\tau(^{\gamma}b\cdot b^{-1})=1 for some bB,γΓ.b\in B,\gamma\in\Gamma. This yields the equality (ατ(b))γ=ατ(b).{}^{\gamma}(\alpha\tau(b))=\alpha\tau(b). By using the equality b=ατ(b)c,cAb=\alpha\tau(b)\cdot c,c\in A, one obtains bγ=γ(ατ(b))γc=ατ(b)c=b.{}^{\gamma}b=^{\gamma}(\alpha\tau(b))\cdot^{\gamma}c=\alpha\tau(b)\cdot c=b. This completes the proof.

Corollary 3.3.

The sequence EΓE_{\Gamma} possesses the Γ\Gamma-property and every its section map is a Γ\Gamma-section map.

Definition 3.4.

A Γ\Gamma-group G is called Γ\Gamma-perfect if G=[G,G]ΓG=[G,G]_{\Gamma} or equivalently, if H1Γ(G)=0H^{\Gamma}_{1}(G)=0 [33,27].

Example

Let F(G) be the Γ\Gamma-free group generated by the Γ\Gamma-group G. The short exact sequence of Γ\Gamma-groups

1RF(G)𝜏G1,1\rightarrow R\rightarrow F(G)\overset{\tau}{\rightarrow}G\rightarrow 1,

where τ(g)=g\tau(\mid g\mid)=g, has a Γ\Gamma-section map α:GF(G)\alpha:G\rightarrow F(G), sending any element g to g\mid g\mid. Then the short sequence of Γ\Gamma-groups

(3.1) 0R/[F(G),R]ΓF(G)/[F(G),R]ΓτG10\rightarrow R/[F(G),R]_{\Gamma}\rightarrow F(G)/[F(G),R]_{\Gamma}\overset{\tau^{\prime}}{\rightarrow}G\rightarrow 1

is a central Γ\Gamma-equivariant extension of G having a Γ\Gamma-section map ηα\eta\alpha and Γ\Gamma is trivially acting on R/[F(G),R]ΓR/[F(G),R]_{\Gamma}, where τ\tau^{\prime} is induced by τ\tau and η:F(G)F(G)/[F(G),R]Γ\eta:F(G)\rightarrow F(G)/[F(G),R]_{\Gamma} is the canonical Γ\Gamma-homorphism. Therefore by Theorem 3.2 the sequence (3.1) has the Γ\Gamma-property.

If the Γ\Gamma-group G is Γ\Gamma-perfect the sequence (3.1) yields the following Γ\Gamma-extension of G

(3.2) 0R[F(G),F(G)]Γ/[F(G),R]Γ[F(G),F(G)]Γ/[F(G),R]Γτ′′G1.0\rightarrow R\cap[F(G),F(G)]_{\Gamma}/[F(G),R]_{\Gamma}\rightarrow[F(G),F(G)]_{\Gamma}/[F(G),R]_{\Gamma}\overset{\tau^{\prime\prime}}{\rightarrow}G\rightarrow 1.

Since the group [F(G),F(G)]Γ/[F(G),R]Γ[F(G),F(G)]_{\Gamma}/[F(G),R]_{\Gamma} is a Γ\Gamma-subgroup of F(G)/[F(G),R]ΓF(G)/[F(G),R]_{\Gamma}, the sequence (3.2) also has the Γ\Gamma-property and therefore it is a Γ\Gamma-extension of G (with Γ\Gamma-section map). The sequence (3.2) is the universal central Γ\Gamma-equivariant extension of the Γ\Gamma-perfect group G and the group R[F(G),F(G)]Γ/[F(G),R]ΓR\cap[F(G),F(G)]_{\Gamma}/[F(G),R]_{\Gamma} is isomorphic to H2Γ(G)H^{\Gamma}_{2}(G) [27]. As we see in this example the Γ\Gamma-property has been used substantially.

Now we continue our investigation of Γ\Gamma-extensions of Γ\Gamma-groups by considering the non-abelian case. Let

(3.3) 1J𝜎X𝜏G11\rightarrow J\overset{\sigma}{\rightarrow}X\overset{\tau}{\rightarrow}G\rightarrow 1

be an extension of Γ\Gamma-groups having the Γ\Gamma-property. By Theorem 3.2 the group Γ\Gamma acts trivially on J and any section map for the sequence (3.3) is a Γ\Gamma-map. By conjugation one gets a Γ\Gamma-homomorphism θ:XAutJ\theta:X\rightarrow AutJ implying the Γ\Gamma-homorphism ψ:GAutJ/InJ\psi:G\rightarrow AutJ/InJ, where Γ\Gamma is assuming trivially acting on AutJ and InJ denotes the group of inner automorphisms of J.

Definition 3.5.

The triple (G,J,ψ)(G,J,\psi) is called abstract kernel of the non-abelian extension (3.3) of Γ\Gamma-groups.

Theorem 3.6.

1) For any abstract kernel (G,J,ψ)(G,J,\psi) there is a correctly defined element,called obstruction for (G,J,ψ)(G,J,\psi), and belonging to HΓ3(G,C)H^{3}_{\Gamma}(G,C). The abstract kernel (G,J,ψ)(G,J,\psi) possesses an extension iff Obs(G,J,ψ)=0Obs(G,J,\psi)=0.

2) If there exists an extension of the Γ\Gamma-group G with abstract kernel (G,J,ψ)(G,J,\psi), then the set of equivalence classes of extensions with Γ\Gamma-property of G by J is bijective with HΓ2(G,C)H^{2}_{\Gamma}(G,C), where C is the center of J.

Proof.Proof. We will follow the classical proof (when the action of Γ\Gamma on G is trivial).

First of all it should be noted that for a given extension (3.3) of the abstract kernel (G,J,ψ)(G,J,\psi) a section map α:GX\alpha:G\rightarrow X with α(1)=1\alpha(1)=1 induces by conjugation an automorphism φ(x)ψ(x),xG\varphi(x)\in\psi(x),x\in G of the group J and maps f,μ:G×GJf,\mu:G\times G\rightarrow J satisfying the well known equalities

α(x)+l=φ(x)(l)+α(x)\alpha(x)+l=\varphi(x)(l)+\alpha(x),lJ,xG,l\in J,x\in G,

α(x)+α(y)=f(x,y)+α(xy),x,yG,\alpha(x)+\alpha(y)=f(x,y)+\alpha(xy),x,y\in G,

(1) φ(x)(f(x,y))+f(x,yz)=f(x,y)+f(xy,z),zG,\varphi(x)(f(x,y))+f(x,yz)=f(x,y)+f(xy,z),z\in G,

(2) φ(x)φ(y)=μ(f(x,y))φ(xy).\varphi(x)\varphi(y)=\mu(f(x,y))\varphi(xy).

Taking into account the action of Γ\Gamma one has (α(x)+γl=γ(φ(x)(l))+γ(α(x))γ{}^{\gamma}(\alpha(x)+^{\gamma}l=^{\gamma}(\varphi(x)(l))+^{\gamma}(\alpha(x)). Therefore α(γ(x))+l=γφ(x)(l)+α(γx)\alpha(^{\gamma}(x))+l=^{\gamma}\varphi(x)(l)+\alpha(^{\gamma}x). On the other hand α(γx)+l=φ(γx)(l)+α(γx).\alpha(^{\gamma}x)+l=\varphi(^{\gamma}x)(l)+\alpha(^{\gamma}x). Thus φ(γx)(l)=γφ(x)(l)\varphi(^{\gamma}x)(l)=^{\gamma}\varphi(x)(l) showing that φ\varphi is a Γ\Gamma-map. Similarly it can be proved that the maps f and μ\mu are Γ\Gamma-maps.

Conversely, for given Γ\Gamma-maps φ:GAut(J),f,μ:G×GJ\varphi:G\rightarrow Aut(J),f,\mu:G\times G\rightarrow J satisfying the equalities (1) and (2), and φ(1)=1,f(1,g)=f(x,1)=0,xJ,gG,\varphi(1)=1,f(1,g)=f(x,1)=0,x\in J,g\in G, we can construct an extension of the Γ\Gamma-group G with Γ\Gamma-property by considering the set B(J,φ,f,G)B(J,\varphi,f,G) of couples (x,g),xJ,gG,(x,g),x\in J,g\in G, and defining the group structure on it as follows:

(x,g)+(x1,g1)=(x+φ(g)x1+f(g,g1),gg1)(x,g)+(x_{1},g_{1})=(x+\varphi(g)x_{1}+f(g,g_{1}),gg_{1}), and Γ\Gamma is acting on B(J,φ,f,G)B(J,\varphi,f,G) componentwise (x,g)γ=(x,γg),γΓ{}^{\gamma}(x,g)=(x,^{\gamma}g),\gamma\in\Gamma.This Γ\Gamma-extension is called semi-direct product Γ\Gamma-extension of the Γ\Gamma-group G by J. It is evident that it has the Γ\Gamma-property.

For any Γ\Gamma-extension of G by J with Γ\Gamma-property and abstract kernel (G,J,ψ)(G,J,\psi) the arising Γ\Gamma-maps φ\varphi, f and ψ\psi should satisfy the equalities (1) and (2).That is not the case in general and the obstruction is defined by the equality

(3) φ(x)(f(x,y))+f(x,yz)=k(x,y,z)+f(x,y)+f(xy,z),\varphi(x)(f(x,y))+f(x,yz)=k(x,y,z)+f(x,y)+f(xy,z),

where k(x,y,z) is an element of the center C of J which is the kernel of μ.\mu. It is evident that k:G×G×GCk:G\times G\times G\rightarrow C is a Γ\Gamma-map and it can be proved similarly to the classical case that it is 3-th Γ\Gamma-cocycle of the chain complex CΓ(G,C).C^{*}_{\Gamma}(G,C). The Γ\Gamma-cocycle k is called obstruction Ob(G,J,ψ)Ob(G,J,\psi) for the abstract kernel (G,J,ψ).(G,J,\psi).

Finally, any Γ\Gamma-extension of the abstract kernel (G,J,ψ)(G,J,\psi) is equivalent to a semi-direct product Γ\Gamma-extension and the set of semi-direct product Γ\Gamma-extensions of G by J is bijective to HΓ2(G,C)H^{2}_{\Gamma}(G,C). The proof of theses two assertions completely follows the well known case when Γ\Gamma is acting trivially and it is left to the reader. This completes the proof.

As noted in Preliminaries the bijection of the set of Γ\Gamma-equivariant extensions of G by A with the second Γ\Gamma-equivariant homology group of the Γ\Gamma-group G could be extended to higher dimensions. To this aim we need the notion of n-fold Γ\Gamma-equivariant extension of G by A which is defined as a long exact sequence of Γ\Gamma-groups:

0AB1α1B2BnαnG1,0\rightarrow A\rightarrow B_{1}\overset{\alpha_{1}}{\rightarrow}B_{2}\rightarrow...\rightarrow B_{n}\overset{\alpha_{n}}{\rightarrow}G\rightarrow 1,

where 0AB1Imα100\rightarrow A\rightarrow B_{1}\rightarrow Im\alpha_{1}\rightarrow 0, Imαi1BiImαi0Im\alpha_{i-1}\rightarrow B_{i}\rightarrow Im\alpha_{i}\rightarrow\rightarrow 0, 2in12\leq i\leq n-1, are proper sequences of Γ\Gamma-equivariant G-modules and 0Imαn1BnGe0\rightarrow Im\alpha_{n-1}\rightarrow B_{n}\rightarrow G\rightarrow e is a Γ\Gamma-equivariant extension of G by Imαn1Im\alpha_{n-1}.

Let EΓn(G,A)E^{n}_{\Gamma}(G,A), n1n\geq 1, denote the class of equivalence classes of n-fold Γ\Gamma-equivariant extensions of G by A. It becomes an abelian group by using the Baer sum operation for all n1n\geq 1.

Theorem 3.7.

There is an isomorphism EΓn(G,A)HΓn+1(G,A)E^{n}_{\Gamma}(G,A)\cong H^{n+1}_{\Gamma}(G,A) for n1.n\geq 1.

Proof.Proof. We need the following property of the relative derived functors ExtΓ(A,B)Ext^{*}_{\Gamma}(A,B) of HomGΓ(A,B)Hom_{G\propto\Gamma}(A,B) defined in the category of Γ\Gamma-equivarianr G-modules by using relatively projective Γ\Gamma-resolutions with respect to the class 𝒫\mathcal{P} of proper sequences.

Every proper sequence of Γ\Gamma-equivariant G-modules 0ADB00\rightarrow A\rightarrow D\rightarrow B\rightarrow 0 and any Γ\Gamma-equivariant G-module L give rise long exact sequences

0ExtΓ0(B,L)ExtΓ0(D,L)ExtΓ0(A,L))θ0ExtΓ1(B,L)ExtΓn(A,L))θ0Extn+1Γ(B,L),0\rightarrow Ext^{0}_{\Gamma}(B,L)\rightarrow Ext^{0}_{\Gamma}(D,L)\rightarrow Ext^{0}_{\Gamma}(A,L))\overset{\theta^{0}}{\rightarrow}Ext^{1}_{\Gamma}(B,L)\rightarrow...\rightarrow Ext^{n}_{\Gamma}(A,L))\overset{\theta^{0}}{\rightarrow}Ext^{n+1}_{\Gamma}(B,L)\rightarrow...,

0ExtΓ0(L,A)ExtΓ0(L,D)ExtΓ0(L,B))δ0ExtΓ1(L,A)ExtΓn(L,B))δ0Extn+1Γ(L,A).0\rightarrow Ext^{0}_{\Gamma}(L,A)\rightarrow Ext^{0}_{\Gamma}(L,D)\rightarrow Ext^{0}_{\Gamma}(L,B))\overset{\delta^{0}}{\rightarrow}Ext^{1}_{\Gamma}(L,A)\rightarrow...\rightarrow Ext^{n}_{\Gamma}(L,B))\overset{\delta^{0}}{\rightarrow}Ext^{n+1}_{\Gamma}(L,A)\rightarrow....

The connected sequence of contravariant functors (ExtΓn(,A),θn,n=1,2,)(Ext^{n}_{\Gamma}(-,A),\theta^{n},n=1,2,...) is the right universal sequence of contravariant functors (or right satellite of of the functor ExtΓ1(,L)Ext^{1}_{\Gamma}(-,L)) relative to the class 𝒫\mathcal{P} of proper sequences of Γ\Gamma-equivariant G-modules [26]. In effect, let (Un,μn,n=1,2,)(U_{n},\mu^{n},n=1,2,...) be a connected sequence of contravariant functors related to the class 𝒫\mathcal{P} and f1:ExtΓ1(,A)U1()f^{1}:Ext^{1}_{\Gamma}(-,A)\rightarrow U^{1}(-) be a morphism of functors. It will be shown that there exists a unique extension of the morphism f1f^{1} to fn:ExtΓn(,A)Un(),n=2,3,f^{n}:Ext^{n}_{\Gamma}(-,A)\rightarrow U^{n}(-),n=2,3,... compatible with the connecting homomorphisms. To define the extension f2:Ext2(J,A)U2(J)f^{2}:Ext^{2}(J,A)\rightarrow U^{2}(J) consider the short exact sequence 0LPJ00\rightarrow L\rightarrow P\rightarrow J\rightarrow 0, where P is a relatively projective Γ\Gamma-equivariant G-module, implying the isomorphism θ1:ExtΓ1(L,A)ExtΓ2(J,A)\theta^{1}:Ext^{1}_{\Gamma}(L,A)\rightarrow Ext^{2}_{\Gamma}(J,A). Then the homomorphism f2f^{2} is given by μ1f1(θ1)1\mu^{1}f^{1}(\theta^{1})^{-1}. It is easily checked that f2f^{2} is correctly defined, compatible with the connecting homomorphisms θ1\theta^{1} and δ1\delta^{1}, and it is the unique extension of f1f^{1}. The extension of fnf^{n} to fn+1f^{n+1} for n>1n>1 is constructed similarly.

Now it will be shown that the connected sequence of contravariant functors (EΓn(,A),σn,n=1,2,)(E^{n}_{\Gamma}(-,A),\sigma^{n},n=1,2,...) in the category of Γ\Gamma-equivariant G-modules is also the right universal sequence of contravariant functors relative to the class 𝒫\mathcal{P} of proper sequences of Γ\Gamma-equivariant G-modules. For the proper sequence E=0JBL0E=0\rightarrow J\rightarrow B\rightarrow L\rightarrow 0 the connecting homomorphism δn:EΓn(J,A)EΓn+1(L,A)\delta^{n}:E^{n}_{\Gamma}(J,A)\rightarrow E^{n+1}_{\Gamma}(L,A) is given by σn([En])=[EnE]\sigma^{n}([E_{n}])=[E_{n}\otimes E], where En=0AX1X2XnJ0E_{n}=0\rightarrow A\rightarrow X_{1}\rightarrow X_{2}\rightarrow...\rightarrow X_{n}\rightarrow J\rightarrow 0 and EnEE_{n}\otimes E is an n+1- fold extension of L by A obtained by splicing the n-fold extension EnE_{n} with the proper sequence E.

Let φ1:EΓ1(,A)U1()\varphi^{1}:E^{1}_{\Gamma}(-,A)\rightarrow U^{1}(-) be a morphism of functors. Its uniquely defined extension φ2:EΓ1(,A)U1()\varphi^{2}:E^{1}_{\Gamma}(-,A)\rightarrow U^{1}(-) is realized as follows: for [E2]ExtΓ2(J,A)[E_{2}]\in Ext^{2}_{\Gamma}(J,A), E2=0AX1α1X2J0E_{2}=0\rightarrow A\rightarrow X_{1}\overset{\alpha_{1}}{\rightarrow}X_{2}\rightarrow J\rightarrow 0, by using connecting homomorphisms with respect to the proper sequence 0Imα1X2J00\rightarrow Im\alpha_{1}\rightarrow X_{2}\rightarrow J\rightarrow 0 we define φ2([E2])=μ1φ1([E1])\varphi^{2}([E_{2}])=\mu^{1}\varphi^{1}([E_{1}]), where E1=0AX1Imα10E^{1}=0\rightarrow A\rightarrow X_{1}\rightarrow Im\alpha_{1}\rightarrow 0. The extension of φn\varphi^{n} to φn+1\varphi^{n+1} for n>1n>1 is constructed in a completely similar way and it is omitted.

We conclude that the isomorphism f1:ExtΓ1(,A)EΓ1(,A)f^{1}:Ext^{1}_{\Gamma}(-,A)\rightarrow E^{1}_{\Gamma}(-,A) implies the isomorphism of these two right universal sequences of contravariant functors and this yields the isomorphism ExtΓn(B,A)EΓn(B,A)Ext^{n}_{\Gamma}(B,A)\cong E^{n}_{\Gamma}(B,A) for n1n\geq 1 and Γ\Gamma-equivariant G-modules A and B. It follows that there is an isomorphism h1:EΓ1(G,)EΓ2(,)h^{1}:E^{1}_{\Gamma}(G,-)\rightarrow E^{2}_{\Gamma}(\mathbb{Z},-).

If we consider the functors EΓn(B,A)E^{n}_{\Gamma}(B,A) with respect to the second variable then the sequence EΓn(,),ηn,n2E^{n}_{\Gamma}(\mathbb{Z},-),\eta^{n},n\geq 2, and the sequence EΓn(G,),λn,n1E^{n}_{\Gamma}(G,-),\lambda^{n},n\geq 1, are right universal sequences of covariant functors on the category of Γ\Gamma-equivariant G-modules with respect to the class 𝔓\mathfrak{P} of proper sequences of Γ\Gamma-equivariant G-modules. The connecting homomorphisms ηn\eta^{n} and λn\lambda^{n} are defined and the universality is shown similarly to the case of the previous sequence (EΓn(,A),σn,n=1,2,)(E^{n}_{\Gamma}(-,A),\sigma^{n},n=1,2,...). Therefore the isomorphism h1:EΓ1(G,)EΓ2(,)h^{1}:E^{1}_{\Gamma}(G,-)\rightarrow E^{2}_{\Gamma}(\mathbb{Z},-) induces isomorphisms hn:EΓn(G,)EΓn+1(,)h^{n}:E^{n}_{\Gamma}(G,-)\rightarrow E^{n+1}_{\Gamma}(\mathbb{Z},-) for all n1n\geq 1. It remains to apply the isomorphism EΓn+1(,)ExtΓn+1(,)E^{n+1}_{\Gamma}(\mathbb{Z},-)\rightarrow Ext^{n+1}_{\Gamma}(\mathbb{Z},-). This completes the proof.

4. Some computations

It is reasonable to ask for the computation of the Γ\Gamma-equivariant (co)homology of groups introduced in [27]. As noted above Γ\Gamma-equivariant homology and cohomology groups of retracts of Γ\Gamma-free groups are trivial for n>1n>1. Here we provide an attempt to the investigation of this problem for finite cyclic Γ\Gamma-groups.

It is well known that for the computation of the (co)homology of finite cyclic groups the following free resolution of \mathds{Z} is used:

(4.1) 𝐷(m)𝑁(m)𝐷(m)𝑁(m)𝐷(m)ϵ0,...\overset{D}{\rightarrow}\mathds{Z}(\mathrm{\mathds{Z}_{m}})\overset{N}{\rightarrow}\mathds{Z}(\mathrm{\mathds{Z}_{m}})\overset{D}{\rightarrow}\mathds{Z}(\mathrm{\mathds{Z}_{m}})\overset{N}{\rightarrow}\mathds{Z}(\mathrm{\mathds{Z}_{m}})\overset{D}{\rightarrow}\mathds{Z}(\mathrm{\mathds{Z}_{m}})\overset{\epsilon}{\rightarrow}\mathds{Z}\rightarrow 0,

where m\mathrm{\mathds{Z}_{m}} is a finite cyclic group of order m and generator t, D = t - 1 and N=1+t+t2++tm1N=1+t+t^{2}+...+t^{m-1}. Assume now that a group Γ\Gamma is acting on m\mathds{Z}_{m} with trivial action on \mathds{Z}. Similarly to the action of Γ\Gamma on the bar resolution of \mathds{Z} it induces an action of Γ\Gamma on the resolution (4.1) of \mathds{Z}. It is easily checked that the homomorphism D is compatible with trivial action of Γ\Gamma only. This case is not interesting, since it is reduced to the usual (co)homology of groups. Therefore the resolution (4.1) is unsuitable for the computation of Γ\Gamma-equivariant (co)homology of finite cyclic Γ\Gamma-groups.

By slightly changing the value of D we are able to compute the rational Γ\Gamma-equivariant (co)homology of the finite cyclic Γ\Gamma-group m\mathds{Z}_{m}.

Let BB_{*}\otimes\mathds{Q}\rightarrow\mathds{Q} be the bar resolution of the field \mathds{Q} of rational numbers obtained by tensoring the bar resolution BB_{*}\rightarrow\mathds{Z} of \mathds{Z} by \mathds{Q}, where B0(G)B_{0}\otimes\mathds{Q}\cong\mathds{Q}(G), and Bn,n1,B_{n},n\geq 1, is the free (G)\mathds{Q}(G)- module generated by the elements [g1,g2,,gn],giG[g_{1},g_{2},...,g_{n}],g_{i}\in G.

The rational (co)homology of groups with coefficients in (G)\mathds{Z}(G)-modules is defined as follows:

Definition 4.1.

Hn(G,A)=Hn((B)(G)A){}_{\mathds{Q}}H_{n}(G,A)=H_{n}((B_{*}\otimes\mathds{Q})\otimes_{\mathds{Z}(G)}A) and Hn(G,A)=Hom(G)(B,A){}_{\mathds{Q}}H^{n}(G,A)=Hom_{\mathds{Z}(G)}(B_{*}\otimes\mathds{Q},A) for n0n\geq 0 and any (G)\mathds{Z}(G)-module A

It is easily checked that so defined rational homology and cohomology of groups don’t depend on the projective (G)\mathds{Q}(G)-resolution of \mathds{Q} and there are isomorphisms Hn(G,A)Hn(G,A){}_{\mathds{Q}}H_{n}(G,A)\cong H_{n}(G,A\otimes\mathds{Q}) and Hn(G,A)=Hn(G,Hom(,A)){}_{\mathds{Q}}H^{n}(G,A)=H^{n}(G,Hom(\mathds{Q},A)), n0n\geq 0. In particular taking into account the isomorphisms \mathds{Q}\otimes\mathds{Q}\cong\mathds{Q} and Hom(,)Hom(\mathds{Q},\mathds{Q})\cong\mathds{Q} one has the isomorphisms Hn(G,)Hn(G,){}_{\mathds{Q}}H_{n}(G,\mathds{Q})\cong H_{n}(G,\mathds{Q}) and Hn(G,)Hn(G,){}_{\mathds{Q}}H^{n}(G,\mathds{Q})\cong H^{n}(G,\mathds{Q}), n0n\geq 0, for the trivial (G)\mathds{Z}(G)-module \mathds{Q}.

Based on this definition of rational (co)homology of groups we provide the following definition of rational Γ\Gamma-equivariant homology and cohomology of Γ\Gamma-groups. Let Γ\Gamma be a group acting on the group G and trivially acting on \mathds{Q} implying the action of Γ\Gamma on the bar resolution BB_{*}\otimes\mathds{Q}.

Definition 4.2.

HnΓ(G,A)=Hn((B)(GΓ)A)){}_{\mathds{Q}}H^{\Gamma}_{n}(G,A)=H_{n}((B_{*}\otimes\mathds{Q})\otimes_{\mathds{Z}(G\rtimes\Gamma)}A)) and HΓn(G,A)=Hom(GΓ)(B,A){}_{\mathds{Q}}H_{\Gamma}^{n}(G,A)=Hom_{\mathds{Z}(G\rtimes\Gamma)}(B_{*}\otimes\mathds{Q},A) for n0n\geq 0 for any Γ\Gamma-equivariant (GΓ)\mathds{Z}(G\rtimes\Gamma)-module A

We recall that any tit^{i} is a generator of m\mathds{Z}_{m} iff (i,m)= 1 and the total number of generators is equal to the number of integers coprime with m and less than m which is called the Euler φ\varphi-function. Any automorphism of Zm\mathrm{Z}_{m} maps a generator to a generator and therefore it has the form ttkt\rightarrow t^{k}, 1k<m1\leq k<m, where (k,m)= 1, k and m not having non-trivial commun divisors.

Since Γ\Gamma is not trivially acting, that means there is γΓ\gamma\in\Gamma such that tγ=tk{}^{\gamma}t=t^{k}, k>1k>1. For the computation of rational (co)homology of Zm={1,t,t2,,tm1}\mathrm{Z}_{m}=\{1,t,t^{2},...,t^{m-1}\}, tm=1t^{m}=1, we will use the following sequence of free Q(Zm)\mathrm{Q}(\mathrm{Z}_{m})-modules over Q\mathrm{Q}:

(4.2) 𝐷(m)𝑁(m)𝐷(m)𝑁(m)𝐷(m)ϵ0,...\overset{D}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\overset{N}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\overset{D}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\overset{N}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\overset{D}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\overset{\epsilon}{\rightarrow}\mathds{Q}\rightarrow 0,

where D=tm1+tm2++t(m1)D=t^{m-1}+t^{m-2}+...+t-(m-1) and N=1+t+t2++tm1N=1+t+t^{2}+...+t^{m-1}. It will be shown that the sequence (4.2) is a projective Q(Zm)\mathrm{Q}(\mathrm{Z}_{m})-resolution of \mathds{Q}. It is evident that the homomorphims D and N are compatible with the action of Γ\Gamma and DN = 0, ND = 0, ϵ\epsilonD = 0.

For f(t)=q0+q1t+q2t2++qm1tm1(m)f(t)=q_{0}+q_{1}t+q_{2}t^{2}+...+q_{m-1}t^{m-1}\in\mathds{Q}(\mathds{Z}_{m}), qiQq_{i}\in Q, one has

D(f(t))=(m1)q0+q1+q2++qm1+(q0(m1)q1+q2++qm1)t++(q0+q1++qm3(m1)qm2+qm1)tm2+(q0+q1++qm2(m1)qm1)tm1D(f(t))=-(m-1)q_{0}+q_{1}+q_{2}+...+q_{m-1}+(q_{0}-(m-1)q_{1}+q_{2}+...+q_{m-1})t+...+(q_{0}+q_{1}+...+q_{m-3}-(m-1)q_{m-2}+q_{m-1})t^{m-2}+(q_{0}+q_{1}+...+q_{m-2}-(m-1)q_{m-1})t^{m-1}.

If D(f(t))=0D(f(t))=0 this yields a system of m equalities: q0+q1++qi1(m1)qi+qi+1+..+qm1=0,i=0,1,,m1q_{0}+q_{1}+...+q_{i-1}-(m-1)q_{i}+q_{i+1}+..+q_{m-1}=0,i=0,1,...,m-1, implying the equalities q0=q1=q2==qm2=qm1q_{0}=q_{1}=q_{2}=...=q_{m-2}=q_{m-1} and therefore N(q0)=f(t)N(q_{0})=f(t).

If N(f(t)) = 0, then q0+q1++qm2+qm1=0q_{0}+q_{1}+...+q_{m-2}+q_{m-1}=0. Assume there is φ(t)=x0+x1t+x2t2++xm1tm1\varphi(t)=x_{0}+x_{1}t+x_{2}t^{2}+...+x_{m-1}t^{m-1} such that D(φ(t))=f(t)D(\varphi(t))=f(t). This yields the equalities

(m1)x0+x1+x2++xm1=q0,-(m-1)x_{0}+x_{1}+x_{2}+...+x_{m-1}=q_{0},

x0(m1)x1+x2++xm1=q1,x_{0}-(m-1)x_{1}+x_{2}+...+x_{m-1}=q_{1},

.....................................................

x0+x1+x2++xm2(m1)xm1=qm1x_{0}+x_{1}+x_{2}+...+x_{m-2}-(m-1)x_{m-1}=q_{m-1}.

Since Σiqi=0\Sigma_{i}q_{i}=0, this system of m linear equations has infinitely many solutions in the field Q\mathrm{Q} of rational numbers, and for every qQq\in Q by taking xm=qx_{m}=q the solution has the form xi=(qm1qi)/m+q,i=0,1,,m2x_{i}=(q_{m-1}-q_{i})/m+q,i=0,1,...,m-2, xm1=qx_{m-1}=q. The same holds for the case ϵ(f(t))=0\epsilon(f(t))=0. It follows that the sequence (4.2) is exact.

It remains to show that 0KerD(m)ImD00\rightarrow KerD\rightarrow\mathds{Q}(\mathds{Z}_{m})\rightarrow ImD\rightarrow 0 and 0KerNQ(Zm)ImN00\rightarrow KerN\rightarrow\mathrm{Q}(\mathrm{Z}_{m})\rightarrow ImN\rightarrow 0 are sequences of Γ\Gamma-equivariant (m)\mathds{Q}(\mathds{Z}_{m})-modules having Γ\Gamma-section map. Since ImN = KerD, any element of ImN has the form f(t)=q+qt+qt2++qtm1f(t)=q+qt+qt^{2}+...+qt^{m-1} and Γ\Gamma acts trivially on f(t). Therefore the map α:ImNQ(Zm)\alpha:ImN\rightarrow\mathrm{Q}(\mathrm{Z}_{m}), α(f(t))=q\alpha(f(t))=q is a Γ\Gamma-section map for the sequence 0KerN(m)ImD00\rightarrow KerN\rightarrow\mathds{Q}(\mathds{Z}_{m})\rightarrow ImD\rightarrow 0. For the case of the sequence 0KerD(m)ImD00\rightarrow KerD\rightarrow\mathds{Q}(\mathds{Z}_{m})\rightarrow ImD\rightarrow 0 every element f(t)ImDf(t)\in ImD satisfies the equality Σiqi=0\Sigma_{i}q_{i}=0 since ImD = KerN, and consider the element φ(t)=1/m(f(t))\varphi(t)=-1/m(f(t)). It will be shown that D(φ(t))=f(t)D(\varphi(t))=f(t). In effect one has D(φ(t))=D(\varphi(t))=

((m1)(1/m(q0))+q1+q2++qm1)+(-(m-1)(-1/m(q_{0}))+q_{1}+q_{2}+...+q_{m-1})+

(1/m(q0)(m1)(1/m(q1))1/m(q2)1/m(qm1))t+(-1/m(q_{0})-(m-1)(-1/m(q_{1}))-1/m(q_{2})-...-1/m(q_{m-1}))t+

++(1/m(q0)1/m(q1)1/m(q2)1/m(qm2)(m1)(1/m(qm1)))tm1=+...+(-1/m(q_{0})-1/m(q_{1})-1/m(q_{2})-...-1/m(q_{m-2})-(m-1)(-1/m(q_{m-1})))t^{m-1}=

q01/m(q0+q1+q2++qm1)+q_{0}-1/m(q_{0}+q_{1}+q_{2}+...+q_{m-1})+

(q1(1/m(q0+q1+q2++qm1))t+(q_{1}-(-1/m(q_{0}+q_{1}+q_{2}+...+q_{m-1}))t+

++(qm1(1/m(q0+q1+q2++qm2+qm1)tm1=f(t)+...+(q_{m-1}-(-1/m(q_{0}+q_{1}+q_{2}+...+q_{m-2}+q_{m-1})t^{m-1}=f(t).

Therefore the map α:ImDQ(Zm)\alpha:ImD\rightarrow\mathrm{Q}(\mathrm{Z}_{m}) sending f(t) to -1/m(f(t)) is a Γ\Gamma-section map.

We have proven that the sequence (4.2) is a (m)\mathds{Q}(\mathds{Z}_{m})-equivariant projective resolution of the trivial (m)\mathds{Q}(\mathds{Z}_{m})- module \mathds{Q}, where (m)\mathds{Q}(\mathds{Z}_{m}) is a relatively free (Γ)\mathds{Q}(\Gamma)-equivariant (mΓ)\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)-module. Therefore the homology groups of the complex

D(m)(ZmΓ)AN(m)(mΓ)AD(m)(mΓ)AN(m)(mΓ)AD(m)(mΓ)A0...\overset{D_{*}}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}A\overset{N_{*}}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A\overset{D_{*}}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A\overset{N_{*}}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A\overset{D_{*}}{\rightarrow}\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A\rightarrow 0

give us the rational Γ\Gamma-equivariant homology Hn(Zm,A){}_{\mathds{Q}}H_{n}(\mathrm{Z}_{m},A) of the cyclic group m\mathds{Z}_{m} with coefficients in the ((ZmΓ)\mathds{Z}((\mathrm{Z}_{m}\rtimes\Gamma)-module A. By applying the isomorphisms (m)(mΓ)A((m))(ZmΓ)A((m)(mΓ)A)AΓ\mathds{Q}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A\cong(\mathds{Q}\otimes\mathds{Z}(\mathds{Z}_{m}))\otimes_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}A\cong\mathds{Q}\otimes(\mathds{Z}(\mathds{Z}_{m})\otimes_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}A)\cong\mathds{Q}\otimes A_{\Gamma} and the fact that every element of AΓ\mathds{Q}\otimes A_{\Gamma} can be written in the form i(qi[ai])\sum_{i}(q_{i}\otimes[a_{i}]), qiq_{i}\in\mathds{Q}, [ai]AΓ[a_{i}]\in A_{\Gamma}. we have finally obtained

Theorem 4.3.

Let Γ\Gamma be a group not trivially acting on the finite cyclic group m\mathds{Z}_{m}. Then for any Γ\Gamma-equivariant (mΓ)\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)-module A

H0Γ(m,A)=AΓ{}_{\mathds{Q}}H^{\Gamma}_{0}(\mathds{Z}_{m},A)=\mathds{Q}\otimes A_{\Gamma}

H2n1Γ(m,A)=i(qi[aitm1+aitm2++ait])=i(qi[(m1)ai])/ImN{}_{\mathds{Q}}H^{\Gamma}_{2n-1}(\mathds{Z}_{m},A)=\sum_{i}(q_{i}\otimes[a_{i}t^{m-1}+a_{i}t^{m-2}+...+a_{i}t])=\sum_{i}(q_{i}\otimes[(m-1)a_{i}])/ImN_{*}

H2nΓ(m,A)=i(qi[aitm1+aitm2++ait+ai])=0)/ImD{}_{\mathds{Q}}H^{\Gamma}_{2n}(\mathds{Z}_{m},A)=\sum_{i}(q_{i}\otimes[a_{i}t^{m-1}+a_{i}t^{m-2}+...+a_{i}t+a_{i}])=0)/ImD_{*},

for n>0n>0 and the homomorphisms DD_{*} and NN_{*} are induced by D and N respectively.

For the rational Γ\Gamma-equivariant cohomology Hn(Zm,A){}_{\mathds{Q}}H^{n}(\mathrm{Z}^{m},A) of the cyclic group m\mathds{Z}_{m} with coefficients in the ((mΓ)\mathds{Z}((\mathds{Z}_{m}\rtimes\Gamma)-module A we consider the complex

0Hom(ZmΓ)((Zm),A)DHom(ZmΓ)((m),A)NHom(ZmΓ)((m),A)0\rightarrow Hom_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}(\mathds{Q}(\mathrm{Z}_{m}),A)\overset{D^{*}}{\rightarrow}Hom_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}(\mathds{Q}(\mathds{Z}_{m}),A)\overset{N^{*}}{\rightarrow}Hom_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}(\mathds{Q}(\mathds{Z}_{m}),A)

DHom(ZmΓ)((m),A)NHom(mΓ)((m),A)D\overset{D^{*}}{\rightarrow}Hom_{\mathds{Z}(\mathrm{Z}_{m}\rtimes\Gamma)}(\mathds{Q}(\mathds{Z}_{m}),A)\overset{N^{*}}{\rightarrow}Hom_{\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)}(\mathds{Q}(\mathds{Z}_{m}),A)\overset{D^{*}}{\rightarrow}...

Theorem 4.4.

Let Γ\Gamma be a group not trivially acting on the finite cyclic group Zm\mathrm{Z}_{m}. Then for any Γ\Gamma-equivariant (mΓ)\mathds{Z}(\mathds{Z}_{m}\rtimes\Gamma)-module A

HΓ0(m,A)=Hom(,AΓ){}_{\mathds{Q}}H_{\Gamma}^{0}(\mathds{Z}_{m},A)=Hom(\mathds{Q},A^{\Gamma})

HΓ2n1(m,A)=KerN/ImD{}_{\mathds{Q}}H_{\Gamma}^{2n-1}(\mathds{Z}_{m},A)=KerN^{*}/ImD^{*}

HΓ2n(m,A)=KerD/ImN{}_{\mathds{Q}}H_{\Gamma}^{2n}(\mathds{Z}_{m},A)=KerD^{*}/ImN^{*},

for n>0n>0 and the homomorphisms DD^{*} and NN^{*} are induced by D and N respectively.

We see that the rational Γ\Gamma-equivariant (co)homology of finite cyclic Γ\Gamma-groups is of period 2 for n>0n>0.

5. Γ\Gamma-derived functors and Γ\Gamma-equivariant Hochschild homology

Let Γ\Gamma be a group acting on the ring Λ\Lambda with unit, that means a group homomorphism θ:ΓAut(Λ)\theta:\Gamma\rightarrow Aut(\Lambda) is given, the element θ(γ)(λ)\theta(\gamma)(\lambda) is denoted λγ{}^{\gamma}\lambda, and let A be a left Λ\Lambda-module on which Γ\Gamma is acting such that

(λa)γ=γλγa,γΓ,λΛ,aA.{}^{\gamma}(\lambda a)=^{\gamma}\lambda^{\gamma}a,\gamma\in\Gamma,\lambda\in\Lambda,a\in A.

Then A will be called Γ\Gamma-equivariant left Λ\Lambda-module. Denote by ΓA\Gamma A the Λ\Lambda-submodule of A generated by the elements aγa{{}^{\gamma}a-a}, aAa\in A, γΓ\gamma\in\Gamma, and by AΓA_{\Gamma} the quotient of A by ΓA\Gamma A.

Definition 5.1.

It will be said that a group Γ\Gamma is acting on a chain complex LL_{*} of left Λ\Lambda-modules

LnδnLn1δn1...\rightarrow L_{n}\overset{\delta_{n}}{\rightarrow}L_{n-1}\overset{\delta_{n-1}}{\rightarrow}...

if Γ\Gamma acts on each LnL_{n} becoming Γ\Gamma-equivariant Λ\Lambda-module and every δn\delta_{n} satisfies the following condition

(1) δn(γlnln)ΓLn1,lnLn,γΓ.\delta_{n}(^{\gamma}l_{n}-l_{n})\in\Gamma L_{n-1},l_{n}\in L_{n},\gamma\in\Gamma.

In particular condition (1) is satisfied if δn\delta_{n} is compatible with the action of Γ\Gamma.

Definition 5.2.

The homology groups HnΓ(L)H^{\Gamma}_{n}(L_{*}), nn\in\mathds{Z}, of the chain complex LL_{*} are defined as the homology groups of the quotient chain complex of LL_{*}:

LΓ=(Ln)Γδn(Ln1)Γδn1L^{\Gamma}_{*}=...\rightarrow(L_{n})_{\Gamma}\overset{\delta^{\prime}_{n}}{\rightarrow}(L_{n-1})_{\Gamma}\overset{\delta^{\prime}_{n-1}}{\rightarrow}...

The groups HnΓ(L)H^{\Gamma}_{n}(L_{*}) are called Γ\Gamma-equivariant homology groups of LL_{*}.

The consideration of the chain complex LΓL^{\Gamma}_{*} is motivated by the following important cases.

Case 1 - RelationRelation withwith cycliccyclic homology.homology.

It will be said that a group Γ\Gamma is acting on a left Λ\Lambda-module M if it is acting on Λ\Lambda and M such that (λm)γ=γλγm{}^{\gamma}(\lambda m)=^{\gamma}\lambda^{\gamma}m. In that case M is called Γ\Gamma-equivariant Λ\Lambda-module.

It will be said that a group Γ\Gamma is acting on unital κ\kappa-algebra A if it is acting on A and κ\kappa such that (ka)γ=γkγa{}^{\gamma}(ka)=^{\gamma}k^{\gamma}a, kκ,aA,γΓk\in\kappa,a\in A,\gamma\in\Gamma. The group Γ\Gamma acts on A-bimodule M if it is acting on the κ\kappa-algebra A and on M such that ((am)a)γ(γaγm)γa=γa(γmγa){}^{\gamma}((am)a^{\prime})-(^{\gamma}a^{\gamma}m)^{\gamma}a^{\prime}=^{\gamma}a(^{\gamma}m^{\gamma}a^{\prime}). In that case M is called Γ\Gamma-equivariant A-bimodule or equivalently Γ\Gamma-equivariant AeA^{e}-module, where AeA^{e} is the enveloping algebra of A, Ae=AAopA^{e}=A\otimes A^{op}, AopA^{op} being the opposite algebra of A.

Let

(5.1) C(A,M)=MAn𝑏MAn1𝑏MA𝑏MC_{*}(A,M)=...\rightarrow M\otimes A^{\otimes n}\overset{b}{\rightarrow}M\otimes A^{\otimes n-1}\overset{b}{\rightarrow}...\rightarrow M\otimes A\overset{b}{\rightarrow}M

be the Hochschild complex, where the κ\kappa-module MAnM\otimes A^{\otimes n} is in degree n and the tensor product is taken over κ\kappa.

Definition 5.3.

Let Γ\Gamma be a group acting on the Hochschild complex C(A,M)C_{*}(A,M). Then HΓ(C(A,M))H^{\Gamma}_{*}(C_{*}(A,M)) is called Γ\Gamma-equivariant Hochschild homology of the κ\kappa-algebra A with coefficients in Γ\Gamma-equivariant AeA^{e}- module M. If the action of Γ\Gamma is induced by its actions on A and M (γ(m,a1,,an)=(γm,γa1,,γan))(^{\gamma}(m,a_{1},...,a_{n})=(^{\gamma}m,^{\gamma}a_{1},...,^{\gamma}a_{n})), then HΓ(C(A,M))H^{\Gamma}_{*}(C_{*}(A,M)) will be denoted HΓ(A,M)H^{\Gamma}_{*}(A,M) and HHΓ(A)HH^{\Gamma}_{*}(A) for M = A.

Let M = A and assume the group \mathds{Z} of integers acts trivially on κ\kappa and A. Define the action of \mathds{Z} on An+1A^{\otimes n+1} via the composition of the canonical homomorphism /(n+1)n+1\mathds{Z}\rightarrow\mathds{Z}/(n+1)\mathds{Z}\cong\mathds{Z}_{n+1} with the action of n+1\mathds{Z}_{n+1} on An+1A^{\otimes n+1} given by

tn(a0,,an)=(1)n(an,a0,,an1)t^{n}(a_{0},...,a_{n})=(-1)^{n}(a_{n},a_{0},...,a_{n-1}) on the generator (a0,,an)(a_{0},...,a_{n}) of An+1A^{\otimes n+1}, n1n\geq 1. Then An+1A^{\otimes n+1} becomes \mathds{Z}-equivariant κ\kappa-module and it is well known that the κ\kappa-homomorphism b satisfies condition (1) of Definition 5.1. Therefore \mathds{Z} is acting on the chain complex C(A,A)C_{*}(A,A), the chain complex C(A,A)C_{*}(A,A)_{\mathds{Z}} is just the Connes complex and the homology groups Hn(C(A,A))H^{\mathds{Z}}_{n}(C_{*}(A,A)), n0n\succeq 0, are Connes homology groups of the κ\kappa-algebra A. It is well known that they are isomorphic to cyclic homology groups of A when κ\kappa contains the group \mathds{Q} of rational numbers.

We conclude that the cyclic homology of the algebra A over κ\kappa containing \mathds{Q} is \mathds{Z}-equivariant Hochschild homology H(C(A,A))H^{\mathds{Z}}_{*}(C_{*}(A,A)) .

Case 2 - RelationRelation withwith Γ\Gamma-equivariantequivariant homologyhomology of groupsgroups

Let G be a group on which the group Γ\Gamma is acting and consider the bar (G)\mathds{Z}(G)-resolution of \mathds{Z}:

B()=BnBn1B1B00B_{*}(\mathds{Z})=...\rightarrow B_{n}\rightarrow B_{n-1}\rightarrow...\rightarrow B_{1}\rightarrow B_{0}\rightarrow\mathds{Z}\rightarrow 0,

where B0=(G)B_{0}=\mathds{Z}(G) and BnB_{n} is the free (G)\mathds{Z}(G) - module generated by [g1,,gn][g_{1},...,g_{n}], giG,n1g_{i}\in G,n\geq 1. The action of the group Γ\Gamma on B()B_{*}(\mathds{Z}) is given by

(g[g1,,gn])γ=γg[γg1,,γgn],n1{}^{\gamma}(g[g_{1},...,g_{n}])=^{\gamma}g[^{\gamma}g_{1},...,^{\gamma}g_{n}],n\geq 1,

and we assume Γ\Gamma is acting trivially on \mathds{Z}.

The action of Γ\Gamma can be extended to the integral homology complex of G:

C(G)=CnCn1C1C00C_{*}(G)=...\rightarrow C_{n}\rightarrow C_{n-1}\rightarrow...\rightarrow C_{1}\rightarrow C_{0}\rightarrow 0,

where C0=C_{0}=\mathds{Z}, CnC_{n} is the free abelian group generated by [g1,,gn][g_{1},...,g_{n}], giG,n1g_{i}\in G,n\geq 1 and ([g1,,gn])γ=[γg1,,γgn],n1{}^{\gamma}([g_{1},...,g_{n}])=[^{\gamma}g_{1},...,^{\gamma}g_{n}],n\geq 1.

According to [27] the n-th Γ\Gamma-equivariant integral homology HnΓ(G)H^{\Gamma}_{n}(G) of G is the n-th homology group of the chain complex B()(GΓ)B_{*}(\mathds{Z})\otimes_{\mathds{Z}(G\rtimes\Gamma)}\mathds{Z}. It is easily checked that HnΓ(G)H^{\Gamma}_{n}(G) is isomorphic to the n-th Γ\Gamma-equivariant homology HnΓ(C(G))H^{\Gamma}_{n}(C_{*}(G)) of the chain complex C(G)C_{*}(G). In effect, Let F=Σi(G)aiF=\Sigma_{i}\mathds{Z}(G)a_{i} be a (GΓ)\mathds{Z}(G\rtimes\Gamma)- module free as (G)\mathds{Z}(G)-module and the set of generators Y={ai}Y=\{a_{i}\} be a Γ\Gamma-set. As mentioned above it is called relatively free (GΓ)\mathds{Z}(G\rtimes\Gamma)- module. Then the following isomorphism holds: F(GΓ)(Σiai)ΓF\otimes_{\mathds{Z}(G\rtimes\Gamma)}\mathds{Z}\cong(\Sigma_{i}\mathds{Z}a_{i})_{\Gamma},implying the needed isomorphism.

Besides the group action on the Hochschild complex C(A,A)C_{*}(A,A) of the case 1 it is interesting to consider the action of the group Γ\Gamma on C(A,A)C_{*}(A,A) induced by the action of Γ\Gamma on the κ\kappa-algebra A, (a1,,an)γ=(γa1,,γan){}^{\gamma}(a_{1},...,a_{n})=(^{\gamma}a_{1},...,^{\gamma}a_{n}) on the generators (a1,,an)(a_{1},...,a_{n}) of An,n1A^{\otimes n},n\geq 1. Under this action of Γ\Gamma the κ\kappa-homomorphism b is compatible and the κ\kappa-module AnA^{\otimes n} is Γ\Gamma-equivariant. We particularly mean the case when A=(G)A=\mathds{Z}(G) and the action of Γ\Gamma on A is induced by the action of Γ\Gamma on the group G. It is clear in this case one has isomorphisms HnΓ(C((G),(G)))HnΓ(C(G))HnΓ(G),n0H^{\Gamma}_{n}(C_{*}(\mathds{Z}(G),\mathds{Z}(G)))\cong H^{\Gamma}_{n}(C_{*}(G))\cong H^{\Gamma}_{n}(G),n\geq 0.

Therefore the Γ\Gamma-equivariant Hochschild homology contains as particular cases the cyclic homology of κ\kappa-algebras for κ\mathds{Q}\subset\kappa and the Γ\Gamma-equivariant integral homology of groups.

In what follows it will always be assumed that the Γ\Gamma-equivariant Hochschild homology of the κ\kappa-algebra A is defined by the action of Γ\Gamma on A. In order to describe the Γ\Gamma-equivariant Hochschild homology in terms of derived functors the notion of Γ\Gamma-equivariant derived functors will be introduced.

Let 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} be the category of Γ\Gamma-equivariant left Λ\Lambda-modules. A morphism of the category 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} is a Λ\Lambda-homomorphism f:MMf:M\rightarrow M^{\prime} such that f(γm)=γf(m),mM,γΓf(^{\gamma}m)=^{\gamma}f(m),m\in M,\gamma\in\Gamma. As mentioned in Preliminaries, if Λ=(G)\Lambda=\mathds{Z}(G) the category 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} is equivalent to the category of GΓG\rtimes\Gamma-modules. It is evident if Λ=Z\Lambda=\mathrm{Z} and Γ\Gamma acts trivially on \mathds{Z} the category 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} is equivalent to the category of (Γ)\mathds{Z}(\Gamma)-modules. A Γ\Gamma-equivariant Λ\Lambda-module free as Λ\Lambda-module with basis a Γ\Gamma-set is called relatively free Γ\Gamma-equivariant Λ\Lambda-module. A retract of a relatively free Γ\Gamma-equivariant Λ\Lambda-module is called relatively projective Γ\Gamma-equivariant Λ\Lambda-module. Any short exact sequence of Γ\Gamma-equivariant Λ\Lambda-modules having a Γ\Gamma-section map is called proper exact sequence of Γ\Gamma-equivariant Λ\Lambda-modules.

A long exact sequence of Γ\Gamma-equivariant Λ\Lambda-modules

P(M)=PnαnPn1P1α1P0𝜏M0P_{*}(M)=...\rightarrow P_{n}\overset{\alpha_{n}}{\rightarrow}P_{n-1}\rightarrow...\rightarrow P_{1}\overset{\alpha_{1}}{\rightarrow}P_{0}\overset{\tau}{\rightarrow}M\rightarrow 0,

is called Γ\Gamma-projective resolution of M, where every PnP_{n} is relatively projective Γ\Gamma-equivariant Λ\Lambda-module and sequences 0KerτP0𝜏M00\rightarrow Ker\tau\rightarrow P_{0}\overset{\tau}{\rightarrow}M\rightarrow 0, 0KerαnPnImαn0,n10\rightarrow Ker\alpha_{n}\rightarrow P_{n}\rightarrow Im\alpha_{n}\rightarrow 0,n\geq 1, are proper sequences. It is obvious there is a natural action of Γ\Gamma on the chain complex P(M)P_{*}(M).

Definition 5.4.

Let T be an additive covariant functor from 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} to the category 𝔸Γ\mathds{A}^{\Gamma}_{\mathds{Z}}. The left Γ\Gamma-derived functors LnΓT,n0L^{\Gamma}_{n}T,n\geq 0, of T are defined as LnΓT(M)=HnΓ(TP(M))L^{\Gamma}_{n}T(M)=H^{\Gamma}_{n}(TP_{*}(M)).

It is easily checked that these derived functors are correctly defined and they don’t depend of the Γ\Gamma-projetive resolution of M.

Consider the action of Γ\Gamma on the tensor product MΛLM\otimes_{\Lambda}L of Γ\Gamma-equivariant Λ\Lambda-modules M and L induced by the action of Γ\Gamma on the couples (m,l),(m,l)γ=(γm,γl){}^{\gamma}(m,l)=(^{\gamma}m,^{\gamma}l), mM,lLm\in M,l\in L.Then MΛLM\otimes_{\Lambda}L becomes a Γ\Gamma-equivariant abelian group or equivalently (Γ)\mathds{Z}(\Gamma)-module. The left Γ\Gamma- derived functors of the functor ΛL-\otimes_{\Lambda}L: 𝔸ΛΓ𝔸Γ\mathds{A}^{\Gamma}_{\Lambda}\rightarrow\mathds{A}^{\Gamma}_{\mathds{Z}} will be denoted TornΛ,Γ(,L),n0Tor^{\Lambda,\Gamma}_{n}(-,L),n\geq 0. If Λ=(G)\Lambda=\mathds{Z}(G), we recover the functors Torn𝒫Tor_{n}^{\mathcal{P}} defined in [27], where 𝒫\mathcal{P} is the projective class of proper sequences of Γ\Gamma-equivariant (G)\mathds{Z}(G)-modules and L is a trivial Γ\Gamma-equivariant (G)\mathds{Z}(G)-module, in particular Torn(G),Γ(,L)HnΓ(G,L)Tor^{\mathds{Z}(G),\Gamma}_{n}(\mathds{Z},L)\cong H^{\Gamma}_{n}(G,L), n0n\geq 0, if Γ\Gamma acts on L trivially.

Definition 5.5.

If the group Γ\Gamma is acting on the κ\kappa-algebra A, let [A,A]Γ[A,A]_{\Gamma} denote the κ\kappa-submodule of A generated by the elements {γaa,aaaa},a,aA,γΓ\{^{\gamma}a-a,aa^{\prime}-a^{\prime}a\},a,a^{\prime}\in A,\gamma\in\Gamma. It will be called the Γ\Gamma-additive commutator of A.

Let A be a commutative unital κ\kappa-algebra and Ω1(A)\Omega^{1}(A) be the A-module of Ka¨\ddot{a}hler differentials generated by the κ\kappa-linear symbols da, aAa\in A with defining relation d(ab)=adb+bda,a,bAd(ab)=adb+bda,a,b\in A. We define the action of Γ\Gamma on Ω1(A)\Omega^{1}(A) as follows: (da)γ=d(γa)),aA,γΓ{}^{\gamma}(da)=d(^{\gamma}a)),a\in A,\gamma\in\Gamma.

The Γ\Gamma-equivariant A-module ΩΓ1(A)\Omega^{1}_{\Gamma}(A) of Ka¨\ddot{a}hler differentials is defined as (Ω1(A))Γ(\Omega^{1}(A))_{\Gamma}.

Theorem 5.6.

Let Γ\Gamma be a group acting on unital κ\kappa-algebra A and on the bimodule M over A. Then one has

1. HH0Γ(A)=A/[A,A]Γ,HH^{\Gamma}_{0}(A)=A/[A,A]_{\Gamma},

2. If A is commutative, HH1Γ(A)ΩΓ1(A),HH^{\Gamma}_{1}(A)\cong\Omega^{1}_{\Gamma}(A),

3. If A is relatively projective Γ\Gamma-equivariant κ\kappa-module, HnΓ(A,M)=H^{\Gamma}_{n}(A,M)= TornAe,Γ(A,M)Tor^{A^{e},\Gamma}_{n}(A,M) for every Γ\Gamma-equivariant A-bimodule M,

4. Morita equivalence for Γ\Gamma-equivariant Hochschild homology. The inclusion maps AMr(A),MMr(M)A\rightarrow\mathrm{M}_{r}(A),M\rightarrow\mathrm{M}_{r}(M), induce the isomorphism HnΓ(A,M)HnΓ(Mr(A),Mr(M)),r1,n0H^{\Gamma}_{n}(A,M)\rightarrow H^{\Gamma}_{n}(\mathrm{M}_{r}(A),\mathrm{M}_{r}(M)),r\geq 1,n\geq 0, where Mr(A)\mathrm{M}_{r}(A) and Mr(M)\mathrm{M}_{r}(M) are the κ\kappa-algebra of r×rr\times r-matrices over A and the module of r×rr\times r-matrices over M respectively.

ProofProof 1) Taking into account the homomorphism b is a Γ\Gamma-homomorphism the first equality is straightforward. If A is commutative, HH0Γ(A)=AΓHH^{\Gamma}_{0}(A)=A_{\Gamma}.

2) It is well known that the maps HH1(A)Ω1(A)HH_{1}(A)\rightarrow\Omega^{1}(A) and Ω1(A)HH1(A)\Omega^{1}(A)\rightarrow HH_{1}(A) sending respectively the class of aaa\otimes a^{\prime} to ada’ and ada’ to the class of aaa\otimes a^{\prime} are inverse to each other. It suffices to remark that (aa)γaa=γaγaaa{}^{\gamma}(a\otimes a^{\prime})-a\otimes a^{\prime}=^{\gamma}a\otimes^{\gamma}a^{\prime}-a\otimes a^{\prime} is sending to aγdγa{}^{\gamma}ad^{\gamma}a^{\prime} - ada’ = (ada)γ{}^{\gamma}(ada^{\prime}) - ada’ and conversely, (ada)γ{}^{\gamma}(ada^{\prime}) - ada’ is sending to (aa)γaa{}^{\gamma}(a\otimes a^{\prime})-a\otimes a^{\prime}.

3) Consider the Hochschild bar complex

Cbar(A)=An+1bAnbbA2C^{bar}_{*}(A)=...\rightarrow A^{\otimes n+1}\overset{b^{\prime}}{\rightarrow}A^{\otimes n}\overset{b^{\prime}}{\rightarrow}...\overset{b^{\prime}}{\rightarrow}A^{\otimes 2},

where An+1A^{\otimes n+1} is in degree n-1, n1n\geq 1, and b=i=0n1(1)dib^{\prime}=\sum^{n-1}_{i=0}(-1)d_{i}, did_{i} are differentials of the Hochschild complex C(A,A)C_{*}(A,A) and the group Γ\Gamma is acting on the Hochschild bar complex as it is defined for the Hochschild complex. It is evident every An,n2A^{\otimes n},n\geq 2, is relatively projective Γ\Gamma-equivariant κ\kappa-module, since A possesses this property. Moreover An+2,n0A^{\otimes n+2},n\geq 0, is relatively projective Γ\Gamma-equivariant left AeA^{e}-module with the action

(α,β)(a0,,an+1)=(αa0,a1,,an,an+1β)(\alpha,\beta)(a_{0},...,a_{n+1})=(\alpha a_{0},a_{1},...,a_{n},a_{n+1}\beta). The contracting homotopy s:AnAn+1s:A^{\otimes n}\rightarrow A^{\otimes n+1}, s(a0,,an)=(1,a0,,an)s(a_{0},...,a_{n})=(1,a_{0},...,a_{n}), is a Γ\Gamma-map satisfying the equality b’s + sb’ = id.

Therefore the chain complex Cbar+(A)=Cbar(A)𝑏AC^{bar+}_{*}(A)=C^{bar}_{*}(A)\overset{b}{\rightarrow}A, b(aa)=aa,a,aAb(a\otimes a^{\prime})=aa^{\prime},a,a^{\prime}\in A, is a Γ\Gamma-projective resolution of the Γ\Gamma-equivariant AeA^{e}-module A. Upon tensoring this Γ\Gamma-projective resolution with a Γ\Gamma-equivariant AeA^{e}-module M one obtains the Hochschild complex because of the isomorphism MAeAn+2MκAnM\otimes_{A^{e}}A^{\otimes n+2}\cong M\otimes_{\kappa}A^{\otimes n}. This implies the equalities HnΓ(A,M)=HnΓ(Cbar+(A)AeM)=TornAe,Γ(A,M)H^{\Gamma}_{n}(A,M)=H^{\Gamma}_{n}(C^{bar+}_{*}(A)\otimes_{A^{e}}M)=Tor^{A^{e},\Gamma}_{n}(A,M).

4) The action of the group Γ\Gamma on A and M induces its action on Mr(A)\mathrm{M}_{r}(A) and Mr(M)\mathrm{M}_{r}(M) given by[aij]γ=[γaij]{}^{\gamma}[a_{ij}]=[^{\gamma}a_{ij}], [mij]γ=[γmij],γΓ,aijA,mijM{}^{\gamma}[m_{ij}]=[^{\gamma}m_{ij}],\gamma\in\Gamma,a_{ij}\in A,m_{ij}\in M, . This action is compatible with the natural inclusions Mr(A)Mr+1(A)\mathrm{M_{r}}(A)\rightarrow\mathrm{M_{r+1}}(A) and Mr(M)Mr+1(M)\mathrm{M}_{r}(M)\rightarrow\mathrm{M}_{r+1}(M) inducing the action of Γ\Gamma on M(A)=limrMr(A)\mathrm{M}(A)=lim_{\rightarrow_{r}}\mathrm{M}_{r}(A) and on M(M)=limrMr(M)\mathrm{M}(M)=lim_{\rightarrow_{r}}\mathrm{M}_{r}(M) respectively.

It also induces an action of Γ\Gamma on the trace map tr: Mr(M)M\mathrm{M}_{r}(M)\rightarrow M, tr([mij])=Σirmiitr([m_{ij}])=\Sigma^{r}_{i}m_{ii}, given by (γtr)([mij])=Σ(γmii)ir,γΓ(^{\gamma}tr)([m_{ij}])=\Sigma{{}^{r}_{i}}(^{\gamma}m_{ii}),\gamma\in\Gamma. The trace map is extended to tr: Mr(M)Mr(An)MA\mathrm{M}_{r}(M)\otimes\mathrm{M}_{r}(A^{\otimes n})\rightarrow M\otimes A. By identifying Mr(M)\mathrm{M}_{r}(M) with Mr(κ)M\mathrm{M}_{r}(\kappa)\otimes M any element of Mr(M)\mathrm{M}_{r}(M) is a sum of elements uiviu_{i}v_{i} with viMr(κ)v_{i}\in\mathrm{M}_{r}(\kappa) and uiMu_{i}\in M, and the trace map takes the form

tr (v0a0vnan)(v_{0}a_{0}\otimes...\otimes v_{n}a_{n}) = tr (v0vn)a0an(v_{0}...v_{n})a_{0}\otimes...\otimes a_{n}, viMn(κ),a0Mv_{i}\in\mathrm{M}_{n}(\kappa),a_{0}\in M and ajA,j1a_{j}\in A,j\geq 1. The action of Γ\Gamma on the extended trace map is given by (γtr)(v0a0vnan)(^{\gamma}tr)(v_{0}a_{0}\otimes...\otimes v_{n}a_{n}) = tr (γv0γvn)γa0γan(^{\gamma}v_{0}...^{\gamma}v_{n})^{\gamma}a_{0}\otimes...\otimes^{\gamma}a_{n}, γΓ\gamma\in\Gamma. It is evident that the extended trace map is a Γ\Gamma-map taking into account that tr (γ(v0vn))(^{\gamma}(v_{0}...v_{n})) = tr (γv0γvn)(^{\gamma}v_{0}...^{\gamma}v_{n}).

Thus the extended trace map yields a morphism of chain complexes tr:C(Mr(A),Mr(M))C(A,M)tr_{*}:C_{*}(\mathrm{M_{r}(A),\mathrm{M_{r}(M)}})\rightarrow C_{*}(A,M) compatible with the action of the group Γ\Gamma and therefore a morphism trΓ:CΓ(Mr(A),Mr(M))CΓ(A,M)tr^{\Gamma}_{*}:C^{\Gamma}_{*}(\mathrm{M_{r}(A),\mathrm{M_{r}(M)}})\rightarrow C^{\Gamma}_{*}(A,M). On the other hand there is a morphism incΓ:CΓ(A,M)CΓ(Mr(A),Mr(M))inc^{\Gamma}_{*}:C^{\Gamma}_{*}(A,M)\rightarrow C^{\Gamma}_{*}(\mathrm{M_{r}(A),\mathrm{M_{r}(M)}}) induced by the inclusion maps AMr(A)A\rightarrow\mathrm{M}_{r}(A), MMr(M)M\rightarrow\mathrm{M}_{r}(M). It is immediate that trΓincΓ=idtr^{\Gamma}_{*}inc^{\Gamma}_{*}=id. It is well known that incΓtrΓinc^{\Gamma}_{*}tr^{\Gamma}_{*} is homotopic to id and the homotopy h=Σi(1)ihih=\Sigma_{i}(-1)^{i}h_{i} is defined by the formula

hi(a0,,an)=Σeij(ajk0)e11(akm1)e11(apqi)e1q(1)ai+1anh_{i}(a^{0},...,a^{n})=\Sigma e_{ij}(a^{0}_{jk})\otimes e_{11}(a^{1}_{km})\otimes...\otimes e_{11}(a^{i}_{pq})\otimes e_{1q}(1)\otimes a^{i+1}\otimes...\otimes a^{n},

where the sum is extended over all possible sets of indices (j,k,m,…,p,q), a0a^{0} is in Mr(M)\mathrm{M_{r}(M)}, other aia^{i} are in Mr(A)\mathrm{M_{r}(A)} and the eije_{ij} denoted elementary matrices. According to this homotopy formula we have the equalities

(hi(a0,,an))γ=Σγeij(ajk0)γe11(akm1)γe11(apqi)γe1q(1)γai+1γan=hi(γa0,,γan){}^{\gamma}(h_{i}(a^{0},...,a^{n}))=\Sigma^{\gamma}e_{ij}(a^{0}_{jk})\otimes^{\gamma}e_{11}(a^{1}_{km})\otimes...\otimes^{\gamma}e_{11}(a^{i}_{pq})\otimes^{\gamma}e_{1q}(1)\otimes^{\gamma}a^{i+1}\otimes...\otimes^{\gamma}a^{n}=h_{i}(^{\gamma}a^{0},...,^{\gamma}a^{n}),

showing that the homotopy h is compatible with the action of Γ\Gamma and it induces the homotopy of incΓtrΓinc^{\Gamma}_{*}tr^{\Gamma}_{*} to the identity. This completes the proof of the theorem which extends well known results on Hochschild homology for Γ\Gamma acting trivially on A.

Besides Λ=(G)\Lambda=\mathds{Z}(G), the case Λ=\Lambda=\mathds{Z} (Γ\Gamma acting trivially on \mathds{Z}) is also interesting. One means the consideration of the right Γ\Gamma-equivariant derived functors ExtΛ,Γn(,M)Ext^{n}_{\Lambda,\Gamma}(-,M) of the contravariant functor HomΛΓ(,M)Hom^{\Gamma}_{\Lambda}(-,M) from the category 𝔸ΛΓ\mathds{A}^{\Gamma}_{\Lambda} of Γ\Gamma-equivariant left Λ\Lambda-modules to the category of abelian groups, where HomΛΓ(L,M)Hom^{\Gamma}_{\Lambda}(L,M) is the abelian group of Λ\Lambda-homorphisms f:LMf:L\rightarrow M compatible with the action of Γ\Gamma. If Λ=(G)\Lambda=\mathds{Z}(G), we recover the functors Ext𝒫nExt^{n}_{\mathcal{P}} defined in [27] and Ext(G),Γn(,L)HΓn(G,L),n0Ext^{n}_{{\mathds{Z}(G),\Gamma}}(\mathds{Z},L)\cong H^{n}_{\Gamma}(G,L),n\geq 0.

Remark 5.7.

Assume the group Γ\Gamma is acting on the κ\kappa-algebra A and consider the action of the group ×Γ\mathds{Z}\times\Gamma on the chain complex C(A,A)C_{*}(A,A) as the composite of the action of \mathds{Z} and the above defined action of Γ\Gamma. Then the homology of the chain complex (C(A.A))×Γ(C_{*}(A.A))_{\mathds{Z}\times\Gamma} can be considered as the Γ\Gamma-equivariant cyclic homology of the κ\kappa-algebra A for κ\mathds{Q}\subset\kappa.

6. Extensions of crossed Γ\Gamma-modules

In this section the investigation of extensions of Γ\Gamma-groups is continued for the class of Γ\Gamma-groups endowed with a crossed Γ\Gamma-module structure. These extensions are called Γ\Gamma-extensions of crossed Γ\Gamma-modules. As noted in the Introduction the extension theory of crossed modules has been treated by many mathematicians. Our approach to extension theory of crossed modules substantially extends the class of relative extensions of epimorphisms of groups introduced and investigated by Loday [33].

A crossed Γ\Gamma-module (G,μ)(G,\mu) is a pair consisting of a Γ\Gamma-group G and a Γ\Gamma-homomorphism μ:GΓ\mu:G\rightarrow\Gamma (Γ\Gamma acting on itsel by conjugation) satisfying the Peiffer identity:

gμ(g)=ggg1,g,gG.{}^{\mu(g)}g^{\prime}=gg^{\prime}g_{-1},g,g^{\prime}\in G.

A homomorphism from a crossed Γ\Gamma-module (G,μ)(G,\mu) to a crossed Γ\Gamma-module (G,μ)(G^{\prime},\mu^{\prime}) is a Γ\Gamma-homorphism f:GGf:G\rightarrow G^{\prime} such that μf=μ\mu^{\prime}f=\mu. Denote by CrΓ\mathrm{Cr}\Gamma the category of crossed Γ\Gamma-modules. A crossed Γ\Gamma-module (G,μ)(G,\mu) will be called trivial if μ\mu is the trivial map, μ(g)=e,gG\mu(g)=e,g\in G. There is an obvious equivalence between the category of trivial crossed Γ\Gamma-modules and the category of Γ\Gamma-modules.

A crossed Γ\Gamma-module (G,μ)(G,\mu) will be called elementary crossed Γ\Gamma-module if μ\mu is injective. It is equivalent to the inclusion crossed Γ\Gamma-module G¯μ¯Γ\overline{G}\overset{\overline{\mu}}{\rightarrow}\Gamma, where G¯=μ(G)\overline{G}=\mu(G) is a normal subgroup of Γ.\Gamma. If (G,μ)(G,\mu) is a crossed Γ\Gamma-module and A is a Γ\Gamma-module satisfying the following property: aγ=a{}^{\gamma}a=a, for aA,γImμa\in A,\gamma\in Im\mu, then A will be called crossed equivariant Γ\Gamma-module. In particular KerμKer\mu is a crossed equivariant Γ\Gamma-module. It is obvious that any crossed equivariant Γ\Gamma-module is a Γ/Imμ\Gamma/Im\mu-module.

Definition 6.1.

Let (1)(1) 0(A,1)𝜎(X,η)𝜏(G,μ)e0\rightarrow(A,1)\overset{\sigma}{\rightarrow}(X,\eta)\overset{\tau}{\rightarrow}(G,\mu)\rightarrow e

be a sequence of crossed Γ\Gamma-modules such that the induced sequence

0A𝜎X𝜏Ge0\rightarrow A\overset{\sigma}{\rightarrow}X\overset{\tau}{\rightarrow}G\rightarrow e

is an exact sequence of Γ\Gamma-groups. Then the sequence (1) will be called Γ\Gamma-extension of the crossed Γ\Gamma-module (G,μ)(G,\mu) by the crossed equivariant Γ\Gamma-module A. In that case η(X)\eta(X) acts trivially on A and σ(A)\sigma(A) belongs to the center of X.

If in addition there is a Γ\Gamma-map α:(G,μ)(X,η)\alpha:(G,\mu)\rightarrow(X,\eta) such that the composite τα\tau\alpha is the identity map, then it will be called Γ\Gamma-extension with Γ\Gamma-section map or Γ\Gamma-equivariant extension of the crossed Γ\Gamma-module (G,μ)(G,\mu).

Two Γ\Gamma-extensions of (G,μ)(G,\mu) by the crossed Γ\Gamma-module (A,1)

0(A,1)σ1(X1,η1)τ1(G,μ)e0\rightarrow(A,1)\overset{\sigma_{1}}{\rightarrow}(X_{1},\eta_{1})\overset{\tau_{1}}{\rightarrow}(G,\mu)\rightarrow e,

and

0(A,1)σ2(X2,η2)τ2(G,μ)e0\rightarrow(A,1)\overset{\sigma_{2}}{\rightarrow}(X_{2},\eta_{2})\overset{\tau_{2}}{\rightarrow}(G,\mu)\rightarrow e

are called isomorphic if there is a Γ\Gamma-homomorphism ϑ:(X1,η1)(X2,η2)\vartheta:(X_{1},\eta_{1})\rightarrow(X_{2},\eta_{2}) inducing the identity map on (A,1) and τ2ϑ=τ1\tau_{2}\vartheta=\tau_{1}.

Denote by E((G,μ),(A,1))E((G,\mu),(A,1)) and EΓ((G,μ),(A,1))E_{\Gamma}((G,\mu),(A,1)) the set of isomorphism classes of Γ\Gamma-extensions and of Γ\Gamma-extensions having Γ\Gamma-section map respectively. The contravariant functors E(,(A,1))E(-,(A,1)), EΓ(,(A,1))E_{\Gamma}(-,(A,1)) on the category of crossed Γ\Gamma-modules and the covariant functors E((G,μ),)E((G,\mu),-), EΓ((G,μ),)E_{\Gamma}((G,\mu),-) on the category of crossed equivariant Γ\Gamma-modules to the category of sets are determined in a standard way. In particular, for the case of EΓ((G,μ),(A,1))E_{\Gamma}((G,\mu),(A,1)) they are defined as follows:

Let [E=(A,1)𝜎(X,η)𝜏(G,μ)]EΓ((G,μ),(A,1))[E=(A,1)\overset{\sigma}{\rightarrow}(X,\eta)\overset{\tau}{\rightarrow}(G,\mu)]\in E_{\Gamma}((G,\mu),(A,1)) with Γ\Gamma-section map α\alpha and f:(G,μ)(G,μ)f:(G^{\prime},\mu^{\prime})\rightarrow(G,\mu) be a Γ\Gamma-homomorphism. By taking the fiber product D={(x,g)}D=\{(x,g^{\prime})\}, τ(x)=f(g),xX,gG\tau(x)=f(g^{\prime}),x\in X,g^{\prime}\in G^{\prime} of the diagram X𝜎G𝑓GX\overset{\sigma}{\rightarrow}G\overset{f}{\leftarrow}G^{\prime} one obtains the Γ\Gamma-extension E=(A,1)σ(D,δ)𝑝(G,μ)E^{\prime}=(A,1)\overset{\sigma^{\prime}}{\rightarrow}(D,\delta)\overset{p}{\rightarrow}(G^{\prime},\mu^{\prime}), where σ(a)=(σ(a),e),p(x,g)=g,δ(x,g)=μ(x)\sigma^{\prime}(a)=(\sigma(a),e),p(x,g^{\prime})=g^{\prime},\delta(x,g^{\prime})=\mu(x). The Γ\Gamma-section map α:(G,μ)(D,δ)\alpha^{\prime}:(G^{\prime},\mu^{\prime})\rightarrow(D,\delta) is given by α(g)=(αf(g),g)\alpha^{\prime}(g^{\prime})=(\alpha f(g^{\prime}),g^{\prime}). This defines the contravariant functor E((A,1),f):EΓ((G,μ),(A,1))EΓ((G,μ),(A,1))E((A,1),f):E_{\Gamma}((G,\mu),(A,1))\rightarrow E_{\Gamma}((G^{\prime},\mu^{\prime}),(A,1)), E((A,1),f)([E])=[E]E((A,1),f)([E])=[E^{\prime}]. To define the covariant functor E((G,μ),(h)):EΓ((G,μ),(A,1))EΓ((G,μ),(A,1))E((G,\mu),(h)):E_{\Gamma}((G,\mu),(A,1))\rightarrow E_{\Gamma}((G,\mu),(A^{\prime},1)), where h:(A,1)(A,1)h:(A,1)\rightarrow(A^{\prime},1) is a Γ\Gamma-homomorphism, take the direct product (A×X,η)(A^{\prime}\times X,\eta^{\prime}), η(a,x)=η(x)\eta^{\prime}(a^{\prime},x)=\eta(x), and the Cokernel (β\beta, η′′\eta^{\prime\prime}) of the injection β:A(AX,η)\beta:A\rightarrow(A^{\prime}\otimes X,\eta^{\prime}), β(a)=(h(a),σ(a))\beta(a)=(-h(a),\sigma(a)), η′′([(a,x)])=η(x)\eta^{\prime\prime}([(a^{\prime},x)])=\eta^{\prime}(x). This defines a Γ\Gamma-extension E′′=(A,1)σ′′(Cokernelβ,η′′)τ′′(G,μ)E^{\prime\prime}=(A^{\prime},1)\overset{\sigma^{\prime\prime}}{\rightarrow}(Cokernel\beta,\eta^{\prime\prime})\overset{\tau^{\prime\prime}}{\rightarrow}(G,\mu), where σ′′(a)=[(a,1)]\sigma^{\prime\prime}(a^{\prime})=[(a^{\prime},1)], τ′′[(a,x)]=η(x)\tau^{\prime\prime}[(a^{\prime},x)]=\eta(x), with Γ\Gamma-section map α′′:(G,μ)(Cokernelβ,η′′),α′′=hα\alpha^{\prime\prime}:(G,\mu)\rightarrow(Cokernel\beta,\eta^{\prime\prime}),\alpha^{\prime\prime}=h^{\prime}\alpha, where h(x)=[(0,x)]h^{\prime}(x)=[(0,x)]., and therefore the covariant functor E((G,μ),(h))([E])=E′′E((G,\mu),(h))([E])=E^{\prime\prime}.

To define the (co)homology and Γ\Gamma-equivariant (co)homology of crossed Γ\Gamma-modules two important classes will be defined in the category CrΓ\mathrm{Cr}\Gamma of crossed Γ\Gamma-modules.

The objects of the first class 𝔓Γ\mathfrak{P}_{\Gamma} of crossed Γ\Gamma-modules are constructed as follows. Let (G,μ)(G,\mu) be an arbitrary crossed Γ\Gamma-module and take the free group F(Γ×G)F(\Gamma\times G) generated by the couples (γ,g)(\gamma,g), γΓ\gamma\in\Gamma, gGg\in G. There is an action of Γ\Gamma on F(Γ×G)F(\Gamma\times G) given by (γ,g)γ=(γγ,g){}^{\gamma^{\prime}}(\gamma,g)=(\gamma^{\prime}\gamma,g), γ,γΓ,gG\gamma,\gamma^{\prime}\in\Gamma,g\in G, and a Γ\Gamma-homomorphism η:F(Γ×G)G,η(γ,g)=γg\eta:F(\Gamma\times G)\rightarrow G,\eta(\gamma,g)=^{\gamma}g, inducing a Γ\Gamma-homomorphism μη:F(Γ×G)Γ\mu\eta:F(\Gamma\times G)\rightarrow\Gamma. Consider the normal subgroup of F(Γ×G)F(\Gamma\times G) generated by the elements (x)μηxx1x1{}^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1} for x,xF(Γ×G)x,x^{\prime}\in F(\Gamma\times G). Let F(G,μ)F_{(G,\mu)} denotes the quotient Γ\Gamma-group F(Γ×G)/{μη(x)xx1x1}F(\Gamma\times G)/\{^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1}\}. Since (G,μ)(G,\mu) is a crossed Γ\Gamma-module, the Γ\Gamma-homomorphism η\eta sends the normal subgroup {μη(x)xx1x1}\{^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1}\} to the unit. This yields a Γ\Gamma-homomorphism η:F(G,μ)G\eta^{\prime}:F_{(G,\mu)}\rightarrow G and a crossed Γ\Gamma-module (F(G,μ),μη)(F_{(G,\mu)},\mu\eta^{\prime}) which is called free crossed Γ\Gamma-module generated by (G,μ)(G,\mu) implying the canonical surjective homomorphism η:(F(G,μ),μη)(G,μ)\eta^{\prime}:(F_{(G,\mu)},\mu\eta^{\prime})\rightarrow(G,\mu). This construction was used by Loday to show the existence of the universal central relative extension of a group epimorphism [33]. The objects of the class 𝔓Γ\mathfrak{P}_{\Gamma} are retracts of free crossed Γ\Gamma-modules and are called projective crossed Γ\Gamma-modules.

The construction of the second class 𝔓Γe\mathfrak{P}_{\Gamma-e} of crossed Γ\Gamma-modules is realized similarly. Consider the free group F(G) generated by the elements g , gGg\in G. There is an action of Γ\Gamma on F(G) given by |γg|=|γg|{}^{\gamma}|g|=|^{\gamma}g|, gG,γΓg\in G,\gamma\in\Gamma, and let φ:F(G)G\varphi:F(G)\rightarrow G be the canonical Γ\Gamma-homomorphism, φ(|g|)=g\varphi(|g|)=g, having a Γ\Gamma-section map σ:GF(G),σ(g)=|g|,gG\sigma:G\rightarrow F(G),\sigma(g)=|g|,g\in G. This yields a crossed Γ\Gamma-module (F(G),μφ)(F(G),\mu\varphi) and a homomorphism φ:(F(G),μφ)(G,μ)\varphi:(F(G),\mu\varphi)\rightarrow(G,\mu) having a Γ\Gamma-section map. The quotient FΓ(G,μ)=F(G)/{μφ(x)xx1x1},x,xF(G)F_{\Gamma(G,\mu)}=F(G)/\{^{\mu\varphi}(x)x^{\prime}x^{-1}x^{\prime-1}\},x,x^{\prime}\in F(G) provides a crossed Γ\Gamma-module (FΓ(G,μ),μφ)(F_{\Gamma(G,\mu)},\mu\varphi^{\prime}) induced by φ\varphi which will be called Γ\Gamma-equivariant free crossed Γ\Gamma-module. and the canonical surjection (FΓ(G,μ),μφ)(G,μ)(F_{\Gamma(G,\mu)},\mu\varphi^{\prime})\rightarrow(G,\mu) having a Γ\Gamma-section map. The class 𝔉Γe\mathfrak{F}_{\Gamma-e} is consisting of all Γ\Gamma-equivarianr free crossed Γ\Gamma-modules. The objects of the class 𝔓Γe\mathfrak{P}_{\Gamma-e} are retracts of free crossed Γ\Gamma-modules and are called Γ\Gamma-equivariant projective crossed Γ\Gamma-modules.

Proposition 6.2.

The classes 𝔓Γ\mathfrak{P}_{\Gamma} and 𝔓Γe\mathfrak{P}_{\Gamma-e} are projective classes in the category CrΓ\mathrm{Cr}\Gamma of crossed Γ\Gamma-modules.

ProofProof. To prove the class 𝔓Γ\mathfrak{P}_{\Gamma} is projective it suffices to show that for any surjective homomorphism f:(G,μ)(G,μ)f:(G^{\prime},\mu^{\prime})\rightarrow(G,\mu) of crossed Γ\Gamma-modules and any homomorphism h:F(L,ν)(G,μ)h:F_{(L,\nu)}\rightarrow(G,\mu), where F(L,ν)F_{(L,\nu)} is a free crossed Γ\Gamma-module, there is a homomorphism h:F(L,ν)(G,μ)h^{\prime}:F_{(L,\nu)}\rightarrow(G^{\prime},\mu^{\prime}) that fh’ = h. For every element (e,l) of Γ×L,lL\Gamma\times L,l\in L, choose an element g’ of G’ such that f(g’) = h([(e,l)]) and define the Γ\Gamma-map Γ×LG\Gamma\times L\rightarrow G^{\prime} sending (γ,l)(\gamma,l) to gγ{}^{\gamma}g^{\prime} which induces the required homomorphism h’.

For the class 𝔓Γe\mathfrak{P}_{\Gamma-e} it suffices to show that for any surjective homomorphism f:(G,μ)(G,μ)f:(G^{\prime},\mu^{\prime})\rightarrow(G,\mu) of crossed Γ\Gamma-modules having a Γ\Gamma-section map and any homomorphism h:FΓ(L,ν)(G,μ)h:F_{\Gamma(L,\nu)}\rightarrow(G,\mu), where FΓ(L,ν)F_{\Gamma(L,\nu)} is a Γ\Gamma-equivariant free crossed Γ\Gamma-module, there is a homomorphism h:FΓ(L,ν)(G,μ)h^{\prime}:F_{\Gamma(L,\nu)}\rightarrow(G^{\prime},\mu^{\prime}) that fh’ = h. It is easily checked that h’ can be defined as h([x])=σh([x])h^{\prime}([x])=\sigma h([x]) where xF(L)x\in F(L) an σ\sigma is the section-map of f. This completes the proof of the Proposition.

There is a Γ\Gamma-homomorphism F(Γ×G)F(G)F(\Gamma\times G)\rightarrow F(G) sending the generator |(γ,g)||(\gamma,g)| to |γg||^{\gamma}g| inducing Γ\Gamma-homomorphism F(G,μ)FΓ(G,μ)F_{(G,\mu)}\rightarrow F_{\Gamma(G,\mu)} and therefore a natural morphism ω:𝔓Γ𝔓Γe\omega:\mathfrak{P}_{\Gamma}\rightarrow\mathfrak{P}_{\Gamma-e} from the projective class 𝔓Γ\mathfrak{P}_{\Gamma} to the projective class 𝔓Γe\mathfrak{P}_{\Gamma-e}.

For the cohomological interpretation of the abelian group of Γ\Gamma-extensions of crossed Γ\Gamma-modules the right derived functors R𝔓¯nT,n0R_{\mathfrak{\bar{P}}}^{n}T,n\geq 0, of a contravariant functor T from the category 𝔄\mathfrak{A} with finite inverse limits to the category of abelian groups with respect to a projective class 𝔓¯\mathfrak{\bar{P}} will be defined. The case of left derived functors of a covariant functor to the category of abelian groups or to the category of groups was considered in [47] and [24,26] respectively.

To this aim let us recall some definitions given in [26].

Definition 6.3.

A 𝔓¯\mathfrak{\bar{P}}-projective resolution of an object A of the category 𝔄\mathfrak{A} is a pseudo-simplicial projective object over A, PAP_{*}\rightarrow A, which is 𝔓¯\mathfrak{\bar{P}}-exact and 𝔓¯\mathfrak{\bar{P}}-epimorphic.

Since the category 𝔄\mathfrak{A} contains finite inverse limits, every object A admits a 𝔓¯\mathfrak{\bar{P}}-projective resolution which is unique up to simplicial homotopy.

Definition 6.4.

The right derived functors R𝔓¯nTR_{\mathfrak{\bar{P}}}^{n}T of the contravariant functor T with respect to the projective class 𝔓¯\mathfrak{\bar{P}} are given by R𝔓¯nT(A)=HnT(P),n0.R_{\mathfrak{\bar{P}}}^{n}T(A)=H_{n}T(P_{*}),n\geq 0.

It is obvious that the category CrΓ\mathrm{Cr}\Gamma of crossed Γ\Gamma-modules is a category with finite inverse limits. Denote by HomΓ((G,μ),(A,1))Hom_{\Gamma}((G,\mu),(A,1)) the abelian group of Γ\Gamma-homomorphisms from the Γ\Gamma-group G to the Γ\Gamma-module A and consider the contravariant functor HomΓ(,(A,1))Hom_{\Gamma}(-,(A,1)) from the category CrΓ\mathrm{Cr}\Gamma to the category of abelian groups.

The cohomology and the Γ\Gamma-equivariant cohomology of crossed Γ\Gamma-modules will now be defined by using the right derived functors of the functor HomΓ(,(A,1))Hom_{\Gamma}(-,(A,1)) with respect to the projective classes 𝔓\mathfrak{P} and 𝔓Γ\mathfrak{P}_{\Gamma} respectively. Namely

Definition 6.5.

The n-th cohomology and Γ\Gamma-equivariant cohomology of the crossed Γ\Gamma-module (G,μ)(G,\mu) with coefficients in a Γ\Gamma-module A are given by

H𝔓Γn((G,μ),A)=R𝔓Γn1HomΓ((G,μ),(A,1))H^{n}_{\mathfrak{P}_{\Gamma}}((G,\mu),A)=R^{n-1}_{\mathfrak{P}_{\Gamma}}Hom_{\Gamma}((G,\mu),(A,1)) and

H𝔓Γen((G,μ),A)=R𝔓Γen1HomΓ((G,μ),(A,1))H^{n}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A)=R^{n-1}_{\mathfrak{P}_{\Gamma-e}}Hom_{\Gamma}((G,\mu),(A,1)), n1n\geq 1,

respectively

Theorem 6.6.

We have

1)H1𝔓Γ((G,μ),A)=H1𝔓Γe((G,μ),A)HomΓ((G,μ),(A,1)).1)H^{1}_{\mathfrak{P}_{\Gamma}}((G,\mu),A)=H^{1}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A)\cong Hom_{\Gamma}((G,\mu),(A,1)).

2)H2𝔓Γ((G,μ),A)E((G,μ),(A,1))2)H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A)\cong E((G,\mu),(A,1)) and

H𝔓Γe2((G,μ),A)EΓ((G,μ),(A,1)),H^{2}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A)\cong E_{\Gamma}((G,\mu),(A,1)),

where A is crossed equivariant Γ\Gamma-module.

3)H2𝔓Γ((Imμ,σ),A)xt(Γ/Imμ,Γ,A)3)H^{2}_{\mathfrak{P}_{\Gamma}}((Im\mu,\sigma),A)\cong\mathcal{E}xt(\Gamma/Im\mu,\Gamma,A),

where xt(Γ/Imμ,Γ,A)\mathcal{E}xt(\Gamma/Im\mu,\Gamma,A) is the abelian group of relative extensions of (Γ/Imμ,Γ)(\Gamma/Im\mu,\Gamma) defined by Loday [33] and (Imμ,σ,)(Im\mu,\sigma,) is the induced inclusion crossed Γ\Gamma-module, σ:ImμΓ\sigma:Im\mu\hookrightarrow\Gamma.

4) The short exact sequence of Γ\Gamma-modules

(6.1) 0AfA𝑓A′′00\rightarrow A^{\prime}\overset{f^{\prime}}{\rightarrow}A\overset{f}{\rightarrow}A^{\prime\prime}\rightarrow 0

gives rise a long exact cohomology sequence for the Γ\Gamma-module (G,μ)(G,\mu) if the Γ\Gamma-modules of (6.1) are crossed equivariant:

0HomΓ((G,μ),A)HomΓ((G,μ),A))HomΓ((G,μ),A′′))H2𝔓Γ((G,μ),A)H2𝔓Γ((G,μ),A)H2𝔓Γ((G,μ),A′′)H3𝔓Γ((G,μ),A)Hn𝔓Γ((G,μ),A)Hn𝔓Γ((G,μ),A)H2𝔓Γ((G,μ),A′′)Hn+1𝔓Γ((G,μ),A)0\rightarrow Hom_{\Gamma}((G,\mu),A^{\prime})\rightarrow Hom_{\Gamma}((G,\mu),A))\rightarrow Hom_{\Gamma}((G,\mu),A^{\prime\prime}))\rightarrow H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime})\rightarrow H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A)\rightarrow H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime\prime})\rightarrow H^{3}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime})\rightarrow...\rightarrow H^{n}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime})\rightarrow H^{n}_{\mathfrak{P}_{\Gamma}}((G,\mu),A)\rightarrow H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime\prime})\rightarrow H^{n+1}_{\mathfrak{P}_{\Gamma}}((G,\mu),A^{\prime})\rightarrow....

If the sequence (6.1) of Γ\Gamma-modules possesses the Γ\Gamma-property then it induces the long cohomology sequence

0HomΓ((G,μ),A)HomΓ((G,μ),A))HomΓ((G,μ),A′′))H2𝔓Γe((G,μ),A)H2𝔓Γe((G,μ),A)H2𝔓Γe((G,μ),A′′)H3𝔓Γe((G,μ),A)Hn𝔓Γe((G,μ),A)Hn𝔓Γe((G,μ),A)H2𝔓Γe((G,μ),A′′)Hn+1𝔓Γe((G,μ),A)0\rightarrow Hom_{\Gamma}((G,\mu),A^{\prime})\rightarrow Hom_{\Gamma}((G,\mu),A))\rightarrow Hom_{\Gamma}((G,\mu),A^{\prime\prime}))\rightarrow H^{2}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime})\rightarrow H^{2}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A)\rightarrow H^{2}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime\prime})\rightarrow H^{3}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime})\rightarrow...\rightarrow H^{n}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime})\rightarrow H^{n}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A)\rightarrow H^{2}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime\prime})\rightarrow H^{n+1}_{\mathfrak{P}_{\Gamma-e}}((G,\mu),A^{\prime})\rightarrow....

ProofProof. 1) Obvious.

2) Consider the canonical 𝔓Γ\mathfrak{P}_{\Gamma}-projective resolution of (G,μ)(G,\mu)

τ2(K2,l2)λ22λ20P((K1,l1),μ1)τ1(K1,l1)λ11λ10P((G,μ),μη)τ0(G,μ)...\overset{\tau_{2}}{\rightarrow}(K_{2},l_{2})\underset{\lambda^{2}_{2}}{\overset{\lambda^{0}_{2}}{\Rrightarrow}}P_{((K_{1},l_{1}),\mu_{1})}\overset{\tau_{1}}{\rightarrow}(K_{1},l_{1})\underset{\lambda^{1}_{1}}{\overset{\lambda^{0}_{1}}{\rightrightarrows}}P_{((G,\mu),\mu\eta^{\prime})}\overset{\tau_{0}}{\rightarrow}(G,\mu),

where (K1,l1)(K_{1},l_{1}) is the simplicial kernel of τ1\tau_{1} and (K2,l2)(K_{2},l_{2}) is the simplicial kernel of (τ1λ10,τ1λ11)(\tau_{1}\lambda^{0}_{1},\tau_{1}\lambda^{1}_{1}). Let f:P(K1n,l1)Af:P_{(K_{1}n,l_{1})}\rightarrow A be a Γ\Gamma-homomorphism such that i=02τ2λ2if=o\underset{i=0}{\overset{2}{\sum}}\tau_{2}\lambda^{i}_{2}f=o. Therefore i=02λ2if=o\underset{i=0}{\overset{2}{\sum}}\lambda^{i}_{2}f=o and this implies a Γ\Gamma-homomorphism f1:(K1,l1)Af_{1}:(K_{1},l_{1})\rightarrow A given by f1(x)=f(y)f_{1}(x)=f(y) for y=τ1(x),x(K1,l1)y=\tau_{1}(x),x\in(K_{1},l_{1}). The correctness follows from the fact if y1=τ1(x)y_{1}=\tau_{1}(x) then the triple (y1y1,y1y1,y1y1)(y_{1}y^{-1},y_{1}y^{-1},y_{1}y^{-1}) belongs to (K2,l2)(K_{2},l_{2}) implying f(y1y1)=0f(y_{1}y^{-1})=0. By the same argument we have f(x,x)=0f(x,x)=0 for any xP((G,μ),μη)x\in P_{((G,\mu),\mu\eta^{\prime})}.

Now by using the diagram

(K1,l1)λ11λ10P((G,μ),μη)τ0(G,μ)(K_{1},l_{1})\underset{\lambda^{1}_{1}}{\overset{\lambda^{0}_{1}}{\rightrightarrows}}P_{((G,\mu),\mu\eta^{\prime})}\overset{\tau_{0}}{\rightarrow}(G,\mu),

and the Γ\Gamma-homomorphism f1:(K1,l1)Af_{1}:(K_{1},l_{1})\rightarrow A the following crossed Γ\Gamma-extension of (G,μ)(G,\mu) is constructed. Take the direct product A×P(G,μ)A\times P_{(G,\mu)} with component wise action of Γ\Gamma on it. We obtain the crossed Γ\Gamma-module (A×P(G,μ),μ¯)(A\times P_{(G,\mu)},\bar{\mu}) where μ¯([a,x])=μη(x)\bar{\mu}([a,x])=\mu\eta^{\prime}(x), xP(G,μ),aAx\in P_{(G,\mu)},a\in A. By introducing on A×P(G,μ)A\times P_{(G,\mu)} the following equivalence relation:

(a,x)(b,y)(a,x)\sim(b,y) if τ0(x)=τ0(y)\tau_{0}(x)=\tau_{0}(y) and af1(x,y)=ba\cdot f_{1}(x,y)=b, this yields the crossed Γ\Gamma-module (A×P(G,μ)/,α)(A\times P_{(G,\mu)}/\sim,\alpha), α([a,x])=μη(x)\alpha([a,x])=\mu\eta^{\prime}(x), and the mentioned crossed Γ\Gamma-extension of (G,μ)(G,\mu):

E=0(A,1)𝜎(A×P(G,μ)/,α)𝛽(G,μ)eE=0\rightarrow(A,1)\overset{\sigma}{\rightarrow}(A\times P_{(G,\mu)}/\sim,\alpha)\overset{\beta}{\rightarrow}(G,\mu)\rightarrow e, where σ(a)=[(a,e)],β([a,x])=τ0(x)\sigma(a)=[(a,e)],\beta([a,x])=\tau_{0}(x). This allows to define correctly a homomorphism ϑ:H𝔓2((G,μ),A)E((G,μ),(A,1))\vartheta:H^{2}_{\mathfrak{P}}((G,\mu),A)\rightarrow E((G,\mu),(A,1)) sending [f][f] to [E][E]. Conversely for any crossed Γ\Gamma-extension E of (G,μ)(G,\mu):

E=0(A,1)(X,η)(G,μ)eE=0\rightarrow(A,1)\rightarrow(X,\eta)\rightarrow(G,\mu)\rightarrow e the Γ\Gamma-homomorphism τ0:(P(G,μ),μη)(G,μ)\tau_{0}:(P_{(G,\mu)},\mu\eta^{\prime})\rightarrow(G,\mu) induces a Γ\Gamma-homomorphism h:P(G,μ),μη)(X,η)h^{\prime}:P_{(G,\mu)},\mu\eta^{\prime})\rightarrow(X,\eta) and its composite with the homomorphism (X,η)(G,μ)(X,\eta)\rightarrow(G,\mu) is equal to τ0\tau_{0}. Therefore this implies a homomorphism g:K1,l1)(A,1)g^{\prime}:K_{1},l_{1})\rightarrow(A,1) such that the composite of g’ with the homomorphism (A,1)(X,η)(A,1)\rightarrow(X,\eta) is equal to γ10(γ11)1\gamma^{0}_{1}(\gamma^{1}_{1})^{-1}. The Γ\Gamma-homomorphism g=gτ1:P((G,μ),μη)Ag=g^{\prime}\tau_{1}:P_{((G,\mu),\mu\eta^{\prime})}\rightarrow A satisfies the equality i=02τ2λ2ig=0\underset{i=0}{\overset{2}{\sum}}\tau_{2}\lambda^{i}_{2}g=0 and implies the homomorphism ϑ:E((G,μ),(A,1))H𝔓Γ2((G,μ),A)\vartheta^{\prime}:E((G,\mu),(A,1))\rightarrow H^{2}_{\mathfrak{P}_{\Gamma}}((G,\mu),A) sending [E][E] to [g][g] such that the homomorphisms ϑ\vartheta and ϑ\vartheta^{\prime} are inverse to each other.

3) First let us recall the definition of relative extensions of group epimorphisms.

Definition 6.7.

[33][33]

Let ν:NQ\nu:N\rightarrow Q be an epimorphism of groups. A relative extension of (Q,N) is given by an exact sequence of groups

1L𝜆M𝜇N𝜈Q11\rightarrow L\overset{\lambda}{\rightarrow}M\overset{\mu}{\rightarrow}N\overset{\nu}{\rightarrow}Q\rightarrow 1

and an action η\eta of N on M such that (M,μ)(M,\mu) is a crossed N-module.

It is evident that every relative extension (M,μ)(M,\mu) of (Q,N) induces the N-extension of (Imμ,σ)(Im\mu,\sigma)

0(L,1)(M,μ)((Imμ,σ)10\rightarrow(L,1)\rightarrow(M,\mu)\rightarrow((Im\mu,\sigma)\rightarrow 1

where σ:ImμN\sigma:Im\mu\hookrightarrow N is the inclusion crossed N-module and one gets a map xt(Q,N,L)E((Imμ,σ),(L,1))\mathcal{E}xt(Q,N,L)\rightarrow E((Im\mu,\sigma),(L,1)). Conversely, any N-extension of (Imμ,σ)(Im\mu,\sigma)

0(L,1)(X,μ)(Imμ,σ)10\rightarrow(L,1)\rightarrow(X,\mu)\rightarrow(Im\mu,\sigma)\rightarrow 1

induces a relative extension of (N/Imμ,N)(N/Im\mu,N)

1LXNN/Imμ11\rightarrow L\rightarrow X\rightarrow N\rightarrow N/Im\mu\rightarrow 1

and therefore a map E((Imμ,σ),(L,1))xt(N/Imμ,N,L)xt(Q,N,L)E((Im\mu,\sigma),(L,1))\rightarrow\mathcal{E}xt(N/Im\mu,N,L)\cong\mathcal{E}xt(Q,N,L) which is the inverse of the map xt(Q,N,L)E((Imμ,σ),(L,1))\mathcal{E}xt(Q,N,L)\rightarrow E((Im\mu,\sigma),(L,1)). It remains to apply 2).

4)Let

0AfA𝑓A′′00\rightarrow A^{\prime}\overset{f^{\prime}}{\rightarrow}A\overset{f}{\rightarrow}A^{\prime\prime}\rightarrow 0

be a short exact sequence of crossed equivariant Γ\Gamma-modules. It suffices to prove the surjection of the homomorphism HomΓ((P(G,μ),μη),(A,1)))HomΓ((P(G,μ),μη),(A′′,1))Hom_{\Gamma}((P_{(G,\mu)},\mu\eta^{\prime}),(A,1)))\rightarrow Hom_{\Gamma}((P_{(G,\mu)},\mu\eta^{\prime}),(A^{\prime\prime},1)) induced by the Γ\Gamma-homomorphism f. Let h:P(G,μ)A′′h:P_{(G,\mu)}\rightarrow A^{\prime\prime} be a Γ\Gamma-homomorphism and τ:P(Γ×G)P(G,μ)\tau:P(\Gamma\times G)\rightarrow P_{(G,\mu)} be the canonical surjection. For hτ(e,g),gGh\tau(e,g),g\in G, take aAa\in A such that f(a)=hτ(e,g)f(a)=h\tau(e,g). This yields the Γ\Gamma-homomorphism h¯:P(Γ×G)A\bar{h}:P(\Gamma\times G)\rightarrow A given by h¯(γ,g)=γa\bar{h}(\gamma,g)=^{\gamma}a, γΓ,gG\gamma\in\Gamma,g\in G such that fh¯=hτf\bar{h}=h\tau. It is clear that the homomorphism h¯\bar{h} sends every element of the subgroup {μη(x)xx1x1}\{^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1}\} to the unit, since A is a crossed equivariant Γ\Gamma-module and we obtain a Γ\Gamma-homomorphism h:P(G,μ)Ah^{\prime}:P_{(G,\mu)}\rightarrow A induced by h¯\bar{h} such that fh=hfh^{\prime}=h.

If the sequence (6.1) possesses the Γ\Gamma-property, then the Γ\Gamma-homomorphism h:P(G,μ)A′′h:P_{(G,\mu)}\rightarrow A^{\prime\prime} induces the Γ\Gamma-homomorphism h′′:PΓ(G,μ)A′′h^{\prime\prime}:P_{\Gamma(G,\mu)}\rightarrow A^{\prime\prime} which implies the Γ\Gamma-homomorphism h:PΓ(G,μ)Ah^{\prime}:P_{\Gamma(G,\mu)}\rightarrow A given by h(x)=σh′′(x)h^{\prime}(x)=\sigma h^{\prime\prime}(x), xGx\in G, where σ\sigma is the Γ\Gamma-section map of (6.1). This yields the equality fh((x)μηxx1x1)=f(μη(h(x)(h(x)1)=1fh^{\prime}({{}^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1}})=f(^{\mu\eta}(h^{\prime}(x)(h^{\prime}(x)^{-1})=1. The Γ\Gamma-property of (6.1) implies the equality h(μη(x)x1)=1h^{\prime}(^{\mu\eta}(x)x^{-1})=1. Therefore the subgroup {μη(x)xx1x1}\{^{\mu\eta}(x)x^{\prime}x^{-1}x^{\prime-1}\} goes to unit by the Γ\Gamma-homomorphism h’. It is evident that the Γ\Gamma-homomorphism h¯:PΓ(G,μ)A\bar{h}:P_{\Gamma(G,\mu)}\rightarrow A induced by h’ satisfies the equality fh¯=h.f\bar{h}=h. This completes the proof of the theorem.

7. Homology and central Γ\Gamma-extensions of crossed Γ\Gamma-modules

To define the homology of crossed Γ\Gamma-modules the left derived functors Ln𝔓TL^{\mathfrak{P}}_{n}T, n0n\in 0, of a covariant functor T:𝔄GrT:\mathfrak{A}\rightarrow Gr from the category 𝔄\mathfrak{A} with finite inverse limits to the category Gr\mathrm{Gr} of groups will be used [24,26].

Definition 7.1.

[26][26]

Let PAP_{*}\rightarrow A be a pseudo-simplicial projective resolution over the object A of the category 𝔄\mathfrak{A}:

P=τ2P2λ22λ20P1λ11λ10P0τ0AP_{*}=...\overset{\tau_{2}}{\rightarrow}P_{2}\underset{\lambda^{2}_{2}}{\overset{\lambda^{0}_{2}}{\Rrightarrow}}P_{1}\underset{\lambda^{1}_{1}}{\overset{\lambda^{0}_{1}}{\rightrightarrows}}P_{0}\overset{\tau_{0}}{\rightarrow}A,

and consider the chain complex (LT(P),d)(L_{*}T(P_{*}),d_{*}), where

LnT(P)=T(Pn)KerT(λn0)KerT(λn1n)L_{n}T(P_{*})=T(P_{n})\cap KerT(\lambda^{0}_{n})\cap...\cap KerT(\lambda^{n}_{n-1}) , n0n\geq 0, and dn:LnT(P)Ln1T(P)d_{n}:L_{n}T(P_{*})\rightarrow L_{n-1}T(P_{*}) is the restriction of T(λnn)T(\lambda^{n}_{n}) on LnT(P)L_{n}T(P_{*}).

The n-th homology group of the chain complex (LT(P),d)(L_{*}T(P_{*}),d_{*}) defines the n-th left derived functor Ln𝔓ΓTL^{\mathfrak{P}_{\Gamma}}_{n}T of T with respect to the projective class 𝔓Γ\mathfrak{P}_{\Gamma}.

If the values of the functor T belong to the category of abelian groups one can also use the definition of Tierney - Vogel [47] by considering the homology groups of the chain complex JT(P)JT(P_{*}):

JT(P)={T(Pn),δn,n0}JT(P_{*})=\{T(P_{n}),\delta_{n},n\geq 0\}, where δn=i=0𝑛(1)iT(δin)\delta_{n}=\underset{i=0}{\overset{n}{\sum}}(-1)^{i}T(\delta^{n}_{i}).

The natural homomorphism LT(P)JT(P)LT(P_{*})\rightarrow JT(P_{*}) induces an isomorphism of their homology groups and the proof of this assertion is completely similar to the proof for simplicial groups [35].

Definition 7.2.

The n-th homology group of the crossed Γ\Gamma-module (G,μ)(G,\mu) with coefficients in the Γ\Gamma-module A and with respect to the projective class 𝔓Γ\mathfrak{P}_{\Gamma} is given by

Hn𝔓Γ((G,μ),A)=Ln1𝔓Γ(I(G)GΓA)H^{\mathfrak{P}_{\Gamma}}_{n}((G,\mu),A)=L^{\mathfrak{P}_{\Gamma}}_{n-1}(I(G)\otimes_{G\rtimes\Gamma}A), n1n\geq 1.

The Γ\Gamma-equivariant n-th homology group of the crossed Γ\Gamma-module (G,μ)(G,\mu) with coefficients in the Γ\Gamma-module A and with respect to the projective class 𝔓Γe\mathfrak{P}_{\Gamma-e} is defined as

Hn𝔓Γe((G,μ),A)=Ln1𝔓Γe(I(G)GΓA)H^{\mathfrak{P}_{\Gamma-e}}_{n}((G,\mu),A)=L^{\mathfrak{P}_{\Gamma-e}}_{n-1}(I(G)\otimes_{G\rtimes\Gamma}A), n1n\geq 1.

Proposition 7.3.

One has

1) Hn𝔓Γ((G,μ),A)=0H^{\mathfrak{P}_{\Gamma}}_{n}((G,\mu),A)=0 for n2n\geq 2 and H1𝔓Γ((G,μ),A)=I(G)GΓAH^{\mathfrak{P}_{\Gamma}}_{1}((G,\mu),A)=I(G)\otimes_{G\propto\Gamma}A, if (G,μ)(G,\mu) is a projective crossed Γ\Gamma-module.

2)If Γ\Gamma acts trivially on A, then H1𝔓Γ((G,μ),A)=G/[G,G]ΓA.H^{\mathfrak{P}_{\Gamma}}_{1}((G,\mu),A)=G/[G,G]_{\Gamma}\otimes A.

ProofProof. 1) Let (P,μ)(P,\mu) be a projective crossed Γ\Gamma-module and ((Y,δ),τ,(P,μ))((Y_{*},\delta_{*}),\tau,(P,\mu)) be a 𝔓Γ\mathfrak{P}_{\Gamma}-projective resolution of (P,μ)(P,\mu). Since P is projective, there is a Γ\Gamma-homomorphism h:PY0h:P\rightarrow Y_{0} such that τh=1\tau h=1 and inducing the left contractibility hn:YnYn+1h_{n}:Y_{n}\rightarrow Y_{n+1} , n0n\geq 0. It follows that the abelian augmented pseudo-simplicial group (I(Y)GΓA),I(τ)GΓA),I(P)GΓA)(I(Y_{*})\otimes_{G\rtimes\Gamma}A),I(\tau)\otimes_{G\rtimes\Gamma}A),I(P)\otimes_{G\rtimes\Gamma}A) is left contractive and therefore aspherical. This also yields L0𝔓Γ(I(G)GΓA)=I(G)GΓAL^{\mathfrak{P}_{\Gamma}}_{0}(I(G)\otimes_{G\rtimes\Gamma}A)=I(G)\otimes_{G\rtimes\Gamma}A.

2) First it will be shown that every exact sequence of Γ\Gamma-groups

G1τ1G2τ2GeG_{1}\overset{\tau_{1}}{\rightarrow}G_{2}\overset{\tau_{2}}{\rightarrow}G\rightarrow e.

induces the exact sequence

H1Γ(G1)H1Γ(τ1)H1Γ(G2)H1Γ(τ2)H1Γ(G)0H_{1}^{\Gamma}(G_{1})\overset{H_{1}^{\Gamma}(\tau_{1})}{\rightarrow}H_{1}^{\Gamma}(G_{2})\overset{H_{1}^{\Gamma}(\tau_{2})}{\rightarrow}H_{1}^{\Gamma}(G)\rightarrow 0.

By using the exact sequence [27]

0ΓG/[G,G]ΓGH1(G)H1Γ(G)00\rightarrow\Gamma G/[G,G]\cap\Gamma G\rightarrow H_{1}(G)\rightarrow H^{\Gamma}_{1}(G)\rightarrow 0

one gets the following commutative diagram with exact rows and columns

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Kerξ\textstyle{Ker\xi\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΓG2/[G2,G2]ΓG2\textstyle{\Gamma G_{2}/[G_{2},G_{2}]\cap\Gamma G_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ξ\scriptstyle{\xi}ΓG/[G,G]ΓG\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\Gamma G/[G,G]\cap\Gamma G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}KerH1(τ2)\textstyle{KerH_{1}(\tau_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ\scriptstyle{\sigma}H1(G2)\textstyle{H_{1}(G_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(τ2)\scriptstyle{H_{1}(\tau_{2})}H1(G)\textstyle{H_{1}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}KerH1Γ(τ2)\textstyle{KerH^{\Gamma}_{1}(\tau_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1Γ(G2)\textstyle{H^{\Gamma}_{1}(G_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1Γ(τ2)\scriptstyle{H^{\Gamma}_{1}(\tau_{2})}H1Γ(G)\textstyle{H^{\Gamma}_{1}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0}0\textstyle{0}

showing that the homomorphism σ\sigma is surjective. Consider now the commutative diagram

H1(G1)\textstyle{H_{1}(G_{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(τ1)\scriptstyle{H_{1}(\tau_{1})}δ\scriptstyle{\delta}KerH(τ2)\textstyle{KerH(\tau_{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}σ\scriptstyle{\sigma}H1Γ(G1)\textstyle{H^{\Gamma}_{1}(G_{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}δ\scriptstyle{\delta^{\prime}}KerH1Γ(τ2).\textstyle{KerH^{\Gamma}_{1}(\tau_{2}).}

By Stallings - Stammbach exact homology sequence [44] one concludes that δ\delta is surjective implying the surjection of δ\delta^{\prime} and therefore the exactness of the required sequence. The isomorphism I(G)GΓAH1Γ(G)AI(G)\otimes_{G\propto\Gamma}A\cong H^{\Gamma}_{1}(G)\otimes A [27] gives us the exactness of the sequence

I(G1)G1ΓAI(G2)G2ΓAI(G)GΓA0I(G_{1})\otimes_{G_{1}\rtimes\Gamma}A\rightarrow I(G_{2})\otimes_{G_{2}\rtimes\Gamma}A\rightarrow I(G)\otimes_{G\rtimes\Gamma}A\rightarrow 0.

It is now easily checked that if ((P,μ),τ,(G,μ))((P_{*},\mu_{*}),\tau,(G,\mu)) is a 𝔓Γ\mathfrak{P}_{\Gamma}-projective resolution of the crossed Γ\Gamma-module (G,μ)(G,\mu) then π0(I(P)PΓA)\pi_{0}(I(P_{*})\otimes_{P_{*}\rtimes\Gamma}A) is isomorphic to I(G)GΓAG/[G,G]ΓAI(G)\otimes_{G\rtimes\Gamma}A\cong G/[G,G]_{\Gamma}\otimes A. This completes the proof of the proposition.

Remark 7.4.

The results of Prop.7.3 also hold for the Γ\Gamma-equivariant homology H𝔓Γe((G,μ),A)H^{\mathfrak{P}_{\Gamma-e}}_{*}((G,\mu),A).

In what follows Hn𝔓Γ((G,μ),Z)H^{\mathfrak{P}_{\Gamma}}_{n}((G,\mu),Z) and Hn𝔓Γe((G,μ),Z)H^{\mathfrak{P}_{\Gamma-e}}_{n}((G,\mu),Z) are denoted Hn𝔓Γ(G,μ)H^{\mathfrak{P}_{\Gamma}}_{n}(G,\mu) and Hn𝔓Γe(G,μ)H^{\mathfrak{P}_{\Gamma-e}}_{n}(G,\mu) respectively.

Definition 7.5.

The Γ\Gamma-extension of the crossed Γ\Gamma-module (G,μ)(G,\mu) by a Γ\Gamma-module A

0(A,1)𝜎(U,η)𝜏(G,μ)e0\rightarrow(A,1)\overset{\sigma}{\rightarrow}(U,\eta)\overset{\tau}{\rightarrow}(G,\mu)\rightarrow e

is called central if Γ\Gamma acts trivially on A. It is called universal if for any central Γ\Gamma-extension (Y,δ)(Y,\delta) of (G,μ)(G,\mu)

0(B,1)(Y,δ)(G,μ)e0\rightarrow(B,1)\rightarrow(Y,\delta)\rightarrow(G,\mu)\rightarrow e

there is a unique Γ\Gamma- homomorphism (U,η)(Y,δ)(U,\eta)\rightarrow(Y,\delta) over (G,μ)(G,\mu).

The Γ\Gamma-extension of the crossed Γ\Gamma-module (G,μ)(G,\mu) by a Γ\Gamma-module A with Γ\Gamma-section map

0(A,1)𝜎(U,η)𝜏(G,μ)e0\rightarrow(A,1)\overset{\sigma}{\rightarrow}(U,\eta)\overset{\tau}{\rightarrow}(G,\mu)\rightarrow e

is called Γ\Gamma-equivariant central if Γ\Gamma acts trivially on A. It is called Γ\Gamma-equivariant universal if for any central crossed Γ\Gamma-extension (Y,δ)(Y,\delta) of (G,μ)(G,\mu) with Γ\Gamma-section map

0(B,1)(Y,δ)(G,μ)e0\rightarrow(B,1)\rightarrow(Y,\delta)\rightarrow(G,\mu)\rightarrow e

there is a unique Γ\Gamma- homomorphism (U,η)(Y,δ)(U,\eta)\rightarrow(Y,\delta) over (G,μ)(G,\mu).

For the construction of the universal Γ\Gamma-extension and the Γ\Gamma-equivariant universal Γ\Gamma-extension of the crossed Γ\Gamma-module (G,μ)(G,\mu) the projective classes 𝔓Γ\mathfrak{P}_{\Gamma} and 𝔓Γe\mathfrak{P}_{\Gamma-e} will be used respectively.

Consider the above mentioned free group F(Γ,G)F(\Gamma,G) with Γ\Gamma-action (γ,g)γ=(γγ,g){}^{\gamma^{\prime}}(\gamma,g)=(\gamma^{\prime}\gamma,g) and the Γ\Gamma-homomorphism η:F(G,μ)G\eta^{\prime}:F_{(G,\mu)}\rightarrow G given by η([(γ,g)])=γg\eta^{\prime}([(\gamma,g)])=^{\gamma}g. Denote by R the kernel of η\eta^{\prime} and by P the quotient of the free crossed Γ\Gamma-module F(G,μ)F_{(G,\mu)} by the normal subgroup generated by the elements [γrr1],rR,γΓ[^{\gamma}r\cdot r^{-1}],r\in R,\gamma\in\Gamma. This yields a crossed Γ\Gamma-module (P,τ)(P,\tau), where τ\tau is induced by the canonical homomorphism η:(F(G,μ),μη)(G,μ)\eta^{\prime}:(F_{(G,\mu)},\mu\eta^{\prime})\rightarrow(G,\mu).

For the Γ\Gamma-equivarianr case take the free group F(G) with Γ\Gamma-action |γg|=|γg|,gG.{}^{\gamma}|g|=|^{\gamma}g|,g\in G. and the kernel L of the homomorphism φ:FΓ(G,μ)G\varphi^{\prime}:F_{\Gamma(G,\mu)}\rightarrow G induced by the canonical homomorphism φ:F(G)G\varphi:F(G)\rightarrow G. Let PΓP_{\Gamma} be the quotient of the Γ\Gamma-equivariant free crossed Γ\Gamma-module FΓ(G,μ)F_{\Gamma(G,\mu)} by the normal subgroup generated by the elements [γll1][^{\gamma}l\cdot l^{-1}], lL,γΓl\in L,\gamma\in\Gamma. This yields a crossed Γ\Gamma-module (PΓ,τΓ)(P_{\Gamma},\tau_{\Gamma}), where τΓ\tau_{\Gamma} is induced by the canonical surjection FΓ(G,μ),μφ)(G,μ)F_{\Gamma(G,\mu)},\mu\varphi^{\prime})\rightarrow(G,\mu).

Definition 7.6.

The crossed Γ\Gamma-module (G,μ)(G,\mu) is called Γ\Gamma-perfect if H1𝔓Γ(G,μ)=H1𝔓Γe(G,μ)=0.H^{\mathfrak{P}_{\Gamma}}_{1}(G,\mu)=H^{\mathfrak{P}_{\Gamma-e}}_{1}(G,\mu)=0.

Theorem 7.7.

1) A central Γ\Gamma-extension (U,η)(U,\eta) of a crossed Γ\Gamma-module (G,μ)(G,\mu) is universal if and only if it is Γ\Gamma-perfect and every central Γ\Gamma-extension of (U,η)(U,\eta) splits.

2) If (G,μ)(G,\mu) is Γ\Gamma-perfect then the Γ\Gamma-extension

0(R,1)([P,P]Γ/[P,R]Γ,η¯)τ(G,μ)e0\rightarrow(R^{\prime},1)\rightarrow([P,P]_{\Gamma}/[P,R]_{\Gamma},\bar{\eta})\overset{\tau^{\prime}}{\rightarrow}(G,\mu)\rightarrow e

is the universal Γ\Gamma-extension of (G,μ)(G,\mu), where τ\tau^{\prime} is induced by τ\tau and η¯\bar{\eta} is induced by μη\mu\eta^{\prime}.

3) A central Γ\Gamma-equivariant extension (U,η)(U,\eta) of a crossed Γ\Gamma-module (G,μ)(G,\mu) is Γ\Gamma-equivariant universal if and only if it is Γ\Gamma-perfect and every central Γ\Gamma-equivariant extension of (U,η)(U,\eta) splits.

4) If (G,μ)(G,\mu) is Γ\Gamma-perfect then the Γ\Gamma-extension

0(L,1)([PΓ,PΓ]Γ/[PΓ,L]Γ,φ¯)τ(G,μ)e0\rightarrow(L^{\prime},1)\rightarrow([P_{\Gamma},P_{\Gamma}]_{\Gamma}/[P_{\Gamma},L]_{\Gamma},\bar{\varphi})\overset{\tau^{\prime}}{\rightarrow}(G,\mu)\rightarrow e

is the Γ\Gamma-equivariant universal Γ\Gamma-extension of (G,μ)(G,\mu), where τ\tau^{\prime} is induced by τ\tau and φ¯\bar{\varphi} is induced by μφ\mu\varphi.

ProofProof. 1)The way follows to the classical proof for central group extensions [37] and that has been also realized for central Γ\Gamma-equivariant group extensions [27]. Let

E=0(C,1)𝛼(U,η)𝛽(G,μ)eE=0\rightarrow(C,1)\overset{\alpha}{\rightarrow}(U,\eta)\overset{\beta}{\rightarrow}(G,\mu)\rightarrow e

be the universal Γ\Gamma-extension of (G,μ)(G,\mu). If (U,η)(U,\eta) is not perfect, there is two distinct morphisms f1,f2:(U,η)(U/[U,U]Γ,η)f_{1},f_{2}:(U,\eta)\rightarrow(U/[U,U]_{\Gamma},\eta^{\prime}) from E to F=0(U/[U,U]Γ,1)𝜎(U/[U,U]Γ,η)𝜏(G,μ)eF=0\rightarrow(U/[U,U]_{\Gamma},1)\overset{\sigma}{\rightarrow}(U/[U,U]_{\Gamma},\eta^{\prime})\overset{\tau}{\rightarrow}(G,\mu)\rightarrow e over (G,μ)(G,\mu), where f1(x)=(1,β(x))f_{1}(x)=(1,\beta(x)), f2(x)=(ψ(x),β(x))f_{2}(x)=(\psi(x),\beta(x)), xUx\in U, and ψ:UU/[U,U]Γ\psi:U\rightarrow U/[U,U]_{\Gamma} is the canonical homomorphism. That is in contradiction with the universality of E.

Let

F=0(D,1)𝜎(W,δ)𝜔(U,η)eF=0\rightarrow(D,1)\overset{\sigma}{\rightarrow}(W,\delta)\overset{\omega}{\rightarrow}(U,\eta)\rightarrow e

be a central Γ\Gamma-extension of (U,η)(U,\eta). The sequence of Γ\Gamma-modules

0(Kerβω,1)(W,δ)(G,μ)e0\rightarrow(Ker\beta\omega,1)\rightarrow(W,\delta)\rightarrow(G,\mu)\rightarrow e is a central Γ\Gamma-extension of (G,μ)(G,\mu). The universality of E yields a homomorphism f:(U,η)(W,β)f^{\prime}:(U,\eta)\rightarrow(W,\beta) over (G,μ)(G,\mu) and the composite ωf\omega f^{\prime} is also a homomorphism over (G,μ)(G,\mu) implying the equality ωf=1\omega f^{\prime}=1 and the splitting of F.

2)Let

0(D,1)(X,δ)𝜔(G,μ)10\rightarrow(D,1)\rightarrow(X,\delta)\rightarrow\overset{\omega}{\rightarrow}(G,\mu)\rightarrow 1

be a central Γ\Gamma-extension of (G,μ)(G,\mu). Then there is a homomorphism f:(P,τ)(X,δ)f:(P,\tau)\rightarrow(X,\delta) of crossed Γ\Gamma-modules over (G,μ)(G,\mu) such that the diagram

([P,P]Γ/[P,R]Γ,η)\textstyle{([P,P]_{\Gamma}/[P,R]_{\Gamma},\eta^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}τ\scriptstyle{\tau^{\prime}}f\scriptstyle{f^{\prime}}(G,μ)\textstyle{(G,\mu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\parallel}(X,δ)\textstyle{(X,\delta)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ω\scriptstyle{\omega}(G,μ).\textstyle{(G,\mu).},

where τ\tau^{\prime}, η\eta^{\prime} and ff^{\prime} are induced by τ\tau, μ\mu and ff respectively. The homomorphism τ\tau^{\prime} is surjective, since (G,μ)(G,\mu) is Γ\Gamma-perfect and therefore τ\tau^{\prime} is a central Γ\Gamma-extension of (G,μ)(G,\mu). Every Γ\Gamma- homomorphism [P,P]Γ/[P,R]ΓKerω[P,P]_{\Gamma}/[P,R]_{\Gamma}\rightarrow Ker\omega is trivial implying the uniqueness of ff^{\prime} over (G,μ)(G,\mu).

3)and 4) We omit the proof since it goes along the same lines as the proof of 1) and 2) respectively by replacing in particular the crossed Γ\Gamma-module (P,τ)(P,\tau) by the crossed Γ\Gamma-module (PΓ,τΓ)(P_{\Gamma},\tau_{\Gamma}).

ConclusionConclusion A crossed Γ\Gamma-module has the universal Γ\Gamma-extension and the Γ\Gamma-equivariant universal Γ\Gamma-extension if and only if it is Γ\Gamma-perfect.

Theorem 7.8.

1) Let

0(A,1)(B,δ)ϑ(G,μ)10\rightarrow(A,1)\rightarrow(B,\delta)\overset{\vartheta}{\rightarrow}(G,\mu)\rightarrow 1

be a Γ\Gamma-extension of (G,μ)(G,\mu) and τ:(F,η)(B,δ)\tau:(F,\eta)\rightarrow(B,\delta) be a free presentation of (B,δ)(B,\delta). Then there is an exact sequence

0UH2𝔓Γ(B,δ)H2𝔓Γ(G,μ)𝜌A/[B,A]ΓH1𝔓Γ(B,δ)H1𝔓Γ(G,μ)00\rightarrow U\rightarrow H^{\mathfrak{P}_{\Gamma}}_{2}(B,\delta)\rightarrow H^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\overset{\rho}{\rightarrow}A/[B,A]_{\Gamma}\rightarrow H^{\mathfrak{P}_{\Gamma}}_{1}(B,\delta)\rightarrow H^{\mathfrak{P}_{\Gamma}}_{1}(G,\mu)\rightarrow 0,

where U is the kernel of [F,S]Γ/[F,R]Γ[B,A]Γ[F,S]_{\Gamma}/[F,R]_{\Gamma}\rightarrow[B,A]_{\Gamma}, R=KerτR=Ker\tau and S=KerθτS=Ker\theta\tau.

2) If

0(A,1)(B,δ)ϑ(G,μ)10\rightarrow(A,1)\rightarrow(B,\delta)\overset{\vartheta}{\rightarrow}(G,\mu)\rightarrow 1

is a Γ\Gamma-equivariant extension of (G,μ)(G,\mu) and τΓ:(FΓ,ηΓ)(B,δ)\tau_{\Gamma}:(F_{\Gamma},\eta_{\Gamma})\rightarrow(B,\delta) is a Γ\Gamma-equivariant free presentation of (B,δ)(B,\delta), then there is an exact sequence

0UΓH2𝔓Γe(B,δ)H2𝔓Γe(G,μ)𝜌A/[B,A]ΓH1𝔓Γe(B,δ)H1𝔓Γe(G,μ)00\rightarrow U_{\Gamma}\rightarrow H^{\mathfrak{P}_{\Gamma-e}}_{2}(B,\delta)\rightarrow H^{\mathfrak{P}_{\Gamma-e}}_{2}(G,\mu)\overset{\rho}{\rightarrow}A/[B,A]_{\Gamma}\rightarrow H^{\mathfrak{P}_{\Gamma-e}}_{1}(B,\delta)\rightarrow H^{\mathfrak{P}_{\Gamma-e}}_{1}(G,\mu)\rightarrow 0,

where UΓU_{\Gamma} is the kernel of [FΓ,SΓ]Γ/[FΓ,RΓ]Γ[B,A]Γ[F_{\Gamma},S_{\Gamma}]_{\Gamma}/[F_{\Gamma},R_{\Gamma}]_{\Gamma}\rightarrow[B,A]_{\Gamma}, RΓ=KerτΓR_{\Gamma}=Ker\tau_{\Gamma} and S=KerθτΓS=Ker\theta\tau_{\Gamma}.

ProofProof. 1) Let (F(G),η)(G,μ)(F_{*}(G),\eta_{*})\rightarrow(G,\mu) and (F(B),β)(B,δ)(F_{*}(B),\beta_{*})\rightarrow(B,\delta) be 𝔉\mathfrak{F}-projective resolutions of (G,μ)(G,\mu) and (B,δ)(B,\delta) respectively induced by τ\tau and θτ\theta\tau. The short exact sequence of augmented pseudo-simplicial groups

([F,F]Γ[G,G]Γ)(FG)(F/[F,F]ΓG/[G,G]Γ)([F_{*},F_{*}]_{\Gamma}\rightarrow[G,G]_{\Gamma})\rightarrow(F_{*}\rightarrow G)\rightarrow(F_{*}/[F_{*},F_{*}]_{\Gamma}\rightarrow G/[G,G]_{\Gamma})

yields the short exact sequence

0H2𝔓Γ(G,μ)π0([F,F]Γ)[G,G]Γ10\rightarrow H^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\rightarrow\pi_{0}([F_{*},F_{*}]_{\Gamma})\rightarrow[G,G]_{\Gamma}\rightarrow 1.

To obtain the required exact sequence it suffices to apply the following commutative diagram with exact rows and columns

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Kerα\textstyle{Ker\alpha^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Kerα\textstyle{Ker\alpha\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}κ\scriptstyle{\kappa}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A/κ(Kerα)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces A/\kappa(Ker\alpha)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2𝔓Γ(B,δ)\textstyle{H^{\mathfrak{P}_{\Gamma}}_{2}(B,\delta)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha^{\prime}}π0([FB,FB]Γ)\textstyle{\pi_{0}([F^{B}_{*},F^{B}_{*}]_{\Gamma})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\scriptstyle{\gamma}H1𝔓Γ(B,δ)\textstyle{H^{\mathfrak{P}_{\Gamma}}_{1}(B,\delta)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2𝔓Γ(G,μ)\textstyle{H^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π0([FG,FG]Γ)\textstyle{\pi_{0}([F^{G}_{*},F^{G}_{*}]_{\Gamma})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1𝔓Γ(G,μ)\textstyle{H^{\mathfrak{P}_{\Gamma}}_{1}(G,\mu)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}1\textstyle{1}1\textstyle{1}0\textstyle{0}

It is easily checked that Kerα=[F,S]Γ/[F,R]ΓKer\alpha=[F,S]_{\Gamma}/[F,R]_{\Gamma}. Therefore κ(Kerα)=[B,A]Γ\kappa(Ker\alpha)=[B,A]_{\Gamma} and KerκKer\kappa is isomorphic to KerαKer\alpha^{\prime}. The connecting homomorphism ρ\rho is defined in a natural way. This completes the proof of the theorem.

The Hopf formula for the crossed Γ\Gamma-module homology and for the Γ\Gamma-equivariant crossed Γ\Gamma-module homology follows as a result of Theorem 7.8 Namely

Corollary 7.9.

1) If τ:(F,η)(G,μ)\tau:(F,\eta)\rightarrow(G,\mu) is a free presentation of (G,μ)(G,\mu) then

H2𝔓Γ(G,μ)R[F,F]Γ/[F,R]Γ,H^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\cong R\cap[F,F]_{\Gamma}/[F,R]_{\Gamma}, R=KerτR=Ker\tau.

2)If τΓ:(FΓ,ηΓ)(G,μ)\tau_{\Gamma}:(F_{\Gamma},\eta_{\Gamma})\rightarrow(G,\mu) is a Γ\Gamma-equivariant free presentation of (G,μ)(G,\mu) then

H2𝔓Γe(G,μ)RΓ[FΓ,FΓ]Γ/[FΓ,RΓ]Γ,H^{\mathfrak{P}_{\Gamma-e}}_{2}(G,\mu)\cong R_{\Gamma}\cap[F_{\Gamma},F_{\Gamma}]_{\Gamma}/[F_{\Gamma},R_{\Gamma}]_{\Gamma}, RΓ=KerτΓR_{\Gamma}=Ker\tau_{\Gamma}.

ProofProof. By Theorem 7.8 the Γ\Gamma-extension of (G,μ)(G,\mu):

(R,1)𝜎(F,η)(G,μ)(R,1)\overset{\sigma}{\rightarrow}(F,\eta)\rightarrow(G,\mu)

induces the exact sequence

H2𝔓Γ(F,η)H2𝔓Γ(G,μ)R/[F,R]ΓσF/[F,F]ΓG/[G,G]Γ0H^{\mathfrak{P}_{\Gamma}}_{2}(F,\eta)\rightarrow H^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\rightarrow R/[F,R]_{\Gamma}\overset{\sigma^{\prime}}{\rightarrow}F/[F,F]_{\Gamma}\rightarrow G/[G,G]_{\Gamma}\rightarrow 0,

where σ\sigma^{\prime} is induced by σ\sigma and H2𝔓Γ(F,η)=0H^{\mathfrak{P}_{\Gamma}}_{2}(F,\eta)=0. since (F,η)(F,\eta) is a free crossed Γ\Gamma-module. Finally we obtain H2𝔓Γ(G,μ)Kerσ=R[F,F]Γ/[F,R]ΓH^{\mathfrak{P}_{\Gamma}}_{2}(G,\mu)\cong Ker\sigma^{\prime}=R\cap[F,F]_{\Gamma}/[F,R]_{\Gamma}.

For the case 2) of Theorem 7.8 and Corollary 7.9 the proof is completely similar and it is omitted.

Remark 7.10.

Our results on Γ\Gamma-extensions and (co)homology of crossed Γ\Gamma-modules can be viewed as a generalization of the homological theory of relative extensions of group epimorphisms of Loday [33] and they are also closely related to (co)homology of crossed modules of Carrasco, Cegarra and Grandjean, where the category of all crossed modules is considered and the free cotriple (co)homology of crossed modules is used [7].

8. Applications to algebraic K-theory, Galois theory of commutative rings and cohomological dimension of groups

The first application deals with the connection of the Γ\Gamma-equivariant homology of groups and the homology of crossed Γ\Gamma-modules with the relative algebraic K-functor K2(f)K_{2}(f), where f:ΛΛf:\Lambda\rightarrow\Lambda^{\prime} is a surjective homomorphism of rings with unit. For this purpose we recall the definition of K2(f)K_{2}(f).

Definition 8.1.

The relative Steinberg group St(f)St(f) of the surjective homomorphism f is the quotient of the free group F(St(Λ)×Y)F(St(\Lambda)\times Y) by the minimal St(Λ)St(\Lambda)-equivarient normal subgroup satisfying the relations

(A1)(A_{1}) yijuyijv=yiju+v,y^{u}_{ij}y^{v}_{ij}=y^{u+v}_{ij},

(B1)(B_{1}) xijλyv=yijv,x^{\lambda}_{ij}y^{v}=y^{v}_{ij},

(B2)(B_{2}) xijλyklv=yklv,jk,il,x^{\lambda}_{ij}y^{v}_{kl}=y^{v}_{kl},j\neq k,i\neq l,

(B3)(B_{3}) xijλyjkv=yikλvyjkv,ik,x^{\lambda}_{ij}y^{v}_{jk}=y^{\lambda v}_{ik}y^{v}_{jk},i\neq k,

(B3)(B_{3^{\prime}}) xijλykiv=ykjvλykiv,jk,x^{\lambda}_{ij}y^{v}_{ki}=y^{-v\lambda}_{kj}y^{v}_{ki},j\neq k,

(C)(C) xijλt=yijvtyiju,tF(St(Λ)×Y),x^{\lambda}_{ij}\cdot t=y^{v}_{ij}ty^{-u}_{ij},t\in F(St(\Lambda)\times Y),

where Y is the set of {yiju}\{y^{u}_{ij}\}, i,j are positive integers and u belongs to the kernel I of the homomorphism f [33].

The homomorphism φf:St(f)E(Λ,I)GL(I)\varphi_{f}:St(f)\rightarrow E(\Lambda,I)\subset GL(I) is defined by φf(xyiju)=φΛ(x)eijuφΛ(x)1\varphi_{f}(x\cdot y^{u}_{ij})=\varphi_{\Lambda}(x)e^{u}_{ij}\varphi_{\Lambda}(x)^{-1}, where the homomorphism φΛ:ST(Λ)E(Λ)\varphi_{\Lambda}:ST(\Lambda)\rightarrow E(\Lambda) is sending the generator xijλx^{\lambda}_{ij} of St(Λ)St(\Lambda) to eijλe^{\lambda}_{ij}. The group E(Λ,I)E(\Lambda,I) is the direct limit of {En(Λ,I)},n\{E_{n}(\Lambda,I)\},n\rightarrow\infty, and En(Λ,I)E_{n}(\Lambda,I) is the normal subgroup of En(Λ)E_{n}(\Lambda) of elementary n-matrices generated by I-elementary matrices of the form In+veijI_{n}+ve_{ij}, vIv\in I and iji\neq j. The group E(Λ)E(\Lambda) is acting on E(Λ,I)E(\Lambda,I) by conjugation and it is well known that E(Λ,I)E(\Lambda,I) is E(Λ)E(\Lambda)-perfect.

Definition 8.2.

[33] K2(f)=KerφfK_{2}(f)=Ker\varphi_{f} and Cokerφf=K1(f)Coker\varphi_{f}=K_{1}(f).

The groups K2(f)K_{2}(f) and K1(f)K_{1}(f) are also noted K2(Λ,I)K_{2}(\Lambda,I)and K1(Λ,I)K_{1}(\Lambda,I) respectively [37,41,25].

Denote D the fiber product Λ×ΛΛ\Lambda\times_{\Lambda^{\prime}}\Lambda with projections p1:DΛp_{1}:D\rightarrow\Lambda and p2:DΛp_{2}:D\rightarrow\Lambda. Let St(I) be the kernel of St(p1)St(p_{1}) and let C(I)=[St(p1),St(p2)]C(I)=[St(p_{1}),St(p_{2})]. There is a homomorphism μ:St(I)/C(I)St(Λ)\mu:St(I)/C(I)\rightarrow St(\Lambda) induced by St(p2)St(p_{2}) on St(I). In [33] it is shown that the set of relations defining the group St(I) given by Swan [46] is equivalent to the set of relations (A1,B1,B2,B3,B3)(A_{1},B_{1},B_{2},B_{3},B_{3^{\prime}}) implying the isomorphisms θ:St(f)St(I)/C(I)\theta:St(f)\rightarrow St(I)/C(I), K2(f)K2(I)/C(I)K_{2}(f)\overset{\cong}{\rightarrow}K_{2}(I)/C(I), and the sequence

(8.1) 0Ker(μθ)St(f)μθSt(Λ)St(f)St(Λ)10\rightarrow Ker(\mu\theta)\rightarrow St(f)\overset{\mu\theta}{\rightarrow}St(\Lambda)\overset{St(f)}{\rightarrow}St(\Lambda^{\prime})\rightarrow 1

is the universal relative extension of (St(Λ),St(Λ))(St(\Lambda^{\prime}),St(\Lambda)).

According to results of [33] the following short exact sequence is provided

(8.2) 0K2(f)St(f)φfE(Λ,I)1,0\rightarrow K_{2}(f)\rightarrow St(f)\overset{\varphi_{f}}{\rightarrow}E(\Lambda,I)\rightarrow 1,

where φf=φΛμϑ\varphi_{f}=\varphi_{\Lambda}\mu\vartheta (see also [30]).

Theorem 8.3.

There is an exact sequence

0[P,S]St(Λ)/[P,R]St(Λ)H2𝔓St(λ)(St(f)/St(Λ)(φf))H2𝔓St(λ)(E(Λ,I))0\rightarrow[P,S]_{St(\Lambda)}/[P,R]_{St(\Lambda)}\rightarrow H^{\mathfrak{P}_{St(\lambda)}}_{2}(St(f)/St(\Lambda)(\varphi_{f}))\rightarrow H^{\mathfrak{P}_{St(\lambda)}}_{2}(E(\Lambda,I))\rightarrow

K2(f)/St(Λ)(φf))0,\rightarrow K_{2}(f)/St(\Lambda)(\varphi_{f}))\rightarrow 0,

where α:PSt(f)\alpha:P\rightarrow St(f) is a St(Λ)St(\Lambda)-projective presentation of St(f),R=KerαR=Ker\alpha and S=Kerφfα.S=Ker\varphi_{f}\alpha.

ProofProof. Consider the normal subgroup of St(f) generated by the elements xγx1,xSt(f),γSt(Λ){}^{\gamma}x\cdot x^{-1},x\in St(f),\gamma\in St(\Lambda), such that φf(γxx1)=1.\varphi_{f}(^{\gamma}x\cdot x^{-1})=1.. This subgroup is denoted St(Λ)(φf)St(\Lambda)(\varphi_{f}). By Corollary 3.3 this yields the exact sequence

0K2(f)/St(Λ)(φf))St(f)/St(Λ)(φf))E(Λ,I)10\rightarrow K_{2}(f)/St(\Lambda)(\varphi_{f}))\rightarrow St(f)/St(\Lambda)(\varphi_{f}))\rightarrow E(\Lambda,I)\rightarrow 1

which is a central St(Λ)St(\Lambda)-equivariant extension of E(Λ,I)E(\Lambda,I) having a St(Λ)St(\Lambda)-section map. The group St(f)is St(Λ)St(\Lambda)-perfect [33] implying St(f)/St(Λ)(φf))St(f)/St(\Lambda)(\varphi_{f})) is also St(Λ)St(\Lambda)-perfect and therefore H1𝔓St(λ)(St(f)/St(Λ)(φf)))=0H^{\mathfrak{P}_{St(\lambda)}}_{1}(St(f)/St(\Lambda)(\varphi_{f})))=0. It remains to apply Theorem 2.8 to get the required exact sequence. This completes the proof.

Remark 8.4.

The exact sequence of Theorem 8.3 can be replaced by the exact sequence

0[P,S]St(Λ)/[P,R]St(Λ)H2𝔓St(λ)(St(f)/St(Λ)(φf))H~2𝔓St(λ)(E(Λ,I))K2(f)00\rightarrow[P,S]_{St(\Lambda)}/[P,R]_{St(\Lambda)}\rightarrow H^{\mathfrak{P}_{St(\lambda)}}_{2}(St(f)/St(\Lambda)(\varphi_{f}))\rightarrow\tilde{H}^{\mathfrak{P}_{St(\lambda)}}_{2}(E(\Lambda,I))\rightarrow K_{2}(f)\rightarrow 0,

where H~2𝔓St(λ)(E(Λ,I))\tilde{H}^{\mathfrak{P}_{St(\lambda)}}_{2}(E(\Lambda,I)) denotes the fiber product

H2𝔓St(λ)(E(Λ,I))×K2(f)/St(Λ)(φf)K2(f)H^{\mathfrak{P}_{St(\lambda)}}_{2}(E(\Lambda,I))\times_{K_{2}(f)/St(\Lambda)(\varphi_{f})}K_{2}(f).

We are now going to establish the relation of the homology of crossed Γ\Gamma-modules with the relative algebraic K-functor K2(f)K_{2}(f).

The short exact sequence (8.2) induces the following E(Λ)E(\Lambda)-extension of the inclusion crossed E(Λ)E(\Lambda)-module (E(Λ,I),σ)(E(\Lambda,I),\sigma), σ:E(Λ,I)E(Λ)\sigma:E(\Lambda,I)\hookrightarrow E(\Lambda):

0(K2(f),1)(St(f),φf)(E(Λ,I),σ)1.0\rightarrow(K_{2}(f),1)\rightarrow(St(f),\varphi_{f})\rightarrow(E(\Lambda,I),\sigma)\rightarrow 1.

Take the quotient St’(f) of St(f) by the normal subgroup generated by the elements xγx1,γKerφΛ,xSt(f),{}^{\gamma}x\cdot x^{-1},\gamma\in Ker\varphi_{\Lambda},x\in St(f), implying the short exact sequence

0K2(f)St(f)φfE(Λ,I)10\rightarrow K_{2}(f)\rightarrow St^{\prime}(f)\overset{\varphi^{\prime}_{f}}{\rightarrow}E(\Lambda,I)\rightarrow 1

of E(Λ)E(\Lambda)-modules, E(Λ)E(\Lambda) is trivially acting on K2(f)K_{2}(f) and its action on St’(f) is realized via the homomorphism φΛ\varphi_{\Lambda}.

Finally we obtain a central E(Λ)E(\Lambda)-extension of the inclusion crossed E(Λ)E(\Lambda)-module (E(Λ,I),σ)(E(\Lambda,I),\sigma), σ:E(Λ,I)E(Λ)\sigma:E(\Lambda,I)\hookrightarrow E(\Lambda),

(8.3) 0(K2(f),1)(St(f),φf)(E(Λ,I),σ)1,0\rightarrow(K_{2}(f),1)\rightarrow(St^{\prime}(f),\varphi^{\prime}_{f})\rightarrow(E(\Lambda,I),\sigma)\rightarrow 1,

where φf\varphi^{\prime}_{f} is induced by φΛμθ\varphi_{\Lambda}\mu\theta.

The sequence

(8.4) 0(K2(f)/E(Λ)(φf),1)(St(f)/E(Λ)(φf),σφf)(E(Λ,I),σ)10\rightarrow(K_{2}(f)/E(\Lambda)(\varphi^{\prime}_{f}),1)\rightarrow(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f})\rightarrow(E(\Lambda,I),\sigma)\rightarrow 1

is E(Λ)E(\Lambda)-equivariant extension of the inclusion crossed E(Λ)E(\Lambda)-module (E(Λ,I),σ)(E(\Lambda,I),\sigma). It is evident that the crossed E(Λ)E(\Lambda)-module (St(f),σφf)(St^{\prime}(f),\sigma\varphi^{\prime}_{f}) is E(Λ)E(\Lambda)-perfect and therefore the crossed (E(Λ)(E(\Lambda)-module (St(f)/E(Λ)(φf),σφf)(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}) is also E(Λ)E(\Lambda)-perfect implying H1𝔓E(Λ)e(St(f)/E(Λ)(φf),σφf))=0.H^{\mathfrak{P}_{E(\Lambda)-e}}_{1}(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}))=0.

Theorem 8.5.

1) The sequence of St(Λ)modulesSt(\Lambda)-modules

0(Ker(μθ),1)(St(f),μθ)(KerSt(f),σ)10\rightarrow(Ker(\mu\theta),1)\rightarrow(St(f),\mu\theta)\rightarrow(KerSt(f),\sigma)\rightarrow 1

is the universal St(ΛSt(\Lambda)-extension of the inclusion crossed St(Λ)St(\Lambda)-module (KerSt(f),σ)(KerSt(f),\sigma) and there is an isomorphism H2𝔓St(λ)(KerSt(f),σ)Ker(μθ)H^{\mathfrak{P}_{St(\lambda)}}_{2}(KerSt(f),\sigma)\cong Ker(\mu\theta).

2) The sequence (8.4) is the E(Λ)E(\Lambda)-equivariant extension of the inclusion crossed E(Λ)E(\Lambda)-module (E(Λ,I),σ)(E(\Lambda,I),\sigma) and there is an isomorphism

H2𝔓E(Λ)e(E(Λ,I),σ)K2(f)/E(Λ)(φf).H^{\mathfrak{P}_{E(\Lambda)-e}}_{2}(E(\Lambda,I),\sigma)\overset{\cong}{\rightarrow}K_{2}(f)/E(\Lambda)(\varphi^{\prime}_{f}).

ProofProof. 1) As noted above it is proven in [33] that the group St(f) is St(Λ)St(\Lambda)-perfect. Therefore the crossed St(Λ)St(\Lambda)-module (St(f,μθ)(St(f,\mu\theta) is also St(Λ)St(\Lambda)-perfect and H1𝔓St(λ)(St(f),μθ)=0H^{\mathfrak{P}_{St(\lambda)}}_{1}(St(f),\mu\theta)=0. Since the sequence (8.1) is the universal relative extension of (St(Λ),St(Λ))(St(\Lambda^{\prime}),St(\Lambda)) it follows that every central St(Λ)St(\Lambda)-extension of the crossed St(Λ)St(\Lambda)-module (St(f),μθ)(St(f),\mu\theta) splits implying H2𝔓St(λ)(St(f),μθ)=0H^{\mathfrak{P}_{St(\lambda)}}_{2}(St(f),\mu\theta)=0. It remains to apply the first part of Theorem 7.8 to get the required isomorphism.

2) It is evident that the crossed E(Λ)E(\Lambda)-module (St(f),φf)(St^{\prime}(f),\varphi^{\prime}_{f}) is E(Λ)E(\Lambda)-perfect. Therefore the crossed E(Λ)E(\Lambda)-module (St(f)/E(Λ)(φf),σφf)(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}) is also E(Λ)E(\Lambda)-perfect and H1𝔓E(λ)e(St(f)/E(Λ)(φf),σφf)=0H^{\mathfrak{P}_{E(\lambda)-e}}_{1}(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f})=0.

Let

0(A,1)(U,η)β(St(f)/E(Λ)(φf),σφf)10\rightarrow(A,1)\rightarrow(U^{\prime},\eta^{\prime})\overset{\beta^{\prime}}{\rightarrow}(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f})\rightarrow 1

be a central E(Λ)E(\Lambda)-equivariant extension of (St(f)/E(Λ)(φf),σφf)(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}). Consider the fiber product

D\textstyle{D^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q2\scriptstyle{q^{\prime}_{2}}q1\scriptstyle{q^{\prime}_{1}}(St(f),φf)\textstyle{(St(f^{\prime}),\varphi^{\prime}_{f})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g^{\prime}_{1}}(U,η)\textstyle{(U^{\prime},\eta^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}β\scriptstyle{\beta^{\prime}}St(f)/E(Λ)(φf),σφf).\textstyle{St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}).}

, where g1g^{\prime}_{1} is induced by the canonical homomorphism St(f)St(f)/E(Λ)(φf)St(f^{\prime})\rightarrow St(f^{\prime})/E(\Lambda)(\varphi^{\prime}_{f}). The sequence 0(A,1)Dq1(St(f),φf)10\rightarrow(A,1)\rightarrow D^{\prime}\overset{q^{\prime}_{1}}{\rightarrow}(St(f^{\prime}),\varphi^{\prime}_{f})\rightarrow 1 is E(Λ)E(\Lambda)-equivariant extension of (St(f),φf)(St^{\prime}(f),\varphi^{\prime}_{f}) which becomes a St(Λ)St(\Lambda)-equivariant extension of (St(f),φf)(St^{\prime}(f),\varphi^{\prime}_{f}) via the homomorphism φΛ:St(Λ)E(Λ)\varphi_{\Lambda}:St(\Lambda)\rightarrow E(\Lambda).

Now take the fiber product

D\textstyle{D\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q2\scriptstyle{q_{2}}q1\scriptstyle{q_{1}}(St(f),φf)\textstyle{(St(f),\varphi_{f})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g_{1}}D\textstyle{D^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q1\scriptstyle{q^{\prime}_{1}}(St(f),φf).\textstyle{(St(f^{\prime}),\varphi^{\prime}_{f}).}

The St(Λ)St(\Lambda)-equivariant extension Dq1(St(f),φf)D\overset{q_{1}}{\rightarrow}(St(f),\varphi_{f}) is St(Λ)St(\Lambda)-splitting and therefore it E(Λ)E(\Lambda)-splits too. Let σ1:(St(f),φf)D\sigma_{1}:(St(f),\varphi_{f})\rightarrow D be the splitting homomorphism implying the homomorphism q2σ1:(St(f),μθ)Dq_{2}\sigma_{1}:(St(f),\mu\theta)\rightarrow D^{\prime} of crossed E(Λ)E(\Lambda)-modules such that q1q2σ1:(St(f),μθ)=g1q^{\prime}_{1}q_{2}\sigma_{1}:(St(f),\mu\theta)=g_{1}. For xγx1KerφΛ{}^{\gamma}x\cdot x^{-1}\in Ker\varphi_{\Lambda} we have g1(γxx1)=1g_{1}(^{\gamma}x\cdot x^{-1})=1 implying the equality q1(γq2σ1(x)q2σ1(x)1)=1.q^{\prime}_{1}(^{\gamma}q_{2}\sigma_{1}(x)\cdot q_{2}\sigma_{1}(x)^{-1})=1. By Theorem 3.2 the E(Λ)E(\Lambda)-equivariant extension Dq1(St(f),φf)D^{\prime}\overset{q^{\prime}_{1}}{\rightarrow}(St(f^{\prime}),\varphi^{\prime}_{f}) has the E-property implying the equalities q2σ1(γxx1)=γq2σ1(x)q2σ1(x)1=1.q_{2}\sigma_{1}(^{\gamma}x\cdot x^{-1})=^{\gamma}q_{2}\sigma_{1}(x)\cdot q_{2}\sigma_{1}(x)^{-1}=1. Therefore the homomorphism q2σ1q_{2}\sigma_{1} sends to the unit the normal subgroup of St(f) generated by the elements xγx1KerφΛ{}^{\gamma}x\cdot x^{-1}\in Ker\varphi_{\Lambda}, inducing the E(Λ)E(\Lambda)-homomorphism σ1:(St(f),φf)D\sigma^{\prime}_{1}:(St^{\prime}(f),\varphi^{\prime}_{f})\rightarrow D^{\prime} such that q1σ1=1.q^{\prime}_{1}\sigma^{\prime}_{1}=1.

Starting with the first diagram and with the splitting homomorphism σ1\sigma^{\prime}_{1} it is easily shown by the same line of argumentation as for the previous case that the E(Λ)E(\Lambda)-equivariant extension β:(U,η)(St(f)/E(Λ)(φf),σφf)\beta^{\prime}:(U^{\prime},\eta^{\prime})\rightarrow(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f}) splits. It follows that H2𝔓E(λ)e(St(f)/E(Λ)(φf),σφf)=0H^{\mathfrak{P}_{E(\lambda)-e}}_{2}(St^{\prime}(f)/E(\Lambda)(\varphi^{\prime}_{f}),\sigma\varphi^{\prime}_{f})=0 and it remains to apply the second part of Theorem 7.8. This completes the proof of the theorem.

The second application concerns the investigation of the relationship between the equivariant symbol group of non commutative local rings and the Milnor algebraic K-functor K2K_{2} by using the Γ\Gamma-homology of groups and the homology of crossed Γ\Gamma-modules that will extend the well known Matsumoto’s theorem for fields [34].

Let A be a unital ring and Sym(A) be the symbol group of the ring A generated by the elements {u,v}\{u,v\}, u,vAu,v\in A^{*}, satisfying the following relations

(S0)(S_{0}) {u,1u}=1,u1,1uA,\{u,1-u\}=1,u\neq 1,1-u\in A^{*},

(S1)(S_{1}) {uu,v}={u,v}{u,v}\{uu^{\prime},v\}=\{u,v\}\{u^{\prime},v\},

(S2)(S_{2}) {u,vv}={u,v}{u,v}\{u,vv^{\prime}\}=\{u,v\}\{u,v^{\prime}\}. where AA^{*} denotes the multiplicative group of invertible elements of the ring A [ ]. By Matsumoto’s theorem the groups Sym(A) and K2(A)K_{2}(A) are isomorphic when A is a field [34].

For our purpose it is necessary to introduce the notion of equivariant symbol group.

Definition 8.6.

For a ring A with unit the equivariant symbol group SymA(A)Sym^{A^{*}}(A) is defined as the group (Sym(A))A(Sym(A))_{A^{*}}.

The symbol group Sym(A) becomes AA^{*}-group by the action {v,w}u={uvu1,uwu1}{}^{u}\{v,w\}=\{uvu^{-1},uwu^{-1}\}. Therefore the equivariant symbol group of an unital commutative ring coincides with its symbol group.

Now assume the ring A is a non commutative local ring such that A/Rad(A)F2A/Rad(A)\neq F_{2}. Consider the group U(A) generated by the elements u,v\langle u,v\rangle,u,vAu,v\in A^{*},AA^{*} , satisfying the following relations

(U0)(U_{0}) u,1u=1,u1,1uA,\langle u,1-u\rangle=1,u\neq 1,1-u\in A^{*},

(U1)(U_{1}) uv,w=uv,wu,w\langle uv,w\rangle=^{u}\langle v,w\rangle\langle u,w\rangle,

(U2)(U_{2}) u,vwv,wuw,uv=1\langle u,vw\rangle\langle v,wu\rangle\langle w,uv\rangle=1,

where v,wu=uvu1,uwu1{}^{u}\langle v,w\rangle=\langle uvu^{-1},uwu^{-1}\rangle [21].

The group U(A) becomes AA^{*}-group with respect to this action and results of [21] show us that there is a surjective AA^{*}-homomorphism U(A)Sym(A)U(A)\rightarrow Sym(A). In addition there is a short exact sequence of AA^{*}-groups relating U(A) with K2(A)K_{2}(A) [21]:

(8.5) 0K2(A)U(A)𝜏[A,A]1,0\rightarrow K_{2}(A)\rightarrow U(A)\overset{\tau}{\rightarrow}[A^{*},A^{*}]\rightarrow 1,

where AA^{*} acts trivially on K2(A)K_{2}(A) and by conjugation on [A,A][A^{*},A^{*}], and τ(u,v)=[u,v]\tau(\langle u,v\rangle)=[u,v]. Moreover the sequence (8.5) induces a central AA^{*}-extension of the inclusion crossed AA^{*}-module ([A,A],i)([A^{*},A^{*}],i):

(8.6) 0(K2(A),1)(U(A),τ)iτ([A,A],i)1.0\rightarrow(K_{2}(A),1)\rightarrow(U(A),\tau)\overset{i\tau}{\rightarrow}([A^{*},A^{*}],i)\rightarrow 1.

We will need the corresponding AA^{*}-equivariant versions of these two sequences. Namely,

(8.7) 0(K2(A))/A(τ)U(A)τ[A,A]1,0\rightarrow(K_{2}(A))/A^{*}(\tau)\rightarrow U^{\prime}(A)\overset{\tau^{\prime}}{\rightarrow}[A^{*},A^{*}]\rightarrow 1,
(8.8) 0(K2(A))/A(τ),1)(U(A),iτ)τ([A,A],i)1,0\rightarrow(K_{2}(A))/A^{*}(\tau),1)\rightarrow(U^{\prime}(A),i\tau^{\prime})\overset{\tau^{\prime}}{\rightarrow}([A^{*},A^{*}],i)\rightarrow 1,

where U(A)=(U(A))/A(τ)U^{\prime}(A)=(U(A))/A^{*}(\tau) and τ\tau^{\prime} is induced by τ\tau.

The subgroup A(τ)A^{*}(\tau) of K2(A)K_{2}(A) is generated by the elements γ,x\langle\gamma,x\rangle such that γx=xγ\gamma x=x\gamma, where γA,x[A,A]\gamma\in A^{*},x\in[A^{*},A^{*}]. In effect, let ui,vi\prod\langle u_{i},v_{i}\rangle be an element of U(A). One has γui,vi=γ,[ui,vi]ui,vi=γ,[ui,vi]ui,vi\prod^{\gamma}\langle u_{i},v_{i}\rangle=\prod\langle\gamma,[u_{i},v_{i}]\rangle\langle u_{i},v_{i}\rangle=\langle\gamma,\prod[u_{i},v_{i}]\rangle\prod\langle u_{i},v_{i}\rangle. Thus (ui,vi)γ(ui,vi)1=γ,[ui,vi]{}^{\gamma}(\prod\langle u_{i},v_{i}\rangle)\cdot(\prod\langle u_{i},v_{i}\rangle)^{-1}=\langle\gamma,\prod[u_{i},v_{i}]\rangle and the equality τ(γ(ui,vi)(ui,vi)1)=1\tau(^{\gamma}(\prod\langle u_{i},v_{i}\rangle)\cdot(\prod\langle u_{i},v_{i}\rangle)^{-1})=1 implies τ(γ(ui,vi)(ui,vi)1)=[γui,vi]=1\tau(^{\gamma}(\prod\langle u_{i},v_{i}\rangle)\cdot(\prod\langle u_{i},v_{i}\rangle)^{-1})=[^{\gamma}\prod\langle u_{i},v_{i}]=1.

By this way the defining relations for the group U’(A) have been also provided as follows:

(U0)(U_{0}) u,1u=1,u1,1uA,\langle u,1-u\rangle=1,u\neq 1,1-u\in A^{*},

(U1)(U_{1}) uv,w=uv,wu,w\langle uv,w\rangle=^{u}\langle v,w\rangle\langle u,w\rangle,

(U2)(U_{2}) u,vwv,wuw,uv=1\langle u,vw\rangle\langle v,wu\rangle\langle w,uv\rangle=1,

(U3)(U_{3}) uv=vu,uA,v[A,A]uv=vu,u\in A^{*},v\in[A^{*},A^{*}].

Theorem 8.7.

There is an exact sequence 0[P,S]A/[P,R]AH2A(U(A))H2A([A,A])K2(A)/A(τ)SymA(A)[A,A]/[A,A]A00\rightarrow[P,S]_{A^{*}}/[P,R]_{A^{*}}\rightarrow H^{A^{*}}_{2}(U^{\prime}(A))\rightarrow H^{A^{*}}_{2}([A^{*},A^{*}])\rightarrow K_{2}(A)/A^{*}(\tau)\rightarrow Sym^{A^{*}}(A)\rightarrow[A^{*},A^{*}]/[A^{*},A^{*}]_{A^{*}}\rightarrow 0,

where α:PU(A)\alpha:P\rightarrow U^{\prime}(A) is AA^{*}-projective presentation of U’(A), R=KerαR=Ker\alpha and S=KerταS=Ker\tau^{\prime}\alpha.

ProofProof. First of all it will be proved that the groups H1A(U(A))H_{1}^{A^{*}}(U^{\prime}(A)) and SymA(A)Sym^{A^{*}}(A) are isomorphic. Consider the system of relations (S0,S1,S2)(S_{0},S_{1},S^{\prime}_{2}) which is equivalent to the system (S0,S1,S2)(S_{0},S_{1},S_{2}) of defining relations for the symbol group Sym(A)[21]. It is easily checked that the system of relations ((S0,S1,S2,L4,L5)((S_{0},S_{1},S^{\prime}_{2},L_{4},L_{5}) is equivalent to the system (U0,U1,U2,M4,M5)(U_{0},U_{1},U_{2},M_{4},M_{5}), where (L4):w{u,v}={u,v},(L5):{u,v}{u,v}={u,v}{u,v}(L_{4}):^{w}\{u,v\}=\{u,v\},(L_{5}):\{u,v\}\{u^{\prime},v^{\prime}\}=\{u^{\prime},v^{\prime}\}\{u,v\},and (M4):wu,v=u,v,(M5):u,vu,v=u,vu,v(M_{4}):^{w}\langle u,v\rangle=\langle u,v\rangle,(M_{5}):\langle u,v\rangle\langle u^{\prime},v^{\prime}\rangle=\langle u^{\prime},v^{\prime}\rangle\langle u,v\rangle. For the group U(A) the relation u,vu,v=[u,v]u,vu,v\langle u,v\rangle\langle u^{\prime},v^{\prime}\rangle=^{[u,v]}\langle u^{\prime},v^{\prime}\rangle\langle u,v\rangle holds [21], implying the group U(A)AU(A)_{A^{*}} defined by the system of relations ((U0,U1,U2,M4)((U_{0},U_{1},U_{2},M_{4}) is abelian. Therefore the group Sym(A)ASym(A)_{A^{*}} is also abelian and this yields the following sequence of equivalences of defining systems:

(S0,S1,S2,L4)(S0,S1,S2,L4)((S0,S1,S2,L4,L5)(U0,U1,U2,M4,M5)(U0,U1,U2,M4)(S_{0},S_{1},S_{2},L_{4})\approx(S_{0},S_{1},S^{\prime}_{2},L_{4})\approx((S_{0},S_{1},S^{\prime}_{2},L_{4},L_{5})\approx(U_{0},U_{1},U_{2},M_{4},M_{5})\approx(U_{0},U_{1},U_{2},M_{4})

showing the isomorphism of groups Sym(A)ASym(A)_{A^{*}} and U(A)AU(A)_{A^{*}}. Finally this induces the following isomorphisms H1A(U(A))U(A)AU(A)ASym(A)AH_{1}^{A^{*}}(U^{\prime}(A))\cong U^{\prime}(A)_{A^{*}}\cong U(A)_{A^{*}}\cong Sym(A)_{A^{*}}. It remains to apply Theorem 2.8 for the sequence (8.7). This completes the proof of the theorem.

Corollary 8.8.

(1) As a consequence of this theorem there is an exact sequence

0[P,S]A/[P,R]AH2A(U(A))H~2A([A,A])0\rightarrow[P,S]_{A^{*}}/[P,R]_{A^{*}}\rightarrow H^{A^{*}}_{2}(U^{\prime}(A))\rightarrow\tilde{H}^{A^{*}}_{2}([A^{*},A^{*}])

K2(A)SymA(A)[A,A]/[A,A]A0,\rightarrow K_{2}(A)\rightarrow Sym^{A^{*}}(A)\rightarrow[A^{*},A^{*}]/[A^{*},A^{*}]_{A^{*}}\rightarrow 0,

and

(2) if [A,A][A^{*},A^{*}] is quasi-perfect then the sequence

0[P,S]A/[P,R]AH2A(U(A))H~2A([A,A])0\rightarrow[P,S]_{A^{*}}/[P,R]_{A^{*}}\rightarrow H^{A^{*}}_{2}(U^{\prime}(A))\rightarrow\tilde{H}^{A^{*}}_{2}([A^{*},A^{*}])

K2(A)SymA(A)0\rightarrow K_{2}(A)\rightarrow Sym^{A^{*}}(A)\rightarrow 0

is exact.

where H~2A([A,A])\tilde{H}^{A^{*}}_{2}([A^{*},A^{*}]) is the fiber product

H2A([A,A)])×K2(A)/A(τ)K2(A)H^{A^{*}}_{2}([A^{*},A^{*})])\times_{K_{2}(A)/A^{*}(\tau)}K_{2}(A).

The sequence of Corollary 8.8,(2) generalizes the exact sequence

H2(U(D))H2([D,D])K2(D)Sym(D)1H_{2}(U(D))\rightarrow H_{2}([D^{*},D^{*}])\rightarrow K_{2}(D)\rightarrow Sym(D)\rightarrow 1

given in [2] for a non commutative divisor ring D such that [D,D][D^{*},D^{*}] is perfect, and the sequence of Corollary 8.8(1) can be considered as an abelian version of the exact sequence of Guin [21]

(A)abZK2(A)H¯1(A,U(A))H¯1(A,[A,A])K2(A)(A^{*})^{ab}\otimes_{Z}K_{2}(A)\rightarrow\bar{H}_{1}(A^{*},U(A))\rightarrow\bar{H}_{1}(A^{*},[A^{*},A^{*}])\rightarrow K_{2}(A)

Sym(A)[A,A]/[A,[A,A]]1\rightarrow Sym(A)\rightarrow[A^{*},A^{*}]/[A^{*},[A^{*},A^{*}]]\rightarrow 1,

where H¯1\bar{H}_{1} is the first non abelian homomolgy of groups with coefficients in crossed modules.

Remark 8.9.

Guin’s low dimensional non-abelian group homoloy with coefficients in crossed modules is closely related to integral homology of crossed modules. Let (A,δ)(A,\delta) be a crossed G-module and H0¯(G,A),H1¯(G,A)\bar{H_{0}}(G,A),\bar{H_{1}}(G,A) denote Guin’s group homology with coefficients in the crossed GG-module (A,δ)(A,\delta). In [5] it is shown that there is a group homomorphism φ:GAA\varphi:G\bigotimes A\rightarrow A, φ(ga)=gaa1\varphi(g\otimes a)=^{g}a\cdot a^{-1}, where GAG\bigotimes A is the non-abelian tensor product of Brown-Loday, and (GA,φ)(G\bigotimes A,\varphi) is a crossed A-module. Then H0¯(G,A)=cokerφ\bar{H_{0}}(G,A)=coker\varphi and H1¯(G,A)=Kerφ\bar{H_{1}}(G,A)=Ker\varphi. It is easily seen that there is an isomorphism of the abelianization H¯0ab(G,A)\bar{H}^{ab}_{0}(G,A) with H1𝔓(A,δ)H^{\mathfrak{P}}_{1}(A,\delta) and there is an exact sequence

H2𝔓(GA,φ)H2𝔓(ΓA,σ)H1¯(G,A)GA/([GA,GA])AΓA/([ΓA,ΓA])A0H^{\mathfrak{P}}_{2}(G\bigotimes A,\varphi)\rightarrow H^{\mathfrak{P}}_{2}(\Gamma A,\sigma)\rightarrow\bar{H_{1}}(G,A)\rightarrow G\bigotimes A/([G\bigotimes A,G\bigotimes A])_{A}\rightarrow\Gamma A/([\Gamma A,\Gamma A])_{A}\rightarrow 0

induced by the exact central sequence of crossed A-modules

0(H1¯(G,A),1)(GA,φ)(ΓA,σ)10\rightarrow(\bar{H_{1}}(G,A),1)\rightarrow(G\bigotimes A,\varphi)\rightarrow(\Gamma A,\sigma)\rightarrow 1.

The next application concerns the connection of Γ\Gamma-equivariant derived functors and Γ\Gamma-equivariant cohomology of groups with Galois theory of commutative rings.

Let R be a commutative ring with no nontrivial idempotents in which the prime number p is invertible. Let CpnC_{p^{n}} be the cyclic group of order pnp^{n} and SnS_{n} be the splitting ring of the polynomial xpn1x^{p^{n}}-1 of R[x]. The following notation is also introduced: SnS^{*}_{n} is the group of invertible elements and μpn\mu_{p^{n}} is the group of n-roots of 1 in the splitting ring SnS_{n}, NB(R,Cpn)NB(R,C_{p^{n}}) is the set of isomorphism classes of Galois extensions with normal basis of R with Galois group CpnC_{p^{n}} and Γn\Gamma_{n} is the Galois group of SnS_{n}.

Theorem 8.10.

There are bijections

1. NB(R,Cpn)NB(R,C_{p^{n}})\cong Ext,Γn1(μpn,Sn)Ext^{1}_{\mathds{Z},\Gamma_{n}}(\mu_{p^{n}},S^{*}_{n}), where Γn\Gamma_{n} is trivially acting on \mathds{Z}.

2. NB(R,Cpn)NB(R,C_{p^{n}})\cong HΓn2(μpn,Sn)H^{2}_{\Gamma_{n}}(\mu_{p^{n}},S^{*}_{n}), where SnS^{*}_{n} is a trivial μpn\mu_{p^{n}}-module.

ProofProof. First of all it is necessary to show that there is a bijection of ExtΛ,Γ1(L,M)Ext^{1}_{\Lambda,\Gamma}(L,M) with EΓ1,Λ(L,M)E^{1,\Lambda}_{\Gamma}(L,M) which is the set of isomorphism classes of short exact sequences 0MXL00\rightarrow M\rightarrow X\rightarrow L\rightarrow 0 of Γ\Gamma-equivariant Λ\Lambda-modules having a Γ\Gamma-section map.

Consider the standard Γ\Gamma-projective resolution of the Γ\Gamma-equivariant Λ\Lambda-module L:

FnαnFn1αn1α2F1α1F0(L)𝜏L0...\rightarrow F_{n}\overset{\alpha_{n}}{\rightarrow}F_{n-1}\overset{\alpha_{n-1}}{\rightarrow}...\overset{\alpha_{2}}{\rightarrow}F_{1}\overset{\alpha_{1}}{\rightarrow}F_{0}(L)\overset{\tau}{\rightarrow}L\rightarrow 0

where F0(L)F_{0}(L) is the free Λ\Lambda-module with basis |l||l|, lLl\in L, τ\tau is the canonical surjective homomorphism and the action of Γ\Gamma on F0(L)F_{0}(L) is given by |γl|=|γl|{}^{\gamma}|l|=|^{\gamma}l|, lLl\in L, F1=F0(Kerτ)F_{1}=F_{0}(Ker\tau) and by induction on n the relatively free Γ\Gamma-equivariant Λ\Lambda-module FnF_{n} , n>1,n>1, is defined as F0(Kerαn1)F_{0}(Ker\alpha_{n-1}), the homomorphism αn\alpha_{n} is induced by the canonical homomorphism F0(Kerαn1)Kerαn1F_{0}(Ker\alpha_{n-1})\rightarrow Ker\alpha_{n-1}. Then ExtΛ,Γn(L,M)Ext^{n}_{\Lambda,\Gamma}(L,M) , n0n\geq 0, is the n-th homology group of the chain complex

0HomΛΓ(F0(L),M)HomΛΓ(F1,M)HomΛΓ(Fn1,M)HomΛΓ(Fn,M)0\rightarrow Hom^{\Gamma}_{\Lambda}(F_{0}(L),M)\rightarrow Hom^{\Gamma}_{\Lambda}(F_{1},M)\rightarrow...\rightarrow Hom^{\Gamma}_{\Lambda}(F_{n-1},M)\rightarrow Hom^{\Gamma}_{\Lambda}(F_{n},M)\rightarrow....

It is evident that there is an ismorphism ExtΛ,Γ0(L,M)HomΛΓ(L,M)Ext^{0}_{\Lambda,\Gamma}(L,M)\cong Hom^{\Gamma}_{\Lambda}(L,M). Let E:0MXL0E:0\rightarrow M\rightarrow X\rightarrow L\rightarrow 0 be a short exact sequence of Γ\Gamma-equivariant Λ\Lambda-modules having Γ\Gamma-section map σ:LX\sigma:L\rightarrow X, [E]EΓ1,Λ(L,M)[E]\in E^{1,\Lambda}_{\Gamma}(L,M). The homomorphism τ\tau induces a Λ\Lambda-homorphism F0(L)XF_{0}(L)\rightarrow X compatible with the action of Γ\Gamma sending |l||l| to σ(l)\sigma(l). Let f denote its restriction on KerτKer\tau and let [fα0][f\alpha_{0}] be the class of the homomorphism fα0:F1Mf\alpha_{0}:F_{1}\rightarrow M. Therefore we obtain a map from EΓ1,Λ(L,M)E^{1,\Lambda}_{\Gamma}(L,M) to ExtΛ,Γ1(L,M)Ext^{1}_{\Lambda,\Gamma}(L,M) sending [E] to [fα0][f\alpha_{0}]. Conversely, if [g]ExtΛ,Γ1(L,M)[g]\in Ext^{1}_{\Lambda,\Gamma}(L,M), then g induces a Λ\Lambda-homomorphism g:KerτMg^{\prime}:Ker\tau\rightarrow M compatible with the action of Γ\Gamma. Similarly to the classical case (when Γ\Gamma is acting trivially on Λ\Lambda) by using the homomorphism g’ we can construct a short exact sequence of Γ\Gamma-equivariant Λ\Lambda-modules with Γ\Gamma-section map as follows. Take the sum MF0(L)M\oplus F_{0}(L) which is a Γ\Gamma-equivariant Λ\Lambda-module with componentwise action of Γ\Gamma and its quotient Y by the submodule generated by the elements (g(x),ϑ(x))(-g^{\prime}(x),\vartheta(x)), xKerτx\in Ker\tau, where ϑ:KerτF0(L)\vartheta:Ker\tau\rightarrow F_{0}(L) is the inclusion map. This yields the needed short exact sequence Eg:0M𝛽Y𝜂L0E_{g}:0\rightarrow M\overset{\beta}{\rightarrow}Y\overset{\eta}{\rightarrow}L\rightarrow 0 of Γ\Gamma-equivariant Λ\Lambda-modules, where β(m)=[(m,0)]\beta(m)=[(m,0)], η([m,x])=τ(x)\eta([m,x])=\tau(x), and the Γ\Gamma-section map is δ(l)=[(0,|l|)]\delta(l)=[(0,|l|)]. Thus we obtain a map ExtΛ,Γ1(L,M)EΓ1,Λ(L,M)Ext^{1}_{\Lambda,\Gamma}(L,M)\rightarrow E^{1,\Lambda}_{\Gamma}(L,M) sending [g] to [Eg][E_{g}]. It is easily checked that both maps induced by [E][fα0][E]\rightarrowtail[f\alpha_{0}] and [g][Eg][g]\rightarrowtail[E_{g}] respectively are inverse to each other.

In [29] there is the following formula of G.Janelidze

NB(R,Cpn)=ExtSn¯1(Hom(J,Un(R))),U(Rn))NB(R,C_{p^{n}})=Ext^{1}_{\underline{S_{n}}}(Hom(J,U_{n}(R))),U(R_{n})), where J=CpnJ=C_{p^{n}}, U(Rn)=SnU(R_{n})=S^{*}_{n}, Un(R)=μp[n]U_{n}(R)=\mu_{p^{[}n]} and Sn¯\underline{S_{n}} is the category of Γn\Gamma_{n}-sets.

As noted by Greither [20] this beautiful formula allowed us to establish the bijection of RNB(R,Cpn)RNB(R,C_{p^{n}}) with the set of isomorphism classes of short exact sequences 0SnXμpn00\rightarrow S^{*}_{n}\rightarrow X\rightarrow\mu_{p^{n}}\rightarrow 0 of Γn\Gamma_{n}-modules having Γn\Gamma_{n}-section map. This completes the proof of the first bijection.

For the second bijection it suffices to remark that suppose 0MXL00\rightarrow M\rightarrow X\rightarrow L\rightarrow 0 is a short sequence of Γ\Gamma-groups with Γ\Gamma-section map, where L is abelian and M is a Γ\Gamma-equivariant L-module. If L is a cyclic group trivially acting on M and Γ\Gamma is trivially acting on \mathds{Z}, then the group X is abelian and the considered sequence is a short exact sequence of Γ\Gamma-equivariant L-modules with Γ\Gamma-section map. In that case by [27, Theorem 20] this implies the bijection EΓ1,(L,M)HΓ2(L,M)E^{1,\mathds{Z}}_{\Gamma}(L,M)\cong H^{2}_{\Gamma}(L,M). This completes the proof of the theorem.

Finally, the relation of Γ\Gamma-equivariant cohomology of Γ\Gamma-groups with equivariant dimensions of groups with operators will be established, particularly with the equivariant cohomological dimension of Γ\Gamma-groups.

Recently in [19] the important and well known theorems of Eilenberg-Ganea [14] and Stallings-Swan [43,45] relating the cohomological dimension, the geometric dimension and the Lusternik-Schnirelmann category have been extended to the setting of Γ\Gamma-groups as follows:

1) Equivariant Eilenberg - Ganea Theorem:

Let G be a Γ\Gamma-group, where Γ\Gamma is finite. Then the chain of inequalities

cdΓ(G)catΓ(G)gdΓ(G)sup{3,cdΓ(G)}cd_{\Gamma}(G)\leq cat_{\Gamma}(G)\leq gd_{\Gamma}(G)\leq sup\{3,cd_{\Gamma}(G)\}

is satisfied. Furthermore, if cdΓ(G)=2cd_{\Gamma}(G)=2 then catΓ(G)=2cat_{\Gamma}(G)=2.

2) Equivariant Stallings - Swan Theorem:

Let G be a Γ\Gamma-group, where Γ\Gamma is finite. The following equalities are equivalent:

(1)gdΓ(G)=1,(2)catΓ(G)=1,(3)cdΓ(G)=1,(1)gd_{\Gamma}(G)=1,(2)cat_{\Gamma}(G)=1,(3)cd_{\Gamma}(G)=1,

(4) G is a non-trivial Γ\Gamma-free group.

For this purpose the equivariant version of these three quantities have been provided and the equivariant group cohomology has been introduced that is the generalization of the Γ\Gamma-equivariant cohomology of Γ\Gamma-groups allowing a wider class of coefficients. It is defined as the group cohomology H(O𝒢(GΓ),M)=ExtO𝒢(GΓ)(𝒵¯,M)H^{*}(O_{\mathcal{G}}(G\rtimes\Gamma),M)=Ext^{*}_{O_{\mathcal{G}}(G\rtimes\Gamma)}(\underline{{\mathcal{Z}}},M), where 𝒢\mathcal{G} denotes the family of subgroups of GΓG\rtimes\Gamma which are conjugate to a subgroup of Γ\Gamma and O𝒢(GΓ)O_{\mathcal{G}}(G\rtimes\Gamma) is the orbit category whose objects are the Γ\Gamma-sets (GΓ)/H(G\rtimes\Gamma)/H for H𝒢H\in\mathcal{G} and morphisms are Γ\Gamma-maps. An O𝒢(GΓ)O_{\mathcal{G}}(G\rtimes\Gamma)-module is a contravariant functor from the category O𝒢(GΓ)O_{\mathcal{G}}(G\rtimes\Gamma) to the category of abelian groups and ¯\underline{\mathbb{Z}} is the constant functor with value {\mathbb{Z}}. The equivariant cohomological dimension cdΓ(G)cd_{\Gamma}(G) of a Γ\Gamma-group G is defined as the least dimension d such that Hd+1(O𝒢(GΓ),M)=0H^{d+1}(O_{\mathcal{G}}(G\rtimes\Gamma),M)=0 for all O𝒢(GΓ)O_{\mathcal{G}}(G\rtimes\Gamma)-modules M.

It would be natural to introduce another algebraic cohomological dimension cdΓ(G)cd^{\Gamma}(G) of a Γ\Gamma-group G based on the Γ\Gamma-equivariant cohomology of Γ\Gamma-groups as follows:

Definition 8.11.

The cohomological dimension cdΓ(G)cd^{\Gamma}(G) of the Γ\Gamma- group G is the least dimension d such that HΓd+1(G,M)=0H^{d+1}_{\Gamma}(G,M)=0 for all (GΓ)(G\rtimes\Gamma)-modules M.

In [19, Remark 9.1] it is notified that the Γ\Gamma-equivariant cohomology of Γ\Gamma-groups is the relative group cohomology in the sense of Hochschild [22] and Adamson [1] (see also Benson [4]) enhancing the interest to this equivariant group cohomology. The Γ\Gamma-equivariant group cohomology HΓ(G,M)H^{*}_{\Gamma}(G,M) is isomorphic to H(GΓ),Γ;M)H^{*}(G\rtimes\Gamma),\Gamma;M) and there is an isomorphism H(GΓ),Γ;M)H(O𝒢(GΓ),M)H^{*}(G\rtimes\Gamma),\Gamma;M)\cong H^{*}(O_{\mathcal{G}}(G\rtimes\Gamma),M^{-}), where MM^{-} is a O𝒢(GΓ)O_{\mathcal{G}}(G\rtimes\Gamma)-module induced by M [39].

Therefore we have the inequality cdΓ(G)cdΓ(G)cd^{\Gamma}(G)\leq cd_{\Gamma}(G).

Conjecture: cdΓ(G)cdΓ(G)cd^{\Gamma}(G)\neq cd_{\Gamma}(G).

Problem: Prove the above mentioned Eilenberg - Ganea and Stallings - Swan theorems in the Γ\Gamma-equivariant group cohomology settings involving the cohomological dimension chΓ(G)ch^{\Gamma}(G) given in Definition 9.11 and the relevant quantities: the geometric dimension and the Lusternik - Schnirelmann category.

References